

1

Chapter 1

Introduction

Message authentication involves two aspects: Source authentication, which verifies the identity

of the source, prevents the acceptance of messages from a fraudulent source and data integrity,

which protects the data from modification [23]. One way of achieving authenticity as well as

integrity is creation of message authentication code abbreviation as MAC or cryptographic

checksum. MAC is a small fixed-size block of data which is computed by using a secret key that

share between communicating parties. The Cipher Block Chaining Message Authentication Code

(CBC MAC) [4] is a well-known method to generate a message authentication code (MAC)

based on a block cipher. However, it is well known that the CBC MAC is not secure unless the

message length is fixed. Therefore, several variants of CBC MAC have been proposed for

variable length messages. First Encrypted MAC (EMAC) was proposed [12, 13]. It is obtained

by encrypting the CBC MAC value by encryption function again with a new key K2. That is:

EMACk1,k2 (M) = Ek2(CBCk1 (M))

Where M is a message, K1 is the key of the CBC MAC and CBCk1 (M) is the CBC MAC value

of E. Petrank and Rackoff [18] then proved that EMAC is secure if the message length is a

positive multiple of n. EMAC requires two key scheduling of the underlying block cipher E.

where E represents encryption function. XCBC takes three keys: one block cipher key K1, and

two n-bit keys K2 and K3. TMAC is derived from XCBC by replacing (K2,K3) with (K2 · u,K2),

where u is some non-zero constant and ―·‖ denotes multiplication in GF(2
n
) ,Where as OMAC is

obtained from XCBC by replacing (K2,K3) with (L.u,L.u
2
) for some non-zero constant u in

GF(2
n
) ,where L is given by EK(0

n
)[12].

1.1 Motivation

As one of the most popular modes of operations in use, CBC mode encryption has already

received extensive security analysis, and its security properties are well known. One might

naturally ask why CBC mode encryption is still receiving treatment in the form of this thesis.

2

The answer is that while traditional analyses performed on CBC mode encryption are

mathematically sound and are fundamental and indispensable pieces of work, there exists a gap

between their analyses and the real-world performance for data integrity. More recently,

researchers have developed very sophisticated models that attempt to encapsulate all physically

observable aspects of cryptographic implementations, yet their work tends to be theoretical in

outlook. In this thesis, I have taken a step in bridging that gap between theoretical and practical

implementation to calculate cycle /byte for comparing of performance. Selecting fast and secure

MAC generation algorithm is main issue along with choosing symmetric encryption algorithm.

This thesis is concerned with the empirical performance of encryption using block cipher in

cipher chaining mode to create message authentication code. This is the main point of motivation

for carrying out this work.

1.2 Objective

The objective of this study is to implement and analyze the performance of CBC MAC and its

variants using different symmetric cryptographic algorithm like Triple DES and AES in order to

gain the efficiency over existing method like Encrypted MAC (EMAC), XCBC MAC, Two-Key

CBC MAC (TMAC) [12] and One-Key CBC MAC (OMAC1) [9].In this study Cycle/Byte

calculation will be performed.

1.3 Thesis Organization

The rest of the content in this study is organized into subsequent five chapters.

Chapter 2 provides background study required for dissertation. In this chapter the problem of

different message authentication code generation algorithms are mentioned, problem statement is

formulated and how this study response those issues is mentioned. Chapter 3 contains previous

literature related to this work in detail under literature review. Chapter 4 provides an

implementation overview of different MAC generation algorithms based on cipher block

chaining operation with the two symmetric encryption algorithm, AES and Triple –DES. The

implementation details with sample code are provided in this chapter. Chapter 5 includes the

analysis of time required for creating message authentication code (MAC) and finally with the

3

help of average time needed for MAC for all candidates algorithm cycle per byte is calculated.

The result of the study is shown in tabular form as well as in graphs. Finally, the concluding

remarks and further recommendations are outlined in chapter 6.

4

Chapter 2

Background Study

Today the internet has virtually become the way of doing business as it offers a powerful

ubiquitous medium of commerce and enables greater connectivity of disparate groups throughout

the world. So it may have many risks like loss of privacy, loss of data integrity, denial of service

and identify spoofing. To the solution of these threads in internet many secure cryptographic

algorithms are needed for providing services such as confidentiality, data integrity and

authentication to handle packets which may vary in size over a large range. The size of the

message has a significant impact on the performance of such algorithms. In particular, the

message authentication algorithms process messages partitioned into blocks. Hence the messages

have to be prepared by padding the required amount of zero bits to get an integer number of

blocks. This process becomes a considerable overhead when the short messages are more

dominant in the message stream [18]. In this thesis, for simplicity communicating parties are

named as Allice and Bob where as attacker named as Darth.

2.1 Problem Definition

Some researchers proposed parallelizable MAC algorithm Bellare, Guerin and Rogaway

proposed XOR MAC [7]. Gligor and Donescu proposed XECB –MAC. Black and Rogaway

proposed PMAC [19]. However these algorithms have overhead as, XOR MAC requires much

more invocations of encryption than the other MAC algorithms. XECB –MAC requires modulo

2
n
 arithmetic and three more invocations of E than XCBC and TMAC. PMAC needs to generate

a sequence of masks. Therefore TMAC and XCBC are better than these algorithms in non-

parallelizable environment [10]. Most of the widely used cryptographic algorithm and techniques

to make better security are under attack today. Some algorithm are discarded because of other

overhead not only by security reason so performance and capability to run in every machine is

also should be analyzed. Various CBC MAC Schemes have been in wide use for many years for

5

protecting and guaranteeing the origin of data. That all schemes have been specifically designed

for use with message of variable length, with the goal of minimizing the number of block cipher

operations required to compute MAC. Key generation is major issues in all variants of CBC

MAC for securing variable length of message. Time constant is the important factor for

comparing the performance of its variants to create MAC. All of the variants are based on

symmetric key encryption scheme. Different symmetric encryption algorithms are used for

creating cipher in every step while creating MAC, so performance analysis is needed for

selecting best approach of symmetric key encryption algorithm with best variant of CBC MAC.

2.2 Background Study

Since all the study require the basic terms and terminology related to that study. In this context

basic study related to this work are outlined in the following sections;

2.2.1 Cryptography

Cryptography is art of protecting information by transforming it (encrypting it) into an

unreadable format, called cipher text. Only those who possess a secret key can decipher

(or decrypt) the message into plaintext. Encrypted messages can sometimes be broken by

cryptanalysis, also called code breaking, although modern cryptography techniques are virtually

unbreakable. Cryptography enables one to store sensitive information or transmit it across

insecure networks so that it cannot be read by anyone except the intended recipient. While

cryptography is the science of securing data, cryptanalysis is the science of analyzing and

breaking secure communication. Classical cryptanalysis involves an interesting combination of

analytical reasoning, application of mathematical tools, pattern finding, patience, determination,

and luck. Cryptanalysts are also called attackers and represented as Darth. Cryptology embraces

both cryptography and cryptanalysis. The modern cryptography can be divided into two main

branches [8, 23]:

 Symmetric Cryptography, where the same key is used to encrypt a message and decrypt

data.

 Asymmetric cryptography, where two different keys are used for encryption and

decryption.

http://www.webopedia.com/TERM/E/encryption.htm
http://www.webopedia.com/TERM/C/cipher_text.htm
http://www.webopedia.com/TERM/D/decryption.htm
http://www.webopedia.com/TERM/P/plain_text.htm

6

2.2.1.1 Symmetric Cryptography

Symmetric cryptography is a form of cryptosystem in which encryption and decryption are

performed using the same key. It is also known as private key cryptosystem. Symmetric

cryptosystem was the only type of encryption technique in use prior to the development of public

key cryptosystem. Which can be defined as: Let M denotes the set of all possible plaintext

messages, C the set of all possible ciphertext, K the set of all possible keys, k: M → C is the

encryption function, and k: C → M, is decryption function, such that k(k(m)) = m for all m ε M

and k ε K. In this cryptosystem, sender and receiver have to initially agree upon a secret key k ε

K. After that, whenever sender wishes to send a message m ε M to receiver, sender sends the

ciphertext C = k (m) to receiver, from which receiver can recover m by applying the decryption

function as m = k(C) [8]. The notion of private key cryptosystem is depicted in Figure 2.1.

