
1

CHAPTER 1

BACKGROUND AND PROBLEM FORMULATION

1.1 Background

Before exploring or diagnosis of any research it is necessary to study the basic terminologies

which are related to the topic. In the same manner, hereby, some of the basic terminologies

which are relevant to this study are discussed in the following sections.

1.1.1 Memory Management

Memory is an important and limited resource in computer which is to be managed carefully.

The act of managing and organizing computer memory is known as memory management.

Memory is basically categorized into two types depending upon its location from processor

namely primary memory and secondary memory. Primary memory is volatile computer

memory, which is accessed frequently by processor whereas secondary memory is non-

volatile memory which is not often accessed by processor. When a process to be executed, it

must be loaded into main memory because access time of primary memory is far better than

secondary memory. When the program size is larger than the available main memory that is

too big to fit on main memory there arise problem which needs to be handled by memory

management. The solution to overcome this problem may be to increase significantly the

amount of available memory but this would have penalty in the cost of the whole computer

system. In this context, the solution is to split program into large number of small logical

sections called overlays (pages) [19].The execution starts from overlay 0. After executing

overlays 0, it calls another overlay. In such way that operating system keeps active overlays

for execution in the primary memory and rests are stored in secondary memory. The process

of moving required data from secondary memory to main memory is called swapping in and

the process of moving unused data to secondary memory is called swapping out. Although,

swapping in and out is done by the operating system and the partition of large program into

overlays is done by programmer which adds extra burden to the programmer and this

working process seems too much time consuming. Therefore, the concept of virtual memory

2

is developed. Now, the operating system uses virtual memory system to solve the overlay

problem. The concept of virtual memory is defined more clearly in the following section.

1.1.2 Virtual Memory

Virtual memory is a memory management technique for executing large program or multiple

programs which cannot be accommodated in main memory entirely. It moves required data

to the main memory for execution and rest of it which is not currently being in execution is

stored in secondary memory. The part of the secondary memory that is reserved for virtual

memory is called swap space. The whole process of virtual memory system is depicted in

figure 1.1.

Figure 1.1: Virtual Memory System

Program and data are stored in number of memory cells. Each cell has a unique identifier

called address. The ordered set of address is called address space. During the program

execution, the CPU generates address by accessing main memory is called virtual address.

The set of all virtual (logical) addresses generated by a program is a virtual address space; the

Virtual Memory Physical

(Per Process) Memory

RAM

Disk

Other

Process

memory

3

set of all physical addresses corresponding to these virtual addresses is a physical address

space. This is then presented to memory management unit (MMU), and is responsible for run

time mapping from virtual address to physical address.

1.1.3 Paging

Paging is one of the most popular memory management schemes to implement a virtual

memory management which divides main memory into sufficient large number of blocks or

units called page frames [17,19]. On the other hand, virtual address space is also divided into

blocks called pages having same size as that of page frames. This equality facilitates to move

any page from secondary memory to any page frame in main memory. Each page in the

virtual address space must be mapped to appropriate page frames by translating their virtual

address to the corresponding physical address. This process of translation is called address

translation that is done with every new memory references. Usually, special hardware

memory management unit (MMU) is used to make this translation. The mapping between

virtual address spaces to physical address space is stored in a table named page table. When

the given logical address does not map to the physical address then MMU traps to the

operating system which is called page fault. The operating system moves some pages to

secondary memory to make room for reference page and updates the page table, as the MMU

does not know anything about present/absent status of pages in main memory. By paging, the

memory allocates to the blocks that are requested. Thus, the problem of external

fragmentation is completely eliminated. Internal fragmentation exists where there is unused

memory within a page. Larger pages make for smaller page tables and use the TLB more

efficiently but create more internal fragmentation.

A paging algorithm is needed to manage paging which can be accomplished in three steps:

fetching, placement and replacement. The fetch procedure decides which page to fetch

(extract) from secondary memory to put in main memory, placement procedure determines

free page frame to locate the fetched block and finally replacement procedure decides which

page to be swapped out when required page have to be brought in. Further, paging algorithm

can demand paging or pre-paging. Demand paging places pages into memory only on their

demand. Pre-paging loads the pages before letting processes runs. Demand paging is

4

considered better choice because its further uses but pre-paging is not in real use because it

requires prediction of page uses which is impossible to predict [13].

1.1.4 Page Replacement Algorithm

Operating system uses paging for managing virtual memory and virtual memory makes use

of page replacement algorithm for efficient access of pages. These are responsible for

allocation of requested pages in main memory by replacing the unused pages to secondary

memory. If the requested page is not available in main memory then it encounters page fault.

In case of page fault, it removes or replaces unused page from main memory with requested

page. The effectiveness of page replacement algorithm depends on its selection procedure of

unused pages to deportation. This means the performance is much better if a page that is not

heavily used is chosen for replacement. If the heavily used is removed, it will probably have

to be brought in quickly, resulting in extra overhead.

The main goal of page replacement algorithm is to minimize the number of page fault. Every

page fault limits the speed of those accesses because the process that suffers page fault must

wait until swap is completed. Page fault rate is one criterion to evaluate performance of page

replacement algorithm which is calculated by running it on different memory reference

pattern. Reference pattern refers to the list of referenced pages by processor. Page fault rate

of algorithm adequately depends on the number of page frames available [17]. Therefore, to

determine the number of page fault the number of page frames used there should also be

known. Different types of page replacement algorithm and their working behavior is

described in more detail in chapter 2.

The performance of a page replacement algorithm depends on the program behavior which

demonstrates how reference strings are generated by program. Reference strings are either

generated randomly, or by tracing the paging behavior of a system and recording the page

number for each logical memory reference. Behavior of program depends on the access

pattern of references which further depends upon working set and locality of reference.

1.1.5 Working Set

Working set is the smallest collection of frequently accessed pages which are needed in main

memory for execution. If the entire working set is in main memory then the system work

5

without causing page fault until is completed or moves into another stage. Intuitively, it holds

only relevant pages. If the working set is unable to fit in main memory then there will be high

number of page faults and much computation will not be performed, finally it suffers from

thrashing [5, 19]. The entire algorithm based on principle of working set is not in real use but

the informal concept of working set is still being used.

1.1.6 Locality of Reference

The allocation of limited set of pages in main memory during particular time of execution is

called locality [5]. The algorithm that exhibits weak locality impacts the cache performance

optimization. So, the locality of reference is most important principle in virtual memory

system as it is found in currently used page algorithm. Page replacement algorithm employs

two types of locality namely temporal locality and spatial locality. Temporal locality is based

on the time which refers the memory location referenced at any point in time likely to be

reference again in fixed time interval. Spatial locality is based on space which refers the

memory location referenced once then program will be referenced again by nearby memory

location.

1.1.7 Typical Memory Reference Pattern

The changes in working set generates memory access pattern. The performance of page

replacement algorithm depends on the pattern of the pages referenced. Each page

replacement algorithm is evaluated by executing it on particular string of reference string.

There are several identified page reference patterns which are discussed in the following

sections.

1.1.7.1 Cyclic Pattern

When the set of reference pages are repeated in fixed time in same order such types reference

pattern is called cyclic pattern. For example if 1,2,3,4 are reference block then their cyclic

pattern will likely to be 1,2,3,4, 1,2,3,4, and 1,2,3,4.

6

1.1.7.2 Probabilistic Pattern

Each block in reference pattern associated stationary reference and probability. These blocks

are accessed based on their associated reference probability. For example if 1 and 2 are

frequently accessed blocks then the probabilistic pattern is likely to be

1,2,3,4,5,1,6,2,8,9,10,1.

1.1.7.3 Temporally Clustered Pattern

A temporally clustered pattern has the property that block referenced recently likely to be

referenced sooner in the future. For example temporally clustered pattern can be viewed as

1,2,1,3,2,4,3,1,2,5,6.

1.1.7.4 Mixed Pattern

Mixed pattern is the combination of all identified memory reference pattern. This means it is

the mixed form of cyclic, probabilistic and temporal clustered patterns. For example, if

1,2,3,4, 1,2,3,4 is cyclic pattern 1,2,4,5,1,6,2,10,1 is probabilistic pattern and 1,2,1,3,2,4,3,1,2

is temporally clustered pattern then the mixed pattern may whatever be like

1,2,3,4,1,2,3,4,1,2,4,1,2,4,5,1,6,2,10,1 by containing any of these reference strings.

1.1.8 Performance Metrics

Performance metrics refers criteria for measuring the performance of any system. In the case

of page replacement algorithm page fault, hit rate, hit ratio, miss rate and miss ratio are the

key terms for measuring the performance. Higher hit rate of the algorithm exhibits higher

performance.

1.1.8.1 Page fault count

Page fault count can be measured by counting total number of page faults occurred between

the some intervals of references.

1.1.8.2 Hit Rate and Hit Ratio

This is the rate of hitting the page in main memory out of total referenced pages which is

calculated by using formula

7

HR = 100 – MR………………………………………………. (1.1)

Where, HR is the hit rate and MR is the miss rate

Hit ratio is the fraction of total number of hits by total references.

