
 

1 
 

Chapter-One 

Background and Introduction 

1.1Background 

1.1.1 Flash Memory  
Flash memory is a type of EEPROM, which was invented by Intel and Toshiba in 1980s. 

Unlike magnetic disks, flash memory does not support update in-place, i.e., previous data 

must be first erased before a write can be initiated to the same place. As another 

important property of flash memory, three types of operations can be executed: read, 

write, and erase[1]. In contrast, magnetic disks only support read and write operations. 

Moreover, all granularities and latencies of read and write operations differ for both 

device types.  

Compared to magnetic disks, flash memory has the following special properties:  

(1) It has no mechanical latency, i.e., seek time and rotational delay are not present. 

(2) It uses an out-of-place update mechanism[2], because update in-place as used for 

magnetic disks would be too costly. 

(3) Read/write/erase operations on flash memory have different latencies. While reads are 

fastest, erase operations are slowest.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Fig.1.1 A simple architecture of Flash based storage systems 

 

Applications 

Page APIs 

       

Page APIs     DBMS 

System Buffer 

Storage Manager 

      

      File System OS Buffer 

 

Flash Disk 

 

 

FTL 

Cache 

Flash  

Memory 

OS CALLS : - READ & WRITE 

Block Level APIs 



 

2 
 

Flash memory is a complex technology, and many factors impact its overall performance, 

reliability, and suitability for a particular application.Flash memories store data as charge 

trapped on a floating gate between the control gate and the channel of a CMOS transistor. 

Each gate can store one or more bits of information depending on whether it is a single-

level cell (SLC) or a multi-level cell (MLC). Commercially available devices store 

between 1 and 4 bits per cell [3].  

The ever increasing requirement for high performance and high capacity memories of 

emerging handheld devices or applications has led to the widespread adoption of DRAM 

and NAND type flash memories[4], respectively. As the handheld devices are becoming 

multifunctional day to day and the size & the number of applications is rapidly 

increasing, so they demand more hardware resources but their production cost is 

accordingly becoming higher. 

Flash memory has characteristics of out-of-place update and asymmetric I/O latencies for 

read write and erase operations. Thus, the buffering policy for flash based databases has 

to improve the overall performance. In recent years, flash memory greatly gained 

acceptance in various embedded computing systems and portable devices such as PDA’s, 

HPC’s, PMP’s and mobile phones because of low cost, volumetric capacity and low 

power consumption [5]. There are generally two methods to execute applications on those 

types of devices: eXecute-In-Place on NOR flash memory (NOR-XIP) and second 

method is known as shadowing. But, these two methods have the common problem of 

high production cost; a Demand Paging Scheme is the better choice. Since demand 

paging scheme[2] stores the applications code to a cheap secondary memory (OneNAND) 

and loads the required pages to the main memory (DRAM) on demand as shown in 

fig.1.2 below: 

 

                                                                            

                                                                        Demand Paging 

 

 

 

                                                    

                                                       DRAM    OneNAND 

                     512 Mb                             1 GB  

                           Fig.1.2 Demand Paging using OneNAND 

  CPU 

Working 

 RAM 

Code & Data 

Storage 



 

3 
 

Flash memory usually consists of many blocks and each block contains a fixed set of 

pages [3]. Read/write operations are performed on page granularity, whereas erase 

operations are relatively slow compared to read operation. Typically, write operations are 

about ten times slower than read operations and erase operations are about ten times 

slower than write operations [6]. 

Since flash memory has become a serious disk alternative, and since traditional;( 

magnetic-disk-based) buffering algorithms do not consider the differing I/O latencies of 

flash memory. So their straight adoption would result in poor buffering performance and 

would demote the development of flash based systems. The use of flash memory requires 

new buffer replacement policies considering not only buffer hit ratios or miss ratios but 

also replacement costs incurring when a dirty page has to be propagated to flash memory 

not in the buffer. As a consequence a replacement policy should minimize the number of 

write/erase operations on flash memory and at the same time increase the hit ratio. Most 

of the traditional buffer replacement algorithms focused on the hit ratio improvement 

alone, but not the write costs caused by the replacement process. 

 

1.1.2 Performance Matrices 

Offline performance of buffer replacement algorithm is measured in terms of page fault 

count, write counts, hit rate and hit ratio, miss rate and miss ratio etc as follows: 

1.1.2.1 Page Fault Count 

An efficient page replacement algorithm always computes less number of page faults. It 

can be computed by counting occurrences of number of page faults between some 

intervals of references. 

1.1.2.2 Write counts  

Write count[5] is the number of pages propagated to flash memory which can be 

calculated by counting the number of physical page writes to flash memory and at the 

end of each test the dirty pages in the buffer are flushed to the flash memory to get exact 

write counts. 

 

 



 

4 
 

1.1.2.3  Hit and Miss rates 

Hit rate can be calculated by using formula: hr = 100 - mr, where hr is the hit rate and 

mr is the miss rate. Hit rate is the percentage calculation of the fraction hit ratio. Hit ratio 

can be calculated by subtracting miss ratio from 1. 

Miss rate (mr) can be calculated by using formula: 

mr = 100 × ( ( #pf - #distinct ) / ( #refs - #distinct ) ) 

Where #pf is the number of page faults, #distinct is the number of distinct pages 

referenced and #refs is the total number of pages referenced. Miss Ratio is the fraction 

number of page fault and reference ignoring the distinct references. 

1.1.3 Program Behavior 

There are several factors that influence performance of buffer replacement algorithms. 

The performance of buffer replacement algorithm relies on pattern of pages that are 

referenced. Behavior of program depends upon the access pattern it references memory 

which is further depends upon working set, locality of reference and write or read mode 

natures of the reference pages.  

1.1.3.1 Locality of Reference  

During the course of execution of program memory references tend to cluster forming 

certain locality. Locality varies on the basis of time and space. Temporal locality is 

based on time, it assumes that memory location referenced just now is likely to be 

reference again in near future. Looping, subroutines, stacks, variable used for counting & 

totaling etc supports this assumption. Spatial locality is based on space, is assumes that 

once a memory is referenced there is high chance of nearby memory location to be 

referenced again. Array traversal, sequential code execution, related variable declaration 

nearby in source code supports this assumption. Hints of locality are followed in any 

type memory reference sequence. 