Figure 2.1: Simplified Model of Symmetric Encryption [23]

The effectiveness of private key cryptosystems relies on the requirement of strong encryption

algorithm which would be like the algorithm to be such that an opponent who knows the

algorithm and has access to one or more ciphertexts would be unable to decipher the ciphertext

or find out the key and another requirement is that sender and receiver must have obtained copies

7

of the secret key in a secure fashion and must keep the key secure. Modern techniques used in

private key cryptosystem are XOR Cipher, Rotation Cipher, Substitution Cipher: S-box,

Transposition Cipher: P-box, Modern Round Ciphers, Data Encryption Standard (DES),

Advanced Encryption Standard (AES) and so on. As mentioned in [23], private key

cryptosystems have numerous limitations which are outlined below:

 Key distribution problem: Two parties that want to communicate each other need to set

up a shared secrete key before starting communicate over an insecure channel.

 Key management problem: Every pair of users must share a secret key leading to a total of

n*(n-1)/2 keys. Where n be the users in a network. If n is large, then the number of keys

become unmanageable and traffic in network may be increased. It makes difficult to manage

key.

 No signatures possible: A digital signature is an authentication mechanism that enables the

creator of the message to attach a special token that acts as a signature. A digital signature

allows the receiver of a message to convince any third-party that the message in fact

originated from the sender.

2.2.1.2 Asymmetric Cryptography

Asymmetric encryption is a form of cryptosystem in which encryption and decryption are

performed using the different key- one a public key and one a private key. It is also known as

public-key encryption. Asymmetric encryption transforms plaintext into ciphertext using a one of

two keys and an encryption algorithm. Using the paired key and a decryption algorithm, the

plaintext is recovered from the cipher text. Asymmetric encryption can be used for

confidentiality, authentication, or both. The most widely used public-key cryptosystem is RSA.

Public-key algorithms are based on mathematical functions rather than on substitution and

permutation. More important, public-key cryptography is asymmetric, involving the use of two

separate keys, in contrast to symmetric encryption, which uses only one key. The use of two keys

has profound consequences in the areas of confidentiality, key distribution, and authentication.

8

Figure 2.2: Encryption with public key [23]

2.2.2 Block Cipher Operation

A block cipher is an encryption/decryption scheme in which a block of plaintext is treated as a

whole and used to produce a cipher text block of equal length. Typically, a block of 64 or 128

bits is used. Many of network –based symmetric cryptographic applications uses block ciphers

and these applications have a feistel structure. Feistel structure consists of a number of identical

rounds of processing. In each round, a substitution is performed on one half of the data being

processed, followed by a permutation that interchanges the two halves. The original key is

expanded so that a different key is used for each round. The Data Encryption Standard (DES) has

been the most widely used encryption algorithm until recently. It exhibits the classic feistel

structure. DES uses a 64-bit block and a 56-bit key. Far more effort has gone into analyzing

block ciphers. In general, they seem applicable to a broader range of applications than stream

ciphers. The vast majority of network-based symmetric cryptographic applications make use of

block cipher.

9

Figure 2.3: Block Cipher

 2.2.3 The Data Encryption Standard (DES)

The most widely used encryption scheme is based on the Data Encryption Standard (DES)

adopted in 1977 by the National Bureau of Standards, now the National Institute of Standards

and Technology (NIST), as Federal Information Processing Standard 46 (FIPS PUB 46). For

DES, data are encrypted in 64-bit blocks using a 56-bit key. The algorithm transforms 64-bit

input in a series of steps into a 64-bit output. The same steps, with the same key, are used to

reverse the encryption. The overall scheme for DES encryption is illustrated in Figure 2.4 As

with any encryption scheme; there are two inputs to the encryption function: the plaintext to be

encrypted and the key. In this case, the plaintext must be 64 bits in length and the key is 56 bits

in length [8].

Plaintext

Encryption

Algorithm

Ciphertext

b bits

b bits

Key
(K)

10

 Figure 2.4: General Depiction of DES Encryption Algorithm [23]

The processing of the plaintext proceeds in three phases. First, the 64-bit plaintext passes through

an initial permutation (IP) that rearranges the bits to produce the permuted input. This is

followed by a phase consisting of sixteen rounds of the same function, which involves both

permutation and substitution functions. The output of the last (sixteenth) round consists of 64

bits that are a function of the input plaintext and the key. The left and right halves of the output

are swapped to produce the preoutput. Finally, the preoutput is passed through a permutation that

is the inverse of the initial permutation function, to produce the 64-bit ciphertext.With the

exception of the initial and final permutations, DES has the exact structure of a Feistel cipher, as

Round 1

Round 2

Round 16

32 – bit swap

Permuted choice 2

Permuted choice 2

Left circular shift

Left circular shift

Permuted choice 2

Left circular shift

Initial Permutation Permuted choice 1

Inverse Initial

Permutation

64 – bit ciphertext

64 – bit plaintext 64 – bit key

K1 48

K2 48

K16 48 56

56

56

56

56

64

64

64

64

11

shown in Figure 2.4. The right-hand portion of Figure 2.4 shows the way in which the 56-bit key

is used. Initially, the key is passed through a permutation function. Then, for each of the sixteen

rounds, a subkey (Ki) is produced by the combination of a left circular shift and a permutation.

The permutation function is the same for each round, but a different sub key is produced because

of the repeated shifts of the key bits [8, 23, and 24].

2.2.4. Triple – DES with Two Keys

It is used for encrypting message as same like DES but it requires two keys and takes three stage

of encryption with three different keys. It has a drawback of requiring a key length of 168 bits

(three keys), which may be unwieldy. As an alternative approach have proposed by Tuchman

that uses only two key [23]. The function follows an encrypt – decrypt – encrypt as figure 2.5

[23].

 C = E(K1 , D(K2 , E(K1 , P)))

 P = D(K1 , E(K2 , D(K1 , C)))

Here C represents block of ciphertext, P represents plaintext block of message E and D are

function of encryption and decryption respectively.

(a) Encryption

(b) Decryption

Figure 2.5. Triple DES with Two Keys

E D E

K1 K2 K1

C P

A B

D E D

K1 K2 K1

P C

B A

12

2.2.5. The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) was published by the National Institute of Standards

and Technology (NIST) in 2001. AES is a symmetric block cipher that is intended to replace

DES as the approved standard for a wide range of applications. Compared to public-key ciphers

such as RSA, the structure of AES and most symmetric ciphers is quite complex and cannot be

explained as easily as many other cryptographic algorithms. Figure 2.6 shows the overall

structure of the AES encryption process. The cipher takes a plaintext block size of 128 bits, or 16

bytes. The key length can be 16, 24, or 32 bytes (128, 192, or 256 bits). The algorithm is referred

to as AES-128, AES-192, or AES-256, depending on the key length. The input to the encryption

and decryption algorithms is a single 128-bit block. In FIPS PUB 197, this block is depicted as a

square matrix of bytes. This block is copied into the State array, which is modified at each stage

of encryption or decryption. After the final stage, State is copied to an output matrix. These

operations are depicted in Figure 2.6. Similarly, the key is depicted as a square matrix of bytes.

This key is then expanded into an array of key schedule words. Figure 2.6 shows the expansion

for the 128-bit key. Each word is four bytes, and the total key schedule is 44 words for the 128-

bit key. Note that the ordering of bytes within a matrix is by column. So, for example, the first

four bytes of a 128-bit plaintext input to the encryption cipher occupy the first column of the in

matrix, the second four bytes occupy the second column, and so on. Similarly, the first four bytes

of the expanded key, which form a word, occupy the first column of the w matrix. The cipher

consists of rounds, where the number of rounds depends on the key length: 10 rounds for a 16-

byte key, 12 rounds for 24-byte key and 14 rounds for a 32-byte key. The first rounds consist of

four distinct transformation functions: SubBytes, ShiftRows, MixColumns, and AddRoundKey,

which are described subsequently. The final round contains only three transformations, and there

is a initial single transformation (AddRoundKey) before the first round, which can be considered

Round 0. Each transformation takes one or more matrices as input and produces a matrix as

output. Figure 2.6 shows that the output of each round is a matrix, with the output of the final

round being the ciphertext. Also, the key expansion function generates round keys, each of

which is a distinct matrix. Each round key serve as one of the inputs to the AddRoundKey

transformation in each round [6,8,23].

