Tribhuvan University
Institute of Science and Technology

Named Entity Recognition for Nepali Text using
Support Vector Machine

Dissertation
Submitted to

Central Department of Computer Science and Information Technology
Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements
for the Master’s Degree in Computer Science and Information Technology

By
Surya Bahadur Bam
05 July, 2013

Tribhuvan University
Institute of Science and Technology

Named Entity Recognition for Nepali Text using
Support Vector Machine

Dissertation
Submitted to

Central Department of Computer Science and Information Technology
Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements
for the Master’s Degree in Computer Science and Information Technology

By
Surya Bahadur Bam
05 July, 2013

Supervisor
Prof. Dr. Shashidhar Ram Joshi

Co- supervisor
Asst. Prof. Sarbin Sayami

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science & Information Technology

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than the

listed here have been used in this work.

Surya Bahadur Bam
05 July, 2013

Supervisor’s Recommendation

I hereby recommend that this dissertation prepared under my supervision by Surya Bahadur
Bam entitled “Named Entity Recognition for Nepali Text using Support Vector
Machine” in partial fulfillment of the requirements for the degree of M.Sc. in Computer

Science and Information Technology be processed for the evaluation.

Supervisor Co- supervisor
Prof. Dr. Shashidhar Ram Joshi Asst.Prof. Sarbin Sayami
Department of Electronics & Computer Central Department of Computer
Engineering, Institute of Engineering, Science & Information Technology, Kirtipur
Pulchowk, Kathmandu, Nepal Tribhuvan University, Kathmandu, Nepal
05 July, 2013 05 July, 2013

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science & Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope
and quality as a dissertation in the partial fulfillment for the requirement of Masters Degree in

Computer Science and Information Technology.

Evaluation Committee

Prof. Dr. Tanka Nath Dhamala Prof. Dr. Shashidhar Ram Joshi
Central Department of Computer Science Department of Electronics & Computer
& Information Technology, Engineering, Institute of Engineering,
Tribhuvan University, Kathmandu, Nepal Pulchok, Kathmandu, Nepal
(Head of Department) (Supervisor)
Assoc. Prof. Bal Krishna Bal Mr. Bishnu Gautam
Kathmandu University CDCSIT, Tribhuvan University
(External Examinar) (Internal Examinar)

Date: vt cer eee ..

ACKNOWLEDGEMENT

With deep sense of gratefulness I express my genuine thanks to my respected supervisor
Prof. Dr. Shashidhar Ram Joshi, Electronics & Computer Engineering Department
Pulchowk, (Kathmandu, Nepal) for his valuable guidance in carrying out this work under his

effective supervision and enlightenment.

I want to express my deep thanks to my honored co-supervisor Asst. Prof. Sarbin Sayami,
Central Department of Computer Science and Information Technology (Kathmandu, Nepal)
for his inspiration, trust, the insightful discussion, thoughtful guidance, critical comments,

and correction of the thesis.

I would like to thank my respected promoter Prof. Dr. Tank Nath Dhamala, Head of
Central Department of Computer Science & Information Technology, TU (Kathmandu,
Nepal.

I would like to express my gratitude to respected teachers Prof. Dr. Subarna Shakya, Prof.
Sudarshan Karanjeet, Asst. Prof. Min Bahadur Khati, Asst. Prof. Nawraj Poudel, Asst.
Prof. Dhiraj Pandey, Asst. Prof. Lalita Sthapit, Mr.Bishnu Gautam, Mr. Jagdish Bhatt,
Mr. Arjun Singh Saud, Mr. Bikash Balami and others staffs of CDCSIT for their full
cooperation and help.

I cannot remain without admiring the efforts put by my friend Mr. Tej Bahadur Shahi, Mr.

Ashok Kumar Pant for their exceptional participation on this work.

Finally, I thank my family for their love, support and encouragement.

ABSTRACT

Named Entity Recognition aims to identify and to classify rigid designators in text such as
proper names, biological species, and temporal expressions into some predefined categories.
It resolves who, where and how much problems in information extraction and leads to the resolution
of the what and how problems in further processing. There has been growing interest in this field
of research since the early 1990s. Named Entity Recognition have vital role in different field
of natural language processing such as Machine Translation, Information Extraction,
Question Answering system and various other fields. In this thesis, Named Entity
Recognition for Nepali Text, based on the support vector machine is present which is one of
the machine is learning approaches and domain independent work.

A set of features are extracted from training data set. Accuracy and efficiency of SVM
classifier is analyzed in three different size of training data set. Recognition systems are
tested with ten datasets for Nepali text. The strength of this work is the efficient feature
extraction and the comprehensive recognition techniques. The support vector machine based
named entity recognition is limited to use a certain set of features and it use a small
dictionary which affects its performance.

The learning performance of recognition system is observed and found that it can learn well
from the small set of training data and increases the rate of learning on the increment of

training size.
Keywords:

Named Entity, Named Entity Recognition, Support Vector Machine, Classification, Feature

Extraction.

ii

Table of Contents

Acknowledgement i
Abstract ii
List of Figures vi
List of Tables vii
List of Abbreviations viii

Chapter 1 Introduction

1.1. Introduction 1

1.1.1 Challenges in Named Entity Recognition 3

1.1.1.1 No Capitalization 3

1.1.1.2 Agglutinative Nature 4

1.1.1.3 Proper Name Ambiguity 4

1.1.1.4 Word Order 4

1.1.1.5 Loan words in Nepali 4

1.1.1.6 Nested Entities 5

1.1.1.7 Resource Challenges 5

1.2 Motivation 5

1.3 State of the Art 5

1.4 Objectives 6

1.5 Organization of Thesis 6

Chapter 2 Background and Problem Definition

2.1 Background 7

2.1.1 Natural Language Processing 7

2.1.2 Major Applications of Natural Language Processing 9
2.1.3 Computational Linguists 10
2.1.4 Machine learning 10
2.1.4.1 Supervised learning 10
2.1.4.2 Unsupervised learning 11
2.1.4.3 Semi supervised or minimally supervised learning 11
2.1.4.4 Reinforcement learning 12
2.1.4.5 Classification 12

2.1.5 Support Vector Machine 12

iii

2.1.6
2.1.7
2.1.8

2.1.5.1 Multi Class SVM

2.1.5.2 Kernel Trick: Dual Problem

2.1.5.3 Kernel Trick: Inner Product summarization
2.1.5.4 Kernel Functions

2.1.5.5 SVM for Classification

Optimization

Evaluating Named Entity Recognition

Methods of Named Entity identification

2.2 Problem Definition

Chapter 3 Literature Review

3.1 Existing Corpus Review

3.1.1 CoNLL-2002 and CoNLL-2003
3.1.2 MUC-6 and MUC-7
3.1.3 Automatic Content Extraction
3.1.4 BBN Penn Treebank
3.2 A Review of Named Entity Recognition Approaches
3.2.1 Conditional Random Fields based Named Entity Recognition
3.2.2 Maximum Entropy based Named Entity Recognition
3.2.3 Hidden Markov Model based Named Entity Recognition
3.2.4 Decision Tree based Named Entity Recognition
3.2.5 Support Vector Machine based Named Entity Recognition
3.3 Knowledge sources for Named Entity Recognition
3.3.1 Gazetteer
3.3.2 Training Corpora
Chapter 4 Methodology

4.1 Implementation Model for Nepali Named Entity Recognition

4.2 Preprocessing

4.3 Feature Extraction

4.4 Problem Setting
4.5 Named Entity Tagset for Nepali NER
4.6 Support Vector Machine Algorithm

4.6.1

Multi Class SVM for classification

v

15
15
16
16
17
17
18
18
19

21
21
22
23
23
24
24

25
26
27
27
28
28
29

32
33
33
35
35
36
37

4.6.1.1 One-Against-All Multi-Class SVM
4.6.1.2 One-Against-One or Pairwise SVM
4.6.1.3 All-Together or All-At-Once SVM

Chapter 5 Implementation
5.1 Overview
5.2 SVM Implementation: SVM™!tictss
5.3 Algorithm for Training
5.4 Algorithm for Testing
5.5 Dictionary
5.6 Feature Set
5.7 Sample Input and Output
5.7.1 Input
5.7.2 Output
Chapter 6 Testing and Analysis
6.1 The Dictionary Data Statistics
6.2 Gazetteer Lists
6.3 Test Data Analysis

6.4 Result and Discussion

6.4.1 Experiment No. 1(Training Size 5000 tokens)
6.4.3 Experiment No. 2(Training Size 15000 tokens)
6.4.5 Experiment No. 3(Training Size 29298 tokens)

6.4.7 The Precision, Recall and F-Score for different training data size

Chapter 7 Conclusion and Further Recommendations
7.1 Conclusion

7.2 Further Recommendations

References

Appendix A
Appendix B
Appendix C
Appendix D

38
38
39

40
40
40
41
41
42
43
43
44

46
46
47
47
47
48
49
50

52
52

53
56
58
61
66

Lists of Figures

Figure 2.1: Two class SVM with support vectors and supporting hyperplane

Figure 2.2: Feature Mapping

Figure 4.1: Implementation Model for Nepali NER

Figure 4.2: One Vs rest classification approaches for NER

Figure 6.1: Bar Diagram for Precision, Recall and F-Score for training size 5000 tokens
Figure 6.2: Bar Diagram for Precision, Recall and F-Score for training size 15000 tokens
Figure 6.3: Bar Diagram for Precision, Recall and F-Score for training size 29298 tokens

Figure 6.4: Overall Precision, Recall and F-Score for different training data size

vi

Table 4.1:
Table 5.1:
Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table 6.5:
Table 6.6:

List of Tables

Named Entity examples

Description of the features

NE distribution in Dictionary

Number of gazetteers in gazetteer list
Experiment No. 1(Training Size 5000 tokens)
Experiment No. 1(Training Size 15000 tokens)
Experiment No. 3(Training Size 29298 tokens)

Overall Precision, Recall and F-Score for different training data size

vii

37
43
47
47
48
49
50
51

List of Abbreviations
Al
ACE
CRF
CoNLL
Learning
CLR
FAC

F

GPE
HMM
LDC
LOC
ML
MDP
ME
MUC
MISC
NE
NER
NLG
NLP
NLU
NRaD
NL
ORG
POS
PER

SVM
VC

Artificial Intelligence
Automatic Content Extraction

Conditional Random Field

Conference on Computational Natural Language

Consortium for Lexical Research
Facilities

F-score

Geo Political Entity

Hidden Markov Model
Language Data Consortium
Location

Machine Learning

Markov Decision Process
Maximum Entropy

Message Understanding Conference
Miscellaneous

Named Entity

Named Entity Recognition
Natural Language Generation
Natural Language Processing
Natural Language Understanding
Naval Research and Development
Nepali Languages

Organization

Part of Speech

Person

Precision

Recall

Support Vector Machine
Vapnik-Chervonenkis

viii

CHAPTER 1
INTRODUCTION

1.1 Introduction

The term Named Entity (NE) was evolved during the sixth Message Understanding
Conference (MUC-6, 1995); people who were focusing on Information Extraction (IE) [1].
NE is the structured information referring to predefined proper names, like persons, locations,
and organizations etc. NE task is to identify all named locations, named persons, named

organizations, date, times, monetary amounts, percentages etc. in text.

Named Entity Recognition (NER) aims to classify each word of a document into predefined
target named entity classes and is now-a-days considered to be fundamental for many Natural
Language Processing (NLP) tasks such as information retrieval, machine translation,
information extraction, question answering systems [1][2]. Though support vector machine
(SVM) [3] technique has been widely applied to NER in several well studied languages, the
use of SVM technique to Nepali Languages (NLs) is very new. The system makes use of the
different contextual information of the words along with the variety of features that are
helpful in predicting the four different NE classes, such as Person name (PER), Location
name (LOC), Organization name (ORG) and Miscellaneous name (MISC) [4][5]. The

Miscellaneous name include date, times, monetary amounts, percentages, designation etc.

NER involves the identification of proper names in text and their classification into different
types of named entities (e.g., persons, organizations, locations). NER is not only important in
IE but also in lexical acquisition for the development of robust NLP systems [6] [7].
Moreover, NER has proven fruitful for tasks such as documents indexing, and maintenance

of databases containing identified named entities.

During the last decade, NER has drawn much attention at MUC, both rule-based and machine
learning NER systems have had some success [8]. Previous rule-based approaches have used
manually constructed finite state patterns, which match text against a sequence of words.
Such system does not need too much training data and can encode expert human knowledge.

However, rule-based approaches lack robustness and portability. Each new

source of text requires a significant tweaking of the rules to maintain optimal performance;

the maintenance costs can be quite steep.

Proper identification and classification of NEs are very crucial and pose a very big challenge
to the NLP researchers. The level of ambiguity to NER makes it difficult to attain human
performance. Named Entity identification is difficult and challenging for Indo-Aryan

language like Nepali due to lack of resources.

In recent years, automatic NER systems have become a popular research area in which a
considerable number of studies have been addressed on developing these systems [9][10].
These can be classified into three main classes, namely rule-based NER, machine learning-

based NER and hybrid NER [11][12].

Now- a- days, Machine-Learning (ML) approaches are popularly used in NER because these
are easily trainable, adaptable to different domains and languages as well as their
maintenance are also less expensive [13]. On the other hand, rule-based approaches lack the
ability of coping with the problems of robustness and portability. Each new source of text
requires significant tweaking of rules to maintain optimal performance and the maintenance

costs could be quite high.

Named Entity Recognition is a subtask of machine translation and information extraction.
Named entities are words which belong to certain categories like persons, places,
organizations, numerical quantities, expressions of times etc. A large number of techniques
have been developed to recognize named entities for different languages. Some of them are
Rule based and others are Statistical techniques. Some of the well-known machine learning
approaches used in NER are Hidden Markov Model (HMM) [11], Maximum Entropy (ME)
(New York University’s MENE) in [9], Support Vector Machine[14][15], Decision Tree [16]
and CRF [13]. The rule based approach uses the morphological and contextual evidence of a
natural language and consequently determines the named entities. This eventually leads to
formation of some language specific rules for identifying named entities. The statistical
techniques use large annotated data to train a model (like Hidden Markov Model) and
subsequently examine it with the test data. Both the methods mentioned above require the

efforts of a language expert. An appropriately large set of annotated data is not yet to be made

2

available for the Nepali Languages. Consequently, the application of the statistical technique

for Nepali Languages is not very feasible

1.1.1 Challenges in Named Entity Recognition

Named Entity Recognition was first introduced as part of MUC-6 in 1995 and a related
conference MET-1 in 1996 introduced in non-English text. In spite of the recognized
importance of names in applications such as search systems, spelling checkers, and document
management systems, do not treat proper names correctly. This suggests proper names are
difficult to identify and interpret in unstructured text. Generally, names can have innumerable
structure in and cross languages. Names can overlap with other names and other words.
Simple clues like capitalization can be misleading for English and mostly not present in non
western languages like Nepali.

NE identification in Nepali languages is difficult and challenging as:

1.1.1.1 No Capitalization
Capitalization, when available, is the most important feature for NE extraction. English and
many other European languages use it to recognize proper names. Orthography of Nepali

does not support capitalization. English systems easily recognize acronyms by using
capitalization, but in Nepali they are quite difficult to recognize. For example, IEICIE

(transcribed BBC) in Nepali cannot be recognizing as an acronym.

1.1.1.2 Agglutinative Nature

Agglutinative means that some additional features can be added to the word to add more
complex meaning. Agglutinative language form sentences by adding a suffix to the root
forms of the word. Nepali is a highly inflectional language providing one of the richest and

most challenging sets of linguistic and statistical features resulting in long and complex word

forms. For example, let us consider the root word as ITSIT and suffix as é’%a'\r then if we

combine these two words then it becomes ITaT2aT as new word.

1.1.1.3 Proper Name Ambiguity
Ambiguity in proper name present in Nepali language as in English. The names like White

are ambiguous in English- name or color. Nepali person names are more diverse compared to

the other languages and a lot of these words can be found in the dictionary with some other
specific meanings. There is a surprising amount of ambiguity even among proper names. For

example:

* People vs. Companies: CIcIT, BIs
* People vs. Locations: CTQ;[CI'% (Pashupati)

* People vs. Organizations: ﬁl’ﬁia?l' (person vs. university)

* Acronyms vs. Organizations: MRI (Magnetic Resonance Imaging vs. Mental Research
Institute)

e People vs. Months: S?m& (Baisakh)

1.1.1.4 Word Order
Languages like Nepali have a different word-order than English and some have a free word-

order. Nepali mostly has a word order but depending upon the domain the word order is

respected. For example, #&Helel Gleflah! vl fera It T gifidl [Flerd &Here g7

fagt both translate to Kamal drank a whole glass of water.

