
A Comparative Analysis of ACO and BCO for
Solving the TSP

Dissertation

Submitted To
Central Department of Computer Science & Information Technology

Institute of Science and Technology

Tribhuvan University, Kathmandu, Nepal

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Science & Information Technology

Submitted By
Niranjan Kathayat

Roll No. : 20 (2011-2013)
June 05, 2014

Under Supervision of:

Asst. Prof. Nawaraj Paudel

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Date: 05-06-2014

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than the

listed here have been used in this work.

… … … … … … …

Niranjan Kathayat

M.Sc. CSIT (2011-2013)

Central Department of Computer Science

and Information Technology,

Institute of Science and Technology,

Kirtipur, Kathmandu, Nepal

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Date: 05-06-2014

Supervisor’s Recommendation

I hereby recommend that the dissertation prepared under my supervision by Mr. Niranjan

Kathayat entitled “A Comparative Analysis of ACO and BCO for Solving the TSP” be

accepted as in fulfilling partial requirement for the completion of Masters Degree of Science

in Computer Science & Information Technology. In my best knowledge this is an original

work in computer science.

Asst. Prof. Nawaraj Paudel

Head,
Central Department of Computer Science
and Information Technology,
Institute of Science and Technology,
Kirtipur, Kathmandu, Nepal

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Date: 05-06-2014

LETTER OF APPROVAL

We certify that we have read this dissertation work and in our opinion it is appreciable for the

scope and quality as a dissertation in the partial fulfillment of the requirements of Masters

Degree of Science in Computer Science & Information Technology.

Evaluation Committee

Asst. Prof. Nawaraj Paudel
Head of Department

Central Department of Computer Science
& Information Technology

Tribhuvan University
Kirtipur

Asst. Prof. Nawaraj Paudel
Head of Department

Central Department of Computer Science
and Information Technology (T.U)

(Supervisor)

(External Examiner) (Internal Examiner)

i

Acknowledgements

First and foremost, I would like to express my sincere gratitude to all the people who provide

their immense help, support, guidance, stimulating suggestions and encouragement all the

time during the preparation of this dissertation entitled “A Comparative Analysis of ACO

and BCO for Solving the TSP”. This research work has been performed under the Central

Department of Computer Science and Information Technology (Tribhuvan University),

Kirtipur. I am very grateful to my department for giving me an enthusiastic support.

I would like to express my sincere gratitude to my supervisor Asst. Prof. Nawaraj Poudel,

Head of the Department of Central Department of Computer Science and Information

Technology. This work would have not been possible without his encouragement. He always

provided a motivating and enthusiastic atmosphere to work with; it was a great pleasure to do

this thesis under his supervision. This research would not have been possible without his

advices and patience.

Most importantly, I would like to thank to respected Lecturers Prof. Dr. Sashidhar Ram Joshi,

Prof. Sudarsan Karanjit, Prof. Dr. Subarna Sakya, Mr. Min Bahadur Khati, Mr. Dheeraj

Kedar Pandey, Mr. Sarbin Sayami, Mrs. Lalita Sthapit, Mr. Jagdish Bhatta, Mr. Arjun Singh

Saud, Mr. Bishnu Gautam of CDCSIT, TU, for providing me such a broad knowledge and

inspirations.

My greatest thanks are to my parents who bestowed ability and strength in me to complete

this work. I am deeply indebted to my parents and dear friends for their inspiration and ever

encouraging moral support, which enabled me to pursue my studies. Special thanks to

members of educational organizations that I have been working, for their endless motivation,

constant mental support and love which have been influential in whatever I have achieved so

far.

I wish to thank to all my colleagues and friends especially Mr. Prakash Datt Bhatt, Mr.

Chhetra Bahadur Chhetri, Mr. Dabal Singh Mahara, Mr. Keshav Bahadur Dhami, Mr.

Ashok Pandey, Mr. Ganesh Bahadur Ayer & Mr. Bhupendra Saud for supporting me directly

and indirectly in this research work.

ii

I have done my best to complete this research work. Suggestions from the readers are always

welcomed, which will improve this work.

Last but not the least; I would like to thank almighty God for not letting me down at the time

of crisis and showing the silver lining in the dark clouds.

iii

Abstract

Combinatorial optimization problems are very difficult to solve, since these problems span a

large space of NP-hard problems. Various solution models are introduced and used to solve

these problems. The Travelling Salesman Problem (TSP) is an intractable NP-hard

combinatorial optimization problem studied in operations research and theoretical computer

science. Exact methods, heuristics, evolutionary approaches, and meta-heuristic models are

widely used to solve TSP like problems.

Ant Colony Optimization (ACO) is a modern and very popular Swarm Intelligence

optimization paradigm inspired by the ability of ant colonies to find shortest paths between

their nest and a food source. ACO is one of the high performance computing methods for

Travelling Salesman Problem (TSP). It still has some drawbacks such as stagnation behavior,

long computational time, and premature convergence problem on TSP. Those problems will

be more obvious when the considered problem size increases.

Bee Colony Optimization (BCO) meta-heuristic belongs to the group of Swarm Intelligence

techniques. BCO is the name given to the collective food foraging behavior of honey bee.

The bee system is a standard example of organized team work, well coordinated interaction,

coordination, labor division, simultaneous task performance, specialized individuals, and

well-knit communication. The BCO uses a similarity among the way in which bees in nature

look for a food, and the way in which optimization algorithms search for an optimum in

combinatorial optimization problems.

The Swarm-based Algorithm is a search algorithm capable of locating good solutions

efficiently. The algorithm could be considered as belonging to the category of “Intelligent

Optimization Tools”. General ACO and BCO are implemented and tested on benchmark

problems from TSPLIB and evaluations are carried out. Evaluation results have shown that

BCO has improved 13.35% optimal path solutions on average and computational time is

improved by 13.41% on average.

Keywords: Combinatorial Optimization, BCO, ACO, TSP, Swarm Intelligence

iv

List of Abbreviations

CO Combinatorial Optimization Problem

ACO Ant Colony Optimization

TSP Travelling Salesman Problem

DNA Deoxyribonucleic Acid

AAC Artificial Ant Colony

GA Genetic Algorithm

SA Simulated Annealing

SI Swarm Intelligence

BCO Bee colony optimization

AI Artificial intelligence

ABC Artificial Bee Colony

v

List of Figures

Figure 1.1: Foraging process of ants…..………………….……………………………………..…2

Figure 1.2: Typical behavior of honey bee foraging……………….…………………………4

Figure 1.3: Symmetric TSP Example…………………………..………………………………….7

Figure 3.1: ACO State Transition Rule……………………………………….……………..14

Figure 3.2: Flow chart of ACO for solving TSP…………………………………………….17

Figure4.1: Waggle dance of honey bees ……………………………………..…………………20

Figure.4.2: Flowchart of BCO algorithm for TSP…………………………….…………….22

Figure 5.3: Optimal path solution comparison……………………………………………….33

Figure 5.4: Processing time Comparison………………………………………….……...……....33

vi

List of Tables

Table5.1. Parameter Values……..……..…………………………………………………….…25

Table5.2. Simulation Results……..………………………………………..………….………26-27

Table5.3. Simulation Results………...………………………………….….…………………28-29

Table5.4. Comparison Results........…….………………………………….……………………30

Table5.5. Comparison Results…..………….……………………………..……………….……31

Table5.6. Comparison Results…..……………………………….…………………..…….……32

Table5.7. Conclusion Results…...….…………………………………………..………….……34

vii

Table of Contents

Acknowledgements i

Abstract iii

List of Abbreviations iv

List of Figures v

List of Tables vi

CHAPTER 1

1. Introduction
1.1. Background………………………………………………….………………….…1-4

1.1.1. Ant colony optimization ……………...…………………………………...1-3

1.1.1.1. Foraging process of ants…………………………………………....1-3

1.1.2 Bee colony optimization…………………………………………………...3-4

1.1.2.1 Foraging process of bees………………………………………...…3-4

1.2. Research Gap and Motivation…………………………………………………..…..5

1.3. Problem Definition…………………….………………………….……………….5-7

1.3.1. TSP Modeling……………...………...…………………….……………….6-7

1.3.1.1. Symmetric and Asymmetric TSP...…….………………...………..….7

1.4. Objective of the Work……………………………………………….……………….7

1.5. Structure of the Thesis………………………………………………………….…..7-8

CHAPTER 2

2. Literature Survey

2.1. Exact Methods………………………………..……………………………………...9

2.2. Genetic Algorithms………………………………………………………….……….9

2.3. Simulated Annealing Approach……………………..….………….......................9-10

viii

2.4. Tabu Search Methods……………………………………………………………...10

2.5. Swarm Intelligence…………………………………….…………......................10-11

2.6. Recent Trend in ACO,BCO and TSP……………………………………..……11-13

CHAPTER 3

3. Ant Colony Optimization Algorithm

3.1. Tour Construction……… …………………...………………….…………………15

3.2. Pheromone update……… ………………………..………….…….……….…..15-16

3.3. General ACO Algorithm & Complexity ………..………………..…….……....16-17

3.4. Flow chart of ACO for solving TSP………………………………………….……17

CHAPTER 4

4. Bee colony optimization Algorithm

4.1. General Description …………………………………………………………….…….18

4.2. Formal Definition…………………………………………………………...…..19-21

4.2.1. Waggle dance of honey bees…………………………………………….20-21

4.3. Frame of the BCO Algorithm……………………………………………….……..21

4.4. Methodology of BCO algorithm…………………………………………….….21-22

4.4.1. Flowchart of BCO algorithm for Solving the TSP……………………..…...22

4.5. Applying BCO for solving the TSP………………………………………..……….23

CHAPTER 5

5. Implementation & Analysis

5.1 Computational Results……………………………………………..…….24-29

5.1.1 Parameter Setting…………………………………………..…..……24

5.1.2 Computational Results for ACO………………………………...25-27

5.1.3 Computational Results for BCO…………………………..……..27-29

5.2 Performance Evaluation of the Improved Algorithm………………….....29-32

5.2.1 Results of Comparison……………………………………...…….31-32

5.3 Discussions of the Evaluation Results……………………………...…….32-35

5.3.1 Verification of the Improved Algorithm…………….……………32-35

ix

CHAPTER 6

6 Conclusion

6.1 Summary…………………………………….……………….……...………..……36

6.2 Research Limitations………………………….…………………………….….…..37

6.3 Future Work……………………………………..…………….……………….…..37

References 38-41

Appendices 42-58

1

CHAPTER 1

INTRODUCTION

1.1 Background

Before the study of any research work it is necessary to have domain knowledge and to

introduce the some basic terms and terminology related to the research. In this context basic

terms and terminologies related to this work are outlined in the following sections;

1.1.1 Ant Colony Optimization

Ant colony optimization was first proposed in 1992 by Marco Dorigo, for solving TSP like

problems. Interaction among ants and the environment is based on pheromones where ants

can smell the pheromone and tend to choose, probabilistically, paths marked by strong

pheromone concentrations. There is a population of ants, where each ant finds solution and

then communicating with the other ants. These observations inspired a new type of algorithm

called ant algorithm (or ant system). Ant algorithm is originally oriented for TSP like

problems.