13

Figure 2.6 : AES Encryption Process[23]

Key

Genareation

Round N (3

transformation)

Round N-1 (4

transformation)

Round 1 (4

transformation)

Initial transformation

Round 1

Output state

(16 bytes)

Round N-1

Output state

(16 bytes)

Final state

(16 bytes)

State after

Initial

transformation

(16 bytes)

Input state

(16 bytes) Round 0 key

(16 bytes)

Round 1 key

(16 bytes)

Round N-1 key

(16 bytes)

Round N key

(16 bytes)

Key

(M bytes)

Key - M bytes Plaintext -16 bytes

Ciphertext -16 bytes

14

a. Encryption b. Decryption

Figure 2.7: AES Encryption and Decryption [23]

AddRoundKey

SubBytes

ShiftRows

Mixcolumns

AddRoundKey

AddRoundKey

InvMixcolumns

InvSubBytes

InvShiftRows

SubBytes

ShiftRows

AddRoundKey AddRoundKey

AddRoundKey

InvSubBytes

InvShiftRows

PlainText
PlainText

CipherText

t

CipherText

t

15

Chapter 3

Literature Review

In the current scenario, most of the researchers have proposed different message authentication

code algorithms to make more secure and fast. Some of them are parallelizable some are using

secure hash function like SHA- 1, SHA -2. Several research works to prove the security bounds

for each variants of CBC MAC. Some of those literatures have analyzed MAC as pseudorandom

function (PRF) similarly Pseudo-Random Functions and Parallelizable Modes of Operations

of a Block Cipher have been proposed [13]. Most of researchers have proposed improved

security bounds in parallelizable environment as PMAC and non-parallelizable cipher bock

based TMAC and XCBC [15].

Many studies have been done on MAC built using block cipher including CBC MAC and its

variants. They have been studied the security bounds for each variants of CBC. Performance

analysis is done by comparing their key size and number of encryption invocation needed for

creating MAC. Number of key scheduled for each algorithm is compared with their security

proposed.

3.1 Message Authentication Code (MAC)

More commonly, message authentication is achieved using a message authentication code

(MAC), also known as a keyed hash function. Typically, MACs are used between two parties

that share a secret key to authenticate information exchanged between those parties. A MAC

function takes as input a secret key and a data block and produces a hash value, referred to as the

MAC. This can then be transmitted with or stored with the protected message. If the integrity of

the message needs to be checked, the MAC function can be applied to the message and the result

compared with the stored MAC value. An attacker who alters the message will be unable to alter

the MAC value without knowledge of the secret key. Note that the verifying party also knows

who the sending party is because no one else knows the secret key. In practice, specific MAC

algorithms are designed that are generally more efficient than an encryption algorithm [15].

16

An alternative authentication technique involves the use of a secret key to generate a small fixed-

size block of data, known as a cryptographic checksum or MAC that is appended to the message.

This technique assumes that two communicating parties, say A and B, share a common secret

key. When A has a message to send to B; it calculates the MAC as a function of the message and

the key:

MAC = MAC (K, M) Where

M = input message

C = MAC function

K = shared secret key

MAC = message authentication code

The message plus MAC are transmitted to the intended recipient. The recipient performs the

same calculation on the received message, using the same secret key, to generate a new MAC.

The received MAC is compared to the calculated MAC (Figure 3.1). If we assume that only the

receiver and the sender know the identity of the secret key, and if the received MAC matches the

calculated MAC, then

1. The receiver is assured that the message has not been altered. If an attacker alters the

message but does not alter the MAC, then the receiver’s calculation of the MAC will

differ from the received MAC. Because the attacker is assumed not to know the secret

key, the attacker cannot alter the MAC to correspond to the alterations in the

message.

2. The receiver is assured that the message is from the alleged sender. Because no one

else knows the secret key, no one else could prepare a message with a proper MAC.

3. If the message includes a sequence number (such as is used with HDLC, X.25, and

TCP), then the receiver can be assured of the proper sequence because an attacker

cannot successfully alter the sequence number [23].

17

Figure 3.1: Message Authentication Code

3.2. The Field with 2
n

Points

A point a in GF(2
n
) can be viewed as the following ways[12]:

 As an abstract point in a field;

 As an n – bit string an-1 ………….a1a0 ∈ {0,1}
n
 ;

 As a formal polynomial a(u) = an-1 u
n-1

 + ……. + a1u+ a0 with binary

coefficients.

To add two points in GF (2
n
), takes their bitwise XOR and denoted by 𝑎 𝑏. But to multiply

two points, fix some irreducible polynomial f(u) having binary coefficients and degree n. some

standard irreducible polynomials for different algorithm which are used GF(2
n
) multiplication

operation.

RECEIVER

MESSAGE

MAC

Algorithm
Key (K)

If the same MAC is found: then the

message is authentic and integrity

checked

Else: something is not right

SENDER

MESSAGE

MAC

Algorithm

MAC

Key (K)

MAC:

Message Authentication Code

MAC

MAC MAC =?

MESSAGE

18

 f(u) = u
64

 + u
4
 + u

3
 + u + 1 for n = 64

 f(u) = u
128

+ u
7
 + u

2
 + u + 1 for n = 128

First polynomial is used in CBC MAC variants when TDES algorithm is used as encryption

algorithm to derive key as L.u and L.u
2

and second polynomial is used in AES.

It is particularly easy to multiply a point a ∈ {1, 0}
n
 by u . For example

If n = 128, where f(u) = u
128

+ u
7
 + u

2
 + u + 1 , then multiplying a = a127a1a0 is done by

following ways:

a.u =

a ≪ 1 if a127 = 0

 a ≪ 1 0 120 10000111 otherwise

Where a.u = a (u) .u mod f (u).

If n = 64, where u
64

 + u
4
 + u

3
+ u + 1. Then multiplying a = a63a1a0 is done by following

ways:

a.u =

a ≪ 1 if a63 = 0

 a ≪ 1 0 59 11011 otherwise

3.3 Key Generation

The key length of CBC MAC is k bit only where k is the bit length of secrete key share by

sender and receiver but key length for other variants are vary than k bit. Where EMAC required

2k bit obtained from two secrete key. XCBC required three key one k bit and other two key have

2n bits, here n is the length of block size of message. Suggested by [11] it is reduced as

following :

K1 = the first k bits of Ek(C1a) || Ek(C1b),

K2 = E(C2),

K3 = E(C3). Where C1a , C1b, C2, C3 are distinct constants.

Next two variants TMAC and OMAC are the refinement of XCBC. Key for TMAC is obtained

by replacing K2.u and keys are generated in OMAC by replacing K2 as L.u and K3 by L.u
2
.

19

Where u be the some positive constant and ―.‖ is a multiplication in GF(2
n
) and L is obtained as

follows:

L = Ek(0
n
)[12].

3.4 Cipher Block Chaining (CBC)

CBC is a technique in which the same plaintext block, if repeated, produces different ciphertext

blocks. In this scheme, the input to the encryption algorithm is the XOR of the current plaintext

block and the preceding ciphertext block; the same symmetric key is used for each block. In

effect, it is chained together the processing of the sequence of plaintext blocks. The input to the

encryption function for each plaintext block bears no fixed relationship to the plaintext

block.Therefore, repeating patterns of bits are not exposed. As with the ECB mode, the CBC

mode requires that the last block be padded to full bits if it is a partial block. For decryption,

each cipher block is passed through the decryption algorithm. The result is XORed with the

preceding ciphertext block to produce the plaintext block [2,8]. It can be viewed as

Cj = E (K, [Cj-1 ⊕ Pj])

Figure 3.2(a): Encryption of CBC Mode [21]

20

 Figure 3.2(b): Decryption of CBC mode

3.4.1. Cipher Block Chaining Message Authentication Code (CBC -MAC)

CBC-MAC is a technique for constructing a message authentication code using a block cipher.

The message is divided into equal number of block and encrypted with some block cipher

algorithm in CBC mode to create a chain of blocks such that each block depends on the proper

encryption of the previous block. This interdependence ensures that change to any of the

plaintext bits causes the final encrypted block to change in a way that cannot be predicted

without knowing the key to the block cipher. M can be broken into blocks such that

M = M1, M2… Mm ,where Mi represents block of message.Then each block is passed through the

encryption E with key K and the result is XORed with the next block. If EK represents the

encryption using a secrete key K then cipher block chaining is given as follows algorithm[2, 12]:

Algorithm

INPUT: block of message (M)

OUTPUT: MAC (Tag)

Algorithm CBC-MACK (M)

Partition M into M [1]………M[m]

C [0] = 0
n

for i = 1 to m do

C[i] = EK(C [i-1] ⊕ M[i])

Tag = C[m]

return Tag

21

 Figure 3.3: Illustration of CBC -MAC

The CBC-MAC comes in different versions varying in details such as padding, length variability.

