
 1

Chapter 1

Introduction

The response time variability problem (RTVP) is a sequence optimization problem. It occurs in

real-life situations in which jobs, clients, products, or events need to be sequenced in order to

minimize the variability in the time between two successive points at which they receive their

necessary resources.

In the modern system the resources are shared between different jobs. When many jobs request a

single resource at a time, then it is necessary to schedule the resource activit ies in some fair

manner so that the jobs can receive the resource that is proportional to its job relative to the

computing job. The job is defined as certain amount of work to be done.

The fair sequence (solution) concept has emerged from scheduling problem in different

environments [1]. The common aim of scheduling problem is to minimize an objective function.

The objective is to minimise the RTV metric value of the solutions. A fair sequence using n

symbols must be copied di times in the sequence. This fair share of positions allocated to symbol

i in a subsequence of length k is proportional to the relative importance of symbol i with respect

to the total copies of symbols.

This problem appears in a broad range of real life applications. The following are some real life

applications described in [2].

The situation in which the idea of the regular sequence appeared in the sequencing of mixed-

model assembly lines at Toyota Motor Corporation under the just-in-time (JIT) production

system. Toyota Motor Corporation used the JIT production system, one of the main aim of JIT is

to eliminate sources of waste and inefficiency. In the case of Toyota, the main source of waste

was the production of excessive volumes of stock. To solve this problem, JIT system produces

necessary models in necessary quantities at necessary time. In this type of system the units

should be scheduled in such a way that the consumption rates of the components in the

production process remain constant.

 2

The RTVP also appears in computer multi-threaded systems [3]. Multi-threaded system performs

different tasks of client program that takes place concurrently. These systems need to manage the

resources in order to serve the request of n clients.

The Asynchronous Transfer Mode (ATM) defined in [4], networks divide each application

(voice, large data file video) into cells of fixed size so that the application can be preempted after

each cell. Applications for instance voice and video, requires that a inter-cell distance in a cell

stream is constant as possible and in the worst case not exceeding some pre-specified value. The

latter is to account for limited resources shared with other applications. In fact multimedia

systems should avoid presenting video frames to early or too late which would result in jagged

motion perceptions.

Another application is stride scheduling, in which the clients are issued the various number of

tickets by the resource. The resources are then allocated in discrete time slices called quanta. The

client to be allocated resources in next quantum is selected through a certain function of the

number of its past allocations and the number of its tickets [5].

The RTVP can be applied to design the sales catalogues, the periodic machine maintenance

problem as well as other distance-constrained problems. In distance-constrained scheduling

problems the temporal distance between any two consecutive copies of a same task is not longer

than the pre-specified distance. Sometimes even a stronger condition is imposed, So that the

temporal distance is equal to the pre-specified distance.

The RTVP concept also uses the advertising agency and this application was reported in [6]. This

study is motivated by the problem faced by the National Broadcasting Company (NBC). The

NBC is one of the leading firms in the US television industry. Major advertisers buy hundreds of

time slots to air commercials and often require that NBC space to air their commercials as evenly

as possible over the entire broadcast season.

An application of RTVP in a healthcare facility described in [6] is needed to be scheduled the

collection of waste materials from trash containers placed in various rooms. Based on the

 3

frequency an employee had to visit each room and the fact that different rooms required a

different number of visits per shift, the healthcare facility manager wants these visits to be as

regular as possible to avoid excessive waste collecting in any room. For instance, if a room

needed four visits per eight-hour shift, it should ideally be visited every two hours.

A resource must be shared between different computing demands that require regular attention, it

is important to schedule the access right to the resource in same fair manner. In such a way that

the different types of demands share the resource in same manner as mentioned in the above

applications. These above mentioned applications are some examples of very common situations

in manufacturing and in services, in which the RTVP can be applied. The objective in the RTVP

is to minimize variability of the distance between any two consecutive units of the same product,

client, job. ie. to have the distances between any two given consecutive units of the same product

as constant as possible. The objective of this dissertation focuses primarily on the implement,

compare and analyze the metaheuristic solutions to the RTVP. After covering the introduction

the rest of the material in this dissertation is organized as follows:

Chapter 2 covers basic concept, literature review, complexity of the RTVP. In section 3.1 the

metaheuristic methods for solving RTVP are described. These metaheuristic methods are multi-

start, GRASP and PSO. Section 3.2 presents a brief overview of the initial sequences. Chapter 4

describes the results, compare and analysis of the metaheuristic methods to solve RTVP. Finally

chapter 5 covers conclusions and future research areas.

 4

Chapter 2

Basic concepts

2.1 The Response Time Variability Problem

The RTVP is the combinatorial optimization problem. The problem has been first solved by

Waldspurger and Weihl in 1994 using a method called lottery scheduling [3] and formally

formulated in [4] by A. Corominas. Its formulation is as follows. Let n be the number of symbols

to be sequenced, and let i be the individual demand. where i is to be copied di times in the

solution and let D is the total number of copies i.e. summation of the individual demands di. Let

S be the solution sequence that consists of a circular sequence of copies(S= S1S2……SD), where Sj

is the copy that sequenced in position j of sequence S. for each symbol i in which di>=2, let tk
i
 be

the distance between the positions in which the copies k+1 and k of same symbol are found. ie.

tk
i
 is the gap between the consecutive pair of same job. We consider the gap between the two

consecutive positions to be equal to 1. the solution sequence is circular, position 1 comes

immediately after the last position D. let ti be the average or constant distance between two

consecutive copies of same symbol i. ie ti=D/di. The aim is to minimize the metric RTV, which

is defined by the following expression.

We define the Response Time Variability for i is as follows.

 di

RTVi = ∑ (tk
i
- ti)

2

 i=k

And the total Response Time Variability is defined as.

 n

RTV = ∑ RTVi

 i=1

 n di

RTV = ∑ ∑ (tk
i
- ti)

2

 i=1 k=1

 5

From above,

 n di

RTV = ∑ ∑ (tk
i
- ti)

2

 i=1 k=1

 n di n di n di

 = ∑ ∑ (tk
i
)

2
+ ∑ ∑ (ti)

2
 - ∑ (2.ti. ∑ tk

i
)

 i=1 k=1 i=1 k=1 i=1 k=1

 n di n di n

 = ∑ ∑ (tk
i
)

2
+ ∑ ∑ (ti)

2
 - ∑ (2.ti. D)

 i=1 k=1 i=1 k=1 i=1

Since

 n di n

 ∑ ∑ (ti)
2

 and ∑ (2.ti. D)

 i=1 k=1 i=1

are constant, the problem of minimizing Response Time Variability is equivalent to minimizing

the

 n di

 ∑ ∑ (tk
i
)

2
.

 i=1 k=1

Thus, the distance between any two consecutive copies of the same symbol should be as regular

as possible.

