

Tribhuvan University

Institute of Science and Technology

Sensitivity Analysis of Cache Partition in CLOCK-Pro Page Replacement and

its Comparison with Adaptive CLOCK-Pro

Dissertation
Submitted to

Central Department of Computer Science & Information Technology

Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements

for the Master’s Degree in Computer Science & Information Technology

By

Bhupendra Singh Saud

Date: April, 2013

Supervisor

Prof. Dr. Shashidhar Ram Joshi

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science & Information Technology

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than the listed

here have been used in this work.

...

Mr. Bhupendra Singh Saud

Date: 9
th

 April, 2013

Supervisor’s Recommendation

I hereby recommend that this dissertation prepared under my supervision by Mr. Bhupendra

Singh Saud entitled “Sensitivity Analysis of Cache Partition in CLOCK-Pro Page

Replacement and its Comparison with Adaptive CLOCK-Pro” in partial fulfillment of the

requirements for the degree of M.Sc. in Computer Science and Information Technology be

processed for the evaluation.

...

Prof. Dr. Shashidhar Ram Joshi

Department of Electronics & Computer Engineering,

Institute of Engineering,

Pulchowk, Nepal

Date: 9
th

 April, 2013

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science & Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope and

quality as a dissertation in the partial fulfillment for the requirement of Masters Degree in

Computer Science and Information Technology.

Evaluation Committee

Asst. Prof. Nawaraj Poudel

Acting Head of Department

Central Department of Computer Science

& Information Technology

Tribhuvan University

Kirtipur

Prof. Dr. Shashidhar Ram Joshi

Department of Electronics

& Computer Engineering

Institute of Engineering,

Pulchowk, Nepal

(Supervisor)

(External Examiner)

 Date: 15th April 2013

(Internal Examiner)

i

Acknowledgement

I would like to express my gratitude to all the people who supported and accompanied me

during the preparation of this dissertation "Sensitivity Analysis of Cache Partition in

CLOCK-Pro Page Replacement and its Comparison with Adaptive CLOCK-Pro”.

This research work has been performed under Central Department of Computer Science

and Information Technology (Tribhuwan University), Kirtipur. I am very grateful to my

department for giving me an enthusiastic support.

First, I would like to express my gratitude to my supervisor Professor Dr.

Shashidhar Ram Joshi, head of the Department of Electronics and Computer

Engineering, Institute of Engineering, Pulchowk. This research would not have been

possible without his advices and patience.

I deeply extends my heartily acknowledgement to Mr. Arjun Singh Saud,

lecturer CDCSIT, who gave me an enthusiastic support of the preparation of this

dissertation. He is the one who listened to all my problems I faced during this thesis and

showed me the way to overcome them.

Most importantly I would like to thank to respected Head of Department of

Central Department of Computer Science and Information Technology, Assoc. Prof.

Dr.Tanka Nath Dhamala, respected teachers Prof. Sudarsan Karanjit, Ast. Prof. Dr.

Subarna Sakya, Mr. Min Bahadur Khati, Mr. Bishnu Gautam, Mr. Dinesh Bajracharya,

Mr. Navaraj Poudel, Mr. Jagdish Bhatta, Mr Dheeraj Kedar Pandey, Mr.Sarbin Sayami,

Mr. Tej Bahadur Shahi & Mrs. Lalita Sthapit of CDCSIT, TU, for providing me such a

broad knowledge and inspirations.

Special thanks to my family and members of educational organizations that I have

been working, for their endless motivation, constant mental support and love which have

been influential in whatever I have achieved so far.

I wish to thank to all my colleagues and friends especially Mr. Deepak Bhatt, Mr.

Upendra Raj Joshi, and Mr. Dipak Bhatt for supporting me directly and indirectly in this

research work.

I have done my best to complete this research work. Suggestions from the readers are

always welcomed, which will improve this work.

ii

Abstract

With the ever-growing performance gap between memory systems and disks, and rapidly

improving CPU performance, virtual memory (VM) management becomes increasingly

important for overall system performance. However, one of its critical components, the

page replacement policy, is still dominated by CLOCK, a replacement policy developed

almost 40 years ago. While pure LRU has an unaffordable cost in VM, CLOCK simulates

the LRU replacement algorithm with a low cost acceptable in VM management. Over the

last three decades, the inability of LRU as well as CLOCK to handle weak locality

accesses has become increasingly serious, and an effective fix becomes increasingly

desirable. This dissertation work is focused on an improved CLOCK replacement policy,

called CLOCK-Pro. By additionally keeping track of a limited number of replaced pages,

CLOCK-Pro works in a similar fashion as CLOCK with a VM-affordable cost. CLOCK-

Pro improves weaknesses of CLOCK especially in weak locality of references by using

reuse distance also known as IRR.

For weak locality workloads CLOCK-Pro and adaptive CLOCK-Pro always performs

better than CLOCK page replacement algorithm. CLOCK-Pro page replacement policy

increases hit rate up to 40% and adaptive CLOCK-Pro increases hit rate up to 43%.

Performance gain is more in case of purely weak locality workloads (such as looping

pattern) and performances are comparable in case of strong locality workloads (such as

temporally clustered workloads). Again, if the number of distinct pages is nearly equal to

cache size CLOCK algorithm also performs better for weak locality workloads.

Keywords: Cache memory, CLOCK page replacement algorithm, CLOCK-Pro page

replacement algorithm, Adaptive CLOCK-Pro page replacement algorithm, Page faults,

Cache partition, History pages or Non-resident Cold Pages, Cold Pages, Hot Pages.

iii

Table of Contents

CHAPTER 1

Background & Introduction

1.1 Background………………………………………………………………………….1-9

1.1.1 Memory Hierarchy…………………………………………………………......1-2

 1.1.2 Virtual Memory and Paging……………………………………………………2-4

 1.1.3 Page Replacement Algorithms…………………………………………………4-6

 1.1.3.1 Local VS Global Page Replacement………………………………………4

 1.1.3.2 Static VS Dynamic Page Replacement………………………………….5-6

1.1.3.1 Stack Algorithms……………………………………………………......6-7

1.1.4 Performance Metrics…………………………………………………………......7

1.1.4.1 Page Fault Count…………………………………………………….........7

1.1.4.1 Hit Rate & Hit Ratio………………………………………………………7

1.1.4.2 Miss Rate & Miss Ratio…………………………………………………...7

1.1.5 Program Behavior……………………………………………………………...7-9

1.1.5.1 Locality of Reference……………………………………………………...8

1.1.5.2 Memory Reference Pattern………………………………………….......8-9

1.2 Introduction……………………………………………………………………….9-12

1.2.1 Problem Statement………………………………………………………….11

1.2.2 Objectives……………………………………………………………….11-12

1.3 Motivation……………………………………………………………………...12-13

1.4 Thesis Organization……………………………………………………………..…13

CHAPTER 2

Literature Review & Methodology

2.1 Literature Review………………………………………………………………...14-21

2.1.1 OPT Page Replacement Algorithm………………………………………….....14

2.1.2 LRU Based Page Replacement Algorithms…………………………………14-19

2.1.2.1 General LRU Page Replacement Algorithm………………………...14-15

iv

2.1.2.2 NRU Page Replacement Algorithm…………………………………15-16

2.1.2.3 MRU Page Replacement Algorithm………………………………….....16

2.1.2.4 LFU Page Replacement Algorithm……………………………………..16

2.1.2.5 LRFU Page Replacement Algorithm…………………………………...17

2.1.2.6 LRU-K Page Replacement Algorithm………………………………….17

2.1.2.7 2Q Page Replacement Algorithm…………………………………….....17

2.1.2.8 LIRS Page Replacement Algorithm…………………………………….18

2.1.2.9 ARC Page Replacement Algorithm…………………………………18-19

 2.1.3 CLOCK Based Page Replacement Algorithms…………………………...19-21

 2.1.3.1 CLOCK Page Replacement Algorithm…………………………............19

 2.1.3.2 GCLOCK Page Replacement Algorithm……………………….......19-20

 2.1.3.3 CAR Page Replacement Algorithm…………………………………….20

 2.1.3.4 CART Page Replacement Algorithm…………………………...............20

 2.1.3.5 CLOCK-Pro Page Replacement Algorithm………………………...20-21

 2.1.3.6 Adaptive CLOCK-Pro Page Replacement Algorithm…………….........21

2.2 Research Methodology …………………………………………………................21

CHAPTER 3

Page Replacement Algorithms carried out in Dissertation work

3.1 CLOCK Page Replacement………………………………………………………22-25

3.1.1 CLOCK Algorithm…………………………………………………………….23

3.1.2 CLOCK Tracing……………………………………………………………23-25

3.2 CLOCK-Pro Page Replacement………………………………………………….25-29

3.2.1 CLOCK-Pro Algorithm…………………………………………………….26-27

3.2.2 CLOCK-Pro Tracing……………………………………………………….27-29

3.3 Adaptive CLOCK-Pro Page Replacement……………………………………….29-33

 3.3.1 Adaptive CLOCK-Pro Algorithm…………………………………………30-31

 3.3.2 Adaptive CLOCK-Pro Tracing……………………………………………31-33

v

CHAPTER 4

Implementation

4.1 Tools used……………………………………………………………………………34

4.1.1 Programming Language………………………………………………..............34

4.1.2 NetBeans IDE………………………………………………………………….34

4.2 Data Structure…………………………………………………………………….35-36

4.2.1 Circular Doubly Linked List (CDLL)………………………………….......35-36

4.3 Flowcharts……………………………………………………………………......37-39

4.4 Sample Test Case…………………………………………………………….…...40-41

CHAPTER 5

Data Collection & Analysis

5.1 Data Collection………………………………………………………………………42

5.2 Testing……………………………………………………………………………42-46

5.2.1 Test Result of Workload 1…………………………………………………..42-43

 5.2.1.1 Test Result for three algorithms with varying cache size……………...42-43

 5.2.1.2 Test Result for CLOCK-Pro and Adaptive CLOCK-Pr……………….….43

 with varying cold block size

 5.2.2 Test Result of Workload 2……………………………………………………...44

 5.2.2.1 Test Result for three algorithms with varying cache size………………...44

 5.2.2.2 Test Result for CLOCK-Pro and Adaptive CLOCK-Pr……………….…44

 with varying cold block size

 5.2.3 Test Result of Workload 3…………………………………………………......45

 5.2.3.1 Test Result for three algorithms with varying cache size………………...45

 5.2.3.2 Test Result for CLOCK-Pro and Adaptive CLOCK-Pr………………….45

 with varying cold block size

 5.2.4 Test Result of Workload 4…………………………………………………….46

 5.2.4.1 Test Result for three algorithms with varying cache size………………..46

 5.2.4.2 Test Result for CLOCK-Pro and Adaptive CLOCK-Pr…………………46

vi

 with varying cold block size

5.3 Analysis…………………………………………………………………………..47-51

CHAPTER 6

Conclusion and Future Study

6.1Conclusion…………………………………………………………………………....52

6.2 Future Work……………………………………………………………….…………53

 .

References……………………………………………………….…...54-56

Appendices…………………………………………………….……….57-81

vii

List of Figures

Fig. No. Caption Pages

Fig 1.1 - Computer Memory Hierarchy……………………………………..1

Fig 1.2 - Mapping virtual memory and physical memory…………………..3

Fig 1.3 - Three types of pages in CLOCK-Pro…………………………….11

Fig 3.1 - General CLOCK……………………………………………........22

Fig 3.2-3.11 - pages in CLOCK at virtual time 1-10………………………...23-25

Fig 3.12-3.21 - pages in CLOCK-Pro at virtual time 1-10…………………...28-29

Fig3.22-3.31 - pages in Adaptive CLOCK-Pro at virtual time 1-10………...32-33

Fig4.1 - Flowchart of CLOCK Algorithm…………………………….….37

Fig4.2 - Flowchart of CLOCK-Pro Algorithm…………………………...38

Fig4.3 - Flowchart of Adaptive CLOCK-Pro Algorithm………………....39

Fig5.1 - Graph for Table 5.1………………………………………………47

Fig5.2 - Graph for Table 5.2………………………………………………47

Fig5.3 - Graph for Table 5.3………………………………………………48

Fig5.4 - Graph for Table 5.4………………………………………………48

Fig5.5 - Graph for Table 5.5………………………………………………49

Fig5.6 - Graph for Table 5.6………………………………………………49

Fig5.7 - Graph for Table 5.7………………………………………………50

Fig5.8 - Graph for Table 5.8………………………………………………50

viii

List of Tables

Table No. Caption Pages

Table 5.1 - Test Result of Workload 1 with varying cache size 43

Table 5.2 - Test Result of Workload 1 with varying cold block size 43

Table 5.3 - Test Result of Workload 2 with varying cache size 44

Table 5.4 - Test Result of Workload 2 with varying cold block size 44

Table 5.5 - Test Result of Workload 3 with varying cache size 45

Table 5.6 - Test Result of Workload 3 with varying cold block size 45

Table 5.7 - Test Result of Workload 4 with varying cache size 46

Table 5.8 - Test Result of Workload 4 with varying cold block size 46

ix

List of Abbreviations

RAM - Random Access Memory

SRAM - Static RAM

DRAM - Dynamic RAM

VM - Virtual Memory

LRU - Least Recently Used

LFU - Least Frequently Used

2Q - Two Queues

ARC - Adaptive Replacement Cache

CAR - Clock with Adaptive Replacement

CART - CAR with Temporal Filtering

CLOCK Pro - Clock with Pro

CPU - Central Processing Unit

LIRS - Low Inter-reference Recency Set

LRFU - Least Recently Frequently Used

MRU - Most Recently Used

NRU - Not Recently Used

OPT - Optimum

PFF - Page Fault Frequency

MR - Miss Rate

HR - Hit Rate

NPF - Number of Page Fault

NDP - Number of Distinct Pages

IRR - Inter- Reference Recency

LIR - Low Inter-reference Recency

HIRS - High Inter-reference Recency Set

HIR - High Inter-reference Recency

GCLOCK - Generalized CLOCK

JRE - Java Runtime Environment

IDE - Integrated Development Environment

CDLL - Circular Doubly Linked List

http://en.wikipedia.org/wiki/Java_virtual_machine
http://en.wikipedia.org/wiki/Integrated_development_environment

1

 CHAPTER 1

Background and introduction

1.1 Background

1.1.1 Memory Hierarchy

The term memory hierarchy is used in computer architecture when discussing

performance issues in computer architectural design, algorithm predictions, and the lower

level programming constructs such as involving locality of reference. A "memory

hierarchy" in computer storage distinguishes each level in the "hierarchy" by response

time. Since response time, complexity, and capacity are related, the levels may also be

distinguished by the controlling technology. Even though varieties of memory devices

which vary on response time, cost, reliability, memory capacity etc. are available in

today's market, the computer system has limited memory. Memory Hierarchy is the

ranking of memory devices so as to achieve higher performance with in the limited

storage capacity. Memory Hierarchy consists of different levels of memory that are faster

one over other but faster memory is costlier and has low storage capacity compared to

slower memory.