The general way of padding for CBC-MAC is by considering the final input block as a partial

block of data, left justified with zeroes appended to form a full block.

3.4.2 Encrypted –MAC (EMAC)

To deal with variable message length in blocks m, Encrypted MAC (EMAC) was developed.

MAC encrypts CBCEK 1
(M) using a new block cipher key K2 [12]. That is:

 EMACEK 1 ,EK 2
 M = EK2

 CBCEK 1
 M .

The EMAC is a popular variant of the CBC-MAC which was developed by the RACE project. A

problem is that the message length is limited to a positive multiple of n, that is, the domain is

limited to ({0, 1}
 n

)
 +

. The simplest approach to deal with message whose lengths are not a

multiple of n is append the minimal 10
i

 to M as a padding so that the length is multiple of n.

Note that the padding is appended even if the size of the message is already a multiple of n [11].

EMAC can deal with completely variable message length, that is, the domain is {0,1}
*
.

Algorithm

INPUT: block of message (M)

OUTPUT: MAC (Tag)

Algorithm EMACK1, K2 (M)

Partition M into M [1]………M[m]

Tag

M [1] M [2] M[m]

E E E K

K

K

…...
….

O

22

C [0] = 0
n

for i = 1 to m do

C[i] = EK1(C [i-1] ⊕ M[i])

Tag = EK2 (EK1(C [m-1] ⊕ M[m]))

return Tag

 Figure 3.4 : Illustration of EMAC

3.4.3 XCBC MAC

XCBC takes three key: one block cipher key K1, and two n –bit keys K2 and K3. XCBC makes

two cases to deal with arbitrary length messages: M ∈ ({0, 1})
 +

and M ∉ ({0, 1})
+
. If M ∈ ({0,

1})
 +

then XCBC computes exactly the same as CBC MAC, except XORing an n-bit key K2

before encrypting the last block. If M ∉ ({0, 1})
 +

then minimal 10
i
 padding (𝑖 ≥ 0) is

appended to M so that the length is a multiple of n, and XCBC computes exactly the same as the

CBC MAC, except XORing another n-bit key K3 before encrypting the last block.[2,12]

Algorithm

INPUT: block of message (M)

OUTPUT: MAC (Tag)

Algorithm XCBCMACK1, K2, K3 (M)

Partition M into M [1]………M[m]

C [0] = 0
n

for i = 0 to m-1 do

C[i] = EK1(C [i-1] ⊕ M[i])

K1

Tag

M [1] M [2] M[m]

E E E K1

K1

…...
….

O

E K2

23

if | M[m] | = n then Tag = EK1 (C [m-1] ⊕ M[m] ⊕ K2)

 else Tag = EK1 (C [m-1] ⊕ M[m] 10....0 ⊕ K3)

return Tag

 Figure 3.5: Illustration of XCBC

3.4.4 TMAC

Two key CBC Message authentication code is a refinement of XCBC. It uses only (k+n)bit key

for TMAC while XCBC uses (k+2n) bit key ,where k is the key length of the underlying block

cipher and n is its block length. TMAC is obtained from XCBC by replacing (K2,K3) with

(K2.u,K2), where u is some non-zero constant and ―·‖ denotes multiplication in GF(2n).[12,24]

Algorithm

INPUT: block of message (M)

OUTPUT: MAC (Tag)

Algorithm TMACK1, K2 (M)

Partition M into M [1]………M[m]

C [0] = 0
n

for i = 0 to m-1 do

C[i] = EK1(C [i-1] ⊕ M[i])

if | M[m] | = n then Tag = EK1 (C [m-1] ⊕ M[m] ⊕ K2.u)

 else Tag = EK1 (C [m-1] ⊕ M[m] 10....0 ⊕ K2)

return Tag

T

M [1] M [2] M[m]

E E E K1

K1

K1

K3

…...
….

10
i

T

M [1] M [2] M[m]

E E E K1

K1

K1

K2

…...
….

24

Figure 3.6 : Illustration of TMAC

3.4.5 OMAC 1

One-key CBC MAC takes only one key,K (k bits) of a block cipher E. Previously ,XCBC

requires three keys,(k+2n) bits in total, and TMAC requires two keys,(k+n) bits in total, where n

denotes the block length of E. OMAC is a generic name of OMAC1 and OMAC2. OMAC1 is

obtained from XCBC by replacing (K2, K3) with (L.u, L.u2) for some non-zero constant u in GF

(2
n
), where L is given by [2, 9]

 L = EK (0
n
).

OMAC2 is similarly obtained by using (L.u, L.u
-1

).

Algorithm

INPUT: block of message (M)

OUTPUT: MAC (Tag)

Algorithm OMAC-familyK(M)

 L = EK(Cst)

Y[0] = 0
n

Partition M into M [1]………M[m]

for i = 0 to m-1 do

Y[i] = EK1(Y [i-1] ⊕ M[i])

X[m] = padn(M[m] ⊕ Y [m-1])

if | M[m] | = n then X[m] = X[m] ⊕ L.u

 else X[m] = X[m] ⊕ L.u
2

T = EK(X[m])

return T

T

M [1] M [2] M[m]

E E E K1

K1

K1

K2

…...
….

10
i

T

M [1] M [2] M[m]

E E E K1

K1

K1

K2.u

…...
….

25

 Figure 3.7: Illustration of OMAC1

T

M [1] M [2] M[m]

E E E K K K

L.u

…...
….

T

M [1] M [2] M[m]

E E E K K K

L.u
2

…...
….

10
i

26

Chapter 4

Java Implementation

Java was conceived at Sun Microsystems, in 1991. This language is initially called ―OAK‖ but it

was renamed as java in 1995 with the Virtual Machine being known as the Java Virtual Machine

(JVM). At that time, the use of the World Wide Web was starting to become widespread. The

web involved the communication between all sorts of processors and systems; just the sort of

situation for which Sun had developed Java. Hence Java became the preferred language for Web

programming [20].

Java compiles the source file (.java) and converts into intermediate file called byte code (.class)

which can be run on several architecture with the help of java virtual machine (JVM).this beauty

of the java programming language motivates to use of java anywhere or in any type of

application development. This makes software developed in java platform independent.

4.1 Choice of the Programming Language: Java

Most of other language likes C, C++ are designed to be compiled for a specific target machine.

Although it is possible to compile a C++ program for any type of CPU, to do so requires a full

C++ compiler targeted for that CPU. The problem is that compilers are expensive and time

consuming to create, solution was needed, and to find a solution, java was created which could

be used to produce code that can run on a variety of CPUs under different environment.

The Java security APIs spans a wide range of areas. For developing secure application,

Cryptographic and public key infrastructure (PKI) interfaces are used. Interfaces for performing

authentication and access control enable applications to protect against unauthorized access to

protected resources. The APIs allow for multiple interoperable implementations of algorithms

and other security services. Services are implemented in providers, which are plugged into the

Java platform via a standard interface that makes it easy for applications to obtain security

services without having to know anything about their implementations. This allows developers to

27

focus on how to integrate security into their applications, rather than on how to actually

implement complex security mechanisms. The Java platform includes a number of providers that

implement a core set of security services. It also allows for additional custom providers to be

installed. This enables developers to extend the platform with new security mechanisms [24].

4.2 Netbeans

NetBeans is an integrated development environment (IDE) for developing primarily with Java,

but also with other languages, in particular PHP, C/C++, and HTML5. It is developed at Charles

University as a student project in 1996. In 1997, it was produced as commercial versions and

bought by Sun Microsystems in 1999.

It is also an application platform framework for Java desktop applications and others. The

NetBeans IDE is written in Java and can run on Windows, OS X, Linux, Solaris and other

platforms supporting a compatible JVM. The NetBeans Platform allows applications to be

developed from a set of modular software components called modules. Integrated Development

Environment (IDE) that is often the front end of a programming system.

Different versions of Netbeans IDE are introduced in last few years. NetBeans IDE 7.0 was

released in April 2011. On August 1, 2011, the NetBeans Team released NetBeans IDE 7.0.1,

which has full support for the official release of the Java SE 7 platform. As passing versions

from NetBeans IDE 6.5 to currently developing version NetBeans IDE 8.0 many more features

are added in newer versions. NetBeans IDE 7.4 was released in October 15, 2013.NetBeans IDE

8.0 is currently in development. NetBeans IDE 7.0.1 is used for implementing in this thesis [16,

24].