An illustrative example is the following:

Let n=3 with symbols A, B, C.

Also consider dA=2, dB=2 and dC=4.

Thus D=8, tA =4, tB =4 and tC =2.

Consider the sequence C A C B C B A C is a solution and has

RTV = ((5-4)
2
+ (3-4)

2
) + ((2-4)

2
+ (6-4)

2
) + ((2-2)

2
+ (3-2)

2
) = 12

2.2 Complexity

The RTVP has been proved to be NP-hard in [4]. The solution of the RTVP can be improved. It

is a combinatorial problem and no polynomial time algorithm is known yet to solve the RTVP.

Authors of [4] studied the computational complexity of the RTVP and proved that it is NP-hard.

 6

The RTVP is NP-hard proved by reducing in to the periodic maintenance scheduling problem.

The periodic maintenance scheduling problem is defined as follows. Given M machines and

integer service intervals l1, l2, ……, lm such that ∑(1/li)<1. does there exist a servicing schedule

S1, S2, ……, SL. Where L=lcm(l1, l2, ………..,lm) is the least common multiple of l1, l2, …., lm of

these machines in which consecutive servicing of machine i are exactly li time slots apart and no

more than one machine is serviced in a single time slot? The periodic maintenance scheduling

problem has been proved to be NP-complete in [7].

2.3 Literature Survey

The RTVP is an optimization scheduling problem. The solution obtained from the different

methods can be improved. The response time variability problem was first reported by

Wildpurger and Weihl in 1994 in [3] and formally formulated in [4]. The RTVP has been first

time solved in [5] using a method called lottery scheduling. This method is based on generating a

solution at random as follows. For each position of the solution, the symbol to be sequenced is

chosen at random and the possibility of each symbol is equal to the number of copies of this

symbol that remain to be sequenced divided by the total number of copies that remain to be

sequenced. The same authors proposed a greedy heuristic method that they called stride

scheduling in [5] that obtains better results than the lottery scheduling method.

The RTVP is in general NP-hard problem. The polynomial time algorithm is not known yet to

solve the real-life application instances. The two-product case can be solved optimally with a

polynomial time proposed in [7]. For the other cases authors in [4] proposed a mixed-integer

linear programming (MILP) whose practical limit to obtain optimal solutions is 25 copies to be

solved. Same authors proposed an improved MILP model and increased the practical limit for

obtaining optimal solutions from 25 to 40 copies to be solved.

For solving largest instances, heuristic methods have been proposed in [4]. The bottleneck

algorithm was used in [8] to solve the Minmax Product Rate Variation Problem. The two

classical parametric methods for solving the apportionment problem called Webster method and

Jeffersion method are defined in [8]. Webster’s method and Jeffersion’s method are parametric

 7

methods. The parametric methods are defined as follows. Let xik be the number of copies of

symbol i that have been already sequenced in the solution of length k; the next symbol to be

sequenced in position k+1 is i* = avg maxi {di/xik+δ}, Where δ Є(0,1]. Webster’s and Jefferson’s

methods are uses a δ value equal to 0.5 and 1, respectively. Same author also describe a random

sequence generation method. A new heuristic called insertion was also discussed which is based

on grouping symbols into fictitious symbols until only two fictitious symbol remains and then

solving optimally using two-product case.

The best exact method to solve RTVP is a MILP which is able to solve optimally instances up to

40 units to be scheduled in a practical time. To overcome from this limitation a branch and

bound (B&B) algorithm was proposed in [6]. This algorithm is to increase the size of the

instances that can be solved optimally. The proposed B&B algorithm is able to solve larger

instances up to 55 units to optimally.

 The author of [9] was proposed an aggregation method based on grouping iteratively the

symbols with the same number of copies to be sequenced into fictitious symbols and then

applying a parametric method.

The simulated annealing (SA) approach has been proposed in [10] to solve the RTVP. SA can be

seen as a variant of a local search procedure in which it is allowed moving to a worse solution

with small probability. A simple SA-based algorithm is able to improve the results.

Many algorithms are based on metaheuristic schemes and other approaches have also been

proposed. Some proposed techniques are:

1 Algorithms based metaheuristics (multi-start, GRASP and PSO).

2 Dynamic programming algorithm.

3 Variable neighborhood search algorithm.

4 Mixed integer linear programming (MILP) method.

5 Tabu search algorithm.

6 Genetic algorithm.

 8

Among these algorithms the Tabu search algorithm and MILP algorithms are supposed to be the

best algorithms for small instances. These algorithms cannot give optimal solution for large

instances. Thus, the use of heuristic or metaheuristic methods for solving real life RTVP

instances is justified. This dissertation work emphasis in the metaheuristic approaches,

particularly, multi-start and GRASP method.

Hyper-heuristic algorithms are proposed in [11] to solve the RTVP. Hyper-heuristic algorithms

have two classes. The first is based on constructive heuristics, whereas the second uses

improvement methods. Hyper-heuristic method is "heuristics to choose heuristics". Hyper-

heuristics apply the right heuristic method in the problem solving process. It operates indirectly

on the solutions by choosing the heuristic and metaheuristic to be applied. Hyper-heuristic

method can be applied to a new problem quickly and cheaply. This method can be divided into

two categories: constructive hyper-heuristics and improvement hyper-heuristics.

 9

Chapter 3

The Metaheuristic Methods to Solve RTVP

 For solving the RTVP many algorithms are proposed. RTVP is the sequencing problem and no

polynomial time algorithm is known yet to solve it. Many algorithms are proposed to find the

near-to-optimal solution of RTVP. Authors of [12] discussed the problem and suggested some

solutions based on metaheuristic methods. Some of these metaheuristic procedures are: Multi-

Start (MS), Greedy Randomized Adaptive Search Procedure (GRASP) and Particle Swarm

Optimization (PSO). The MS and GRASP methods are as follows:

3.1 Multi-Start method

The multi-start method is one of metaheuristic procedure for solving the RTVP proposed in [12].

