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Chapter 1  
  

Introduction 
 

The response time variability problem (RTVP) is a sequence optimization problem. It occurs in 

real-life situations in which jobs, clients, products, or events need to be sequenced in order to 

minimize the variability in the time between two successive points at which they receive their 

necessary resources.  

 

In the modern system the resources are shared between different jobs. When many jobs request a 

single resource at a time, then it is necessary to schedule the resource activit ies in some fair 

manner so that the jobs can receive the resource that is proportional to its job relative to the 

computing job. The job is defined as certain amount of work to be done. 

 

The fair sequence (solution) concept has emerged from scheduling problem in different 

environments [1]. The common aim of scheduling problem is to minimize an objective function. 

The objective is to minimise the RTV metric value of the solutions. A fair sequence using n 

symbols must be copied di times in the sequence. This fair share of positions allocated to symbol 

i in a subsequence of length k is proportional to the relative importance of symbol i with respect 

to the total copies of symbols. 

 

This problem appears in a broad range of real life applications. The following are some real life 

applications described in [2]. 

 

The situation in which the idea of the regular sequence appeared in the sequencing of mixed-

model assembly lines at Toyota Motor Corporation under the just-in-time (JIT) production 

system. Toyota Motor Corporation used the JIT production system, one of the main aim of JIT is 

to eliminate sources of waste and inefficiency. In the case of Toyota, the main source of waste 

was the production of excessive volumes of stock. To solve this problem, JIT system produces 

necessary models in necessary quantities at necessary time. In this type of system the units 

should be scheduled in such a way that the consumption rates of the components in the 

production process remain constant. 
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The RTVP also appears in computer multi-threaded systems [3]. Multi-threaded system performs 

different tasks of client program that takes place concurrently. These systems need to manage the 

resources in order to serve the request of n clients. 

 

The Asynchronous Transfer Mode (ATM) defined in [4], networks divide each application 

(voice, large data file video) into cells of fixed size so that the application can be preempted after 

each cell. Applications for instance voice and video, requires that a inter-cell distance in a cell 

stream is constant as possible and in the worst case not exceeding some pre-specified value. The 

latter is to account for limited resources shared with other applications. In fact multimedia 

systems should avoid presenting video frames to early or too late which would result in jagged 

motion perceptions. 

 

Another application is stride scheduling, in which the clients are issued the various number of 

tickets by the resource. The resources are then allocated in discrete time slices called quanta. The 

client to be allocated resources in next quantum is selected through a certain function of the 

number of its past allocations and the number of its tickets [5].  

 

The RTVP can be applied to design the sales catalogues, the periodic machine maintenance 

problem as well as other distance-constrained problems. In distance-constrained scheduling 

problems the temporal distance between any two consecutive copies of a same task is not longer 

than the pre-specified distance. Sometimes even a stronger condition is imposed, So that the 

temporal distance is equal to the pre-specified distance.   

 

The RTVP concept also uses the advertising agency and this application was reported in [6]. This 

study is motivated by the problem faced by the National Broadcasting Company (NBC). The 

NBC is one of the leading firms in the US television industry. Major advertisers buy hundreds of 

time slots to air commercials and often require that NBC space to air their commercials as evenly 

as possible over the entire broadcast season. 

 

An application of RTVP in a healthcare facility described in [6] is needed to be scheduled the 

collection of waste materials from trash containers placed in various rooms. Based on the 
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frequency an employee had to visit each room and the fact that different rooms required a 

different number of visits per shift, the healthcare facility manager wants these visits to be as 

regular as possible to avoid excessive waste collecting in any room. For instance, if a room 

needed four visits per eight-hour shift, it should ideally be visited every two hours. 

 

A resource must be shared between different computing demands that require regular attention, it 

is important to schedule the access right to the resource in same fair manner. In such a way that 

the different types of demands share the resource in same manner as mentioned in the above 

applications. These above mentioned applications are some examples of very common situations 

in manufacturing and in services, in which the RTVP can be applied. The objective in the RTVP 

is to minimize variability of the distance between any two consecutive units of the same product, 

client, job. ie. to have the distances between any two given consecutive units of the same product 

as constant as possible. The objective of this dissertation focuses primarily on the implement, 

compare and analyze the metaheuristic solutions to the RTVP.  After covering the introduction 

the rest of the material in this dissertation is organized as follows:  

Chapter 2 covers basic concept, literature review, complexity of the RTVP. In section 3.1 the 

metaheuristic methods for solving RTVP are described. These metaheuristic methods are multi-

start, GRASP and PSO. Section 3.2 presents a brief overview of the initial sequences. Chapter 4 

describes the results, compare and analysis of the metaheuristic methods to solve RTVP. Finally 

chapter 5 covers conclusions and future research areas. 
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Chapter 2 

 

Basic concepts 

 
2.1 The Response Time Variability Problem 

  
The RTVP is the combinatorial optimization problem. The problem has been first solved by 

Waldspurger and Weihl in 1994 using a method called lottery scheduling [3] and formally 

formulated in [4] by A. Corominas. Its formulation is as follows. Let n be the number of symbols 

to be sequenced, and let i be the individual demand. where i is to be copied di times in the 

solution and let D is the total number of copies i.e. summation of the individual demands di. Let 

S be the solution sequence that consists of a circular sequence of copies(S= S1S2……SD), where Sj 

is the copy that sequenced in position j of sequence S. for each symbol i in which di>=2, let tk
i
 be 

the distance between the positions in which the copies k+1 and k of same symbol are found. ie. 

tk
i
 is the gap between the consecutive pair of same job. We consider the gap between the two 

consecutive positions to be equal to 1. the solution sequence is circular, position 1 comes 

immediately after the last position D. let ti be the average or constant distance between two 

consecutive copies of same symbol i. ie ti=D/di. The aim is to minimize the metric RTV, which 

is defined by the following expression. 

 

We define the Response Time Variability for i  is as follows.  

               di 

RTVi  =  ∑  (tk
i
- ti )

2
 

              i=k 

 

And the total Response Time Variability is defined as. 