1.1.8.3 Miss Rate and Miss Ratio

Miss rate (MR) can be calculated by using formula

MR = 100 × ((PF - NDR) / (REF - NDR))………………….. (1.2)

Where, PF is the number of page faults, NDR is the number of distinct pages referenced and

REF is the total number of referenced pages [15].

Miss ratio is the fraction of total number of misses by total references.

1.2 Rationale of the study

Day by day the performance gap between memory and processor gets wider. Consequently,

various solutions are proposed to cope with this issue. A high performance cache

replacement algorithm is one method to reduce cache misses for speeding up computer

system. Various page replacement algorithms have been researched in recent years [19, 15].

To date, LIRS (Low Inter Reference Recency Set) is currently known as very effective

method follows the original assumption of LRU algorithm which is based on the principle

that recently accessed block will be re-accessed very soon in future. Although LRU seems to

be simple and easy to implement, it cannot gain better performance because of stored limited

history information. Also the adaption of all scales of reference pattern such as file scanning,

cyclic pattern (loop-like), access pattern that is marginally larger than the cache size, access

of different frequency blocks is difficult. In this context the concept of LIRS algorithm was

proposed to overcome all the limitations of traditional LRU algorithm.

The main idea behind the LIRS algorithm is to reduce the number of page faults by using

IRR (Inter-Reference recency set) as recording history information of each block. Where,

IRR of the block refers number of distinct access between two accesses of the same block in

the reference sequence. Another factor, Recency refers to the number of distinct accesses

between last references to the current time used to evaluate IRR value of accessed block. The

algorithm assumes current large IRR value of a block generates next large IRR value for

accessed block. So, the block with largest IRR is selected for eviction [7].

8

LIRS algorithm classifies each reference block into two categories [7]: LIR block and HIR

block. The mapping process of referenced block to physical cache is depicted at figure 1.2. A

block which associates low IRR value is taken as LIR block and block with high IRR value is

taken as HIR block. In the same manner, cache is also partitioned into two parts CLirs and

CHirs. CLirs contains set of LIR blocks and have higher probability of being referencing in near

future and re-accessing these blocks always guaranteed to be hit. CHirs contains set of HIR

blocks that have the less probability of usability in future and accessing those blocks

encounters page fault. The algorithm dynamically maintains data blocks in the cache; LIR

blocks in the cache as much as possible and HIR value block out of the cache as page fault.

That’s why this algorithm is called LIRS algorithm.

(Block Sets)

(Physical cache)

LIR Blocks Resident Blocks

HIR block set (Resident

blocks +Non-resident blocks)
LIR block set

Figure 1.2 Mapping process of Logical memory to physical cache.

CHirs part of cache is again classified into two parts namely resident block and non-resident

block. Resident block keeps the track of those HIR blocks that are currently available in the

cache. Such types of blocks may be evicted anytime whatever the value Recency is. And

non-resident block keeps the metadata
1
 of limited HIR blocks that are not currently in the

cache. Status of a block of LIR and HIR might be interchanged only when the following

condition is true.

)()(Re BlockHIRofIRRBornNewBlockLIRofcencyMax  .

This policy uses new born IRR value of HIR block in case of changing the block status. In

this case, the metadata of all accessed CHirs block cannot keep in the cache because it

1
 Metadata is data that provides information about accessed block.

9

performs pruning operation to minimize the space overhead. DIG algorithm [4] reveals a

problem of using new born IRR value of CHirs that is the recently accessed block will never

replace with frequently accessed block. By this, the performance of LIRS somehow

degrades.

1.3 Problem Statement

Recency of an accessed block depends not only on its own reference activity, but on other

blocks reference activity too. When the blocks recency value became a maximum then

obviously it gets a large IRR value because IRR value of accessed block depends its own

earlier recency. The LIRS algorithm presented in [7] directed to use a new born IRR value of

CHirs for comparison with maximum recency value of CLirs. And it performs pruning

operation while changing page status which plays key role in the performance degradation of

LIRS algorithm.

When there is burst of first time (or fresh) block references, the size of stack grows

unacceptably very large which makes cache polluted. To minimize the stack overhead, the

entire HIR blocks having recency larger than the max recency of LIR blocks removed one by

one. With such large limits, there is negative effect on LIRS performance by removing these

removed HIR entries. As a consequence, it can store only history information of newly

accessed block neither the history information of frequently accessed block. So, this thesis

focuses on identity the impact of pruned on LIRS algorithm performance by comparing the

max recency of LIR block with the minimum IRR of HIR block and integrating the new born

IRR of accessed block and minimum IRR value of all CHirs to compare with maximum

recency of all CHirs.

1.4 Objective

The objective of this study is to evaluate the impact of pruned data on LIRS algorithm by

simulating it without violating its logic and compare the performance.

10

1.5 Motivations

Less time for page-ins, deeper history information about access to the pages and minimum

number of misses are the key feature to recognize as a good algorithm. OPT is one, which

gives bold logic for page replacement even it is not on a real use. Many near optimal page

replacement algorithms have been found, but their complexity and restrictions restrict their

implementation in real system.

Implementing a LRU is a successful idea due to its simplicity, flexibility and low overhead.

By motivating from bold assumption of LRU a versatile LIRS algorithm was implemented.

Its power of quantify to locality, way of selecting victim page and role of metadata on cache

performance is the most important motivation for making a research in this field. Related

research paper demonstrates the deployment of LIRS algorithm in different approach based

on its principle. Before deploying the algorithm in a real system the question should be

answered how much an algorithm stores deeper history information.

1.6 Thesis Organization

After having brief introduction about the dissertation and background study in this chapter,

the rest of the material is divided into following five subsequent chapters.

Chapter 2 consists of literature review which briefly reviews the related topics. Literature

review includes summary of several traditional page replacement algorithms like Optimal,

LRU, MRU, LRFU, 2Q etc. This chapter also contains the research methodology part which

shows the flow of our research.

Chapter 3 is devoted to the program development steps of simulation. It includes detail

design of the program.

Chapter 4 consists of data collection and analysis part which includes details about

generating traces of memory references that shows trace driven input, output results with

several analyzing graphs which are only tested for weak locality workloads.

Finally, the concluding remarks and further recommendations are outlined in chapter 5.

11

CHAPTER 2

LITERATURE REVIEW AND METHEDOLOGY

2.1 Literature Review

The brief introduction about page replacement is described in first chapter. There are so

many algorithms developed and employed as the page replacement algorithm. Although it is

infeasible to mention all of them, and all those are not seemed to be relevant to this

dissertation work. Some of the main page replacement algorithms which are hugely used in

the page replacement and relevant to this research are described below.

2.1.1 Optimal Page Replacement Algorithm

According to the author in [1], an optimal page replacement algorithm (OPT page

replacement algorithm) suggests replacing a page that will unreferenced for a long period of

time which is also known as Belady’s MIN algorithm. This algorithm seems unpredictable

for real systems because it requires knowledge of future reference sequence, which is really

impossible to predict. This algorithm provides less page faults and never suffers from

Belady’s Anomaly
2
. As a result, OPT is used to compare the performance of other page

replacement algorithms.

2.1.2 Random Page Replacement Algorithm

Random page replacement algorithm as its name suggests that it randomly chooses a page for

eviction from a buffer without concerning it for future use. Its performance relies on type of

block which has been evicted by algorithm. According to this algorithm performance benefits

will be available if the evicted page is not frequently accessed otherwise the performance

obviously degrades. Due to its random nature, in most sequences it produces unnecessary

page faults and thrashed them unnecessarily. Therefore, the concept of random page

replacement algorithm is not currently deployed due to issue of bad performance [19].

2
 Belady’s anomaly is a problem that increases page fault rates while increasing number of page frames.

12

2.1.3 FIFO Page Replacement Algorithm

First in first out page replacement algorithm throws out the oldest page in case of page fault.

All the referenced pages are kept in list such that the oldest page at the head and the most

recently referenced page at the tail. On a page fault, the oldest page from head of list is

selected to evict and new pages added to the tail of list. Each page has an equal lifetime in

memory and there is discrimination among the pages on the basis of frequency. As

mentioned in [15], it suffers from Belady’s anomaly and cannot take advantages of locality

trend.

2.1.4 NRU Page Replacement Algorithm

In the Not Recently Used page replacement algorithm [19], each page in the memory is

classified into four classes according to referenced and modified bit. Class 0 contains neither

referenced nor modified pages, class 1 contains not referenced but modified pages, class 2

contains referenced but not modified pages and Class 3 contains referenced and modified

pages. NRU randomly selects the page from the least needed class when page fault occurred.

2.1.5 Recency/Frequency Based Page Replacement Algorithm

These entire page replacement algorithms make their cache replacement decision based on

the Recency or Frequency or both. However, they are not able to exploit human desirable

cache performance. Recency and Frequency Based Page Replacement Algorithm is further

categorized into different categories which are described below:

2.1.5.1 LRU Page Replacement Algorithm

Least Recently Used (LRU) algorithm assumes that page referenced at any instance will

probably be used very soon. This policy exploits principle of locality for many common

memory access patterns [7]. All the access to the block is recorded and replaces a page that

has not been used for long time. The limitation of this algorithm is its implementation

because it requires additional hardware. Two types of implementations are feasible which are

Counter and Stack.