4.3 Implementation Details of Candidate algorithm

The four variant of Cipher block chaining message authentication code are implemented along

with the CBC MAC. The calling procedure of all encryption algorithms are same and various

http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/HTML5
http://en.wikipedia.org/wiki/Platform_(computing)
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Software_component
http://en.wikipedia.org/wiki/Java_version_history#Java_SE_7_.28July_28.2C_2011.29

28

size of input file is given to each of the variants. For creating large file of message as string

following code is used:

The file is supplied as input to every candidate algorithms as string, which is converted into byte

form using the following code:

 Byte[] input = str.getBytes();

 Each size of file is converted into byte form and finally binary String is formed from byte form

of input message, which is created by following code:

String str = "";

 try

 {

 FileReader fr = new FileReader(file+".txt");

 int c;

 while ((c = fr.read()) != -1)

 {

 str += (char) c;

 }

 }

 catch (IOException e)

 {

 System.out.println("I/O Error: " + e);

 }

String binaryStringRep ="";

 byte[] bytes = str.getBytes();

 for(int i = 0; i < bytes.length; i++)

 {

 binaryStringRep += String.format("%8s", Integer.toBinaryString(bytes[i] & 0xFF)).replace('

', '0'); }

29

The binary string formed by above code section is checked either it is actually integer multiple of

block size or not where TDES needs 64 bits and AES needs 128 bits as each block of message

for being input to encryption algorithm. Before encrypting each block of message there must be

performed XOR operation with previous block of cipher text which is done by following

procedure in this thesis:

 public byte[] xOR(byte[] currentM, byte[] C) throws

UnsupportedEncodingException {

 String currentMbinary="";

 String Cbinary="";

 for(int i = 0; i < currentM.length; i++) {

 currentMbinary += String.format("%8s",

Integer.toBinaryString(currentM[i] & 0xFF)).replace(' ', '0');

 Cbinary += String.format("%8s", Integer.toBinaryString(C[i] &

0xFF)).replace(' ', '0');

 }

 String xorstr ="";

 for(int i = 0 ;i<128; i++) {

 if(currentMbinary.charAt(i) == Cbinary.charAt(i)) {

 xorstr += "0";

 } else {

 xorstr += "1";

 } }

 String mstr = "";

 for(int j = 0; j <= 128 - 8; j+=8) {

 int k = Integer.parseInt(xorstr.substring(j, j+8), 2);

 mstr += (char) k;

 } byte xorbyte [] = mstr.getBytes();

 return xorbyte; }

30

If the Encryption algorithm is TDES, Encryption is performed as the following procedure:

 If the Encryption algorithm is AES, Encryption is performed as the following procedure:

public byte[] encrypTDES(SecretKey secretKeyTDES_K1,SecretKey

secretKeyTDES_K2,byte[] message) throws Exception

 {

 Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding");

 cipher.init(Cipher.ENCRYPT_MODE, secretKeyTDES_K1);

 byte[] cipherText = cipher.doFinal(message);

 Cipher decipher = Cipher.getInstance("DES/ECB/noPadding");

 decipher.init(Cipher.DECRYPT_MODE, secretKeyTDES_K2);

 byte[] plainText = decipher.doFinal(cipherText);

 Cipher cipher1 = Cipher.getInstance("DES/ECB/PKCS5Padding");

 cipher1.init(Cipher.ENCRYPT_MODE, secretKeyTDES_K1);

 byte[] cipherTextfinal = cipher1.doFinal(plainText);

 return cipherTextfinal;

 }

 public byte[] encryptAES(SecretKey secretKeyAES,byte[] plainTextBytes)

throws Exception

 {

 Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");

 cipher.init(Cipher.ENCRYPT_MODE, secretKeyAES);

 final byte[] cipherText = cipher.doFinal(plainTextBytes);

 return cipherText;

 }

31

4.3.1 CBC MAC

CBC MAC is the first message authentication technique based on cipher block chaining mode. It

is secured only when the message size is multiple of block size of encryption algorithm. Causes

of insecurity of CBC MAC, other variants are introduced. Every variants of CBC MAC

algorithm must have scheduled symmetric key of different bit size like 112 bits for TDES and

128 bits for AES before starting the encryption of first block of message which is obtained by the

following procedure.

Where KeyGenerator is the class in javax.crypto package and SecretKey in javax.crypto

package. For key generation of TDES same code can be used instead of giving parameter of

getInstance() method as ―DES‖. Generated key is supplied to the encryption algorithm like AES

as following code section:

SecretKey AES_keyGeneration()

 {

 SecretKey secretKey = null;

 try {

 KeyGenerator keygenerator = KeyGenerator.getInstance("AES");

 secretKey = keygenerator.generateKey();

 }

 catch(Exception e)

 {

 JOptionPane.showMessageDialog(null,e.getStackTrace());

 }

 return secretKey;

 }

32

 String IV = "000

00

000";

String ivstr=”;

for(int i = 0; i <= 128 - 8; i+=8){

 int k = Integer.parseInt(IV.substring(i, i+8), 2);

 ivstr += (char) k;

}

 byte [] IVbyte = ivstr.getBytes();

 String binaryStringRep ="";

 byte[] bytes = str.getBytes();

 for(int i = 0; i < bytes.length; i++) {

 binaryStringStringRep += String.format("%8s", Integer.toBinaryString(bytes[i] &

0xFF)).replace(' ', '0');

 }

 if(binaryStringRep.length()%128==0) {

 for(int i = 0 ;i<binaryStringRep.length()-128 ;i+=128) {

 String bmstr = binaryStringRep.substring(i,i+128);

 String mstr = "";

 for(int j = 0; j <= 128 - 8; j+=8) {

 int k = Integer.parseInt(bmstr.substring(j, j+8), 2);

 mstr += (char) k;

 }

 byte mbyte [] = mstr.getBytes();

 byte [] xordm = xOR(mbyte,IVbyte);

 String ss ="";

 for(int f = 0; f < xordm.length; f++){

 ss += String.format("%8s", Integer.toBinaryString(xordm[f] & 0xFF)).replace(' ',

'0');}

 String sss = ss.substring(0,128);

 String mstr1 = "";

 for(int j = 0; j <= 128 - 8; j+=8){

 int k = Integer.parseInt(sss.substring(j, j+8), 2);

 mstr1 += (char) k; }

 byte m [] = mstr1.getBytes();

 byte [] nextcipher = new Process().encryptAES(secretKey

secretKeyTDES_EMAC_k1 = p.DES_keyGeneration();

 secretKeyTDES_EMAC_k11 = p.DES_keyGeneration();

 secretKeyTDES_EMAC_K2 = p.DES_keyGeneration();

 secretKeyTDES_EMAC_K22=p.DES_keyGeneration(); AES_OMAC_K1,m);

 IVbyte = nextcipher;

 }

33

4.3.2 EMAC

EMAC needs one more encryption key than CBC MAC therefore two individual key are

generated by the same process. In this work triple DES with two key is used so for EMAC

implementation, four random secrete key are generated first two keys are used to encrypt every

cipher in chain but other two keys are used to encrypt MAC again to get final Tag(MAC). But

for AES encryption algorithm only two 128 bit keys are produced by following code segment:

Where DES_keyGeneration() is a procedure to generate secrete key as already mention in above

section which return 64 bit secrete key for DES encryption algorithm. Similarly for AES:

 secretKeyTDES_EMAC_k1 = p.DES_keyGeneration();

 secretKeyTDES_EMAC_k11 = p.DES_keyGeneration();

 secretKeyTDES_EMAC_K2 = p.DES_keyGeneration();

 secretKeyTDES_EMAC_K22=p.DES_keyGeneration();

 secretKeyAES_EMAC_k1 = p.AES_keyGeneration();

 secretKeyAES_EMAC_k2 = p.AES_keyGeneration();

34

4.3.3 XCBC

XCBC requires three key but for reduce key length as [11] suggest three key may be generated

by using only one symmetric encryption algorithm but to make it possible four constant values

are needed in my study, these values are set up as C1a = 78945612 , C1b = 12345678 , C2 =