 

1.1.3.2 Memory Reference Patterns  

Altogether three types of standard synthetic traces i.e. random traces, readmost traces, 

and writemost traces are used in this dissertation. 

Traces:- Traces are the page references that are supplied to the algorithm as input for 

testing and the output generated is then analyzed in this dissertation three standard input 

traces are taken which are described below.  



 

5 
 

i. Random Traces 

The page references having random read and write nature of pages are called random 

traces. 

ii. WriteMost Traces 

The page references having most of the pages with write mode nature are called 

writemost traces. 

iii. Readmost Traces 

The page references having most of the pages with read mode nature are called readmost 

traces. 

In order to obtain a good approximation, there are total 1,00,000 page references in each 

of the three traces, which are restricted to a set of pages whose numbers range from 1 to 

49,999. 

 

 

1.2Introduction 

1.2.1Problem Statement 

Since, in most operating systems which are customized for disk-based storage system, 

the replacement algorithm concerns only the number of memory hits. However, flash 

memory has asymmetric (different) read and write/erase  cost in the aspects of time and 

energy so the replacement algorithm with flash memory should consider not only the 

hit count but also the replacement cost caused by selecting dirty victim pages. The 

replacement cost of dirty page is higher than that of clean page with regard to both 

access time and energy consumption [7]. 

There are many buffer replacement algorithms developed for flash based systems. 

Hence the quantitative evaluation of these buffer replacement algorithms for flash 

based systems is required in terms of write counts and hit rate. This dissertation will 

mainly focus on comparative evaluation of three algorithms:LRU[8] that only considers 

recency of workloads, CFLRU: that considers recency & cleanliness and AD-LRU: that 

considers recency, cleanliness & frequency. 

For this :- the optimal value for the window size (w) of CFLRU repalcement algorithm 

will be determined by varying its size from 0 to 0.9 for different workloads and Finally, 

the obtained optimal value of window size (w) is used for CFLRU and the three 

algorithms LRU,CFLRU and AD-LRU are compared and evaluated.  



 

6 
 

 

 

 

 

1.2.2Objectives 

The main objectives of this dissertation work are: 

i. To evaluate the optimal values of window size w  of CFLRU algorithm. 

ii. To evaluate the performances of LRU, CFLRU & ADLRU algorithms and to 

perform the comparative study of LRU, CFLRU and AD-LRU buffer replacement 

algorithms for flash based systems 

 

1.2.3Motivation 

Since, the use of flash memory requires buffer replacement policies considering not 

only buffer hit ratios or miss ratios but also replacement costs incurring when a dirty 

page has to be propagated to flash memory not in the buffer. As a consequence a 

replacement policy should minimize the number of write/erase operations on flash 

memory and at the same time increase the hit ratio.  

The three algorithms taken has different characteristics with different nature hence their 

comparision is necessary. LRU only considers the recency of memory reference while 

CFLRU considers recency & cleanliness properties of the reference pages but AD-LRU 

not only considers recency & Cleanliness but also the frequency of the reference 

patterns which is shown in fig below:- 

 

 

 LRU CFLRU AD-LRU 

Recency YES YES YES 

Cleanliness NO YES YES 

Frequency NO NO YES 

 

Table.1.1 Motivation of the Dissertation 

 



 

7 
 

 

1.2.4 Dissertation Organization 

Background part of this dissertation work focuses on buffer replacement algorithm and the 

related basic terms and terminologies which are already mentioned above along with an 

introduction to AD-LRU. Some more chapters are remaining which clarifies the topics 

fulfilling the objectives of this dissertation work. Chapter 2 consists of literature review 

which briefly reviews the related topics. Literature review includes details of several page 

replacement algorithms etc. within their category. This chapter also contains the research 

methodology part which shows the flow of my research. Chapter 3 consists of program 

development steps of our simulation. It includes the algorithm description and algorithm 

tracing for certain manual input traces. Chapter 4 includes detail design of the program. Also 

it includes details about the data structures and programming language used to build the 

simulation. Chapter 5 consists of data collection and analysis part which includes details 

about the traces taken in this dissertation, output results with several analyzing graphs. 

Chapter 6 consists of conclusion of this whole dissertation work and the future work which 

shows guidelines for further research work. 



8 
 

Chapter – Two 

Literature Review and Methodology 

2.1 Literature Review 

2.1.1 Buffer Replacement Algorithms 

Buffer management is one of the key issues in operating systems. Typically; system uses two-

level storage systems: main memory and external (secondary) storage. Both of them are 

logically organized into a set of pages, where a page is the only interchanging unit between 

the two levels. When a page is requested from modules of upper layers, the buffer manager 

has to read it from secondary storage if it is not already contained in the buffer. If no free 

buffer frames are available, some page has to be selected for replacement. In such a scheme, 

the quality of buffer replacement decisions contributes as the most important factor to buffer 

management performance. Traditional replacement algorithms primarily focus on the hit ratio 

[8], because a high hit ratio will result in a better buffering performance. Many algorithms 

have been proposed so far, either based on the recency or frequency property of page 

references. And hence those algorithms evaluate their performances based on not only the hit 

and miss rates but also considering the number of read, write and erase operations that occur 

during the replacement process. The different categories are discussed below. 

 

2.1.2 Traditional (Disk based) Buffer Replacement Algorithms 

The best-known traditional (Disk Based) buffer replacement algorithms are:- 

2.1.2.1 OPT Page Replacement algorithm 

The best possible page replacement algorithm is easy to describe but impossible to implement. 

It goes like this. At the moment that a page fault occurs, some set of pages is in memory. One 

of these pages will be referenced on the very next instruction (the page containing that 

instruction). Other pages may not be referenced until 10, 100, or perhaps 1000 instructions 

later. Each page can be labeled with the number of instructions that will be executed before 

that page is first referenced.The only problem with this algorithm is that it is unrealizable. At 

the time of the page fault, the operating system has no way of knowing when each of the 

pages will be referenced next. Still, by running a program on a simulator and keeping track of 



9 
 

all page references, it is possible to implement optimal page replacement on the second run by 

using the page reference information collected during the first run.  

From the past experiences and research papers the researches on the page replacement 

algorithms are categorized into LRU based replacement algorithms and CLOCK[9] based 

replacement algorithms. 