13

Counter: Counter is just like dummy variable which value is increments when memory is

accessed and the current value of this counter is stored in the page table entry of the page.

Then finding the LRU page involves simple searching the table for the page with the smallest

counter value.

Stack: LRU keeps all referenced pages into a sorted list which is sorted on the basis on their

accessed time from reference pattern and the list is called LRU stack. The only one recency

factor is used to record history information which is evaluated by maintaining LRU list. The

recency factor is updated as per entry of new page in LRU stack.

There is no any mechanism to differentiate frequently accessed and rarely accessed blocks. If

frequently accessed block has slightly large reuse distance it cannot be fit into main memory,

this time it ignores usability of a block. And it shows anomalous behavior in many workloads

[7].

2.1.5.2 LFU Page Replacement Algorithm

Least Frequently Used is another classic algorithm which keeps track of the frequency of

each block by counting the number of times references with other page. The term frequency

is used to estimate the probability of next page to be referenced. According to this algorithm

page with the least frequently used counter is replaced with new page. The problem arises

when a frequently accessed block at initial will be not needed again for long time staying in

cache and restricting new data to be cached in. Aging is one method to avoid such types of

cache pollution.

2.1.5.3 MRU Page Replacement Algorithm

Most Recently Used page replacement algorithm works with reverse principle of LRU

algorithm which removes the most recently used resource first. This algorithm is considered

best when the reference pattern is highly unpredictable. It can be implemented like as LRU

by maintaining LRU stack. MRU is mostly applied in the database memory caches.

14

2.1.5.4 LRFU Page Replacement Algorithm

Least Recently/Frequently Used page replacement inherits the advantages of LRU and LFU

algorithm. According to this algorithm each block contains CRF (combined recency and

frequency) value and any block with minimum CRF C(x) is victim when new block is

encountered [10].

C(x) =
1 + 2 −⋋ 𝐶 𝑥 𝑖𝑓 𝑥 𝑖𝑠 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑡

2 −⋋ 𝐶 𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (2.1)

Where, ⋋ is tunable parameter which is defined as…..if definition or physical meaning,

mentioned here. The performance of CRF is critically depended on the choice of ⋋.

2.1.5.5 EELRU Page Replacement Algorithm

 EELRU-Early eviction LRU [18], works on the basis of the position of LRU queue and

memory reference pattern rather than the memory size. EELRU outperforms over LRU by

default and page is chosen to evict based on the aggregate recency information. So the hit

rate of EELRU algorithm seems better than the simple LRU. Recency information on

EELRU is also used to maintain the information of resident and nonresident pages. It detects

the potential sequential access patterns analyzing the reuse of pages.

2.1.6 Enhanced LRU algorithm

2.1.6.1 LRU-k algorithm

LRU-K algorithm [14] dynamically keeps the records of k
th

 backward distance of each block

where k
th

backward distance BK(x, t) is defined as the number of accessed blocks from last

k
th

reference to the most recent reference. A block having maximum backward distance is

evicted first. The parameter value k is positive integer like 1, 2 or 3. When k=1, it works like

a simple LRU algorithm. Thus one may say that LRU-K algorithm as the generalization of

LRU algorithm. When the value of k is large then it discriminates frequently accessed and

infrequently accessed block. The problem arises when more than one block has undefined

backward distance. In this case, the supplementary policy is applied to overcome this

problem.

15

2.1.6.2 2-Q Algorithm

The main intuition of 2Q algorithm [9] is the detection of real hot pages and removes cold

pages from the main memory. Those pages which are considered important for replacement

are called hot pages and those pages which are considered less important for replacement are

called cold pages. It consists of two lists of pages where the first one is queue managed by

FIFO which contains data accessed once and another is hotlist managed by LRU stack. The

first queue is further partitioned into two sets Fin and Fout. The first referenced block is placed

in Fin list while Fout contains only information of a missed block. The re-accessed block on Fin

list is moved to the hot list which is managed by LRU. In this way algorithm distinguish

frequently and infrequently accessed blocks. However, the problem is the management of

two queues and migration of block from one queue to another which is complicated for

hardware implementation and cycle consuming.

2.1.6.3 ARC algorithm

ARC algorithm keeps track of both frequently and recently used pages along with history

data regarding eviction. ARC uses two types of LRU lists L1 and L2 to manage the pages.

L1holds pages accessed only once and L2keeps the pages that were re-accessed at least once.

These two lists are again partitioned in two sets top and bottom where top contains MRU part

and Bottom contains LRU part so as │T1+T2│=c. where c is the cache size. Suppose │T1│=

p then │T2│=c-p. The parameter p is dynamic and it may be incremented and decremented

based on the respective size of two sets B1 and B2. Same parameter controls the replacement

point in L1 and L2 [11].

2.1.7 CLOCK Based algorithms

CLOCK, CAR, CART CLOCK -Pro are all clock based algorithms. The pages in the cache

are organized as circular ring and each block associates the reference bit to record the access

information [6]. CLOCK based algorithms hold the information regarding how frequently

block has been accessed and page has been accessed but these algorithms have limitation that

unable to detect an access pattern.

16

2.1.7.1 CLOCK algorithm

In CLOCK, replacement is done by inspecting the oldest page. The reference bit of block is

set whenever it is referenced. If reference bit is zero, the page is replaced with new one and

the hand is advanced one position. If reference bit is one then the bit is reset to zero and

advance to the next page. This process continues till a page with reference bit set to zero.

2.1.7.2 CAR

CAR [3] is a variant of ARC based on clock algorithm. Like ARC, it uses two lists to hold

information of each page, but is controlled by pointer like as in Clock. The scanned pages

replaced from first queue and their information is maintained in data structure. CAR is self-

tuning algorithm. It uses both the recency and frequency of page and balanced between them

automatically.

2.1.7.3 CAR with Temporal Filtering (CART)

CART is a variation of CAR which includes additional mechanism to filter out correlated

reference pattern which seems undesirable in CAR. These filters classify pages as long utility

and short term utility. Least recently used pages from list are evicted [3].

2.1.7.4 CLOCK –Pro

CLOCK- Pro [8] is an approximation of LIRS. Reuse distance, analogous to IRR of LIRS is

used instead of recency of block to make replacement algorithm. A block with large reuse

distance is considered as the cold block and block with minimum reuse distance is considered

as the hot block. CLOCK-Pro preserves ghost cache holding recent replaced pages as an

additional reference data structure.

2.1.8 Fuzzy Logic based cache replacement algorithm

Recent algorithm uses Fuzzy logic to improve cache performance decisions. Fuzzy logic is a

way of computing based on "degrees of truth" rather than the usual "true or false". Fuzzy

Inference Systems (FIS) consist of three stages: an input, processing and an output stage.

Input stage mapped with frequency of references, recency of references and others. An

intermediate processing stage is also called reference engine contains logic rule in the form

17

of If-Then statement [12]. Finally, output stage converts reference engine produced output

into desired output value. FPR [16] and FAPR [2] algorithms apply fuzzy inference

technique to make pages replacement decision.

Research related to replacement schemes for buffer and page cache management has been

done for a long time. Among them most of page replacement schemes are based on tracing

and utilizing history information. These schemes choose the victim block by using ‘‘deeper’’

history information. Replacement schemes based on tracing and utilizing history information

choose the victim block by using ‘‘deeper’’ history information such as recency, frequency,

and inter-reference gap. These schemes generally need low memory and timing overhead,

and are simply easy to implement. LRU-K, 2Q, LRFU, and LIRS are the typical schemes

found in this category.

The LIRS chooses a victim block by considering the inter-reference recency (IRR) of each

block. The scheme divides cache blocks into two block sets: low IRR (LIR) block set and

high IRR (HIR) block set. By replacing a block in HIR block set, which has comparatively

low reference probability, the LIRS has good locality. It is accomplished by assuming that if

the IRR of a block is large, the next IRR of the block is likely to be large again. However, the

assumption is not always correct because of the constraint of timing scope. Therefore, here

proposed a scheme Derived LIRS which modifies and improves the LIRS by solving the

problem of that assumption. The Derived LIRS is described in more detail in chapter 3.

2.2 METHEDOLOGY

As methodology is the systematic, theoretical analysis of the methods applied to a field of

study, or the theoretical analysis of the body of methods and principles associated with a

branch of knowledge. It, typically, encompasses concepts such as paradigm, theoretical

model, phases and quantitative or qualitative techniques. As discussed in the earlier chapter

this study is about LIRS page replacement algorithm and under this study different aspects of

LIRS algorithm like IRR value, recency, are taken into consideration or excluded as

necessary and their impact is analyzed for hit rate, miss rate and number of page faults.

18

This study is based on the trace driven simulation approach where all data collected are

secondary data which are referenced from [7]. The implementation is done in simulator

which is programmed in C# programming language in .Net Framework.

Thereafter, output information gathered is analyzed in quantitative approach with the help of

table and graphs. Also impacts of taking into consideration the IRR value of reference pages,

Recency are compared and analyzed. Finally, conclusion is drawn from those graphs and

tabulated information.