1.1.1.5 Loan words in Nepali
Nepali has a number of loan words. Loan words are words that are not indigenous to Nepali.

The named entity recognizer that is based on simple morphological cues will fail to recognize

a large number of proper nouns. For example Osama Bin Laden, foieT (Bin) an Arabic cue

needs to be used in the middle of the name for the person name.

1.1.1.6 Nested Entities
The named entities that are classified as nested contain two proper names that are nested
together to form a new named entity. An example in Nepali is Kathmandu University where

Kathmandu is the location name and University marks the whole entity as an organization.

1.1.1.7 Resource Challenges

NER approaches are either based on rule engine or inference engines. In each approach some
type of corpus is required; lack of a NE tagged corpus for deriving rules is an issue for Nepali
language. Nepali is a resource poor language annotated corpora, name dictionaries; good
morphological analyzers, POS taggers etc. are not yet available in the required measure.

Although Nepali language have a very old and rich literary history, technological
4

development are of recent origin. Web sources for name lists are available in English, but

such lists are not available in Nepali forcing the use of transliteration for creating, such lists.

1.2 Motivation

Nepali is morphologically rich language with great cultural diversities and to build a language
model for such language, one has to consider many features. The support vector machine
based NER has been implemented in for a Bengali language which is also morphologically
rich and shown the outstanding performance [18]. In rich feature set has been used to model
the language characteristic [18]. SVM are recently developed supervised learning method
having good performance and generalization [19][20]. SVM has been successfully applied in
text classification and shown that SVM can handle large features and is resist of over fitting
[14]. Another important motivation was to create sufficiently large Nepali, NE tagged data,
gazetteers, POS taggers, bilingual dictionaries etc. for NER, Transliteration as well as for
other application areas. NER in Nepali language is very difficult and challenging and there is

no any works have done for Nepali NER when this work was started.

1.3 State of the art

Research indicates that even state-of-the-art NER systems are brittle, meaning that NER
systems developed for one domain do not typically perform well on other domains.
Considerable effort is involved in tuning NER systems to perform well in a new domain; this

is true for both rule-based and trainable statistical systems.

Early work in NER systems in the 1990s was aimed primarily at extraction from journalistic
articles. Attention then turned to processing of military dispatches and reports. Later stages of
the automatic content extraction (ACE) evaluation also included several types of informal
text styles, such as weblogs and text transcripts from conversational telephone speech
conversations. Since about 1998, there has been a great deal of interest in entity identification
in the molecular biology, bioinformatics, and medical natural language processing
communities. The most common entity of interest in that domain has been names of genes

and gene products.

1.4 Objectives

The objective of this study is to implement and analyze the algorithms for Nepali Named
Entity Recognition viz. Support Vector Machine (SVM). And, hence to build a model, that
will result Nepali Named Entity for Nepali text. The main objectives are given below:

1. To analyze the SVM based named entity recognition system for Nepali language.

2. To compare SVM results with different size of training data size.

1.5 Organization of Thesis

The rest of this thesis is organized as: chapter 2 gives a brief discussion of basic concept
related to this work, chapter 3 is a survey of the major existing named entity recognition
system, chapter 4 presents the methodlogy of the support vector machine based named entity
recognition algorithm, chapter 5 gives the detail implementation of support vector machine
based named entity recognition, chapter 6 presents the analysis of our work and chapter 7

concludes the thesis, summarizing its achievements and further recommendations.

CHAPTER 2
BACKGROUND AND PROBLEM DEFINITION

2.1Background

2.1.1 Natural Language Processing

NLP has been developed in 1960 as a subfield of Artificial Intelligence and Linguistics [21].
The aim of NLP is studying problems in the automatic generation and understanding of
natural language. A Natural Language is any of the languages naturally used by humans, i.e.

not an artificial or machine language such as a programming language likes C, java, Perl etc.

NLP is a convenient description for all attempts to use computers to process natural language.
NLP is also an area of Artificial Intelligence (Al) research that attempts to reproduce the
human interpretation of language for computer system processing. The ultimate goal of NLP
is to determine a system of language, words, relations and conceptual information that can be
used by computer logic to implement Al language interpretation. NLP includes anything a
computer needs to understand natural language (written or spoken) and also generate the
natural language. To build computational language systems, we need Natural Language
Understanding (NLU) and Natural Language Generation (NLG). NLG systems convert
information from computer databases into normal-sounding human language, and NLU
systems convert samples of human language into more representation that are easier for

computer programs to manipulate. Some of important levels of NLP are as follows:

Phonological Analysis: Phonology is the study of sound system in a language. The minimal
unit of sound system is the phoneme which is capable of distinguishing the meaning in the
words. The phonemes combine to form a higher level unit called syllable or syllables
combine to forms the words. Therefore, the organization of the sounds in a language exhibits
the linguistic as well as computational challenges for its analysis. This level deals with the
interpretation of speech sounds within and across words. There are, in fact, three types of
rules used in phonological analysis: 1) phonetic rules- for sounds within words: 2) phonemic
rules- for variations of pronunciation when words are spoken together, and: 3) prosodic rules
for- fluctuation in stress and intonation across a sentence. In an NLP system that accepts
spoken input, the sounds waves are analyzed and encoded into a digitized signal for

7

interpretation by various rules or by comparison to the particular language model being

utilized.

Morphological analysis: This level deals with the componential nature of words, which are
composed of morphemes- the smallest unit of semantic meaning. For example, the word
preregistration can be morphologically analyzed into three separate morphemes: the prefix
pre, the root ‘registra’, and the suffix ‘tion’. Since the meaning of each morpheme remains
the same across words, humans can break down an unknown word into its constituent
morphemes in order to understand its meaning. Similarly, an NLP system can recognize the

meaning conveyed by each morpheme in order to gain and represent meaning.

Lexical Analysis: At this level, humans, as well as NLP systems, interpret the meaning of
individual words. Several types of processing techniques contribute to word-level
understanding— the first of these being assignment of a single part-of-speech tag to each
word. In this processing, words that can function as more than one part-of-speech are
assigned the most probable part-of-speech tag based on the context in which they occur. The
lexical level [21] may require a lexicon, and the particular approach taken by an NLP system
will determine whether a lexicon will be utilized, as well as the nature and extent of

information that is encoded in the lexicon.

Syntactic Analysis: Syntactic analysis [21] must receive the results of morphological
analysis to build a structural description of the sentence. The goal of this process, called
parsing, is to convert the flat list of words that forms the sentence into a structure that defines
the units that are represented by that flat list. The important thing here is that a flat sentence
has been converted into a hierarchical structure and that the structures correspond to
meaningful units when semantic analysis is performed. The process involves the phrase

structure rules and derivation.

Semantic Analysis: It derives an absolute meaning from lexicon; it determines the possible
meaning of a sentence in a context. The structures created by the syntactic analyzer are
assigned meaning. Thus, a mapping is made between individual words into appropriate
objects in the knowledge base or data base. It must create the correct structures to correspond
to the way the meaning of the individual words combine with each other. The structures for

which no such mapping is possible are rejected [21]. The sentence can be interpreted

semantically taking the semantic inputs from the terminal leaves and composing them in
upward fashion till the topmost node. And, finally the semantics of the whole sentence is
interpreted. However, example like colorless green ideas... in English would be rejected
semantically using some other semantic restrictions.

Pragmatic Analysis: It derives knowledge from external commonsense information; it
means understanding the purposeful use of language in situations, particularly those aspects
of language which require world knowledge [21]. Example: If someone says the door is open
then it is necessary to know which door (world's knowledge) the word door refers to. So, one
needs to know the intention of the speaker that the speaker could mean 'to close the door'. It
could be a pure statement of fact, could be an explanation of how the cat got in, or could be a
request to the person addressed to close the door.

Discourse Integration: The meaning of an individual sentence may depend on the sentences
that precede it and may influence the meaning of the sentences that follow it [21]. Example:

the word “it” in the sentence, “you wanted it” depends on the previous discourse context.

2.1.2 Major Applications of Natural Language Processing
NLP is having a very important place in our day- to-day life due to its large natural language
applications. By means of these NLP applications the user can interact with computers in
their own mother tongue by means of keyword and a screen. The few NLP processes are:

e Part of speech tagging

¢ Information retrieval

® Machine translation

e Named entity recognition

¢ (Question answering

e Spoken dialogue system

e Text simplification

e Speech recognition

e Natural language generation etc.

2.1.3 Computational Linguists
Computational linguists are the study of language (i.e. statistical and/or rule-based modeling

of natural language) from a computational perspective. Traditionally, computational

9

linguistic was usually performed by computer scientists who had specialized in the
application of computers to the processing of natural language. Computational linguistic
often work as members of interdisciplinary teams, including linguists (specifically trained in
linguistics), language experts (person with some level of ability in the language relevant to a
given project), and computer scientists. In general, computational linguistics draws upon the
involvement of linguists, computer scientists, and experts in the artificial intelligence,
mathematicians, logicians, cognitive scientists, cognitive psychologists, psycholinguists,
anthropologists and neuroscientists, amongst others. Some of the areas of research that are
studied by computational linguistics include:

e Computational complexity of a natural language, largely modeled on automata theory,

with the applications of context-sensitive grammar.

® Machine translation.

e Design of taggers like POS-taggers.

e Computer-aided corpus linguistics.

e Design of parsers or chunkers for natural languages.

e Computational semantics comprises defining suitable logics for linguistic meaning

representation, automatically constructing them and reasoning with them.

2.1.4 Machine learning

It is the recent field of AI which aim to make a machine able to learn as human learns the
things. Marvin Minsky (1986) defined learning as “it is making useful change in the working
of our mind”. Machine learning exists in various forms: supervised learning, unsupervised
learning, semi supervised or minimally supervised learning, reinforcement learning etc, in its
basic form, machine learn the knowledge from some sources and then generalize that

knowledge for other instances.

2.1.4.1 Supervised learning

Supervised learning is a technique in which the algorithm uses predictor and target attribute
value pairs to learn the predictor and target value relation. Support vector machine is a
supervised learning technique for creating a decision function with a training dataset. The
training data consist of pairs of predictor and target values. Each predictor value is tagged

with a target value. If the algorithm can predict a categorical value for a target attribute, it is

10

called a classification function. Class is an example of a categorical variable. Positive and
negative can be two values of the categorical variable class. Categorical values do not have
partial ordering. If the algorithm can predict a numerical value then it is called regression.

Numerical values have partial ordering.

2.1.4.2 Unsupervised learning

Unsupervised learning is a technique in which the algorithm uses only the predictor attribute
values. There are no target attribute values and the learning task is to gain some
understanding of relevant structure patterns in the data. Each row in a data set represents a
point in n-dimensional space and unsupervised learning algorithms investigate the
relationship between these various points in n-dimensional space. Examples of unsupervised

learning are clustering, density estimation and feature extraction.

2.1.4.3 Semi supervised or minimally supervised learning

Semi-supervised learning is a class of machine learning techniques that make use of both
labeled and unlabeled data for training - typically a small amount of labeled data with a large
amount of unlabeled data. Semi-supervised learning falls between unsupervised learning
(without any labeled training data) and supervised learning (with completely labeled training
data). Many machine-learning researchers have found that unlabeled data, when used in
conjunction with a small amount of labeled data, can produce considerable improvement in
learning accuracy. The acquisition of labeled data for a learning problem often requires a
skilled human agent (e.g. to transcribe an audio segment) or a physical experiment (e.g.
determining the 3D structure of a protein or determining whether there is oil at a particular
location). The cost associated with the labeling process thus may render a fully labeled
training set infeasible, whereas acquisition of unlabeled data is relatively inexpensive. In such
situations, semi-supervised learning can be of great practical value. Semi-supervised learning

is also of theoretical interest in machine learning and as a model for human learning.

2.1.4.4 Reinforcement learning

Reinforcement learning is an area of machine learning in computer Science, concerned with
how an agent ought to take actions in an environment so as to maximize some notion of
cumulative reward. The problem, due to its generality, is studied in many other disciplines,

such as game theory, control theory, operation research, information theory, simulation based
11

learning, statistics, and genetic algorithms. In the operations research and control literature
the field where reinforcement learning methods are studied is called approximate dynamic
programming. The problem has been studied in the theory of optimal control, though most
studies there are concerned with existence of optimal solutions and their characterization, and
not with the learning or approximation aspects. In economics and game theory, reinforcement

learning may be used to explain how equilibrium may arise under bounded rationality.

2.1.4.5 Classification

Given the example data {(xj,yi), i=1,...... ,h}, where the x; is the input vector and the yj is its
associated label or class. Then the classification task is to learn the discriminative function
y=£(x),

which correctly classify the example data and optimized so that it will make minimal error on
the classification of unseen data.

If the label ‘y’ is not discrete as above, then this task is called regression. Based on these
examples (x;,y;), one is particularly interested to predict the answer for other cases before
they are explicitly observed. Hence, learning is not only a question of remembering but also

of generalization to unseen cases.

2.1.5 Support Vector Machine

SVM, first introduced by Vapnik [20], and is relatively new machine learning approaches for
solving two-class pattern recognition problems. SVMs are well-known for their good
generalization performance, and have been applied to many pattern recognition problems. In
the field of natural language processing, SVMs are applied to text categorization, and are
reported to have achieved high accuracy without falling into over fitting even though with a
large number of words taken as the features [19]. Suppose, we have a set of training data for a
two-class problem: { (X1,¥1),..-...... ,(XN, YN)} ,where xiERD is a feature vector of the i
sample in the training data and y €{+1 ,- 1 } is the class to which x belongs. In their basic
form, a SVM learns a linear hyperplane that separates the set of positive examples from the
set of negative examples with maximal margin (the margin is defined as the distance of the
hyperplane to the nearest of the positive and negative examples). In basic SVMs framework,
we try to separate the positive and negative examples by hyperplane written as: (w .x)+b =0

w ER" beR.
12

SVMs find the optimal hyperplane which separates the training data into two classes
precisely. The linear separator is defined by two elements: a weight vector w (with one
component for each feature), and a bias b which stands for the distance of the hyperplane to

the origin. The classification rule of a SVM is,
sign(f(x,w, b)) 2.1
fe,w,b)=<w.x > +b 2.2

Where, x is the example to be classified.

\ t. HI. xjwx-b=1}

N hY
5 e
a I\!\{ /
I'\.Sv" A

8 |

b/

Optimal Separating Plane Margin

Figure 2.1: Two class SVM with support vectors and supporting hyperplane [20].

If data are linearly separable then there exist a d-dimensional vector w and a scalar b such
that
wxi—b=>1lify, =1 2.3

And
wx,—b<-1lify,=-1 24

In compact form we may combine these two equations in

13

yiw.x; —b) =1 2.5

Or —yiw.x;—b)—1<0 2.6

Here (w, b) define the hyper plane that separates data in two class. The equation of the
hyperplane is
w.x—b=0 2.7

Where w is normal to the plane, b is the minimum distance from the origin to the plane. In

order to make each decision surface (w, b) unique, we normalize the perpendicular distance
from the origin to the separating hyperplane by dividing it by Iwl giving the distance asl—‘l;l.
As depicted in Figure 2.1, the perpendicular distance from the origin to hyperplane H1:

W.xi—bzlis% 2.8

And the perpendicular distance from the origin to hyperplane H2:

|b — 1] 2.9
|w|

w.x;—b=-1is

The support vectors are defined as the training points on H1 and H2. Removing any points

not on those two planes would not change the classification result, but removing the support
vectors will do so. The margin, the distance between the two hyperplane H1 and H2 isﬁ. The

margin determines the capacity of the learning machine which in turn determines the bound

of the actual risk the expected test error. The wider the margin the smaller is 4, the VC-
2

dimension of the classifier. Therefore our goal is to maximize margin i

or equivalently

S lw|?
minimize theT.

Therefore the optimization problem can be formulated as follows

14

wi?

Minimize f= 5 2.10

Subject to constraints y;(w.x; —b) =1 2.11

This problem can be solved by using standard Quadratic programming technique [20].

The above SVM formulations require linear separation. The real life application data are not
always linearly separable. To deal with nonlinear separation, the same formulation and
techniques as for the linear case are still used. We only transform the input data into another
space (usually of a much higher dimension) so that, a linear decision boundary can separate
positive and negative examples in the transformed space (feature space) and the original data

space is called the input space [20].

2.1.5.1 Multi Class SVM

The SVM described in the section 2.1.5 is used for binary classification and which classify
data in binary class. But in this work there are five classes, so multiclass SVM is used
[14][20]. Since SVM are binary classifier so binarization of problem must be performed
before apply them to NER. A SVM is trained for each NE tag in order to distinguish this

class and the rest.

2.1.5.2 Kernel Trick: Dual Problem

To deal with nonlinear separation, the same formulation and technique as for the linear case
are still used. We only transform the input data into another space (usually of a much higher
dimension) so that a linear decision boundary can separate positive and negative examples in
the transformed space. The transformed space is called the feature space. The original data
space is called the input space [20].