 Figure 1.1: Computer Memory Hierarchy [27]

Registe
rs

Remote secondary
Storage (distributed file
systems)

On-chip L1
Cache
(SRAM)

Off-chip L2
Cache
(SRAM)
Main
memory
(DRAM) Local Secondary

Storage (local
disk)

CPU registers hold words
retrieved from L1 cache

L1 cache holds cache lines
retrieved from the L2 cache
memory

L2 cache holds cache lines
retrieved from the main memory

Main memory holds disk blocks
retrieved from local disks

Local disks hold files retrieved
from disks on remote network
server

http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Locality_of_reference
http://en.wikipedia.org/wiki/Computer_storage

2

Figure1.1Computer Memory Hierarchy shows the hierarchy of memories used in a

computer system with their speed and memory capacity. The arrangement of memory

devices in a computer system is such that faster memory is at top level and slower

memory is at the bottom. Overall performance of computer system depends upon

management and organization of such memories. All the memory management policies

are automatically handled by OS and devices are arranged according as the principles

followed by it. Different types of memories available up to now can be categorized into

two major groups. They are primary memory and secondary memory which can be taken

as real memory. Besides real memory OS uses virtual memory to speed up the overall

performance of the computer system.

 1.1.2 Virtual Memory and Paging

Virtual memory acts as a cache between main memory and secondary memory. Data is

fetched in advance from the secondary memory (hard disk) into the main memory so that

data is already available in the main memory when needed. The benefit is that the large

access delays in reading data from hard disk are avoided. Fotheringham 1961 [1], devised

a concept of virtual memory which is associated with ability to address a memory space

much larger than the available real memory. Virtual memory [16, 20] is a service

provided by an OS that allows execution of programs larger than available physical

memory. Virtual memory plays vital role to overcome limited primary memory. Handling

virtual memory is one of the important issues of today’s computer system.

Virtual memory systems use a technique called paging [9, 17] in which each program is

divided into a number of blocks called pages and, the main memory is also divided into a

number of block called frames. Generally, page and frame sizes are equal. Program

execution begins after loading only a few pages, including zero, in memory. We say that

page fault has occurred, if the execution of a program references a page that is not

currently in main memory. The program or data page that is not currently in main

memory is required to be brought into memory as needed and, some other page should be

removed from memory to allocate the space for incoming page. Generally memory is

fully allocated to increase degree of multiprogramming.

3

A major reason for success of virtual memory is that it works silently and

automatically, without any intervention from the application programmer. In order to

manage memory more efficiently and with fewer errors, modern systems provide an

abstraction of main memory known as virtual memory (VM). Virtual memory is an

elegant interaction of hardware exceptions, hardware address translation, main memory,

disk files, and kernel software that provides each process with a large, uniform, and

private address space. With one clean mechanism, virtual memory provides three

important capabilities.

a. It uses main memory efficiently by treating it as a cache for an address space

stored on disk, keeping only the active areas in main memory, and transferring

data back and forth between disk and memory as needed.

b. It simplifies memory management by providing each process with a uniform

address space.

c. It protects the address space of each process from corruption by other processes.

Generally memory is fully allocated to increase degree of multiprogramming.

 Physical memory space

 Virtual address space

 Fig 1.2 Mapping virtual memory and physical memory

The process of choosing a page frame to replace, when a page fault occurs, is called page

replacement and, the page frame chosen for the replacement is called victim frame. The

4

algorithm used by the operating system to find the victim frame is called page

replacement algorithm.

1.1.3 Page Replacement Algorithms

When a page fault occurs, the operating system has to choose a page to remove from

memory to make room for the page that has to be brought in. If the page to be removed is

modified while in memory, it must be rewritten to the disk so that the disk copy remains

up to date. If, however, the page has not been changed (e.g., it contains program text), the

disk copy is already up to date, so no rewrite is needed. The page to be read in just

overwrites the page being evicted. While it would be possible to pick a random page to

evict at each page fault, system performance is much better if a page that is not heavily

used is chosen. If a heavily used page is removed, it will probably have to be brought

back in quickly, resulting in extra overhead. Much work has been done on the subject of

page replacement algorithms [17], both theoretical and experimental.

There are many algorithms devised for page replacement. Because the secondary storage,

where the remaining pages are stored, has a low speed as compared to the speed of the

main memory; the operating system in the least recently used (LRU) algorithm, tries to

replace those blocks that have low probability of being referenced again and, it tries to

retain those blocks which have high probability of being referenced in near future.

“Locality of reference” [4] is one such property of page reference pattern, which is used

by many algorithms to predict about the future references. We say that a workload

(sequence of page references) consists of locality of reference if many memory references

are accesses to neighboring page of the page referenced just before it. A good

approximation to the optimal algorithm is based on the observation that pages that have

been used heavily in the recent past would probably be used again in the near future.

Conversely, those pages which have not been used heavily would probably remain unused

in next few references. This idea can be directly exploited in a simple algorithm: when a page

fault occurs, take out the page that has been unused for the longest time. This strategy is called

LRU (Least Recently Used) algorithm. In other words, LRU predicts about the future by looking

5

at the past behaviors. LRU, thus, uses the “recency” factor which means that most recent pages

are eligible to remain in memory and least recent page is “thrown out”. Clearly, LRU uses the

“locality of reference” as a guiding principle.

If a program has a good locality of reference, LRU performs as an excellent algorithm. But if a

program has a weak locality, it is worse than other simple algorithms. For such workloads (i.e.

having weak locality) LRU shows some anomalous behaviors. The typical cases where weak

locality of page references occur include file scanning, regular accesses over more block than

the memory size, accesses on blocks with distinct frequency.

1.1.3.1 Local vs Global Page Replacement

Replacement algorithm can be local or global [20]: when a process incurs a page fault,

local page replacement algorithm selects for replacement some page that belongs to that

process (or a group of processes sharing memory partition), whereas global replacement

algorithm is free to select any page in memory. Local page replacement assumes some

form of memory partitioning that determines how many pages are to be assigned to a

given process of a group of processes. Most popular forms of partitioning are fixed

partitioning and balance set algorithm based on the working set model. Advantage of

local page replacement is its scalability: each process can handle its page faults

independently without contending for some shared global data structure.

 Global page replacement involves competition between processes as there are a

limited number of frames. This results in more page faults. In local page replacement,

there is the principal of locality where the pages are based on the most frequently used,

least frequently used, or some other 'prediction' policies which imply that certain pages

are more likely to be used than others.

1.1.3.2 Static vs Dynamic Page Replacement Algorithm

Static page replacement algorithms [14] share frames equally among processes. It

splits m frames to n users such that each user gets m/n frames. For example, if we have

100 frames and 5 processes then each process will get 200 frames. But, some applications

require more frames than others. Compare a database program of 127k and a small

student process of 10k. One solution to this problem is to decide the number of frames at

initial load time according to program size, or priority.

6

Dynamic paging algorithms share frames according to needs rather than equally.

Some processes need more frames than others and sometimes a process needs more

frames than other times. Change of locality when change of function. Some localities

require more pages and Change of localities requires more pages. These issues can be

addressed with dynamic page replacement algorithm. Although it is apparent that

Dynamic Algorithms are more versatile in their ability to deal with locality changes and

the natural occurrence of working page set changes, their complexity makes them a

reality only for large-scale systems. When working with smaller systems, approximations

of Static Algorithms such as Least Recently Used (LRU) or Least Frequently Used (LFU)

tend to yield the best performance while dealing with limited hardware support for

additional functions [10].

1.1.3.3 Stack Algorithms

One would naturally expect the behavior of static paging algorithms to be linear; after all,

they are static in nature. Instinct tells us that by increasing the available physical memory

for storing pages, and thus decreasing the needed number of page replacements, that the

performance of the algorithm would increase. However, with most simple algorithms this

is not necessarily the case. In fact, by increasing the available physical memory, some

algorithms such as FIFO can decrease in page fault performance seemingly at random, as

evidenced by [1]. This occurrence is referred to as Belady’s Anomaly [22], and is a

primary factor in considering the practicality of any static algorithm [16, 25]. The

predictable change in performance with an increase in physical memory is obviously not

something to be taken for granted. It can be proven, however, that if any algorithm with

allocation of size m has pages that are guaranteed to be a subset of the allocation m + 1, it

will not be subject to Belady’s Anomaly; this is what is referred to as the inclusion

property. Static algorithms that meet this requirement are called Stack Algorithms, named

rightly so for the process of stacking subsets of pages as available allocations increase.

Not only are Stack Algorithms more useful, since they are guaranteed not to degrade in

performance as available resources increase, their page faulting behavior is also easy to

predict. Examples of Stack Algorithms include LRU and LFU, which are among the

minority of algorithms not subject to Belady’s Anomaly [20].

7

1.1.4 Performance Metrics

If the requested block is available then hit occurs. If it doesn't then page fault occurs

which can be taken as occurrence of miss. Performance gain can be achieved due to more

hit rather than miss. For each miss OS has to pay miss penalty which is time consuming

and need more resource. Offline performance of the page replacement algorithm is

measured in terms of page fault count, hit ratio, miss ratio etc [4].

1.1.4.1 Page Fault Count

A successful page replacement algorithm always computes less number of page faults.

Page fault count can be measured by counting occurrence of number of page faults

between some intervals of reference, which is also known as page fault frequency (PFF).

1.1.4.2 Miss Rate & Miss Ratio

Miss rate (MR) can be calculated by using formula

MR = 100 × ((NPF - NDP) / (NR - NDP))

Where NPF is the number of page faults, NDP is the number of distinct pages referenced

and NR is the total number of pages referenced [17]. Miss Ratio is the fraction number of

page fault and reference ignoring the distinct references.

1.1.4.3 Hit Rate & Hit Ratio

Hit rate can be calculated by using formula

HR = 100 - MR

Where HR is the hit rate and MR is the miss rate. Hit rate is the percentage calculation of

the fraction hit ratio. Hit ratio can be calculated by subtracting miss ratio from 1.

1.1.5 Program Behavior

There are several factors that influence performance of page replacement algorithm. The

performance of page replacement algorithm relies on pattern of pages that are referenced.

Behavior of program depends upon the access pattern it references memory which is

further depends upon working set and locality of reference.

8

1.1.5.1 Locality of Reference

During the course of execution of program memory references tend to cluster forming

certain locality. Locality varies on the basis of time and space. Temporal locality is based

on time, it assumes that memory location referenced just now is likely to be reference

again in near future. Looping, subroutines, stacks, variable used for counting & totaling

etc supports this assumption. Spatial locality is based on space, is assumes that once a

memory is referenced there is high chance of nearby memory location to be referenced

again. Array traversal, sequential code execution, related variable declaration nearby in

source code supports this assumption. Hints of locality are followed in any type memory

reference sequence. But some follows strongly and some follows weakly [6].

1.1.5.2 Memory Reference Pattern

Memory locations that are referenced repeatedly in a same order can be viewed as cyclic

pattern. Loop generates cyclic pattern. For example if P1,P2,P3 be the memory blocks

used then cyclic pattern can be taken as P1,P2,P3, P1,P2,P3, P1,P2,P3, P1,P2,P3,

P1,P2,P3 when loop executes five times.

Access of memory location at particular place then repeated after some duration, such

memory reference pattern can be viewed as correlated pattern. For example if p1,p2,p3 be

the memory blocks frequently used then correlated pattern can be taken as if p1,p2,p3,

p4,p5,p6,p7,p8,p9p10,p1,p2,p3, p11,p12,p13,p14 when two times correlated access is

performed.

When particular memory block has a stationary reference probability and all other blocks

are accessed independently with the associated probabilities, such memory reference

pattern can be viewed as probabilistic pattern [17]. For example if p1,p2 be the memory

blocks frequently used then probabilistic pattern can be taken as p1,p2, p3,p4,p5,p6,p1,

p7, p2, p8,p9,p10,p11, p1, p12,p13,p2, p14,p15, p1.

A temporally clustered reference pattern has the property that a block referenced more

recently will be referenced sooner in the future. For example temporally clustered pattern

can be taken as p1, p2, p1, p3, p2, p4, p3, p1, p2, p5, p6, p5, p6, p9.

9

Mixed pattern is formed by the combination of cyclic pattern, correlated pattern,

temporally clustered pattern and probabilistic pattern. For example of mixed pattern can

be taken as p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11, p1,p2,p3,p4,p5,p1, p8, p2, p12,p13, p1,

p14,p15,p10, p1, p2, p3, p4.

1.2 Introduction

Among variety of page replacement algorithm Least Recently Used (LRU) algorithm is

simple, flexible and has low overhead. LRU replaces page that is not accessed for longest

time. LRU adapts faster during change in working set with workloads having good

locality of reference. But LRU makes bold assumption on recency factor only which

made LRU miss behave with weak locality workloads. Research and experience have

shown that CLOCK [3] is close approximation of LRU, and its performance

characteristics are very similar to those of LRU. So all the performance disadvantages

about LRU are also applied to CLOCK. In CLOCK, the memory spaces holding the

pages can be regarded as a circular buffer. In CLOCK each page is associated with a bit,

called reference bit, which is set by hardware whenever the page is accessed. When it is

necessary to replace a page to service a page fault, the page pointed to by the hand is

checked. If its reference bit is unset, the page is replaced. Otherwise, the algorithm resets

its reference bit and keeps moving the hand to the next page.

LIRS page replacement algorithm is one of the modified versions of LRU. This algorithm

identifies and eradicates the misbehaviors of LRU on weak locality of references using an

additional criterion named IRR (Inter- Reference Recency) that represents the number of

different pages accessed between the last two consecutive accesses to the same page.

CLOCK-Pro [18] takes the same principle as that of LIRS [28] - (it uses the reuse

distance (called IRR) rather than recency in its replacement decision) based on CLOCK

infrastructure. Generally in various replacements algorithms even in LIRS the movement

of pages needed even the page hit occur but in CLOCK-Pro in this situation movement of

pages never take place. Here pages categorized into two groups: cold pages and hot pages

based on their reuse distances (or IRR). When a page is accessed, the reuse distance is the

10

period of time in terms of the number of other distinct pages accessed since its last

access. Although there is a reuse distance between any two consecutive references to a

page, only the most current distance is relevant in the replacement decision. This

algorithm uses the reuse distance of a page at the time of its access to categorize it either

as a cold page if it has a large reuse distance, or as a hot page if it has a small reuse

distance. Then mark its status as being cold or hot. Also place all the accessed pages,

either hot or cold, into one single list in the order of their accesses.