19

CHAPTER 3

PROGRAM DEVELOPMENT AND IMPLEMENTION

3.1 Development Methodology and Tools

3.1.1 Programming Language Used

C# programming language in .Net Framework is used for simulating the LIRS page

replacement algorithm. C# (Pronounced ‘see sharp’ or ‘c sharp’) is one of the many .Net

programming language. It is simple, modern general purpose and object oriented

programming language. Like other programming language it can be used to create a variety

of application. An important point is that c# is a managed language; it requires that .NET

Common Language Runtime (CLR) to execute. Essentially, as an application that is written

in C# executes, the CLR is managing memory, performing garbage collection, handling

exceptions, and providing many more services. The C# compiler produces Intermediate

Language (IL), rather than machine language, and the CLR understands IL. .NET ships with

a .NET Framework Class Library (FCL), which includes literally tens of thousands of

reusable objects. This can help to write managed code for different purposes.

3.1.2 Data Structure Used

Doubly linked list is used to implement a LIRS algorithm. A doubly linked list is collection

of sequential records called nodes. Where each node contains its current Recency value, IRR

value and each node references the next and previous one. The advantages of using doubly

linked list is that if items are inserted and deletion from the list, the doubly linked list is very

fast. And another beauty is it can be traversed in both (forward and backward) more easily.

The structure of doubly linked list is illustrated in figure below.

Figure 3.1 Structure of the Linked List

20

While implementing LIRS algorithm, two operations have to be performed- insertion new

referenced node at front and moving of node from existed position to front position. If the

existed block in linked list is re-referenced then this used node can be delinked from its

middle and move it to the head of the list. Otherwise new nodes are linked to the front of list.

And same doubly linked list is used for maintaining their page status. Thus, to implement

LIRS algorithm efficiently the doubly linked list is selected.

Structure of LIRS Node

Class LIRSnode{

Public LIRSnode prev { get; set; }

public object Data { get; set; }

public LIRSnode next { get; set; }

public int Recency { get; set; }

public int IRR { get; set; }

public Pagestatus status;

public LIRSnode(){

status = Pagestatus.NonResident_HIR;

Data = null;

prev = null;

next = null;

 }

Public LIRSnode(Pagestatusstatuss, LIRSnodedatavalue): this(statuss, null, datavalue,

null){ }

public LIRSnode(Pagestatusstatuss, LIRSnodepreviousnode, LIRSnodedatavalue,

LIRSnodenextnode) {

status = statuss;

prev = previousnode;

 Data = datavalue;

next = nextnode;

}

 }

21

3.2 LIRS algorithm

LIRS algorithm takes into consideration the Inter reference recency set (IRR) of pages as the

dominant function of eviction which distinguishes reference blocks into high IRR and low

IRR. The number of LIR and HIR pages is chosen such that all LIR pages and small

percentage of HIR pages kept in the cache. In the same manner, the cache is also partitioned

into two partitions namely CLIRS and CHIRS. Where, CLIRS contains the set of LIR blocks

having a higher probability of being referencing in near future and re-accessing these blocks

guaranteed to be hit. CHIRS contains set of HIR blocks having less probability of being

reference in future and accessing these blocks encounters page fault [7].

The policy functions as follows: when the recency of LIR block increases at any point and

block of minimal IRR value get accessed from CHIRS, then the status of these two blocks get

interchanged. This means, a block with minimal HIR block promoted to CLIRS and a block

with higher recency demoted to CHIRS. Initially, CLIRS and CHIRS are empty. Newly accessed

blocks are admitted to CLIRS then Resident (RCHirs) until there is not free slot in the cache. On

accessing a block that already classified into CLIRS encounters a cache hit and IRR value of

accessed block becomes its earlier Recency. Similarly, on accessing a HIR block, there

almost occurs cache miss because of smaller size of HIR block set. At this time, the status of

a block might be interchanged. While changing status, following condition must be true.

)()(Re BlockHIRofIRRBornNewBlockLIRofcencyMax 

If the maximum recency of LIR block is greater than the IRR of currently accessed HIR

block, then the currently accessed resident block should be admitted to the CLirs and a block

having maximum Recency in CLirs demoted to RCHirs. And currently accessed Non-resident

block may be switched into LIR or Resident block based on their IRR value and block having

maximum Recency may be demoted to Resident or non-resident block based on the recency.

Otherwise existed block are unchanged. In every case of status change, the pruning operation

is performed which is described in section 3.2.1. The algorithm placed in section 3.2.2

describes the complete policy of our model.

22

3.2.1 Pruning Operation

Pruning operation is performed during status change to minimize the cache overhead. While

referencing new blocks, their history information is stored on list. But at some point, its size

grows unexpectedly very large which makes cache polluted. As per the algorithm, the list

contains metadata for the block with their recency less than the max recency of LIR block.

The entire non-resident block having recency greater than the max recency of LIR block is

removed one by one. After removing these unnecessarily used block decreases the size of list

hence the list doesn't keep track of outdated references.

3.2.2 Algorithm

X- Requested page

Begin

Case A: If X is in Linked list.

Move X to the head of list.

 Update Recency and set IRR value of X to its earlier recency

Case a: If X є CLirs, (encounters hit.)

 Perform Pruning operation.

 Case b: If X є RCHirs U NRCHirs,

Case 1: If Max Recency of LIR block >New born IRR of HIR block

 Case I: If X є RCHirs (encounters hit.)

Replace X with a block having Max Recency value in CLirs

 Perform Pruning operation.

 Case II: Else X є NRCHirs (encounters miss);

A block having min HIR switched with resident block having

high recency.

A block having min HIR switched with LIR block having

high recency.

 Perform Pruning operation.

Case 2: Else Replace X with a block having max Recency value in RCHirs

23

Case B: Else X is not in Linked list.

Case a: If CLirs & RCHirs = Φ

 Insert X into CLirs then into RCHirs

Case b: Else CLirs & RCHirs ≠Φ

Replace X with a block having max Recency value in RCHirs

End

3.2.3 Flowchart

Start

Read Page X

Is X in Linked

list ?

Move it at front of list

Update recency and set

IRR

Check Status

Is X belongs to CLirs?

Max(Recency of LIR

block)>(Min IRR of HIR

block)

Conduct pruning

operation

Switch accessed block to a block

having max recency in RCHirs then the

block having max recency in CLirs.

Conduct pruning operation

Switch accessed block to a block

having max recency in RCHirs

Conduct pruning operation

Is size of Clirs

is full?

Insert X to Clirs then RCHirs

until their specified size is not

full.

Update recency and Set IRR

to ∞.

Switch accessed block to a block

having max recency in RCHirs

Check HIR

status

Max recency of

LIR>max recency of

resident HIR

Switch accessed block to a block

having max recency in LIR.

Conduct pruning operation

Stop

Yes No

Yes No

T
ru

e

False

Yes No

N
o
n

-

re
si

d
e
n
t Resident

False

T
ru

e

Figure 3.2Flowchart of LIRS Algorithm

24

3.2.4 Tracing

Input Reference: 5 6 7 8 6 8 7 4 7 4 6

Cache Size: 3

Size of CLirs: 2

Size of CHirs: 1

On accessing a block 5

CLirs= {5}

CHirs = {}

RCHirs= {} Page fault.

NRCHirs= {}

On accessing a block: 6

CLirs= {5, 6}

CHirs = {}

RCHirs= {}

NRCHirs= {} Page fault.

On accessing a block: 7

CLirs= {5, 6}

CHirs = {7}

RCHirs= {}

NRCHirs= {} Page fault.

 1 2 Recency IRR

 5 A 0 ∞

 1 2 3 Recency IRR

5 A 1 ∞

6 A 0 ∞

 1 2 3 4 Recency IRR

5 A 2 ∞

6 A 1 ∞

7 A 0 ∞

Table 3.1.1 State at Virtual Time

1

Table 3.1.2 State at Virtual Time 2

Table 3.1.3 State at Virtual Time 3

25

On accessing a block: 8

CLirs= {5, 6}

CHirs = {8, 7}

RCHirs= {8}

NRCHirs= {7}

 Page fault

On accessing a block: 6

 CLirs= {6, 5}

CHirs = {8, 7}

RCHirs= {8}

NRCHirs= {7}

On accessing a block: 8

CLirs= {8, 6}

CHirs = {5}

RCHirs= {5}

NRCHirs= {} Status Change

Pruning operation also performed.