The basic idea is to map the data in the input space X into feature space F via a nonlinear

mapplng “®”’
@:X->F

x-> B(x)

After mapping the original data set {(xy, y1), (X2, ¥2),--e--... , (Xr, Yr)} becomes:
{(@ (X1)7 YI), (Q (XZ)’ YZ), """"" s (Q (Xl')7 yl')}

15

Then perform linear separation in this feature space. Geometrically it can be shown as in fig

2.2.

] ? (o)

v

@ (x)
Figure 2.2 Feature Mapping [20]

The potential problem with this explicit data transform and then applying the linear SVM is

that it may suffer from the curse of dimensionality [20].

2.1.5.3 Kernel Trick: Inner Product summarization

An inner product represents the dot product of the data vectors used. The dot product of
nonlinearly mapped data can be expensive. The kernel trick just picks a suitable function that
corresponds to dot product of some nonlinear mapping instead [15][20]. Some of the most
commonly chosen kernel functions are linear kernel function, polynomial kernel function,
sigmoid kernel function [20]. A particular kernel is only chosen by trial and error on the test
set, choosing the right kernel based on the problem or application would enhance SVM’s
performance. In SVM, the kernel function is represented by K,

K(x,2)= < O(x). @(z)>.

2.1.5.4 Kernel Functions

The idea of the kernel function is to enable operations to be performed in the input space
rather than the potentially high dimensional feature space. Hence the inner product does not
need to be evaluated in the feature space. We want the function to perform mapping of the
attributes of the input space to the feature space. The kernel function plays a critical role in
SVM and its performance. It is based upon reproducing Kernel Hilbert Spaces [21] [22] [23]
[24].

K(x,x") =< @(x),0(x") > 2.12

16

If K is a symmetric positive definite function, which satisfies Mercer’s Conditions [20],

K@, x") =Y5 an®m (@) a,,(x"), a, =0, 2.13

I K(xx)g@0)g(x)dxdx > 0,9 € L, 2.14
Then the kernel represents a legitimate inner product in feature space. The training set is not
linearly separable in an input space. The training set is linearly separable in the feature space.

This is called the “Kernel trick” [16] [20].

2.1.5.5 SVM for Classification

SVM is a useful technique for data classification. Even though it’s considered that Neural
Networks are easier to use than this, however, sometimes unsatisfactory results are obtained.
A classification task usually involves with training and testing data which consist of some
data instances [25]. Each instance in the training set contains one target values and several
attributes. The goal of SVM is to produce a model which predicts target value of data

instances in the testing set which are given only the attributes [20].

Classification in SVM is an example of Supervised Learning. Known labels help indicate
whether the system is performing in a right way or not. This information points to a desired
response, validating the accuracy of the system, or be used to help the system learn to act
correctly. A step in SVM classification involves identification as which are intimately
connected to the known classes. This is called feature selection or feature extraction. Feature
selection and SVM classification together have a use even when prediction of unknown
samples is not necessary. They can be used to identify key sets which are involved in

whatever processes distinguish the classes [26].

2.1.6 Optimization

Many situations arise in machine learning where we would like to optimize the value of some
function. It turns out that in the general case, finding the global optimum of a function can be
a very difficult task. However, for a special case of optimization problems, known as convex
optimization problems [27], we can efficiently find the global solution in many cases. Here
efficiently has a both practical and theoretical connotation: it means that we can solve many
real world problems in a reasonable amount of time, and it means that theoretically we can

solve problems in time that depends only polynomial on the problem size.

17

A convex optimization problem is an optimization problem of the form
Minimize f(x)
Subject to xeC

Where f is a convex problem, C is a convex set.

2.1.7 Evaluating Named Entity Recognition

In this work the following measures are used to evaluate the accuracy of the method or
model. The measures taken are: precision (P), recall (R) and F-score (F) [18].
Precision: The number of correctly retrieved NEs by the system divided by the number NEs

retrieved by the system. Mathematically,

NEs correctly retrieved by the system

P= 2.15

NEs retrieved by the system
Recall: The number of NEs correctly retrieved by the system divided by the number of NEs

present in the test set. Mathematically,

NEs correctly retrieved by the system
R= 4 YoR2 2y 2.16

NEs present in the test set

F-Score: Harmonic mean of precision and recall. Mathematically,

F = 2ER) 2.17
P+R

2.1.8 Methods of NE identification

A number of cues are used to identify named entities. The authors of [26] introduced the
concepts of internal evidence (e.g. Ltd. within ORG entities) and external or contextual
evidence (e.g. CEO or Dr. before PER entities) by which many may be recognized. Most
early systems consisted primarily of manually-built lists of such cues.

The primary alternative approach uses statistical machine learning (ML) in which a system
learns patterns from an annotated training corpus, allowing it to predict the most likely NE in
a given context. Assuming the availability of appropriate training texts, a single machine-
learning system may easily be applied to varying languages, domains or classification
schemes.

Two of the top four entrants in MUC-7 used machine learning approaches: Among the early

adopters of a ML approach [12] used a series of class-specific Hidden Markov Model

18

(HMM) in their commercially-successful IdentiFinder to build a model of the language
associated with each entity type. Since HMMs rely on having previously seen patterns, their
approach uses a number of back-off strategies.

Maximum entropy modeling, as used by [10][17], allowed for many features to be
incorporated without a back-off scheme, and their best results were achieved by using the
output of multiple high-performance rule-based systems in addition to linguistic features. The
machine learning focus of the CONLL-2002 [28] evaluation encouraged various statistical
techniques, and allowed for cross-linguistic application and evaluation that was not as

feasible with manual rule construction [29].

Models included Support Vector Machines (SVM), AdaBoost, transformation-based learning
and maximum entropy modeling. The top system at CONLL-2003 [30] combined the
classification decisions of a number of machine learners [30]. In addition to the applicability
to new languages and domains, [9][10] emphasizes the fact that statistical systems are able to
take advantage of a diverse range of knowledge sources in predicting NE annotations, and are
not as subject to the human bias present in manual rule construction. One result of the
CONLL-2002 shared task was the realization that while choosing an appropriate machine
learning technique affected performance, “the choice of features is at least as important. Their
[30] overview of entrants in the CONLL-2003 evaluation compares the types of features used

in each competing system.

2.2 Problem Definition

The Named Entity Recognition is the problem which asks for the classification of each word
of a document into predefined target Named Entity classes. In this work, problem of Nepali
named entity recognition is addressed. The recognition task is carried out with supervised
machine learning using Support Vector machine (SVM) [31]. Feature selection plays a
crucial role in the SVM framework. Experiments should be carried out in order to find out the
most suitable feature for NER in Nepali.

Given a set of classes, all strings that are labels of instances of these classes within a text

fragment are found. For example,

TH Q@ =AY | TH <PER> QIERT <LOC>I—AI<O>

19

When a word is assigned the tag “O”, it does not a named entity word. For example, in the

case of IH <PER> GIERT <LOC>3'I'23|T<O>, the word 3T is not named entity.

The main feature for the NER task should be identifying based on the different possible
combination of available word and tag set. The sub problems in the domain of Nepali Named
Entity Recognition such as, feature selection, word suffix, word prefix, context word feature,
digit features Gazetteer lists etc. have huge impact on named entity recognition procedure.
These sub problems are also addressed with the most suitable solutions in the literature for
this type research work. In general, even though there has been lots of researches done in
named entity recognition in other languages, but still there is no such work done for Nepali

language.

20

CHAPTER 3
LITERATURE REVIEW

3.1 Existing Corpus Review

A corpus is a valuable resource in Natural Language Processing. The existence of corpus in
correct form makes the NLP a more fruitful process. The most well known corpora for
English are probably the Brown Corpus and the Penn Treebank corpus. The Brown
University Standard Corpus of Present-Day American English (or just Brown Corpus) was
compiled in the 1960s by Henry Kuceraand W. Nelson Francis at Brown University,
Providence, Rhode Island as a general corpus (text collection) in the field of corpus
linguistics. It contains 500 samples of English-language text, totaling roughly one million
words, compiled from works published in the United States in 1961. Now — a - days corpora
tend to be much larger, and are compiled mainly through projects and initiatives such as the
Language Data Consortium (LDC), the Consortium for Lexical Research (RLC) etc. The
purpose of these associations is to provide language-related education, research and
technology development by creating and sharing linguistic resources: data, tools and
standards. Until few years ago, the existing corpora were all of the English Language.
Nevertheless, the success and applicability of corpus in Linguistics as well as in NLP, has
raised a wide interest and caused its quick extension to other languages. The following are the

some example of available Named Entity tagged corpora:

3.1.1 CoNLL-2002 and CoNLL-2003 (British newswire)

The shared task of CoNLL-2003' concerns language independent named entity recognition.
The author of [27] used concentrate on four types of named entities: persons, locations,
organizations and names of miscellaneous entities that do not belong to the previous three
groups. The shared task of CONLL-2002> dealt with named entity recognition for Spanish and
Dutch [30]. The participants of the 2003 shared task have been offered training and test data
for two other European languages: English and German. They have used the data for
developing a named entity re cognition system that includes a machine learning component.

The shared task organizers were especially interested in approaches that made use of

! http://cnts.uia.ac.be/conl12003/ner/

*http://cnts.uia.ac.be/conll2002/ner/

21

resources other than the supplied training data, for example gazetteers and unannotated data.
It support the multiple language like Spanish, Dutch, English, German and it contains four

NE tags as Person, Location, Organization, Misc.

3.1.2 MUC-6 and MUC-7 (American newswire)

MUC-6° , the sixth in a series of Message Understanding Conferences, was held in November
1995. This conference, like the previous five MUCs, was organized by Beth Sundheim of the
Naval Research and Development group (NRaD) of NCCOSC (previously NOSC). These
conferences, which have involved the evaluation of information extraction systems applied to
a common task, have been funded by ARPA to measure and foster progress in information

extraction.

Prior MUCs had focused on a single task of "information extraction": analyzing free text,
identifying events of a specified type, and filling a data base template with information about
each such event. Over the course of the five MUCs, the tasks and templates had become
increasingly complicated. A meeting in December 1993, following MUC-5, and chaired by
Ralph Grishman, defined a broader set of objectives for the forthcoming MUCs: to push
information extraction systems towards greater portability to new domains, and to encourage
more basic work on natural language analysis by providing evaluations of some basic

language analysis technologies.
NYU and NRaD worked together to develop specifications for a set of four evaluation tasks:

¢ named entity recognition
e conference
¢ template elements

e scenario templates (traditional information extraction)

These tasks were refined in 1994 and early 1995 through a process of corpus annotation and
extensive e-mail discussion by the MUC-6 Planning/Annotation Committee. This was

followed by an anonymous "dry run" evaluation, which was held in April 1995.

3 http://www.cs.nyu.edu/cs/faculty/grishman/muc6.html

22

The formal MUC-6 evaluation was held in September 1995, and the MUC-6 Conference was
held in Columbia, Maryland in November 1995. A proceeding of this conference, including
descriptions of the systems from all the participants, is being assembled and will be
distributed by Morgan Kaufmann.

The Named Entity task for MUC-6 involved the recognition of entity names (for people and
organizations), place names, temporal expressions, and certain types of numerical
expressions. This task is intended to be of direct practical value (in annotating text so that it
can be searched for names, places, dates, etc.) and an essential component of many language

processing tasks, such as information extraction.

It support the language English and it contains Seven Named Entity (NE) tags as Person,

Location, Organization, Time, Date, Percent, Money.

3.1.3 Automatic Content Extraction (ACE)

It contains Five Named Entity (NE) tags as Location, Organization, Person, FAC, GPE (Geo
Political Entity). The corpus consists of data of various types annotated for entities, relations
and events was created by Linguistic Data Consortium with support from the ACE* Program,
with additional assistance from LDC. This data was previously distributed as an e-corpus
(LDC2005E18) to participants in the 2005 ACE evaluation.

The objective of the ACE program is to develop automatic content extraction technology to
support automatic processing of human language in text form.

In November 2005, sites were evaluated on system performance in five primary areas: the
recognition of entities, values, temporal expressions, relations, and events. Entity, relation
and event mention detection were also offered as diagnostic tasks. All tasks with the
exception of event tasks were performed for three languages, English, Chinese and Arabic.
Events tasks were evaluated in English and Chinese only. The current publication comprises

the official training data for these evaluation tasks.

3.1.4 BBN (Penn Treebank)
The Penn Treebank, a corpus [32] consisting of over 4.5 million words of American English.

During the first three year phase of the Penn Treebank project (1989-1992), this corpus has

4 http://www.ldc.upenn.edu/Projects/ACE/

23

been annotated for part-of-speech (POS) information. In addition, over half of it has been
annotated for skeletal syntactic structure

It contains Twenty two Named Entity (NE) tags as Animal, Cardinal, Date, and Diseases etc.

3.2 A Review of NER Approaches

Considerable amount of work has already been done in the field of NER for English and
other language like German, Spanish, Chinese, and Bengali etc. But there is no any work for
Nepali language has been done yet. Different approaches like the rule based approach, the
stochastic approach and the transformation based learning approach along with modification
have been tried and implemented. However, if we look at the same scenario for South-Asian
language such as Bangla, Hindi, and Nepali, we find out that not much work has been done in
the area of NER

Early work in NER systems in the 1990s was aimed primarily at extraction from journalistic
articles. Attention then turned to processing of military dispatches and reports. Later stages of
the automatic content extraction (ACE) evaluation also included several types of informal
text styles, such as weblogs and text transcripts from conversational telephone speech
conversations. Since about 1998, there has been a great deal of interest in entity identification
in the molecular biology, bioinformatics and medical natural language processing
communities. The most common entity of interest in that domain has been names of genes

and gene products.

3.2.1 Conditional Random Fields based Named Entity Recognition

The author of [13][15] had shown that Conditional Random Fields (CRFs) are undirected
graphical models used to calculate the conditional probability of values on designated output
nodes given values assigned to other designated input nodes. A conditional random field
(CRF) is a type of discriminative probabilistic model used for the labeling sequential data
such as natural language text. Conditionally trained CRFs can easily include large number of
arbitrary non independent features. The expressive power of models increased by adding new
features that are conjunctions to the original features. When applying CRFs to the named
entity recognition problem an observation sequence is the token sequence of a sentence or
document of text and state sequence is its corresponding label sequence. In the special case in
which the output nodes of the graphical model are linked by edges in a linear chain, CRFs
make first order Markov assumption and can be viewed as conditionally trained probabilistic

finite automata (FSMs)
24

The conditional probability of a state sequence

S=<s1,82,........ ,ST>given an observation sequence O=<01,0;......... ,or> is calculated as:
1
PA(S/0) = Zo €XP 2i=1 2k Mef (S1-1, 51,0, 1) 3.1
Where
fk(Sl—llle 0, t) 32

is a feature function whose weight A, is to be learned via learning. CRFs define the

conditional

probability of a label sequence based on total probability over the state sequences,

P(1/0) = Zs:l(s)=1 P(S/0) 3.3

where I(s) is the sequence of labels corresponding to the labels of the states in sequences z, is
a normalization factor over all state sequences.

To make all conditional probabilities sum up to 1, we must calculate the normalization factor

Zo = Ysexp X1 Dk Afi(S1-1,5, 0, 1) 3.4

The feature functions could ask arbitrary questions about two consecutive states, any part of
the observation sequence and the current position. For example a feature function may be
defined to have a value 0 in most cases and have value 1 when s, s; are certain states and the
observation has certain properties.

According to the author of [4] the Recall, Precision and F-Score of CRF based NER is
80.02%, 80.21%, 80.15%, while in case of SVM based NER it is found to be 81.57%,
79.09%, 80.29%,respectively which shows that SVM is better than that of the CRF in the

case of Bengali Language.

3.2.2 Maximum Entropy based Named Entity Recognition

The author of [26] had shown that the maximum entropy [ME] [15], framework estimates
probabilities based on the principle of making as few assumptions as possible, other than the
constraints imposed. Such constraints are derived from training data, expressing some

relationship between features and outcome. The probability distribution that satisfies the

25

above property is the one with the highest entropy. It is unique, agrees with the maximum-

likelihood distribution, and has the exponential form
1 k
fj(h.o)
=2«
p(olh) Zy) 1%
]:

Where © refers to the outcome, h the history (or context), and Z(h) is a normalization

3.5

function. In addition, each feature function fj (h, o) is a binary function.

It solves the problem of multiple feature representation and long term dependency issue faced
by HMM. It has generally increased recall and greater precision than HMM [33]. It has Label
Bias Problem [33]. The probability transition leaving any given state must sum to one. So it is
biased towards states with lower outgoing transitions. The state with single outgoing state
transition will ignore all observations. To handle Label Bias Problem we can change the
state-transition.

According to the author of [4] the Recall, Precision and F-Score of ME based NER is
78.64%, 76.89%, 77.75%, while in case of SVM based NER it is found to be 81.57%,
79.09%, 80.29%,respectively which shows that SVM is better than that of the ME based
NER for Bengali Language.