 

     

     n       

RTV =     ∑   RTVi   

               i=1  

 

    n      di 

RTV =     ∑     ∑   (tk
i
- ti )

2
 

               i=1 k=1 
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From above, 

    

    n      di 

RTV =     ∑     ∑    (tk
i
- ti )

2
 

               i=1 k=1 

 

        n      di  n           di                   n               di 

           =     ∑      ∑    (tk
i
)

2  
+      ∑        ∑      (ti)

2
  -    ∑     (2.ti.     ∑    tk

i
 ) 

                  i=1    k=1 i=1    k=1              i=1            k=1 

 

        n      di     n          di                    n            

            =     ∑      ∑    (tk
i
)

2  
+    ∑       ∑      (ti)

2
  -    ∑     (2.ti. D)  

                   i=1     k=1    i=1     k=1         i=1         

Since 

 

        n           di                               n            

                   ∑       ∑  (ti)
2

       and                 ∑     (2.ti. D)   

                   i=1    k=1                           i=1  

  

are constant, the problem of minimizing Response Time Variability is equivalent to minimizing 

the 

      n       di           

                  ∑      ∑    (tk
i
)

2  
. 

                  i=1   k=1         

 

Thus, the distance between any two consecutive copies of the same symbol should be as regular 

as possible. 

 
An illustrative example is the following: 

 

Let n=3 with symbols A, B, C.  

Also consider  dA=2, dB=2 and dC=4.  

Thus D=8, tA =4, tB =4 and tC =2.  

Consider the sequence  C A C B C B A C  is a solution and has 

RTV = ((5-4)
2 
+ (3-4)

2 
) + ((2-4)

2 
+ (6-4)

2
) + ((2-2)

2 
+ (3-2)

2
) = 12                   

 

 

2.2 Complexity 
 
The RTVP has been proved to be NP-hard in [4]. The solution of the RTVP can be improved. It 

is a combinatorial problem and no polynomial time algorithm is known yet to solve the RTVP. 

Authors of [4] studied the computational complexity of the RTVP and proved that it is NP-hard. 
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The RTVP is NP-hard proved by reducing in to the periodic maintenance scheduling problem. 

The periodic maintenance scheduling problem is defined as follows. Given M machines and 

integer service intervals l1, l2, ……, lm such that ∑(1/li)<1. does there exist a servicing schedule 

S1, S2, ……, SL. Where L=lcm(l1, l2, ………..,lm) is the least common multiple of l1, l2, …., lm of 

these machines in which consecutive servicing of machine i are exactly li time slots apart and no 

more than one machine is serviced in a single time slot? The periodic maintenance scheduling 

problem has been proved to be NP-complete in [7]. 

 
 

2.3 Literature Survey 
 

The RTVP is an optimization scheduling problem. The solution obtained from the different 

methods can be improved. The response time variability problem was first reported by 

Wildpurger and Weihl in 1994 in [3] and formally formulated in [4]. The RTVP has been first 

time solved in [5] using a method called lottery scheduling. This method is based on generating a 

solution at random as follows. For each position of the solution, the symbol to be sequenced is 

chosen at random and the possibility of each symbol is equal to the number of copies of this 

symbol that remain to be sequenced divided by the total number of copies that remain to be 

sequenced. The same authors proposed a greedy heuristic method that they called stride 

scheduling in [5] that obtains better results than the lottery scheduling method. 

 

The RTVP is in general NP-hard problem. The polynomial time algorithm is not known yet to 

solve the real-life application instances. The two-product case can be solved optimally with a 

polynomial time proposed in [7]. For the other cases authors in [4] proposed a mixed-integer 

linear programming (MILP) whose practical limit to obtain optimal solutions is 25 copies to be 

solved. Same authors proposed an improved MILP model and increased the practical limit for 

obtaining optimal solutions from 25 to 40 copies to be solved. 

 

For solving largest instances, heuristic methods have been proposed in [4]. The bottleneck 

algorithm was used in [8] to solve the Minmax Product Rate Variation Problem. The two 

classical parametric methods for solving the apportionment problem called Webster method and 

Jeffersion method are defined in [8]. Webster’s method and Jeffersion’s method are parametric 
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methods. The parametric methods are defined as follows. Let xik be the number of copies of 

symbol i that have been already sequenced in the solution of length k; the next symbol to be 

sequenced in position k+1 is i* = avg maxi {di/xik+δ}, Where δ Є(0,1]. Webster’s and Jefferson’s 

methods are uses a δ value equal to 0.5 and 1, respectively. Same author also describe a random 

sequence generation method. A new heuristic called insertion was also discussed which is based 

on grouping symbols into fictitious symbols until only two fictitious symbol remains and then 

solving optimally using two-product case.  

 

The best exact method to solve RTVP is a MILP which is able to solve optimally instances up to 

40 units to be scheduled in a practical time. To overcome from this limitation a branch and 

bound (B&B) algorithm was proposed in [6]. This algorithm is to increase the size of the 

instances that can be solved optimally. The proposed B&B algorithm is able to solve larger 

instances up to 55 units to optimally. 

 The author of [9] was proposed an aggregation method based on grouping iteratively the 

symbols with the same number of copies to be sequenced into fictitious symbols and then 

applying a parametric method. 

 

The simulated annealing (SA) approach has been proposed in [10] to solve the RTVP. SA can be 

seen as a variant of a local search procedure in which it is allowed moving to a worse solution 

with small probability. A simple SA-based algorithm is able to improve the results.  

 

Many algorithms are based on metaheuristic schemes and other approaches have also been 

proposed. Some proposed techniques are: 

 

1 Algorithms based metaheuristics (multi-start, GRASP and PSO). 

2 Dynamic programming algorithm. 

3 Variable neighborhood search algorithm. 

4 Mixed integer linear programming (MILP) method. 

5 Tabu search algorithm. 

6 Genetic algorithm. 
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Among these algorithms the Tabu search algorithm and MILP algorithms are supposed to be the 

best algorithms for small instances. These algorithms cannot give optimal solution for large 

instances. Thus, the use of heuristic or metaheuristic methods for solving real life RTVP 

instances is justified. This dissertation work emphasis in the metaheuristic approaches, 

particularly, multi-start and GRASP method. 