In the list, the pages with small recencies are at the list head, and the pages with large

recencies are at the list tail. To give the cold pages a chance to compete with the hot

pages and to ensure their cold/hot statuses accurately reflect their current access behavior,

CLOCK-Pro grant a cold page a test period once it is accepted into the list. Then, if it is

re-accessed during its test period, the cold page turns into a hot page. If the cold page

passes the test period without a re-access, it will leave the list. Note that the cold page in

its test period can be replaced out of memory; however, its page metadata remains in the

list for the test purpose until the end of the test period or being re-accessed. When it is

necessary to generate a free space, this algorithm replaces a resident cold page. The key

question here is how to set the time of the test period. When a cold page is in the list and

there is still at least one hot page after it (i.e., with a larger recency), it should turn into a

hot page if it is accessed, because it has a new reuse distance smaller than the hot page(s)

after it. Accordingly, the hot page with the largest recency should turn into a cold page.

So the test period should be set as the largest recency of the hot pages. If we make sure

that the hot page with the largest recency is always at the list tail, and all the cold pages

that pass this hot page terminate their test periods, then the test period of a cold page is

equal to the time before it passes the tail of the list. So all the non-resident cold pages can

be removed from the list right after they reach the tail of the list.

There are three hands: Hand-hot for hot pages, Hand-cold for cold pages and Hand-test

for running a reuse distance test for a block. The allocation of memory pages between hot

pages (Mhot) and cold pages (Mcold) are adaptively adjusted. (M=Mhot+Mcold). Here

all hot pages are resident; some cold pages are also resident and also keep track of

recently replaced pages.

11

 Fig 1.3 Three types of pages in CLOCK-Pro [18]

In CLOCK-Pro if memory size for cold pages (mc) large then it behaves more like

CLOCK. Also if mc is small then the cold page would have to be replaced out of memory

soon after its being loaded in. Adaptive CLOCK-Pro makes the memory allocation for

hot and cold pages dynamic.

1.2.1 Problem Statement

CLOCK-Pro replacement algorithm divides memory into two logical partitions: memory

for hot pages block (mh) and memory for cold pages block (mc). Deciding the size of mh

and mc is one of the crucial issues of CLOCK-Pro. In addition there are some attempts to

make the size of mh and mc dynamic (i.e. Adaptive CLOCK-Pro). This Dissertation work

focus on analyzing best cache partition ratio for CLOCK-Pro algorithm and also studying

the impact of Adaptive CLOCK-Pro on hit ratio.

1.2.2 Objectives

The objectives of this thesis work are

12

a. To analyze CLOCK-Pro by using different sized resident cold pages blocks.

b. To study performance impact of “Adaptive CLOCK-Pro” over CLOCK-Pro with

Fixed hot and cold size.

c. To compare CLOCK, CLOCK-Pro and Adaptive Clock-Pro” page replacement

algorithms.

1.3 Motivation

Memory management is not only the burden of today's computing devices. It has been

researched for decades. Whatever variety of storage devices found in today's market is

the great achievement of computer science. But still computer memory is the limited

source which directly hampers the performance of computing system. Performance gain

can be achieved by increasing the capacity of primary storage. Expectation of customer is

to decrease cost price with sufficient working memory. Hence to fulfill this demand for

manufacturing such device fewer materials are used and size of memory is being

decreased. But rather than this technical view, it is not possible to gain performance

without managing memory logically for its usability. Varieties of techniques had been

tried for this achievement. Among such techniques paging is the successful one. Page

replacement algorithm is the main part of paging technique because deciding the victim

page is a very tough job. Optimal page replacement algorithm is the best one. But it can

be only simulated since references should be known earlier, which is not possible in most

of the real systems. Many near-optimal replacement schemes have been found, but their

complexity and various practical considerations tend to limit the effectiveness of the

algorithms implemented in real systems.

Implementing LRU is a successful idea due to its simplicity, flexibility and performance

gain. But still LRU shows anomalous behavior with weak locality workloads. It is better

if an algorithm could work as LRU comparatively equivalent to computational

complexity as well as it could solve the problem on weak locality workloads. Research

and experience have shown that CLOCK [3] is close approximation of LRU, and its

performance characteristics are very similar to those of LRU. So all the performance

disadvantages about LRU are also applied to CLOCK. Reading related research papers it

13

is found that CLOCK-Pro can fulfill these criteria. It is successfully implemented in

different fields [18]. It is better if CLOCK-Pro could store deeper history information.

CLOCK-Pro can be implemented in a different approach based on its principle.

1.4 Thesis Organization

Background part of this dissertation work focuses on page replacement algorithm and the

related basic terms which are already mentioned above along with an introduction to

CLOCK-Pro. Some more chapters are remaining which clarifies the topics CLOCK-Pro

fulfilling the objectives of this dissertation work. Chapter 2 consists of literature review

which briefly reviews the related topics. Literature review includes details of several page

replacement algorithms like Optimal, LRU, MRU, LRFU, 2Q, CLOCK, CAR, CART,

etc within their category. This chapter also contains the research methodology part which

shows the flow of our research. Chapter 3 consists of program development steps of our

simulation. Chapter 4 includes detail design of the program. Also it includes details about

the data structures and programming language used to build the simulation. Chapter 5

consists of data collection and analysis part which includes details about generating traces

of memory references that shows trace driven input, output results with several analyzing

graphs which are only tested for weak locality workloads. Chapter 6 consists of

conclusion of this whole dissertation work and the future work which shows guidelines

for further research.

14

CHAPTER 2

Literature Review and Methodology

2.1 Literature Review

2.1.1 OPT Page Replacement Algorithm

The best possible page replacement algorithm is easy to describe but impossible to

implement. It goes like this. At the moment that a page fault occurs, some set of pages is

in memory. One of these pages will be referenced on the very next instruction (the page

containing that instruction). Other pages may not be referenced until 10, 100, or perhaps

1000 instructions later. Each page can be labeled with the number of instructions that will

be executed before that page is first referenced.

The only problem with this algorithm is that it is unrealizable. At the time of the page

fault, the operating system has no way of knowing when each of the pages will be

referenced next. Still, by running a program on a simulator and keeping track of all page

references, it is possible to implement optimal page replacement on the second run by

using the page reference information collected during the first run.

From the past experiences and research papers the researches on the page replacement

algorithms are categorized into LRU based replacement algorithms and CLOCK based

replacement algorithms.

2.1.2 LRU Based Page Replacement Algorithms

2.1.2.1 General LRU Page Replacement Algorithm

A good approximation to the optimal algorithm is based on the observation that pages

that have been heavily used in the last few instructions will probably be heavily used

again in the next few. Conversely, pages that have not been used for ages will probably

remain unused for a long time. This idea suggests a realizable algorithm: when a page

fault occurs, throw out the page that has been unused for the longest time. This strategy is

called LRU (Least Recently Used) paging [7].

15

Although LRU is theoretically realizable, it is not cheap. To fully implement LRU, it is

necessary to maintain a linked list of all pages in memory, with the most recently used

page at the front and the least recently used page at the rear. The difficulty is that the list

must be updated on every memory reference. Finding a page in the list, deleting it, and

then moving it to the front is a very time consuming operation, even in hardware

(assuming that such hardware could be built).

However, there are other ways to implement LRU with special hardware. Let us consider

the simplest way first. This method requires equipping the hardware with a 64-bit

counter, C, that is automatically incremented after each instruction. Furthermore, each

page table entry must also have a field large enough to contain the counter. After each

memory reference, the current value of C is stored in the page table entry for the page just

referenced. When a page fault occurs, the operating system examines all the counters in

the page table to find the lowest one. That page is the least recently used.

2.1.2.2 NRU Page Replacement Algorithm

The not recently used (NRU), sometimes known as the Least Recently Used (LRU), page

replacement algorithm is an algorithm that favors keeping pages in memory that have

been recently used. This algorithm works on the following principle: when a page is

referenced, a referenced bit is set for that page, marking it as referenced. Similarly, when

a page is modified, a modified bit is set. The setting of the bits is usually done by the

hardware, although it is possible to do so on the software level as well.

When a page needs to be replaced, the operating system divides the pages into four

classes:

3. referenced, modified

2. referenced, not modified

1. not referenced, modified

0. not referenced, not modified

http://en.wikipedia.org/wiki/Operating_system

16

Although it does not seem possible for a page to be not referenced yet modified, this

happens when a class 3 page has its referenced bit cleared by the clock interrupt. The

NRU algorithm picks a random page from the lowest category for removal. So out of the

above four pages, the NRU algorithm will replace the not referenced, not modified [2].

2.1.2.3 MRU Page Replacement Algorithm

Most Recently Used (MRU) algorithm [10, 15] works on the basis of recency factor as in

LRU. It violates LRU principle and works totally in opposite manner. LRU evicts unused

page following locality of principle but MRU evicts recently used page as victim. MRU

is only suitable when there weak locality of reference, which is worst case of LRU. MRU

can be implemented in similar way as LRU by maintaining recency stack. But here front

one is removed and bottom one is stored for future use. Hence MRU is only suitable in

case of worst locality of reference where LRU could not deal with this effect.

2.1.2.4 LFU Page Replacement Algorithm

Often confused with LRU, Least Frequently Used (LFU) [10] selects a page for

replacement if it has not been used often in the past. Instead of using a single age as in the

case of LRU, LFU defines a frequency of use associated with each page. This frequency

is calculated throughout the reference stream, and its value can be calculated in a variety

of ways. The most common frequency implementation begins at the beginning of the

page reference stream, and continues to calculate the frequency over an ever-increasing

interval. Although this is the most accurate representation of the actual frequency of use,

it does have some serious drawbacks. Primarily, reactions to locality changes will be

extremely slow [1, 15]. Assuming that a program either changes its set of active pages, or

terminates and is replaced by a completely different program, the frequency count will

cause pages in the new locality to be immediately replaced since their frequency is much

less than the pages associated with the previous program. Since the context has changed,

and the pages swapped out will most likely be needed again soon (due to the new

program’s principal of locality), a period of thrashing will likely occur. If the beginning

of the reference stream is used, initialization code of a program can also have a profound

17

influence, as described by [10]. The pages associated with initial code can influence the

page replacement policy long after the main body of the program has begun execution.

2.1.2.5 LRFU Page Replacement Algorithm

Having analyzed the advantages and disadvantages of LRU and LFU, A new algorithm

LRFU is proposed by combining them through weighing block recency and frequency

factors. The performance of the LRFU algorithm largely relies on a parameter called (),

which determines the relative weight of LRU or LFU and has to be adjusted according to

the system configurations, even according to different workloads [15].

2.1.2.6 LRU-K Page Replacement Algorithm

LRU - K [11] evicts the page that is the one whose backward K-distance is the

maximum of all pages in buffer. Backward K-distance bt(p,K) can be defined as the

distance backward to the K
th

 most recent reference to page p where reference string

known up to time t (r1, r2, …,rt). The value of parameter K can be taken as 1, 2 or 3. If

K=1, it works as simple LRU algorithm. Highly increasing value of K the overall

performance of algorithm reduces. LRU-K can discriminate better between frequently

referenced and infrequently referenced pages. Unlike the approach of manually tuning the

assignment of page pools to multiple buffer pools, LRU-K does not depend on any

external hints. Unlike LFU and its variants, our algorithm copes well with temporally

clustered patterns.

2.1.2.7 2Q Page Replacement Algorithm

The LRU-2 makes its replacement decision based on the time of the second to last

reference to the block and evicts the oldest resident block. The 2Q [19] quickly removes

from the buffer cache, sequentially-referenced blocks and looping-referenced blocks with

long loop periods by using a special buffer called the A1in queue in which all missed

blocks are initially placed and from which the blocks are replaced in the FIFO order short

residence. This algorithm uses special buffer queue A1in of size Kin, ghost buffer queue

A1out of size Kout and the main buffer Am. Special buffer contains all missed that is first

18

time referenced block. Ghost buffer contains replaced blocks from special buffer.

Frequently accessed block are available in main buffer. Hence victim blocks are always

from special buffer and main buffer.

2.1.2.8 LIRS Page Replacement Algorithm

LIRS is one of the important replacement algorithms especially for weak locality or

references. Here pages are categorized into two groups: High Inter-reference Recency

(HIR) block set and Low Inter-reference Recency (LIR) block set. Each block with

history information in cache has a status {either LIR or HIR. Some HIR blocks may not

reside in the cache, but have entries in the cache recording their status as HIR of non-

residence. Divide the cache, whose size in blocks is L, into a major part and a minor part

in terms of the size. The major part with the size of Llirs is used to store LIR blocks, and

the minor part with the size of Lhirs is used to store blocks from HIR block set, where Llirs

+ Lhirs = L. When a miss occurs and a free block is needed for replacement, we choose an

HIR block that is resident in the cache. LIR block set always resides in the cache and

there are no misses for the references to LIR blocks. However, a reference to an HIR

block would likely to encounter a miss, because Lhirs is very small (its practical size can

be as small as 1% of the cache size).

The main objective of LIRS is to minimizing the deficiencies presented by LRU

using an additional criterion named IRR (Inter- Reference Recency) that represents the

number of different pages accessed between the last two consecutive accesses to the same

page. The algorithm assumes the existence of some behavior inertia and, according to the

collected IRRs, replaces the page that will take more time to be referenced again. This

means that LIRS does not replace the page that has not been referenced for the longest

time, but it uses the access recency information to predict which pages have more

probability to be accessed in a near future [21, 28].

2.1.2.9 ARC Page Replacement Algorithm

Adaptive Replacement Cache (ARC) [23] improves the basic LRU strategy by splitting

the cache directory into two lists, T1 and T2, for recently and frequently referenced

entries. In turn, each of these is extended with a ghost list (B1 or B2), which is attached

19

to the bottom of the two lists. These ghost lists act as scorecards by keeping track of the

history of recently evicted cache entries, and the algorithm uses ghost hits to adapt to

recent change in resource usage. Note that the ghost lists only contain metadata (keys for

the entries) and not the resource data itself, i.e. as an entry is evicted into a ghost list its

data is discarded. The combined cache directory is organized in four LRU lists:

1. T1, for recent cache entries.

2. T2, for frequent entries, referenced at least twice.

3. B1, ghost entries recently evicted from the T1 cache, but are still tracked.

4. B2, similar ghost entries, but evicted from T2.

T1 and B1 together are referred to as L1, a combined history of recent single references.

Similarly, L2 is the combination of T2 and B2.

2.1.3 CLOCK Based Page Replacement Algorithms

2.1.3.1 CLOCK Page Replacement Algorithm

Research and experience have shown that CLOCK [18] is close approximation of LRU,

and its performance characteristics are very similar to those of LRU. So all the

performance disadvantages about LRU are also applied to CLOCK. In CLOCK, the

memory spaces holding the pages can be regarded as a circular buffer. Here each page is

associated with a bit, called reference bit, which is set by hardware whenever the page is

accessed. When it is necessary to replace a page to service a page fault, the page pointed

to by the hand is checked. If its reference bit is unset, the page is replaced. Otherwise, the

algorithm resets its reference bit and keeps moving the hand to the next page.