3.2.3 Hidden Markov Model Named Entity Recognition

The author of [12] had shown that Name recognition may be viewed as a classification
problem, where every word is either part of some name or not part of any name. In recent
years, hidden Markov models (HMM’s) have enjoyed great success in other textual
classification problems most notably part-of-speech tagging [11]. Given this success, and
given the locality of phenomena which indicate names in text, such as titles like “Mr.”
preceding a person name, they [11] have chosen to develop a variant of an HMM for the
name recognition task. By definition of the task, only a single label can be assigned to a
word in context. Therefore, [12] model will assign to every word either one of the desired
classes or the label NOT-A-NAME to represent “none of the desired classes”.

It is advantageous as its basic theory is elegant and easy to understand. Hence it is easier to
implement and analyze [33]. It uses only positive data, so they can be easily scaled. The
main disadvantage of this method is in order to define joint probability over observation and
label sequence HMM needs to enumerate all possible observation sequence. Hence it makes

various assumptions about data like Markovian assumption i.e. current label depends only on

26

the previous label. Also it is not practical to represent multiple overlapping features and long
term dependencies. Number of parameter to be evaluated is huge. So it needs a large data set

for training.

3.2.4 Decision Tree based Named Entity Recognition

Decision tree is a classification approaches which construct the tree in top down manner
using the attribute the data satisfies.

The decision tree [34] uses part of speech, character type, and special dictionary information
to determine the probability that a particular type of name opens or closes at a given position
in the text. The output is generated from the consistent sequence of name opens and name
closes with the highest probability. This system does not require any human adjustment.
Experiment indicate good accuracy with a small amount of training data, and demonstrate the

systems portability.

Using the training, a decision tree is built. It learns about the opening and closing of named
entities based on the three kinds of information of the previous, current and following tokens.
The three types of information are the part- of- speech, character type and special dictionary
information which contain the list of entities created based on JUMAN [16] dictionary

entries.

3.2.5 Support Vector Machine based Named Entity Recognition

In support vector machine [19] method, data consisting of two categories is classified by
dividing space with a hyperplane. It is shown that when the margin between example that
belong to one category and example that belong to other category in the training data is
larger, the probability of incorrectly choosing categories in test data is small. Hence the
maximizing the margin becomes the optimization problem. The SVM [19] is basically binary
classifier but it can be extended to multiclass classification using one of the methods: one

versus rest, pair wise.

Support Vector Machines (SVMs) based NER system [23] was proposed by Yamada et al.
[22] for Japanese. His system is an extension of Kudo’s chunking system [31] that gave the
best performance at CoNLL-2000 shared tasks. The other SVM-based NER systems can be
found in [2][18].

27

3.3 Knowledge sources for NER

Named Entity Recognition systems are only as reliable as their training sources. Rule-based,
statistical and unsupervised systems alike may make use of lists of names categorized into
entity types, often referred to as gazetteerss. Gazetteer-based approaches require additional
methods to resolve ambiguity and unknown names. Machine learning approaches to NER are
able to take advantage of learned patterns, and such knowledge is contingent on the
availability of training data. This suggests that additional sources of annotated training data

are able to benefit statistical NER.

3.3.1 Gazetteers

It has often been assumed that reasonable NER performance can be achieved merely by list-
lookup for familiar names [29]. With the assumption that larger categorized lists of names
may improve system recall, a number of approaches have been implemented to automatically
acquire such lists from the web often using context patterns and bootstrapping [29] or from
Wikipedia [7] bring extensive arguments against the assumption that larger gazetteers aid
NER:

¢ such lists need to be enormous and cover naming variations;

e There is ambiguity with common nouns and between entities [29] report a perfect-

recall list lookup approach.

e Linguistic data sparseness means no list can approach completeness.

NER system [35] was tested without a gazetteer and gave only small increases in error for
ORG and PER classes, but significant performance losses (from 6 to 48% error) for LOC,
which were largely alleviated with a short list of common locations. This particular
dependence on geographic gazetteers seems to be system-specific, though: their
implementation relies initially on lists of cues (e.g. Mrs., Ltd., Inc.) that are less available for
location identification. Machine learning techniques have been able to produce high accuracy
for LOC without gazetteer information, and some authors choose to use only personal name
gazetteers. The authors of [29] confirm that gazetteer size is not key, and that lists extracted
from the web are most effective when filtered. Evaluations from CONLL-2003 nonetheless

reported up to 22% error reduction for the English corpus and 15% for German when

> Historically the term gazetteer has referred to exhaustive lists of geographic names with associated
information; here the term is applied more generally to extensive lists of names of any class.

28

gazetteer data was incorporated although one of the best performers in both languages used
none at all . It seems that selectivity in the use of lists can provide greater performance value
than large gazetteers.

In a novel extension to the use of lists [29] note that for statistical systems, gazetteers do not
need to group entities into the target entity classes. Any knowledge source which can be used
to attach the same label to semantically similar entities may be added as a feature for machine
learning. They improved NER performance by 1.6% F-score with a feature based on a cluster
labels for entities. While this approach may have advantages over traditional list methods in

resolving ambiguity, it is still only able to provide an advantage for known entities.

3.3.1 Training Corpora

Data-driven statistical approaches are popular in contemporary computational linguistics,
although the time and monetary costs of manually producing training corpora are prohibitive
[29]. For NER training, the only data widely available are corpora used in conference
evaluations of named entity technology (MUC, IEER, ACE and CONLL), or for specific
domains such as biomedicine, and many require purchase, relying on copyrighted materials.
While these are useful for evaluating and comparing NER systems, they are not necessarily
sufficient training data to produce systems capable of high-accuracy real-world NER. For
instance, the top-performing system in CONLL-2003 made auxiliary use of two classifiers
trained on a private data collection. Training corpora provide patterns and context that NER
systems can learn, unlike gazetteers which although easily generated do not provide sufficient
information for machine learners. Hence it is appealing to find low-cost ways to generate new

corpora.

One approach involves extracting sentences from the web [29] used a simple approach of
searching the web for a given unambiguous named entity (in Korean), extracting sentences
that contain it, and tagging the known entity for use in a training corpus. This is limited in
that it does not provide any evidence for disambiguation, and cannot produce annotated
sentences that contain multiple entities (unless all are known). It also loses the applicability
of features related to long-distance dependencies that some have found advantageous for
NER but unlike the use of lists alone may help identify sentence-internal patterns for NE

recognition while simply discarding more difficult sentences. The initial corpus produced by

29

[29] was much larger than available Korean annotated corpora, and produced marginally

improved results in an NER task.

30

CHAPTER 4
METHODOLOGY

The implementation model for NER is given in Figure 4.1. This describes top level data
flow diagram of NER problem, used in this work. The proposed system framework
consist preprocessing, feature extraction, training and learning the data for support vector

machine algorithm.

Preprocessing engine has Nepali corpus as input. After preprocessing, only important data is
stored and feature vectors are extracted from the preprocessed data. Training corpus is the

most powerful and is the heart of Named Entity Recognition.

31

4.1 Implementation Model for Nepali NER
(Start)
A 4

Raw Data

A 4

Data Preparation
(NE tagged Corpus)

Feature extraction from the Data
Set

Testing Data

(Feature vector Creation)

<&
<

\ 4

Feature Vector

\ 4

Machine Learning
(Support Vector Machine)

A 4

Classification of Data
(Support Vector Machine)

A 4

Evaluation of Data

\ 4

(Stop)

Figure 4.1 Implementation Model for Nepali NER

32

4.2 Preprocessing

Using a supervised machine learning technique relies on the existence of annotated training
data. Such data is usually created manually by humans or experts in the relevant field. The
training data needs to be put in a format that is suitable to the solution of choice. New data to
be classified also requires the same formatting. Depending on the needs of the solution, the
textual data will be tokenized, normalized, scaled, and mapped to numeric classes, prior to
being fed to a feature extraction module. To reduce the training time with large training data,
some techniques such as chunking or instance pruning (filtering) may need to be applied.
There is no NE tagged Nepali corpus, so corpus for training was tagged manually for this

thesis.

4.3 Feature Extraction

In this phase, training and new data is processed order to extract the descriptive information
about it. Feature selection plays a crucial role in the Support Vector Machine (SVM)
framework [18]. Experiments have been carried out in order to find out the most suitable
features for NER in Nepali languages. The main features for the NER task have been
identified based on the different possible combination of available word and tag context.
Relevant features for NER are extracted. The features used in this work are taken from [18].
Following are the details of the set of features that will be apply to the NER task:

1. First word: This is used to check whether the current token is the first word of the
sentence or not. Though Nepali is relatively free order languages, the first word of
the sentence is most likely a NE as it appears in the subject position most of the
time.

2. Word length: This binary valued feature is used to check whether the length of the
current word is less than two or not. This is based on the observation that the very
short words are rarely NEs.

3. Digit features: Several binary valued digit features have been defined depending
upon the presence and/or the number of digits in a token (e.g., ContainsDigit
[token contains digits], FourDigit [token consists of four digits], TwoDigit [token
consists of two digits]), combination of digits and punctuation symbols (e.g.,
ContainsDigitAndComma [token consists of digits and comma], combination of

digits and symbols (e.g., ContainsDigitAndSlash [token consists of digit and

33

slash], ContainsDigitAndHyphen [token consists of digits and hyphen],
ContainsDigitAndPercentage [token consists of digits and percentages]). These
binary valued features are helpful in recognizing miscellaneous NEs, such as time
expressions (Age, Date, Year), measurement expressions (Weight, Height etc) and

numerical numbers etc.

4. Gazetteer Lists: Various gazetteer lists are used.
i. Person name: This list contains the name of persons. The feature
PersonName is set to +1 for the current word.

ii. Location name: This list contains the location names and the feature
LocationName is set to +1 for the current word.

iii. Organization name: This list contains the organization names and the
feature OrgnizationName is set to +1 for the current word.

iv. Month name: This list contains the name of all twelve different months of
both English and Nepali calendars. The feature MonthName is set to +1
for the current word.

v. Day name: This list contains the name of all seven different days of Nepali

calendars. The feature DayName is set to +1 for the current word.

vi. PersonPrefix: This list contains the person prefix such as 2, AT,

HATT etc.

vii. MiddleName: This list contains nepali middle name such as Sglgl, $AR,
HARY, &Y, TS, TEE ete.

viii. SurName: This list contains nepali sur name such as §H, Yed, S, &g,

EIEIE;I etc.

ix. CommonLocationWord: This list contains common location word such as
3, STel, ASTATIT, 79K etc.
X. Action Verb: A set of action verbs like {I_,'H, A, I, I3, SI13 etc. often

determine the presence of person names. Person names generally appear

before action verbs.

34

xi. Designation Word: This list contains designation word such as Eﬂﬁ"TQIT, I

#Afe7, Teeufa, afde, 3reyey, Agrafad etc.
xii. Organization Suffix Word: This list contains organization suffix word such

as ﬁ-!?l’, EIT%I’, Wqﬁ-f, Hﬁﬁ, Q:i"EI', FRIT etc.

4.4 Problem Setting

Named entity recognition is a multiclass classification problem since in natural language
there are more than two tags. As an instance, for this work, the five tags are used to define to
cover all grammatical categories and in which four tags are NE and fifth tag is used to
represent the word which does not belongs to the named entity i.e. other than NE. In this
work number of tag represents the number of classes. Since SVM are binary classifier so
binarization of problem must be performed before apply them to NE tagging. [20] Has
suggested the one vs. rest binarization of problem i.e. a SVM is trained for each NE tag in
order to distinguish this class and the rest. When tagging the word, the most confident
prediction among the all binary SVM is selected. Hence the support vector machine used in
this dissertation work is in fact the implementation of support vector machine with one verses
rest method is explain in section 4.6.1.

For this work SVM™!™® a]gorithm [14] is used for classification of the given data into their

proper classes. To take the time efficiency into account, the linear kernel type is used.

4.5 Named Entity Tagset for Nepali NER

In this work, the NE tagset used have been further subdivided into the detailed categories in

order to denote the boundaries of NEs properly. Table 4.1 shows examples.

35

NE Tag Meaning NE examples
PER Person name 357 <PER>
STehol2lI<PER>
LOC Location name FEaI<LOC>
)
TeTTTART<LOC>
)
ORG Organization name yaadeaearay
9
<ORG>
MISC Miscellaneous name FME<MISC>
T <MISC>
O Words that are not NE

AT <0>,9 <O>

Table 4.1 Named Entity examples

4.6 Support Vector Machine Algorithm

The optimization problem for SVM in its basic form is

Minimize f = @ 4.1
Subject to constraints y;(w.x; —b) > 1 4.2
The equivalent dual formulation of this problem can be written
Minw,bmax% W12 - %, a;[yj(< xj.w > +b) — 1] 4.3
Subjectto a; =0 4.4
Where o’s are Lagrangian multipliers [20].
With some specification, the equations can be written as
Minw,bmax(% W]z =%, «; [yj(< Xj.w > +b)] +2Xjq; 4.5

Subjectto a; =0

36

Wishing to minimize both w and b while maximizing o’s leaves us to determine the saddle
points. The saddle points [20] correspond to those values where the rate of change equals to
zero. This is done by differentiating the Lagrangian-primal (LP) equation (4.3), with respect

to w and b and setting their derivatives to zero.

SL
SL

Putting the value of (4.7) and (4.9) in above equation (4.3), we have
1
maxa'EZj %yiX; + XLjay;Xj + X 4.10
1
Equal to max,Y.j a; — EZj a;y;X; a;y;X; 4.11

Now the optimization problem becomes

1
manL=2j a]- - Ezi’j (l]y]X] (l]y]X] 4.12
Subjected to };; a;y; = 0 4.13
Where,a. = 0

This is the quadratic optimization problem and can be solved using the decomposition
algorithm as in [14]. Decomposition algorithm breaks the whole optimization problem into

smaller sets and solves each set iteratively.

4.6.1 Multi Class SVM for classification

For classification problems with multiple classes, different approaches are developed in order
to decide whether a given data point belongs to one of the classes or not. The most common
approaches are those that combine several binary classifiers and use a voting technique to
make the final classification decision. These include: One-Against-All [20], One-Against-
One [26], Directed Acyclic Graph (DAG) [26], and Half-against-half method [26]. A more

complex approach is one that attempts to build one Support Vector Machine that separates all

37

classes at the same time. In this section the brief introduction of these multi-class SVM [29]
approaches is given.

The SVM described in section 2.1.5 is used for binary classification and which classify data
in binary class. But in the case of NER there are five classes, so multiclass SVM is used.
Since SVM are binary classifier so binarization of problem must be performed before apply
them to NER. A SVM is trained for each NE tag in order to distinguish this class and the rest.

This can be explained with an example

gR<PER> 34T <ORG>HI<O> N@U< LOC>TEAT<0> TAFAHATKO> FHH<O> TH<O>

PER vs Rest

LOC vs Rest

Class LOC) Class PER

Figure 4.2: One Vs rest classification approaches for NER.

ORG vs Rest

4.6.1.1 One-Against-All Multi-Class SVM

One-Against-All [20] is the earliest and simplest multi-class SVM. For a K-class problem, it
constructs K binary SVMs. The ith SVM is trained with all the samples from the ith class
against all the samples from the other classes. To classify a sample x, x is evaluated by all of
the K SVMs and the label of the class that has the largest value of the decision function is
selected.

For a K-class problem, One-Against-One maximizes K hyperplane separating each class from
all the rest. Since all other classes are considered negative examples during training of each

binary classifier, the hyperplane is optimized for one class only.

4.6.1.2 One-Against-One or Pairwise SVM
One-Against-One [26] constructs one binary machine between pairs of classes. For a K-class
problem, it constructs K(K-1)/2 binary classifiers. To classify a sample x, each of K(K-1)/2

machines evaluate x and casts a vote. Finally, the class with the most votes is chosen. Since
38

One-Against-One separates two classes at a time, the separating hyperplane identified by this

approach are tuned better than those found with One-Against-All.

4.6.1.3 All-Together or All-At-Once SVM

An All-Together [26] multi-classification approach is computationally more expensive yet
usually more accurate than all other multi-classification methods. This approach builds one
SVM that maximizes all separating hyperplane at the same time. Training data representing
all classes is used to generate the trained model. With this approach, there are no
unclassifiable regions as each data point belongs to some class represented in the training
dataset.

The All-together multi-class SVM poses a complex optimization problem as it maximizes all
decision functions at the same time. The training time is very slow which makes the approach

so far unusable for real-world problems with a large data set and/or a high number of classes.