Ant Colony Optimization (ACO) is a swarm based meta-heuristic method that is inspired by

the behavior of real ant colonies. It is one of the techniques for approximate optimization.

More specifically, ACO is inspired by the ants’ foraging behavior. At the core of this

behavior is the indirect communication between the ants by means of chemical pheromone

trails, which enables them to find short paths between their nest and food sources [15]. ACO

belongs to the class of meta-heuristics, which are approximate algorithms used to obtain good

enough solutions to CO problems in a reasonable amount of computation time. In recent

years, many research works have been devoted to ACO techniques in different areas.

1.1.1.1 Foraging Process of Ants

A way ants exploit the pheromone to find the shortest path between two points is depicted in

figure 1.1. To fix the ideas, suppose that the distances between D and H, between B and H,

and between B and D via C are equal to 1, and let C be positioned half the way between D

and B. Now let us consider what happens at regular discretized intervals of time: t=0, 1, 2 and

so on. Suppose that 30 new ants come to B from A, and 30 to D from E in each time unit,

then each ant walks at speed of 1 per time unit, and while walking the ant lays down at time

2

‘t’ pheromone trail of intensity 1, which, to make the example simpler, evaporates completely

and instantaneously in the middle of the successive time interval (t+1, t+2).

At t=0 there is no trail yet, but 30 ants are in B and 30 in D. Their choice about which way to

go is completely random. Therefore, on the average 15 ants from each node will go toward H

and another 15 ants toward C as shown in figure 1.1(b).

At time instance t=1, 30 new ants that come from A to B find trail of intensity 15 on the path

leads to H, laid by the 15 ants who followed the same way from B, and trail intensity of 30 on

the path to C, obtained as the sum of the trail laid by the 15 ants that went that way from B

and by the 15 ants that reached B coming from D via C as shown in figure 1.1(c). The

probability of choosing path is therefore biased, so that the expected number of ants going

toward C will be the double of those going toward H: 20 versus 10 respectively. The same is

true for the new 30 ants in D which came from E.

This process continues until all of the ants will eventually choose the shortest path.

Figure 1.1: Foraging Process of Ants.

a) The initial graph with distances.

b) At time t=0 there is no trail on the graph edges; therefore, ants choose whether to turn right

or left with equal probability.

3

c) At time t=1 trail is stronger on shorter edges, which are therefore, in the average, preferred

by ants.

The idea is that if at a given point an ant has to choose among different paths, those which

were heavily chosen by preceding ants (that is, those with a high trail level) are chosen with

higher probability. Furthermore high trail levels are synonymous with short paths.

1.1.2 Bee colony optimization

In 2005, Karaboga proposed an Artificial Bee Colony (ABC) algorithm, which is based on a

particular intelligent behavior of honeybee swarms. The Swarm-based Algorithm is a search

algorithm capable of locating good solutions efficiently. The algorithm could be considered

as belonging to the category of “Intelligent Optimization Tools”. There was a great interest

between researchers to generate search algorithms that find near-optimal solutions in

reasonable running time. ABC is developed based on inspecting the behaviors of real bees on

finding nectar and sharing the information of food sources to the bees in the hive.

1.1.2.1 Foraging process of bees

Bee Colony Optimization (BCO) meta-heuristic belongs to the group of Swarm Intelligence

techniques. BCO is the name given to the collective food foraging behavior of honey bee.

The bee system is a standard example of organized team work, well coordinated interaction,

coordination, labor division, simultaneous task performance, specialized individuals, and

well-knit communication. The BCO uses a similarity among the way in which bees in nature

look for a food, and the way in which optimization algorithms search for an optimum in

combinatorial optimization problems [15]. The three agents in Artificial Bee Colony are:

1. The Employed Bee

2. The Onlooker Bee

3. The Scout

4

Figure 1.2: Typical Behavior of Honey Bee Foraging [4]

The employed bees are associated with the specific food sources, onlooker bees watching the

dance of employed bees within the hive to choose the food source, and scout bees searching

for food sources randomly. The onlooker bees and the scout bees are the unemployed bees.

Initially, the scout bees discover the positions of all food sources, thereafter, the job of the

employed bee starts. An artificial employed bee probabilistically obtains some modifications

on the position in its memory to target new food source and find the nectar amount or the

fitness value of the new source. Later, the onlooker bee evaluates the information taken from

all artificial employed bees and then chooses the final food source with the highest

probability related to its nectar number. If the fitness value of new one is higher than that of

the previous one, the bee forgets the old one and memorizes the new position based on

greedy selection. Then the employed bee whose food source has been exhausted becomes a

scout bee to search for the further food sources once again [5].

5

1.2 Research Gap and Motivation

Although ACO has powerful capacity to find out optimal solutions to combinatorial optimization

problems, it has the several problems regarding the stagnation, premature convergence, and slow

processing speed. Those problems will be more obvious when the problem size increases.

Therefore several algorithms and improvements of the general ACO algorithms were introduced

over the years.

In this dissertation, the BCO is introduced to perform the best solution in compare to ACO.

Basic concept of BCO is listed below [15].

 BCO use Non-Stigmergic (Direct) Communication to exchange information between

bees.

 A real bee uses waggle dance to recruit other nest mates to discover food source. Thus

BCO technique uses the solution quality for recruitment procedure.

 In BCO, the experienced forage type bee maintains the solution quality.

 BCO technique avoids locally optimal solution. It searches for the best solution

obtains by the entire bee colony. It is adaptive to changes in the environment.

1.3 Problem Definition

Traveling salesman problem (TSP) is one of the well-known and extensively studied

problems in discrete or combinational optimization and asks for the shortest roundtrip of

minimal total cost visiting each given city (node) exactly once. TSP is an NP-hard problem

and it is so easy to describe and so difficult to solve. Graph theory defines the problem as

finding the Hamiltonian cycle with the least weight for a given complete weighted graph. It is

widespread in engineering applications and some industrial problems such as machine

scheduling, cellular manufacturing and frequency assignment problems can be formulated as

TSP [17].

A complete weighted graph G= (N, E) can be used to represent TSP, where N is the set of n

cities and E is the set of edges (paths) fully connecting all cities. Each edge (i,j)€E is assigned

cost dij, which is the distance between cities i and j. dij can be defined in the Euclidean

distance and is given as follows:

In General, the TSP states that for salesman who wants to visit n different cities, his objective

would be to find tour plan that minimizes the cost and travel efforts by visiting each city

6

exactly once and finally returning back to the starting city. TSP is widely used various

domain of research like network communications, transportation systems, manufacturing and

resource planning, logistics, etc [33]. This dissertation work will mainly focus on

comparative evaluation of these two algorithms: ACO and BCO in terms of time and path

length.

The Travelling Salesman Problem (TSP) is an NP-hard problem in combinatorial

optimization studied in operations research and theoretical computer science. Given a list of

cities and their pair wise distances, the task is to find a shortest possible tour that each city

exactly once. The problem was first formulated as a mathematical problem in 1930, and is

one of the most intensively studied problems in optimization. It is used as a benchmark for

many optimization methods. Even though the problem is computationally difficult, a large

number of heuristics and exact methods are known. The TSP has several applications even in

its purest formulation, such as planning, logistics, and the manufacture of the microchips.

Slightly modified, it appears as sub-problem in many areas, such as DNA sequencing. In

these applications, the concept city represents, for example, customers, soldering points,

DNA fragments, and the concept distance represents travelling times or costs, or similarity

measure between DNA fragments. The main reasons for the choice of TSP for ACO and

BCO are as follows:

 TSP is an important NP-hard optimization problem that arises in several applications.

It is a problem to which ACO and BCO algorithm can be easily applied.

 It is easily understandable, so that algorithm behavior is not obscured by too many

technicalities.

 It is a standard test bed for new algorithmic ideas a good performance on the TSP is

often taken as a proof of their usefulness.

 TSP is a typical combinatorial optimization problem. It is often used to validate a

certain algorithm, making the comparison with other algorithms an easy work [9].

1.3.1 TSP Modeling

TSP can be modeled as an undirected weighted graph, such that cities act as vertices; paths as

edges, and path distance is the edge’s length. Often, the model is a complete graph. If no path

exists between two cities, adding an arbitrary long edge will complete the graph without

affecting the optimal tour.

7

1.3.1.1 Symmetric and Asymmetric TSP: In the symmetric TSP, the distance between two

cities is the same in either direction, forming an undirected graph. The problem can be

defined as follows: Let G = (V,E) be a complete undirected graph with vertices W, |W|=n,

where n is the number of cities, and edges E with edge length dij for (i,j). We focus on the

symmetric TSP case in which di,j = dj,i , for all (i,j).

In the asymmetric TSP, paths may not exist in both directions, or the distance might be

different, forming directed graph [31, 9]. In this work, TSP refers to the symmetric TSP.

Since asymmetric TSP can be converted into symmetric TSP. It is considered as special case

of symmetric TSP, because behavior of ACO algorithm is same for either case.

Figure 1.3: Symmetric TSP with 5 Nodes

1.4 Objectives:

The main objective of this dissertation work is to study ACO and BCO algorithms and

analyze the performance of these algorithms for solving the TSP.

1.5 Structure of Thesis

Background study of this dissertation work focuses on basic concept of optimization

algorithm and the related basic terms which are already mentioned above along with an

introduction to ACO and BCO. Almost this chapter introduced the main aim of this

dissertation as well as basic concept of optimization problem with ACO and BCO applied in

travelling salesman problem. The rest of the material in this study is organized into

subsequent four chapters.

Chapter 2 consists of literature review which briefly reviews the related study with this

dissertation. Literature review includes summary of several traditional optimization

8

algorithms. This chapter mainly focuses on recent trend in the field of ACO, BCO and TSP.