The multi-start metaheuristic is a general scheme that consists of two phases. The first phase

obtains an initial solution and in the second phase it improves the obtained initial solution by

using the local optimization method and select the best of them.

The pseudocode of the adaptation of the multi-start method is:

1. Let the value of the best solution found be z̅ = ∞.

2. While (actual time<execution time) do:

3. Get a random initial solution X.

4. Apply the local optimization to X and get X’.

5. If value (X’) < Z̅, then Z̅ = value (X’).

The multi-start algorithm to solve the RTVP is based on a random initial solution and on

improving it by means of local optimization procedure. Random solutions are generated as

follows. For each position from 1 to D in the solution, a job to be sequenced is chosen at random.

The probability of choice of each job is equal to the number of copies of this job that remain to

be sequenced divided by the total number of copies that remain to be sequenced.

The local optimization is applied as follows. A local search is performed iteratively in a

neighborhood that is generated by interchanging each pair of two consecutive units of the

 10

sequence that represents the current solution. The best solution in the neighborhood is chosen,

the optimization ends when no neighboring solution is better than current solution. If the quality

of initial solution is poor, the computing time required by local search procedure to find the local

optimized solution is increased.

Another form of multi-start algorithm can be obtained by using initial sequence as insertion

sequence in [13]. Insertion method is suggested in [14]. In insertion sequence, for more than two

products the problem is reduced into two-product. And then solve it by using two-product case

method.

Let the demands be d1 ≤………..≤dn. consider n-1 two case problem.

 n n

Pn-1= (dn-1, dn), pn-2 = (dn-2, ∑ dj) …….. , p1 = (d1, ∑ dj).

 J=n-1 j=2

In each of the problem the first product is the original and second product will be the assumed

product, and denoted by the *. Let the sequences sn-1, sn-2, ……….. , s1, be the optimal solution. For

the given problems they can be obtained by using the two case- problem. The solution is made

up of the product j and *. The sequence of the original problem is built recursively by first

replacing * in S1 by S2 to obtain S1'. Next * are replaced by S3 in S1' to obtain the solution S1''.

Sequence Sn-1 replaces all the remaining * and obtain the final solution. The local optimization is

same as in the original multi-start algorithm.

3.2 The Greedy Randomized Adaptive Search Procedure (GRASP)

 Method

The GRASP metaheuristic method can be considered as a variant of multi-start [12]. In GRASP,

the generation of initial solution is obtained by greedy method. In this, random steps are added

and choice of elements to be included in the sequence is adaptive. The probability of each job is

proportional to the value of an associated index. The algorithm of the GRASP adaptation is

 11

almost same as the multi-start method. The only difference is in constructing the initial solution.

For each position from 1 to D, the next job to be sequenced is randomly selected from a list with

a probability proportional to the value of its associated index. The associated index suggested in

[12] is Webster index.

The Webster sequence is obtained as follows.

Let Xik be the number of units of job i, that have been already sequenced in the sequence of

length k, k=0, 1,……,di the number of units of the job i and D the total number of units, the value

of the Webster index of product i to be sequenced position k+1 is di/Xik+δ.

Here δ is the Webster’s parametric metrics and δ=1/2.

Another variation of GRASP can be obtained by using the Jefferson sequence as initial solution.

In the Jefferson’s sequence the parametric matrices δ=1 is used in [12]. This parameter affects

the relative priority of low demand jobs and their position in the sequence. When δ is near to 0,

low demand jobs will be positioned earlier in the solution but when δ is near to 1, low demand

jobs will be positioned later in the solution.

3.3 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) metaheuristic algorithm was designed by Kinnedy and

Eberhart by establishing an analogy to the social behavior of flocks of birds, when they search

for food described in [12]. PSO is population based metaheuristic algorithm which used for

solving the optimization scheduling problem such as RTVP. This metaheuristic was designed to

optimize continuous functions of real variables. In this method the particles corresponding to the

birds, have a position (a feasible solution) and a velocity (the change in their position), and the

set of particles form the swarm, which corresponds to the flock. The behavior of a particle is the

result of the combination of the following three factors:

 1. To continue on the path that it is following.

 2. To follw the best solution found and

 3. To go to the best position found by the swarm.

 12

The initial sequences are generated as in the multi-start method. The PSO method, iteratively

update the sequence and the velocity of each particle as it looks for the optimal solution.

3.4 The Initial Sequences

3.4.1 Two- product case

The two-product case, n=2. It shows a solution that minimizes both the total response time

variability and the maximum deviation at a same time, which generally is impossible for more

than two products. Let d1 and d2 are two products with different number of demands. We omit the

case d1=d2 since it is trivial. When solving the two-product case, the first copy of the product

with the less number of copies is assigned to the first position and the remaining copies are

placed in the sequence D mod di times with a distance to the last position assigned and di

– D mod di times with a distance to the last position assigned [12].

3.4.2 Bottleneck Sequence

The bottleneck sequences can be obtained by solving the bottleneck problem to optimally with

the method described in [7].

3.4.3 Random Sequence

The bottleneck sequence S has been randomized as follows. For each position x in the sequence

1….D, get a random number ran in the range 1…..D. Then, swap S[x] with S[ran] [7].

The detailed analysis of the above methods are described in [7]. All of these methods have

comparable results.

D/di

D/di

 13

Chapter 4

Result and Analysis

4.1 Computational Experiment

The metaheuristic algorithms have been run for 882 different instances, which are grouped into

four different categories. Formation of category is based on paper [15]. Category 1 include 162

instances, category 2 include 192 instances, category 3 include 282 instances and category 4

include 246 instances. The corresponding instances are same for every category of different

algorithms. The instances in the first category CATEGORY 1 were generated using a random

value of D between 25 and 50, and a random value of n between 3 and 15. For the second

category CATEGOTY 2, D was between 50 and 100 and number of demands n between 3 and

30; For the third CATEGORY 3, total number of copies i.e. D was from 100 to 200 and number

of demands i.e. n between 3 and 65; and finally for the fourth class CATEGORY 4, number of

copies are between 200 and 500 and number of demands are between 3 to 150. The instances

have been generated by first fixing the total number of copies D and the number of demands n.

for all instances and for each type of product i= 1,…, n, a random value of di is between 1 and D.

the program has been executed to obtained the output of demands among which some of them

were executed for several minutes.