15935778 and C3 = 12357896

byte [] first = p.encrypTDES(secretKeyTDES_K1,secretKeyTDES_K11,"78945612".getBytes());

 byte [] second =

p.encrypTDES(secretKeyTDES_K1,secretKeyTDES_K11,"12345678".getBytes());

 byte [] k1 = (first.toString() + second.toString()).getBytes();//56 bit

 String binaryStringStringRep ="";

 for(int i = 0; i < k1.length; i++) {

 binaryStringStringRep += String.format("%8s", Integer.toBinaryString(k1[i] &

0xFF)).replace(' ', '0');

 }

 String s =binaryStringStringRep.substring(0,64);

 String mstr = "";

 for(int j = 0; j <= 64 - 8; j+=8) {

 int k = Integer.parseInt(s.substring(j, j+8), 2);

 mstr += (char) k;

 }

 byte mbyte [] = mstr.getBytes();

 XCBC_TDES_K1 = new SecretKeySpec(mbyte, "DES");

 XCBC_TDES_K11 = p.DES_keyGeneration();

 XCBC_TDES_K2 = p.encrypTDES(secretKeyTDES_K1,secretKeyTDES_K11,

"15935778".getBytes());//64bit

 XCBC_TDES_K3 =

p.encrypTDES(secretKeyTDES_K1,secretKeyTDES_K11,"12357896".getBytes());//64bit

35

4.3.4 TMAC

TMAC is implemented in the same way of XCBC because it is the refinement of XCBC where

three key needed in XCBC is reduced by one key and became Two –key MAC. Three keys are

treated in this algorithm is as second key, say K2 in previous variants is replaced by K2. u where

―.‖ Is multiplication over GF (2
n
). The code segment for converting K2 to K2 .u is as follows:

 byte L[]

=p.encrypTDES(secretKeyTDES_K1,secretKeyTDES_K11,"00000000".getBytes();

 String bin ="";

 for(int i = 0; i < L.length; i++)

 {

 bin += String.format("%8s", Integer.toBinaryString(L[i] & 0xFF)).replace(' ',

'0');

 }

 String sss = bin.substring(0,64);

 String ssss = "";

 if(sss.substring(0,1).equals("0")) {

 ssss = sss.substring(1,64)+"0";

 }

 else {

 String m = sss.substring(1,64)+"0";

 String m1 =

"00011011";

 for(int i = 0;i<64;i++) {

 if(m.charAt(i)==m1.charAt(i))

 ssss+="0";

 else

 ssss+="1";

 } }

 String str = "";

 for(int j = 0; j <= 64 - 8; j+=8) {

 int k = Integer.parseInt(ssss.substring(j, j+8), 2);

 str += (char) k;

 }

 byte mmbyte [] = str.getBytes();

 k2_OMAC_TDES = mmbyte;

36

 4.3.5 OMAC

This is also the refinement variants of CBC MAC. It is generated by replacing three key in

XCBC with L.u and L.u
2
 instead of K2, and K3. Implementation of this algorithm is similar to

TMAC only the following code segment should be added to get third key as XCBC. Third key

(K3) is obtained by L.u
2.

Where sss1 is the binary string of Key obtained from L.u and using above code segment ,L.u
2
 is obtained

to replace K3 in XCBC Variant.

 String ssss1 = "";
 if(sss1.substring(0,1).equals("0"))
 {
 ssss1 = sss1.substring(1,64)+"0";
 }
 else
 {
 String m = sss1.substring(1,64)+"0";
 String m1 =
"00011011";
 for(int i = 0;i<64;i++)
 {
 if(m.charAt(i)==m1.charAt(i))
 {
 ssss1+="0";
 }
 else
 {
 ssss1+="1";
 }
 }

 }

 String str1 = "";
 for(int j = 0; j <= 64 - 8; j+=8)
 {
 int k = Integer.parseInt(ssss1.substring(j, j+8), 2);
 str1 += (char) k;
 }
 byte mmbyte1 [] = str1.getBytes();

 k3_OMAC_TDES = mmbyte1;

37

4.4 Sample Test Cases

For testing data input, the different size of text file is taken as input message. Size of 19 bytes file has

taken as smallest size. Key is produced by using library function of java. Input message and

generated key is as follows:

4.4.1 Key

I. AES -128

K1 = 2b7e151628aed2a6abf7158809cf4f3c

II. TDES

K1 = 8aa83bf8cbda1062

K2 = 0bc1bf19fbb6cd58

4.4.2 Input message (29 byte)

4.4.3 Message authentication code(MAC)

―Message authentication code‖

CBC TDES : C28F006EC299C284

CBC AES : C2A8C38BC29335C3A805C2A8C2B7C3B4

EMAC TDES : 4439C2A822231E41

EMAC AES : 0BC3BA0CC3AB6F6FC28DC2AA31C390C3

XCBC TDES : 6BC28EC28EC3BC77C39D1632

XCBC AES : C3B85CC29E0873725D7DC2B9C3B5C2A9

TMAC TDES : C29E0236C2901146

TMAC AES : C3A6C3830D312D05C29EC29522C387C2

OMAC TDE : 3CC3A8C3952DC387

OMAC AES : 2BA46C2962DC3AF5CC3B0C282C381504

38

Where CBC TDES is the message authentication code for CBC MAC using triple- DES as

encryption algorithm and similar to other.

4.4.4 Input message (595byte)

4.4.5 Message authentication code(MAC)

The CBC MAC is a well-known method to generate a

message authentication code (MAC) based on a block

cipher. Bellaire, Kalian, and Roadway proved the security

of the CBC MAC for fixed message length mn bits, where

n is the block length of the underlying block cipher E.

However, it is well known that the CBC MAC is not secure

unless the message length is fixed. Therefore, several

variants of CBC MAC have been proposed for variable

length messages. First Encrypted MAC (EMAC) was

proposed It is obtained by encrypting the CBC MAC value

by E again with a new key K2.

CBC TDES : 33C3AE177DC38AC2

CBC AES : C3943CC2AD455818C3BA60C39B25C39D

EMAC TDES : F58C3B7C38C2206C

EMAC AES : C287C3B5C3B26E45C3ADC3ADC29DC390

XCBC TDES : 0F1BC2A8C3A5C2BA

XCBC AES : 1BC28E1170C28913C3871223C28EC3BEC5

TMAC TDES : C3B92D6100C288C3

TMAC AES : 070FC29F1547591A48C280C3A658C2A4

OMAC TDE : 5EC39AC3A2C398C3

OMAC AES : 30C3BD79C29BC2AE4A7D03C3BBC2B224

39

Chapter 5

Result and Analysis

This chapter presents an overview of comparison of the CBC MAC and it’s variants in terms of

performance and cost. Target Architecture and Specifications are described in this chapter. Time

in system nanosecond needed for creating message authentication code (MAC) using every

variants of MAC generation algorithm implemented in java is calculated and performance is

analyzed by calculating cycle per byte.

5.1 Target Architectures

The main goal of this thesis is to measure the performance of the all variants of MAC generation

algorithm based on cipher block. These candidates algorithm are tested on desktop system. The

following system is used:

 A PC with an Intel Core i5 -2450M Processor 2.50GHz having 4 GB RAM .the

operating system is Windows 7 Ultimate running in 64-bit mode. The system is

running the java VM 22.0 –b10, Java HotSpot(TM) 64-Bit Server 1.7.0_02 with

NetBeans IDE 7.0.1.

5.2 Measuring Cost

There is some extra cost which may be added to the absolute cost for creating message

authentication code using different CBC MAC algorithm and its all variants but this is equally

affected to all candidates algorithm on the execution. The system time in nanosecond is taken

just before the execution of code segment for generating message authentication code (MAC) or

tag along with key generation time in each algorithm and the completion of the execution. The

time spending for creating MAC is calculated by subtracting start time taken before execution

40

from completion time taken after completing execution of specific code segment which is used to

produce MAC[19,24]. The time required for each algorithm is calculated as follows:

 long startTime = System.nanoTime();

// createMAC function call

long timeRequired = System.nanoTime() - startTime;

Various processes may be run in background of system so absolute measurement may not be

measure due to this reason, time needed for creating MAC in all algorithm may not be observe

same in every run of program. Therefore at least 5 times, the program implemented in java is run

in architecture describe as above section 5.2 and finally average required time observed in every

run is calculated as:

Average required Time =
𝑇𝑖

5

5
𝑖=1 where Ti represent time obtained in i

th
 run of execution.

This average calculated time is used to calculate cycle per byte.

5.3 Measuring Performance

Timing cryptographic primitive is useful when analyzing the performance of multiple

algorithms on a single machine but it may vary on other machine therefore ,cryptographer prefer

to measure how many cycle it takes to process each byte. Different cycle/byte is calculated in the

same box also because of background other process. So to optimize such extra cost, average is

taken running multiple times in same machine for each candidate algorithms.