It also provides the basic framework of general ACO, BCO and its working strategy.

Chapter 3 describes the working of the ACO algorithm in detail. It consists of program

development steps of our simulation.

Chapter 4 describes the working of the BCO algorithm in detail.

Chapter 5 contains the research methodology part which shows the flow of our research. This

chapter also introduces the implementation detail with data collection and analysis part which

shows trace driven input and output results with several analyzing graphs.

Finally, conclusion of this whole dissertation work and the future work which shows

guidelines for further research are discussed in Chapter 6. It also briefly discusses the

limitations of the work.

9

CHAPTER 2

LITERATURE SURVEY

This chapter classifies various methods to solve TSP and gives some general information

about traditional methods. In this phase of study, recent trend in ACO, BCO and TSP is

mainly emphasized. Some of the algorithms deployed for solving TSP problem are discussed

below:

2.1 Exact Methods

In 1960, Land and Doig, proposed exact methods for linear programming which are most

simple algorithms to solve combinatorial optimization problems. These methods guarantee

the solution but computational time is unknown for larger instances. Even though number of

exact methods were introduced for solving optimization problem such as Brute-force

approach [3], Dynamic Programming methods [22], Branch and Bound [7], Linear

Programming [26], but none of them were feasible for larger instances of TSP.

2.2 Genetic Algorithms

Genetic Algorithms were introduced by John H. Holland in 1975. The idea behind them is to

imitate the biological principle of evolution by selection, recombination and mutation of a set

of initial candidate solutions- the population, which is either created randomly or

heuristically. The quality of these solutions is evaluated in every iteration by fitness function.

Better solutions are more likely to advance to the next iteration and are also more likely to be

recombined with other solutions to produce off springs. Genetic algorithms have been the

most popular heuristic for global optimization today. They use population of potential

candidate solutions, just like other variations of evolutionary algorithm. Selection, crossover

and mutation approaches revolve the genetic algorithms. The algorithm terminates as soon as

the desirable descendent is found or when the computation limit exhausts [23].

2.3 Simulated Annealing Approach

Another local search method that been applied to the problem of generating tree

decompositions of small width is Simulated Annealing which was introduced by Kirkpatrick

10

in 1983. Simulated annealing is inspired by an analogy between the physical annealing of

solids (crystals) and combinatorial optimization problems. In the physical annealing process,

solid is first melted and then cooled very slowly, spending long time at low temperature to

obtain perfect lattice structure corresponding to minimum energy state. SA transfers this

process to local search algorithms for combinatorial optimization problems. It does so by

associating the set of solutions of the problem attached with the states of the physical system.

SA is local search strategy which tries to avoid local minima by accepting less bad solutions

with some probability [2].

2.4 Tabu Search Methods

Tabu Search is a local search technique that was proposed by Glover in 1989. The Tabu

search methods rely on the systematic use of memory to guide the search process. A local

search algorithm tries to improve an initial solution (generated randomly or heuristically) by

looking at neighborhood solutions. A neighborhood solution’s is defined by some kind

systematic modification of the solution. One such modification might be the swapping of two

solution elements. The best solution in the neighborhood is selected and its neighborhood is

evaluated next. What is special about Tabu search is that it remembers a certain number of

previous moves and adds them to a so-called Tabu-list. For example, if an element has been

swapped in the previous five moves, the element must not be swapped again. This will

prevent the algorithm from moving in circles in the solution space [27].

2.5 Swarm Intelligence

Swarm Intelligence is a modern artificial intelligence discipline that is concerned with the design

of multi agent systems with applications, e.g. robotics and optimization. It is fundamentally

different design paradigm from traditional approaches to optimization. It’s principle is not to

focused on a single sophisticated controller that governs the global behavior, but on many

unsophisticated entities that cooperate to exhibit desired behavior. The chief source of inspiration

to swarm intelligence is the collective behavior of social insects such as ants, termites, bees, and

wasps. However, behavior of other animal societies such as flocks of birds or schools of fish has

also been taken as inspirational source. In such animal societies, the behavior of an individual

does not mean much. On the contrary, collective behavior of each individual produces

extraordinarily great results. Models based on such phenomenon have been found to be utilized

by many scientists and mathematicians. Swarm Intelligence has been growing as one of the

promising sectors of research.

11

Insects such as ants, termites and wasps build sophisticated nests collectively. When studied

collectively, these insects show amazing ability –ability to work as a team. Moreover, it is even

more interesting fact that these are not guided by a single mastermind or a master plan as to how

to proceed in building nests. And they build their nests to their best fit. Such amazing phenomena

have driven scientists and researchers to involve in their social behavior study. Swarm

Intelligence is the term for the field of such research that is inspired by such natural collective

culture. Although relatively new, two promising areas where swarm intelligence has been in use

are optimization and swarm robotics. These fields make use of information exchange in collective

behavior of entities. These have been found quite successful. Some of the other areas where

swarm intelligence has been prominent are routing and load balancing in telecommunication

networks.

Swarm Intelligence is a most recent concept for CO problems. It is nature inspired algorithm

for solving TSP like problems. It is based on the collective behavior of the computational

agents. SI algorithms are typically made up of a population of simple agents interacting

locally with one another and with their environment. The agents follow very simple rules, and

although there is no centralized control structure dictating how individual agents should

behave, local or to a certain degree random, interactions between such agents. ACO is a part

of swarm intelligence method. SI method is intensively studied in [1].

2.6 Recent Trend in ACO, BCO and TSP

Ant colony optimization was first proposed in 1992 by Marco Dorigo, for solving TSP like

problems and in the decade since its introduction, a growing number of researchers have been

involved in further developing it. Literature on the topic of ACO is currently largely

restricted to journals and research papers, as this is still an emerging algorithm that has not

yet weaved its way into mainstream texts. The following paragraphs briefly outline some of

the better papers that are relevant to this research.

The authors in [10], introduces distributed algorithm that is applied to the TSP. In ACS, set of

cooperating agents called ants cooperate to find good solutions to TSP. However, according

to [30], the authors give an overview on the available ACO algorithms for the TSP. In 2005,

M. Dorigo, C. Blum [9] discussed the theoretical results of ACO algorithms. They have

analyzed the convergence results, connection between ACO algorithm and random gradient

ascent within the model based search. They also discussed the relation between ACO and

other approximate methods for optimization. Thereafter in 2011, Zar Chi Su Su Hlaing, May

12

As mentioned in [17], ACO is taken as one of the high performance computing methods for

TSP and ACO for TSP has been improved by incorporating local optimization heuristic.

In this way day by day research in TSP problem raise more ooptimized algorithm. In 2012,

Krishna H. Hingrajiya, Ravindra Kumar Gupta, Gajendra Singh Chandel[16] published a

paper on “An Ant Colony Optimization Algorithm for Solving Travelling Salesman

Problem”. In this paper, they investigate ACO algorithms with respect to their runtime

behavior for the traveling salesperson (TSP) problem.

In 2013, Km. Shweta [28] published a paper on “ An Experimental Study of Ant System for

Solving Travelling Salesman Problem”. In this paper, he present an implementation of Ant

System, the very first algorithm of Ant Colony Optimization in MATLAB to solve Travelling

Salesman Problem.

Artificial bee colony (ABC) Algorithm is an optimization algorithm based on the intelligent

behavior of honey bee foraging. This model was introduced by Dervis Karaboga [19] in

2005, and the performance of BCO is analyzed in 2007 [20].

In 2009, Li-Pei Wong and Chin Soon Chong [32] pubhished a paper “An Efficient Bee

Colony Optimization Algorithm for Traveling Salesman Problem using Frequency-based

Pruning”. This introduced a bees perform waggle dance in order to communicate the

information of food source to their hive mates. This foraging behaviour has been adapted in a

Bee Colony Optimization (BCO) algorithm together with 2-opt local search to solve the

Traveling Salesman Problem.

In may 2012, Ashita S. Bhagade, Parag. V. Puranik[5] published a paper “Artificial Bee

Colony (ABC) Algorithm for Vehicle Routing Optimization Problem”. This journal

introduced the biological phenomenon when applied to the process of path planning problems

for the vehicles, it is found to be excelling in solution quality as well as in computation time.

Simulations have been used to evaluate the fitness of paths found by ABC Optimization.

In 2012 july, Nishant Pathak, Sudhanshu Prakash Tiwari [25] published a journal an

“Travelling Salesman Problem Using Bee Colony With SPV”. In this journal they present a

solution for TSP problem using ABC with SPV rule. In this method he extend Artificial Bee

Colony algorithm using SPV rule.

In 2012 july , Anshul Singh, Devesh Narayan[29] published a journal on “Augmentation of

Travelling Salesman Problem using Bee Colony Optimization”. In this journal BCO and k-

opt local search, the two heuristic techniques for optimization, are combined together to

acquire sophisticated results. Comparisons of the proposed method with nearest

13

neighborhood approach is performed and shown with presented system proved to be superior

to the rest.

In 2013 march, Shailesh Pandey_and Sandeep Kumar[24] published a paper on “Enhanced

Artificial Bee Colony Algorithm and It’s Application to Travelling Salesman Problem”. This

paper presents ABC with different types of real coded crossover operator and its application

to Travelling Salesman Problem (TSP). Each crossover operator is applied to two randomly

selected parents from current swarm. Two off-springs generated from crossover and worst

parent is replaced by best offspring, other parent remains same. ABC with real coded

crossover operator applied to travelling salesman problem.

In march 2013,Ginnu George and Dr. Kumudha Raimond[14] published a paper on “Solving

Travelling Salesman Problem Using Variants of ABC Algorithm”. This paper mainly

explains about the performance of variants of Artificial Bee Colony (ABC) algorithms in

solving the Travelling Salesman Problem (TSP).

Since TSP is NP-hard problem, so research on TSP is mainly focused on finding the optimal

solution for large instances. Particularly, swarm intelligence methods are known to be the

most successful till date. Swarm intelligence methods can solve small and medium sized TSP

in polynomial time.

14

CHAPTER 3

ANT COLONY OPTIMIZATION ALGORITHM

In ACO algorithms ants are simple agents which, in the TSP case, construct tours by moving

from city to city on the problem graph. The ants' solution construction is guided by (artificial)

pheromone trails and an a priori available heuristic information[29].When applying ACO

algorithm to the TSP, a pheromone strength Ƭij(t) is associated to each arc (i,j), where Ƭij(t)

is a numerical information which is modified during the run of the algorithm and t is the

iteration counter.