39

CHAPTER 5
IMPLEMENATION

5.1 Overview

Java is a programming language originally developed by James gosling at Sun Microsystems
and released in 1995 as a core component of Sun Microsystems’ Java platform. The language
derives much of its syntax from C and C++, but it has fewer low level facilities than either of
them. Java applications are typically compiled to byte code that can run on any java virtual
machine (JVM) regardless of computer architecture. Java is general purpose, concurrent,
class-based, object-oriented language that is specially designed to have as few
implementation dependencies as possible. Java is one of the most popular languages in use.

Netbeans is an integrated development environment (IDE) for developing primarily with
Java, but also with other languages, in particular PHP, C/C++, and HTMLS. It is also an
application platform framework for Java desktop applications and others. The Netbeans IDE
is written in Java and can run on Windows, Linux and other platforms supporting a
compatible JVM. Netbeans IDE is an Oracle sponsored free and open source Java integrated

development environment.

52 SVM Implementation: SVM™tidass

For this works, the SVM™ % [14] is used. SVM™"““* js an implementation of Support
Vector Machines (SVMs) in C programming language. Main features of this system is that
we can integrate our own custom kernel very easily. Because of steepest feasible descent and
caching of kernel evaluations, SVM™el3ss o real fast. It can easily handle thousands of
support vectors and several hundred-thousands of training examples.

At first, system learns from training file using customized kernel function and creates a
model file. Model file basically learn all the support vectors. This model file is used for
classifying new examples. After testing is complete, it produces a prediction file which

contains the confidence value of each example for that classification.

5.3 Algorithm for Training
INPUT: Formatted train file.
OUTPUT: SVM models learned for all NE tags.

40

Step 1: Read the train file.

Step 2: Construct support vector for each tokens.

Step 3: Do step 2 for all the tokens presented in the train file.
Step 4: Use SVM™ " (6 Jearn the model.

Step 5: Stop.

5.4 Algorithm for Testing

1. Read input text.
2. Construct feature vector for each word.
3. Use Multiclass SVM to classify input text.
4. Stop.
5.5 Dictionary

There is no any NE dictionary for Nepali text is created ever yet so a dictionary is created
manually from the training corpus which is taken different daily newspapers of 2012 as
ekantipurﬁ, nagriknews’ as well as from web as onlinekhabar®, which contains all possible
NEs of each NE class. The dictionary contains the four lists as person list which contains the
person name, location list which contains the location name, organization list which contains

the organization name and miscellaneous list which contains the miscellaneous named

entities such as date, time, month name, day name etc.

6 .
ekantipur.com

7 o
nagariknews.com

8 .
onlinekhabar.com

41

5.6Feature Set

The features used in this work are tabulated in the following table 5.1

Features Descriptions

isDigit isDigit; = i,l'ifoliz}l'l;‘(l)vrl};tgins the digit

fourDigit fourDigit; = i,llifout/}ilg&;ilst:ins the four digit
digitPercentage digitPercentagei _ i,l‘ifoliz}is‘?vrz;:ins the digit and percentage
isDate isDate; = {i,l'ifovtt/;lg;rggins the date
isPersonPrefix isPersonPrefix; = {i,l'if OV:;I ssvrilzeains person prefix
isMiddleName isMiddleName; = {i,l‘ifo\/;/;lz;rg:ins Middle Name
isSurName isSurName; = {i,llifout/}ilgﬁzrzst:ins Sur Name
isCommonLocationW isCommonLocationWord,; = (&, Vi contains common toc. word
ord

isActionVerb iSACtiOTLVeTbi _ {i,l'ifomg;-l;(l)vrggins action verb
isDesignationWord isDesignationWord; = {1—’1,”0“;;1 g‘t::lfstgins designation word
isOrganizationSuffix isOrganizationSuf fixWord; = {fl,ifo‘/;il Zazstgins org. suffix word
Word

isPersonName isPersonName; = {i.l'ifovgl ;‘?Vrilzgins person name
isOrganizationName isOrganizationName; = {illifowt/;'l :‘Zrzst:ins organization name
isL.ocationName iSLocationNamei _ {i,llifovtv’ilgalrzstgins location name

First word FiT'StWOT‘dl- — i,l'ifov:;;g;iteword of the sentence

Word length WordLength; = i,l,ifo\/\t/’ilzei/ N
isMiscellaneous isMiscellaneousName; = {i,llifovz;-lg;rggins Miscellaneous name
1sNotNE 1, if w; contains NotNE

iSNotNE;

= - 1, Othewise

Table 5.1 Description of the features, Here i represents the position of the current word and
w; represents the current word.

42

5.7Sample Input and Output
5.7.1 Input

0¢HTH, AUeIR | 3egideRd HIIG-TATIIRdR Auell cogse 3feclasiare

TUAH-AT 1. SIH S Adeahl WHR Goll3el dcdigiger soff faueh gor

IR A Follcl ISl Hel HTPERh! Iealclolel THRAATS Fol T It

a?rrs;orawa#ral

fagIaR ARSH! faRICIR AATTEYHAT THhRETHIT FIhlA I HISTollel ITHgee]
INIGHT Heelolelel TS WHR G FHA TASIHAT | oA HISTellel faTad

gl ¥ Hcdles Gol G WSHAT 33T Hodsw! [&AfT 3m3ar syueprel wgafdea fwmey
EH TASAHA | He[hons foAhra ot gores fAeefnl ey aA@Hr 81ed 3giel
ﬂ?ﬁ?gﬁﬂﬁﬂaﬂmmﬁ?aswéqlcaﬁﬁqng#wwml
Il THR FeT T fauell g R feoelar sruapr 2 ¢ gorsdlar fauRka
MecleleTdT 3TATRl IR FHMSANAT | 7] HIgeATel earoal earl fauafl adaweT
THRA Feorl 0 Y §¢ TAIEEAS WREd I Hichad TSI |

R¢ HTH, HISATS! | Collehl TIHR Schog UTATh EeATHFE HLAT TUT fSiear
JfeTelcdAT R YT HUHR! Foarg ofFauat & | f9geT 22 Solae gREsT Ut
a1y gfdare) afhelgeh! SEH FAAThUHA YhIR Iof: FeAdS G TR & | AT

FHEAT FeIdTs TRFH §&T Fah TR Thod, THPR I FACAIATHEEe FTelrd HaT
TarEd ARTR AT | AR GeIars FIRATEN THESUT HEhH! Tehol SoTclToTA
A T | AEER TR afhadiegd ey JATd TARST UeTaC 3 dfcholel dgd
MH Bl | TAHR AR §eAT IRYAT UH3 WAl Gfdardlgesd dhae g8
afhelel TagIaR gH TRHT Tel | Uiciarclepr 31l dichel aNUTel foaTehIclnl S6d

43

mmm@ewgﬂzgﬁmaquﬁmmmgﬂw
ITEY 3MSATR AT oAt Hclel T |

5.7.2 Output

Here ‘O’ represents the other which are not NE.

2¢ATT O faEA IR LOC 3MTealeleRd O HIAT-TATIATgawT 0 TAuel 0 gogdal O egleleTdre
O JUTTH=T MISC ST. MISC STERIHA PER #7500 Adcdehl O WIHR O Gell3el O Tcllglgel O
Sofl LoC fqueh O ol PER HIIHA O 7 O Follcl O HISeAlel O HA O ITHEER O
MeeleiaTel O TIHRETS OFel O I Ol OFcAS3e] O HTHI 0T PER fAEAR 0 ARSH 0
fRIETR LOC fAAEISAT 0 TFhRETEIT O DT O IE O FHISIell O 3HEeel O
ARIGRT O Healelelel O HETS PER TXHR O AGost O FHA O TASTHAT O O FHISIeAT O

fauell 0gel 0 T O Wcc®E O & PERGY O HSHAT O 3MM3eT O Hodsah 0 B 0 33+ 0
HUHT 0 HAfA O [Adhed 0 FEH 0 TAFANA 0 HAFeTS O FAHH 0 f&eT 0 gelge 0
fAesel O fdshed O 7R O e 0 3gIl O HSAS 0 g O e O calgdal O @EATT 0T O
HEHREE O AT O TGeJUei O YR O TEe] O HAT O FHIS 0 FIHN 0 T&T 0 T LOC
fauel 0gs 0 ¥R O feweldAT 0 ol 0 ¢ 0 e O FesAlar 0 fAURA O 3Meele=rar 0
3T 0 IR O AIIFHAT 0 A MISC HISeATe! O Hedlelel O #eal O faueh o FdA= 0
TS 0wl 0 7T 0 3T 0TS O TATHIAIEIES O WIFd 091 O Afdhal O FABTHAT

0 2¢ O ATE MISC HIGHTSI LOC Sol@ehT O TFhR O Sehegs PER UTITR! O §eATHFS=E O HEMAT
O ®T O fSieam 0 3feTelddr O f9glaR MISC Y& O HUSI O Fofdls O AfFIUR 0 T O
f98eT 0 2% O §oldlc O YRFH O HTHI 0§l 0 Yfdardr o aferelgeal 0 sgd 0 ATfhTHa

O R[heR MISCYA: O Heldlg Ogﬁf OHTH 0T O HEMAT O Hedlg O URFH O§_C“T OHds O

YTITRT O HThed O TFHR O Y O TUEIAIEE O STl O &7 0 TATET 0 #ARTSH O

2T 0 FHERY 0 FoJd1s O ~ITATENRT O IHFSUT PER HZHI O Uehel O FSTCSTHT O Al 0T
0 fIgeR 0 W&RY 0 afFerafed 0 ardr 0 3rATd 0 TIFRFT 0 Y&Tale 09 O dfhelal O TgH

44

0 RSN 0 Tl O YIHR O ATYTHI O §AT O IRIYAT O UhI3 0 Rl O YfAAIEIgEHT O ThaTe
0g$ O dfeherel O fAEIIR O §&H O IRHT O Bel O WiAIGIRT O 3Rl O dfdhel MISC IidTel
PER fRATRICISRT O Si6H O 3MUTATY O HfHTHAT O YHIR MISCI: 0FA O HTH 0T PO
YHIR MISCTUfl O TgH O AIfFAT 0 3 0 YAk O IS O HTSATR MISC ATH O gefaierel
O FIdel O ¥l O

45

CHAPTER 6

TESTING AND ANALYSIS

6.1 The Dictionary Data Statistics
To analyze the results of the NER, first of all there is a need of training corpus to test on it.
The training corpus is to be build in order to make the training possible. For this work NE

tagged corpus has created which is manually tagged and which contains 29,298 unique

words. The detail description of training corpus is shown if table 6.1

Dictionary No. of entries
Person Name 5128
Location Name 4970
Organization Name 4608
Miscellaneous Name 5306
Other (Which are not NE) 9286
Total Entry in Dictionary 29298

6.2 Gazetteer Lists

Table 6.1 NE distribution in Dictionary

Gazetteer No. of entries
Person Name 5128
Location Name 4970
Organization Name 4608
Month Name 12
Day Name 7
Person Prefix 7
Sur Name 104
Action Verb 11
Designation Word 50
Organization Suffix Word 16
Middle Name 20
Common Location Name 9

Table 6.2 Number of gazetteers in gazetteer list

46

6.3 Test Data Analysis

For testing purpose test data are prepared from different news sites. The learning nature of
recognizer is evaluated with the different size of training data. The testing is done for three
different sizes of the training data. The size of the training data is gradually increased and the
performance of recognizer is observed. For each training size there are 10 different
experiments performed on the basis of size of the test data. The size of the test data is
different in each experiment. The result given by the different experiment is tabulated in

section 6.4.

6.4Result and Discussion

6.4.1 Experiment No. 1(Training Size 5000 tokens)

The sample input for experiment No. 1 is presented in Appendix A.

Experiment No. | Size of Test Data (in tokens) | Precision (%) | Recall (%) | F-Score (%)
1 1000 69.61 80.46 74.64
2 1500 68.08 80.41 73.73
3 2000 67.88 80.53 73.67
4 2500 62.07 80.58 70.13
5 3000 63.40 80.52 70.94
6 3500 64.69 80.26 71.64
7 4000 67.02 80.50 73.14
8 4500 65.48 80.42 72.19
9 5000 65.06 80.38 71.91
10 5500 66.02 80.22 72.43

Table 6.3 Experiment No. 1(Training Size 5000 tokens)

47

6.4.2 Bar Diagram of Experiment No. 1

100%

90%

80% -

70% -

60% -

50% -

40% -

30% A

20% A

10% -

0% -

1000 1500 2000 2500 3000 3500

4000 4500

Size of test data (Numbers of tokens)

5000 5500

B Precision
M Recall

= F-Score

Figure 6.1 Bar Diagram for Precision, Recall and F-Score for training size 5000 tokens.

6.4.3 Experiment No. 2(Training Size 15000 tokens)

The sample input for experiment No. 2 is presented in Appendix B.

Experiment No. | Size of Test data (in tokens) | Precision (%) | Recall (%) | F-Score (%)
1 1000 82.58 97.96 89.62
2 1500 84.84 97.49 90.73
3 2000 86.57 98.51 92.15
4 2500 79.52 94.72 86.46
5 3000 75.53 95.73 84.44
6 3500 83.12 98.08 89.98
7 4000 84.42 97.91 90.66
8 4500 81.41 97.12 88.57
9 5000 84.63 98.16 90.90
10 5500 84.07 97.09 90.11

48

Table 6.4. Experiment No. 2(Training Size 15000 tokens)

6.4.4 Bar Diagram of Experiment No. 2

100%

90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% A
10% -

0% -

Size of test data (Number of tokens)

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

M Precision
M Recall

W F-Score

Figure 6.2 Bar Diagram for Precision, Recall and F-Score for training size 15000 tokens.

6.4.5 Experiment No. 3(Training Size 29298 tokens)

The sample input for experiment No. 3 is presented in Appendix C.

Experiment No. | Size of Test data (in tokens) | Precision (%) | Recall (%) | F-Score (%)
1 1000 89.51 98.99 94.01
2 1500 88.96 98.72 93.59
3 2000 90.76 99.29 94.83
4 2500 81.51 97.61 88.84
5 3000 86.15 98.56 91.94
6 3500 85.57 98.57 91.61
7 4000 88.57 98.77 93.39
8 4500 86.47 98.41 92.06
9 5000 85.85 98.66 91.81
10 5500 85.19 97.80 91.06

Table 6.5 Experiment No. 3(Training Size 29298 tokens)

49

6.4.6 Bar Diagram of Experiment No. 3

100%

90% -
80% -
70% -
60% -
50% 1 B Precision

40% - B Recall

M F-Score
30% -
20% -

10% -

0% -

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Size of test data (Number of tokens)

Figure 6.3 Bar Diagram for Precision, Recall and F-Score for training size 29298 tokens.

6.4.7 The Precision, Recall and F-Score for different training data size

Training Data Size (in tokens) Precision Recall F-Score
5000 65.93% 80.42% 72.44%
15000 82.66% 97.27% 89.36%
29298 86.85% 98.53% 92.31%

Table 6.6 Overall Precision, Recall and F-Score for different training data size

The corresponding line curve is presented in figure.6.4

50

100% /._;.7
90% /— j
80% D
70%
60%
50% =&—Precision
40%
30%
20% = F-Score
10%
0% T T 1
5000 15000 29298

\

‘%

== Recall

Training Data Size (in tokens)

Figure 6.4 Overall Precision, Recall and F-Score for different training data size.

The line graph shows that the gradual increment in Precision, Recall and F-Score for the large

size of the training data

51

CHAPTER 7

CONCLUSION AND FURTHER RECOMMENDATIONS

7.1 Conclusion

In this work, the method for extracting named entities from data of various domains had been
presented which is a system useful in the identification and classification of names. The work
for Nepali NER is very complex due to the nature of Nepali language which is order free and
the lack of research work in Nepali text. There are no any corpus exists for Named Entity so
it is difficult and tedious work to create such corpus. For this work the NE corpus is created
manually.

The scalability issues associated with solving the named entity recognition problem using
support vector machines and high-dimensional input. The usability of the machine learning
environment and the available tools are also assessed. Training an SVM to classify multiple
independent classes at once is a complex optimization problem with many variables.

The study has gone through the empirical analysis of the performance of the recognizer for
morphologically rich and order free language like a Nepali. Here, during the development of
the model, the impact of the size of the training data and test data on the performance was
observed. The experiment was done for three different sizes of the train data; it is shown that
the performance of the method depends on the size of train data. Here, in this work, the
Recall, Precision and F-score for experiment no. 1 is 65.93%, 80.42%, 72.44%, for
experiment no. 2 is 82.66%, 97.27%, 89.36% and for experiment no. 3 is 86.85%, 98.53%,
and 92.31% respectively.

7.2 Further Recommendations

For future research, this work could be used on natural language processing using machine
learning in several directions including the extension of the database solution to support the
recommended service-oriented architecture, multi-word named entity recognition, more
features including part-of-speech tags, and unsupervised learning.

One of the drawbacks of the SVM based work is the speed. It is found that the system to be
slow in training phase, so, to increase the performance of the system, the empirical analysis to
find the optimal set of features may be the future work which may concentrate on speed

optimization of SVM based NE recognizer.
52

References

1.