In this thesis Cycle/byte calculation with the following parameters: time in second spent creating

MAC(Ts), frequency of the CPU in Hz(F) and message input in bytes(L). the formula for

creating cycle/byte suggested by [21] is:

 Cycle/byte =
𝑇𝑠∗𝐹

𝐿

5.4 Analysis

This section will present the result of the performance tests for various input sizes of each

algorithm. A simple multiple histogram for each candidates variants will be presented each for

representing cycle per byte.

41

Following table and corresponding charts show the overall performance in the different

encryption algorithm, Triple – DES and AES. Every candidate algorithms are taken different

sizes which are 5KB, 2KB, and 1KB, 595 bytes and 29 bytes.

Candidate

Algorithms
1

st
 run

 AES

2
nd

 run

AES

3
rd

 run

 AES

4
th

 run

AES

5
th

 run

AES Average

CBC MAC 2560859 3472259 2398418 2288745 2542173 2652490.8

EMAC 2316526 2857215 2818852 2271616 2536192 2560080.2

XCBC 11515496 11665691 13885567 11367105 16183408 12923453

TMAC 3403142 3656888 3659436 3505525 3391003 3523199

OMAC 2797653 3303130 3291486 2716398 2431614 2908056.2

Table 5.1: Performance of CBC MAC with its variants for small message size (29 byte) using

Encryption Algorithm AES

 Candidate

Algorithms

1
st
 run

TDES

2
nd

 run

TDES

3
rd

run

TDES

4
th

run

 TDES

5
th

run

 TDES Average

CBC MAC 52664600 44744767 55638602 48641495 51672227 50672338.2

EMAC 4554521 5154631 4544931 4462437 4599255 4663155

XCBC 56999951 49107758 59263746 52784183 56848057 55000739

TMAC 54389157 46445896 55949044 49364089 52602773 51750191.8

OMAC 53355555 45667669 56386535 48666445 52319617 51279164.2

Table 5.2: Performance of CBC MAC with its variants for small message size (29 byte) using

Encryption Algorithm TDES.

42

 Algorithms

Cycle/byte

TDES AES

CBC MAC 50672338 2652490

EMAC 4663155 2560080

XCBC 55000739 12923453

TMAC 51750191 3523199

OMAC 51279164 2908056

Table 5.3: Performance of CBC MAC with its variants for small message size (29 byte) with

encryption algorithm AES and TDES.

Figure 5.1: Performance of CBC MAC with its variants for small message size (29 byte) with

encryption algorithm AES and TDES.

0

10000000

20000000

30000000

40000000

50000000

60000000

CBC MAC EMAC XCBC TMAC OMAC

C
yc

le
 /

 b
yt

e

Candidates Algorithm

TDES

AES

43

 Algorithms

1
st
 run

AES

2
nd

 run

AES

3
rd

 run

AES

4
th

 run

AES

5
th

 run

AES Average

CBC MAC 812591 747108 681382 740691 697700 735894.4

EMAC 401487 330147 798608 353485 705515 517848.4

XCBC 728772 634807 639905 577545 559669 628139.6

TMAC 307032 293452 265642 353170 258953 295649.8

OMAC 253319 197514 237403 236674 220934 229168.8

Table 5.4: Performance of CBC MAC with its variants for small message size (595 byte) using

Encryption Algorithm AES

Algorithms

 1
st
 run

TDES

2
nd

 run

TDES

3
rd

 run

TDES

4
th

 run

TDES

5
th

run

TDES

Average

CBC MAC 3609216 3609216 3609216 3609216 3609216 3609216

EMAC 1018871 1105301 962626 1090380 1213651 1078165.8

XCBC 2985831 2992532 3174044 3046302 3202320 3080205.8

TMAC 2640076 2782071 2812220 2772198 2940946 2789502.2

OMAC 2650044 2815230 2821026 2718276 2986962 2798307.6

Table 5.5: Performance of CBC MAC with its variants for small message size (595 byte) using

Encryption Algorithm TDES

44

Algorithms

Cycle / byte

TDES AES

CBC MAC 3609216 735894

EMAC 1078165 517848

XCBC 3080205 628139

TMAC 2789502 295649

OMAC 2798307 229168

Table 5.6: Performance of CBC MAC with its variants for small message size (595 byte) with

encryption algorithm AES and TDES.

Figure 5.2: Performance of CBC MAC with its variants for small message size (595 byte) with

encryption algorithm AES and TDES.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

CBC MAC EMAC XCBC TMAC OMAC

C
yc

le
 /

 b
yt

e

Candidates Algorithm

TDES

AES

45

Algorithms

1
st
 run

AES

2
nd

 run

AES

3
rd

 run

AES

4
th

 run

AES

5
th

 run

AES Average

CBC MAC 780805 951127 999286 473567 823038 805564.6

EMAC 272403 298417 259151 220089 283516 266715.2

XCBC 452112 494028 439261 330465 523558 447884.8

TMAC 205960 139272 137144 163926 174299 164120.2

OMAC 181475 213754 222420 168815 205225 198337.8

Table 5.7: Performance of CBC MAC with its variants for message size (1KB) using Encryption

Algorithm AES

 Algorithms
1

st
 run

TDES

2
nd

 run

TDES

3
rd

 run

TDES

4
th

 run

TDES

5
th

 run

TDES Average

CBC MAC 2097151 2097151 2097151 1048575 2097151 1887435.8

EMAC 959655 790816 725468 389703 820509 737230.2

XCBC 1888820 1999301 1913930 1048575 1958865 1761898.2

TMAC 1711732 1957498 1788722 1048575 1886022 1678509.8

OMAC 1733230 1753478 1704440 1048575 1733683 1594681.2

Table 5.8: Performance of CBC MAC with its variants for message size (1KB) using Encryption

Algorithm TDES

46

Algorithms

cycle / byte

TDES AES

CBC MAC 1887435 805564

EMAC 737230 266715

XCBC 1761898 447884

TMAC 1678509 164120

OMAC 1594681 198337

Table 5.9: Performance of CBC MAC with its variants for message size (1KB) with encryption

algorithm AES and TDES.

Figure 5.3: Performance of CBC MAC with its variants for message size (1KB) with encryption

algorithm AES and TDES.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

CBC MAC EMAC XCBC TMAC OMAC

C
yc

le
 /

 b
yt

e

Candidates Algorithm

TDES

AES

47

Algorithms

1
st
 run

 AES

2
nd

 run

 AES

3
rd

 run

 AES

4
th

 run

 AES

5
th

 run

AES Average

CBC MAC 421614 428305 525832 473567 593367 488537

EMAC 211929 209150 232618 220089 204782 215713.6

XCBC 271567 250289 248940 330465 247749 269802

TMAC 142334 157952 150727 163926 119091 146806

OMAC 154178 150081 146286 168815 119173 147706.6

Table 5.10: Performance of CBC MAC with its variants for message size (2KB) using

Encryption Algorithm AES

Algorithms

1
st
 run

 TDES

2
nd

 run

 TDES

3
rd

 run

 TDES

4
th

 run

TDES

5
th

 run

 TDES Average

CBC MAC 1048575 1048575 1048575 1048575 1048575 1048575

EMAC 383088 341246 336103 389703 395228 369073.6

XCBC 982319 1048575 980785 1048575 1048575 1021765.8

TMAC 1002755 1005035 977885 1048575 1031203 1013090.6

OMAC 918836 975581 969754 1048575 941789 970907

Table 5.11: Performance of CBC MAC with its variants for message size (2KB) using

Encryption Algorithm TDES

48

Algorithms

cycle/byte

TDES AES

CBC MAC 1048575 488537

EMAC 402734 215714

XCBC 699050 269802

TMAC 693431 146806

OMAC 681573 147707

Table 5.12: Performance of CBC MAC with its variants for message size (2KB) with

encryption algorithm AES and TDES.

Figure 5.4: Performance of CBC MAC with its variants for message size (2KB) with encryption

algorithm AES and TDES.