Initially, each of the m ants is placed on a randomly chosen city and then iteratively applies at

each city a state transition rule [30].

Fig.3.1: ACO State Transition Rule:

Next city is chosen between the not visited cities according to a probabilistic.

An ant constructs a tour as follows. At a city i, the ant chooses a still unvisited city j

probabilistically, biased by the pheromone trail strength Ƭij(t) on the arc between city i and

city j and a locally available heuristic information, which is a function of the arc length. Ants

probabilistically prefer cities which are close and are connected by arcs with a high

pheromone trail strength. To construct a feasible solution each ant has a limited form of

memory, called tabu list, in which the current partial tour is stored. The memory is used to

determine at each construction step the set of cities which still has to be visited and to

guarantee that a feasible solution is built. Additionally, it allows the ant to retrace its tour,

once it is completed.

After all ants have constructed a tour, the pheromones are updated. This is typically done by

first lowering the pheromone trail strengths by a constant factor and then the ants are allowed

15

to deposit pheromone on the arcs they have visited. The trail update is done in such a form

that arcs contained in shorter tours and/or visited by many ants receive a higher amount of

pheromone and are therefore chosen with a higher probability [30].

3.1 Tour construction

Initially, each ant is put on some randomly chosen city. At each construction step, ant k

applies a probabilistic action choice rule. In particular, the probability with which ant k,

currently at city i, chooses to go to city j at the t th iteration of the algorithm is:

Where,

ηij= 1/dij is an a priori available heuristic value,

α and β are two parameters which determine the relative influence of the pheromone trail and

the heuristic information,

and is the feasible neighborhood of ant k, that is, the set of cities which ant k has not

yet visited.

The role of the parameters α and β is the following.

If α = 0, the closest cities are more likely to be selected: with multiple starting points since

ants are initially randomly distributed on the cities.

If β = 0, only pheromone amplification is at work: this method will lead to the rapid

emergence of a stagnation situation with the corresponding generation of tours which, in

general, are strongly suboptimal [11]. Search stagnation is defined in [12] as the situation

where all the ants follow the same path and construct the same solution. Hence, a tradeoff

between the influence of the heuristic information and the pheromone trails exists.

3.2 Pheromone update

After all ants have constructed their tours, the pheromone trails are updated. This is done by

first lowering the pheromone strength on all arcs by a constant factor and then allowing each

16

ant to add pheromone on the arcs it has visited:

where 0 < ρ<1 is the pheromone trail evaporation.

Ρ: is a parameter used to avoid unlimited accumulation of the pheromone trails and it

enables the algorithm to “forget" previously done bad decisions. If an arc is not chosen by the

ants, its associated pheromone strength decreases exponentially.

: is the amount of pheromone ant k puts on the arcs it has visited; it is defined as

follows:

Where is the length of the kth ant's tour. By above Equation, the better the ant's tour

is, the more pheromone is received by arcs belonging to the tour. In general, arcs which are

used by many ants and which are contained in shorter tours will receive more pheromone and

therefore are also more likely to be chosen in future iterations of the algorithm.

3.3 ACO Algorithm and Complexity

The general ACO algorithm is given as follows [6].

Algorithm 3.1 General ACO

1. Initialize parameters.

2. FOR t=1 to number of pre-specified Iteration

FOR k = 1 to m

Until k-ant not yet visited all cities

Choosing next city with pij

Calculate total path-length Lk after completion of the tour

3. Update pheromone

4. Return the best tour.

17

The complexity of general ACO algorithm is O(NC.m.), if algorithm iterates for NC

number of iterations. In fact, path construction step i.e. for building partial solution it takes

O(m.). And pheromone update step, takes maximum of O(m.). So, approximately

general ACO algorithm is O(NC.n3). General ACO has the ability of finding the optimal

solutions but these are strongly suboptimal [6,8].

3.4 Flow chart of ACO for solving TSP

Fig.3.2: Flow chart of ACO for solving TSP [13]

Initialize

Place each ant in a randomly chosen city

For each ant

Choose Next City (For Each Ant)

More cities to
visit

Return to the initial cities

Update pheromone level using the tour cost for each ant

Stopping
Criteria

Print Best Tour

YES

YES

NO

NO

18

CHAPTER 4

BEE COLONY OPTIMIZATION ALGORITHM

Artificial bee colony (ABC) Algorithm is an optimization algorithm based on the intelligent

behavior of honey bee foraging. This model was introduced by Dervis Karaboga in 2005, and

is based on inspecting the behaviors of real bees on finding nectar amounts and sharing the

information of food sources to the other bees in the hive. These specialized bees try to

maximize the nectar amount stored in the hive by performing efficient division of labour and

self-organization [18]. The three agents in Artificial Bee Colony are:

The Employed Bee

The Onlooker Bee

The Scout

4.1. General Description

The employed bees are associated with the specific food sources, onlooker bees watching the

dance of employed bees within the hive to choose a food source, and scout bees searching for

food sources randomly [29]. The onlooker bees and the scout bees are the unemployed bees.

Initially, the scout bees discover the positions of all food sources, thereafter, the job of the

employed bee starts. An artificial employed bee probabilistically obtains some modifications

on the position in its memory to target a new food source and find the nectar amount or the

fitness value of the new source. Later, the onlooker bee evaluates the information taken from

all artificial employed bees and then chooses a final food source with the highest probability

related to its nectar number. If the fitness value of new one is higher than that of the previous

one, the bee forgets the old one and memorizes the new position [20]. This is called as greedy

selection. Then the employed bee whose food source has been exhausted becomes a scout bee

to search for the further food sources once again.

In ABC, the solutions represent the food sources and the nectar quantity of the food

sources corresponds to the fitness of the associated solution. The number of the employed

and the onlooker bees is same, and this number is equal to the number of food sources [9].

Employed bees whose solutions cannot be improved through a predetermined number of

trials, specified by the user of the ABC algorithm and called limit‖, become scouts and their

solutions are abandoned [29], [33].

19

4.2 Formal Definition:

In this algorithm, the employed bee produces a modification in the position (i.e. solution) in

its memory and checks the nectar amount (fitness value) of that source (solution). The

employed bee then evaluates this nectar information (fitness value) and then chooses the food

source with the probability related to its fitness value [5].

Movement of onlookers:

 Probability of Selecting a nectar source:

(1)

Pi : The probability of selecting the ith employed bee

S : The number of employed bees

θi : The position of the ith employed bee

: The fitness value

 Calculation of the new position: movement of onlookers

(2)

 : The position of the onlooker bee.

 t : The iteration number

 : The randomly chosen employed bee.

 j : The dimension of the solution

 : A series of random variable in the range [-1,1] .

Movement of scout bees

 The movement of the scout bees follows equation (3).

 S

k
k

i
i

F

F
P

1

 iF

 ttttx kjijijij 1

ix

k

20

(3)

 r : A random number and

4.2.1 Waggle dance of honey bees

A branch of nature inspired algorithms which are called as swarm intelligence is focused on

insect behaviour in order to develop some meta-heuristics which can mimic insect's problem

solution abilities. Interaction between insects contributes to the collective intelligence of the

social insect colonies. These communication systems between insects have been adapted to

scientific problems for optimization. One of the examples of such interactive behaviour is the

waggle dance of bees during the food procuring. By performing this dance, successful

foragers share the information about the direction and distance to patches of flower and the

amount of nectar within this flower with their hive mates. So this is a successful mechanism

which foragers can recruit other bees in their colony to productive locations to collect various

resources. Bee colony can quickly and precisely adjust its searching pattern in time and space

according to changing nectar sources. The information exchange among individual insects is

the most important part of the collective knowledge. Communication among bees about the

quality of food sources is being achieved in the dancing area by performing waggle dance [4].

Figure 4.1: Waggle dance of honey bees [15]

The scout bees start from the hive in search of food source randomly. They keep on this

exploration process until they are out of energy/tired and return back to the hive. When they

return back to the hive, they share their experience and knowledge with the forager bees by

 minmaxmin jjjij r

 1,0r

21

performing the mechanism called “waggle dance”. Waggling is a form of dance in circular

direction in the shape of digit 8. It is repeated again and again by a bee. Its intensity and

direction gives the idea of food source quality and food source location respectively to other

bees. It is the means by which the bees communicate. It is used to convey the parameters like

foods Source Quality, distance of food source from hive, Location of food source, to guide

the path to the available forager bees [15]. These steps of the scout bees constitute the first

step of the BCO process called the “Path Construction”.

Observations and studies on honey bee behaviors resulted in a new generation of

Optimization algorithms.

4.3 Frame of the Bee colony optimization algorithm

This section presents the BCO algorithm [21].

Algorithm 4.1 Bee colony optimization

Send the scouts into the initial food source

REPEAT

Send the employed bees into the food source and determine their nectar amounts

Calculate the probability value of the sources with which they are preferred by the

Onlooker bees

Send the onlooker bees into the food sources and determine their nectar amounts

Stop the exploitation process of the sources exhausted by the bees

Send the scouts into the search area for discovering new food sources, randomly

Memorize the best food source found so far

UNTIL (Requirements are met)

4.4 Methodology of BCO algorithm

The general scheme of the ABC algorithm is as follows: Bee Initialization Phase Set the

Loop Employed Bee Phase Onlooker Bee Phase Scout Bee Phase Memorize the best solution

found so far Until the loop is terminated. The essential control parameters in the Artificial bee

colony algorithm are, the number of food sources which is equal to the number of

employed/onlooker bees (CS-Colony Size), the working to onlooker bee rate, the value of the

limit (L) and the number of cycles or the number of iterations (MCN) that are required to

terminate the program. The implementation of Bee Colony optimization for solving the TSP

problem is explained with the help of flow-chart shown below:

22

4.4.1. Flowchart of BCO algorithm for solving the TSP

Fig.4.2: Flowchart of BCO algorithm for TSP [14]

23

4.5 Applying BCO for solving the TSP

In the initialization phase, the control parameters are set, such as colony size, iteration

number (bee travel time), working to onlooker bee rate. In the next phase, the map is given as

an input to the bee with the number of locations that are to be visited by the bee. Then a

reference path is obtained by using nearest neighbor method. Further when the working bees

are initialized, the bee optimization loop is set. Then the random node is assigned for the bee

to start, then by computing the probabilities given by (1) the bees will work and draw the next

node to obtain the path by using (2) and will memorize the best solution found so far using

the greedy selection strategy. Finally the bees become scout bees and the number of working

bees is updated, that is the employed bee which is exhausted becomes the scout bee again.