The average initial RTV values (AIRTV), the average optimized RTV values (AORTV) and the

average number of iterations required to obtained the optimized sequence (No. of iterations)

using in multi-start, GRASPwe (GRASP use Webster’s sequence as initial solution) and GRASPje

(GRASP with use of Jeffersion’s sequence as initial solution) metaheuristic algorithms. The

experimental result is tabulated in given tables.

 14

Category Average initial

 RTV

Average optimal

RTV

No. of iterations

Global 137515.75 326 1402

CAT1 890 25 58

CAT2 4837 57 192

CAT3 34050 232 781

CAT4 510286 990 4577

Table 1: Experimental result of multi-start algorithm.

Category Average initial

 RTV

Average optimal

RTV

No. of iterations

Global 21352.50 292.5 929.25

CAT1 144 38 22

CAT2 1056 80 119

CAT3 5114 315 726

CAT4 79096 737 2850

Table 2: Experimental result of GRASPwe.

Category Average initial

 RTV

Average optimal

RTV

No. of iterations

Global 18698.25 244 629

CAT1 143 29 21

CAT2 941 63 95

CAT3 4537 219 322

CAT4 69172 665 2078

Table 2: Experimental result of GRASPje.

 15

By analyzing these tables, for all instances in initial value of RTV the GRASPje is 12.43%better

than GRASPwe and 86.40% better than multi-start. But in optimized RTV value GRASPje is

16.58% better than GRASPwe and 25.15% better than multi-start.GRASPje also take the less

number of iterations for obtaining the optimized solution i.e. it is faster than other two methods.

GRASPje take the 32.31%less number of iterations than GRASPwe and 55.13% less number of

iterations than multi-start. By analyzing above table, the multi-start algorithm obtains the good

averages for small instances (category 1 and category 2) but, poor average results for large

instances (category 4). GRASPje and GRASPwe gives the better result than multi-start algorithm

for large instances (category 4).

 16

4.2 Computational Results

The following different table shows the results obtained from the metaheuristic algorithms to

solving the RTVP. For four categories the total number of copies D and the number of input n is

fixed and different instances are generated. For each instance the initial RTV value, optimized

RTV value and no. of iterations are computed.