On accessing a block: 7

 CLirs= {8, 6}

CHirs = {7}

RCHirs= {7}

NRCHirs= {} Page fault and Pruning operation also performed

 1 2 3 4 5 Recency IRR

5 A 3 ∞

6 A 2 ∞

7 A 1 ∞

8 A 0 ∞

 1 2 3 4 5 6 Recency IRR

5 A 3 ∞

6 A A 0 2

7 A 2 ∞

8 A 1 ∞

 1 2 3 4 5 6 Recency IRR

5 A 3 ∞

6 A A 1 2

8 A A 0 1

 1 2 3 4 5 6 Recency IRR

6 A A 2 2

8 A A 1 1

7 A 0 ∞

Table 3.1.4 State at Virtual Time 4

Table 3.1.5 State at Virtual Time 5

Table 3.1.6 State at Virtual Time 6

Table 3.1.7 State at Virtual Time 7

26

On accessing a block: 4

CLirs= {8, 6}

CHirs = {4, 7}

RCHirs= {4}

NRCHirs= {7}

 Page fault

On accessing a block: 7

 CLirs= {7, 6}

CHirs = {6, 4}

RCHirs= {6}

NRCHirs= {4}

 Page fault

Total Number of Page fault: 7

3.3 Revised LIRS

This Revised LIRS algorithm modifies LIRS algorithm such that the data structure holds all

LIR blocks and all the metadata of uncached block by avoiding pruning operations. Instead

of using new born IRR value of HIR block, it uses minimum IRR value of HIR block for

comparison with maximum recency of LIR block while changing page status. Like in LIRS

algorithm, here two operations are possible- insertion of new accessed block to the data

structure and moving on existed data blocks to the head of list. LIRS algorithm with

minimum IRR tackles the problem of LIRS algorithm by maintaining all data in the cache.

But during status change, this algorithm must perform some extra operation. Its behaviors

and all operation can be described as:

 1 2 3 4 5 6 7 Recency IRR

5 A A 3 2

6 A A 2 1

4 A 0 ∞

7 A 1 ∞

 1 2 3 4 5 6 7 8 Recency IRR

5 A A 3 2

6 A A 2 1

4 A 1 ∞

7 A A 0 1

Table 3.1.8 State at Virtual Time 8

Table 3.1.9 State at Virtual Time 9

27

On accessing a block that already classified into CLirs encounters a cache hit. The accessed

block is moved to the head of list and recency value is updated based on their position. IRR

value of accessed block becomes its earlier Recency.

On accessing a block that is already available in RCHirs, it encounter page hit and compares

maximum recency of LIR block with minimum IRR value of HIR block for promotion. In

such case, there is not only accessed resident block has a chance of promotion. Because it

depends on the minimal value of RCHirs U NRCHirs. If the minimal value block is accessed

block then accessed block promoted otherwise minimal value block gets promotion.

On accessing a block that is already classified on NRCHirs, encounters page fault. The

algorithm keeps that block to the cache by comparing max recency of LIR block with

minimum IRR of HIR block. Like RCHirs block, if the minimal value block is accessed block

then accessed block is promoted otherwise a block having minimum IRR value and accessed

block gets promotion altogether.

3.3.1 Algorithm

X- Requested page

Begin

Case A: If X is in Linked List

Move to the head of the list and update IRR to its earlier recency

Case a: If X є CLirs, hit occur.

Case b: X є RCHirs U NRCHirs,

Case 1: If Max (Recency of LIR block) >Min (IRR value of HIR block)

Case I: If Min IRR block is RCHirs

Promote X to CLirs and demote Max Recency value block to

RCHirs

Case II: If Min IRR block is accessed block and is in NRCHirs

Promote Min IRR value block and Demote Max Recency block

to RCHirs or NRCHirs based on Recency

28

Case III: Else switch accessed block with a block having max recency

on RCHirs.

Case 2: Else switch accessed block with a block having max recency on

RCHirs.

Case B: Else X is not in linked list

Case a: If CLirs & RCHirs = Φ

Insert X into CLirs then into RCHirs

Case a: If CLirs & RCHirs ≠ Φ

Case 1: If Max (Recency of LIR block) >Min (IRR value of HIR block)

Case I: If Min IRR block is RCHirs

Promote X to CLirs and demote Max Recency value block to

RCHirs

Case II:If Min IRR block is accessed block and is in NRCHirs

Promote Min IRR value block and Demote Max Recency block

to RCHirs or NRCHirs based on Recency

Insert accessed block to the RCHirs and demote resident block having

maximum recency

End

29

3.3.2 Flowchart

Start

Read Page

X

Is X in linked list ?

Move it at front of list and update

recency Is there vacant space on

Clirs and RCHir

Is X belongs to Clirs list ?

Reset IRR value Max(Recency of LIR

block)>Min(IRR value of HIR

block)

Insert X to Clirs and then RCHir until

their specified size is full.

Assign status non-resident HIR

Update recency and set IRR to ∞.

Check min IRR value

block.

Change status of X to LIR and

demote max recency block of LIR

to resident

Swap min IRR value block to a resident

block having max recency.

Swap min IRR value to max recency value

block of CLirs

Stop

Yes No

NoYes

Resident

YesNo

NoYes

Non-resident

Is status of X is non-

resident ?

Make X resident

Swap min IRR value block to a resident

block having max recency.

Swap min IRR value to max recency

value block of CLirs

Yes

No

Figure 3.3 Flowchart of Revised LIRS Algorithm

30

3.3.3 Tracing

Input Reference: 5 6 7 8 6 8 7 4 7

Cache Size: 3

Size of CLirs: 2

Size of CHirs: 1

On accessing a block 5

CLirs= {5}

CHirs = {}

RCHirs= {} Page fault.

NRCHirs= {}

On accessing a block: 6

CLirs= {5, 6}

CHirs = {}

RCHirs= {}

NRCHirs= {} Page fault.

On accessing a block: 7

CLirs= {5, 6}

CHirs = {7}

RCHirs= {}

NRCHirs= {} Page fault.

 1 2 Recency IRR

 5 A 0 ∞

 1 2 3 Recency IRR

5 A 1 ∞

6 A 0 ∞

 1 2 3 4 Recency IRR

5 A 2 ∞

6 A 1 ∞

7 A 0 ∞

Table 3.2.1 State at Virtual Time 1

Table 3.2.2 State at Virtual Time 2

Table 3.2.3 State at Virtual Time 3

31

On accessing a block: 8

 CLirs= {5, 6}

CHirs = {8, 7}

RCHirs= {8}

NRCHirs= {7}

 Page fault

On accessing a block: 6

CLirs= {6, 5}

CHirs = {8, 7}

RCHirs= {8}

NRCHirs= {7}

On accessing a block: 8

CLirs= {8, 6}

CHirs = {5, 7}

RCHirs= {5}

NRCHirs= {7}

 On accessing a block: 7

CLirs= {8, 6}

CHirs = {7, 5}

RCHirs= {7}

NRCHirs= {5} Page fault

 1 2 3 4 5 Recency IRR

5 A 3 ∞

6 A 2 ∞

7 A 1 ∞

8 A 0 ∞

 1 2 3 4 5 6 Recency IRR

5 A 3 ∞

6 A A 0 2

7 A 2 ∞

8 A 1 ∞

 1 2 3 4 5 6 7 Recency IRR

5 A 3 ∞

6 A A 1 2

7 A 2 ∞

8 A A 0 1

 1 2 3 4 5 6 7 8 Recency IRR

5 A 3 ∞

6 A A 2 2

7 A A 0 2

8 A A 1 1

Table 3.2.4 State at Virtual Time 4

Table 3.2.5 State at Virtual Time 5

Table 3.2.6 State at Virtual Time 6

Table 3.2.7 State at Virtual Time 7

32

On accessing a block: 4

CLirs= {7, 8}

CHirs = {4, 6, 5}

RCHirs= {4}

NRCHirs= {6, 5}

 Page Fault

On accessing a block: 7

CLirs= {7, 8}

CHirs = {4, 6, 5}

RCHirs= {4}

NRCHirs= {6, 5}

Total Number of Page fault: 6

3.4 Derived LIRS

This approach modifies and improves standard LIRS algorithm in such a way that it can store

history information of newly accessed block and frequently accessed block. The history

information of newly accessed block is cached by comparing with max recency of CLirs block

set and frequently accessed block is cached by comparing min IRR of all accessed block with

max recency of CLirs block. Like Revised LIRS algorithm, it keeps metadata of all accessed

CHirs block and avoids pruning operation. But during status change, at first it compare new

born IRR of accessed block to the max recency of CLirs then minimum value of CHirs

compares with max recency of CLirs if the first condition is false. Thus, the algorithm must

perform some extra operation. Its behaviors and all operation can be described as:

 1 2 3 4 5 6 7 8 9 Recency IRR

5 A 4 ∞

6 A A 3 2

7 A A 1 2

8 A A 2 1

4 A 0 ∞

 1 2 3 4 5 6 7 8 9 10 Recency IRR

5 A 4 ∞

6 A A 3 2

7 A A A 0 1

8 A A 2 1

4 A 1 ∞

Table 3.2.8 State at Virtual Time 8

Table 3.2.9 State at Virtual Time 9

33

Upon accessing a block that already classified into CLirs encounters a cache hit. The accessed

block is moved to the head of list and recency value is updated based on their position. IRR

value of accessed block becomes its earlier Recency.

When accessing RCHirs block encounters hit and gets new IRR equal to its recency. This new

IRR value of accessed block compares with maximum recency of LIR block. If the new born

IRR is found greater than the max recency of CLirs, then the accessed block gets promotion.