The optimization loop is terminated when the numbers of iterations are completed and the

best result is obtained. The scout bees then again start to search for the new path by (3) [5].

24

CHAPTER 5

IMPLEMENTATION AND ANALYSIS

ACO and BCO both the Algorithm has been implemented in java using NetBeans IDE 7.0.1

and executed on a PC with Windows7 professional-64 bit operating system,

Intel(R)Core(tm)i5-2410M CPU(2.30 GHz), and 4GB of RAM. The complete graph with

Euclidean distances for each pair of vertices is used. The inputs of the program are number of

nodes and the costs of edges in the given graph. The classical TSP instances are obtained

from TSPLIB library [31]. Sample Test Data and Sample test run are included in Appendix A

and B respectively.

5.1 Computational Results

In this section computational results is present. With these results, the performance of the

ACO & BCO algorithm is evaluated. Best solution is examined in terms of the number of

iterations to produce the optimal solution and CPU time to produce such solution. The

experiments show that the numbers of iterations are tremendously reduced by improved

approach i.e. BCO. Different random and classical instances of TSP are tested using the

general approach (ACO) and improved approach (BCO). Then computational results are

compared with each other and then evaluation is carried out. The evaluation results clearly

illustrate the main contributions of the thesis.

5.1.1 Parameter Setting

In all experiments of the following sections the numeric parameters, except when indicated

differently, are set to the following tabulated values. These values are taken from [11, 8].

25

Parameters Value

α 1

β 5

ρ 0.5

0.8

Q 100

NC 500

Table 5.1: Parameter Values

5.1.2 Computational Results for ACO

In this dissertation, ACO is applied to instances of TSP with n≤ 200, and obtained results are

presented in the table given below. It contains both random and classical instance of TSP.

Instances named TSP10, TSP20, TSP30 are random and TSP40, TSP50, TSP60, TSP70,

TSP80, TSP90, TSP100, TSP200 are classical instances of TSP. Data associated with each of

these instances are listed in Appendix A. The number of Agents m is set to 50 for all the

cases.

26

Case1: for instances of TSP

TSP
Problem

Number
of

Nodes

Shortest path

Length(km)

Elapsed

Time(sec)

TSP10
10

Run1 1378.48 AVG

1378.48

Run1 1529 AVG

1473Run2 1378.48 Run2 1378

Run3 1378.48 Run3 1513

TSP20
20

Run1 75.89 75.89 Run1 3401 3432

Run2 75.89 Run2 3385

Run3 75.89 Run3 3510

TSP30 30

Run1 175.36 175.36 Run1 5912 5860

Run2 175.36 Run2 5896

Run3 175.36 Run3 5772

TSP40 40

Run1 6734.42 6758.44 Run1 9235 9307

Run2 6827.16 Run2 9406

Run3 6713.74 Run3 9282

TSP50
50

Run1 7854.38 7924.43 Run1 13572 13764

Run2 7937.10 Run2 13572

Run3 7981.83 Run3 1419

TSP60
60

Run1 433.04 432.02 Run1 18517 18735

Run2 432.15 Run2 18782

Run3 430.88 Run3 18907

27

TSP70
70

Run1 72172.71 72452.18 Run1 25334 25168

Run2 72229.08 Run2 25054

Run3 72954.77 Run3 25116

TSP80
80

Run1 1011.05 1019.58 Run1 32167 32552

Run2 1022.88 Run2 32979

Run3 1024.91 Run3 32510

TSP90
90

Run1 44110.84 44674.59 Run1 40498 40331

Run2 45048.85 Run2 40263

Run3 44864.08 Run3 40233

TSP100
100

Run1 25826.46 25655.02 Run1 49764 49842

Run2 24898.75 Run2 49967

Run3 25239.85 Run3 499796

TSP200
200

Run1 33841.44 34013.57 Run1 194657 196089

Run2 33959.09 Run2 196430

Run3 34240.19 Run3 197180

Table 5.2: Results for case1

5.1.3 Computational Results for BCO

BCO algorithm is applied exactly the same instances of TSP as used in the general ACO, and

obtained results are presented in table below. Data associated with each of these instances are

listed in Appendix A.

28

Case2: for instances of TSP

TSP
Problem

Number
of Nodes

Shortest path

Length(km)

Elapsed

Time(sec)

TSP10
10

Run1 1375.74 AVG

1375.74

Run1 1113 AVG

1119Run2 1375.74 Run2 1143

Run3 1375.74 Run3 1101

TSP20
20

Run1 63.24

63.24

Run1 3102 3329

Run2 63.24 Run2 3270

Run3 63.24 Run3 3616

TSP30 30

Run1 166.85 166.85 Run1 5844 5769

Run2 166.85 Run2 5599

Run3 166.85 Run3 5866

TSP40 40

Run1 6185.74 6185.74 Run1 7324 6925

Run2 6185.74 Run2 6328

Run3 6185.74 Run3 6123

TSP50
50

Run1 7074.46 7074.46 Run1 11743 11478

Run2 7074.46 Run2 11304

Run3 7074.46 Run3 11388

TSP60
60

Run1 363.49 353.32 Run1 15960 15663

Run2 341.23 Run2 15288

Run3 355.25 Run3 15742

29

TSP70
70

Run1 65609.87 65480.22 Run1 21194 21110

Run2 65510.52 Run2 21900

Run3 65320.27 Run3 20238

TSP80
80

Run1 882.27 870.7 Run1 31592 31273

Run2 852.52 Run2 31544

Run3 877.60 Run3 30684

TSP90
90

Run1 36429.34 36397.06 Run1 31142 27005

Run2 36429.34 Run2 24876

Run3 36322.51 Run3 24998

TSP100
100

Run1 20490.01 20490.01 Run1 47085 46704

Run2 20490.01 Run2 45482

Run3 20490.01 Run3 47547

TSP200
200

Run1 25625 25537.33 Run1 194720 19616
6

Run2 26258 Run2 198860

Run3 24729 Run3 188920

Table 5.3: Results for case2

5.2 Performance Evaluation of the Improved Algorithm

The computational results of the BCO are compared with those obtained in section 5.1.2. The

following are the compared results of both the algorithms. Table 5.4, 5.5 present the

comparisons of the execution time and the final path length from the two approaches. Table

5.6 present the comparison results.

30

Case1: for instances of TSP

TSP Problem ACO(ms) BCO (ms)

TSP10 1473 1119

TSP20 3432 3329

TSP30 5860 5769

TSP40 9307 6925

TSP50 13764 11478

TSP60 18735 15663

TSP70 25168 21110

TSP80 32552 31273

TSP90 40331 27005

TSP100 49842 46704

TSP200 196089 194166

Table 5.4: Comparison of execution time of getting the final path (ms)

31

Case2: for instances of TSP

TSP Problem ACO BCO

TSP10 1378.48 1375.74

TSP20 75.89 63.24

TSP30 175.36 166.85

TSP40 6758.44 6185.74

TSP50 7924.43 7074.46

TSP60 432.02 353.32

TSP70 72452.18 65480.22

TSP80 1019.58 870.7

TSP90 44674.59 36397.06

TSP100 25655.02 20490.01

TSP200 34013.57 25537.33

Table 5.5: Comparison of the length of the final path(km)

5.2.1 Results of Comparison

Comparison results are presented in table 5.6. Table 5.6 illustrates the comparison results for

case1 and case2.

CALCULATION:-

For instance TSP10,

Path length improvement = {(1378.48-1375.74)/1378.48}×100 = 0.19%

& Execution time improvement = {(1473-1119)/1473}×100 = 24.03%

Similarly in all other instances.

32

TSP

Problem

ACO BCO Improvement (%)

Path
Length

Execution
Time (ms)

Path
Length

Execution
Time (ms)

Path
Length

Execution
Time (ms)

TSP10 1378.48 1473 1375.74 1119 0.19 24.03

TSP20 75.89 3432 63.24 3329 16.66 3.00

TSP30 175.36 5860 166.85 5769 4.85 1.55

TSP40 6758.44 9307 6185.74 6925 8.47 25.59

TSP50 7924.43 13764 7074.46 11478 1072 16.60

TSP60 432.02 18735 353.32 15663 18.21 16.39

TSP70 72452.18 25168 65480.22 21110 9.62 16.12

TSP80 1019.58 32552 870.7 31273 14.60 3.92

TSP90 44674.59 40331 36397.06 27005 18.52 33.04

TSP100 25655.02 49842 20490.01 46704 20.132 6.29

TSP200 34013.57 196089 25537.33 194166 24.92 0.98

Table 5.6: Results of Comparison in case1 & case2

5.3 Discussions of the Evaluation Results

From the comparison results presented above in sections 5.2, it can be seen that the BCO

algorithm can greatly enhance the performance rather than ACO for solving TSP. The

evaluation results clearly show the main contributions of the thesis. Following sub-section

show the verification of the BCO approach.

5.3.1 Verification of the Improved Algorithm

For instances of TSP when n≤200, BCO approach improves the processing time by 13.41%

(on average) and optimal path length by 13.35% (on average) in comparison to the ACO

approach. Figure 5.3, compares the optimized path length solution and Figure 5.4, compares

the processing time of the two methods. Table 5.7 summarizes the BCO method improves the

processing time and the optimal path length for solving the TSP. It can be seen that the BCO

is superior to the ACO.

33

Figure 5.3: Optimal path solution comparison

Figure 5.4: Processing time Comparison

0

10000

20000

30000

40000

50000

60000

70000

80000

10 20 30 40 50 60 70 80 90 100 200

O
pt

im
al

 P
at

h
Di

st
an

ce

Vertices

Optimal Path Length Comparison

ACO

BCO

0

50000

100000

150000

200000

250000

10 20 30 40 50 60 70 80 90 100 200

Pr
oc

es
si

ng
 T

im
e(

Se
c)

Vertices

Processing Time Comparison

ACO

BCO

34

TSP

Problem

Improvement (%)

Optimal path length Computation Time

TSP10 0.19 24.03

TSP20 16.66 3.00

TSP30 4.85 1.55

TSP40 8.47 25.59

TSP50 10.72 16.60

TSP60 18.21 16.39

TSP70 9.62 16.12

TSP80 14.60 3.92

TSP90 18.52 33.04

TSP100 20.13 6.29

TSP200 24.92 0.98

Table 5.7: Conclusion of the improvements

BCO Algorithm for solving the Travelling Salesman Problem is somehow similar to the ACO

algorithm for solving the Travelling Salesman Problem. But the tour construction formula of

both the algorithms is totally different. So the parameters of both the tour construction

formula are also different. By using different tour construction formula and parameters, the

result is also somehow different. Here, The BCO uses the concept of Non-Stigmergic (Direct)

Communication to exchange information between bees. And the bee system is a standard

example of organized team work, well coordinated interaction, coordination, labor division,

simultaneous task performance, specialized individuals, and well-knit communication.

