Tribhuvan University

Institute of Science and Technology

Performance Analysis of Cipher Block Chaining Message Authentication Code (CBC MAC) and its Variants

Dissertation

Submitted to:

Central Department of Computer Science and Information Technology Tribhuvan University, Kirtipur, Nepal

In partial fulfillment of the requirements

For the Master's Degree in Computer Science & Information Technology

By

Chhetra Bahadur Chhetri

Feb 25, 2014

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Supervisor's Recommendation

We hereby recommend that this dissertation prepared under my supervision by **Chhetra Bahadur chhetri** entitled **"Performance Analysis of Cipher Block Chaining Message Authentication Code (CBC MAC) and its Variants"** in partial fulfillment of the requirements for the Master's Degree in Computer Science &Information Technology be processed for the evaluation.

Asst.Prof.Nawaraj Paudel Head of Department (HOD) Central Department of Computer Science and Information Technology Kritipur, Kathmandu, Nepal (Supervisor)

Date:

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Declaration

"I, Chhetra Bahadur Chhetri, declare that the Master by Research thesis entitled Performance Analysis of Cipher Block Chaining Message Authentication Code (CBC MAC) and its Variants contain no sources other than listed, this thesis is my own work."

.....

Chhetra Bahadur Chhetri

Feb 25, 2014

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope and quality as a dissertation in partial fulfillment of the requirements for the Master's Degree in Computer Science &Information Technology.

Evaluation Committee

.....

Asst.Prof.Nawaraj Paudel

Central Department of Computer Science and Information Technology

Kritipur, Kathmandu, Nepal

(HOD)

.....

••••••

(External Examiner)

(Internal Examiner)

Date :

Acknowledgments

It's a pleasure for me to thank my principal supervisor, **Asst.Prof.Mr.Nawaraj Paudel**, Head of Computer Science & IT Department, TU (Kathmandu, Nepal) for his constant encouragement, support and advice.

I greatly acknowledge respected teachers **Prof. Dr. Shashidhar Ram Joshi, Prof. Dr. Subarna Shakya, Mr.Dheeraj Kedar Pandey, Mr. Jagdish Bhatta , Mr. Arjun Singh Saud, Mr. Bishnu Gautum, Mr.Bikash Balami, Mrs. Lalaita Stapit** of CDCSIT, TU, for providing valuable suggestion and huge knowledge and inspirations. I would like to thank my friends and family for their encouragement and support. I would like to give my special thanks to my friends **Mr. Prakash Datt Bhatt** and **Mr. Ram Krishna Dahal** for providing wonderful environment and resources to complete this work.

Abstract

The cryptographic algorithms employed in internet security must be able to handle packets which may vary in size over a large range. Most of the cryptographic algorithms process messages by partitioning them into large blocks. Due to this fact the messages have to be prepared by padding the required amount of zero bits to get an integer number of blocks. This process contributes a considerable overhead when the short messages are more dominant in the message stream. Here in this thesis, analyses is focused on the performance of different message authentication code generator algorithm based on cipher block. These all variants of cipher based must have to share symmetric key before creating message authentication code. All variants of CBC MAC are implemented in JAVA. The result of empirical performance shows that two variants namely TMAC perform better for AES Encryption algorithm in larger size otherwise EMAC show the better result with the Triple DES symmetric algorithm. The result shows that, when consider only on the performance aspect. Cycle/byte is calculated for comparing different variants of CBC MAC. Cycle/byte is decreased when input size of message is increased. Advanced Encryption Standard (AES) algorithm shows good performance than TDES and it has better security features than DES. CBC-MAC is likely to be standardized as an AES mode of operation.

TABLE OF CONTENTS

Ackno	wledgement		i
Abstract ii			ii
Table of Contentsiii			iii
List of Figures v			
List of	Tables		vii
List of	Abbreviation	IS	ix
1	Introductio	n	. 1
	1.1 Motiva	.tion	1
	1.2 Object	ive	2
	1.3 Thesis	Organization	3
2	Backgroun	d Study	.4
	2.1 Problem	n Definition	. 4
	2.2 Backgr	ound Study	5
	2.2.1 C	'ryptography	.5
	2.2.1	.1 Symmetric Cryptography	.6
	2.2.1	.2 Asymmetric cryptography	7
	2.2.2 B	lock Cipher Operation	.8
	2.2.3 T	he Data Encryption Standard (DES)	9
	2.2.4 T	riple – DES with Two Keys	11
	2.2.5 T	he Advanced Encryption Standard (AES)	12
3	Literature 1	Review	15
	3.1 Messag	ge Authentication Code (MAC)	15
	3.2 The Fie	eld with 2 ⁿ Points	17
	3.3 Key G	eneration	18