 

2.1.2.2 LRU Based Page Replacement Algorithms 

2.1.2.2.1 General LRU Page Replacement Algorithm  

A good approximation to the optimal algorithm is based on the observation that pages that 

have been heavily used in the last few instructions will probably be heavily used again in the 

next few. Conversely, pages that have not been used for ages will probably remain unused for 

a long time. This idea suggests a realizable algorithm: when a page fault occurs, throw out the 

page that has been unused for the longest time. This strategy is called LRU (Least Recently 

Used) paging [8].  

Although LRU is theoretically realizable, it is not cheap. To fully implement LRU, it is 

necessary to maintain a linked list of all pages in memory, with the most recently used page at 

the front and the least recently used page at the rear. The difficulty is that the list must be 

updated on every memory reference. Finding a page in the list, deleting it, and then moving it 

to the front is a very time consuming operation, even in hardware (assuming that such 

hardware could be built).  

However, there are other ways to implement LRU with special hardware. Let us consider the 

simplest way first. This method requires equipping the hardware with a 64-bit counter, C, that 

is automatically incremented after each instruction. Furthermore, each page table entry must 

also have a field large enough to contain the counter. After each memory reference, the 

current value of C is stored in the page table entry for the page just referenced. When a page 

fault occurs, the operating system examines all the counters in the page table to find the 

lowest one. That page is the least recently used.  

 

2.1.2.2.2 NRU Page Replacement Algorithm  

The not recently used (NRU), sometimes known as the Least Recently Used (LRU), page 

replacement algorithm is an algorithm that favors keeping pages in memory that have been 



10 
 

recently used. This algorithm works on the following principle: when a page is referenced, a 

referenced bit is set for that page, marking it as referenced. Similarly, when a page is 

modified, a modified bit is set. The setting of the bits is usually done by the hardware, 

although it is possible to do so on the software level as well.  

When a page needs to be replaced, the operating system divides the pages into four classes:  

3. referenced, modified  

2. referenced, not modified  

1. not referenced, modified  

0. not referenced, not modified  

Although it does not seem possible for a page to be not referenced yet modified, this happens 

when a class 3 page has its referenced bit cleared by the clock interrupt. The NRU algorithm 

picks a random page from the lowest category for removal. So out of the above four pages, the 

NRU algorithm will replace the not referenced, not modified [2].  

 

2.1.2.2.3 MRU Page Replacement Algorithm  

Most Recently Used (MRU) algorithm [10, 11] works on the basis of recency factor as in 

LRU. It violates LRU principle and works totally in opposite manner. LRU evicts unused 

page following locality of principle but MRU evicts recently used page as victim. MRU is 

only suitable when there weak locality of reference, which is worst case of LRU. MRU can be 

implemented in similar way as LRU by maintaining recency stack. But here front one is 

removed and bottom one is stored for future use. Hence MRU is only suitable in case of worst 

locality of reference where LRU could not deal with this effect.  

 

2.1.2.2.4 LFU Page Replacement Algorithm  

Often confused with LRU, Least Frequently Used (LFU) [12] selects a page for replacement if 

it has not been used often in the past. Instead of using a single age as in the case of LRU, LFU 

defines a frequency of use associated with each page. This frequency is calculated throughout 

the reference stream, and its value can be calculated in a variety of ways. The most common 

frequency implementation begins at the beginning of the page reference stream, and continues 

to calculate the frequency over an ever-increasing interval. Although this is the most accurate 

representation of the actual frequency of use, it does have some serious drawbacks. Primarily, 



11 
 

reactions to locality changes will be extremely slow[5]. Assuming that a program either 

changes its set of active pages, or terminates and is replaced by a completely different 

program, the frequency count will cause pages in the new locality to be immediately replaced 

since their frequency is much less than the pages associated with the previous program. Since 

the context has changed, and the pages swapped out will most likely be needed again soon 

(due to the new program’s principal of locality), a period of thrashing will likely occur. If the 

beginning of the reference stream is used, initialization code of a program can also have a 

profound influence, as described by [10]. The pages associated with initial code can influence 

the page replacement policy long after the main body of the program has begun execution.  

 

2.1.2.2.5 LRFU Page Replacement Algorithm  

Having analyzed the advantages and disadvantages of LRU and LFU, A new algorithm 

LRFU[12] is proposed by combining them through weighing block recency and frequency 

factors. The performance of the LRFU algorithm largely relies on a parameter called 

(Lambda), which determines the relative weight of LRU or LFU and has to be adjusted 

according to the system configurations, even according to different workloads.  

 

2.1.2.2.6 LRU-K Page Replacement Algorithm  

LRU - K [11] evicts the page that is the one whose backward K-distance is the maximum of 

all pages in buffer. Backward K-distance bt(p,K) can be defined as the distance backward to 

the Kth most recent reference to page p where reference string known up to time t (r1, r2, 

…,rt). The value of parameter K can be taken as 1, 2 or 3. If K=1, it works as simple LRU 

algorithm. Highly increasing value of K the overall performance of algorithm reduces. LRU-

K can discriminate better between frequently referenced and infrequently referenced pages. 

Unlike the approach of manually tuning the assignment of page pools to multiple buffer pools, 

LRU-K does not depend on any external hints. Unlike LFU and its variants, our algorithm 

copes well with temporally clustered patterns.  

 

2.1.2.2.7 2Q Page Replacement Algorithm  

The LRU-2 makes its replacement decision based on the time of the second to last reference 

to the block and evicts the oldest resident block. The 2Q [13] quickly removes from the buffer 



12 
 

cache, sequentially-referenced blocks and looping-referenced blocks with long loop periods 

by using a special buffer called the A1in queue in which all missed blocks are initially placed 

and from which the blocks are replaced in the FIFO order short residence. This algorithm uses 

special buffer queue A1in of size Kin, ghost buffer queue A1out of size Kout and the main 

buffer Am. Special buffer contains all missed that is first time referenced block. Ghost buffer 

contains replaced blocks from special buffer. Frequently accessed block are available in main 

buffer. Hence victim blocks are always from special buffer and main buffer.  

