

Tribhuvan University Institute of Science and Technology

Quantitative Evaluation of Buffer Replacement Algorithms for Flash Memory Based Systems

Dissertation

Submitted to

Central Department of Computer Science & Information Technology Kirtipur, Kathmandu, Nepal

in partial fulfillment of the requirements for the award of degree of

Master of Science in

Computer Science & Information Technology [M.Sc.CSIT]

By

Mr. Bikram Bahadur Rawat

Supervisor

Prof. Dr. Shashidhar Ram Joshi

January, 2014

Tribhuvan University Institute of Science and Technology Central Department of Computer Science & Information Technology

Student's Declaration

I hereby declare that I am the only author of this work and that no sources other than the listed here have been used in this work.

Mr. Bikram Bahadur Rawat Date: 22 January, 2014

Supervisor's Recommendation

I hereby recommend that this dissertation prepared under my supervision by Mr. **Bikram Bahadur Rawat** entitled **"Quantitative Evaluation of Buffer Replacement Algorithms for Flash Memory Based Systems"** in partial fulfillment of the requirements for the award of degree of M.Sc. in Computer Science and Information Technology be processed for the evaluation.

Prof. Dr. Shashidhar Ram Joshi
Department of Electronics & Computer Engineering,
Institute of Engineering,
Pulchowk, Nepal
Date: 22 January, 2014

Tribhuvan University Institute of Science and Technology Central Department of Computer Science & Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope and quality as a dissertation in the partial fulfillment for the requirement of Masters Degree in Computer Science and Information Technology.

Evaluation Committee

Asst. Prof. Nawaraj Poudel Head of Department Central Department of Computer Science & Information Technology Kirtipur, Kathmandu Prof. Dr. Shasidhar Ram Joshi

Head, Department of Electronics & Computer Engineering Institute of Engineering(IOE), Pulchwok, Kathmandu, Nepal

.....

(External Examiner)

(Internal Exminer)

Date:- 13 February 2014

First and foremost, I would like to express my sincere gratitude to all the people who provide their immense help, support, guidance, stimulating suggestions and encouragement all the time during the preparation of this dissertation entitled "Quantitative Evaluation of Buffer Replacement Algorithms for Flash Memory Based Systems". This research work has been performed under the Central Department of Computer Science and Information Technology (*Tribhuwan University*), Kirtipur. I am very grateful to my department for giving me an enthusiastic support.

I would like to express my sincere gratitude to my supervisor **Professor Dr. Shashidhar Ram Joshi,** Head of the Department of Electronics and Computer Engineering, Institute of Engineering, Pulchowk. This work would have not been possible without his encouragement. He always provided a motivating and enthusiastic atmosphere to work with; it was a great pleasure to do this thesis under his supervision. This research would not have been possible without his advices and patience.

I am equally grateful to **Mr. Arjun Singh Saud,** Lecturer, CDCSIT, who gave me an enthusiastic support for the preparation of this dissertation. He is the one who listened to all my problems I faced during this thesis and showed me the way to overcome them.

Most importantly, I would like to thank to respected Head of Department of Central Department of Computer Science and Information Technology, **Asst. Prof. Nawaraj Poudel**, respected Lecturers Prof. Sudarsan Karanjit, Prof. Dr. Subarna Sakya, Mr. Min Bahadur Khati, Mr. Bishnu Gautam, Mr. Dinesh Bajracharya, Mr. Jagdish Bhatta, Mr Dheeraj Kedar Pandey, Mr.Sarbin Sayami, Mr. Tej Bahadur Shahi & Mrs. Lalita Sthapit of CDCSIT, TU, for providing me such a broad knowledge and inspirations.

My greatest thanks are to my parents who bestowed ability and strength in me to complete this work. I am deeply indebted to my parents and dear friends for their inspiration and ever encouraging moral support, which enabled me to pursue my studies. I am equally deeply indebted to my dear spouse for her inspiration, love, time management and immense help to complete this research work. Special thanks to members of educational organizations that I have been working, for their endless motivation, constant mental support and love which have been influential in whatever I have achieved so far.

I wish to thank to all my colleagues and friends especially Mr. Prakash Bhatt, Mr. Bhupendra Saud, Mr. Upendra Raj Joshi, Mr. Rajendra Joshi, Mr. Kepisee Thapa, & Mr. Laxman Basnet for supporting me directly and indirectly in this research work.

I have done my best to complete this research work. Suggestions from the readers are always welcomed, which will improve this work.

Last but not the least; I would like to thank almighty God for not letting me down at the time of crisis and showing the silver lining in the dark clouds.

Abstract

The ever increasing requirement for high performance and high capacity memories of emerging handheld devices or applications has led to the widespread adoption of DRAM and NAND type flash memories. Thus, the buffering policy for flash based systems has to improve the overall performance.