Hyper-heuristic algorithms are proposed in [11] to solve the RTVP. Hyper-heuristic algorithms 

have two classes. The first is based on constructive heuristics, whereas the second uses 

improvement methods. Hyper-heuristic method is "heuristics to choose heuristics". Hyper-

heuristics apply the right heuristic method in the problem solving process. It operates indirectly 

on the solutions by choosing the heuristic and metaheuristic to be applied. Hyper-heuristic 

method can be applied to a new problem quickly and cheaply. This method can be divided into 

two categories: constructive hyper-heuristics and improvement hyper-heuristics. 
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Chapter 3 

 
The Metaheuristic Methods to Solve RTVP 
 

 For solving the RTVP many algorithms are proposed. RTVP is the sequencing problem and no 

polynomial time algorithm is known yet to solve it. Many algorithms are proposed to find the 

near-to-optimal solution of RTVP. Authors of [12] discussed the problem and suggested some 

solutions based on metaheuristic methods. Some of these metaheuristic procedures are: Multi-

Start (MS), Greedy Randomized Adaptive Search Procedure (GRASP) and Particle Swarm 

Optimization (PSO). The MS and GRASP methods are as follows: 

 

3.1 Multi-Start method 

 
The multi-start method is one of metaheuristic procedure for solving the RTVP proposed in [12]. 

The multi-start metaheuristic is a general scheme that consists of two phases. The first phase 

obtains an initial solution and in the second phase it improves the obtained initial solution by 

using the local optimization method and select the best of them. 

 

The pseudocode of the adaptation of the multi-start method is: 

                                                                             

1. Let the value of the best solution found be z̅ = ∞. 

2. While (actual time<execution time) do: 

3. Get a random initial solution X. 

4. Apply the local optimization to X and get X’. 

5. If value (X’) < Z̅, then Z̅ = value (X’). 

 

The multi-start algorithm to solve the RTVP is based on a random initial solution and on 

improving it by means of local optimization procedure. Random solutions are generated as 

follows. For each position from 1 to D in the solution, a job to be sequenced is chosen at random. 

The probability of choice of each job is equal to the number of copies of this job that remain to 

be sequenced divided by the total number of copies that remain to be sequenced.  

The local optimization is applied as follows. A local search is performed iteratively in a 

neighborhood that is generated by interchanging each pair of two consecutive units of the 
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sequence that represents the current solution. The best solution in the neighborhood is chosen, 

the optimization ends when no neighboring solution is better than current solution. If the quality 

of initial solution is poor, the computing time required by local search procedure to find the local 

optimized solution is increased. 

 

Another form of multi-start algorithm can be obtained by using initial sequence as insertion 

sequence in [13]. Insertion method is suggested in [14]. In insertion sequence, for more than two 

products the problem is reduced into two-product. And  then solve it by using two-product case 

method.  

 

Let the demands be d1 ≤………..≤dn. consider n-1 two case problem.  

                                               

                                              n                                       n 

Pn-1= (dn-1, dn),  pn-2 = (dn-2,    ∑     dj) …….. ,   p1   =  (d1,    ∑  dj). 

                                            J=n-1                             j=2 

 

In each of the problem the first product is the original and second product will be the assumed 

product, and denoted by the *. Let the sequences sn-1,   sn-2,  ……….. , s1, be the optimal solution. For 

the given problems they can be obtained by using the two case- problem. The solution is made 

up of the product j and *. The sequence of the original problem is built recursively by first 

replacing * in S1 by S2 to obtain S1'. Next * are replaced by S3 in S1' to obtain the solution S1''. 

Sequence Sn-1 replaces all the remaining * and obtain the final solution. The local optimization is 

same as in the original multi-start algorithm. 

 

 
 

3.2 The Greedy Randomized Adaptive Search Procedure (GRASP)                            

       Method 
 

 

The GRASP metaheuristic method can be considered as a variant of multi-start [12]. In GRASP, 

the generation of initial solution is obtained by greedy method. In this, random steps are added 

and choice of elements to be included in the sequence is adaptive. The probability of each job is 

proportional to the value of an associated index. The algorithm of the GRASP adaptation is 
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almost same as the multi-start method. The only difference is in constructing the initial solution. 

For each position from 1 to D, the next job to be sequenced is randomly selected from a list with 

a probability proportional to the value of its associated index. The associated index suggested in 

[12] is Webster index. 

 

The Webster sequence is obtained as follows. 

Let Xik be the number of units of job i, that have been already sequenced in the sequence of 

length k, k=0, 1,……,di the number of units of the job i and D the total number of units, the value 

of the Webster index of product i to be sequenced position k+1 is di/Xik+δ. 

Here δ is the Webster’s parametric metrics and δ=1/2. 

 

Another variation of GRASP can be obtained by using the Jefferson sequence as initial solution. 

In the Jefferson’s sequence the parametric matrices δ=1 is used in [12]. This parameter affects 

the relative priority of low demand jobs and their position in the sequence. When δ is near to 0, 

low demand jobs will be positioned earlier in the solution but when δ is near to 1, low demand 

jobs will be positioned later in the solution. 

 

3.3 Particle Swarm Optimization (PSO) 
 

 

Particle Swarm Optimization (PSO) metaheuristic algorithm was designed by Kinnedy and 

Eberhart by establishing an analogy to the social behavior of flocks of birds, when they search 

for food described in [12]. PSO is population based metaheuristic algorithm which used for 

solving the optimization scheduling problem such as RTVP. This metaheuristic was designed to 

optimize continuous functions of real variables. In this method the particles corresponding to the 

birds, have a position (a feasible solution) and a velocity (the change in their position), and the 

set of particles form the swarm, which corresponds to the flock. The behavior of a particle is the 

result of the combination of the following three factors: 

 

        1. To continue on the path that it is following. 

 2. To follw the best solution found and 

 3. To go to the best position found by the swarm. 
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The initial sequences are generated as in the multi-start method. The PSO method, iteratively 

update the sequence and the velocity of each particle as it looks for the optimal solution. 

   

3.4 The Initial Sequences 
 

 

3.4.1 Two- product case  
 

 

The two-product case, n=2. It shows a solution that minimizes both the total response time 

variability and the maximum deviation at a same time, which generally is impossible for more 

than two products. Let d1 and d2 are two products with different number of demands. We omit the 

case d1=d2 since it is trivial. When solving the two-product case, the first copy of the product 

with the less number of copies is assigned to the first position and the remaining copies are 

placed in the sequence D mod di times with a distance              to the last position assigned and di 

– D mod di times with a distance              to the last position assigned [12]. 

 

3.4.2 Bottleneck Sequence  
 

 

The bottleneck sequences can be obtained by solving the bottleneck problem to optimally with 

the method described in [7]. 

 

3.4.3 Random Sequence  
 

 

The bottleneck sequence S has been randomized as follows. For each position x in the sequence 

1….D, get a random number ran in the range 1…..D. Then, swap S[x] with S[ran] [7]. 

 

The detailed analysis of the above methods are described in [7]. All of these methods have 

comparable results. 