10.

11.

12.

M.S Bindu, S. M. Idicula.: Named Entity Recognizer employing Multiclass Support
Vector Machines for the Development of Question Answering Systems
International Journal of Computer Applications (0975 — 8887) Volume 25— No. 10,
July 2011.

E. Asif and B. Sivaji: Bengali Named Entity Recognition using Support Vector
Machine Proceedings of the IJCNLPOS Workshop on NER for South and South
East Asian Languages,pp. 51-58, Hyderabad, India,January(2008).

Y.C. Wu, T.K. Fan, Y.L., Yen, S.: Extracting Named Entities using Support Vector
Machines. In: Springer- Verlag (20006).

E. Asif and B. Sivaji: Named Entity Recognition Using Appropriate Unlabeled
Data, Post-processing and Voting Informatica 34,pp. 55-76 (2010).

T. Joachims, “Making large-scale support vector machine learning practical,” pp.
169-184, (1999).

R. Grishman, J. G. Carbonell, Ed. Frascati:. "Information Extraction: Techniques
and Challenges," in Information Extraction: A Multidisciplinary Approach to an
Emerging Information Technology Springer, 1997, pp. 10-26

S. Coates-Stephens:. "The Analysis and Acquisition of Proper Names for Robust
Text Understanding,"”
1992.

N. Chinchor:. "MUC-6 Named Entity Task Definition (Version 2.1)," presented at

in Dept. of Computer Science. London: City University,

the 6th Message Understanding Conference, Columbia, Maryland, 1995.

A. Borthwick,: Maximum Entropy Approach to Named Entity Recognition. PhD
thesis, New York University (1999).

A. Borthwick, , Sterling, J., Agichtein, E., Grishman, R.: NYU: Description of the
MENE Named Entity System as Used in MUC-7. In: MUC-7, Fairfax (1998).

G. Zhou Su, J.: Named Entity Recognition using an HMM-based Chunk Tagger.
In: Proceedings of ACL, Philadelphia pp.473—480 (2002).

D. M. Bikel, R. L. Schwartz, and R. M. Weischedel, “An Algorithm that Learns
What’s in a Name,” Machine Learning, vol. 34, no. 1-3, pp. 211-231, (1999).

53

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

N.V Pabitra Mitra S.K. Ghosh: Conditional Random Field Based Named Entity
Recognition in Geological Text Sobhana ©2010 International Journal of Computer
Applications (0975 — 8887) Volume 1 — No. 3.

T. Joachims.: Multi-Class Support Vector Machine, Cornell University, 2008.

Y.C. Wu, T.K. Fan, Y.L., Yen, S.: Extracting Named Entities using Support Vector
Machines. In: Springer- Verlag (2000).

S Sekine.: Description of the Japanese NE System used for MET-2. In: MUC-7,
Fairfax, Virginia (1998).

E. Riloff and R. Jones: Learning dictionaries for information extraction by multi-
level bootstrapping. In Proceedings of the 16th National Conference on Artificial
Intelligence and the 11th Innovative Applications of Artificial Intelligence
Conference, pages 474—479 (1999).

E. Asif and B. Sivaji: Named Entity Recognition using Support Vector Machine: A
Language Independent Approach International Journal of Electrical and
Electronics Engineering 4:2 (2010).

C. Cortes V. Vladimir Support-Vector Networks Machine Learning, 20, pp.273-
297 AT&T Bell Labs., Holmdel, NJ 07733, USA (1995).

C. Nello and S. T. John, An Introduction to Support Vector Machines and Other
Kernel- based Learning Methods, Cambridge University Press pp. 126(2002).

D. Jurafsky, Martin, J. H. Speech and Language Processing: An Introduction to
Speech Recognition Natural Language Processing and Computational Linguistic,
(2006).

H. Yamada, , Kudo, T., Matsumoto, Y.: Japanese Named Entity Extraction using
Support Vector Machine. In Transactions of IPSJ 43, pp.44-53 (2001).

T. Michael and E. Riloff.: A bootstrapping method for learning semantic lexicons
using ex- traction pattern contexts. In Proceedings of the ACL-02 Conference on
Empirical Methods in Natural Language Processing, pages 214-221(2002).

C. Alessandro, L.Danilo, and V.Paola.: Automatic semantic tagging of unknown
proper names. In Proceedings of the 17th International Conference on
Computational Linguistics, pages 286—-292(1998).

H. Leong Chieu, Hwee Tou Ng Named entity recognition: a maximum entropy

approach using global information (2002).

54

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

N. Joel.: Learning NER from Wikipedia 2008

F. Erik, T. Kim Sang.: Introduction to the CoNLL-2002 shared task: language-
independent named entity recognition. In Proceedings of the 6th Conference on
Natural Language Learning, pages 1-4(2002).

F. Erik T. Kim Sang and D. M. Fien.: Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In Proceedings of the 7th
Conference on Natural Language Learning, pages 142—147(2003).

T. Kudo, Matsumoto, Y.: Chunking with Support Vector Machines. In:
Proceedings of NAACL pp. 192—199 (2001).

P. Mitchell Marcus, S. Batrice, Ma. Mary Ann rcinkiewicz.: Building a large
annotated corpus of English: the Penn Treebank (1993).

K. Darvinder, G. Vishal.: A survey of Named Entity Recognition in English and
other Indian Languages. 1JCSI International Journal of Computer Science Issues,
Vol. 7, Issue 6, November 2010.

S. Satoshi, G. Ralph, S. Hiroyuki: A Decision Tree Method for Finding and
Classifying Names in Japanese Texts.

P.P. Talukdar, T. Brants, L. Mark, and P. Fernando.: A context pattern induction
method for named entity extraction. In Proceedings of the 10th Conference on
Computational Natural Language learning, pages 141-148 (2000).

T. Antonio, M. Rafael, and M. Monica.: Named entity WordNet. In Proceedings of
the 6th International Language Resources and Evaluation Conference (2008).

M. Andrei, M. Marc, and C. Grover.: Named entity recognition without gazetteers.
In Proceedings of the 9th Conference of the European Chapter of the Association

for Computational Linguistics, pages 1-8, Bergen, Norway(1999).

55

Appendix A

Sample Input for Experiment No. 1

RCHTH, GIERT | HATS HEATSET Foidenl UG H¥UT UT9Tel UgaTe IS fGuet
Tel | ey forrer Tt Yt T AT Heg AT aifdehdieT 3TRHAT
ST fGueT ENYOT IR e |

IRERTAT [SEeR 99 Aol IR AT9Tel oI U B3ffea foemr a3 soer
TAHS &9 ¥ A%l GIERT HIAT gITH cleligedeal Ufel Ify Ui Afashdarer
TURAT TSHAT Tt €ivor IR | T Welufa el I Aqael AAS AT
forTAT THSEdT TFdT &Td Ulel ATl 3Adl Hls & | 3olol HATSHT gl Igahl
WATEIgss AT IRMAT fad@ar e &g dgﬁ A 13e] AT |

UfSeT elelhl qd YiRIaTh U197 Teh a3 AUlel Peaolhl FEitSh HgIm
gfRTeThepl FUAT ARG Yo §olR do&HT HATS ITH AT |

3l FTAGTUTAT AASe TAdd 9 I A% 9IET 9 Toder &3y | oy, 31T
Meshush Uigell Tdre dIigUenl Aas T BffesT OemAr ukaf = © |

?¢ HTH, HIGATUS | HAdhTel ddfhe Tl SIS Adlereh ofer RAfar Tsigd
5 B3l T TUHAIAIG IRG R FIRrdig fAers dearal Ul © | A9t
JAR SEN 313EET AEEAR HUST HATAT 3gIvdrd AUTel JTlls diedol 3UleY
IRT3E TR TEIWTHT IRAT Tolhel TR AT |

HTHAT TUHHATId SfaRlel AA9Tell Aellellg dlefel 39eleyd RT3 3TTHT TgAMT
HECAQUT ol Hed FaAdl sTad 18 IR fETa T uie Hganrers Peaiar foe
I I HUR AT | 3 Aurel JAr G fIHHAT AR Aerere
HEcdqUT Tgoh! 3ed TeTel AT feoTdT Uit FEaln a1l Uldegar STeli3e] et
& |

Uch-Uch Blcd! [TeAUThI WUQWWWWWW FRR-
3 AT g9 gifar Al AREIrR RS AT STgerel glcdiel ARYTS MRIRIT HwX
mmaﬂﬁm:ﬁl

56

Appendix B

Sample Input for Experiment No. 2

gehrer faAfedstr, FroaATs!, ATT 26~ FYHT SRR BRA (SAlehdlleTh)dl TETET
duT 3YGUTAAAT [ASIPAR ITeoeRel 3 aiéfel gfdsgdl IN3ETAR ¢o §olR
TAATEROT THHAT oABA ATF STThRT TR Tel|

HcdT9eT FEI AlhcleTh I0TAIfoTh TOTeUadl ATHAT JUGN Fol HTATHTAT
TGRS g0 EOR HJETYURUT A3 AT Hee Ufeoual TFEATN Aide Farar|
'HEEE (IO ATAN 0 §oIR AT o3 ToIFAT AT TTEiT oAl T|oel, X
gl A3l oA8Fa $13l, TR dohAl 1, 'H { HgEd (Slides ¢d) gd
SUET HURIS) TCITHAT AT 3clel Aae 97| Toawtaaar Har e ifas
YoFAT FET TEET IO AHTS o FAR FAT THTNTHAT 3df widsegdr
AR AT TR FIERE! SSHAT HETET ITOERA el ATThel SFAS fSUHT
g?[l

B[, HISATUS | TTIrarellel fGerRtsT Wellehl Adcadl Tl TR delr3a
ThIehc AUl HAIIECH FEATAS Adlell HAE T THl IEIPR It $TH
Sl |

AHER JIT g dodhaAT WeRTeTas A Agiicamedar TgAd QTSR Hag
TATI FITAGR Fegl T AT Ao Sols TTAS HAled ATThel 0TI IR
ol | ToRTSTelS Aeal/aAleAaR gd o dis foere v 9fa yedia 3R
Tefehl SEHAT SFRATH T |

THATerR! oo o

AUl THATA TUTAAATENRIDT AJcd AT YA ThR TS et TATHIAIGR TEATT
ISR IRA T | HIGGR T THIS Foold HIACH dochel ATl TR
Adcd Tofelifcieh GRS WiedUetaT Sig GUH & | dehfoush deald Hedd ST
AeaAT AT FIPR ISeT Gofdet (AT HIHFAT FIAT TR & |

57

SSHAT AT HARITH HWelel VAT HRAH! TSIUST AT e IR dot
MY ATGEh! CAATRYT IRTSTHTRT UG | Thiehd HISEIET 3EellS Tl
Hool RS, T AEATAT Tehlehe] HISAETAS HRAS TTUH o SShHAT ISTolel
HooTHAT- AT ToiUsT s fgsehrel AT TTfe=ar T AEHAACAET Earel
I S HGTh S |’

Tod JUTTIraTeIeren aTHT

SSHAT AT ISl Fodol FETedTell TUAIATENAS AJcddAl HUUTA FoATdl TRHR
M6 I A fAhE foefuel GROM IGqoiuanl ¥ | TR I Hergged
TEALY Uil TR [dehoush! TUAT Y9 TUHIIATENST a7 Fcdeaeh! wided Hiowl
Githel TR FETTATe TUTA-ATATENT Fol GTelcTHT Fdehlel wAHiehad TSIl IWhT AT |
ST P GAGRUTS UIE HETET Feledd Tellolel g1 HIAH AT Hqar o
Wéwﬁ%rgﬁmrﬂmlwﬁmaﬁfﬂaﬂﬁam
HUR JSHAT TATI Jd FUTHAATATEIRIRT Hicfed Hleol Hlehel SToA13 fewer AT |

PIPFHAT IfT T TEH

HMEIR FEP FAH Foad PRAACH FoHAT TEAT TEEIEI
TUTAITITENRBT AJeaAT THR M5 el gl UROT JWHT Bl | Gl
PITAR AT AT STl Afhad R, SAfFAIIC FATUT @SFqd=t IfAHier Fwiaa
AAEEH UROT G Foad HeEd HAT Fealel IAcST@eels Ja3aemar |
Tolehl FAJcadll AIHR TS U 3ol q% e oTaTdll SIJIS ol FelleTearareiiereny
Aca Edehle] ga:r Hool IR ATEE JSHAT YRV TETHTH & | Fearod
HeeT8Tal- ‘AATEeA Soel el 378 FAAfhTHS FUIR G3AT ¢ 9o BR Jooh T
’

AT HIcThT ITHR HITEIR Sloat ¢ ANHEY TRES AT ARSGIGT 3aTel STeRTHA
HETSA TSAAT EToel ol Geldlielshl Adcadl THN Tell3a FETaells FhRY
O U TABTHCR T | TRAA ToiAAT U o9 Fararefierenl Aqeaar
YATGAT SIS |- S3aTel #A1$ I a1G Ficlel 372 |

58

THI A Gollel HISTelll AN HISATR AATHY Afdare g6 [fas ader
3Meclelel Taieieal AATHTTR HTURAT HE deoques | drdiel AT Hoaer FHer
ARl HEEATHAT U AATHETT THTh AT |- Gl #1185 39 & Aol
TSGR HaT |

&3 T GollelTel HgATdR! AT AR FRT IR fel 37hT AAcT ST HAHIG S el
ﬁ%wmﬁgﬂwml'ﬁmwmowmaﬁ
JEdd aTuaT AT, 31fgel Jausel cI&d I Wioeoe, AT Tcdl g3 WoldATH &l
gl IeaeeTers F PReRaT ReATS 1-aEUsH Hes Y | SoFaAr aet
$HHAT 341 Fohe o Ffee quTagTgy @, Sl IUETT oelacel Uil AT3Nardr
EdTd HAleod AdThad 33T TWHT AT |

B[, HIGATS! | TRAAT Pedel HETHSHR HIAHANTAR AW wdTel Heeo
Wmmwmaﬁ??smwgﬁmm
R0¢Y BelleHeadId HAG ST oIl Tethrel WeTS! Bellc INH & |

mawwemmmgﬁqﬁmﬁamﬁwmmr
TS T AT ARAGAT NgeAqvsH ey Feaad eAd @gamhar G
Tehlel SIRT IR 9 AATCTaAT 3eor@ & |

ar gfaafaes afar fFeor Jeas, s Jgoia, e Rare, afeea U3, Rea
oITAT, a5 37%3, 3iferel 30T, HedlY g TAlc TR T |

s, faRrrer TS (), SETfSia Ao, R @, 3ifaer a7%s, AT Iss, Rawr o,
faeher %y, siterm fAefarer, S[AT TS, fSides I, T dTATS, ¥R T, AagIT 453,
HER YT, 3T 5591Tel T Vg Tog BIieITRT Be |

59

Appendix C

Sample Input for Experiment No. 3
e diotel (FToATSY), T8 26 - Hidd FHAIA Feliel HISTAT G FeAHAT Teehl
el THTR TATUHRT ol | 'HAS TUAHTATR U dlfges], TUTHAH-AT STSRTH

HETSY FEE N A TS A I, AN THIT FF SR g, A
3T oI & "de @ ol

didr shigrerehl 3u 3 ATET Tohel TUT AATHAT AT ITEAT FreJroToralT
HIHATR TR HRIHHAT HISelll THIINGIE! TETET JoIhAc eIl s fess
drell B i AT T@T 3UST I "ideh HUHR §diC | ATHEG ATAIhale
e Woteh! Hee, 3odel cTTh! SeTdlel T Jfaalg I FdTT |

'oly FTGTAT MU, 0% HATSTAT ISl Heegel Tollded W, hIsTellel STAg I,
Adegel Tel BT 3AEEH 3aeam & A ? HT AL Hae;q F g |
AT WY G | MVIA-ATTEG P S0l Hee] a1 TITNGH 3% el AU
3ol 9d1U |

ABAE ST ifer B A FF 3AAE °eT g 3Tl AT | Sl Bl grere
Tel 39 Hid T TFAT3Te, 3eTel Hel |

YT 37EYET U AAM IO ABNAEIRT HARIhale Afed #ea aqeht
gfaarg IS Sd0 | 'GFldar e FAleadsd A9 AT Fgldhl Tollded gl ?' 3elhl
geaT AT | fSEaar FarfieTdl R Rl $eg 39 TS giciel Hiee] Tef 3eofeh!
HeT1g R |

HARAGATS il Ul AT HW Boh ASRIABEET |, AdhawaAe T
ATHIAANIFRORA of IEAFAAT W ERAH e ardl IR Bef| R, At
BT T3S M gIfRRH A gepwn! AT AR el Toreh! gled HTaR
TCEY g IS TEH G LI qU IR A S Howl I3 HART Bl Foremy 7
HABEEINS AR HU U IARHAAGEH [Ioidel areqar & fheas, go af