Multi-Start method

Category 1

N D Average initial

 RTV

Average optimal

RTV

No. of iterations

3 25 59 12 10

3 26 92 14 13

4 27 96 16 15

4 28 220 18 22

5 29 208 21 22

5 30 274 18 29

6 31 296 21 36

6 32 373 20 38

7 33 409 20 35

7 34 541 27 43

8 35 572 28 41

8 36 792 49 51

9 37 858 21 57

9 38 1011 20 97

10 39 1972 48 66

10 40 1084 29 78

11 41 1108 43 73

11 42 1446 31 92

12 43 1192 34 69

12 44 1477 21 87

 17

13 45 1391 32 82

13 46 1690 29 98

14 47 1621 23 98

14 48 1798 37 98

15 49 1738 18 93

15 50 1681 24 98

3 50 42 18 14

Category 2

N D Average initial

 RTV

Average optimal

RTV

No. of iterations

3 50 76 18 14

3 51 119 24 15

3 100 171 39 7

4 52 130 28 17

5 53 617 47 63

6 54 577 45 52

7 55 941 63 67

8 56 2107 58 121

9 57 1969 51 126

10 58 2442 55 124

11 59 2828 70 142

12 60 3353 66 158

13 61 3553 61 172

14 62 3719 61 169

15 64 3064 54 146

16 65 3658 49 175

17 67 5529 52 219

18 70 5582 84 234

 18

19 72 5626 85 241

20 73 5056 64 228

21 74 6836 60 271

22 75 6872 67 261

23 76 7679 44 313

24 78 7310 50 288

25 80 8161 46 292

26 85 9551 75 348

27 87 9199 60 317

28 88 8988 41 320

28 90 10121 104 378

29 95 8288 50 305

30 100 11302 52 386

30 98 9353 90 190

 19

Category 3

N D Average initial

 RTV

Average optimal

RTV

No. of iterations

3 100 171 39 18

4 101 489 84 41

5 102 3241 91 154

6 103 1072 118 87

7 104 1356 139 121

8 105 8638 206 159

9 106 6543 140 283

10 108 5229 178 270

11 109 14749 207 352

12 110 13174 185 371

13 111 14663 139 484

14 112 17476 180 544

15 115 18496 233 554

16 120 24746 258 591

17 122 34504 272 764

18 125 28997 1920 2192

19 129 26229 199 743

20 132 36490 268 784

21 133 41537 253 763

22 134 38828 247 851

23 136 41251 302 854

24 139 31654 300 781

25 142 49581 254 999

26 146 41239 239 983

27 148 55287 264 1009

28 150 44451 282 961

29 153 48213 362 987

 20

30 160 56083 337 1122

31 162 59624 260 1224

32 165 53536 160 1163

33 169 53536 160 1163

34 171 56543 200 1193

35 172 53181 176 1139

36 175 47506 144 1127

37 178 45540 148 1094

38 180 43455 165 980

39 182 59586 186 1276

40 183 44981 137 1040

41 185 50876 130 1153

45 189 45619 160 1024

47 192 48033 155 1004

50 194 60561 277 1245

53 196 64345 463 1342

55 198 6787 132 1196

60 199 77484 116 1268

65 200 64432 141 1128

3 200 771 115 60

 21

Category 4

N D Average initial

 RTV

Average optimal

RTV

No. of iterations

3 200 771 115 60

4 210 125 42 15

5 220 61125 494 290

6 225 5595 540 301

7 230 2962 334 220

8 240 41362 805 741

18 290 60870 2281 2192

25 320 50234 2445 2271

35 335 268438 1077 4439

48 359 299257 707 4823

65 200 64432 141 1128

65 370 53753 325 5889

72 379 649814 809 5823

78 388 797601 1242 7419

83 392 818188 701 6884

95 400 940530 806 7743

100 409 915885 568 7188

120 462 1469352 536 10530

140 494 1626431 626 10902

148 498 1362236 433 8845

150 500 1227050 433 8417

 22

GRASPwe method

Category 1

N D Average initial

 RTV

Average optimal

RTV

No. of iterations

3 25 10 6 2

3 26 9 9 1

3 50 16 15 1

4 27 16 13 4

5 29 25 17 4

5 30 33 26 4

6 31 38 23 7

6 32 46 29 7

7 33 48 29 8

7 34 45 33 8

8 35 65 42 9

8 36 72 41 11

9 37 99 40 19

9 38 99 56 15

10 39 126 61 21

10 40 114 72 12

11 41 188 51 32

11 42 227 36 39

12 43 211 49 36

12 44 178 91 18

13 45 252 53 38

13 46 264 46 46

14 47 347 52 58

14 48 382 52 55

15 49 506 30 71

15 50 457 37 71

 23

4 28 16 16 1

Category 2

N D Average initial

 RTV

Average optimal

RTV

No. of iterations

3 50 16 15 1

3 51 17 15 2

3 100 26 24 1

4 52 31 23 3

5 53 72 35 7

6 54 62 33 11

7 55 70 43 13

8 56 75 59 6

9 57 135 60 21

10 58 124 82 17

11 59 142 89 21

12 60 105 118 25

13 61 281 85 50

14 62 319 90 57

15 64 387 107 54

16 65 442 129 66

17 67 576 74 104

18 70 678 169 86

19 72 723 90 140

20 73 949 123 133

21 74 1267 74 170

22 75 1391 69 167

23 76 1688 48 193

24 78 1944 92 187

 24

25 80 2148 55 220

26 85 2439 63 442

27 87 2438 72 256

28 88 2721 102 257

28 90 2660 74 260

29 95 2966 145 266

30 98 3460 117 291

30 100 3451 194 277

Category 3

N D Average initial

 RTV

Average optimal

RTV

No. of iterations

3 100 26 24 1

4 101 47 39 4

5 102 74 60 7

6 103 110 54 24

7 104 120 90 8

8 105 119 94 11

9 106 159 105 22

10 108 219 127 33

11 109 209 244 26

12 110 253 177 42

13 111 300 198 33

14 112 333 180 43

15 115 411 427 58

16 120 363 248 56

17 122 683 286 83

18 125 599 343 61

19 129 670 350 92

 25

20 132 706 386 76

21 133 909 502 85

22 134 1011 471 134

23 136 1079 523 123

24 139 1411 416 565

25 142 1589 704 163

26 146 1746 421 280

27 148 1902 583 268

28 150 2038 665 233

29 153 2256 542 340

30 160 2754 566 406

31 162 2945 699 394

32 165 3525 449 491

33 169 3500 528 475

34 171 4794 378 558

35 172 4982 319 5677

36 175 6394 274 698

37 178 7408 184 754

38 180 8051 237 717

39 182 7538 310 746

40 183 9727 232 812

41 185 10769 154 869

45 189 13923 203 11165

47 192 15102 300 902

50 194 15556 381 1005

53 196 19062 393 1050

55 198 20302 230 1209

60 199 25194 222 1323

65 200 34371 381 1278

 26

Category 4

N D Average initial

 RTV

Average optimal

RTV

No. of iterations

3 200 57 49 5

4 210 47 29 8

5 220 160 134 12

6 225 198 140 23

7 230 252 104 52

8 240 300 173 53

18 290 2030 933 241

25 320 5241 1003 639

35 335 6227 1150 1024

48 359 15832 1026 1981

65 200 34371 381 1278

65 370 23015 1253 2315

72 379 33271 2820 2994

78 388 37883 1714 3421

83 392 50256 3601 3539

95 400 79400 971 4684

100 409 98204 1269 4880

120 462 179585 1732 6843

140 494 301352 1082 8558

148 498 374087 599 8786

150 500 419248 750 8516

 27

GRASPje method

Category 1

N D Average initial

 RTV

Average optimal

RTV

No. of iterations

3 25 9 7 1

3 26 9 9 0

3 50 16 16 0

4 27 17 11 4

4 28 18 15 1

5 29 26 16 6

5 30 29 16 6

6 31 46 22 9

6 32 47 16 13

7 33 54 23 9

7 34 65 35 13

8 35 65 27 15

8 36 88 36 19

9 37 100 38 19

9 38 105 52 14

10 39 177 41 25

10 40 146 38 24

11 41 195 35 32

11 42 223 41 36

12 43 220 36 33

12 44 269 28 36

13 45 206 37 27

13 46 302 39 44

14 47 401 44 50

14 48 301 26 41

15 49 356 35 46

 28

15 50 373 42 47

Category 2

N D Average initial

 RTV

Average optimal

RTV

No. of iterations

3 50 16 16 0

3 51 19 15 3

3 100 24 22 1

4 52 29 17 5

5 53 48 32 8

6 54 68 25 9

7 55 70 52 17

8 56 102 46 18

9 57 155 50 30

10 58 143 84 17

11 59 197 79 30

12 60 299 68 43

13 61 403 91 117

14 62 401 69 65

15 64 361 61 50

16 65 442 62 58

17 67 669 74 84

18 70 871 90 102

19 72 876 80 101

20 73 837 72 122

21 74 1214 71 132

22 75 1216 90 124

23 76 1663 73 162

24 78 1560 66 149

 29

25 80 1510 49 142

26 85 2230 64 204

27 87 2103 126 170

28 88 2347 48 202

28 90 2444 88 212

29 95 2379 70 206

30 98 2809 89 226

30 100 2606 70 234

Category 3

N D Average initial

 RTV

Average optimal

RTV

No. of iterations

3 100 24 22 1

4 101 51 33 8

5 102 75 53 9

6 103 107 49 21

7 104 130 66 20

8 105 161 99 24

9 106 187 109 27

10 108 248 110 37

11 109 749 182 103

12 110 377 190 37

13 111 470 189 61

14 112 567 167 87

15 115 562 180 89

16 120 824 243 90

17 122 1004 228 129

18 125 1082 180 144

19 129 1046 233 151

 30

20 132 1394 260 150

21 133 1568 289 166

22 134 1924 267 232

23 136 2058 325 205

24 139 2325 314 265

25 142 2723 374 236

26 146 2409 323 277

27 148 2946 330 292

28 150 3150 282 322

29 153 3563 428 341

30 160 3989 307 419

31 162 4205 384 413

32 165 4791 280 454

33 169 5182 266 467

34 171 5503 346 450

35 172 5677 259 514

36 175 5984 315 487

37 178 6372 265 547

38 180 6596 223 527

39 182 7537 278 600

40 183 8584 192 622

41 185 8657 195 639

45 189 11166 173 688

47 192 11711 186 637

50 194 12869 376 691

53 196 14478 341 767

55 198 14740 264 762

60 199 16392 142 778

65 200 22524 176 834

 31

Category 4

N D Average initial

 RTV

Average optimal

RTV

No. of iterations

3 200 53 48 4

4 210 47 29 8

5 220 168 124 19

6 225 191 116 31

7 230 232 111 44

8 240 290 176 42

18 290 1514 489 216

25 320 4789 772 450

35 335 7800 987 870

48 359 18017 2423 1429

65 200 2252 176 834

65 370 34395 1757 1952

72 379 43405 817 2435

78 388 56087 1175 2568

83 392 64562 813 2906

95 400 92981 921 3400

100 409 100340 604 3600

120 462 176803 823 5033

140 494 261247 854 6036

148 498 278589 453 5741

150 500 308841 469 5970

 32

Chapter 5

Conclusions and Future Research

The response time variability problem is an NP-hard scheduling problem. This scheduling