Otherwise, max recency of CLirs is compared with evaluated minimum IRR of all CHirs

block. Because it depend on the minimal value of RCHirs U NRCHirs. If the minimal value

block is accessed block then accessed block promoted otherwise minimal value block and

accessed block gets promotion altogether.

On accessing a block that is already classified on NRCHirs, it encounters page fault. Like

RCHirs block, the maximum recency of LIR is compared with the new accessed non-resident

block at first. If the maximum recency found greater, then accessed block swapped to RCHirs

or NRCHirs based on the recency. Otherwise, the maximum recency of LIR is compared with

the minimum IRR of HIR block. If the minimal value block is accessed block then accessed

block is promoted otherwise a block having minimum IRR value and accessed block gets

promotion altogether.

3.4.1 Algorithm

X-Requested page

Begin

Case A: If X is found in Linked list

 Move X to front of list

Set recency and update IRR value by its earlier recency

Case a: If X has LIR status

 Hit occurs in the cache and do nothing

Case b: Else if X є RCHirs U NRCHirs,

34

 Case 1: If max recency of LIR> New born IRR of accessed block

 Case I: If accessed block is resident

Accessed block is switched with a block having max Recency

value of LIR

 Case II: Else if accessed block is non-resident

Accessed page switched with resident block having max

recency.

 LIR page with max recency is switched with accessed page.

Case 2: Else If Max Recency of LIR>min IRR of HIR block

 Check the status of the block having min IRR

 Case I: If the min IRR block has status resident

Switch Min IRR block to block having maximum recency in LIR

block set

Case II: If Min IRR block is accessed block and is in NRCHirs

A block having min HIR switched with resident block having high

recency.

A block having min HIR switched with LIR block having high

recency.

Case 3: If accessed block is in NRCHirs.

Switch accessed block with a block having max recency on RCHirs.

 Case B: Else X is not in linked list

Case a: If CLirs & RCHirs = Φ

Insert X into CLirs then into RCHirs

Case b: If CLirs & RCHirs ≠ Φ

Case 1: If Max (Recency of LIR block) >Min (IRR value of HIR

block)

Case I: If Min IRR block is RCHirs

35

Promote X to CLirs and demote Max Recency value

block to RCHirs

Case II: If Min IRR block is accessed block and is in NRCHirs

Promote Min IRR value block and Demote Max

Recency block to RCHirs or NRCHirs based on Recency

Insert accessed block to the RCHirs and demote resident block having

maximum recency

End

36

3.4.2 Flowchart

Start

Read Page

X

Is X in linked list ?

Move it at front of list and update

recency and IRR value of X.

Is there vacant space on

Clirs and RCHir

Is X belongs to Clirs list ?

Max(Recency of LIR

block)>New born IRR of X

Insert X to Clirs and then RCHir

until their specified size is full.

Update recency and set IRR to ∞.

Check HIR status ?

Insert X to the RCHir and find

the min IRR value of HIR block

Hit occurs

Check status

Is X in RCLirs ?

Demote max Resident LIR value node to

NRCHirs

Demote max recency LIR value block to

RCHirs

Promote min IRR value block to CLirs

Yes No

Yes Max(max rececny of

LIR)>Min IRR of HIR block

Replace accessed block X

to max recency LIR block

No YesNo

Is Status of X

non-resident?

Make X resident

Make max recency resident

block to Non-resident

Stop

Yes

No

No

Promote min IRR value

nonresident HIR block to LIR list

and demote max recency of LIR or

Max recency of resident block

comparing their maximum value

Promote Rsident to Lir

Demote max Lir block to

NresChirs

Non-resident Resident

Figure 3.4 Flowchart of Derived LIRS Algorithm

37

3.4.3 Tracing

Input Reference: 5 6 7 8 6 8 7 4 7

Cache Size: 3

Size of CLirs: 2

Size of CHirs: 1

On accessing a block 5

CLirs= {5}

CHirs = {}

RCHirs= {} Page fault.

NRCHirs= {}

On accessing a block: 6

CLirs= {5, 6}

CHirs = {}

RCHirs= {}

NRCHirs= {} Page fault.

On accessing a block: 7

CLirs= {5, 6}

CHirs = {7}

RCHirs= {}

NRCHirs= {} Page fault.

 1 2 Recency IRR

 5 A 0 ∞

 1 2 3 Recency IRR

5 A 1 ∞

6 A 0 ∞

 1 2 3 4 Recency IRR

5 A 2 ∞

6 A 1 ∞

7 A 0 ∞

Table 3.3.1 State at Virtual Time 1

Table 3.3.2 State at Virtual Time 2

Table 3.3.3 State at Virtual Time 3

38

On accessing a block: 8

CLirs= {5, 6}

CHirs = {8, 7}

RCHirs= {8}

NRCHirs= {7}

 Page fault

On accessing a block: 6

CLirs= {6, 5}

CHirs = {8, 7}

RCHirs= {8}

NRCHirs= {7}

On accessing a block: 8

CLirs= {8, 6}

CHirs = {5, 7}

RCHirs= {5}

NRCHirs= {7}

 On accessing a block: 7

CLirs= {7, 6}

CHirs = {8, 5}

RCHirs= {8}

NRCHirs= {5} Page fault

 1 2 3 4 5 Recency IRR

5 A 3 ∞

6 A 2 ∞

7 A 1 ∞

8 A 0 ∞

 1 2 3 4 5 6 Recency IRR

5 A 3 ∞

6 A A 0 2

7 A 2 ∞

8 A 1 ∞

 1 2 3 4 5 6 7 Recency IRR

5 A 3 ∞

6 A A 1 2

7 A 2 ∞

8 A A 0 1

 1 2 3 4 5 6 7 8 Recency IRR

5 A 3 ∞

6 A A 2 2

7 A A 0 2

8 A A 1 1

Table 3.3.4 State at Virtual Time 4

Table 3.3.5 State at Virtual Time 5

Table 3.3.6 State at Virtual Time 6

Table 3.3.7 State at Virtual Time 7

39

On accessing a block: 4

CLirs= {7, 6}

CHirs = {4, 8, 5}

RCHirs= {4}

NRCHirs= {8, 5}

 Page Fault

On accessing a block: 7

CLirs= {7, 6}

CHirs = {4, 8.5}

RCHirs= {4}

NRCHirs= {8, 5}

Total Number of Page fault: 6

 1 2 3 4 5 6 7 8 9 Recency IRR

5 A 4 ∞

6 A A 3 2

7 A A 1 2

8 A A 2 1

4 A 0 ∞

 1 2 3 4 5 6 7 8 9 10 Recency IRR

5 A 4 ∞

6 A A 3 2

7 A A A 0 1

8 A A 2 1

4 A 1 ∞

Table 3.3.8 State at Virtual Time 8

Table 3.3.9 State at Virtual Time 9

40

CHAPTER 4

DATA COLLECTION AND ANALYSIS

To analyze the impact of pruned metadata on LIRS algorithm, three cases of the LIRS have

been taken. All these three algorithms are implemented as offline replacement and demand

paging policy. In this analysis, offline performance is measured and overhead analysis is

ignored. Offline performance of replacement algorithm in these cases is measured as page

fault count, hit rate and miss rate. The number of string with different patterns which is called

trace data, are used as a real world performance indicator. There is different number of page

references in each of these traces. In every cases cache size is maintained 1% for HIR and

99% for LIR. Each trace is tested in all three cases of LIRS simulator by varying the cache

size from 4 to 1024.

4.1 Trace Data

Trace data are the reference string and consist of page reference to virtual address space. In

this study, these reference strings are considered main sources for evaluating the impact of

metadata on LIRS algorithm. Four types of traces pattern namely looping pattern,

probabilistic pattern, temporally clustered and mixed pattern are used in this dissertation

work which are mentioned in [7]. Here, cs and glimpse belongs to cyclic pattern, cpp belongs

to probabilistic reference pattern, sprite belongs to temporally clustered pattern and multi1

and multi2 belongs to mixed reference pattern. These traces are considered typical and

representation of application in that most of them is routinely used in other caching algorithm

studies [7].

4.2 Testing and Analysis

The impact of pruned metadata on LIRS algorithm is analyzed on different patterns of traced

data. To understand the impact of metadata, the hit ratio is used as measure factor to analyze

the algorithm. Following graph and tables show the results and analysis of this study.

41

4.2.1 Replacement Performance on Looping Type Reference Pattern

As mentioned earlier this type of reference pattern contains cs and glimpse pattern which are

analyzed individually for each flavors of LIRS algorithm. Traces cs has pure looping

reference pattern where each block of reference pattern are almost accessed repeatedly within

fixed interval where as glimpse has mixed looping pattern. The test result and corresponding

graph is shown in Table 4.1 and figure 4.1.

4.2.1.1 CS Pattern

These are the relevant data with this traced pattern.