	3.4	Ciph	er Block Chaining (CBC)	19
	3	3.4.1	Cipher Block Chaining MAC	20
	3	3.4.2	Encrypted –MAC	21
	3	3.4.3	XCBC MAC	22
	3	3.4.4	Two –key MAC	23
	3	3.4.5	One –key MAC	. 24
4	Java	a Imp	lementation	26
	4.1	Choi	ce of the Programming Language: Java	27
	4.2	Netb	eans	. 27
	4.3	Impl	ementation Details of Candidate algorithm	27
	Z	4.3.1	CBC MAC	.31
	Z	4.3.2	EMAC	.33
	Z	4.3.3	XCBC	.34
	Z	1.3.4	TMAC	35
	Z	4.3.5	OMAC	.36
	4.4	Sam	ple Test Cases	.37
	Z	1.4.1	Key	37
	2	1.4.2	Input message(29 byte)	.37
	Ζ	1.4.3	Message Authentication Code(MAC)	.37
	Ζ	1.4.4	Input message(595 byte)	.38
	Z	1.4.5	Message Authentication Code(MAC)	38
5	Mea	asurei	ments and Result	39
	5.1	Targ	et Architectures	39
	5.2	Meas	suring Cost	.39
	5.3	Meas	suring Performance	. 40
	5.4	Anal	ysis	. 40
	5.5	Resu	ılt	51
6	Con	nclusio	on and Future Work	. 52
	6.1	Cond	clusions	52
	6.2	Futu	re Work	. 52

List of Figures

2.1	Simplified Model of Symmetric Encryption
2.2	Encryption with public key 8
2.3	Block Cipher
2.4	General Depiction of DES Encryption Algorithm
2.5	Triple DES with Two Keys 11
2.6	AES Encryption Process
2.7	AES Encryption and Decryption
3.1	Message Authentication Code 17
3.2	(a) Encryption of CBC Mode
3.2	(b) Decryption of CBC Mode
3.3	Illustration of CBC –MAC
3.4	Illustration of EMAC 22
3.5	Illustration of XCBC
3.6	Illustration of TMAC 24
3.7	Illustration of OMAC
5.1	Performance of CBC MAC with its variants for small message size (29 byte))
	with encryption algorithm AES and TDES 40
5.2	Performance of CBC MAC with its variants for small message size (595 byte))
	with encryption algorithm AES and TDES

5.3	Performance of CBC MAC with its variants for small message size (1KB))	
	with encryption algorithm AES and TDES	44

5.4	Performance of CBC MAC with its variants for small message size (2KB))	
	with encryption algorithm AES and TDES	46
5.5	Performance of CBC MAC with its variants for small message size (5KB))	
	with encryption algorithm AES and TDES	48

LIST OF TABLES

5.1	Performance of CBC MAC with its variants for small message size (29 byte) using Encryption Algorithm AES	41
5.2	Performance of CBC MAC with its variants for small message size (29 byte) using Encryption Algorithm TDES	41
5.3	Performance of CBC MAC with its variants for small message size (29 byte) using Encryption Algorithm AES and TDES	42
5.4	Performance of CBC MAC with its variants for small message size (595 byte) using Encryption Algorithm AES	43
5.5	Performance of CBC MAC with its variants for small message size (595 byte) using Encryption Algorithm TDES	43
5.6	Performance of CBC MAC with its variants for small message size (595 byte) using Encryption Algorithm AES and TDES	44
5.7	Performance of CBC MAC with its variants for small message size (1KB) using Encryption Algorithm AES	45
5.8	Performance of CBC MAC with its variants for small message size (1KB) using Encryption Algorithm TDES	45
5.9	Performance of CBC MAC with its variants for small message size (1KB)	

using Encryption Algorithm AES and TDES	46

5.10	Performance of CBC MAC with its variants for small message size (2KB) using Encryption Algorithm AES	47
5.11	Performance of CBC MAC with its variants for small message size (2KB) using Encryption Algorithm TDES	47
5.12	Performance of CBC MAC with its variants for small message size (2KB) using Encryption Algorithm AES and TDES	48
5.13	Performance of CBC MAC with its variants for small message size (5KB) using Encryption Algorithm AES	48
5.14	Performance of CBC MAC with its variants for small message size (5KB) using Encryption Algorithm TDES	49
5.15	Performance of CBC MAC with its variants for small message size (5KB) using Encryption Algorithm AES and TDES	50

LIST OF ABBREVIATIONS

AES	Advanced Encryption Standard
API	Application Programming Interface
CBC MAC	Cipher block chaining Message Authentication Code
DES	Data Encryption Standard
EMAC	Encrypted Message Authentication Code
JVM	Java Virtual Machine
IDE	Integrated Development Environment
MAC	Message Authentication Code
OMAC	One- key Message Authentication Code
PKI	Public Key Infrastructure
PMAC	Parallelizable Message Authentication Code
SHA	Secure Hash Function
TDES	Triple Data Encryption Standard
TMAC	Two –key Message Authentication Code