problem arises in a variety of real-life applications including mixed-model assembly lines, multi-

threaded computer systems, periodic machine maintenance and waste collection. In the RTVP,

the aim is to minimize variability in the distances between any two consecutive copies of the

same symbol. i.e. to distribute the symbols as regular as possible. Several algorithms have been

proposed in the literature for solving the RTVP. Since it is an NP-hard problem, metaheuristic

methods are needed for solving real life problems. A computational experiment was done and its

result show that on average the GRASPje is better than GRASPwe and multi-start. But for small

instances multi-start is better metaheuristic method for solving RTVP. In addition the GRASPje

method has a stable behavior for small, medium and large instances.

Future research may focus on improving the result to solve the RTVP is adding the simulated

annealing algorithms and variable neighborhood search hybrid algorithms as low-level heuristics

in the metaheuristics.

 33

References

[1] S. Salhi, A. Garcia-Villoria,(2011). An adaptive search for the ResponseTimeVariability

Problem. Journal of the Operational Research Society, 0, 1-9.

[2] A. Corominas, A. Garcia-Villoria, R. Pastor,(2011). Metaheuristic algorithmms

hybridized with variable neighbourhood search for solving response time variability problem.

Institute of Industrial and Control Engineering (IOC),Universitat Politecnuca de Catalunga

(UPC), Barcelona, Spain.

[3] C. A. Waldspurger and W. E. Weihl,(1994). Lottery Scheduling: Flexible Proportional-Share

Resource Management. First USENIX Symposium on Operating System Design and

Implementation.

[4] A. Corominas et. al., W. Kubiak, N. M. Palli,(2007). Response time variability. Journal of

Sched uling, 10, 97-110.

[5] C. A. Waldspurger, W. E. Weihl,(1995). Stride Scheduling: Deterministic Proportional-Share

Resource Management, Tech. Rep. MIT/LCS/TM-528, Massachusetts Institute of

Technology. MIT Laboratory for Computer Science.

[6] A. Garcia-Villoria, A. Corominas, X. Delorme, A. Dolgui, W. Kubiak, R. Pastor,(2012). A

branch and bound algorithm for the Response time variability problem. Journal of

Scheduling.

[7] A. Corominas, W. Kubik, N. M. Palli,(2004). Response time variability , IOC-DT- 2004- 08.

[8] N. Moreno,(2002). Solving the Product Rate Variation Problem of Large Dimensions as an

Assignment Problem. Doctoral Thesis, DOE, UPC.

 [9] J.W.Herrmann,(2008). Using Aggregation to Reduce Response Time Variability in Cycle

Fair Sequences. Tech. Rep. University of Maryland, USA.

[10] A. Corominas, A. Garcia-Villoria, R. Pastor,(2010). A new metaheuristic procedure for

improving the solution of the response time variability problem. Scheduling and Sequencing.

[11] A.Garcia-Villoria, S. Salhi, A. Corominas, R.Pastor,(2011). Hyper-Heuristic approaches for

 the response time variability problem. European Journal of Operational Research, 211,

160-169.

 34

[12] A. Corominas et. al.,(2006). Solving the Response Time Variability Problem by means of

metaheuristics. Special Issues of Frontiers in artificial intelligence and Applications

onArtificial Intellegence Research and Development. 146, 187-194.

[13] N. K. Ray,(2012). Improved Multi-Start method for solving The Response Time

Variability Problem. Master's dissertations, Computer science and IT, T.U..

[14] A. Corominas, W. Kubiak and R. Pastor,(2009). Heuristics for the response time variability

problem. Institute of industrial and control engineering, IOC-DT-P-2009-03.

[15] A. Garcia-Villoria, and R. Pastor,(2010). Solving the Response Time Variability Problem

by Means of a Genetic Algorithm. European Journal of Operational Research, 202, 320-

327.

 35

Appendices

Code for GRASPwe

 #include<stdio.h>

 #include<conio.h>

 #include<math.h>

 #include<alloc.h>

 #include<stdlib.h>

 #define n 150

 #define D 500

 float rtv(int *,float *);

 int max(float *);

 float webster(float *);

 int min(float *);

 int sequence[D];

 void main()

 {

 float rt;

 float d[n];

 float e[n];

 int i,j,m,k=0,temp,t=1;

 int seq1[D];

 int seq2[D];

 float rem[n];

 int temparray[D][D];

 float rtvs[D];

 float current_rtv;

 int x;

 int xxx=0;

 36

 printf("Input vector");

 for(i=0;i<n;i++)

 scanf("%f",&d[i]);

 rt=webster(d);

 printf("\nRTV=%f\n",rt);

 current_rtv=rt;

 for(j=0;j<D;j++)

 seq1[j]= sequence[j];

 while(t==1)

 {

 printf("\n \n\n");

 for(i=0;i<D-1;i++)

 {

 for(j=0;j<D;j++)

 seq2[j]= seq1[j];

 temp=seq2[i];

 seq2[i]=seq2[i+1];

 seq2[i+1]=temp;

 rtvs[i]=rtv(seq2,d);

 for(j=0;j<D;j++)

 temparray[i][j]= seq2[j];

 printf("\n ");

 for(j=0;j<D;j++)

 printf(" %d ",seq2[j]);

 printf(" :rtv= %f",rtv(seq2,d));*/

 }

 for(j=0;j<D;j++)

 seq2[j]= seq1[j];