 

 

                                    

 

D/di 

D/di 
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Chapter 4 
 

Result and Analysis 

 
4.1 Computational Experiment 
 

The metaheuristic algorithms have been run for 882 different instances, which are grouped into 

four different categories. Formation of category is based on paper [15]. Category 1 include 162 

instances, category 2 include 192 instances, category 3 include 282 instances and category 4 

include 246 instances. The corresponding instances are same for every category of different 

algorithms. The instances in the first category CATEGORY 1 were generated using a random 

value of D between 25 and 50, and a random value of n between 3 and 15. For the second 

category CATEGOTY 2, D was between 50 and 100 and number of demands n between 3 and 

30; For the third CATEGORY 3, total number of copies i.e. D was from 100 to 200 and number 

of demands i.e. n between 3 and 65; and finally for the fourth class CATEGORY 4, number of 

copies are between 200 and 500 and number of demands are between 3 to 150. The instances 

have been generated by first fixing the total number of copies D and the number of demands n. 

for all instances and for each type of product i= 1,…, n, a random value of di is between 1 and D. 

the program has been executed to obtained the output of demands among which some of them 

were executed for several minutes.  

The average initial RTV values (AIRTV), the average optimized RTV values (AORTV) and the 

average number of iterations required to obtained the optimized sequence (No. of iterations) 

using in multi-start, GRASPwe (GRASP use Webster’s sequence as initial solution) and GRASPje 

(GRASP with use of Jeffersion’s  sequence as initial solution) metaheuristic algorithms. The 

experimental result is tabulated in given tables.  
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Category Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

Global 137515.75 326 1402 

CAT1 890 25 58 

CAT2 4837 57 192 

CAT3 34050 232 781 

CAT4 510286 990 4577 

 

Table 1: Experimental result of multi-start algorithm. 

 

Category Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

Global 21352.50 292.5 929.25 

CAT1 144 38 22 

CAT2 1056 80 119 

CAT3 5114 315 726 

CAT4 79096 737 2850 

 

Table 2: Experimental result of GRASPwe. 

 

Category Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

Global 18698.25 244 629 

CAT1 143 29 21 

CAT2 941 63 95 

CAT3 4537 219 322 

CAT4 69172 665 2078 

 

Table 2: Experimental result of GRASPje. 
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By analyzing these tables, for all instances in initial value of RTV the GRASPje is 12.43%better 

than GRASPwe and 86.40% better than multi-start. But in optimized RTV value GRASPje is 

16.58% better than GRASPwe and 25.15% better than multi-start.GRASPje also take the less 

number of iterations for obtaining the optimized solution i.e. it is faster than other two methods. 

GRASPje take the 32.31%less number of iterations than GRASPwe and 55.13% less number of 

iterations than multi-start. By analyzing above table, the multi-start algorithm obtains the good 

averages for small instances (category 1 and category 2) but, poor average results for large 

instances (category 4). GRASPje and GRASPwe gives the better result than multi-start algorithm 

for large instances (category 4). 
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4.2 Computational Results 
 

The following different table shows the results obtained from the metaheuristic algorithms to 

solving the RTVP. For four categories the total number of copies D and the number of input n is 

fixed and different instances are generated. For each instance the initial RTV value, optimized 

RTV value and no. of iterations are computed. 

 

Multi-Start method 

Category 1 

N D Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

3 25 59 12 10 

3 26 92 14 13 

4 27 96 16 15 

4 28 220 18 22 

5 29 208 21 22 

5 30 274 18 29 

6 31 296 21 36 

6 32 373 20 38 

7 33 409 20 35 

7 34 541 27 43 

8 35 572 28 41 

8 36 792 49 51 

9 37 858 21 57 

9 38 1011 20 97 

10 39 1972 48 66 

10 40 1084 29 78 

11 41 1108 43 73 

11 42 1446 31 92 

12 43 1192 34 69 

12 44 1477 21 87 
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13 45 1391 32 82 

13 46 1690 29 98 

14 47 1621 23 98 

14 48 1798 37 98 

15 49 1738 18 93 

15 50 1681 24 98 

3 50 42 18 14 

 

 

Category 2 

N D Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

3 50 76 18 14 

3 51 119 24 15 

3 100 171 39 7 

4 52 130 28 17 

5 53 617 47 63 

6 54 577 45 52 

7 55 941 63 67 

8 56 2107 58 121 

9 57 1969 51 126 

10 58 2442 55 124 

11 59 2828 70 142 

12 60 3353 66 158 

13 61 3553 61 172 

14 62 3719 61 169 

15 64 3064 54 146 

16 65 3658 49 175 

17 67 5529 52 219 

18 70 5582 84 234 
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19 72 5626 85 241 

20 73 5056 64 228 

21 74 6836 60 271 

22 75 6872 67 261 

23 76 7679 44 313 

24 78 7310 50 288 

25 80 8161 46 292 

26 85 9551 75 348 

27 87 9199 60 317 

28 88 8988 41 320 

28 90 10121 104 378 

29 95 8288 50 305 

30 100 11302 52 386 

30 98 9353 90 190 
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Category 3 

N D Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

3 100 171 39 18 

4 101 489 84 41 

5 102 3241 91 154 

6 103 1072 118 87 

7 104 1356 139 121 

8 105 8638 206 159 

9 106 6543 140 283 

10 108 5229 178 270 

11 109 14749 207 352 

12 110 13174 185 371 

13 111 14663 139 484 

14 112 17476 180 544 

15 115 18496 233 554 

16 120 24746 258 591 

17 122 34504 272 764 

18 125 28997 1920 2192 

19 129 26229 199 743 

20 132 36490 268 784 

21 133 41537 253 763 

22 134 38828 247 851 

23 136 41251 302 854 

24 139 31654 300 781 

25 142 49581 254 999 

26 146 41239 239 983 

27 148 55287 264 1009 

28 150 44451 282 961 

29 153 48213 362 987 



 20 

30 160 56083 337 1122 

31 162 59624 260 1224 

32 165 53536 160 1163 

33 169 53536 160 1163 

34 171 56543 200 1193 

35 172 53181 176 1139 

36 175 47506 144 1127 

37 178 45540 148 1094 

38 180 43455 165 980 

39 182 59586 186 1276 

40 183 44981 137 1040 

41 185 50876 130 1153 

45 189 45619 160 1024 

47 192 48033 155 1004 

50 194 60561 277 1245 

53 196 64345 463 1342 

55 198 6787 132 1196 

60 199 77484 116 1268 

65 200 64432 141 1128 

3 200 771 115 60 
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Category 4 