2.1.3.2 GCLOCK Page Replacement Algorithm

In generalized CLOCK page replacement algorithm each page frame in memory

associate a count field and arrange these count fields in a circular list [18]. Whenever a

page is referenced, the associated count field is set to i. When a page fault occurs, a

pointer that circles around this circular list of page frames is observed. If the count field

pointed to is zero, then the page is removed and the new page is placed in that frame.

Otherwise, the count is decremented by 1, the pointer is advanced to the next count field,

20

and the process is repeated. When a new page is placed in the page frame, the count field

is set to i if the page is to be referenced (demand fetch) and it is set to j if the page has

been pre-paged and is not immediately referenced. This algorithm abbreviated by writing

CLOCKP (j, i). The “P” indicates that this is a pre-paging algorithm (the pre-paging

strategy has not been specified). When no pre-paging is involved, the algorithm is

abbreviated CLOCK (i). The algorithm used in MULTICS and CP-67 is CLOCK (1). So,

CLOCK is GCLOCK (1).

2.1.3.3 CAR Page Replacement Algorithm

Another CLOCK based algorithm is CAR [26] (CLOCK with adaptive replacement), this

algorithm uses two clocks T1 & T2 and two lists B1 & B2. T1 and T2 contain cold pages

and hot pages i.e. contain pages in the cache, while B1 & B2 maintain history

information about the recently evicted pages from B1 & B2 respectively.

2.1.3.4 CART Page Replacement Algorithm

A limitation of ARC and CAR is that two consecutive hits are used as a test to promote a

page from “recency” or “short-term utility” to “frequency” or “long-term utility”. At

upper level of memory hierarchy, we often observe two or more successive references to

the same page fairly quickly. Such quick successive hits are known as “correlated

references” [12] and are typically not a guarantee of long-term utility of a page, and,

hence, such pages can cause cache pollution–thus reducing performance. The motivation

behind CART [26] is to create a temporal filter that imposes a more stringent test for

promotion from “short-term utility” to “long-term utility”. The basic idea is to maintain a

temporal locality window such that pages that are re-requested within the window are of

short-term utility whereas pages that are re-requested outside the window are of long-

term utility. Furthermore, the temporal locality window is itself an adaptable parameter of

the algorithm.

2.1.3.5 CLOCK-Pro Page Replacement Algorithm

Another important algorithm is CLOCK-Pro which is already described in section 1.2. Its

objective is to minimize the fault rate in weak locality of references and also increases the

21

performance of a computer because it does not need to movement of pages in case of

page hit. But normally such case not takes place in other replacement algorithms.

2.1.3.6 Adaptive CLOCK-Pro Page Replacement Algorithm

This algorithm is already described in section 1.2. Its objective is to minimize the fault

rate in weak locality of references like CLOCK-Pro only difference is that here cold page

size is varying dynamically.

2.2 Research Methodology

The system of collecting data for research projects is known as research methodology.

The data may be collected for either theoretical or practical research for example

management research may be strategically conceptualized along with operational

planning methods and change management [24]. Some important factors in research

methodology include validity of research data.

The topics memory management and design has been studied from the early generation

of computer. Page replacement algorithm is one of the major strategies to manage

memory efficiently. All data collected are primary data, which are traces of page

references. This dissertation work is based on trace driven simulation. Output

information gathered is analyzed in a quantitative approach. Finally conclusion is drawn

with the help of analyzed data which is not the generalized form. This work is only

specialized for weak locality as well as not purely weak locality of workloads having

probabilistic pattern, cyclic patterns, temporally clustered pattern and mixed patterns.

http://www.tutorsindia.com/research-methodology-help.html
http://www.tutorsindia.com/
http://www.tutorsindia.com/
http://www.tutorsindia.com/

22

 CHAPTER 3

 Page Replacement Algorithms carried out in Dissertation work

3.1. CLOCK Page Replacement

In CLOCK, the memory spaces holding the pages can be regarded as a circular buffer. In

CLOCK each page is associated with a bit, called reference bit, which is set by hardware

whenever the page is accessed. When it is necessary to replace a page to service a page fault, the

page pointed to by the hand is checked. If its reference bit is unset, the page is replaced.

Otherwise, the algorithm resets its reference bit and keeps moving the hand to the next page.

When a page fault occurs, the page being pointed to by the hand is inspected. If its R bit is 0, the

page is evicted, the new page is inserted into the clock in its place, and the hand is advanced one

position. If R is 1, it is cleared and the hand is advanced to the next page. This process is

repeated until a page is found with R = 0. Not surprisingly, this algorithm is called clock.

 Fig 3.1 General CLOCK

23

3.1.1. CLOCK Algorithm

1. Begin

2. Read new page, say P

3. If P is available in CLOCK (Circular Linked List).

3.1.Page hit occurs. then

3.2.Turn reference bit to 1 and do nothing else.

4. else

3.1. Page miss occurs then

3.2. If its R bit is 0, the page is evicted, the new page is inserted into the clock in its place,

and the hand is advanced one position.

3.3. If R is 1, it is cleared and the hand is advanced to the next page. This process is repeated

until a page is found with R = 0.

5. Stop

3.1.2. CLOCK Tracing

Input References: 1 2 3 4 3 1 2 1 5 4

Size of Memory: 3

Total Number of References: 10

Number of Distinct References: 5

Upon accessing 1: Upon accessing 2:

 Page fault

 Page fault Page fault

Fig 3.2 pages in CLOCK at virtual time 1 Fig 3.3 pages in CLOCK at virtual time 2

 0
1

 0

 0

1

2

24

 Upon accessing 3: Upon accessing 4:

 Page fault

 Page fault Page fault

Fig 3.4 pages in CLOCK at virtual time 3 Fig3.5 pages in CLOCK at virtual time 4

 Upon accessing 3: Upon accessing 1:

 Page fault

Fig 3.6 pages in CLOCK at virtual time 5 Fig 3.7 pages in CLOCK at virtual time 6

 Upon accessing 2: Upon accessing 1:

 Page fault

Fig 3.8 pages in CLOCK at virtual time 7 Fig 3.9 pages in CLOCK at virtual time 8

 0

0

 0

1

2

3

 0

0

 0

4

2

3

 0

1

 0

4

2

3

 0

1

 0

4

1

3

 0

0

 0

2

1

3

 0

0

 1

2

1

3

25

 Upon accessing 5: Upon accessing 4:

 Page fault Page fault

Fig 3.10 pages in CLOCK at virtual time 9 Fig 3.11 pages in CLOCK at virtual time 10

 Total number of page faults: 8

3.2. CLOCK-Pro Page Replacement

CLOCK-Pro takes the same principle as that of LIRS [28]- (it uses the reuse distance (called

IRR) rather than recency in its replacement decision) based on CLOCK infrastructure. Generally

in various replacements algorithms even in LIRS the movement of pages needed even the page

hit occur but in CLOCK-Pro in this situation movement of pages never take place. Here pages

categorized into two groups: cold pages and hot pages based on their reuse distances (or IRR).

When a page is accessed, the reuse distance is the period of time in terms of the number of other

distinct pages accessed since its last access. Although there is a reuse distance between any two

consecutive references to a page, only the most current distance is relevant in the replacement

decision. This algorithm uses the reuse distance of a page at the time of its access to categorize it

either as a cold page if it has a large reuse distance, or as a hot page if it has a small reuse

distance. Then mark its status as being cold or hot. Also place all the accessed pages, either hot

or cold, into one single list in the order of their accesses.

In the list, the pages with small recencies are at the list head, and the pages with large recencies

are at the list tail. To give the cold pages a chance to compete with the hot pages and to ensure

their cold/hot statuses accurately reflect their current access behavior, CLOCK-Pro grant a cold

 0

0

 0

2

1

5

 0

0

 0

4

1

5

26

page a test period once it is accepted into the list. Then, if it is re-accessed during its test period,

the cold page turns into a hot page. If the cold page passes the test period without a re-access, it

will leave the list. Note that the cold page in its test period can be replaced out of memory;

however, its page metadata remains in the list for the test purpose until the end of the test period

or being re-accessed. When it is necessary to generate a free space, this algorithm replaces a

resident cold page. The key question here is how to set the time of the test period. When a cold

page is in the list and there is still at least one hot page after it (i.e., with a larger recency), it

should turn into a hot page if it is accessed, because it has a new reuse distance smaller than the

hot page(s) after it. Accordingly, the hot page with the largest recency should turn into a cold

page. So the test period should be set as the largest recency of the hot pages. If we make sure that

the hot page with the largest recency is always at the list tail, and all the cold pages that pass this

hot page terminate their test periods, then the test period of a cold page is equal to the time

before it passes the tail of the list. So all the non-resident cold pages can be removed from the list

right after they reach the tail of the list.

There are three hands: Hand-hot for hot pages, Hand-cold for cold pages and Hand-test for

running a reuse distance test for a block. The allocation of memory pages between hot pages

(Mhot) and cold pages (Mcold) are adaptively adjusted. (M=Mhot+Mcold). Here all hot pages

are resident; some cold pages are also resident and also keep track of recently replaced pages.

3.2.1. CLOCK-Pro algorithm

1. Begin

2. Read new page, say P

3. If P is already in the buffer cache then,

3.1.Page hit and turn reference bit to 1 and do nothing else

4. else

4.1. If P is not in Test period (not in non-resident cold page list)

 4.1.1. If hot page size is not full then,

 -Set page P to hot page list

 4.1.2. Else if hot page size is full

 4.1.2.1 If cold page size is not full then

 - Set page P to cold page list

27

 4.1.2.2 Else if cold page size is full then

 4.1.2.2.1 If non-resident cold page size is not full

 4.1.2.2.1.1 If Hand_cold.R==0 then

-Remove Hand_cold.page from cold page list and set this page to non-

residen cold page list.

-Set page P into cold page list with R=0

 4.1.2.2.1.2 Else if Hand_cold.R==1 then

 -Promote page to hot page list

 -insert page P into cold page list.

 4.1.2.2.2 Else if non-resident page size is full then

 -kick out one page from history information and go to step 4.1.2.2.1.1

 4.2 Else if page P is in test period

-Then insert this page P into hot page list by demote some pages from hot page list to

cold page list and also demote some pages from cold block list to history page list and

kick out necessary pages from history page list.

5. Stop

3.2.2. CLOCK-Pro Tracing

Input References: 1 2 3 4 3 1 2 1 5 4

Total Number of References: 10 Number of Distinct References: 5

Size of Memory: 3 Hot_block_size: 2

Cold_block_size: 1 Cold_non-resident_block_size=3

Total Meta Data =2M=2*3=6

4. Hot Cold resident Cold non-resident

0 1 0 1

28

 Upon accessing 1: Upon accessing 2:

 0 0

 0

 Page fault Page fault

 Fig3.12 pages in CLOCK-Pro at virtual time 1 Fig3.13pages in CLOCK-Pro at virtual time 2

 Upon accessing 3: Upon accessing 4:

 0 0

 0 0

 0 0

 Page fault Page fault

 0000000

 0

 Fig3.14 pages in CLOCK-Pro at virtual time 3 Fig3.15 pages in CLOCK-Pro at virtual time 4

Upon accessing 3: Upon accessing 1:

 0 0

 0 1

 0

 0

 Page fault

 Fig3.16 pages in CLOCK-Pro at virtual time 5 Fig3.17 pages in CLOCK-Pro at virtual

 time 6

1

1

2

1

2

3

1

2

1

2

3

4

3

3

2

3

1

4

3

2

3

1

4

29

Upon accessing 2: Upon accessing 1:

 0 0

 1 1 1

 1

Fig3.18 pages in CLOCK-Pro at virtual time 7 Fig3.19 pages in CLOCK-Pro at virtual time 8

Upon accessing 5: Upon accessing 4:

 0 0

 0 1 0 1 0

 Page fault Page fault

 Ed p

 Fig3.20 pages in CLOCK-Pro at virtual time 9 Fig3.21pages in CLOCK-Pro at virtual time 10

 Total number of page faults: 7

3.3. Adaptive CLOCK-Pro Page Replacement

Until now, in CLOCK and CLOCL-Pro the memory allocations for the hot and cold pages are

fixed. In CLOCK-Pro, resident cold pages are actually managed in the same way as in CLOCK.

HANDcold behaves the same as what the clock hand in CLOCK does: sweeping across the pages

while sparing the page with a reference bit of 1 and replacing the page with a reference bit of 0.

So increasing the size of the allocation for cold pages, makes CLOCK-Pro behave more like

3

2

3

1

4

3

2

3

1

4

3

2

3

5

4

1

4

2

5

3

4

1

30

CLOCK. Let us see the performance implication of changing memory allocation in CLOCK-Pro.

To overcome the CLOCK performance disadvantages with weak access patterns such as scan

and loop, a small mc value means a quick eviction of cold pages just faulted in and the strong

protection of hot pages from the interference of cold pages. However, for a strong locality access

stream, almost all the accessed pages have relatively small reuse distance. But, some of the pages

have to be categorized as cold pages. With a small mc, a cold page would have to be replaced out

of memory soon after its being loaded in.

Due to its small reuse distance, the page is probably faulted in the memory again soon after its

eviction and treated as a hot page because it is in its test period this time. This actually generates

unnecessary misses for the pages with small reuse distances. Increasing mc would allow these

pages to be cached for a longer period of time and make it more possible for them to be re-

accessed and to turn into hot pages without being replaced. Thus, they can save additional page

faults. For a given reuse distance of an accessed cold page, mc decides the probability of a page

being re-accessed before its being replaced from the memory. For a cold page with its reuse

distance larger than its test period, retaining the page in memory with a large mc is a waste of

buffer spaces. On the other hand, for a page with a small reuse distance, retaining the page in

memory for a longer period of time with a large mc would save an additional page fault. In the

adaptive CLOCK-Pro [13, 18], adjust current reuse distance distribution dynamically. If a cold

page is accessed during its test period, increment cold block size by 1. If a cold page passes its

test period without a re-access, then decrement the size of cold page size by 1.

3.3.1 Adaptive CLOCK-Pro algorithm

1 Begin

2 Read new page, say P

3 If P is already in the buffer cache then,

3.2.Page hit and turn reference bit to 1 and do nothing else

4 else

4.1. If P is not in Test period (not in non-resident cold page list)

Then cold_page_size= cold_page_size-1;

 4.1.1. If hot page size is not full then,

 -Set page P to hot page list

31

 4.1.2. Else if hot page size is full

 4.1.2.1 If cold page size is not full then

 - Set page P to cold page list

 4.1.2.2 Else if cold page size is full then

 4.1.2.2.1 If non-resident cold page size is not full

 4.1.2.2.1.1 If Hand_cold.R==0 then

-Remove Hand_cold.page from cold page list and set this page to non-

residen cold page list.

-Set page P into cold page list with R=0

 4.1.2.2.1.2 Else if Hand_cold.R==1 then

 -Promote page to hot page list

 -insert page P into cold page list.