 37

 temp=seq2[0];

 seq2[0]=seq2[D-1];

 seq2[D-1]=temp;

 rtvs[D-1]=rtv(seq2,d);

 printf("\n ");

 for(j=0;j<D;j++)

 printf(" %d ",seq2[j]);

 printf(" :rtv= %f",rtv(seq2,d));

 printf("\n ");

 for(j=0;j<D;j++)

 temparray[D-1][j]= seq2[j];

 x=min(rtvs);

 if(rtvs[x]<current_rtv)

 {

 current_rtv=rtvs[x];

 for(j=0;j<D;j++)

 seq1[j]= temparray[x][j];

 }

 else

 {

 t=0;

 printf("\n optimized sequence: ");

 for(i=0;i<D;i++)

 printf(" %d ",seq1[i]);

 printf("\n optimized rtv = %f",current_rtv);

 printf("\n Iterations=%d", xxx);

 }

 38

 xxx++;

 }

getch();

 }

float webster(float *x)

 {

int s[D];

int d1[n];

int length,j,m;

float temp[n]; //Webster index

float r;

int i;

for(i=0;i<n;i++) //temporary vector to keep track of

 d1[i]=0; //no. of sequenced copies

for(length=0;length<D;length++)

 {

 for(j=0;j<n;j++)

 {

if(d1[j]<=x[j])

temp[j]= (x[j])/(d1[j]+0.5);

 }

m=max(temp); //return position of max element

sequence[length]=m+1;

d1[m]=d1[m]+1;

 }

printf("\n\n initial sequence: ");

for(i=0;i<D;i++)

printf(" %d",sequence[i]);

r=rtv(sequence,x);

 39

return(r);

}

float rtv(int *x,float *y) //To calculate RTV on initial sequence

 {

int i,j,k,l,m,p,q=0;

int distances[D];

float avg[n];

float rt;

for(i=0;i<D;i++)

distances[i]=0;

p=0;

rt=0;

 //calculate average distances for each symbol

for(i=0;i<n;i++)

avg[i]=D/y[i];

printf("\n\n Average distances: ");

for(i=0;i<n;i++)

printf(" %f",avg[i]);*/

 //calculate actual distances between copies of symbols

for(i=0;i<n;i++)

 {

l=0;

for(j=0;j<y[i];j++)

 {

m=1;

while(x[l]!=i+1)

l=(l+1)%D;

k=(l+1)%D;

while(x[k]!=x[l])

 {

 m++;

 40

k=(k+1)%D;

 }

distances[p]=m;

l=k;

p++;

 }

 }

printf("\n\n distances: ");

for(i=0;i<D;i++)

printf("%d ",distances[i]); */

for(i=0;i<n;i++)

 {

for(j=0;j<y[i];j++)

 {

 rt=rt+((distances[q]-(D/y[i]))*(distances[q]-(D/y[i])));

 q++ ;

 }

 }

return rt;

 }

int max(float *x)

 {

int i,j=0;

float m;

m=x[0];

for(i=1;i<n;i++)

 {

if(x[i]>=m)

 {

m=x[i];

j=i;

 41

}

 }

return j;

 }

int min(float *x)

 {

int i,j=0;

float m;

m=x[0];

for(i=1;i<D;i++)

 {

 if(x[i]<m)

 {

m=x[i];

j=i;

 }

 }

return j;

 }

 42

Code for GRASPje

#include<stdio.h>

#include<conio.h>

#include<math.h>

#include<alloc.h>

#include<stdlib.h>

#define n 150

#define D 500

float rtv(int *,float *);

int max(float *);

float webster(float *);

int min(float *);

int sequence[D];

void main()

 {

float rt;

float d[n];

float e[n];

int i,j,m,k=0,temp,t=1;

int seq1[D];

int seq2[D];

float rem[n];

int temparray[D][D];

float rtvs[D];

float current_rtv;

int x;

int xxx=0;

printf("Input vector");

for(i=0;i<n;i++)

scanf("%f",&d[i]);

 rt=webster(d);

 43

printf("\nRTV=%f\n",rt);

current_rtv=rt;

for(j=0;j<D;j++)

seq1[j]= sequence[j];

while(t==1)

 {

 printf("\n \n\n");

 for(i=0;i<D-1;i++)

 {

 for(j=0;j<D;j++)

seq2[j]= seq1[j];

temp=seq2[i];

seq2[i]=seq2[i+1];

seq2[i+1]=temp;

rtvs[i]=rtv(seq2,d);

for(j=0;j<D;j++)

temparray[i][j]= seq2[j];

 printf("\n ");

 for(j=0;j<D;j++)

 printf(" %d ",seq2[j]);

 printf(" :rtv= %f",rtv(seq2,d)); */

 }

for(j=0;j<D;j++)

seq2[j]= seq1[j];

temp=seq2[0];

seq2[0]=seq2[D-1];

seq2[D-1]=temp;

rtvs[D-1]=rtv(seq2,d);

 printf("\n ");

 for(j=0;j<D;j++)

printf(" %d ",seq2[j]);

 44

printf(" :rtv= %f",rtv(seq2,d));

printf("\n "); */

for(j=0;j<D;j++)

temparray[D-1][j]= seq2[j];

x=min(rtvs);

if(rtvs[x]<current_rtv)

 {

current_rtv=rtvs[x];

for(j=0;j<D;j++)

seq1[j]= temparray[x][j];

 }

else

 {

t=0;

printf("\n optimized sequence: ");

for(i=0;i<D;i++)

printf(" %d ",seq1[i]);

printf("\n optimized rtv = %f",current_rtv);

printf("\n iterations: %d",xxx);

 }

xxx++;

 }

getch();

 }

float webster(float *x)

 {

int s[D];

int d1[n];

int length,j,m;

float temp[n]; //Webster index

 45

float r;

int i;

for(i=0;i<n;i++) //temporary vector to keep track of

d1[i]=0; //no. of sequenced copies

for(length=0;length<D;length++)

 {

for(j=0;j<n;j++)

 {

if(d1[j]<=x[j])

temp[j]= (x[j])/(d1[j]+1);

 }

m=max(temp); //return position of max element

sequence[length]=m+1;

d1[m]=d1[m]+1;

 }

printf("\n\n initial sequence: ");

for(i=0;i<D;i++)

printf(" %d",sequence[i]);

r=rtv(sequence,x);

return(r);