60

STAGGHAT FH WIAAT ChT ¢ oG Y golN TNUITRl TolSHT UTHIT Hool YIUS
TS ¥ Y E I R, G A T ST $ T A e
gl Ul BIEHT TUA SIS TRl TsTellict el ADISHT THTIERAS IITNHAGEH
P Fo §ART T TERT S| IR, Tg I Farl RfFANSTAAT Th ofel deranfy
geifafccsh 818 & ST HAH PR oot FHel ARTAT THAT BRA Pel AR
IJETAT B3Pl © Heol TATT | HATIGIGR §ART JIIHA, THTeID! oIdRT 3TITHA
T BRHABI AT 3IEHAR ENSTHAE Hooolcl oA ATl I fAY STodel MATAT
SgTell SoIdl cIHeh! HTelellel FIcal ASIRATed THHR Bel| HATATSIR ITrefeldrenl
a1 fafdrse fawgaAr TUd AATGS TATUATS Aoy HATGG [oEAT Tl
THEfE FCoReAesHh ©d FACR Fhesd dfhad v & @, Yoiarer
eliehceATaaTe glafhuenl AaTisien afaiicidel 3HAl AET farm 3T urdeic]
AT Heel IEH HHT HTUROM gl T, 3MYfAS Ul $eAshl QRIOTHN oTeh
BIgel, IAATA TdlesT, HZI T SFad g1 Howl 31 Ul 3feash mavgs ol
TIFRUT AT Uqsg STFATTAT HES, HTTHI AUTel SToldTel TAHTA TR
HATH ST AN cAfd gell el fous WU AT TodeEe
TWERA Hdolfelsh TRAT ~AdH TSN FREFAYT Ieald TIHAT 7ge]
IOYTAHT 3erdlTdr T 3@ iaarer Sfor ™ JHOT 8 35T U9 I I & I
TEHAd HZHBH sifd dUT FRAFKHAS dlcdlel Feoll THATel AAGIR &k a3
gledll 3R A g3 T ATICR HeATIGH OISl 8T HATOC TG
AdTeler A AT FASE e I RULRIAT Fold oo Hel =T Hfcd T
MTAA| HRAT fheHA FAATEETAS §og wAdhel TR fgc AUl fhedd T3
FHOHA AUTell T8l STaTcehl el T Aos [AGhE® e Folehl AT TsTellicdeh
gEcie® Afgel T d@stfcds goldhl HUH Bol| Aehcleahl FTe[dIAT Heel AR
Uil SAIEEelS SIgal GGl Hihel dllehcllicdsh HEDicTel STelclells feUer ®rgar
fca gl 319 3, ATNEET, BRA T THTRT I8 Jfdsgdiial | ATdAegaar I&dr
qOATT ST TUT HRAhAD HST HEHIIAS THT HIAT g0 alepl o auf
SoTgg T ¢} oo STel3iecloleiehl 39T gl ST &all, HElel AT 3297 Sleher

a3 et TR JTealeld T THHI sjeashl araiens AT f&e] g1l Sogg ¥

61

ST TeaTeletehl SUATSHATTY fo5er AW Furafoufadsy eadado = dfFguet
IAATH WHRH WiAs gLod Ilgen Yfdagamfa @ 3fter sgas«d sl
SISTRRISIE gIOETR! HAEATTAASH TIHRAl Tidagalehl &I 3Ch STEdl S| 3T,
ATSCAT AT T FATCAT FEI| ATLIA, ATET Tehel T AT Rl TFager
TPl gigell AT g FFHATd: o TATAUTSHR TS IPREE IJ&Al Ffaeagd
Fd INHT Tel| ARG A WHRes Ul A7 IBAT 3Ty TS Ao, & UTolTahl
ATFIIIAT SYBUR Ase AT T T3l Sogic AT I AF grorr| 3T, Fseiy
cllehcllieaeh AMUTdeAhl HRileadel I Togeh! Jel-TIUATHT WIGUHT garghel q=AT
TLHRGED [ecRdTells T TESIgh Tell STel3lealeleenl AhelcTelalet el :TUTIAT
HUH TCdh HeadiiA AuTReddce Sd AT WeHRe Ifad gl gcdh IaHlIgs
YR | TSR FFAfcde! Blelfasl I Tioil, 5T dlehdliedh I0TdeaTdT STt
UeTehleleiohl WRSAl, TRTERHR IRHT FEATdD Hrdleade], HlAd HUHReR
FAREA, @, o aUT ASHAS RIS Tsieifdae Facded T Feiod
UARIIeT T TATATTCNHRT TURAT FINT, TATAT AR IR A FGEATIA, TTH
FATIMHOT T G- ETAT HTMESIET UETEE T HEAIAT FATCTHT oef| fean enfeet
T GUEToh! Yedreffciehl 3T Uil RIet 3eIgRels R YSIRICR A IR S
fea enfeae T I foca stwer ufasgar s ufa ufasgar =&y 3a@r
Heel W gell THeeIcl TRl A IRl Afeadfshdrens difehen fasehsT qaisa,
Qell ARSI 3Tof, IR cHITUTT Tef, TRET AT SA13a1, Aol rfar
AffesT IMARTAS T3er 3T HTAEROT I, SUSEIAAT T 3TSThdien! 3ecd
It P AT TR T IES, I Tl cAlcehlioleh Mgl I YoT:fAaAToreRr et
S TIITH B| AT NRITAT SoTgg, Sie3flearelsl T HUAT JTearolerehl HIEEE iget
Juftes oo Aearfidgeers sifaufd, Ia-TU19=1T T Agchl Arhole® dfd el
I STeTgGehl EScIgdel ITUNR, &Tfufd, Gaee@dl wisc TS Hifch HTwaATent
qeT-fAAT0T, Hgall Ao, deifomd gerdenmad i 3uHley aEqeeal Hgol
WIS, R SaE T Uy Aeddr FAEEdsE aede faaver e
UIaUTeIg® 9fel JH TUSHAT TATGY Bel| TR AHATOIh STV 37ehl TeaTTel
AT AUTIh! HYAT Sichehl | FATHIIAS Il 8T, gl GeTel Al gl §ad aThT R

S8l Herclol| cIHl TS HRHADI A TUs FIoFd THRHT Tgl g1 T, T

62

O Uiel Gl ATAeeT| G 3Th &T96E T WA FAEeRUTR Pl Uil Faaraqed
JdOISHI A WUS o WHRA HEI AfEIT IJUR gl HRAAT TFel ¥y A
TIdeadT TARIGAT FEICATTET of 39T fAuae| 3l & Tadeadrels g
FIAeAdT Ui $oletoll THP HT HRUT AN, GAAT HTH ATATHT [dhrael b3
giderd $ET Sollel Yolufdeeel $ETAT AT cq@hROT FrATh, 3Tih
FAROTR A TaTells HHA FUREE WAde I Ao $eel S AT3are
fS Sl & HA HITAT & AU Ul 3T SypESAEe Vel FoFat Setet| Y
el Teaagad WERE AT FEHART B g0 g ol S IR
HSeholecl EXh AT GFINHGT AEATSURT Bel| Fol aTHT T FTHATHT Bl T Fool
gar d IARTd FewFd s Tl AT Uahdl, AfSegar ¥ Ay g
HFTEAAS 3TFAT TTST FRIHHAB! CI3H TATIH AT TSTeUAT STAgraeh! TSl
98T deRIF FEARIUD WIHAT INAT S| AT Fdeadl T HIHIAHATR J&TH
I 3T FAATA GSIEIC AR SMeeh e TSCAT HRAUT a1 ufer Jmafeqant fawr
SforEhel ©| faad TRecRAAT YRl ATCIAT Jegeel shael Aol
IZITHI ATT HY Siohehl Bef| TIET clihdliedeh I0TdeThl HATeddsd I Tl
U ETAT HAUAR AGATS AT GO 93d [Avags g1l X, gE&ar
HEccdOIoT JecRasd dichehl T HIAU el ol AT dfqumsrasm
RISHIR B T [ARIAT @bl Tl Lradiens Fol MURAT WO a=f g1
Hood AR Ak 9far JARTd © Qerger #Huawr Fesiidessr 9reer et
HATH & R A goeoffd o faarfed o IoT Gl-ETAR YA Uit
feds AdAIdEE FAH Tef, STl HidUTTaHTee @iaursT HATome gikarers
o 379%g Ul T diehd UESel| AMfeduishares difhe fTShET ofSiel THgITH]
THI cdecdhl HATUAH TR SAIfSW 3SeTes| gdeedel hRUGHAT Tgehl Fel
gfer gaeare TR AeEfear S G anfeaesr 9= 3rawd gcizsl T Afgear
3afafdy a1 gaRe T gfaaR cgarada sRfAfFRT #fdver & aRAureider,
TEAag9ed |, Ifauel, eaiololed ASadedr I UFdas U3¢ ﬁFgHT A3
WHR TGogdat 3Tl R SIS | TaTH FEATAAT Ihl GoIgden! ey fdeg o
hiegehd FTHTD! IGTEATAT i W ATFAAS HST HRIHHD! FASTHT AT Fell
AT TaH §lddR SFaEUI9e Tl AIEE AT §F T I5ellS HAA Folepel

63

®AAT BLoATel g1 ETHIGTEAl HHwl oliehcled HUR SI3AT A ETASIS
AR ATl STsdl T Aiehcllicash Tegae el seseffe Hel aaers g
St AAR e Toeiifasiges! HaT gé\dl cIYPNRUT 3ol Slehdedahl ATHHA] -l
UTAhl AR FIROT ddl TolRced & Heod ool 9l HfoeT S|
TOARITAAT TAHeGl 6T FGATH FollBal [ANT HAdT SAAdT T wilehded U
I STefdlel FfY s TR gfd hAd Gef, fSART Tegel T AT 3T
o] ITef, F>UR &1l 3Tl IUEIE IM3a1, eI el S Sa3a JTiesred
WRERTT fIAYAEEAT TRV Ao 913 ek AISTerehl 3MecRish gaTel cadeht
ol wotidor® rs| dfaur=asmar SRavsr FAEd SagResdrs @R JT
WWWWWW@HI el e Faeaor, 3AEwa
AThIHelh CUNITAT §EAATY, HHedgRel ST JTEIEOT, FFLIUHT ST, &1,
dsfaeh fasieh! 3ecy, Hifeaehll APURSIEN HHEE I g@gd T e Ao
AT A F gigeT| hetafel, cFFl AT Ieffofcas O TERA Y i
fAfge| THSRUT HRUAT FiiedhpRisiEd ST T Ao dar IyEfoyfdse
AT GURAPUA ST T CIfther SHAT THN B | I8 THAS STEar
ool TNl WA T, &S GBIl aegdl JHeS o I a7 A Afd aar
FHA Fifeddn, giaomedl I JYEoUfaad aears 3w Jed dRe gl
AT Sgh JATPTH HU AU ool TFAIAel VoTehlelolnl TS gagdels TR
INSES AT AT FRAGHASR Fediclia! A I HAlegdiel A A3 HrAhHS
Jegeals e I T heaasa, TS Jasdl Hiedd HRil-ads = ¥HR
THRAT HEHART Solghen! HiodH HodlgAT Gledied ol

64

Appendix D

Source code for training and testing
package thesis;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileWriter;
import java.util. ArrayList;
import java.util. HashMap;

public class Main {

public static ArrayList<String> personList;
public static ArrayList<String> organizationList;
public static ArrayList<String> locationList;
public static ArrayList<String> miscList;

public static ArrayList<String> personPrefixList;
public static ArrayList<String> middleNamelL.ist;
public static ArrayList<String> surNamelL.ist;

public static ArrayList<String> commonLocationList;
public static ArrayList<String> actionWordList;

public static ArrayList<String> designationWordList;
public static ArrayList<String> organizationSuffixWordList;
public static ArrayList<String> personNamelList;
public static ArrayList<String> organizationNameList;
public static ArrayList<String> locationNameList;
public static ArrayList<String> miscNameList;

public static ArrayList<String> nNEList;

public static HashMap<String, Integer> NEhash=new HashMap<String, Integer>();
public static String [][] features=new String[200000][20];
public static ArrayList<String> featureVector=new ArrayList<String>();

/I String outputFile="src/tests/test10/inputWithTokens.dat";

/I String inputFileSVM ="src/tests/test10/input13.dat";

String outputFile="src/train/inputWithTokens.dat";
String inputFileSVM ="src/train/input13.dat";
public static int feature_index=0;
public static int npOfFeature=20);
public static void main(String[] args)throws Exception{
/[Creation of Hash list of different named entity terms
Main obj=new Main();
obj.run();
}
void run() throws Exception
{
String filename="src/tests/test10/test10.txt";
//String filename="src/train/train.txt";

65

/! for(int i=0;i<1000;i++){
/! firstWordFlag[i]='N";
I }

for (int i=0;1<200000;i++){
for (int j=0;j<20;j++){
features[i][j]="0";
}
}

Source code for extracting features

public void ExtractFeature(String s) throws Exception

{
String []sentences = s.split("[?1]");

for(int j=0;j<sentences.length;j++){
sentences|j]=sentences[j].trim();
String []JtokenString=sentences[j].split("[,]");

ArrayList<String> listOfWords=new ArrayList<String>();

for(int i=0;i<tokenString.length;i++){
tokenString[i]=tokenString[i].trim();
if(!tokenString[i].isEmpty()){
listOfWords.add(tokenString[i]);
}
}

",

String tokens="";

for(int i=0;i<listOfWords.size();i++){
tokens=listOfWords.get(i);
//Class of the token
features[feature_index][0]=ThesisFunctions.assignClass(tokens).toString();

/IToken itself
features[feature_index][1]=tokens;

//First word feature

if (i==0){
features[feature_index][2]="1";

}

else{
features[feature_index][2]="0";

}

66

// Word length feature (threshold: word_length >=3)(i.e., word with length greater
or equal to 2 is more likely to be NE)

if (tokens.length()>=3){
features[feature_index][3]="1";

}

else{
features[feature_index][3]="0";

}

//Digit feature

if (ThesisFunctions.isDigit(tokens)){

features[feature_index][4]="1";

}

elsef
features[feature_index][4]="0";

}

//Four digit number feature

if (ThesisFunctions.fourDigit(tokens)){
features[feature_index][5]="1";

}

elsef
features[feature_index][5]="0";

}

//digit following percentage feature

if (ThesisFunctions.digitPercentage(tokens)){
features[feature_index][6]="1";

}

elsef
features[feature_index][6]="0";

}

//Date feature

if (ThesisFunctions.isDate(tokens)){
features[feature_index][7]="1";

}

else{

features[feature_index][7]="0";

}

/! Gazeletter Lists Features

if (ThesisFunctions.isPersonPrefix(tokens)){
features[feature_index][8]="1";

}

else{

features[feature_index][8]="0";

}

if (ThesisFunctions.isMiddleName(tokens)){
features[feature_index][9]="1";

67

}

else{
features[feature_index][9]="0";

}

if (ThesisFunctions.isSurName(tokens)){
features[feature_index][10]="1";
}
elsef
features[feature_index][10]="0";

}

if (ThesisFunctions.isCommonLocationWord(tokens)){
features[feature_index][11]="1";

}

else{

features[feature_index][11]="0";

}

if (ThesisFunctions.isActionVerb(tokens)){
features[feature_index][12]="1";
}
else{
features[feature_index][12]="0";

}

if (ThesisFunctions.isDesignationWord(tokens)){
features[feature_index][13]="1";

}

else{

features[feature_index][13]="0";

}

if (ThesisFunctions.isOrganizationSuffixWord(tokens)){
features[feature_index][14]="1";

}

else{

features[feature_index][14]="0";

}

if (ThesisFunctions.isPersonName(tokens)){
features[feature_index][15]="1";

}

else{
features[feature_index][15]="0";

}

if (ThesisFunctions.isOrganizationName(tokens)){
features[feature_index][16]="1";

68

}

else{
features[feature_index][16]="0";

}

if (ThesisFunctions.isLocationName(tokens)){
features[feature_index][17]="1";

}

else{
features[feature_index][17]="0";

}

if (ThesisFunctions.isMiscellaneous(tokens)){
features[feature_index][18]="1";

}

else{
features[feature_index][18]="0";

}

if (ThesisFunctions.isNotNE(tokens)){
features[feature_index][19]="1";

}

else{
features[feature_index][19]="0";

}

feature_index=feature_index+1;

}
}
}

Functions for Features

package thesis;

import java.io.BufferedReader;
import java.io.FileReader;
import java.util. ArrayList;

public class ThesisFunctions {

public static boolean isDigit(String s){

if(s.matches("[©23¥SELLR]*")){

//System.out.println("Nepali number="+s);
return(true);

}
else if(s.matches(".*\\d.*")){

//System.out.println("English number="+s);