In this thesis, Artificial Bee Colony Optimization is presented by considering a new

approach. The Artificial Bee Colony Optimization Algorithm can be used to solve several

optimal problems. It is aimed to minimize the length of the tour and find the optimal path. To

obtain performance comparisons with the other method, simulation framework is developed.

The ACO and BCO approaches for solving the travelling salesman problem (TSP) is

implemented and analyzed. The simulation outputs are shown in above tables and graphs.

35

The above graph in figure 5.3 clearly shows the optimal distance achieved by BCO

Algorithm is smaller and error free as that of the ACO algorithm. The path length obtained by

BCO is improved by 13.35% in comparison to ACO. From figure 5.4 it is clear that

processing time of BCO algorithm is improved by 13.41 % on average in comparison to ACO

algorithm. It is thus concluded that the Artificial Bee Colony Optimization can be efficiently

used for solving the Travelling Salesman Problem in this thesis. Thus the Artificial Bee

Colony optimization Algorithm is highly flexible and can be effectively used to find the

shortest path by considering very few control parameters as compared with the other heuristic

algorithms.

36

CHAPTER 6

CONCLUSION

The most common problems encountered by the general ACO algorithm are the premature

deficiency and stagnation behavior. The main contribution of this thesis is a study of the

avoidance of stagnation behavior and premature convergence. The computational results and

performance comparison showed that the BCO algorithm reaches the better search

performance over general ACO for solving the Travelling salesman Problem.

This chapter summarizes the thesis, and briefly discusses the limitations of the work. It also

discusses the future directions on the research topic.

6.1 Summary

In this thesis, The ACO and BCO approaches for solving the travelling salesman problem

(TSP) is implemented and analyzed. The BCO uses the concept of Non-Stigmergic (Direct)

Communication to exchange information between bees. And the bee system is a standard

example of organized team work, well coordinated interaction, coordination, labor division,

simultaneous task performance, specialized individuals, and well-knit communication. The

BCO uses a similarity among the way in which bees in nature look for a food, and the way in

which optimization algorithms search for an optimum in combinatorial optimization

problems. In this thesis, Artificial Bee Colony Optimization is presented by considering a

new approach. The Artificial Bee Colony Optimization Algorithm can be used to solve

several optimal problems. It is aimed to minimize the length of the tour and find the optimal

path. To obtain performance comparisons with the other method, simulation framework is

developed. The simulation outputs show that the optimal distance achieved by BCO

Algorithm is smaller and error free as that of the ACO. Evaluation results have shown that

BCO has improved by 13.35% optimal path solutions on average and computational time is

improved by 13.41% on average. It is thus concluded that the Artificial Bee Colony

Optimization can be efficiently used for solving the Travelling Salesman Problem in this

thesis. Thus the Artificial Bee Colony optimization Algorithm is highly flexible and can be

effectively used to find the shortest path by considering very few control parameters as

compared with the other heuristic algorithms.

37

6.2 Research Limitations

The thesis successfully implements the ACO and BCO approach for solving the travelling

salesman problem (TSP). However, there are still some research limitations of this thesis,

such as, the search graph of the TSP instance is considered as a complete graph but this might

not always be the case and BCO has slight complex modeling behavior than general ACO

approach. For study, we considered the graphs with 10 to 200 nodes which is one of the

limitations of this study and graphs with more number of nodes can be used to obtain more

generalized result.

6.3 Future Work

The BCO approach can be applied to solve various combinatorial optimization problems in

which there is an uncertainty of selection. Future work might incorporate the comparative

study of Artificial Bee Colony Optimization algorithm with the other optimization

algorithms.

38

References

[1] Afaq, H., Saini, S., On the Solutions to the Travelling Salesman Problem using Nature

Inspired Computing Techniques, IJCSI International Journal of Computer Science

Issues, Vol. 8, Issue 4, No 2, 2011.

[2] Alhamdy, S. A. S., Noudehi, A. N., Majdara, M., Solving Traveling Salesman

Problem (TSP) using Ants Colony (ACO) Algorithm and comparing with Tabu

Search, Simulated Annealing and Genetic Algorithm, Journal of Applied Sciences

Research, 8(1): 434-440, 2012.

[3] Baldacci, R., Hadjiconstantinou, E., Mingozzi, A., An Exact Algorithm for the

Traveling Salesman Problem with Deliveries and Collections, Department of

Mathematics, University of Bologna, Via Sacchi 3, 47023 Cesena, Italy, 2011.

[4] Baykasoglu, A., Özbakır, L. and Tapkan, P., Artificial Bee Colony Algorithm and Its

Application to Generalized Assignment Problem, Swarm Intelligence: Focus on Ant

and Particle Swarm Optimization, Book edited by: Felix Chan, T. S. and Tiwari, M.

K., ISBN 978-3-902613-09-7, pp. 532, Itech Education and Publishing, Vienna,

Austria, December 2007.

[5] Bhagade, A.S., Puranik, P. V., Artificial Bee Colony (ABC) Algorithm for Vehicle

Routing Optimization Problem, International Journal of Soft Computing and

Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-2, May 2012.

[6] Brezina, I., Cickova, Z., Solving the Travelling Salesman Problem Using the Ant

Colony Optimization, Management Information Systems, Vol.6 (2011), No.4, 2011.

[7] Buck, F., Cooperative Problem Solving With a Distributed Agent System, Swarm

Intelligence, Dept. of Electrical and Computer Engineering, Utah State University,

Logan, Utah 84322-4160, USA, 2005.

[8] Dhami K., Comparative Study of General ACO and Improved ACO with Information

Entropy for Solving TSP, Master’s Thesis, Tribhuvan University, Central Department

of Computer Science and Information Technology, April 2013.

39

[9] Dorigo, M., Blum, C., Ant colony optimization theory: A survey, ELSEVIER,

European Journal of Operational Research 344(2005), 243-278, 2005.

[10] Dorigo, M., Gambardella, L. M., Ant Colony System: A Cooperative Learning

Approach to the Travelling Salesman Problem, Universite Libre de Bruxelles,

TR/IRIDIA/1996-5, 1996.

[11] Dorigo, M., Optimization, Learning, and Natural Algorithms, PhD thesis, Department

of Electronics, Milan, Italy, 1992.

[12] Dorigo, M., The Ant System: Optimization by a colony of cooperating agents, IEEE

Transactions on Systems, Man, and Cybernetics–Part B, Vol.26, No.1, 1996, pp.1-13.

[13] Elshamli, A., Asmar, D., Elmasri, F., Ant Colony Optimization, 2010.

[14] George, G. and Raimond, K., Solving Travelling Salesman Problem Using Variants of

ABC Algorithm, The International Journal of Computer Science & Applications

(TIJCSA) Volume 2, No. 01, ISSN – 2278-1080, March 2013.

[15] Hashni, T., Amudha, Ms. T., Relative Study of CGS with ACO and BCO Swarm

Intelligence Techniques, T Hashni et al ,Int.J.Computer Technology &

Applications,Vol 3 (5), 1775-1781, Available online@www.ijcta.com, IJCTA | Sept-

Oct 2012

[16] Hingrajiya, K. H., Gupta, R. K., Chandel, G. S., An Ant Colony Optimization

Algorithm for Solving Travelling Salesman Problem, International Journal of

Scientific and Research Publications, Volume 2, Issue 8, August 2012.

[17] Hlaing, Z. C. S. S., Khine, M. A., An Ant Colony Optimization Algorithm for Solving

Traveling Salesman Problem, 2011 International Conference on Information

Communication and Management IPCSIT vol.16 (2011) © (2011) IACSIT Press,

Singapore, 2011.

[18] Karaboga, D., Akay, B., Artificial bee colony (abc), harmony search and bees

algorithms on Numerical optimization, Erciyes University, the dept. Of computer

engineering, 38039, melikgazi, kayseri, turkiye, 2010.

40

[19] Karaboga, D., An Idea Based On Honey Bee Swarm For Numerical Optimization,

Technical Report-TR06, Erciyes University, Engineering Faculty, Computer

Engineering Department, 2005

[20] Karaboga, D., Basturk, B., On the performance of artificial bee colony (ABC)

algorithm, Applied Soft Computing 8 (2008), pp.687-697, 2008.

[21] Larik, A. S., Artificial Bee Colony Algorithm, Journal of Applied Sciences Research,

8(1): 434-440, 2012.

[22] Montemanni, R., Barta, J., Gambardella, L. M., An exact algorithm for the robust

traveling salesman problem with interval data, European Journal of Scientific

Research, 2009.

[23] Moon, C., Kim, J., Choi, G., An Efficient Genetic Algorithm for the Travelling

Salesman Problem with Precedence Constraints, ELSEVIER, European Journal of

Operational Research 140(2002)606-617, 2002.

[24] Pandey, S. and Kumar, S., Enhanced Artificial Bee Colony Algorithm and It’s

Application to Travelling Salesman Problem, HCTL Open Int. J. of Technology

Innovations and Research HCTL Open IJTIR, Volume 2, March 2013.

[25] Pathak, N., Tiwari, S. P., Travelling Salesman Problem Using Bee Colony With SPV,

International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307,

Volume-2, Issue-3, July 2012.

[26] Schrijver, A., A Course in Combinatorial Optimization, Department of Mathematics,

University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam,

Netherlands, 2013.

[27] Sha’ban, I. N. A. R. Z., Tabu Search Method for Solving the Traveling salesman

Problem, Raf. J. of Comp. & Math’s. , Vol. 5, No. 2, 2008.

[28] Shweta, K., An Experimental Study of Ant System for Solving Travelling Salesman

Problem, International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com, ISSN 2250-2459, ISO 9001:2008 Certified Journal,

Volume 3, Issue 7, July 2013.