Hence, the use of flash memory requires new buffer replacement policies considering not only buffer hit and miss rates but also the number of read, write and erase operations. Most of the traditional buffer replacement algorithms focued on the hit ratio improvement alone, but not the number of write counts caused by dirty pages to be propagated to the flash memory, which is the main factor to be considered in flash memory based systems.

The dissertation is mainly focused initially to determine the optimal window size for Clean First LRU algorithm and then to evaluate the performance of LRU, CFLRU and ADLRU buffer replacement algorithms. Finally, the comaparative study based on quantitative analysis of those algorithms is performed based on the hit/miss rates and the number write counts. The evaluation is conducted in a simulation environment using three kinds of synthetic traces : random, readmost, and writemost. The dissertation finally concluded that the ADLRU is superior to LRU and CFLRU in most of the cases. Hence, for flash based systems, the ADLRU buffer replacement algorithm is the best option due to its high hit rates and at the same time low write counts.

Keywords:- Flash Memory, replacement policy, buffer management, LRU page replacement algorithm, Clean First LRU (CFLRU) buffer replacement algorithm, Adaptive LRU (ADLRU) buffer replacement algorithm, Page faults, Cold LRU, Hot LRU, write counts, hit rate, miss rate.

Acknowledgements	i
Abstract	iii
Table of Contents	iv
List of Figures	ix
List of Tables	x
List of Abbreviations	xi

Background & Introduction

1.1 Background1-	-5
1.1.1 Flash memory 1	
1.1.2 Performance Metrics	-4
1.1.2.1 Page Fault Count 3	
1.1.2.2 Write Counts	
1.1.2.3 Hit Rate and Miss Rates 4	
1.1.3 Program Behavior	5
1.1.3.1 Locality of Reference	
1.1.3.2 Memory Reference Pattern	-5
1.2 Introduction	7
1.2.1 Problem Statement 5	
1.2.2 Objectives	
1.2.3 Motivation	
1.3 Thesis Organization	

Literature Review & Methodology

2.1 Literature Review	8-19
2.1.1 Buffer Replacement Algorithms	8
2.1.2 Traditionl Bufffer Replacement Algorithms	8-15
2.1.2.1 OPT Page Replacement Algorithm	8
2.1.2.2 LRU Based Page Replacement Algorithms	9-12
2.1.2.2.1 General LRU Page Replacement Algorithm	9
2.1.2.2.2 NRU Page Replacement Algorithm	9
2.1.2.2.3 MRU Page Replacement Algorithm	10
2.1.2.2.4 LFU Page Replacement Algorithm	10
2.1.2.2.5 LRFU Page Replacement Algorithm	11
2.1.2.2.6 LRU-K Page Replacement Algorithm	11
2.1.2.2.7 2Q Page Replacement Algorithm	11
2.1.2.2.8 LIRS Page Replacement Algorithm	12
2.1.2.2.9 ARC Page Replacement Algorithm	12
2.1.2.3 CLOCK Based Page Replacement Algorithms	13-15
2.1.2.3.1 CLOCK Page Replacement Algorithm	13
2.1.2.3.2 GCLOCK Page Replacement Algorithm	13
2.1.2.3.3 CAR Page Replacement Algorithm	14
2.1.2.3.4 CART Page Replacement Algorithm	14
2.1.2.3.5 CLOCK-Pro Page Replacement Algorithm	14
2.1.2.3.6 Adaptive CLOCK-Pro Page Replacement Algorithm	15
2.1.2.4 Buffer Replacement Algorithms for Flash Based Systems	15-19
2.1.2.4.1 CFLRU	15
2.1.2.4.2 ARC	15

	2.1.2.4.3 CFDC	.16
	2.1.2.4.4 CASA	17
	2.1.2.4.5 LRU-WSR	17
	2.1.2.4.6 LIRS-WSR	18
	2.1.2.4.7 AD-LRU	.18
	2.1.2.4.8 CCF- LRU	.19
2.2 Research	Methodology	.19

Buffer Replacement Algorithms for Flash Memory based systems in this Dissertation		
3.1 LRU Buffer Replacement	20-25	
3.1.1 LRU Buffer Replacement Algorithm Implementation Issues	20	
3.1.2 LRU Buffer Replacement Algorithm Tracing	21-25	
3.2 CFLRU Buffer Replacement	26-33	
3.2.1 CFLRU Buffer Replacement Algorithm	26-27	
3.2.2 CFLRU Buffer Replacement Algorithm Tracing	28-33	
3.3 ADLRU Buffer Replacement	33-42	
3.3.1 ADLRU Buffer Replacement Algorithm	34-36	
3.3.2 ADLRU Buffer Replacement Tracing	37-42	
3.4 Determination of optimal window size (w) for CFLRU	43	