 

2.1.2.2.8 LIRS Page Replacement Algorithm  

LIRS[14] is one of the important replacement algorithms especially for weak locality or 

references. Here pages are categorized into two groups: High Inter-reference Recency (HIR) 

block set and Low Inter-reference Recency (LIR) block set. Each block with history 

information in cache has a status {either LIR or HIR. Some HIR blocks may not reside in the 

cache, but have entries in the cache recording their status as HIR of non-residence. Divide the 

cache, whose size in blocks is L, into a major part and a minor part in terms of the size. The 

major part with the size of Llirs is used to store LIR blocks, and the minor part with the size of 

Lhirs is used to store blocks from HIR block set, where Llirs + Lhirs = L. When a miss occurs 

and a free block is needed for replacement, we choose an HIR block that is resident in the 

cache. LIR block set always resides in the cache and there are no misses for the references to 

LIR blocks. However, a reference to an HIR block would likely to encounter a miss, because 

Lhirs is very small (its practical size can be as small as 1% of the cache size).  

The main objective of LIRS is to minimizing the deficiencies presented by LRU using an 

additional criterion named IRR (Inter- Reference Recency) that represents the number of 

different pages accessed between the last two consecutive accesses to the same page. The 

algorithm assumes the existence of some behavior inertia and, according to the collected 

IRRs, replaces the page that will take more time to be referenced again. This means that LIRS 

does not replace the page that has not been referenced for the longest time. 

 

2.1.2.2.9 ARC Page Replacement Algorithm  

Adaptive Replacement Cache (ARC) [15] improves the basic LRU strategy by splitting the 

cache directory into two lists, T1 and T2, for recently and frequently referenced entries. In 



13 
 

turn, each of these is extended with a ghost list (B1 or B2), which is attached to the bottom of 

the two lists. These ghost lists act as scorecards by keeping track of the history of recently 

evicted cache entries, and the algorithm uses ghost hits to adapt to recent change in resource 

usage. Note that the ghost lists only contain metadata (keys for the entries) and not the 

resource data itself, i.e. as an entry is evicted into a ghost list its data is discarded. The 

combined cache directory is organized in four LRU lists:  

 

1. T1, for recent cache entries.  

 

2. T2, for frequent entries, referenced at least twice.  

 

3. B1, ghost entries recently evicted from the T1 cache, but are still tracked.  

 

4. B2, similar ghost entries, but evicted from T2.  

 

T1 and B1 together are referred to as L1, a combined history of recent single references. 

Similarly, L2 is the combination of T2 and B2. 

 

 

2.1.2.3 ClOCK based Page Replacement Algorithms 

2.1.2.3.1 CLOCK Page Replacement Algorithm  

Research and experience have shown that CLOCK [15] is close approximation of LRU, and 

its performance characteristics are very similar to those of LRU. So all the performance 

disadvantages about LRU are also applied to CLOCK. In CLOCK, the memory spaces 

holding the pages can be regarded as a circular buffer. Here each page is associated with a bit, 

called reference bit, which is set by hardware whenever the page is accessed. When it is 

necessary to replace a page to service a page fault, the page pointed to by the hand is checked. 

If its reference bit is unset, the page is replaced. Otherwise, the algorithm resets its reference 

bit and keeps moving the hand to the next page.  

 

2.1.2.3.2 GCLOCK Page Replacement Algorithm  

In generalized CLOCK page replacement algorithm each page frame in memory associate a 

count field and arrange these count fields in a circular list [15]. Whenever a page is 

referenced, the associated count field is set to i. When a page fault occurs, a pointer that 

circles around this circular list of page frames is observed. If the count field pointed to is zero, 



14 
 

then the page is removed and the new page is placed in that frame. Otherwise, the count is 

decremented by 1, the pointer is advanced to the next count field, and the process is repeated. 

When a new page is placed in the page frame, the count field is set to i if the page is to be 

referenced (demand fetch) and it is set to j if the page has been pre-paged and is not 

immediately referenced. This algorithm abbreviated by writing CLOCKP (j, i). The “P” 

indicates that this is a pre-paging algorithm (the pre-paging strategy has not been specified). 

 

2.1.2.3.3 CAR Page Replacement Algorithm  

Another CLOCK based algorithm is CAR[16] (CLOCK with adaptive replacement), this 

algorithm uses two clocks T1 & T2 and two lists B1 & B2. T1 and T2 contain cold pages and 

hot pages i.e. contain pages in the cache, while B1 & B2 maintain history information about 

the recently evicted pages from B1 & B2 respectively.  

 

2.1.2.3.4 CART Page Replacement Algorithm  

A limitation of ARC and CAR is that two consecutive hits are used as a test to promote a page 

from “recency” or “short-term utility” to “frequency” or “long-term utility”. At upper level of 

memory hierarchy, we often observe two or more successive references to the same page 

fairly quickly. Such quick successive hits are known as “correlated references” [12] and are 

typically not a guarantee of long-term utility of a page, and, hence, such pages can cause 

cache pollution–thus reducing performance. The motivation behind CART is to create a 

temporal filter that imposes a more stringent test for promotion from “short-term utility” to 

“long-term utility”. The basic idea is to maintain a temporal locality window such that pages 

that are re-requested within the window are of short-term utility whereas pages that are re-

requested outside the window are of long-term utility. Furthermore, the temporal locality 

window is itself an adaptable parameter of the algorithm.  

 

2.1.2.3.5 CLOCK-Pro Page Replacement Algorithm  

Another important algorithm is CLOCK-Pro whose objective is to minimize the fault rate in 

weak locality of references[17] and also increases the performance of a computer because it 

does not need to movement of pages in case of page hit. But normally such case not takes 

place in other replacement algorithms.  



15 
 

 

2.1.3.6 Adaptive CLOCK-Pro Page Replacement Algorithm  

Its objective is to minimize the fault rate in weak locality of references like CLOCK-Pro only 

difference is that here cold page size is varying dynamically. 