N D Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

3 200 771 115 60 

4 210 125 42 15 

5 220 61125 494 290 

6 225 5595 540 301 

7 230 2962 334 220 

8 240 41362 805 741 

18 290 60870 2281 2192 

25 320 50234 2445 2271 

35 335 268438 1077 4439 

48 359 299257 707 4823 

65 200 64432 141 1128 

65 370 53753 325 5889 

72 379 649814 809 5823 

78 388 797601 1242 7419 

83 392 818188 701 6884 

95 400 940530 806 7743 

100 409 915885 568 7188 

120 462 1469352 536 10530 

140 494 1626431 626 10902 

148 498 1362236 433 8845 

150 500 1227050 433 8417 
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GRASPwe  method 

Category 1 

N D Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

3 25 10 6 2 

3 26 9 9 1 

3 50 16 15 1 

4 27 16 13 4 

5 29 25 17 4 

5 30 33 26 4 

6 31 38 23 7 

6 32 46 29 7 

7 33 48 29 8 

7 34 45 33 8 

8 35 65 42 9 

8 36 72 41 11 

9 37 99 40 19 

9 38 99 56 15 

10 39 126 61 21 

10 40 114 72 12 

11 41 188 51 32 

11 42 227 36 39 

12 43 211 49 36 

12 44 178 91 18 

13 45 252 53 38 

13 46 264 46 46 

14 47 347 52 58 

14 48 382 52 55 

15 49 506 30 71 

15 50 457 37 71 
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4 28 16 16 1 

 

 

Category 2 

N D Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

3 50 16 15 1 

3 51 17 15 2 

3 100 26 24 1 

4 52 31 23 3 

5 53 72 35 7 

6 54 62 33 11 

7 55 70 43 13 

8 56 75 59 6 

9 57 135 60 21 

10 58 124 82 17 

11 59 142 89 21 

12 60 105 118 25 

13 61 281 85 50 

14 62 319 90 57 

15 64 387 107 54 

16 65 442 129 66 

17 67 576 74 104 

18 70 678 169 86 

19 72 723 90 140 

20 73 949 123 133 

21 74 1267 74 170 

22 75 1391 69 167 

23 76 1688 48 193 

24 78 1944 92 187 
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25 80 2148 55 220 

26 85 2439 63 442 

27 87 2438 72 256 

28 88 2721 102 257 

28 90 2660 74 260 

29 95 2966 145 266 

30 98 3460 117 291 

30 100 3451 194 277 

 

 

Category 3 

N D Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

3 100 26 24 1 

4 101 47 39 4 

5 102 74 60 7 

6 103 110 54 24 

7 104 120 90 8 

8 105 119 94 11 

9 106 159 105 22 

10 108 219 127 33 

11 109 209 244 26 

12 110 253 177 42 

13 111 300 198 33 

14 112 333 180 43 

15 115 411 427 58 

16 120 363 248 56 

17 122 683 286 83 

18 125 599 343 61 

19 129 670 350 92 
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20 132 706 386 76 

21 133 909 502 85 

22 134 1011 471 134 

23 136 1079 523 123 

24 139 1411 416 565 

25 142 1589 704 163 

26 146 1746 421 280 

27 148 1902 583 268 

28 150 2038 665 233 

29 153 2256 542 340 

30 160 2754 566 406 

31 162 2945 699 394 

32 165 3525 449 491 

33 169 3500 528 475 

34 171 4794 378 558 

35 172 4982 319 5677 

36 175 6394 274 698 

37 178 7408 184 754 

38 180 8051 237 717 

39 182 7538 310 746 

40 183 9727 232 812 

41 185 10769 154 869 

45 189 13923 203 11165 

47 192 15102 300 902 

50 194 15556 381 1005 

53 196 19062 393 1050 

55 198 20302 230 1209 

60 199 25194 222 1323 

65 200 34371 381 1278 
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Category 4 

N D Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

3 200 57 49 5 

4 210 47 29 8 

5 220 160 134 12 

6 225 198 140 23 

7 230 252 104 52 

8 240 300 173 53 

18 290 2030 933 241 

25 320 5241 1003 639 

35 335 6227 1150 1024 

48 359 15832 1026 1981 

65 200 34371 381 1278 

65 370 23015 1253 2315 

72 379 33271 2820 2994 

78 388 37883 1714 3421 

83 392 50256 3601 3539 

95 400 79400 971 4684 

100 409 98204 1269 4880 

120 462 179585 1732 6843 

140 494 301352 1082 8558 

148 498 374087 599 8786 

150 500 419248 750 8516 
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GRASPje  method 

Category 1 

N D Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

3 25 9 7 1 

3 26 9 9 0 

3 50 16 16 0 

4 27 17 11 4 

4 28 18 15 1 

5 29 26 16 6 

5 30 29 16 6 

6 31 46 22 9 

6 32 47 16 13 

7 33 54 23 9 

7 34 65 35 13 

8 35 65 27 15 

8 36 88 36 19 

9 37 100 38 19 

9 38 105 52 14 

10 39 177 41 25 

10 40 146 38 24 

11 41 195 35 32 

11 42 223 41 36 

12 43 220 36 33 

12 44 269 28 36 

13 45 206 37 27 

13 46 302 39 44 

14 47 401 44 50 

14 48 301 26 41 

15 49 356 35 46 
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15 50 373 42 47 

 

 

Category 2 

N D Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

3 50 16 16 0 

3 51 19 15 3 

3 100 24 22 1 

4 52 29 17 5 

5 53 48 32 8 

6 54 68 25 9 

7 55 70 52 17 

8 56 102 46 18 

9 57 155 50 30 

10 58 143 84 17 

11 59 197 79 30 

12 60 299 68 43 

13 61 403 91 117 

14 62 401 69 65 

15 64 361 61 50 

16 65 442 62 58 

17 67 669 74 84 

18 70 871 90 102 

19 72 876 80 101 

20 73 837 72 122 

21 74 1214 71 132 

22 75 1216 90 124 

23 76 1663 73 162 

24 78 1560 66 149 
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25 80 1510 49 142 

26 85 2230 64 204 

27 87 2103 126 170 

28 88 2347 48 202 

28 90 2444 88 212 

29 95 2379 70 206 

30 98 2809 89 226 

30 100 2606 70 234 

 

 