0

200000

400000

600000

800000

1000000

1200000

CBC MAC EMAC XCBC TMAC OMAC

TDES

AES

49

Algorithms

1
st
 run

AES

2
nd

run

AES

3
rd

 run

AES

4
th

 run

AES

5
th

 run

AES Average

CBC MAC 293302 300382 268443 321748 330845 302944

EMAC 257365 272010 233095 225892 364932 270658.8

XCBC 216471 261080 255027 214673 280137 245477.6

TMAC 125830 132991 146547 144340 155176 140976.8

OMAC 123897 146217 124667 134708 188793 143656.4

Table 5.13: Performance of CBC MAC with its variants for larger message size (5KB) using

Encryption Algorithm AES

 Algorithms

1
st
 run

TDES

2
nd

 run

TDES

3
rd

 run

TDES

4
th

 run

 TDES

5
th

 run

TDES Average

CBC MAC 699050 699050 699050 699050 699050 699050

EMAC 367792 378096 356210 347920 563656 402734.8

XCBC 699050 699050 699050 699050 699050 699050

TMAC 699050 699050 670958 699050 699050 693431.6

OMAC 680594 671916 668709 699050 687596 681573

Table 5.14: Performance of CBC MAC with its variants for larger message size (5KB) using

Encryption Algorithm TDES

50

Algorithms

Cycle / byte

TDES AES

CBC MAC 699050 302944

EMAC 402734 270659

XCBC 699050 245477

TMAC 693431 140976

OMAC 681573 143656

Table 5.15: Performance of CBC MAC with its variants for message size (5KB) with

 encryption algorithm AES and TDES.

Figure 5.5: Performance of CBC MAC with its variants for small message size (5KB) with

encryption algorithm AES and TDES

0

100000

200000

300000

400000

500000

600000

700000

800000

CBC MAC EMAC XCBC TMAC OMAC

cy
cl

e
/b

yt
e

Candidates Algorithm

TDES

AES

51

5.5 Result

Measuring all cipher based message authentication code algorithm in above architectural

machine mansion in section 5.1 using different symmetric encryption algorithms, AES and

Triple-DES, it is observed that: if the encryption algorithm is TDES, Encrypted MAC (EMAC)

seems to be the better cryptographic variants of CBC MAC whatever the size of message is taken

to generate message authentication code (MAC). But the nature of time required to create MAC

changed according to input size of message in the case of AES. For small size of message,

EMAC seems to be best model in AES algorithm also but it does not remain same when input

size increased. By this way, Two-key MAC (TMAC) seems to the best cryptographic message

authentication code algorithm based on cipher blocking chaining (CBC) mode. It is observed that

TMAC yields 3%-80% better performance (cycle/byte) than other variants when encryption

algorithm is AES for small size message when size is increased it yields to 2%-53%. EMAC

yields 90%-91% better performance than other variants when encryption algorithm is TDES for

small size message when size is increased it yields to 40%-42%. For comparing two symmetric

encryption algorithms, TDES and AES, it seems AES algorithm is best to use for every variants

of CBC MAC. TDES seems 5-11 times higher than AES.

52

Chapter 6

Conclusion and Future Work

6.1 Conclusions

In this thesis, the variants of cipher block chaining based message authentication code algorithm

are discussed along by using their java implementation. The result of empirical performance

comparison shows that two variants of CBC MAC perform better depending on the message size

and symmetric encryption algorithm. First EMAC or Encrypted MAC needs fewer cycles for

processer to process byte when symmetric encryption algorithm is triple DES. In this encryption

algorithm EMAC remains same performance by comparing with other variants but in case of

AES result is not same for all size of message. For smaller size EMAC shows better performance

than other when size of message is increased, TMAC shows the better performance.

Comparatively OMAC is also shows better performance when large size of message is used to

create MAC than other variants like CBC MAC, XCBC, and EMAC if the encryption algorithm

is AES. For TDES for every size of input to the algorithm, EMAC shows better performance.

6.2 Future Works

The main focus of this work has been to analyze the four variants of CBC MAC and CBC MAC

itself. Hence special effort could be given for analyzing the security of the candidates. After this

work , it seems that all algorithms has equal cost for creating MAC by making the chain of

cipher block but more cost is differ in generating extra key for security reason for variable length

of message. So future work can be done to minimize the number of block cipher invocation so

that it can be used in resource constrained device and environment. It can be further study to

Optimize for both speed and size without reducing the security margin. A possibility here can be

to create three implementation for each candidate, one for optimized for size, one for optimized

for speed and one for providing better security.

53

References:

[1] Bellare, M., Kiliam, J., and Rogaway, P., the Security of the cipher block chaining message

authentication code. JCSS,vol .61, no. 3,2000.

[2] Black, J., Rogaway, P., CBC MACs for arbitrary-length messages: The three key

constructions. Advances in Cryptology — CRYPTO 2000, LNCS 1880, pp. 197–215,

Springer- Verlag, 2000.

[3] Black, J., Rogaway, P., Comments to NIST concerning AES modes of operations: A

suggestion for handling arbitrary-length messages with the CBC MAC. NIST submission.

Available at http://www.cs.ucdavis.edu/~rogaway/.

[4] Coremen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction to Algorithms,

Second Edition, Prentice-Hall, India, 2007.

[5] Dworkin, M., Recommendation for block cipher modes of operation: the RMAC

authentication mode.NIST special publication 800-38B, Available

 at http://csrc.nist.gov/encryption/modes/.

[6] FIPS PUB 197, "Advanced Encryption Standards (AES)," Federal Information Processing

Standard (FIPS),Publication AES Draft, National Institute of Standards and Technology,

US Department of Commerce, Washington D.C., 2001

[7] Guerin , R., Bellare, M., and Rogaway, P., XOR MACs: new methods for message

 authentication using finite pseudorandom functions Advances in cryptology –

 CRYPTO ,95 ,LNCS 963 , pp, 15-28, Springer – Verlag ,1995.

[8] H.C.A.V. Tilborg, Fundamentals of Cryptology, Kluwer Academic Publisher Boston, 1988.

[9] Iwata, T. and Kurosawa, K., OMAC: One-Key CBC MAC. Pre-proceedings of Fast

Software Encryption, FSE 2003, pp. 137–161, 2003.

[10] Iwata, T. and Kurosawa, K., Stronger security bounds for OMAC, TMAC and XCBC.

Manuscript Available at Cryptology ePrint Archive, Report 2003/082

 http://eprint.iacr.org/.

[11] Jueneman, R. R., Matyas, S. M., and Meyer, C. H., ―Message Authentication”, IEEE

Communication, Vol 23, No. 9, pp 29-40,1985

[12] Kurosawa, K., Iwata, T., TMAC: Two-key CBC MAC. In: Joye, M. (ed.) CT-RSA 2003.

LNCS, vol. 2612, pp. 33–49. Springer, Heidelberg ,2003

[13] Minematsu and Matsushima, T., Improved Security Bounds for PMAC, TMAC, and

XCBC. Fast Software Encryption 2007.

54

[14] Mitchell, C., Partial Key Recovery Attacks on XCBC ,TMAC and OMAC , Cryptography

and Coding, 10
th

 IMA International Conference – CCC 2005,LNCS 3796 , pp. 155-167

,Springer –Verlag ,2005

[15] Mridul Nandi, A Unified Method for Imporving PRF Bounds for class of block cipher

based MACs (2010), 212-219, FSE 2010, Lecture Notes in Computer Science, 6147, 2010.

[16] Netbeans ide 7.1 features , May 2010.

 http://netbeans.org/features/index.html

[17] Palash Sarkar, Pseudo-Random Functions and Parallelizable Modes of Operations

 of a Block Cipher 2009. URL: http://eprint.iacr.org/2009

[18] Petrank, E., Rackoff, C., CBC MAC for real-time data sources. J.Cryptology, vol. 13,

no. 3, pp.315–338, Springer-Verlag, 2000.

[19] Rogaway, P., Black, J., A block- cipher mode operation for parallelizable message

 Authentication. Advances in cryptology – EUROCRYPTO 2002 ,LNCS 2332, pp .

 384-397, Springer – Verlag ,2002.

[20] Sun Microsystems Inc., http://java.sun.com/javame.

[21] Timing Cryptographic Primitives, http:// etutorials.org

[22] Venkatesan, R., Janaka Deepakumara, Howard M. Heys Performance Comparison of

Message Authentication Code (MAC) Algorithms for the Internet Protocol Security

(IPSEC),Electrical and Computer Engineering Memorial University of Newfoundland St.

John's, NL, Canada, A1B3S7

[23] William Stallings Cryptography And Network Security Principles and Practice , Prentice

all , Fifth Edition ,2010.

[24] Wikipedia, the free encyclopedia, www.wikipedia.org/