 4.1.2.2.2 Else if non-resident page size is full then

 -kick out one page from history information and go to step 4.1.2.2.1.1

 4.2 Else if page P is in test period

 -Then cold_page_size= cold_page_size+1;

-insert this page P into hot page list by demote some pages from hot page list to cold

page list and also demote some pages from cold block list to history page list and kick

out necessary pages from history page list.

5. Stop

3.3.2 Adaptive CLOCK-Pro Tracing

Input References: 1 2 3 4 3 1 2 1 5 4

Total Number of References: 10 Number of Distinct References: 5

Size of Memory: 3 Hot_block_size: 2

Cold_block_size: 1 Cold_non-resident_block_size=3

Total Meta data =6

 Hot Cold resident Cold non-resident

0 1 0 1

32

 Upon accessing 1: Upon accessing 2:

 0 0

 0

 Page fault Page fault

 Fig3.22 pages in Adaptive CLOCK-Pro at Fig3.23 pages in Adaptive CLOCK-Pro at

 Virtual time 1 virtual time 2

 Upon accessing 3: Upon accessing 4:

 0 0

 0

 0 0

 Page fault Page fault

 0 0000000

 Fig3.24 pages in Adaptive CLOCK-Pro at Fig3.25 pages in Adaptive CLOCK-Pro at

 Virtual time 3 Virtual time 3

 Upon accessing 3: Upon accessing 1:

 0 0

 0 0

 0 0

 Page fault 1

1

1

2

1

2

3

4

3

3

2

3

1

4

1

2

4

1

3

3

2

33

(Since 3 is in test period thus

Cold_block_size= Cold_block_size+1)

Fig3.26 pages in Adaptive CLOCK-Pro at Fig3.27 pages in Adaptive CLOCK-Pro at

virtual at virtual time 5 virtual time 6

 Upon accessing 2: Upon accessing 1:

 0 0

 1 1

1 1

 Fig3.28 pages in Adaptive CLOCK-Pro at Fig3.29 pages in Adaptive CLOCK-Pro at

 virtual time 7 virtual time 8

 Upon accessing 5: Upon accessing 4:

 0 0

 1 0 0

0 Page fault Page fault

 Fig 3.30 pages in Adaptive CLOCK-Pro at (Cold_block_size= Cold_block_size+1)

 Virtual time 9 Fig3.31 pages in Adaptive CLOCK-Pro at

 virtual time 10

Total number of page faults=7

4

1

3

3

2

4

1

3

3

2

4

1

5

3

2

4

2

5

3

4

1

34

CHAPTER 4

Implementation

4.1. Tools used
4.1.1. Programming Language

For the implementation of proposed algorithm Java Programming Language is used. Java

is a general-purpose, concurrent, class-based, object-oriented computer programming

language that is specifically designed to have as few implementation dependencies as

possible. One characteristic of Java is portability, which means that computer programs

written in the Java language must run similarly on any hardware/operating-system

platform. This is achieved by compiling the Java language code to an intermediate

representation called Java bytecode, instead of directly to platform-specific machine

code. Java bytecode instructions are analogous to machine code, but they are intended to

be interpreted by a virtual machine (VM) written specifically for the host hardware. End-

users commonly use a Java Runtime Environment (JRE) installed on their own machine

for standalone Java applications, or in a Web browser for Java applets.

 Java is a robust language. It provides many safeguards to ensure reliable code. It

has strict compile time and run time checking for data types. It is designed as a garbage-

collected language ease the programmers virtually all memory management problems.

Java also incorporates the concepts of exception handling which captures series errors

and eliminates any risk of crashing the system.

4.1.2. NetBeans IDE

NetBeans is an integrated development environment (IDE) for developing

primarily with Java, but also with other languages. The NetBeans Platform allows

applications to be developed from a set of modular software components called modules.

The NetBeans project consists of a full-featured open source IDE written in the Java

programming language and a rich client application platform, which can be used as a

generic framework to build any kind of application.

http://en.wikipedia.org/wiki/General_purpose_programming_language
http://en.wikipedia.org/wiki/Concurrent_computing
http://en.wikipedia.org/wiki/Class-based
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Computer_programming_language
http://en.wikipedia.org/wiki/Computer_programming_language
http://en.wikipedia.org/wiki/Computer_programming_language
http://en.wikipedia.org/wiki/Java_bytecode
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Interpreter_(computing)
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/End-user
http://en.wikipedia.org/wiki/End-user
http://en.wikipedia.org/wiki/Java_virtual_machine
http://en.wikipedia.org/wiki/Applet
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Software_component

35

4.2. Data Structure
4.2.1. Circular Doubly Linked List (CDLL)

The advantages of both doubly linked list and circular linked list are incorporated

into a third list structure known as circular doubly linked list and it is known to be the

best of its kind.

A circular list is one in which the last node in the list points to the first node. Circular lists

are useful in certain applications where we want to repeatedly go around the list. For

example, when multiple applications are running on a PC, it is common for the operating

system to put the running applications on a list and then to cycle through them, giving

each of them a slice of time to execute, and then making them wait while the CPU is

given to another application. It is convenient for the operating system to use a circular list

so that when it reaches the end of the list it can cycle around to the front of the list.

Circular linked lists also make our implementation easier, because they eliminate the

boundary conditions associated with the beginning and end of the list, thus eliminating

the special case code required to handle these boundary conditions.

Because in CLOCK, CLOCK-Pro and Adaptive CLOCK-Pro all pages are

organized in circular order thus to implement these algorithms efficiently the circular

doubly linked list can be used.

Structure of CLOCK Node:

package clock_replacement;

public class Clock_node

{

 int R; //referenc

 int pn; //page number

 Clock_node next,prev;

 boolean isresident;

 public Clock_node()

 {

36

 R=0;

 pn=0;

 isresident=false;

 next=prev=null;

 } }

Structure of CLOCK-Pro and Adaptive CLOCK-Pro Node:

 package CLOCK_Pr_Simulation;

enum PageStatus{non_resident,cold,hot};

public class CLOCK_Pr_Node

{

 private int prt; //reference times

 private int pft; //page fault times

 int pn;//page number

 boolean isresident;

 boolean isinclock;

 PageStatus status;

 int R; //referenc

 CLOCK_Pr_Node prev;

 CLOCK_Pr_Node next;

 public CLOCK_Pr_Node()

 { prt=0;

 pft=0;

 R=0;

 status=PageStatus.non_resident;

 isresident=false; isinclock=false;

 prev=next=null; }}

37

4.3 Flowcharts

Is R is 0 or 1?

 Insert page P to

CLOCK

Yes

0

 Page is evicted, new page

P is inserted into the clock

and the hand is advanced

one position.

It is cleared and the

hand is advanced to

the next page until a

page is found with

R = 0

 Fig 4.1 Flowchart of CLOCK Algorithm

Read page P

Begin

 Is P

available in

CLOCK?

(Page Hit)

Change reference bit of

page to 1

 (Miss Occurs)

Is CLOCK is full

earlier?

End

No Yes

 No

 1

38

 Is P is in the

buffer cache?

Yes No

 Set page P to

cold page list

 Is hand

cold.R==0?

 Start

Read page P

 Remove cold page and

set this to history page list

 Promote cold page

to hot page list

 Set page P into cold page

list with R=0

 Insert page P into

cold page list

 Kick out one page from

history page list

 Insert page P into hot page list by demote some pages from hot page

list to cold page list and also demote some pages from cold block list to

history page list and kick out necessary pages from history page list

 Is P is in the

buffer cache?

Yes No

Stop

Page hit and turn reference bit

to 1 and do nothing else

 Is P is in

Test period?

No
Yes

 Is hot page

size full?

 No Yes

 Set page P to

hot page list Is cold page

size full?

 No
Yes

 Is history

page size full?

 Yes
 No

 Yes No

Fig 4.2 Flowchart of CLOCK-Pro Algorithm

39

 Start

Read page P

 Remove cold page and

set this to history page list

 Promote cold page

to hot page list

 Set page P into cold page

list with R=0

 Insert page P into

cold page list

 Kick out one page from

history page list

 Insert page P into hot page list by demote some pages from hot page

list to cold page list and also demote some pages from cold block list to

history page list and kick out necessary pages from history page list

 Is P is in the

buffer cache?

Yes No

Stop

Page hit and turn reference bit

to 1 and do nothing else

 Is P is in

Test period?

No Yes

 Is hot page

size full?

 No Yes

 Set page P to

hot page list
 Is cold page

size full?

 No
Yes

 Is history

page size full?

 Yes No

 Yes
No

Cold page size--

Cold page size++

 Set page P to

cold page list

 Is hand

cold.R==0?

Fig 4.3 Flowchart of Adaptive CLOCK-Pro Algorithm

40

4.4 Sample Test Case

Temporary-clustered pattern:

0 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 9 15 16 17 9 18 9 19 9 20 21

22 23 24 25 26 15 16 4 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

85 5 86 87 88 89 2 3 90 91 9 93 94 95 96 97 98 99 100 8 101 54 59

4 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 102 103 104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 82 83 102 103 104 105 106 107 108

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

125 126 129 129 130 131 132 133 133 133 133 134 134 134 134 135

135 136 136 136 136 136 136 137 137 137 138 138 138 139 139 139

139 139 139 139 139 139 139 140 140 140 140 140 140 141 141 141

141 141 142 142 142 142 143 143 144 144 145 145 145 145 145 146

146 146 146 146 146 146 146 146 146 147 147 147 147 147 148 148

148 149 149 149 149 149 149 149 149 149 150 150 150 150 150 150

151 151 151 152 152 152 153 153 153 154 154 154 154 154 155 155

155 133 133 133 135 135 135 135 135 135 135 135 135 156 156 156

156 156 156 156 156 156 156 156 156 156 157 157 157 158 158 158

158 158 158 158 158 158 159 159 159 159 159 159 159 159 159 160

160 160 160 160 160 161 161 161 161 161 161 161 161 161 161 161

136 136 136 136 162 162 162 163 164 164 164 164 164 164 165 165

165 166 166 166 167 167 167 168 168 168 138 138 138 138 138 138

138 138 138 139 139 139 142 142 142 144 144 144 144 144 169 169

169 145 145 145 170 170 170 171 171 171 172 151 151 173 174 174

159 159 159 160 160 160 136 136 136 170 170 170 171 171 171 175

175 175 160 160 160 134 134 135 134 136 136 136 137 137 138 138

139 139 139 139 139 139 140 140 140 140 141 141 142 142 143 142

143 144 143 144 145 145 145 145 146 146 146 146 146 146 147 146

147 147 148 148 149 149 149 150 150 150 151 151 152 152 153 153

154 154 154 154 155 155 133 135 135 135 135 135 135 156 156 156

156 156 156 156 157 157 158 158 158 158 158 159 159 159 160 159

160 160 160 161 161 161 161 161 161 136 136 163 164 164 165 165

41

166 166 167 167 168 168 138 138 138 138 138 139 142 144 144 169

169 145 145 170 170 171 171 151 172 174 173 174 159 136 136 170

170 171 171 175 175 133 134 134 135 136 136 138 138 139 139 139

139 140 140 141 142 143 144 145 145 146 146 146 146 147 147 148

149 149 149 150 150 150 151 152 153 154 154 155 133 158 158 160

160 160 161 161 161 162 163 164 164 164 165 166 167 168 138 138

138 139 142 144 144 144 169 145 170 171 151 172 151 174 136 170

171 175 133 134 135 136 136 137 138 139 139 139 139 140 140 141

141 142 143 144 145 145 146 146 146 147 147 148 149 149 149 150

150 151 152 153 154 154 155 133 135 135 135 156 156 156 156 157

158 158 158 159 159 159 160 160 161 161 161 161 136 136 162 164

164 164 165 166 167 168 138 138 138 138 139 142 144 144 169 145

170 171 151 174 159 136 170 171 175 97 98 94 95 84 85 92 93 88 89

90 91 176 177 178 179 48 49 78 79 2 3 86 87 180 180 5 6 7 8 9 10

11 12 13 14 9 15 16 17 9 18 9 19 9 20 21 22 23 24 25 26 15 16 180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

197 198 199 180 181 182 183 184 185 186 187 188 189 190 91 192

193 194 195 196 197 200 201 202 203 204 205 206 207 208 209 210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 200 201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

218 219 220 221 222 223 224 129 139 139 140 140 140 140 140 140

141 141 141 141 141 142 142 142 142 143 143 144 144 145 145 145

145 145 146 146 146 146 146 146 146 146 146 146 147 147 147 147

147 148 148 148 149 149 149 149 149 149 149 149 149 150 150 150

150 150 150 151 151 151 152 152 152 153 153 153 154 154 154 154

154 155 155 155 133 133 133 135 135 135 135 135 135 135 135 135

156 156 156 156 156 156 156 156 156 156 156 156 156 157 157 157

158 158 158 158 158 158 158 158 158 159 159 159 159 159 159 159

159 159 160 160 160 160 160 160 161 161 161 161 161 161 161 161

161 161 161 136 136 136 136 162 162 162 163 164 164 164 164 164

164 165 165 165 166 166 166 167 167 167 168 168 168 138 138 138

138 138 138 138 138 138 139 139 139 142 142 142 144 144 144 144

144 169 169 169 145 145 145 170 170 170 171 171 171 172 151 151

173 174 174 159 159 159 160 160 160 136 136 136 170 170 170 171

171 171 175 175 175 160 160 160 134 134 135 134 136 136 136 137

42

 CHAPTER 5

Data Collection & Analysis

5.1 Data Collection

Data are raw facts or the sources of information. Hence data should be collected very

carefully. All the data are collected by means of primary sources. All the data collected in

this dissertation work are primary data and are collected from traces generated by the

simulated page replacement algorithms. In this study, main focus is given in weak

locality workload and taking various workloads eg. Probabilistic patterns, cyclic patterns,

temporally clustered patterns and mixed patterns. Therefore first of all memory traces

having these four patterns are generated and then those traces are used as workloads for

page replacement algorithms. Traces generated by page replacement algorithms are then

used to calculate their hit rates. Here workloads can be categorized into reference of loop

which is larger than cache size as Workload 1 (flimpse), reference of temporally clustered

as Workload 2 (Sprite), reference of probabilistic pattern as Workload 3 (cpp) and

reference of mixed pattern as Workload 4 (multi2) [18]. Each category contains

minimum of ten thousand memory references. Sample of Workload 1, Workload 2,

Workload 3 and Workload 4 is in appendix A, appendix B, appendix C and appendix D

respectively.

5.2 Testing

These four workloads are separately tested in our simulator. Each workload is tested

in CLOCK, CLOCK-Pro and Adaptive CLOCK-Pro simulator by varying the cache size

from 4 to 1024. In case of CLOCK-Pro algorithms cold page list and hot page list

partition is maintained as 25% and 75% of cache size. But in case of Adaptive CLOCK-

Pro initially take size of cold page list and hot page list 25% and 75% of cache size

respectively and the size of cold size is dynamically changed by testing whether the page

is in test case or not.