Category 3 

N D Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

3 100 24 22 1 

4 101 51 33 8 

5 102 75 53 9 

6 103 107 49 21 

7 104 130 66 20 

8 105 161 99 24 

9 106 187 109 27 

10 108 248 110 37 

11 109 749 182 103 

12 110 377 190 37 

13 111 470 189 61 

14 112 567 167 87 

15 115 562 180 89 

16 120 824 243 90 

17 122 1004 228 129 

18 125 1082 180 144 

19 129 1046 233 151 
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20 132 1394 260 150 

21 133 1568 289 166 

22 134 1924 267 232 

23 136 2058 325 205 

24 139 2325 314 265 

25 142 2723 374 236 

26 146 2409 323 277 

27 148 2946 330 292 

28 150 3150 282 322 

29 153 3563 428 341 

30 160 3989 307 419 

31 162 4205 384 413 

32 165 4791 280 454 

33 169 5182 266 467 

34 171 5503 346 450 

35 172 5677 259 514 

36 175 5984 315 487 

37 178 6372 265 547 

38 180 6596 223 527 

39 182 7537 278 600 

40 183 8584 192 622 

41 185 8657 195 639 

45 189 11166 173 688 

47 192 11711 186 637 

50 194 12869 376 691 

53 196 14478 341 767 

55 198 14740 264 762 

60 199 16392 142 778 

65 200 22524 176 834 
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Category 4 

N D Average initial 

 RTV 

Average optimal  

RTV 

No. of iterations 

3 200 53 48 4 

4 210 47 29 8 

5 220 168 124 19 

6 225 191 116 31 

7 230 232 111 44 

8 240 290 176 42 

18 290 1514 489 216 

25 320 4789 772 450 

35 335 7800 987 870 

48 359 18017 2423 1429 

65 200 2252 176 834 

65 370 34395 1757 1952 

72 379 43405 817 2435 

78 388 56087 1175 2568 

83 392 64562 813 2906 

95 400 92981 921 3400 

100 409 100340 604 3600 

120 462 176803 823 5033 

140 494 261247 854 6036 

148 498 278589 453 5741 

150 500 308841 469 5970 
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Chapter 5 
 

  

Conclusions and Future Research 
 

 

The response time variability problem is an NP-hard scheduling problem. This scheduling 

problem arises in a variety of real-life applications including mixed-model assembly lines, multi-

threaded computer systems, periodic machine maintenance and waste collection. In the RTVP, 

the aim is to minimize variability in the distances between any two consecutive copies of the 

same symbol. i.e. to distribute the symbols as regular as possible. Several algorithms have been 

proposed in the literature for solving the RTVP. Since it is an NP-hard problem, metaheuristic 

methods are needed for solving real life problems. A computational experiment was done and its 

result show that on average the GRASPje is better than GRASPwe and multi-start. But for small 

instances multi-start is better metaheuristic method for solving RTVP. In addition the GRASPje 

method has a stable behavior for small, medium and large instances. 

 

Future research may focus on improving the result to solve the RTVP is adding the simulated 

annealing algorithms and variable neighborhood search hybrid algorithms as low-level heuristics 

in the metaheuristics.  
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Appendices 
 

 

Code for GRASPwe 
   

 

  #include<stdio.h> 

  #include<conio.h> 

  #include<math.h> 

  #include<alloc.h> 

  #include<stdlib.h> 

 

  #define n 150 

  #define D 500  

  float rtv(int *,float *); 

  int max(float *); 

  float webster(float *); 

  int min(float *); 

  int sequence[D]; 

  void main() 

  { 

  float rt; 

  float d[n]; 

  float e[n]; 

  int i,j,m,k=0,temp,t=1; 

  int seq1[D]; 

  int seq2[D]; 

  float rem[n]; 

  int temparray[D][D]; 

  float rtvs[D]; 

  float current_rtv; 

  int x; 

  int xxx=0; 
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  printf("Input vector"); 

  for(i=0;i<n;i++)  

   scanf("%f",&d[i]); 

   rt=webster(d); 

   printf("\nRTV=%f\n",rt); 

   current_rtv=rt; 

   for(j=0;j<D;j++) 

   seq1[j]= sequence[j]; 

   while(t==1) 

      { 

    printf("\n \n\n"); 

    for(i=0;i<D-1;i++) 

         { 

    for(j=0;j<D;j++) 

    seq2[j]= seq1[j]; 

    temp=seq2[i]; 

    seq2[i]=seq2[i+1]; 

    seq2[i+1]=temp; 

    rtvs[i]=rtv(seq2,d); 

    for(j=0;j<D;j++) 

    temparray[i][j]= seq2[j]; 

    printf("\n "); 

    for(j=0;j<D;j++) 

    printf(" %d ",seq2[j]); 

    printf("   :rtv=  %f",rtv(seq2,d));*/ 

         } 

 

    for(j=0;j<D;j++) 

    seq2[j]= seq1[j]; 
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    temp=seq2[0]; 

       seq2[0]=seq2[D-1]; 

       seq2[D-1]=temp; 

       rtvs[D-1]=rtv(seq2,d); 

       printf("\n "); 

       for(j=0;j<D;j++) 

       printf(" %d ",seq2[j]); 

       printf("   :rtv=  %f",rtv(seq2,d)); 

       printf("\n  "); 

       for(j=0;j<D;j++) 

       temparray[D-1][j]= seq2[j]; 

        x=min(rtvs); 

       if(rtvs[x]<current_rtv) 

         { 

       current_rtv=rtvs[x]; 

 

       for(j=0;j<D;j++) 

       seq1[j]= temparray[x][j]; 

          } 

 

     else 

       { 

     t=0; 

 

     printf("\n optimized sequence: "); 

 

     for(i=0;i<D;i++) 

     printf(" %d ",seq1[i]); 

     printf("\n  optimized rtv = %f",current_rtv); 

     printf("\n Iterations=%d", xxx); 

       } 
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    xxx++; 

      } 

getch(); 

 

    } 

float webster(float *x) 

    { 

int s[D]; 

int d1[n]; 

int length,j,m; 

float temp[n];              //Webster index 

float r; 

int i; 

for(i=0;i<n;i++)            //temporary vector to keep track of 

 d1[i]=0;                  //no. of sequenced copies 

for(length=0;length<D;length++) 

      { 

 for(j=0;j<n;j++) 

      { 

if(d1[j]<=x[j]) 

temp[j]= (x[j])/(d1[j]+0.5); 