Total Number of References=6781

Number of distinct references=1409

Table 4.1: Result for CS Pattern of Reference Pages

No. of

page

frames

LIRS Revised LIRS Derived LIRS

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

4 6662 97.78% 2.22% 6662 97.78% 2.22% 6664 97.82% 2.18%

8 6660 97.74% 2.26% 6660 97.74% 2.26% 6660 97.74% 2.26%

16 6656 97.67% 2.33% 6660 97.74% 2.26% 6656 97.67% 2.33%

32 6629 97.17% 2.83% 6659 97.72% 2.28% 6629 97.17% 2.83%

64 6517 95.08% 4.92% 6567 96.01% 3.99% 6519 95.12% 4.88%

128 6263 90.35 9.65% 6316 91.34% 8.66% 4925 65.45% 34.55%

256 5757 80.93% 19.07% 5815 82.01% 17.99% 3636 41.45% 58.55%

512 4755 62.28% 37.72% 4795 63.03% 36.97% 2934 28.38% 71.62%

1024 2733 24.64 75.36% 2761 25.16% 74.84% 2064 12.19% 87.81%

42

Figure 4.1: Graph Showing Result for CS Pattern of Reference Pages

4.2.1.2 Glimpse Pattern

Total Number of References=6016

Number of distinct references=2530

Table 4.2: Result for Glimpse Pattern of Reference Pages

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

4 8 16 32 64 128 256 512 1024

H
it

 R
a
te

s
 i

n
 P

e
rc

e
n

ta
g

e

No. of Page frame

LIRS

Revised LIRS

Derived LIRS

No. of

page

frames

LIRS Revised LIRS Derived LIRS

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

4 5956 98.27% 1.73% 5949 98.07% 1.93% 5956 98.27% 1.73%

8 5928 97.47% 2.53% 5934 97.64% 2.36% 5930 97.53% 2.47%

16 5904 96.78% 3.22% 5910 96.95% 3.05% 5906 96.84% 3.16%

32 5851 95.26% 4.74% 5857 95.43% 4.57% 5855 95.38% 4.62%

64 5723 91.59% 8.41% 5729 91.76% 8.24% 5727 91.70% 8.30%

128 5471 84.36% 15.64% 5470 84.33% 15.67% 5351 80.92% 19.08%

256 4963 69.79% 30.21% 4962 69.76% 30.24% 4716 62.70% 37.30%

512 3951 40.76% 59.24% 3950 40.73% 59.27% 3855 38.00% 62.00%

1024 2942 11.81% 88.19% 2942 11.81% 88.19% 2943 11.84% 88.16%

43

Figure 4.2: Graph Showing Result for Glimpse Pattern of Reference Pages

From fig. 4.1and 4.2, it can be concluded that the performance of LIRS, Revised LIRS and

Derived LIRS have similar performance on both traces before the cache size reaches to 100.

After the cache size increases to 100 page frames, Derived LIRS shows improved

performance. In fact, the performance improvement is shown up to 39.48% on cs trace. The

reason behind the improvement is to have maximum number of page frames than the number

of block included in cyclic pattern. And another reason is the ability to hold the information

of newly accessed block and minimum IRR blocks which help to make accurate prediction

for future reference pages. On glimpse pattern, the performance is slightly improved. This is

because the trace contains mixed looping pattern.

4.2.2 Replacement Performance on Probabilistic Type Reference Pattern

Traces, cpp exhibits probabilistic pattern. The test result and its corresponding graph is

shown below.

Total Number of References=9047

Number of distinct references=1223

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

4 8 16 32 64 128 256 512 1024

H
it

 R
a
te

s
 i

n
 P

e
rc

e
n

ta
g

e

No. of Page Frame

LIRS

Revised LIRS

Derived LIRS

44

Table 4.3: Result for Cpp Pattern of Reference Pages

Figure 4.3: Graph Showing Result for cpp Pattern of Reference Pages

The hit rate curve generated for cpp reference pattern is shown in Figure 4.3. Before the

cache size reaches 100 page frames, the performance of LIRS is better than Derived and

Revised LIRS; this is due to the small cache size. In such case, the history of newly accessed

block has fixed in the cache. However, the Revised LIRS shows poorer performance than

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

4 8 16 32 64 128 256 512 1024

H
it

 R
a
te

s
 i

n
 P

e
rc

e
n

ta
g

e

No. of Page Frames

LIRS

Revised LIRS

Derived LIRS

No. of

page

frames

LIRS Revised LIRS Derived LIRS

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

4 8695 95.50% 4.50% 9019 99.64% 0.36% 8921 98.38% 1.62%

8 8223 89.46 10.54% 8640 94.79% 5.21% 8604 94.33% 5.67%

16 7275 77.35 22.65% 8269 90.05% 9.95% 7741 83.30% 16.70%

32 5390 53.25 46.75% 6780 71.02% 28.98% 5818 58.72% 41.28%

64 3034 23.14 76.86% 4062 36.28% 63.72% 3137 24.46% 75.54%

128 1707 6.18 93.82% 2880 21.17% 78.83% 1333 1.40% 98.60%

256 1377 1.96 98.04% 1781 7.13% 92.87% 1236 0.52% 99.48%

512 1275 0.66 99.34% 1321 1.25% 98.75% 1264 0.16% 99.84%

1024 1228 0.06 99.94% 1232 0.11% 99.89% 1228 0.06% 99.94%

45

others because it replaces all newly referenced blocks after holding minimum IRR value

blocks in the buffer cache for a short time. After cache size increases to 100 page frames,

Derived LIRS is able to exploit good locality by holding the newly referenced blocks and

frequently accessed blocks. Aftereffect, it gives better performance than LIRS and Revised

LIRS.

4.2.3 Replacement Performance on Temporally Clustered Type Reference

Pattern

Trace, sprite exhibits temporally clustered pattern. Where, pages are referenced more than

the cache size with long interval. The hit rate curve and test result generated by LIRS and

other cases of LIRS algorithm is shown Table 4.4 and Figure 4.4 respectively.

Total Number of References=133996

Number of distinct references=7075

Table 4.4: Result for sprite Pattern of Reference Pages

No. of

page

frame

s

LIRS Revised LIRS Derived LIRS

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

4 129192 96.21% 3.79% 130857 97.52% 2.48% 128861
95.95

%

4.05

%

8 128662 95.79% 4.21% 130614 97.33% 2,67% 128289
95.50

%

4.50

%

16 127676 95.02% 4.98% 129925 96.79% 3.21% 127291
94.71

%

5.29

%

32 124232 92.30% 7.70% 128055 95.31% 4.69% 123314
91.58

%

8.42

%

64 113282 83.67%
16.33

%
123375 91.63% 8.37% 107328

78.98

%

21.02

%

128 91104 66.20%
33.80

%
110044 81.12%

18.88

%
57845

40.00

%

60.00

%

256 62650 43.78%
56.22

%
88991 64.54%

35.46

%
109639

19.19

%

80.81

%

512 30523 18.47%
81.53

%
66547 46.85%

53.15

%
8101 0.80%

99.20

%

1024 15741 6.82%
93.18

%
41229 26.90%

73.10

%
8031 0.75%

99.25

%

46

Figure 4.4: Graph Showing Result for sprite Pattern of Reference Pages.

The hit rate curve generated for Sprite reference pattern is shown in Figure 4.4.The Derived

LIRS shows better than other cases. The property of temporally clustered reference pattern is

that blocks accessed more recently are the likely to be accessed in the future. In such case,

the Derived LIRS algorithm holds all these frequently accessed blocks and newly accessed

blocks are evicted after short time. This is the main reason to have better performance than

the LIRS. In case of LIRS algorithm, it keeps the newly accessed block in the cache, that’s

why the performance of LIRS degrades. Revised LIRS has the poorer performance because

minimal IRR value occupied in the cache can’t get entry newly accessed block for long time.

4.2.4 Replacement Performance on Mixed Type Reference Pattern

Traces, multi1 and multi2 exhibits mixed reference pattern. Multi1 is obtained by executing

Cs and Cpp and Multi2 is obtained by executing Cs, Cpp and Postgress together. The test

result and Performance of LIRS, Revised LIRS and Derived LIRS on Multi1 and Multi2

traces with different cache sizes are shown in following table and figures.