5.2.1 Test Result of Workload 1

43

5.2.1.1 Test Result for these three algorithms with varying cache size

No. of References = 10000

No. of Distinct Pages=2412

5.2.1.2 Test Result for CLOCK-Pro and Adaptive CLOCK-Pro with varying cold

block size:

No. of References = 10000

Cache Size =512 No of Distinct Pages=2412

Cache

Size

CLOCK CLOCK-Pro Adaptive CLOCK-Pro

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

4 9914 98.87% 1.13% 9894 98.60% 1.40% 9885 98.48% 1.52%

8 9907 98.77% 1.23% 9846 97.97% 2.03% 9835 97.83% 2.17%

16 9907 98.77% 1.23% 9804 97.42% 2.58% 9790 97.23% 2.77%

32 9905 98.75% 1.25% 9720 96.31% 3.69% 9695 95.98% 4.02%

64 9905 98.75% 1.25% 9531 93.82% 6.18% 9502 93.44% 6.56%

128 9905 98.75% 1.25% 9147 88.76% 11.24% 9106 88.22% 11.78%

256 9902 98.71% 1.29% 8379 78.64% 21.36% 8289 77.45% 22.55%

512 9874 98.34% 1.66% 6842 58.38% 41.62% 6701 56.52% 43.48%

1024 7656 69.11% 30.89% 4632 29.26% 70.74% 4489 27.37% 72.63%

Cold

block
size

CLOCK-Pro Adaptive CLOCK-Pro

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate
Hit Rate

50% 7866 71.88% 28.12% 7751 70.36% 29.64%

45% 7658 69.14% 30.86% 7521 67.33% 32.67%

40% 7450 66.39% 33.61% 7386 65.55% 34.45%

35% 7250 63.76% 36.24% 7098 61.76% 38.24%

30% 7042 61.02% 38.98% 6988 60.31% 39.69%

25% 6842 58.38% 41.62% 6751 57.18% 42.82%

20% 6634 55.64% 44.36% 6544 54.45% 45.55%

15% 6426 52.90% 47.10% 6298 51.21% 48.79%

10% 6226 50.26% 49.74% 6109 48.72% 51.28%

05% 6018 47.52% 52.48% 5998 47.26% 52.74%

04% 5978 47.00% 53.00% 5990 47.15% 52.85%

03% 5938 46.47% 53.53% 5988 47.13% 52.87%

02% 5898 45.94% 54.06% 5978 47.00% 53.00%

01% 5859 45.43% 54.57% 5977 46.98% 53.02%

Table 5.1 Test Result of Workload 1 with varying cache size

Table 5.2 Test Result of Workload 1 with varying cold block size

44

5.2.2 Test Result of Workload 2

5.2.2.1 Test Result for these three algorithms with varying cache size

No. of References = 10000 No of Distinct Pages=2652

5.2.2.2 Test Result for CLOCK-Pro and Adaptive CLOCK-Pro with varying cold

block size

No. of References = 10000

Cache Size =512 No of Distinct pages=2652

Cache

Size

CLOCK CLOCK-Pro Adaptive CLOCK-Pro

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

4 9179 88.83% 11.17% 9179 88.83% 11.17% 9151 88.45% 11.55%

8 9124 88.08% 11.92% 9124 88.08% 11.92% 9109 87.87% 12.13%

16 9007 86.49% 13.51% 9049 87.06% 12.94% 9005 86.46% 13.54%

32 8659 81.75% 18.25% 8722 82.61% 17.39% 8689 82.16% 17.84%

64 8222 75.80% 24.20% 8165 75.03% 24.97% 8101 74.16% 25.84%

128 7670 68.29% 31.71% 7071 60.14% 39.86% 7021 59.46% 40.54%

256 6371 50.61% 49.39% 5826 43.20% 56.80% 5793 42.75% 57.25%

512 4325 22.77% 77.23% 4181 20.81% 79.19% 4133 20.16% 79.84%

1024 3144 6.70% 93.30% 3218 7.70% 92.30% 3189 7.31% 92.69%

Cold

block

size

CLOCK-Pro Adaptive CLOCK-Pro

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate
Hit Rate

50% 4618 26.76% 73.24% 4591 26.39% 73.61%

45% 4247 21.71% 78.29% 4201 21.08% 78.92%

40% 4185 20.86% 79.14% 4107 19.80% 80.20%

35% 4153 20.43% 79.57% 4098 19.68% 80.32%

30% 4174 20.71% 79.29% 4103 19.75% 80.25%

25% 4181 20.81% 79.19% 4111 19.86% 80.14%

20% 4190 20.93% 79.07% 4119 19.96% 80.04%

15% 4195 21.00% 79.00% 4123 20.02% 79.98%

10% 4224 21.39% 78.61% 4199 21.05% 78.95%

05% 4252 21.77% 78.23% 4189 20.92% 79.08%

04% 4256 21.83% 78.17% 4197 21.03% 78.97%

03% 4275 22.09% 77.91% 4201 21.08% 78.92%

02% 4315 22.63% 77.37% 4279 22.14% 77.86%

01% 4354 23.16% 76.84% 4295 22.36% 77.64%

Table 5.3 Test Result of Workload 2 with varying cache size

Table 5.4 Test Result of Workload 2 with varying cold block size

45

5.2.3 Test Result of Workload 3

5.2.3.1 Test Result for these three algorithms with varying cache size

No. of References = 30241 No of Distinct Pages=7454

5.2.3.2 Test Result for CLOCK-Pro and Adaptive CLOCK-Pro with varying cold

block size:

No. of References = 30241

Cache Size =512 No of Distinct Pages=7454

Cache

Size

CLOCK CLOCK-Pro Adaptive CLOCK-Pro

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

4 30241 100.00% 0.00% 29243 95.62% 4.38% 29195 95.41% 4.59%

8 29741 97.81% 2.19% 28804 93.69% 6.31% 28769 93.54% 6.46%

16 29395 96.29% 3.71% 28322 91.57% 8.42% 28281 91.40% 8.60%

32 29000 94.55% 5.45% 27018 85.86% 14.14% 26979 85.68% 14.32%

64 28716 93.31% 6.69% 24556 75.05% 24.95% 24478 74.71% 25.29%

128 27696 88.83% 11.17% 21710 62.56% 37.44% 21611 62.13% 37.87%

256 23787 71.68% 28.32% 19783 54.11% 45.89% 18611 48.96% 51.04%

512 20021 55.15% 44.85% 16805 41.04% 58.96% 16632 40.28% 59.72%

1024 18603 48.93% 51.07% 15719 36.27% 63.73% 15419 34.95% 65.05%

Cold

block

size

CLOCK-Pro Adaptive CLOCK-Pro

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate
Hit Rate

50% 18132 46.86% 53.14% 18101 46.72% 53.28%

45% 17897 45.83% 54.17% 17813 45.46% 54.54%

40% 17303 43.22% 56.78% 17283 43.13% 56.87%

35% 17038 42.06% 57.94% 17003 41.91% 58.09%

30% 16905 41.48% 58.52% 16876 41.35% 58.65%

25% 16805 41.04% 58.96% 16781 40.93% 59.07%

20% 16785 40.95% 59.05% 16725 40.69% 59.31%

15% 16721 40.67% 59.33% 16700 40.58% 59.42%

10% 16702 40.58% 59.42% 16689 40.53% 59.47%

05% 16694 40.55% 59.45% 16671 40.45% 59.55%

04% 16696 40.56% 59.44% 16674 40.46% 59.54%

03% 16703 40.59% 59.41% 16691 40.54% 59.46%

02% 16711 40.62% 59.38% 16689 40.53% 59.47%

01% 16750 40.80% 59.20% 16711 40.62% 59.38%

Table 5.5 Test Result of Workload 3 with varying cache size

 Table 5.6 Test Result of Workload 3 with varying cold block

size

46

5.2.4 Test Result of Workload 4
5.2.4.1 Test Result for these three algorithms with varying cache size

No. of References = 10000 No of Distinct Pages=3353

5.2.4.2 Test Result for CLOCK-Pro and Adaptive CLOCK-Pro with varying cold

block size:

No. of References = 10000

Cache Size =512 No of Distinct Pages=3353

Cache

Size

CLOCK CLOCK-Pro Adaptive CLOCK-Pro

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate

Hit

Rate

4 9882 98.22% 1.78% 9807 97.10% 2.90% 9781 96.71% 3.29%

8 9866 97.98% 2.02% 9643 94.63% 5.37% 9602 94.01% 5.99%

16 9838 97.56% 2.44% 9332 89.95% 10.05% 9299 89.45% 10.55%

32 9629 94.42% 5.58% 8830 82.40% 17.60% 8786 81.74% 18.26%

64 9550 93.23% 6.77% 7833 67.40% 32.60% 7797 66.86% 33.14%

128 9279 89.15% 10.85% 6817 52.11% 47.89% 6747 51.06% 48.94%

256 7122 56.70% 43.30% 6158 42.20% 57.80% 6092 41.21% 58.79%

512 6401 45.86% 54.14% 5303 29.34% 70.66% 5212 27.97% 72.03%

1024 5128 26.70% 73.30% 4430 16.20% 83.80% 4309 14.38% 85.62%

Cold

block

size

CLOCK-Pro Adaptive CLOCK-Pro

Page

Fault

Miss

Rate

Hit

Rate

Page

Fault

Miss

Rate
Hit Rate

50% 5676 34.95% 65.05% 5595 33.73% 66.27%

45% 5543 32.95% 67.05% 5489 32.13% 67.87%

40% 5423 31.14% 68.86% 5401 30.81% 69.19%

35% 5344 29.95% 70.05% 5311 29.46% 70.54%

30% 5322 29.62% 70.38% 5301 29.31% 70.69%

25% 5303 29.34% 70.66% 5279 28.98% 71.02%

20% 5252 28.57% 71.43% 5203 27.83% 72.17%

15% 5190 27.64% 72.36% 5122 26.61% 73.39%

10% 5127 26.69% 73.31% 5095 26.21% 73.79%

05% 5071 25.85% 74.15% 5999 39.81% 60.19%

04% 5061 25.70% 74.30% 5077 25.94% 74.06%

03% 5052 25.56% 74.44% 5087 26.09% 73.91%

02% 5043 25.43% 74.57% 5115 26.51% 73.49%

01% 5035 25.30% 74.70% 5112 26.46% 73.54%

Table 5.7 Test Result of Workload 4 with varying cache size

Table 5.8 Test Result of Workload 4 with varying cold block size

47

4.3 Analysis

All the collected data is analyzed by drawing different graphs. Hit rate of algorithms is

used as criteria for analyzing their goodness.

The graphs of Figure 5.1 show that the Adaptive CLOCK-Pro algorithm is better than

CLOCK and CLOCK-Pro algorithms. Since the workloads used in this work represent

weak locality of memory references, the performance of CLOCK is worst in this case.

After increasing the cache size to 1024, CLOCK performances drastically changes than

CLOCK-Pro and Adaptive CLOCK-Pro algorithms. This is because loop size is nearly

equal to 1024. Figure 5.2 show that Clock-pro algorithm gives best performance when

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

4 8 16 32 64 128 256 512 1024

CLOCK

CKOCK-Pro

Adaptive CLOCK-Pro

Cache Size

H
it

R
at

e

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1
%

2
%

3
%

4
%

5
%

1
0

%

1
5

%

2
0

%

2
5

%

3
0

%

3
5

%

4
0

%

4
5

%

5
0

%

CLOCK-Pro

Adaptive CLOCK-Pro

Cold block size in % of cache size

H
it

 R
at

e

Figure 5.2: Graph for Table 5.2

Figure 5.1: Graph for Table 5.1

5.1

48

cold size is 1% of total cache size. When cold size is more than 5% of total memory size,

Adaptive Clock-Pro seems more effective than Clock-Pro. But as the cold size is less or

equal to 5% of total memory size, CLOCK-Pro seems to be more effective than Adaptive

CLOCK-Pro.

Figure 5.3 shows that performances of CLOCK, CLOCK-Pro, and adaptive CLOCK-Pro

is Comparable. This is because temporally clustered pattern is strong locality workload.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

4 8 16 32 64 128 256 512 1024

CLOCK

CLOCK-Pro

Adaptive CLOCK-Pro

Cache Size

H
it

 R
at

e

68.00%

70.00%

72.00%

74.00%

76.00%

78.00%

80.00%

82.00%

1
%

2
%

3
%

4
%

5
%

1
0

%

1
5

%

2
0

%

2
5

%

3
0

%

3
5

%

4
0

%

4
5

%

5
0

%

CLOCK-Pro

Adaptive CLOCK-Pro

Cold block size in % of cache size

H
it

 R
at

e

 Figure 5.3: Graph for Table 5.3

Figure 5.4: Graph for Table 5.4

49

Thus CLOCK-Pro and adaptive CLOCK-Pro page replacement policies do not hurt

performance in case of strong locality workloads. In this workload the best cache

partition ratio is observed at 35% of cold size. Adaptive CLOCK-Pro is always superior

than CLOCK-Pro.

Figure 5.5 show the performance of CLOCK-Pro and Adaptive CLOCK-Pro is better

than CLOCK algorithm. And for this workload best cache partition ratio is observed at

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

4 8 16 32 64 128 256 512 1024

CLOCK

CLOCK-Pro

Adaptive CLOCK-PRO

Cache size

H
it

 R
at

e

48.00%

50.00%

52.00%

54.00%

56.00%

58.00%

60.00%

62.00%

1
%

2
%

3
%

4
%

5
%

1
0

%

1
5

%

2
0

%

2
5

%

3
0

%

3
5

%

4
0

%

4
5

%

5
0

%

CLOCK-Pro

Adaptive CLOCK-Pro

Cold block size in % of cache size

H
it

R
at

e

Figure 5.5: Graph for Table 5.5

Figure 5.6: Graph for Table 5.6

50

5% cold size. Here again adaptive CLOCK-Pro is always superior than CLOCK-Pro but

their performances are almost similar when cold size is below 5% of total cache size.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

4 8 16 32 64 128 256 512 1024

CLOCK

CLOCK-Pro

Adaptive CLOCK-Pro

Cach Size

H
it

 R
at

e

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

1
%

2
%

3
%

4
%

5
%

1
0

%

1
5

%

2
0

%

2
5

%

3
0

%

3
5

%

4
0

%

4
5

%

5
0

%

CLOCK-Pro

Adaptive CLOCK-Pro

Cold block size in % of cache size

H
it

R
at

e

Figure 5.7: Graph for Table 5.7

Figure 5.8: Graph for Table 5.8

51

Figure 5.7 show the performance of CLOCK-Pro and Adaptive CLOCK-Pro is better

than CLOCK algorithm. For this workload best cache partition ratio is observed at 5%.

When cold size is equal or less than 5% of total cache size, CLOCK-Pro seems to little

bit more superior to adaptive CLOCK-Pro.