41

[29] Singh, A., Narayan, D., Augmentation of Travelling Salesman Problem using Bee

Colony Optimization, International Journal of Innovative Technology and Exploring

Engineering (IJITEE) ISSN: 2278-3075, Volume-1, Issue-2, July 2012.

[30] STÄUTZLEz, T. and DORIGO, M., ACO Algorithms for the Traveling Salesman

Problem, 1999.

[31] TSPLIB Webpage (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp). Access Time:

20:48pm, 07-04-2014.

[32] Wong, L. P., Chong, C. S., An Efficient Bee Colony Optimization Algorithm for

Traveling Salesman Problem using Frequency-based Pruning, 2009.

[33] Wong, L. P., HeaLow, M. Y., Chong, C. S., A Bee Colony Optimization Algorithm for

Travelling Salesman Problem, Second Asia International Conference on Modellin &

Simulation, pp. 818-823, 2008.

42

Appendix A: Sample Test Data

Problem Instance Name: TSP10, n= 10

Node number X-coordinate Y-coordinate

1 410.0 250.0
2 480.0 415.0
3 560.0 365.0
4 595.0 360.0
5 660.0 180.0
6 725.0 370.0
7 830.0 485.0
8 700.0 500.0
9 700.0 580.0
10 685.0 595.0

Problem Instance Name: TSP20, n= 20

Node number X-coordinate Y-coordinate

1 13.28 -16.39
2 11.51 -15.35
3 16.46 -3.01
4 12.39 -8.00
5 10.23 -9.18
6 9.31 -13.43
7 8.30 -13.15
8 6.18 -10.47
9 5.19 -4.02
10 6.41 -1.35
11 5.33 -0.13
12 6.08 1.13
13 6.29 2.37
14 12.22 -1.31
15 13.31 2.07
16 12.00 8.30
17 11.51 13.10
18 12.07 15.03
19 6.27 3.24
20 6.27 7.27

Problem Instance Name: TSP30, n= 30

Node number X-coordinate Y-coordinate

1 14.55 -23.31
2 28.06 -15.24
3 32.38 -16.54
4 31.38 -8.00
5 33.39 -7.35

43

6 34.02 -6.51
7 34.05 -4.57
8 35.48 -5.45
9 35.43 -0.43
10 36.47 3.03
11 22.56 5.30
12 36.22 6.37
13 36.48 10.11
14 34.44 10.46
15 32.54 13.11
16 32.07 20.04
17 31.12 29.54
18 31.16 32.18
19 29.58 32.33
20 30.03 31.15
21 24.05 32.53
22 19.37 37.14
23 15.36 32.32
24 13.11 30.13
25 13.38 25.21
26 15.20 38.53
27 9.00 38.50
28 11.36 43.09
29 18.06 -15.57
30 14.40 -17.26

Problem Instance Name: TSP40, n= 40

Node number X-coordinate Y-coordinate

1 565.0 575.0
2 25.0 185.0
3 345.0 750.0
4 945.0 685.0
5 845.0 655.0
6 880.0 660.0
7 25.0 230.0
8 525.0 1000.0
9 580.0 1175.0
10 650.0 1130.0
11 1605.0 620.0
12 1220.0 580.0
13 1465.0 200.0
14 1530.0 5.0
15 845.0 680.0
16 725.0 370.0
17 145.0 665.0
18 415.0 635.0
19 510.0 875.0
20 560.0 365.0
21 300.0 465.0

44

22 520.0 585.0
23 480.0 415.0
24 835.0 625.0
25 975.0 580.0
26 1215.0 245.0
27 1320.0 315.0
28 1250.0 400.0
29 660.0 180.0
30 410.0 250.0
31 420.0 555.0
32 575.0 665.0
33 1150.0 1160.0
34 700.0 580.0
35 685.0 595.0
36 685.0 610.0
37 770.0 610.0
38 795.0 645.0
39 189.0 756.0
40 205.0 463.0

Problem Instance Name: TSP50, n= 50

Node number X-coordinate Y-coordinate

1 565.0 575.0
2 25.0 185.0
3 345.0 750.0
4 945.0 685.0
5 845.0 655.0
6 880.0 660.0
7 25.0 230.0
8 525.0 1000.0
9 580.0 1175.0
10 650.0 1130.0
11 1605.0 620.0
12 1220.0 580.0
13 1465.0 200.0
14 1530.0 5.0
15 845.0 680.0
16 725.0 370.0
17 145.0 665.0
18 415.0 635.0
19 510.0 875.0
20 560.0 365.0
21 300.0 465.0
22 520.0 585.0
23 480.0 415.0
24 835.0 625.0
25 975.0 580.0
26 1215.0 245.0
27 1320.0 315.0

45

28 1250.0 400.0
29 660.0 180.0
30 410.0 250.0
31 420.0 555.0
32 575.0 665.0
33 1150.0 1160.0
34 700.0 580.0
35 685.0 595.0
36 685.0 610.0
37 770.0 610.0
38 795.0 645.0
39 720.0 635.0
40 760.0 650.0
41 475.0 960.0
42 95.0 260.0
43 875.0 920.0
44 700.0 500.0
45 555.0 815.0
46 830.0 485.0
47 1170.0 65.0
48 830.0 610.0
49 605.0 625.0
50 595.0 360.0

Problem Instance Name: TSP60, n= 60

Node number X-coordinate Y-coordinate

1 -4.18 15.18
2 0.04 18.16
3 -5.54 22.25
4 0.30 25.12
5 -3.23 29.22
6 -1.57 30.04
7 0.19 32.25
8 -1.17 36.49
9 2.01 45.20
10 -4.03 39.40
11 -6.10 39.11
12 -6.48 39.17
13 -8.48 13.14
14 -12.44 15.47
15 -11.40 27.28
16 -12.49 28.13
17 -15.25 28.17
18 -20.09 28.36
19 -17.50 31.03
20 -15.47 35.00
21 -19.49 34.52
22 -25.58 32.35
23 -15.57 -5.42

46

24 -37.15 - 12.30
25 -22.59 14.31
26 -22.34 17.06
27 -26.38 15.10
28 -24.45 25.55
29 -25.45 28.10
30 -26.15 28.00
31 -29.12 26.07
32 -29.55 30.56
33 -33.00 27.55
34 -33.58 25.40
35 38.24 20.42
36 39.57 26.15
37 40.56 25.32
38 36.26 23.12
39 33.48 10.54
40 37.56 12.19
41 38.42 13.11
42 37.52 20.44
43 41.23 9.10
44 41.17 13.05
45 36.08 -5.21
46 38.47 15.13
47 38.15 15.35
48 37.51 15.17
49 35.49 14.32
50 39.36 19.56
51 38.09 24.36
52 36.09 23.00
53 40.44 13.57
54 40.33 14.15
55 40.37 14.23
56 37.57 22.56
57 40.0 21.0
58 24.0 25.0
59 12.0 63.0
60 45.0 51.0

Problem Instance Name: TSP70, n= 70

Node number X-coordinate Y-coordinate

1 9860 1415
2 9396 14616
3 11252 14848
4 11020 13456
5 9512 15776
6 10788 13804
7 10208 14384
8 11600 13456
9 11252 14036

47

10 10672 15080
11 11136 14152
12 9860 13108
13 10092 14964
14 9512 13340
15 10556 13688
16 9628 14036
17 10904 13108
18 11368 12644
19 11252 13340
20 10672 13340
21 11020 13108
22 11020 13340
23 11136 13572
24 11020 13688
25 8468 11136
26 8932 12064
27 9512 12412
28 7772 11020
29 8352 10672
30 9164 12876
31 9744 12528
32 8352 10324
33 8236 11020
34 8468 12876
35 8700 14036
36 8932 13688
37 9048 13804
38 8468 12296
39 8352 12644
40 8236 13572
41 9164 13340
42 8004 12760
43 8584 13108
44 7772 14732
45 7540 15080
46 7424 17516
47 8352 17052
48 7540 16820
49 7888 17168
50 9744 15196
51 9164 14964
52 9744 16240
53 7888 16936
54 8236 15428
55 9512 17400
56 9164 16008
57 8700 15312
58 11716 16008
59 12992 14964

48

60 12412 14964
61 12296 15312
62 12528 15196
63 15312 6612
64 11716 16124
65 11600 19720
66 10324 17516
67 12412 13340
68 12876 12180
69 13688 10904
70 13688 11716

Problem Instance Name: TSP80, n= 80

Node number X-coordinate Y-coordinate

1 288 149
2 288 129
3 270 133
4 256 141
5 256 157
6 246 157
7 236 169
8 228 169
9 228 161
10 220 169
11 212 169
12 204 169
13 196 169
14 188 169
15 196 161
16 188 145
17 172 145
18 164 145
19 156 145
20 148 145
21 140 145
22 148 169
23 164 169
24 172 169
25 156 169
26 140 169
27 132 169
28 124 169
29 116 161
30 104 153
31 104 161
32 104 169
33 90 165
34 80 157
35 64 157

49

36 64 165
37 56 169
38 56 161
39 56 153
40 56 145
41 56 137
42 56 129
43 56 121
44 40 121
45 40 129
46 40 137
47 40 145
48 40 153
49 40 161
50 40 169
51 32 169
52 32 161
53 32 153
54 32 145
55 32 137
56 32 129
57 32 121
58 32 113
59 40 113
60 56 113
61 56 105
62 48 99
63 40 99
64 32 97
65 32 89
66 24 89
67 16 97
68 16 109
69 8 109
70 8 97
71 8 89
72 8 81
73 8 73
74 8 65
75 8 57
76 16 57
77 8 49
78 8 41
79 24 45
80 32 41

50

Problem Instance Name: TSP90, n= 90

Node number X-coordinate Y-coordinate

1 8375 4700
2 8775 4700
3 8375 4900
4 8175 4900
5 8775 4900
6 8575 4900
7 8775 5400
8 8375 5450
9 8775 5600
10 8575 5600
11 8375 5650
12 8175 5650
13 8375 6200
14 8775 6200
15 8375 6400
16 8175 6400
17 8775 6400
18 8575 6400
19 8375 7000
20 8775 7000
21 8375 7200
22 8175 7200
23 8775 7200
24 8575 7200
25 8375 7800
26 8775 7800
27 8375 8000
28 8175 8000
29 8775 8000
30 8575 8000
31 8375 8700
32 8775 8700
33 8375 8900
34 8175 8900
35 8775 8900
36 8575 8900
37 8375 9600
38 8775 9600
39 8375 9800
40 8175 9800
41 8775 9800
42 8575 9800
43 8375 10500
44 8775 10450
45 8375 10700
46 8175 10700
47 8775 10650
48 8575 10650
49 8375 11300
50 8775 11300