 

2.1.3 Buffer Replacement Algorithms for Flash-based Systems 

2.1.3.1 CFLRU 

Since a replacement policy might decide to keep dirty pages in cache as many as possible to 

save the write cost on flash memory. However, by doing this, the cache will run out of space, 

and consequently the number of cache misses will be increased dramatically, which, in turn, 

will increase the replacement cost of reading requested page from flash memory. On the 

other hand, a replacement policy that focuses mainly on increasing the cache hit count will 

evict dirty pages, which will increase the replacement cost of writing evicted pages into flash 

memory. Thus, a sophisticated scheme to compromise both sides of efforts is needed to 

minimize the total cost. For this purpose CFLRU [18] (Clean-First LRU), which is modified 

from the LRU algorithm, can be the best solution. CFLRU divides the LRU list into two 

regions to find a minimal cost point. 

 

Working Region                            Clean First Region 

  P1   P2       P3             P4    P5         P6 P7      P8 

            LRU  

            List 

          MRU             LRU 

                  

                               : Dirty page                                                       Window, w 

 : Clean page  

Fig.2.1 Example of CFLRU algorithm 

  

2.1.3.2 ARC 

ARC[19] maintains two LRU pages lists: L1 and L2. L1 maintains pages that have been seen 

only once, recently, while L2  maintains pages that have been seen at least twice, recently. The 

 

    L1 

          MRU 

 

 

    LRU 

D C C D C C D D 

D 

C 



16 
 

algorithm actually caches only a fraction of the pages on these lists. The pages that have been 

seen twice within a short time may be thought of as having high frequency or as having longer 

term reuse potential. Hence, we say that L1 captures recency, while L2 captures frequency. If the 

cache can hold c pages, we strive to keep these two lists to roughly the same size, c. Together, 

the two lists comprise a cache directory that holds at most 2c pages. ARC caches a variable 

number of most recent pages from both L1 and L2 such that the total number of cached pages is 

c. ARC continually adapts the precise number of pages from each list that are cached. 

 

2.1.3.3 CFDC (Clean First Dirty Clustered) 

 

 Fig. 2.2 Example of CFDC 

CFDC[20] manages the buffer in two regions: the working region for keeping hot pages that are 

frequently and recently revisited, and the priority region P responsible for optimizing replacement 

costs by assigning varying priorities to page clusters.A parameter λ, called priority window, 

determines the size ratio of P relative to the total buffer. Therefore, if the buffer has b  pages, then P 

contains λ.b pages and the remaining (1-λ)⋅b  pages are managed in W.CFDC algorithm is a 

generlized two-region scheme, independent of LRU in which the parameter priority window is 

the  size of the priority region.This algorithm performs the  seperation of clean and dirty pages 

where dirty pages are grouped in clusters and clusters are ordered by priority. 

Since CFDC is the improvement of the CFLRU algorithm and CFDC improves the effciency of 

the buffer manager by using pages in a clustered fashion, based on the oberservation that flash  

writes with strong spatial locality can be served by flash disks more efficiently than random 

writes. 

 



17 
 

 

2.1.3.4 CASA (Cost Aware Self Adaptive) 

The CASA[20] algorithm uses the notion of cost ratio to refer to the extent of R/W asymmetry of 

the underlying storage device, defined as the ratio of the long-term cost of physical reads to that 

of physical writes. 

    

 

 

                        If |C|>r                                                                             if|C| <=r 

  LRU    MRU  MRU     LRU 

 

 

   | C |      | D | 

 

                 b = | C| + | D |   

Figure 2.3 CASA dynamically adjusts the size of the clean list and the dirty list 

 

CASA manages the buffer pool B of b pages using two dynamic lists: the clean list C for keeping 

clean pages that are not modified since being read from secondary storage, and the dirty list D 

accommodating dirty pages that are modified at least once in the buffer. Pages in either list are 

ordered by reference recency. Both lists are initially empty while, in the stable state ( no empty 

buffer frames available).  

 

2.1.3.5 LRU-WSR 

LRUWSR[5] is a flash-aware algorithm based on LRU and Second Chance, using only a single list 

as auxiliary data structure. The idea is to evict clean and cold-dirty pages and keep the hot-dirty 

pages in buffer as long as possible. When a victim page is needed, it starts search from the LRU end 

of the list. If a clean page is visited, it will be returned immediately (LRU and clean-first strategy). If 

a dirty page is visited and is marked “cold”, it will be returned; otherwise, it will be marked “cold” 

(Second Chance) and the search continues. 

 

victim 

 Clean list C   Dirty List D 



18 
 

 

2.1.3.6 LIRS-WSR 

The LIRS-WSR algorithm[21] is an improvement of LIRS[14] so that it can suit the 

requirements of flash-based systems. However, LIRS-WSR has the same limitation as 

CFLRU and LRU-WSR, because it is not self-tuning, too, and hardly considers the 

reference frequency. Frequently referenced pages may be evicted before a cold dirty page, 

because a dirty page is always put on the top of the LIRS stack, irrespective of its reference 

frequency. Moreover, LIRS-WSR needs additional buffer space, because it has to maintain 

historical reference information for those pages that were referenced previously, but are 

currently not in the buffer. 

 

2.1.3.7 AD-LRU 

AD-LRU is also one of the efficient buffer replacement policy developed for flash based 

systems, which also focuses on reducing the number of write/erase operations as well as 

maintain high buffer hit ratio. This algorithm not only considers frequency but also the 

recency of page references and cleanliness of pages. 

The AD-LRU[22] algorithm is summarized as follows: 

(1) Two LRU queues are used to capture both the recency and frequency of page references, 

among which one cold LRU queue stores the pages referenced only once and the hot LRU 

queue maintains the pages referenced at least twice. 

(2) The sizes of the double LRU queues are dynamically adjusted according to the changes in 

the reference patterns. The size of the hot LRU queue is increased and the size of the cold 

one when a page in the cold queue is re-referenced is decreased. The hot queue shrinks 

when a page is selected as victim and moved from there to the cold queue. 

(3) During the eviction procedure, at first least-recently-used clean page from the cold LRU 

queue as the victim is selected, for which a specific pointer FC is used. If clean pages do not 

exist in the cold LRU queue, second-chance policy[5] can be used to select a dirty page as 

the victim. For this reason, each page in the double LRU queues is marked by a referenced 

bit, which is always set to 1, when the page is referenced. Hence, the second-chance policy 

ensures that dirty pages in the cold LRU queue will not be kept in the buffer for an overly 

long period. 