52

CHAPTER 6

Conclusion and Future Study

6.1 Conclusion

Replacement algorithms are valuable components of operating system design and can

affect system performance significantly. CLOCK-Pro can solve problems regarding weak

locality of reference by tracing and utilizing history information. The failure of CLOCK

is due to the bold assumption on recency. Negative effects caused by taking only recency

value are removed by considering hot pages, cold pages, and non-resident cold pages as

history information. The algorithm successfully handles weak locality of reference.

For weak locality workloads CLOCK-Pro and adaptive CLOCK-Pro always performs

better than CLOCK page replacement algorithm. CLOCK-Pro page replacement policy

increases hit rate up to 40% and adaptive CLOCK-Pro increases hit rate up to 43%.

Performance gain is more in case of purely weak locality workloads (such as looping

pattern) and performances are comparable in case of strong locality workloads (such as

temporally clustered workloads). Again, if the number of distinct pages is nearly equal to

cache size CLOCK algorithm also performs better for weak locality workloads.

The performance comparison between CLOCK-Pro and Adaptive CLOCK-Pro

algorithms is done by changing cold block size from 1% to 50% of cache size. For weak

locality workloads, cold size below 5% of total cache size is seems to be better but for

strong locality workload cold size around 35% of total cache size seems to be more

beneficial. Again when cold size is below 5% for weak locality workloads, performance

of CLOCK-Pro is little bit higher than adaptive CLOCK-Pro and when cold size is more

than 5% adaptive CLOCK-Pro outperforms CLOCK-Pro. But, for strong locality

workloads adaptive CLOCK-Pro always outperforms CLOCK-Pro. Thus summing up

this it can be concluded that best cache partition ratio is different for different workloads

and therefore it is very difficult to declare it. Thus adaptive CLOCK-Pro is Superior than

CLOCK-Pro because it can easily adopt cold and hot size for strong locality as well as

weak locality workloads.

53

6.2 Future Work

CLOCK-Pro algorithm consist the hot pages, cold pages and metadata

information about the non-resident cold pages. In this dissertation work we analyze

sensitivity analysis of cache partition in CLOCK-Pro. Also compare the performances of

CLOCK, CLOCK-Pro and Adaptive CLOCK-Pro. In this dissertation work only M sized

non-resident cold pages are taken when memory of size M. Changing the size of non-

resident blocks and evaluating impact is interesting for further research.

54

References

[1] A.S. Tanenbaum, Modern Operating Systems (Prentice Hall Second Edition), pp 201-

232. 2007.

[2] Bagchi, S., Nygaard, M.A Fuzzy Adaptive Algorithm for Fine Grained Cache Paging.

8th International Workshop (SCOPES’04), Netherlands, pp 200-213. 2004.

[3] Bansal, S. and Modha, D. S. CAR: Clock with Adaptive Replacement, In Proceedings of

the USENIX Conference on File and Storage Technologies (FAST’04), San Francisco,

pp 187-200 (2004)

[4] B. Subedi, An Evaluation of Page Replacement Algorithm Based on Low Inter

 Reference Recency Set Scheme on Weak Locality Workloads, Master’s

 Thesis, Tribhuvan University, Central Department of Computer Science

 and Information Technology.

[5] BP-Wrapper: A System Framework Making Any Replacement Algorithms (Almost)

Lock Contention Free Xiaoning Ding, Song Jiang, Xiaodong Zhang, pp 370.

[6] C. Ding and Y. Zhong, “Predicting Whole-Program Locality through Reuse-

Distance Analysis”, Proceedings of ACM SIGPLAN Conference on Programming

Language Design and Implementation, 2003.

[7] Choi, J. An Implementation Study of a Detection-Based Adaptive Block Replacement

Scheme, USENIX Annual Technical Conference, 239-252. (1999)

[8] Choi, J. Towards application/file-level characterization of block references: a case for

fine-grained buffer management. In: Proceeding of the 25th International Conference on

Measurement and Modeling of Computer Systems, Santa Clara, CA.

(SIGMETRICS’00), and pp 286-295. (2000)

[9] Corbató, F. J.A paging experiment with the Multics system. In Honor of P. M.

Morse, pp 217–228, MIT Press, 1969. Also as MIT Project MAC Report MAC-M-

384.(1968)

[10] D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho and C. Kim, “On the Existence of

a Spectrum of Policies that Subsumes the Least Recently Used (LRU) and Least

Frequently Used (LFU) Policies”, Proceeding of 1999 ACMSIGMETRICS

Conference, 1999.

mk:@MSITStore:J:\Masters%20TU\TU\Semester%201\O.S\Modern_Operating_Systems_2ndEd_by_Tanenbaum_Prentice_Hall.chm::/toc.htm

55

[11] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum, The LRU-K Page

Replacement Algorithm for Database Disk Buffering, ACM SIGMOD, Washington

D.C., pp 297-306.(1993)

[12] G. Glass, “Adaptive Page Replacement”. Master’s Thesis, University of Wisconsin,

1997.

[13] Glass, G. and Cao, P. Adaptive Page Replacement Based on Memory Reference

Behavior, In Proceedings of the ACM International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS’97), pp 115-126.(1997)

[14] G. Nutt, Operating Systems A Modern Perspective(Addison Wesley Longman,

Second Edition) 2000

[15] G. Prakash Joshi, Calculation Of Control Parameter That Results Into Optimal

Performance In Terms Of Page Fault Rate In The Algorithm Least Recently

Frequently Used(LRFU) For Page Replacement, Master's Thesis, Tribhuvan

University, Central Department of Computer Science and Information Technology.

[16] H.M. Deitel, Operating Systems, Chap.9 Virtual Storage Management (Pearson

Education, Second Edition).

[17] H. Paajanen, Page Replacement In Operating System Memory Management,

Master’s Thesis in Information Technology, University of Jyvaskyla, Department of

Mathematical Information Technology (2007).

[18] Jiang, S., Chen, F., Zhang, X. CLOCK-Pro: An effective improvement of the CLOCK

replacement. In Proceedings of the 10th Annual USENIX Technical 2005.

[19] Johnson and Shasha, 2Q: A Low Overhead High Performance Buffer Management

Replacement Algorithm, Proceedings of the 20th International Conference on

VLDB, pp 439-450. 1994

[20] John Kubiatowicz, Operating System and System Programming, Page Allocation

and replacement , http://inst.eec.berkeley.edu/~CS162

[21] Kim, J.M. et al. A low-overhead high-performance unified buffer management scheme

that exploit sequential and looping references. In Symposium on Operating System

Design and Implementation, San Diego. OSDI' 2000 USENIX, pp 119-134.(2000)

[22] McMaster, Sambasivam, & Anderson, How Anomalous Is Belady's Anomaly?,

Issues in Informing Science and Information Technology VOL 6, pp827-836(2009)

56

[23] Megiddo, N. and Modha, D. S.ARC: A Self-Tuning, Low Overhead Replacement

Cache, In Proceedings of the USENIX Conference on File and Storage Technologies

(FAST’03), San Francisco, pp 115-130.(2003)

[24] M.L. Singh, Understanding Research Methodology, Chap.1Scientific Method and

Research, pp 4.

[25] Sabeghil, M. and Yaghmaee, M. H Using fuzzy logic to improve cache replacement

decisions. IJCSNS International Journal of Computer Science and Network. 2006.

[26] S. Bansal and D.Modha, “CAR: Clock with Adaptive Replacement”,Proceedings of

the 3nd USENIX Symposium on File and Storage Technologies, 2004.

[27] Silberschatz, A., Galvin, P. B., & Gagne, G., Operating system concepts (7th

Edition). Wiley.Stuart, 2004

[28] S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter reference Recency Set

Replacement Policy to Improve Buffer Cache Performance”, In Proceeding of 2002

ACM SIGMETRICS, pp. 31-42.(2002)

57

Appendix A: Sample Trace of loop pattern, Workload 1

0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 28 28 2 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

501 502 503 504 505 506 507 508 509 510 0 511 512 513 514 515 516

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

58

619 620 621 622 623 624 625 626 627 628 628 628 28 628 629 630 631

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

1135 1136 1137 28 28 28 28 0 0 1 1 2 3 28 28 28 2 29 30 31 32 33 34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

59

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

528 529 530 531 532 533 534 535 536 537 538 0 539 540 541 542 543

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

628 628 28 628 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

1161 1162 1163

60

Appendix B: Sample Trace of Probabilistic Pattern, Workload 2

0 1 2 3 4 5 6 7 8 8 9 9 10 11 12 13 14 15 16 16 17 18 17 18 18 18 19

20 1 2 3 4 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

86 87 88 89 90 19 20 1 2 3 4 91 92 93 24 25 26 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 70 94 95 96 97 98 62 63

99 100 101 56 57 64 65 53 54 55 58 59 60 102 66 67 68 69 49 50 51 52

103 104 105 106 71 72 73 74 75 76 77 81 107 82 83 85 86 84 87 88 108

89 109 110 111 112 113 110 19 20 1 2 3 4 114 115 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39 40 41 42 94 95 97 116 62 63 96 66 67

68 69 56 57 70 99 43 44 45 46 47 48 71 72 73 74 75 76 77 117 81 82

83 108 84 85 86 87 88 107 89 19 20 1 2 3 4 118 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60 70 94 95 97 62 63 19 20 1 2 3 4 119 120 121 122

123 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 117 43

44 45 46 47 48 96 64 65 19 20 1 2 3 4 124 125 126 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39 40 41 42 61 62 63 105 106 66 67 68 69

56 57 70 104 43 44 45 46 47 48 71 72 73 74 75 76 77 99 127 49 50 51

52 53 54 55 58 59 60 128 129 130 131 132 133 81 82 83 108 84 85 86

87 88 134 135 136 137 19 20 1 2 3 4 138 139 140 26 27 28 29 24 25 30

31 32 33 34 35 36 37 38 39 40 41 42 53 54 55 56 57 58 59 60 99 49 50

51 52 19 20 1 2 3 4 141 26 27 28 29 24 25 30 31 32 33 34 35 36 37 38

39 40 41 42 53 54 55 56 57 58 59 60 99 49 50 51 52 103 104 109 19 20

1 2 3 4 142 143 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 66 67 68

69 71 72 73 74 75 76 77 100 101 144 62 63 105 106 102 78 70 145 146

147 148 149 150 151 152 153 154 155 156 157 19 20 1 2 3 4 158 159

160 161 162 163 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 164 165 62 63 66 67 68 69 56 57 70 104 166

167 103 81 82 83 108 84 85 86 87 88 105 106 129 130 131 132 133 168

169 170 19 20 1 2 3 4 171 24 25 26 27 28 29 30 31 32 33 34 35 36 37

38 39 40 41 42 43 44 45 46 47 48 172 173 174 175 71 72 56 57 73 74

75 76 77 19 20 1 2 3 4 176 177 178 179 24 25 26 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

57 58 59 60 172 173 174 175 61 62 63 105 106 71 72 73 74 75 76 77 66

61

Appendix C: Sample Trace of Temporally-clustered Pattern, Workload

3

0 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 9 15 16 17 9 18 9 19 9 20 21 22

23 24 25 26 15 16 4 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 5 86 87

88 89 2 3 90 91 92 93 94 95 96 97 98 99 100 8 101 54 59 4 27 28 29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 102 103 104 105 106 107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

125 126 127 128 82 83 102 103 104 105 106 107 108 109 110 111 112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 129 129 130

131 132 133 133 133 133 134 134 134 134 135 135 136 136 136 136 136

136 137 137 137 138 138 138 139 139 139 139 139 139 139 139 139 139

140 140 140 140 140 140 141 141 141 141 141 142 142 142 142 143 143

144 144 145 145 145 145 145 146 146 146 146 146 146 146 146 146 146

147 147 147 147 147 148 148 148 149 149 149 149 149 149 149 149 149

150 150 150 150 150 150 151 151 151 152 152 152 153 153 153 154 154

154 154 154 155 155 155 133 133 133 135 135 135 135 135 135 135 135

135 156 156 156 156 156 156 156 156 156 156 156 156 156 157 157 157

158 158 158 158 158 158 158 158 158 159 159 159 159 159 159 159 159

159 160 160 160 160 160 160 161 161 161 161 161 161 161 161 161 161

161 136 136 136 136 162 162 162 163 164 164 164 164 164 164 165 165

165 166 166 166 167 167 167 168 168 168 138 138 138 138 138 138 138

138 138 139 139 139 142 142 142 144 144 144 144 144 169 169 169 145

145 145 170 170 170 171 171 171 172 151 151 173 174 174 159 159 159

160 160 160 136 136 136 170 170 170 171 171 171 175 175 175 160 160

160 134 134 135 134 136 136 136 137 137 138 138 139 139 139 139 139

139 140 140 140 140 141 141 142 142 143 142 143 144 143 144 145 145

145 145 146 146 146 146 146 146 147 146 147 147 148 148 149 149 149

150 150 150 151 151 152 152 153 153 154 154 154 154 155 155 133 135

135 135 135 135 135 156 156 156 156 156 156 156 157 157 158 158 158

158 158 159 159 159 160 159 160 160 160 161 161 161 161 161 161 136

136 163 164 164 165 165 166 166 167 167 168 168 138 138 138 138 138

139 142 144 144 169 169 145 145 170 170 171 171 151 172 174 173 174

62

Appendix D: Sample Trace of Mixed Pattern, Workload 4

0 1 2 3 4 5 6 7 7 8 8 9 10 11 12 13 14 15 16 0 1 2 17 1 18 1 19 1 20

1 1 21 1 1 3 22 23 24 25 26 27 28 29 29 29 29 29 29 29 29 29 29 29

29

29 29 30 31 27 28 28 28 32 33 34 35 0 1 2 3 36 37 38 39 40 41 42 43

44 45 45 45 45 46 47 31 35 36 38 48 49 50 51 52 53 54 55 56 57 58 59

60 61 62 63 35 40 64 65 66 67 68 69 70 71 72 31 33 35 40 73 74 75 76

74 77 78 77 79 80 31 35 69 64 81 74 82 83 31 35 64 40 76 84 85 86 87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

108 109 110 50 31 33 35 66 36 38 69 71 78 83 86 91 93 96 98 88 111

112 113 114 115 116 117 103 106 118 119 120 53 121 37 37 39 39 122

123 124 57 61 31 33 35 66 36 38 69 71 78 83 86 91 93 96 98 88 125

126 127 128 129 116 91 93 103 106 121 57 61 130 131 132 133 134 135

35 55 91 93 136 137 138 31 33 35 66 36 38 69 71 78 83 86 91 93 96 98

88 139 140 141 142 143 144 145 146 147 148 111 113 116 149 150 151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

186 187 188 189 190 191 192 193 194 159 195 162 196 197 166 198 173

199 200 201 202 203 177 204 205 206 207 208 209 210 211 212 213 214

215 216 217 218 219 220 221 159 222 223 162 224 225 166 226 173 227

228 177 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

244 159 245 246 162 247 248 166 249 173 250 251 177 252 253 254 252

255 256 252 252 257 258 259 255 260 261 262 263 264 265 266 267 268

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

320 321 322 323 32 34 0 1 2 3 324 325 326 327 328 44 46 329 330 331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