      } 

m=max(temp);                       //return position of max element 

sequence[length]=m+1; 

d1[m]=d1[m]+1; 

      } 

printf("\n\n  initial sequence: "); 

for(i=0;i<D;i++) 

printf("  %d",sequence[i]); 

r=rtv(sequence,x); 
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return(r); 

} 

float rtv(int *x,float *y)              //To calculate RTV on initial sequence 

    { 

int i,j,k,l,m,p,q=0; 

int distances[D]; 

float avg[n]; 

float rt; 

for(i=0;i<D;i++) 

distances[i]=0; 

p=0; 

rt=0; 

                                                  //calculate average distances for each symbol 

for(i=0;i<n;i++) 

avg[i]=D/y[i]; 

printf("\n\n  Average distances: "); 

for(i=0;i<n;i++) 

printf("  %f",avg[i]);*/ 

                                               //calculate actual distances between copies of symbols 

for(i=0;i<n;i++) 

     { 

l=0; 

for(j=0;j<y[i];j++) 

       { 

m=1; 

while(x[l]!=i+1) 

l=(l+1)%D; 

k=(l+1)%D; 

while(x[k]!=x[l]) 

         { 

 m++; 
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k=(k+1)%D; 

         } 

distances[p]=m; 

l=k; 

p++; 

          } 

              } 

printf("\n\n distances: "); 

for(i=0;i<D;i++) 

printf("%d  ",distances[i]);   */ 

for(i=0;i<n;i++) 

       { 

for(j=0;j<y[i];j++) 

         { 

 rt=rt+((distances[q]-(D/y[i]))*(distances[q]-(D/y[i]))); 

 q++ ; 

         } 

       } 

return rt; 

    } 

int max(float *x) 

    { 

int i,j=0; 

float m; 

m=x[0]; 

for(i=1;i<n;i++) 

      { 

if(x[i]>=m) 

      { 

m=x[i]; 

j=i; 
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} 

           } 

return j; 

    } 

int min(float *x) 

    { 

int i,j=0; 

float m; 

m=x[0]; 

for(i=1;i<D;i++) 

      { 

 if(x[i]<m) 

      { 

m=x[i]; 

j=i; 

      } 

      } 

return j; 

   } 
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Code for GRASPje 
 

#include<stdio.h> 

#include<conio.h> 

#include<math.h> 

#include<alloc.h> 

#include<stdlib.h> 

#define n 150 

#define D 500 

float rtv(int *,float *); 

int max(float *); 

float webster(float *); 

int min(float *); 

int sequence[D]; 

void main() 

  { 

float rt; 

float d[n]; 

float e[n]; 

int i,j,m,k=0,temp,t=1; 

int seq1[D]; 

int seq2[D]; 

float rem[n]; 

int temparray[D][D]; 

float rtvs[D]; 

float current_rtv; 

int x; 

int xxx=0; 

printf("Input vector"); 

for(i=0;i<n;i++) 

scanf("%f",&d[i]); 

 rt=webster(d); 
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printf("\nRTV=%f\n",rt); 

current_rtv=rt; 

for(j=0;j<D;j++) 

seq1[j]= sequence[j]; 

while(t==1) 

      { 

 printf("\n \n\n"); 

 for(i=0;i<D-1;i++) 

         { 

 for(j=0;j<D;j++) 

seq2[j]= seq1[j]; 

temp=seq2[i]; 

seq2[i]=seq2[i+1]; 

seq2[i+1]=temp; 

rtvs[i]=rtv(seq2,d); 

for(j=0;j<D;j++) 

temparray[i][j]= seq2[j]; 

 printf("\n "); 

 for(j=0;j<D;j++) 

 printf(" %d ",seq2[j]); 

 printf("   :rtv=  %f",rtv(seq2,d)); */ 

         } 

for(j=0;j<D;j++) 

seq2[j]= seq1[j]; 

temp=seq2[0]; 

seq2[0]=seq2[D-1]; 

seq2[D-1]=temp; 

rtvs[D-1]=rtv(seq2,d); 

 printf("\n "); 

 for(j=0;j<D;j++) 

printf(" %d ",seq2[j]); 
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printf("   :rtv=  %f",rtv(seq2,d)); 

printf("\n  ");  */ 

for(j=0;j<D;j++) 

temparray[D-1][j]= seq2[j]; 

x=min(rtvs); 

if(rtvs[x]<current_rtv) 

         { 

current_rtv=rtvs[x]; 

for(j=0;j<D;j++) 

seq1[j]= temparray[x][j]; 

          } 

else 

       { 

t=0; 

printf("\n optimized sequence: "); 

 

for(i=0;i<D;i++) 

printf(" %d ",seq1[i]); 

printf("\n  optimized rtv = %f",current_rtv); 

printf("\n iterations: %d",xxx); 

       } 

xxx++; 

      } 

getch(); 

    } 

float webster(float *x) 

    { 

int s[D]; 

int d1[n]; 

int length,j,m; 

float temp[n];              //Webster index 
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float r; 

int i; 

for(i=0;i<n;i++)            //temporary vector to keep track of 

d1[i]=0;                  //no. of sequenced copies 

for(length=0;length<D;length++) 

      { 

for(j=0;j<n;j++) 

      { 

if(d1[j]<=x[j]) 

temp[j]= (x[j])/(d1[j]+1); 

      } 

m=max(temp);                       //return position of max element 

sequence[length]=m+1; 

d1[m]=d1[m]+1; 

      } 

printf("\n\n  initial sequence: "); 

for(i=0;i<D;i++) 

printf("  %d",sequence[i]); 

r=rtv(sequence,x); 

return(r); 

    } 

float rtv(int *x,float *y)              //To calculate RTV on initial sequence 

    { 

int i,j,k,l,m,p,q=0; 

int distances[D]; 

float avg[n]; 

float rt; 

 for(i=0;i<D;i++) 

 distances[i]=0; 

p=0; 

rt=0; 
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                                    //calculate average distances for each symbol 

for(i=0;i<n;i++) 

avg[i]=D/y[i]; 

printf("\n\n  Average distances: "); 

for(i=0;i<n;i++) 

printf("  %f",avg[i]);*/ 

                                          //calculate actual distances between copies of symbols 

for(i=0;i<n;i++) 

     { 

l=0; 

for(j=0;j<y[i];j++) 

       { 

m=1; 

while(x[l]!=i+1) 

l=(l+1)%D; 

k=(l+1)%D; 

while(x[k]!=x[l]) 