Implementation and Testing

4.1 Tools used	44-45
4.1.1 Programming Language	44
4.1.2 NetBeans IDE	45
4.2 Data Structures Used	.45-50
4.2.1 Doubly Linked List (DLL)	.45-46
4.2.2 Structure of LRU, CFLRU & ADLRU nodes	46-50
4.3 Flowcharts of the Algorithms Taken	51-53
4.3.1 LRU Flowchart	51
4.3.2 CFLRU Flowchart	52
4.3.3 ADLRU Flowchart	53
4.4 Sample Test Cases	.54-55

CHAPTER 5

Test Results & Analysis

5.1 Test Workloads	
5.2 Testing	
5.2.1 Test result of Workload 1[random traces]	.57-58
5.2.1.1 Test result for CFLRU for finding optimal value of windo Workload 1	w size(w) for 57
5.2.1.2 Test result for three algorithms with varying buffer size	58
5.2.2 Test result of Workload 2[readmost traces]5	8-59
5.2.2.1 Test result for CFLRU for finding optimal value of windo Workload 2	w size(w) for 58
5.2.2.2 Test result for three algorithms with varying buffer size	59
5.2.3 Test result of Workload 3[writemost traces]	59-60

5.2.3.1 Test result for CFLRU for fin Workload 3	iding optimal value of window size(w) for
5.2.3.2Test result for three algorithm	s with varying buffer size60
5.3 Analysis	61-67

Conclusion and Recommendation

Appendices	
References	
6.2 Future Work	
6.1Conclusion	

List of Figures

Fig. No.	Caption	Pages
Fig 1.1 - A simpl	le architecture of Flash based storage systems .	1
Fig 1.2 - Demand	d Paging using OneNAND	2
Fig.2.1 Example	of CFLRU algorithm	15
Fig. 2.2 Example	e of CFDC	16
Figure 2.3 Exam	ple of CASA Algorithm	17
Fig4.1 - Flowcha	urt of LRU Algorithm	51
Fig4.2 - Flowcha	rt of CFLRU Algorithm	52
Fig4.3 - Flowcha	rrt of ADLRU Algorithm	53
Fig5.1 - Graph fo	or Table 5.1 showing hit rate for CFLRU with	varying window_size61
Fig5.2 - Graph fo	or Table 5.1 showing write counts for CFLRU	with varying window_size61
Fig5.3 - Graph fo	or Table 5.2 showing hit rate	62
Fig5.4 - Graph fo	or Table 5.2 showing write counts	
Fig5.5 - Graph fo	or Table 5.3 showing hit rate for CFLRU with	varying window_size63
Fig5.6 - Graph fo	or Table 5.3 showing write counts for CFLRU	with varying window_size63
Fig5.7 - Graph fo	or Table 5.4 showing hit rate	64
Fig5.8 - Graph fo	or Table 5.4 showing write counts	64
Fig5.9 - Graph fo	or Table 5.5 showing hit rate for CFLRU with	varying window_size65
Fig5.10 - Graph	for Table 5.5 showing write counts for CFLRU	J with varying window_size
Fig5.11- Graph f	for Table 5.6 showing hit rate	66
Fig5.12- Graph f	for Table 5.6 showing write counts	66

Table No.	Caption		Pages
Table 1.1 - Motivation of	of the Dissertation		6
Table 5.1-Test result for	CFLRU for finding optir	nal value of window s	ize for Workload1
Table 5.2 - Test results	of Workload 1 with varyir	ng buffer size	
Table 5.3-Test result for	CFLRU for finding optir	nal value of window s	ize for Workload 2
Table 5.4 - Test results	of Workload 2 with varyir	ng buffer size	59
Table 5.5-Test result for	CFLRU for finding optir	nal value of window s	ize for Workload 3
Table 5.6 - Test results	of Workload 3 with varyir	ng buffer size	60

-		
ADLRU	_	Adaptive Least Recently Used
ARC	-	Adaptive Replacement Cache
CASA	_	Cost Aware Self Adaptive
CFDC	_	Clean First Dirty Clustered
CFLRU	_	Clean First Least Recently Used
CMOS	_	Complementary Metal Oxide Semiconductor
CPU	-	Central Processing Unit
DLL	_	Doubly Linked List
DRAM	-	Dynamic RAM
EEPROM	_	Electrically Erasable Programmable Read Only Memory
HPC	_	Handheld Personal Computer
HR	-	Hit Rate
IDE	_	Integrated Development Environment
I/O	_	Input / Output
JIT	_	Just In Time
JVM	_	Java Virtual Machine
LFU	-	Least Frequently Used
LIRS	-	Low Inter-reference Recency Set
LRFU	-	Least Recently Frequently Used
LRU	-	Least Recently Used
MLC	_	Multi Level Cell
MR	-	Miss Rate
MRU	-	Most Recently Used
NAND	-	NOT AND
NDP	-	Number of Distinct Pages
NPF	-	Number of Page Fault
NRU	-	Not Recently Used
OS	_	Operating System
PDA	_	Personal Digital Assitant
PMP	_	Portable Media Players
SLC	_	Single Level Cell
XIP	_	eXecute In Place