4.2.4.1 Multi1 Pattern

Total Number of References=15858

Number of distinct references=2606

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

4 8 16 32 64 128 256 512 1024

H
it

 R
a
te

s
 i

n
 P

e
rc

e
n

ta
g

e

No. of Page frame

LIRS

Revised LIRS

Derived LIRS

47

Table 4.5: Result for multi1Pattern of Reference Pages

Figure 4.5: Graph Showing Result for Multi1Pattern of Reference Pages

4.2.4.2 Multi2 Pattern

Total Number of References=25972

Number of distinct references=5495

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

4 8 16 32 64 128 256 512 1024

H
it

 R
a
te

s
 i

n
 P

e
rc

e
n

ta
g

e

No. of Page Frame

LIRS

Revised LIRS

Derived LIRS

No. of

page

frames

LIRS Revised LIRS Derived LIRS

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

4 15547 97.65% 2.35% 15836 99.83% 0.17% 15716 98.92% 1.08%

8 15115 94.39% 5.61% 15700 98.80% 1.20% 15458 96.98% 3.02%

16 14269 88.00% 12.00% 15309 95.85% 4.15% 14803 92.03% 7.97%

32 12459 74.35% 25.65% 14513 89.85% 10.15% 13346 81.04% 18.96%

64 9892 54.98% 45.02% 12936 77.95% 22.05% 10399 58.80% 41.20%

128 8540 44.77% 55.23% 11165 64.58% 35.42% 5442 21.40% 78.60%

256 8028 40.91% 59.09% 9253 50.15% 49.85% 3758 8.69% 91.31%

512 6990 33.11% 66.89% 8125 41.64% 58.36% 3514 6.85% 93.15%

1024 4933 17.55% 82.45% 5410 21.15% 78.85% 2968 2.73% 97.27%

48

Table 4.6: Result for multi2Pattern of Reference Pages

Figure 4.6: Graph Showing Result for Multi2Pattern of Reference Pages

From fig. 4.5 and 4.6, it can be noted that the hit rate of LIRS is better than those other two

cases before the cache size reaches to 100 page frames. After the cache size increasing to

100, the performance is improved up to 32.22 % on trace multi1 and 30.45% on trace multi2.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

4 8 16 32 64 128 256 512 1024

H
it

 R
a
te

s
 i

n
 P

e
rc

e
n

ta
g

e

No. of Page Frame

LIRS

Revised LIRS

Derived LIRS

No. of

page

frames

LIRS Revised LIRS Derived LIRS

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

4 25423 97.31 2.69% 25909 99.69% 0.31% 25638 98.36% 1.64%

8 24878 94.65 5.35% 25648 98.41% 1.59% 25325 96.84% 3.16%

16 24011 90.42 9.58% 25383 97.12% 2.88% 24910 94.81% 5.19%

32 22206 81.60 18.40% 25355 96.98% 3.02% 23930 90.02% 9.98%

64 19348 67.75 32.25% 24538 92.99% 7.01% 20850 74.98% 25.02%

128 16953 55.95 44.05% 22084 81.01% 18.99% 10717 25.50% 74.50%

256 14651 44.71 55.29% 18181 61.95% 38.05% 10250 23.22% 76.78%

512 12614 34.76 65.24% 15263 47.70% 52.30% 7885 11.67% 88.33%

1024 10661 25.22 74.78% 11926 31.40% 68.60% 7353 9.07% 90.93%

49

CHAPTER 5

CONCLUSION AND FUTURE STUDY

4.1 Conclusion

The LIRS algorithm and its variants: Revised LIRS and Derived LIRS were implemented on

C# programming language in .Net Framework. The tests were run on four types of traces

pattern namely looping pattern, probabilistic pattern, temporally clustered and mixed pattern.

These traces are considered typical and representation of application in that most of them is

routinely used in other caching algorithm studies. As a result, we identify that the impact of

pruned metadata on the performance of existed LIRS algorithm. When we use looping

reference pattern, the performance of Derived LIRS and Revised LIRS is similar to that of

LIRS algorithm. In the same way, on probabilistic pattern, the LIRS have better performance

on small cache size. With increase in the cache size the Derived LIRS has better

performance. However, Derived LIRS gives always better performance on temporally

clustered reference pattern. And on the mixed type of reference pattern the Derived LIRS

have performance enhancement compared to other cases with increase in cache size.

The modified LIRS algorithm named Derived LIRS employs several history information by

using minimum IRR of HIR block along with retaining the advantage of LIRS algorithm.

The policy decides more accurately than LIRS about page replacement. This is only due to

storage of deeper history information, which is lost during stack pruning in LIRS. The

modified scheme improves the performance in terms of hit ratio. In fact, the performance is

improved up to (39.48%) compared to in case of LIRS for same traces.

Revised algorithm doesn’t have improved performance on real traces. While avoiding

pruning operation and taking minimum value HIR blocks, the dominance of unused blocks in

the cache increases high. As a result, cache becomes polluted and they restrict the entry of

newly accessed block in the cache. Therefore, there is no any role of pruned metadata on

Revised LIRS. However, it works fine on certain cases where reference block have less

variance on IRR values.

50

4.2 Future Work and Recommendation

As the consequences of this study, the performance of Derived LIRS algorithms seems better

than other two cases of LIRS algorithm. The recommendations after this study are:

 Self-tunable size of LIR/HIR.: Size of HIR and LIR are fixed throughout this study.

But making their size dynamic may fluctuate the final results and may be better than

result extracted in this study.

 Computational complexity: All the results herby are based on the quantitative

approach ignoring or neglecting computational aspects but its qualitative (or

computational complexity) analysis is equally worthwhile.

 Mechanism to minimize data structure size: throughout this study, the metadata of all

accessed block is maintained on the cache. As a result, cache overhead increased

unexpectedly. So, here needs a mechanism which can minimize the cache overhead

and increase the performance altogether.

 Input data used here are all secondary data which are referenced from other it would

have been better if one generates its own input data pattern and analyses those data

from enlisted LIRS algorithm.

51

References

[1] Belady, L. A., A Study of Replacement Algorithms for a Virtual-Storage Computer,

IBM System Journal, Vol. 5, No. 2, pp. 78-101,1966.

[2] Bagchi, S., and Nygaard, M., A Fuzzy Adaptive Algorithm for Fine Grained Cache

Paging. International Workshop (SCOPES’04), pp. 200-213, 2004.

[3] Bansal, S., and Modha, D. S. 2004. CAR: Clock with Adaptive Replacement, Conference

on File and Storage Technologies (FAST 04), 2004.

[4] Choo, H., Lee, Y. J., and Yoo, S., DIG: Degree of Inter-Reference Gap for a

Dynamic Buffer Cache Management, Information Sciences: an International Journal,

Vol.176, pp. 1032-1044, 2006.

[5] Denning, P. J., The Locality Principle, Communication of the ACM, Vol.48, No. 7,

2005.

[6] Ding, X., Jiang, S., and Zhang, X., BP-Wrapper: A System Framework Making Any

Replacement Algorithms (Almost) Lock Contention Free, IEEE International Conference

on Data Engineering, pp. 369-380, 2009.

[7] Jiang, S. and Zhang X., Making LRU Friendly to Weak Locality Workloads: Novel

Replacement algorithm to Improve Buffer Cache Performance, IEEE Transactions on

Computers, Vol. 54, No. 8, 2005.

[8] Jiang, S., Chen, F., and Zhang, X. CLOCK-Pro: An Effective Improvement of the CLOCK

Replacement. USENIX Annual Technical Conference, 2005.

[9] Johnson, T., and Shasha, D., 2Q: A Low Overhead High Performance Buffer management

Replacement Algorithm, proc. 20th Int’l Conf. Very Large Data Base, pp. 439-450, 1994.

52

[10] Lee, D., Choi, J., Kim J., Noh, S. H., Min S. L., Cho, Y., and Kim, C. S.,

LRFU: A Spectrum of Policies that Subsumes the Least Recently Used and Least

Frequently Used Policies, IEEE Transactions on Computers, Vol. 50, No. 12, 2001.

[11] Megiddo, N. and Modha, D. S.,ARC: A Self-Tuning, Low Overhead Replacement

Cache, Conference on File and Storage Technologies (FAST’03), 2003.

[12] Midorikawa, E. T., Piantola, R. L., and Cassettari, H. H., On Adaptive Replacement

Based on LRU with Working Area Restriction Algorithm, SIGOPS Operating System Review,

Vol. 42, No. 6, pp. 81-92, 2008.

[13] Nutt, G. J.,Operating Systems: A Modern Perspective,Second Edition, Addison-

Wesley Longman Inc., 2000.

[14] O’Neil, E. J., O’Neil, P. E., and Weikum, G., The LRU-K Page Replacement

Algorithm for Database Disk Buffering,Association for Computing Machinery, Special

Interest Group on Management of Data (ACM SIGMOD), pp. 297-306, 1993.

[15] Paajanen, H., Page Replacement in Operating System Memory Management,

Master’s Thesis in Information Technology, University of Jyväskylä, Department of

Mathematical Information Technology, 2007.

[16] Sabeghil, M. and Yaghmaee, M. H., Using Fuzzy Logic to Improve Cache

Replacement Decisions, International Journal of Computer Science and Network Security

(IJCSNS), Vol. 6, No. 3A, 2006.

[17] Silberschatz, A., Galvin, P. B., and Gagne, G., Operating System Concepts,

Seventh Edition, John Wiley and Sons. Inc., 2004.

[18] Smaragdakis, Y., Kaplan, S., and Wilson, P., EELRU: Simple and Effective

Adaptive Page Replacement, ACM International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS’99), Atlanta, pp. 122-133, 1999.

53

[19] Tanenbaum, A. S., Modern operating System, Third Edition, Prentice-Hall,

2008.

54

Bibliography

[1] Bhatt, P., Operating Systems/Memory management, Bangalore, 2004.

[2] Subedi, B., An Evaluation of Page Replacement Algorithm Based on Low Inter

Reference Recency Set Scheme on Weak Locality Workloads, Master’s Thesis,

Tribhuvan University, Central Department of Computer Science and Information

Technology, 2012.

[3] http://www.docstoc.com/docs/21106969/Role-of-OS-in-virtual-memory-management