51 366 367 58 368 369 63 370 371 68 372 373 75 374 375 80 376 377 85

378 379 90 380 381 95 382 383 100 384 385 105 386 387 110 388 389

115 390 391 120 392 393 124 394 395 129 396 397 134 398 399 138 400

401 143 146 402 403 151 404 405 155 406 407 160 408 409 232 410 411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

429 430 431 432 433 434 435 436 205 208 437 438 439 440 441 442 443

444 445 446 447 448 449 450 451 452 453 185 188 454 455 213 216 456

63

Appendix E: Source Code for CLOCK, CLOCK-Pro and Adaptive CLOCK-Pro

algorithms respectively as below:

Clock_Node.java

package clock_replacement;

public class Clock_node

{

 int R;//referenc

 int pn;//page number

 Clock_node next,prev;

 boolean isresident;

 public Clock_node()

 {

 R=0;

 pn=0;

 isresident=false;

 next=prev=null;

 }}

ClockMain.java

package clock_replacement;

import java.io.FileNotFoundException;

class SizeInfo

{

 static int vir_mem;

 static int mem_size;

 SizeInfo()

 {

64

 vir_mem=8;

 mem_size=3;

 }}

public class Clockmain

{

 public static void main(String[] args) throws FileNotFoundException

 {

 new Clock();

 }}

Clock.java

package clock_replacement;

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

public class Clock extends SizeInfo

{

 private Clock_node tail, hand;

 private int npf;//total number of page faults

 private int np;//total number of pages

 private Clock_node[] pt;

 private int free_mem_size;

 //boolean isresident;

 Clock()

 {

 tail=hand=null;

 npf=np=0;

65

 free_mem_size=3;

 pt=new Clock_node[vir_mem+1];

 for(int i=1;i<vir_mem+1;i++)

 {

 pt[i]=new Clock_node();

 pt[i].pn=i;

 }

 trace();

 }

void trace()

 {

 Scanner in=null;

 int refpage=0;

 try {

 in = new Scanner(new File("clock.txt"));

 } catch (FileNotFoundException ex) {

 System.out.println("input file not found"+ex);

 }

 while(in.hasNext())

 {

 refpage=in.nextInt();

 np++;

 if(pt[refpage].isresident==true)

 {

 //System.out.print("page in stack"+refpage);

 if(pt[refpage].R==1)

66

 {

 //do nothing

 }

 else

 {

 pt[refpage].R=1;

 } }

 else //if page is not in clock

 {

 //System.out.print("page in not stack"+refpage);

 npf++;

 if(free_mem_size>0)

 {

 if(hand==null)

 {

 hand=tail=pt[refpage];

 pt[refpage].next=hand;

 pt[refpage].prev=pt[refpage].next;

 pt[refpage].R=0;

 pt[refpage].isresident=true;

 free_mem_size=free_mem_size-1;

 }

 else

 {

 tail.next=pt[refpage];

 pt[refpage].prev=tail;

 pt[refpage].next=hand;

67

 tail=tail.next;

 hand.prev=tail;

 pt[refpage].R=0;

 pt[refpage].isresident=true;

 free_mem_size=free_mem_size-1;

 }}

 else //MEMORY IS FULL

 {

 while(hand.R!=0)

 {

 hand.R=0;

 hand=hand.next;

 }

 hand.isresident=false;

 hand.prev.next=pt[refpage];

 pt[refpage].prev=hand.prev;

 pt[refpage].next=hand.next;

 hand.next.prev=pt[refpage];

 hand=pt[refpage];

 hand=hand.next;

 pt[refpage].isresident=true;

 pt[refpage].R=0;

 }}

 showStatus();

 }

 }

68

 void showStatus()

 {

 System.out.println("------------Clock------------------:");

 System.out.println();

 System.out.println("Total number of pages:"+np);

 System.out.println("Total number of page faults:"+npf);

 }

}

Clock_pr_Node.java

package CLOCK_Pr_Simulation;

enum PageStatus{non_resident,cold,hot};

public class CLOCK_Pr_Node

{

 private int prt;//reference times

 private int pft;//page fault times

 int pn;//page number

 boolean isresident;

 boolean isinclock;

 PageStatus status;

 int R; //referenc

 CLOCK_Pr_Node prev;

 CLOCK_Pr_Node next;

 public CLOCK_Pr_Node()

 {

 prt=0;

 pft=0;

69

 R=0;

 status=PageStatus.non_resident;

 isresident=false;

 isinclock=false;

 prev=next=null;

 }}

Clock_pr_Main.java

package CLOCK_Pr_Simulation;

import java.io.FileNotFoundException;

class SizeInfo

{

 static int VM_SIZE;

 static int mem_size;

 SizeInfo()

 {VM_SIZE=100;

 mem_size=5;

 }}

public class CLOCK_Pr_Main

{

 public static void main(String[] args) throws FileNotFoundException

 {

 new CLOCK_Pr();

 }}

Clock_pr.java

package CLOCK_Pr_Simulation;

import java.io.File;

70

import java.io.FileNotFoundException;

import java.util.Scanner;

class CLOCK_Pr extends SizeInfo

{

 private CLOCK_Pr_Node shead,stail,qhead,qtail;

 private int npf;//total number of page faults

 private int np;//total number of pages

 private CLOCK_Pr_Node head;

 private CLOCK_Pr_Node tail;

 private CLOCK_Pr_Node[] pt;

 CLOCK_Pr_Node hand_hot;

 CLOCK_Pr_Node hand_cold;

 CLOCK_Pr_Node hand_test;

 private int free_mem_size;

 private int hot_pages_size;

 private int cold_pages_size;

 private int non_resident_coldpages_size;

 CLOCK_Pr() throws FileNotFoundException

 {head=tail=null;

 free_mem_size=SizeInfo.mem_size;

 if(SizeInfo.mem_size<4)

 {

 cold_pages_size=1;

 }

 else

 {

 cold_pages_size=(int) (SizeInfo.mem_size * 0.25);

71

 }

 hot_pages_size=SizeInfo.mem_size-cold_pages_size;

 non_resident_coldpages_size=SizeInfo.mem_size/2;

 npf=np=0;

 pt=new CLOCK_Pr_Node[VM_SIZE+1];

 for(int i=1;i<=VM_SIZE;i++)

 {

 pt[i]=new CLOCK_Pr_Node();

 pt[i].pn=i;

 }

 trace();

 }

 void trace()

 {

 Scanner in=null;

 CLOCK_Pr_Node temp;

 CLOCK_Pr_Node temp1;

 int refpage=0;

 try {

 in = new Scanner(new File("clock_pro.txt"));

 } catch (FileNotFoundException ex) {

 System.out.println("input file not found"+ex);

 }

 while(in.hasNext())

 {

 refpage=in.nextInt();

72

 np++;

 if(pt[refpage].isresident==false) //if page is not in memory

 {

 npf++;

 if(pt[refpage].isinclock==false)

 { if(hot_pages_size>0) //if hot pages list is not full

 {

 if(head==null) //if linked list is empty

 { head=tail=hand_hot=pt[refpage];

 pt[refpage].status=PageStatus.hot;

 pt[refpage].next=head;

 pt[refpage].prev=pt[refpage].next;

 pt[refpage].R=0;

 pt[refpage].isresident=true;

 hot_pages_size=hot_pages_size-1;

 }

 else

 { pt[refpage].status=PageStatus.hot;

 tail.next=pt[refpage];

 pt[refpage].prev=tail;

 pt[refpage].next=head;

 tail=tail.next;

 head.prev=tail;

 pt[refpage].R=0;

 pt[refpage].isresident=true;

 hot_pages_size=hot_pages_size-1;

 }}

73

 else //if hot block is full

 {

 if(cold_pages_size>0) //if cold pages list is not full

 {

 if(cold_pages_size==2) //if clock has no any cold pages

 {

 pt[refpage].status=PageStatus.cold;

 tail.next=hand_cold=pt[refpage];

 pt[refpage].prev=tail;

 pt[refpage].next=head;

 tail=tail.next;

 head.prev=tail;

 pt[refpage].R=0;

 pt[refpage].isresident=true;

 cold_pages_size=cold_pages_size-1;

 }

 else //if clock contains at least one cold page

 {

 pt[refpage].status=PageStatus.cold;

 tail.next=pt[refpage];

 pt[refpage].prev=tail;

 pt[refpage].next=head;

 tail=tail.next;

 head.prev=tail;

 pt[refpage].R=0;

 pt[refpage].isresident=true;

 cold_pages_size=cold_pages_size-1;

74

 } }

 else // if cold page list is full

 {

 if(hand_cold.R==0)

 {

 // then replace block from cold page list to non resident page list

 temp=hand_cold;

 temp.isresident=false;

 temp.isinclock=true;

 temp.status=PageStatus.non_resident;

 non_resident_coldpages_size=non_resident_coldpages_size+1;

 hand_cold=hand_cold.next;

 hand_cold.prev=temp;

 temp.next=hand_cold;

 temp.prev.next=temp;

 hand_cold.prev.prev=temp.prev;

 while(hand_cold.status!=PageStatus.cold)

 hand_cold=hand_cold.next;

 if(non_resident_coldpages_size>0) //if non resident block is not full

 {

 if(non_resident_coldpages_size==SizeInfo.mem_size/2)

 {

 hand_test=temp;

 tail.next=temp;

 temp.prev=tail;

 tail=tail.next;

 head.prev=tail;

75

 tail.next=head;

 temp.isinclock=true;

 non_resident_coldpages_size=non_resident_coldpages_size-1;

 }

 else

 {

 tail.next=temp;

 temp.prev=tail;

 tail=tail.next;

 head.prev=tail;

 tail.next=head;

 temp.isinclock=true;

 non_resident_coldpages_size=non_resident_coldpages_size-1;

 }

 }

 else //non resident block is full

 {

 temp1=hand_test;

 temp1.isinclock=false;

 temp1.prev.next=temp1.next;

 temp1.next.prev=temp1.prev;

 non_resident_coldpages_size=non_resident_coldpages_size-1;

 hand_test=hand_test.next;

 while(hand_test.status!=PageStatus.non_resident)

 hand_test=hand_test.next;

 tail.next=temp;

 temp.prev=tail;

76

 tail=tail.next;

 head.prev=tail;

 tail.next=head;

 temp.isinclock=true;

 cold_pages_size=cold_pages_size-1;

 }

 tail.next=pt[refpage];

 pt[refpage].prev=tail;

 tail=tail.next;

 head.prev=tail;

 tail.next=head;

 pt[refpage].isresident=true;

 pt[refpage].R=0;

 pt[refpage].status=PageStatus.cold;

 cold_pages_size=cold_pages_size+1;

 }

 else if(hand_cold.R==1)

 {

 if(hot_pages_size>0)

 {

 temp=hand_cold;

 temp.R=0;

 temp.prev.next=temp.next;

 temp.next.prev=temp.prev;

 hand_cold=hand_cold.next;

 while(hand_cold.status!=PageStatus.cold)

 hand_cold=hand_cold.next;

77

 tail.next=temp;

 temp.prev=tail;

 tail=tail.next;

 tail.next=head;

 head.prev=tail;

 temp.status=PageStatus.hot;

 cold_pages_size=cold_pages_size-1;

 hot_pages_size=hot_pages_size+1;

 }

 else //if hot page list is full

 {

 temp=hand_cold;

 hand_cold=hand_cold.next;

 temp.status=PageStatus.hot;

 while(hand_cold.status!=PageStatus.cold)

 hand_cold=hand_cold.next;

 temp1=hand_hot;

 hand_hot=hand_hot.next;

 while(hand_hot.status!=PageStatus.hot)

 hand_hot=hand_hot.next;

 temp1.status=PageStatus.cold;

 tail.next=temp1;

 temp1.prev=tail;

 tail=tail.next;

 tail.next=head;

 head.prev=tail;

78

 tail.next=temp;

 temp.prev=tail;

 tail=tail.next;

 tail.next=head;

 head.prev=tail;

 if(hand_cold.R==0)

 {

 temp=hand_cold;

 temp.status=PageStatus.non_resident;

 temp.isresident=false;

 hand_cold=hand_cold.next;

 non_resident_coldpages_size=non_resident_coldpages_size+1;

 //hand_cold.prev.next=hand_cold.next;

 //hand_cold.next.prev=hand_cold.prev;

 hand_cold=hand_cold.next;

 hand_cold.prev=temp;

 temp.next=hand_cold;

 temp.prev.next=temp;

 hand_cold.prev.prev=temp.prev;

 while(hand_cold.status!=PageStatus.cold)

 hand_cold=hand_cold.next;

 if(non_resident_coldpages_size>0) //if non resident block is not full

 { tail.next=temp;

 temp.prev=tail;

 tail=tail.next;

 head.prev=tail;

 tail.next=head;

79

 temp.isinclock=true;

 non_resident_coldpages_size=non_resident_coldpages_size-1;

 }

 else //non resident block is full

 {

 temp1=hand_test;

 //temp1.status=PageStatus.non_resident;

 temp1.isinclock=false;

 temp1.prev.next=temp1.next;

 temp1.next.prev=temp1.prev;

non_resident_coldpages_size=non_resident_coldpages_size+1;

 hand_test=hand_test.next;

 while(hand_test.status!=PageStatus.non_resident)

 hand_test=hand_test.next;

 tail.next=temp;

 temp.prev=tail;

 tail=tail.next;

 head.prev=tail;

 tail.next=head;

 temp.isinclock=true;

 non_resident_coldpages_size=non_resident_coldpages_size-1;

 }}}

 tail.next=pt[refpage];

 pt[refpage].prev=tail;

 tail=tail.next;

 head.prev=tail;

 tail.next=head;

80

 pt[refpage].isresident=true;

 pt[refpage].R=0;

 pt[refpage].status=PageStatus.cold;

 cold_pages_size=cold_pages_size+1;

 }}

 }//isinclock

 }// end of isresident==false

 else if(pt[refpage].isresident==true) // if accessed page is in memory

 {

 if(pt[refpage].status==PageStatus.hot)

 {

 if(pt[refpage].R==1)

 {

 //do nothing

 }

 else

 {

 pt[refpage].R=1;

 }}

 if(pt[refpage].status==PageStatus.cold)

 {

 if(pt[refpage].R==1)

 {

 //do nothing

 }

 else

 {

81

 pt[refpage].R=1;

 }}}}

 System.out.println("--------------------------------");

 System.out.println("The page is:"+refpage);

 showStatus();

 System.out.println("--------------------------------");

 System.out.println();

 } //end of while

 } // end of trace

 void showStatus()

 {

 System.out.println("Total number of pages:"+np);

 System.out.println("Total number of page faults:"+npf);

 }

 }//end of class

// Code for Adaptive CLOCK-Pro omitted here……………