19 
 

 

 

2.1.3.8 CCF-LRU 

The  CCF-LRU[23] further refine the idea of LRUWSR by distinguishing between cold-

clean and hot-clean pages. Cold pages are distinguished from hot pages using the Second 

Chance algorithm. This algorithm defined four types of eviction costs: cold-clean, cold-

dirty, hot-clean, and hot-dirty, with increasing priority, thus cold-clean pages are first 

considered for eviction, then cold-dirty, and so on. Although LRUWSR and CCF-LRU don't 

require parameter tuning, their clean-first strategy is carried out only based on the coarse 

assumption of R/W cost asymmetry and hot-cold detection using the Second Chance 

algorithm, which, in turn, only approximates LRU. As a consequence, it is difficult to 

reason, when a cold-dirty page should be first considered for eviction over a hot-clean page, 

and vice versa. 

 

2.2 Research Methodology  

The main purpose of research is to discover answers to the questions through the applications 

of scientific procedures. So, the main aim of research is to find out the truth which is hidden 

and which has not been discovered yet [24]. Out of different types of research methodologies, 

this dissertation is based on analytical research in which the simulation approach of 

quantitative research strategy is used. So, after the problem is formulated based on the 

collected input data, output information is analyzed and finally the information is generalized. 

Hence, the main exploration of this dissertation also flows in the same way and focused on the 

quantitative evaluation of prominent three buffer replacement algorithms for flash based 

systems. 



20 
 

Chapter – Three 

Buffer Replacement Algorithms for Flash Memory based systems in 

this Dissertation 

 

3.1  LRU Buffer Replacement 

Using the recent past as an approximation of the near future, then the page that has not been used 

for the longest period of time is replaced. This approach is the least-recently-used (LRU) 

algorithm.LRU[8] replacement associates with each page the time of that page's last use.When a 

page must be replaced, LRU chooses that page that has not been used for the longest period of 

time. This strategy is the optimal page-replacement algorithm looking backward in time, rather 

than forward. 

3.1.1 LRU Buffer Replacement Algorithm Implementation Issues 

Two implementations are feasible for LRU: 

Counters:- 

 In the simplest case, in each page-table entry a time-of-use field is associated, and a logical 

clock or counteris added to the CPU. The clock is incremented for every memory reference. 

Whenever a reference to a page is made, the contents of the clock register are copied to the time-

of-use field in the page-table entry for that page. In this way, the "time" of the last reference to 

each page is noticed. The page with the smallest time value is replaced. This scheme requires a 

search of the page table to find the LRU page, and a write to memory for each memory access. 

The times must also be maintained when page tables are changed. Overflow of the clock must be 

considered. 

Stack:- 

 Another approach to implementing LRU replacement is to keep a stack of page numbers. 

Whenever a page is referenced, it is removed from the stack and put on the top. In this way, the 

top of the stack is always the most recently used page and the bottom is the LRU page . Because 

entries must be removed from the middle of the stack, it is best implemented by a doubly 

linked list[8] with a head and tail pointer. Removing a page and putting it on the top of the stack 

then requires changing six pointers at worst. Each update is a little more expensive, but there is 



21 
 

no search for a replacement; the tail pointer points to the bottom of the stack, which is the LRU 

page.  

 

3.1.2 LRU Buffer Replacement Algorithm Tracing 

Input Reference String:-   

0,3  

1,1 

 0,4 

 0,2 

 1,5 

 0,2 

 1,1 

 0,9 

 1,3 

 0,6 

 1,12   

0,11 

0,10   Where  0  page fetched to read i.e. clean page 

     1  page fetched to write i.e. dirty page   

memory size = 8 

V_Memsize=100 

 



22 
 

Step 1:-   page fetchd= 0,3 

   MRU           LRU 

3        

0        

Step 2:-   page fetchd= 1,1  

   MRU           LRU 

1 3       

1 0       

Step 3:-   page fetchd= 0,4 

   MRU                LRU 

4 1 3      

0 1 0      

Step 4:-   page fetchd= 0,2  

   MRU                 LRU 

2 4 1 3     

0 0 1 0     

Step 5:-   page fetchd= 1,5  

   MRU                         LRU 

5 2 4 1 3     

1 0 0 1 0    

Step 6:-   page fetchd= 0,2 

Since the page 0,2 is already in the cache. So cache hit occurs. And now the   

 page referenced i.e.0,2 becomes the MRU page. 



23 
 

MRU                    LRU 

2 5 4 1 3    

0 1 0 1 0    

Step 7:-   page fetchd= 1,1 

Since the page 1,1  is already in the cache. So cache hit occurs. And now the   

 page referenced becomes the MRU page. 

MRU                     LRU 

1 2 5 4 3    

1 0 1 0 0    

Step 8:-   page fetchd= 0,9  

MRU                        LRU 

9 1 2 5 4 3   

0 1 0 1 0 0   

Step 9:-   page fetchd= 1,3  

MRU                           LRU 

3 9 1 2 5 4 3  

1 0 1 0 1 0 0  

Step 10:-   page fetchd= 0,6 

MRU                             LRU 

6 3 9 1 2 5 4 3 

0 1 0 1 0 1 0 0 

Step 10:-   page fetchd= 1,12 

Since the buffer is full and the new page reference is fetched which is not in the cache.Hence a 

cache miss occurs. 



24 
 

Now the page replacement occurs. According to LRU page replacement policy Least Recently  

Used page from the list is the victim. 

Therefore, the victim page is 0,3. 

MRU                             LRU      victim page 

6 3 9 1 2 5 4 3 

0 1 0 1 0 1 0 0 

Hence after 0,3 page is replaced and the fetched page 1,12 is maintained at MRU position 

of the list.   

MRU               LRU 

12 6 3 9 1 2 5 4 

1 0 1 0 1 0 1 0 

                 

  replaced page  

Step:-11 page fetched= 0,11  

Victim page = LRU page= 0,4 

   MRU      LRU  victim page 

12 6 3 9 1 2 5 4 

1 0 1 0 1 0 1 0 

Hence after 0,4 page is replaced and the fetched page 0,11 is maintained at MRU position 

of the list.    MRU               LRU 

11 12 6 3 9 1 2 5 

0 1 0 1 0 1 0 1 

                 

  replaced page 



25 
 

Step:-11 page fetched= 0,10  

Now, According to LRU policy victim page=1,5  

   MRU                   LRU  victim page 

11 12 6 3 9 1 2 5 

0 1 0 1 0 1 0 1 

Hence after 1,5 page is replaced and the fetched page 0,10 is maintained at MRU position 

of the list.   