         { 

m++; 

k=(k+1)%D; 

         } 

distances[p]=m; 

l=k; 

p++; 

       } 

     } 

printf("\n\n distances: "); 

for(i=0;i<D;i++) 

printf("%d  ",distances[i]);    

for(i=0;i<n;i++) 

       { 
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for(j=0;j<y[i];j++) 

         { 

rt=rt+((distances[q]-(D/y[i]))*(distances[q]-(D/y[i]))); 

q++ ; 

         } 

       } 

return rt; 

    } 

int max(float *x) 

    { 

int i,j=0; 

float m; 

m=x[0]; 

for(i=1;i<n;i++) 

      { 

if(x[i]>=m) 

      { 

m=x[i]; 

j=i; 

      } 

      } 

return j; 

    } 

int min(float *x) 

    { 

int i,j=0; 

float m; 

m=x[0]; 

for(i=1;i<D;i++) 

                  { 

if(x[i]<m) 
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      { 

 m=x[i]; 

j=i; 

      } 

      } 

return j; 

    } 

 

 

 

 

Code for multi-start method 
   

 

 

#include<stdio.h> 

 #include<conio.h> 

 #include<math.h> 

 #include<alloc.h> 

 #include<stdlib.h> 

#define n 150 

#define D 500 

     float rtv(int *,float *); 

     int max(float *); 

     float rtv(int *,float *); 

     int min(float *); 

 

  void main() 

  { 

  float rt; 

  float d[n]; 

  float e[n]; 

  int i,j,m,k=0,temp,t=1; 

  int sequence[D]; 
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  int seq1[D]; 

  int seq2[D]; 

  float rem[n]; 

  int remaning = D; 

  int temparray[D][D]; 

  float rtvs[D]; 

  float current_rtv; 

  int x; 

  int xxx; 

  printf("Input vector"); 

  for(i=0;i<n;i++) 

 scanf("%f",&d[i]); 

 for(i=0;i<n;i++) 

e[i]= d[i]; 

 for ( i=0;i<D; i++) 

    { 

 for (j=0;j<n;j++) 

       { 

 rem[j]=e[j]/remaning; 

         } 

 m=max(rem); 

 sequence[i]=m+1; 

 remaning=remaning-1; 

e[m]=e[m]-1; 

      } 

 rt=rtv(sequence,d); 

 printf("\n Initial sequence: "); 

 for(i=0;i<D;i++) 

 printf(" %d ",sequence[i]);printf("\nRTV=%f\n",rt); 

     current_rtv=rt; 

     for(j=0;j<D;j++) 
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     seq1[j]= sequence[j]; 

      while(t==1) 

      { 

     printf("\n \n\n"); 

    for(i=0;i<D-1;i++) 

         { 

    for(j=0;j<D;j++) 

    seq2[j]= seq1[j]; 

    temp=seq2[i]; 

    seq2[i]=seq2[i+1]; 

    seq2[i+1]=temp; 

    rtvs[i]=rtv(seq2,d); 

    for(j=0;j<D;j++) 

    temparray[i][j]= seq2[j]; 

     printf("\n "); 

     for(j=0;j<D;j++) 

     printf(" %d ",seq2[j]); 

     printf("   :rtv=  %f",rtv(seq2,d)); */ 

         } 

     for(j=0;j<D;j++) 

     seq2[j]= seq1[j]; 

     temp=seq2[0]; 

     seq2[0]=seq2[D-1]; 

     seq2[D-1]=temp; 

     rtvs[D-1]=rtv(seq2,d); 

     printf("\n "); 

     for(j=0;j<D;j++) 

     printf(" %d ",seq2[j]); 

     printf("   :rtv=  %f",rtv(seq2,d)); 

 

     printf("\n  ");    
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     for(j=0;j<D;j++) 

     temparray[D-1][j]= seq2[j]; 

     x=min(rtvs); 

     if(rtvs[x]<current_rtv) 

         { 

     current_rtv=rtvs[x]; 

     for(j=0;j<D;j++) 

     seq1[j]= temparray[x][j]; 

          } 

    else 

       { 

    t=0; 

    printf("\n optimized sequence: "); 

    for(i=0;i<D;i++) 

    printf(" %d ",seq1[i]); 

    printf("\n  optimized rtv = %f",current_rtv); 

    printf("\n iterations: %d",xxx); 

       } 

   xxx++; 

      } 

  getch(); 

 

    } 

   float rtv(int *x,float *y)              //To calculate RTV on initial sequence 

    { 

   int i,j,k,l,m,p,q=0; 

   int distances[D]; 

   float avg[n]; 

   float rt; 

   for(i=0;i<D;i++) 

   distances[i]=0; 
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   p=0; 

   rt=0; 

                                                //calculate average distances for each symbol 

 

   for(i=0;i<n;i++) 

   avg[i]=D/y[i]; 

   printf("\n\n  Average distances: "); 

   for(i=0;i<n;i++) 

    printf("  %f",avg[i]);*/ 

                                                   //calculate actual distances between copies of symbols 

    for(i=0;i<n;i++) 

     { 

    l=0; 

    for(j=0;j<y[i];j++) 

       { 

     m=1; 

     while(x[l]!=i+1) 

     l=(l+1)%D; 

     k=(l+1)%D; 

     while(x[k]!=x[l]) 

         { 

     m++; 

     k=(k+1)%D; 

         } 

     distances[p]=m; 

      l=k; 

      p++; 

       } 

     } 

      printf("\n\n distances: "); 

      for(i=0;i<D;i++) 
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      printf("%d  ",distances[i]);   */ 

      for(i=0;i<n;i++) 

       { 

      for(j=0;j<y[i];j++) 

         { 

      rt=rt+((distances[q]-(D/y[i]))*(distances[q]-(D/y[i]))); 

      q++ ; 

         } 

       } 

     return rt; 

    } 

 

     int max(float *x) 

    { 

     int i,j=0; 

     float m; 

     m=x[0]; 

     for(i=1;i<n;i++) 

      { 

    if(x[i]>=m) 

      { 

    m=x[i]; 

     j=i; 

      } 

      } 

     return j; 

    } 

   int min(float *x) 

    { 

   int i,j=0; 

   float m; 



 54 

   m=x[0]; 

   for(i=1;i<D;i++) 

      { 

    if(x[i]<m) 

      { 

    m=x[i]; 

     j=i; 

      } 

      } 

     return j; 

    } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