51

51 8375 11500
52 8175 11500
53 8775 11500
54 8575 11500
55 15825 11500
56 15825 10700
57 15825 9800
58 15825 8900
59 15825 8000
60 15825 7200
61 15825 6400
62 15825 5650
63 15825 4900
64 16025 4700
65 16425 4700
66 16025 4900
67 16225 4900
68 16425 4900
69 16425 5400
70 16025 5450
71 16225 5600
72 16425 5600
73 16025 5650
74 16025 6200
75 16425 6200
76 16025 6400
77 16225 6400
78 16425 6400
79 16025 7000
80 16425 7000
81 16025 7200
82 16225 7200
83 16425 7200
84 16025 7800
85 16425 7800
86 16025 8000
87 16225 8000
88 16425 8000
89 16025 8700
90 16425 8700

Problem Instance Name: TSP100, n= 100

Node number X-coordinate Y-coordinate

1 1380 939
2 2848 96
3 3510 1671
4 457 334
5 3888 666
6 984 965
7 2721 1482
8 1286 525
9 2716 1432

52

10 738 1325
11 1251 1832
12 2728 1698
13 3815 169
14 3683 1533
15 1247 1945
16 123 862
17 1234 1946
18 252 1240
19 611 673
20 2576 1676
21 928 1700
22 53 857
23 1807 1711
24 274 1420
25 2574 946
26 178 24
27 2678 1825
28 1795 962
29 3384 1498
30 3520 1079
31 1256 61
32 1424 1728
33 3913 192
34 3085 1528
35 2573 1969
36 463 1670
37 3875 598
38 298 1513
39 3479 821
40 2542 236
41 3955 1743
42 1323 280
43 3447 1830
44 2936 337
45 1621 1830
46 3373 1646
47 1393 1368
48 3874 1318
49 938 955
50 3022 474
51 2482 1183
52 3854 923
53 376 825
54 2519 135
55 2945 1622
56 953 268
57 2628 1479
58 2097 981
59 890 1846

53

60 2139 1806
61 2421 1007
62 2290 1810
63 1115 1052
64 2588 302
65 327 265
66 241 341
67 1917 687
68 2991 792
69 2573 599
70 19 674
71 3911 1673
72 872 1559
73 2863 558
74 929 1766
75 839 620
76 3893 102
77 2178 1619
78 3822 899
79 378 1048
80 1178 100
81 2599 901
82 3416 143
83 2961 1605
84 611 1384
85 3113 885
86 2597 1830
87 2586 1286
88 161 906
89 1429 134
90 742 1025
91 1625 1651
92 1187 706
93 1787 1009
94 22 987
95 3640 43
96 3756 882
97 776 392
98 1724 1642
99 198 1810
100 3950 1558

54

Appendix B: Sample Test Run

Test Run1: Result for TSP10 with n=10:

run:

Agent returned with new best distance of: 1502.4809533505818

Agent returned with new best distance of: 1451.130196364888

Agent returned with new best distance of: 1435.9178352630229

Agent returned with new best distance of: 1408.8000220502454

Agent returned with new best distance of: 1378.4822503133914

Waiting for 3 agents to finish their random walk!

Found best so far: 1378.4822503133914

[8, 9, 7, 3, 2, 1, 0, 4, 5, 6]

Took: 1341 ms!

Result was: 1378.4822503133914

BUILD SUCCESSFUL (total time: 2 seconds)

Test Run2: Result for TSP20, with n=20:

run:

Agent returned with new best distance of: 98.99766009720597

Agent returned with new best distance of: 94.70996124601996

Agent returned with new best distance of: 94.48523145298736

Agent returned with new best distance of: 91.4088120206939

Agent returned with new best distance of: 84.99916331316186

Agent returned with new best distance of: 84.1136201561342

Agent returned with new best distance of: 83.57894532276973

Agent returned with new best distance of: 81.15203497799894

Agent returned with new best distance of: 80.53943559328407

Agent returned with new best distance of: 79.26501683399569

Agent returned with new best distance of: 75.89029728138411

Agent returned with new best distance of: 75.8902972813841

55

Waiting for 3 agents to finish their random walk!

Found best so far: 75.8902972813841

[18, 12, 11, 10, 9, 8, 7, 6, 5, 1, 0, 4, 3, 2, 13, 14, 15, 16, 17, 19]

Took: 3495 ms!

Result was: 75.8902972813841

BUILD SUCCESSFUL (total time: 5 seconds)

Test Run3: Result for TSP50, with n=50:

run:

Agent returned with new best distance of: 9415.532456547142

Agent returned with new best distance of: 9112.971938529236

Agent returned with new best distance of: 8764.830455065669

Agent returned with new best distance of: 8678.514369794624

Agent returned with new best distance of: 8550.29877038806

Agent returned with new best distance of: 8384.431886401975

Agent returned with new best distance of: 8378.999905946697

Agent returned with new best distance of: 8106.0921308132

Agent returned with new best distance of: 8037.2467958138695

Agent returned with new best distance of: 7968.199017021965

Agent returned with new best distance of: 7927.871565545271

Agent returned with new best distance of: 7836.9997941294205

Waiting for 3 agents to finish their random walk!

Found best so far: 7836.9997941294205

[20, 30, 17, 21, 0, 48, 31, 37, 39, 36, 38, 34, 35, 33, 43, 45, 47, 23, 4, 5, 14, 3, 24, 11, 27, 26,
25, 46, 13, 12, 10, 32, 42, 9, 8, 7, 40, 18, 44, 2, 16, 22, 49, 19, 15, 28, 29, 41, 1, 6]

Took: 13650 ms!

Result was: 7836.9997941294205

BUILD SUCCESSFUL (total time: 15 seconds)

56

Test Run4: Result for TSP100, with n=100:

run:

Agent returned with new best distance of: 33738.00090196493

Agent returned with new best distance of: 31321.835436725112

Agent returned with new best distance of: 30047.63831580783

Agent returned with new best distance of: 29842.45410018179

Agent returned with new best distance of: 28992.04310657391

Agent returned with new best distance of: 28703.86807539831

Agent returned with new best distance of: 28703.268635596607

Agent returned with new best distance of: 27059.83714663523

Agent returned with new best distance of: 26271.07446913352

Agent returned with new best distance of: 26071.069658684697

Agent returned with new best distance of: 24964.407660797002

Waiting for 3 agents to finish their random walk!

Found best so far: 24964.407660797002

[32, 75, 12, 94, 81, 49, 67, 84, 72, 43, 1, 63, 39, 53, 68, 80, 24, 60, 50, 86, 56, 6, 8, 82, 54, 11,
19, 85, 26, 34, 61, 59, 76, 22, 97, 90, 31, 44, 10, 14, 16, 58, 20, 73, 71, 9, 83, 35, 23, 37, 98,
17, 78, 52, 15, 87, 21, 93, 69, 65, 64, 3, 25, 96, 18, 48, 5, 62, 0, 91, 7, 88, 41, 30, 79, 55, 74,
89, 46, 92, 27, 57, 66, 33, 28, 45, 42, 2, 13, 99, 70, 40, 47, 29, 38, 77, 51, 95, 4, 36]

Took: 48968 ms!

Result was: 24964.407660797002

BUILD SUCCESSFUL (total time: 49 seconds)

Test Run1: Result for TSP10 with n=10:

run:

Number of cities = 10

Agent return with the best distance of: 3148.3454628669233

Agent return with the best distance of: 2883.260050712893

Agent return with the best distance of: 3420.390245231565

Agent return with the best distance of: 3244.5506167968433

57

Agent return with the best distance of: 2031.8676164524786

Agent return with the best distance of: 1792.5146452656227

Agent return with the best distance of: 1505.1616435251508

Agent return with the best distance of: 1375.7462810582965

[10, 9, 8, 7, 6, 4, 3, 2, 1, 5]

Best Solution : 1375.7462810582965

Time Required for Bee Colony Algorithm : 1197.0

BUILD SUCCESSFUL (total time: 10 seconds)

Test Run2: Result for TSP20 with n=20:

run:

Number of cities = 20

Agent return with the best distance of: 86.49753079312575

Agent return with the best distance of: 82.08651236156994

Agent return with the best distance of: 81.78479425339353

Agent return with the best distance of: 75.19271350330582

Agent return with the best distance of: 71.38795938773794

Agent return with the best distance of: 67.5771225153157

Agent return with the best distance of: 63.772677578441645

Agent return with the best distance of: 63.249377276373224

[19, 13, 12, 11, 10, 9, 8, 7, 6, 2, 1, 5, 4, 3, 14, 15, 16, 17, 18, 20]

Best Solution : 63.249377276373224

Time Required for Bee Colony Algorithm : 3644.0

BUILD SUCCESSFUL (total time: 8 seconds)

58

Test Run3: Result for TSP100 with n=100:

run:

Number of cities = 100

Agent return with the best distance of: 22264.378969951613

Agent return with the best distance of: 21725.04659357661

Agent return with the best distance of: 21707.6609354778

Agent return with the best distance of: 21699.593601902565

Agent return with the best distance of: 21366.145794445718

Agent return with the best distance of: 21049.28067966766

Agent return with the best distance of: 20991.624224159907

Agent return with the best distance of: 20857.682274596234

Agent return with the best distance of: 20792.507982646646

Agent return with the best distance of: 20612.163509024205

Agent return with the best distance of: 20490.014047501245

[44, 50, 73, 68, 85, 39, 30, 96, 78, 52, 5, 37, 33, 76, 13, 95, 82, 2, 54, 40, 64, 69, 81, 25, 61,
51, 87, 9, 7, 57, 20, 12, 27, 86, 35, 62, 60, 77, 23, 98, 91, 45, 32, 11, 15, 17, 74, 21, 59, 72,
10, 84, 36, 38, 24, 18, 79, 53, 88, 16, 22, 94, 70, 66, 65, 4, 97, 56, 80, 31, 89, 42, 8, 92, 1, 63,
6, 49, 90, 19, 75, 26, 99, 47, 93, 28, 67, 58, 55, 83, 34, 29, 46, 3, 43, 14, 71, 41, 100, 48]

Best Solution : 20490.014047501245

Time Required for Bee Colony Algorithm : 46091.5

BUILD SUCCESSFUL (total time: 27 seconds)