MRU               LRU 

10 11 12 6 3 9 1 2 

0 0 1 0 1 0 1 0 

                   

  replaced page 

Hence the order of victim pages is 0,2 | 1,1 and so on according to the LRU algorithm if in each 

buffer miss occurs since LRU policy have no concern about cleanliness of the pages. 

Stack Implementation 

input reference c    a      d       b      e     b      a      b     c      d 

lru page  

stack 

 

page to be replaced (lru)                 c                            d       e   

 

 

c a d b e b a b c d 

 c a d b e b a b c 

  c a d d e e a b 

   c a a d d e a 



26 
 

3.2 CFLRU Buffer Replacement 

Since a replacement policy might decide to keep dirty pages in cache as many as possible to 

save the write cost on flash memory. However, by doing this, the cache will run out of space, 

and consequently the number of cache misses will be increased dramatically, which, in turn, 

will increase the replacement cost of reading requested  from flash memory. On the other 

hand, a replacement policy that focuses mainly on increasing the cache hit count will evict 

dirty pages, which will increase the replacement cost of writing evicted pages into flash 

memory. Thus, a sophisticated scheme to compromise both sides of efforts is needed to 

minimize the total cost. For this purpose CFLRU[18] (Clean-First LRU), which is modified 

from the LRU algorithm, can be the best solution. CFLRU divides the LRU list into two 

regions to find a minimal cost point. 

        Working Region                            Clean First Region 

  P1   P2       P3             P4    P5         P6 P7      P8 

            LRU  

            List 

          MRU             LRU 

                  

                               : Dirty page                                                       Window, w 

                               : Clean page Fig.3.1 Example of CFLRU algorithm 

 

 

3.2.1 CFLRU Buffer Replacement Algorithm 

Algorithm:- 1  

Input :- LRU queue L and  different workloads 

Result (Outputs) :- 1. reference to the victim page p 

        2. number of page faults  

        3. number of write counts 

 

    L1 

          MRU 

 

 

    LRU 

D C C D C C D D 

D 

C 



27 
 

1. BEGIN  

2. Set the Buffer Size and window size (w) such that  

2.1 w contains the LRU pages and  

2.2 remining part contains the MRU pages 

3. Fetch the page along with its mode (R or W) 

4. If buffer is empty and fetched page is not found in the buffer then page fault occurs 

4.1 Increment  page fault count 

4.2 Insert fetched page at the MRU position of queue 

5. Else // if buffer is full 

 5.1 If the fetched page is found in the buffer then page hit occurs  

   Adjust the queue by inserting the fetched page at MRU position by 

shifting other pages in the queue towads LRU position 

 5.2 Else // fetched page not in the buffer and buffer is full 

  5.2.1  if LRU clean page is found in w 

   5.2.1.1 Victim page= LRU clean page 

   5.2.1.2 Return the referece to the victim page 

   5.2.1.3 Insert fetched page at MRU position by shifting other pages 

towards LRU position 

  5.2.2 else // if LRU clean page is not found 

   5.2.2.1 Victim page = LRU Dirty page from w 

   5.2.2.2 Increment the write counts 

              5.2.2.3 Return the referece to the victim page 

   5.2.2.4 Insert fetched page at MRU position by shifting other pages 

towards LRU position 



28 
 

6. END 

3.2.2 CFLRU Buffer Replacement Algorithm Tracing 

Input Reference String:-   

0,3  

1,1 

 0,4 

 0,2 

 1,5 

 0,2 

 1,1 

 0,9 

 1,3 

 0,6 

 1,12   

0,11 

0,10   Where  0  page fetched to read i.e. clean page 

     1  page fetched to write i.e. dirty page   

memory size = 8 

V_Memsize=100 

window size (w) = 0.5 

Hence actual window_size = 0.5*8 =4 



29 
 

Step 1:-   page fetchd= 0,3 

   MRU           LRU 

3        

0        

        w  

Step 2:-   page fetchd= 1,1  

   MRU           LRU 

1 3       

1 0       

        w  

Step 3:-   page fetchd= 0,4 

   MRU                LRU 

4 1 3      

0 1 0      

        w  

 

Step 4:-   page fetchd= 0,2  

   MRU                 LRU 

2 4 1 3     

0 0 1 0     

                 w  

 

 



30 
 

Step 5:-   page fetchd= 1,5  

   MRU                         LRU 

5 2 4 1 3     

1 0 0 1 0    

        w  

Step 6:-   page fetchd= 0,2 

Since the page 0,2 is already in the cache. So cache hit occurs. And now the   

 page referenced i.e.0,2 becomes the MRU page. 

MRU                    LRU 

2 5 4 1 3    

0 1 0 1 0    

        w  

Step 7:-   page fetchd= 1,1 

Since the page 1,1  is already in the cache. So cache hit occurs. And now the   

 page referenced becomes the MRU page. 

 

MRU                     LRU 

1 2 5 4 3    

1 0 1 0 0    

        w  

 

 

 



31 
 

Step 8:-   page fetchd= 0,9  

MRU                        LRU 

9 1 2 5 4 3   

0 1 0 1 0 0   

        w  

Step 9:-   page fetchd= 1,3  

MRU                           LRU 

3 9 1 2 5 4 3  

1 0 1 0 1 0 0  

              w  

Step 10:-   page fetchd= 0,6 

MRU                             LRU 

6 3 9 1 2 5 4 3 

0 1 0 1 0 1 0 0 

              w  

Step 11:-   page fetchd= 1,12 

Since the buffer is full and the new page reference is fetched which is not in the cache.Hence a 

cache miss occurs. 

Now the page replacement occurs. According to CFLRU page replacement policy Least 

Recently Clean page from the window (w) is the victim. 

 

 

 



32 
 

Therefore, the victim page is 0,3. 

MRU                             LRU      victim page 

6 3 9 1 2 5 4 3 

0 1 0 1 0 1 0 0 

        w  

Hence after 0,3 page is evicted and the fetched page 1,12 is maintained at MRU position of 

the list.   