 }

float rtv(int *x,float *y) //To calculate RTV on initial sequence

 {

int i,j,k,l,m,p,q=0;

int distances[D];

float avg[n];

float rt;

 for(i=0;i<D;i++)

 distances[i]=0;

p=0;

rt=0;

 46

 //calculate average distances for each symbol

for(i=0;i<n;i++)

avg[i]=D/y[i];

printf("\n\n Average distances: ");

for(i=0;i<n;i++)

printf(" %f",avg[i]);*/

 //calculate actual distances between copies of symbols

for(i=0;i<n;i++)

 {

l=0;

for(j=0;j<y[i];j++)

 {

m=1;

while(x[l]!=i+1)

l=(l+1)%D;

k=(l+1)%D;

while(x[k]!=x[l])

 {

m++;

k=(k+1)%D;

 }

distances[p]=m;

l=k;

p++;

 }

 }

printf("\n\n distances: ");

for(i=0;i<D;i++)

printf("%d ",distances[i]);

for(i=0;i<n;i++)

 {

 47

for(j=0;j<y[i];j++)

 {

rt=rt+((distances[q]-(D/y[i]))*(distances[q]-(D/y[i])));

q++ ;

 }

 }

return rt;

 }

int max(float *x)

 {

int i,j=0;

float m;

m=x[0];

for(i=1;i<n;i++)

 {

if(x[i]>=m)

 {

m=x[i];

j=i;

 }

 }

return j;

 }

int min(float *x)

 {

int i,j=0;

float m;

m=x[0];

for(i=1;i<D;i++)

 {

if(x[i]<m)

 48

 {

 m=x[i];

j=i;

 }

 }

return j;

 }

Code for multi-start method

#include<stdio.h>

 #include<conio.h>

 #include<math.h>

 #include<alloc.h>

 #include<stdlib.h>

#define n 150

#define D 500

 float rtv(int *,float *);

 int max(float *);

 float rtv(int *,float *);

 int min(float *);

 void main()

 {

 float rt;

 float d[n];

 float e[n];

 int i,j,m,k=0,temp,t=1;

 int sequence[D];

 49

 int seq1[D];

 int seq2[D];

 float rem[n];

 int remaning = D;

 int temparray[D][D];

 float rtvs[D];

 float current_rtv;

 int x;

 int xxx;

 printf("Input vector");

 for(i=0;i<n;i++)

 scanf("%f",&d[i]);

 for(i=0;i<n;i++)

e[i]= d[i];

 for (i=0;i<D; i++)

 {

 for (j=0;j<n;j++)

 {

 rem[j]=e[j]/remaning;

 }

 m=max(rem);

 sequence[i]=m+1;

 remaning=remaning-1;

e[m]=e[m]-1;

 }

 rt=rtv(sequence,d);

 printf("\n Initial sequence: ");

 for(i=0;i<D;i++)

 printf(" %d ",sequence[i]);printf("\nRTV=%f\n",rt);

 current_rtv=rt;

 for(j=0;j<D;j++)

 50

 seq1[j]= sequence[j];

 while(t==1)

 {

 printf("\n \n\n");

 for(i=0;i<D-1;i++)

 {

 for(j=0;j<D;j++)

 seq2[j]= seq1[j];

 temp=seq2[i];

 seq2[i]=seq2[i+1];

 seq2[i+1]=temp;

 rtvs[i]=rtv(seq2,d);

 for(j=0;j<D;j++)

 temparray[i][j]= seq2[j];

 printf("\n ");

 for(j=0;j<D;j++)

 printf(" %d ",seq2[j]);

 printf(" :rtv= %f",rtv(seq2,d)); */

 }

 for(j=0;j<D;j++)

 seq2[j]= seq1[j];

 temp=seq2[0];

 seq2[0]=seq2[D-1];

 seq2[D-1]=temp;

 rtvs[D-1]=rtv(seq2,d);

 printf("\n ");

 for(j=0;j<D;j++)

 printf(" %d ",seq2[j]);

 printf(" :rtv= %f",rtv(seq2,d));

 printf("\n ");

 51

 for(j=0;j<D;j++)

 temparray[D-1][j]= seq2[j];

 x=min(rtvs);

 if(rtvs[x]<current_rtv)

 {

 current_rtv=rtvs[x];

 for(j=0;j<D;j++)

 seq1[j]= temparray[x][j];

 }

 else

 {

 t=0;

 printf("\n optimized sequence: ");

 for(i=0;i<D;i++)

 printf(" %d ",seq1[i]);

 printf("\n optimized rtv = %f",current_rtv);

 printf("\n iterations: %d",xxx);

 }

 xxx++;

 }

 getch();

 }

 float rtv(int *x,float *y) //To calculate RTV on initial sequence

 {

 int i,j,k,l,m,p,q=0;

 int distances[D];

 float avg[n];

 float rt;

 for(i=0;i<D;i++)

 distances[i]=0;

 52

 p=0;

 rt=0;

 //calculate average distances for each symbol

 for(i=0;i<n;i++)

 avg[i]=D/y[i];

 printf("\n\n Average distances: ");

 for(i=0;i<n;i++)

 printf(" %f",avg[i]);*/

 //calculate actual distances between copies of symbols

 for(i=0;i<n;i++)

 {

 l=0;

 for(j=0;j<y[i];j++)

 {

 m=1;

 while(x[l]!=i+1)

 l=(l+1)%D;

 k=(l+1)%D;

 while(x[k]!=x[l])

 {

 m++;

 k=(k+1)%D;

 }

 distances[p]=m;

 l=k;

 p++;

 }

 }

 printf("\n\n distances: ");

 for(i=0;i<D;i++)

 53

 printf("%d ",distances[i]); */

 for(i=0;i<n;i++)

 {

 for(j=0;j<y[i];j++)

 {

 rt=rt+((distances[q]-(D/y[i]))*(distances[q]-(D/y[i])));

 q++ ;

 }

 }

 return rt;

 }

 int max(float *x)

 {

 int i,j=0;

 float m;

 m=x[0];

 for(i=1;i<n;i++)

 {

 if(x[i]>=m)

 {

 m=x[i];

 j=i;

 }

 }

 return j;

 }

 int min(float *x)

 {

 int i,j=0;

 float m;

 54

 m=x[0];

 for(i=1;i<D;i++)

 {

 if(x[i]<m)

 {

 m=x[i];

 j=i;

 }

 }

 return j;

 }