69

1
1
1

return(true);
}
else{
return(false);
}
}

public static boolean fourDigit(String s){

if (s.length()==4){
if (isDigit(s)){
/I System.out.println("4 digit number="+s);
return(true);
}
elsef
return(false);
}
}

return(false);

}

public static boolean digitPercentage(String s){
if(s.length()>1){

String temp=s.substring(0, s.length()-1);

String lastSymb=s.substring(s.length()-1);
System.out.println("sub="+temp);
System.out.println("last="+lastSymb);
System.out.println("str="+s);

if (isDigit(temp)){
if (lastSymb.matches("%")){

//System.out.println("digit with percentage="+s);

return(true);
}
return(false);
}
else{
return(false);
}
}
return(false);
}

public static boolean isDate(String s){
if(s.length()>3){
// For nepali date like ¢80T
int i=0,index=0;
int j=s.length(),jndex=0;
boolean flag=true;

70

nn,

String dstr="";

String mstr="";
while(i<s.length()-1 && flag==true){
if(isDigit(s.substring(i,i+1))){
//System.out.println("substr="+s.substring(i,i+1));

i=i+1;
index=index+1;
}
else{
if(s.length()==index+1){ //i.e., string only contating digits
//System.out.println("no month="+s);
return(false);
}
if(i==0){
flag =false;
break;
}
dstr=s.substring(0, index);
mstr=s.substring(index,s.length());
I System.out.println("dstr="+dstr);
I System.out.println("mstr="+mstr);
I System.out.println("str="+s);
break;
}

}
// For nepali date like SAT&ESR
while(j>=0 & & flag==false){
if(isDigit(s.substring(G-1,j))){
//System.out.println("substr="+s.substring(j-1,j));
j=i-1s
jndex=jndex+1;

}

else{

if(s.length()==jndex+1){
//System.out.println("no month="+s);
return(false);

}

mstr=s.substring(0, j);
dstr=s.substring(j,j+jndex);

I System.out.println("mstr="+mstr);

I System.out.println("dstr="+dstr);

I System.out.println("str="+s);
break;

71

if(dstr.length()<=2){
if
(mstr.matches("§ETE")Imstr.matches("S")imstr.matches(" 7R)imstr. matches("A3eT")lm
str.matches("#Tg")imstr.matches("$7&T")imstr. matches(" 37@ST ")Imstr.matches("a'ﬂﬁa?")lmstr

.matches("ﬁ'ﬁl’l’")Imstr.matches(”‘flaﬂ")Imstr.matches("HTE ")lmstr.matches("®Ted[sT")imstr.m

atches(”%\'ir”)){
/ISystem.out.println("nepali date= "+s);
return(true);
}
}
}

//For nepali date like 20€%/2/3
if(s.length()>6) {
/ISystem.out.println("iam inside="+s);
String[] date=s.split("[/-]");
if(date.length>3){
return(false);
}
try{
if((date[0].length()==4)){
if(date[1].length()<=2 & & date[1].length()>0 && date[2].length()<=2 &&
date[2].length()>0){
// System.out.println("nepali date="+ s);
return(true);
}
}
}

catch(Exception e){
return(false);

}
}

/[For days of weeks

if(s.matches(”3-1'l'é?l’®l'l?”)ls.matches("@FFIEl'lT")Is.matches("ﬁﬂﬂ’le”)Is.matches("g‘iil_sl'lT")Is.m
atches(”ﬁ%&ﬁ”)ls.matches(”?lﬁﬁl?")Is.matches(”?lﬁ'aﬂ'")) {

/" System.out.println("iam inside nepali week="+s);
return(true);

72

return(false);

public static boolean isPersonPrefix(String s){
if (Main.personPrefixList.contains(s)){
/" System.out.println("PersonPrefix: " + s);
return (true);
}

return (false);

}
public static boolean isMiddleName(String s){

if (Main.middleNameList.contains(s)){
1 System.out.println("MiddleName: " + s);
return (true);
}

return (false);

}

public static boolean isSurName(String s){
if (Main.surNameList.contains(s)){
/" System.out.println("SurName: " + s);
return (true);
}

return (false);

}

public static boolean isCommonLocationWord(String s){
if (Main.commonLocationList.contains(s)){
1 System.out.println("CommonLocationWord: " + s);
return (true);

}

return (false);

}

public static boolean isActionVerb(String s){
if (Main.actionWordList.contains(s)){
/! System.out.println(" ActionVerb: " + s);
return (true);

}

return (false);

}

public static boolean isDesignationWord(String s){
if (Main.designationWordList.contains(s)){
/" System.out.println("DesignationWord: " + s);
return (true);

}
73

return (false);

}

public static boolean isOrganizationSuffixWord(String s){
if (Main.organizationSuffixWordList.contains(s)){
/" System.out.println("OrganizationSuffixWord: " + s);
return (true);

}

return (false);

}

public static boolean isPersonName(String s){
if (Main.personNameList.contains(s)){
1 System.out.println("Person: " + s);
return (true);

}

return (false);

}

public static boolean isOrganizationName(String s){
if (Main.organizationNameList.contains(s)){
/" System.out.println("Organization: " + s);
return (true);

}

return (false);

}

public static boolean isLLocationName(String s){
if (Main.locationNameList.contains(s)){
1 System.out.println("Location: " + s);
return (true);

}

return (false);

}

public static boolean isMiscellaneous(String s){
if (Main.miscNameList.contains(s)){
1 System.out.println("Miscellaneous: " + s);
return (true);

}

return (false);

}

public static boolean isNotNE(String s){
if (Main.nNEList.contains(s)){

/" System.out.println("Not NE: " + s);
return (true);

}

return (false);

74

}

public static ArrayList<String> HashConvert(String filename) {
ArrayList<String> list=new ArrayList<String>();
String s=null;
try{
FileReader fin=new FileReader(filename);
BufferedReader bfin=new BufferedReader(fin);
while((s=bfin.readLine())!=null){
if(s.isEmpty()){
continue;
}
if(s.charAt(0)=="){
s=s.substring(1,s.length());
}
String []Jtokens=s.split("[\t\n]");
for(int i=0;i<tokens.length;i++){
if(!tokens[i].trim().isEmpty())
{list.add(tokensli]);}
}

}

catch(Exception e){System.out.println(e); }
/! for (Iterator<String> it = list.iterator(); it.hasNext();) {

/! System.out.println(it.next());
1
1 }
return list;
}

Source code for Assigning Class

public static String assignClass(String token){

if(isPersonClass(token)){
return("1");

}

else if(isLocationClass(token)){
return("2");

}

else if(isOrganizationClass(token)){
return("3");

}

else if(isMiscellaneousClass(token)){
return("4");

}

else{ //Other class
return("5");

75

public static boolean isPersonClass(String s){

if (Main.personList.contains(s)){
/! System.out.println("class:(1)"+s);
return (true);
}

return (false);

}

public static boolean isLocationClass(String s){

if (Main.locationList.contains(s)){
1 System.out.println("class:(2)"+s);
return (true);

}

return (false);

}

public static boolean isOrganizationClass(String s){

if (Main.organizationList.contains(s)){
/! System.out.println("class:(3)"+s);
return (true);

}

return (false);

}

public static boolean isMiscellaneousClass(String s){
if (Main.miscList.contains(s)){

/! System.out.println("class:(4)"+s);
return (true);
}
return (false);
}
}

Source code for calculating Precision, Recall and F-Score
package Accuracy;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileWriter;
import java.util. ArrayList;

76

public class accuracy {

public static void main(String[] args) {
calculateAccuracy();
taggedOutput();

}

public static void calculateAccuracy() {
/" String inputFile = "src/train/input12.dat"”;
1 String outputFile = "src/train/output12.dat”;
1 String accuracyFile = "src/train/accuracy12.dat";

String inputFile = "src/tests/test10/input13.dat";

String outputFile = "src/tests/test10/output13.dat";
String accuracyFile = "src/tests/test10/accuracy13.dat";
int[] inputArray = new int[200000];

int[] outputArray = new int[200000];

int totalNEInInput = 0;

int totalNERetrived = 0;

int totalNERetrivedCorrectly = O;

int totalEntityRetrivedCorrectly = 0;

double tempTotalNEInInput;

double tempTotalNERetrived;

double tempTotalNERetrivedCorrectly;
double tempTotalEntityRetrivedCorrectly;

double precision;
double recall;
double fscore;
double accuracy;

double tempPrecision;
double tempRecall;
double tempFscore;
double tempAccuracy;

double[][] result = new double[4][5];

String s;

try {
FileWriter foutAccuracy = new FileWriter(accuracyFile);

FileReader fin = new FileReader(inputFile);
BufferedReader bfin = new BufferedReader(fin);
int inputIndex = 0, outputlndex = 0;
while ((s = bfin.readLine()) != null) {
String[] temp = s.split("[]");
//System.out.println("input="+s);

77

inputArray[inputIndex] = Integer.parselnt(temp[0]);
inputIndex = inputlndex + 1;

}

fin.close();

bfin.close();

fin = new FileReader(outputFile);
bfin = new BufferedReader(fin);
while ((s = bfin.readLine()) != null) {
String[] temp = s.split("[]");
1 System.out.println("output="+s);
outputArray[outputIndex] = Integer.parselnt(temp[0]);
outputIndex = outputlndex + 1;

}

for (int indx = 0; indx < inputIndex; indx++) {
System.out.print(inputArray[indx] + " ");
}

System.out.println();

for (int indx = 0; indx < outputIndex; indx++) {
System.out.print(outputArray[indx] + " ");

}

System.out.println();

if (inputlndex != outputlndex) {
System.out.println("Input and output dimension do not match. Contact
Administrator.");
return;

}
for (inti=1;i<=35;i++) {

for (int indx = 0; indx < inputlndex; indx++) {
if (inputArray[indx] ==1) {
totalNEInInput = totalNEInInput + 1;
}
}

for (int indx = 0; indx < outputlndex; indx++) {
if (outputArray[indx] ==1) {
totalNERetrived = totalNERetrived + 1;
}
}

for (int indx = 0; indx < outputlndex; indx++) {
if (outputArray[indx] == 1 && inputArray[indx] == 1 && inputArray[indx] ==
outputArray[indx]) {
totalNERetrivedCorrectly = totalNERetrivedCorrectly + 1;

}
78

}

for (int indx = 0; indx < inputlndex; indx++) {
if (inputArray[indx] == outputArray[indx]) {
totalEntityRetrivedCorrectly = totalEntityRetrivedCorrectly + 1;
}
}

tempTotalNEInInput = totaNEInInput == 0 ? 0.1 : (double) totalNEInInput;

tempTotalNERetrived = totalNERetrived == 0 ? 0.1 : (double) totalNERetrived;

tempTotalNERetrivedCorrectly = totalNERetrivedCorrectly == 0 ? 0.1 : (double)
totalNERetrivedCorrectly;

tempTotalEntityRetrivedCorrectly = totalEntityRetrivedCorrectly == 0 ? 0.1 :
(double) totalEntityRetrivedCorrectly;

tempPrecision = (tempTotalNERetrivedCorrectly / tempTotalNERetrived) * 100;

tempRecall = (tempTotalNERetrivedCorrectly / tempTotalNEInInput) * 100;

tempFscore = (2 * tempPrecision * tempRecall) / (tempPrecision + tempRecall);

tempAccuracy = (tempTotalEntityRetrivedCorrectly / (inputlndex - 1)) * 100;
/l(inputIndex-1)=inputsize

System.out.println(" (Class="+1+
") ");
System.out.println("Total NE in input =" + tempTotalNEInInput);
System.out.println("Total NE Retrived =" + tempTotalNERetrived);
System.out.println("Total NE Retrived Correctly =" +
tempTotalNERetrivedCorrectly);
/" System.out.println("Total inputs =" + inputlndex);
/
System.out.println("

System.out.println("Precision=" + tempPrecision);
System.out.println("Recall=" + tempRecall);
System.out.println("F-Score=" + tempFscore);

foutAccuracy.write("\n");
foutAccuracy.write(" (Class="+1i+

");
foutAccuracy.write("\n");
foutAccuracy.write("Total NE in input = " + totaNEInInput);
foutAccuracy.write("\n");
foutAccuracy.write("Total NE Retrived =" + totalNERetrived);
foutAccuracy.write("\n");
foutAccuracy.write("Total NE Retrived Correctly =" + totalNERetrivedCorrectly);
foutAccuracy.write("\n");

/" foutAccuracy.write("Total inputs = " + inputIndex);

/! foutAccuracy.write("\n");

79

1

"n

foutAccuracy.write(

result[0][i - 1] = tempPrecision;
result[1][i - 1] = tempRecall;
result[2][i - 1] = tempFscore;
result[3][i - 1] = tempAccuracy;

totalNEInInput = O;
totaNERetrived = 0;
totalNERetrivedCorrectly = 0;
totalEntityRetrivedCorrectly = 0;

}

precision = (result[0][0] + result[0][1] + result[0][2] + result[0][3] + result[0][4]) / 5;
recall = (result[1][0] + result[1][1] + result[1][2] + result[1][3] + result[1][4]) / 5;
/! fscore=(result[2][0]+result[2][1]+result[2][2]+result[2][3]+result[2][4])/5;
fscore = (2 * precision * recall) / (precision + recall);
accuracy = (result[3][0] + result[3][1] + result[3][2] + result[3][3] + result[3][4]) / 5;

/! System.out.println("fscores="+result[2][0]+" "+result[2][1]+" " +result[2][2]+"

"+result[2][3]+" "+result[2][4]);

/! System.out.println("fscore="+(2 * precision * recall) / (precision + recall));
System.out.println("------------------- Accuracy Calculation------------------ ");

System.out.println("Precision = " + precision);
System.out.println("Recall =" + recall);
System.out.println("F-Score = " + fscore);
System.out.println("Accuracy =" + accuracy);

System.out.println("

foutAccuracy.write("------------------- Accuracy Calculation------------------ ");
foutAccuracy.write("\n");

foutAccuracy.write("Precision =" + precision);

foutAccuracy.write("\n");

foutAccuracy.write("Recall =" + recall);

foutAccuracy.write("\n");

foutAccuracy.write("F-Score =" + fscore);

foutAccuracy.write("\n");

foutAccuracy.write("Accuracy = " + accuracy);

foutAccuracy.write("\n");

80

foutAccuracy.write("

/"
/"
/"

foutAccuracy.write("\n");
foutAccuracy.close();

} catch (Exception e) {
System.out.println(e);

}

public static void taggedOutput() {

String inputFile = "src/train/inputWithTokens.dat";
String outputFile = "src/train/output.dat”;
String taggedFile = "src/train/taggedOutput.dat";

String inputFile = "src/tests/test10/inputWithTokens.dat";
String outputFile = "src/tests/test10/output.dat”;

String taggedFile = "src/tests/test10/taggedOutput.dat”;
int fileSize = 0;

ArrayList<String> inputList = new ArrayList<String>();
ArrayList<String> outputList = new ArrayList<String>();
String[][] taggedList = new String[200000][2];

String s;
try {

//
FileReader fin = new FileReader(inputFile);
BufferedReader bfin = new BufferedReader(fin);
while ((s = bfin.readLine()) != null) {
String[] tokens = s.split("[]");
inputList.add(tokens[1]);
}
fin.close();
bfin.close();

/1

fin = new FileReader(outputFile);

bfin = new BufferedReader(fin);

while ((s = bfin.readLine()) != null) {
String[] tokens = s.split("[]");
outputList.add(tokens[0]);

}

} catch (Exception e) {
System.out.println(e);

81

/! for(int i=0;i<inputList.size();i++){
/" System.out.println("token="+inputList.get(i));

I }
/! for(int i=0;i<inputList.size();i++){
/" System.out.println("class="+outputList.get(i));

/.

for (int indx = 0; indx < inputList.size(); indx++) {
if (outputList.get(indx).matches("1")) {
taggedList[indx][0] = inputList.get(indx);
taggedList[indx][1] = "PER";

} else if (outputList.get(indx).matches("2")) {
taggedList[indx][0] = inputList.get(indx);
taggedList[indx][1] = "LOC";

} else if (outputList.get(indx).matches("3")) {
taggedList[indx][0] = inputList.get(indx);
taggedList[indx][1] = "ORG";

} else if (outputList.get(indx).matches("4")) {
taggedList[indx][0] = inputList.get(indx);
taggedList[indx][1] = "MISC";

} else if (outputList.get(indx).matches("5")) {
taggedList[indx][0] = inputList.get(indx);
taggedList[indx][1] = "O";

}

fileSize = indx;

}

try {
FileWriter fout = new FileWriter(taggedFile);

for (int i = 0; i < fileSize; i++) {
fout.write(taggedList[i][0]);
fout.write(" ");
fout.write(taggedList[i][1]);
fout.write("\n");
}
fout.close();
} catch (Exception e) {
System.out.println(e);
}
}
}

82