MRU               LRU 

12 6 3 9 1 2 5 4 

1 0 1 0 1 0 1 0 

                   w  

  replaced page  

Step:-12  page fetched= 0,11  

   MRU      LRU  victim page 

12 6 3 9 1 2 5 4 

1 0 1 0 1 0 1 0 

Hence after 0,4 page is evicted and the fetched page 0,11 is maintained at MRU position of 

the list.    MRU               LRU 

11 12 6 3 9 1 2 5 

0 1 0 1 0 1 0 1 

                   w  

  replaced page 

 



33 
 

 

Step:-13  page fetched= 0,10  

Now, According to CFLRU policy victim page=0,2 

   MRU                   LRU  victim page 

11 12 6 3 9 1 2 5 

0 1 0 1 0 1 0 1 

        w 

Hence after 0,2 page is evicted and the fetched page 0,10 is maintained at MRU position of 

the list.   

MRU               LRU 

10 11 12 6 3 9 1 5 

0 0 1 0 1 0 1 1 

                   w  

  replaced page 

Hence the order of victim pages is 0,4 | 0,2  | 0,9 and so on according to the CFLRU algorithm if 

in each case miss occurs since CFLRU policy considers recency as well as cleanliness of the 

referenced pages but have no concern of the frequency of the pages. 

 

3.3  AD-LRU Buffer Replacement 

For buffer replacent algorithms of flash-based systems, not only the hit ratio but also the 

write counts are considered. However the traditional algorithm like LRU not always evict 

the clean pages and the flash aware algorithms like CFLRU evict the hot clean pages from 

the buffer, because it uses clean-first strategy and donot take the page reference frequency 

into account and hence the hit ratios may degrade. 



34 
 

So, ADLRU algorithm enhanced the traditional LRU policy by frequency considerations 

and first evict least-recently and least-frequently used clean pages to reduce the write counts 

during the page replacement. 

AD-LRU is also one of the efficient buffer replacement policy developed for flash based 

systems, which also focuses on reducing the number of write/erase operations as well as 

maintain high buffer hit ratio. This algorithm not only considers frequency but also the 

recency of page references and cleanliness of pages. 

The AD-LRU algorithm is summarized as follows: 

(1) Two LRU queues are used to capture both the recency and frequency of page references, 

among which one cold LRU queue stores the pages referenced only once and the hot LRU 

queue maintains the pages referenced at least twice. 

(2) The sizes of the double LRU queues are dynamically adjusted according to the changes in 

the reference patterns. The size of the hot LRU queue is increased and the size of the cold 

one when a page in the cold queue is re-referenced is decreased. The hot queue shrinks 

when a page is selected as victim and moved from there to the cold queue. 

(3) During the eviction procedure, at first least-recently-used clean page from the cold LRU 

queue as the victim is selected, for which a specific pointer FC is used. If clean pages do not 

exist in the cold LRU queue, second-chance policy[5] can be used to select a dirty page as 

the victim. For this reason, each page in the double LRU queues is marked by a referenced 

bit, which is always set to 1, when the page is referenced. Hence, the second-chance policy 

ensures that dirty pages in the cold LRU queue will not be kept in the buffer for an overly 

long period. 

 

3.3.1 AD-LRU Buffer Replacement Algorithm 

Algorithm 1:-   AD-LRU_fetch 

data :- Lc  the cold queue containing clean (c) pages and Lh  the hot queue containing 

hot(hot) pages, intially c=0, h=0 

result :- return a reference to the requested page (p) 

1. Begin 

2. If p is in Lh  then // p is in the hot queue 



35 
 

Move p to the MRU position in Lh 

Adjust FC in Lh  to let FC point to LRU clean page in Lh 

Ref(p)=1 

Return a reference to p in Lh  

2.1 Else if p is in Lc  then // p is in the cold queue 

h++; // increase the size of hot queue 

c--; // decrease the size of cold queue 

Move p to the MRU position in Lh 

Adjust FC in Lc  to let FC point to LRU clean page in Lc 

Ref(p)=1 

Adjust FC in Lh  to let FC point to LRU clean page in Lh 

Return a reference to p in Lh  

3.   Else // p is not in the buffer 

3.1 If 

 there is free space in the buffer then 

c++; 

put p in Lc 

adjust Lc  by putting p into the MRU position 

adjust FC in Lc to let FC point to the LRU clean page in Lc  

ref(p)=1 

return a reference to p in Lc  

3.2 else 

victim = SelectVictim(Lc); 

else // cpld queue is too small so replace Lh 

 victim = SelectVictim(Lh); 

h - - ; // adjust the cold and hot queues 

c + +; 

  3.3 else if victim is dirty then 

   WriteDirty(p);  // write to flash 



36 
 

4. Put p into a free frame In Lc  

5. Adjust Lc  by putting p into MRU position 

6. Ref(p)=1 

7. Return a reference to p in Lc 

8. End 

 

Algorithm 2:-   Select_Victim 

data :- LRU queue L 

result :- return a reference to the victim page 

1. Begin 

2. If FC of L is not NULL then   // select the first clean page 

Remove the FC page from L 

Adjust FC position in L 

return a reference to the FC page 

// select a dirty page using the second chance policy starting from the LRU 

position 

3. victim = L.first; 

4. while ref(victim) =1 do 

move victim to the MRU position in L 

ref(victim) = 0; 

victim= L.first; 

5. remove victim from L 

6. return a reference to the victim  

7. End 

 

 

 

 



37 
 

3.3.2 AD-LRU Buffer Replacement Algorithm Tracing 

Input Reference String:-   

0,3  

1,1 

 0,4 

 0,2 

 1,5 

 0,2 

 1,1 

 0,9 

 1,3 

 0,6 

 1,12   

0,11 

0,10   Where  0  page fetched to read i.e. clean page 

     1  page fetched to write i.e. dirty page   

memory size = 8 

V_Memsize=100 

 

 

 



38 
 

Step 1:-   page fetched= 0,3  

      MRU                         LRU 

Pg no 3        

mode 0        

frequency 1        

            Cold region 

Step 2:-   page fetched= 1,1  

  MRU                                   LRU 

Pg no 1 3        

mode 1 0        

frequency 1 1        

           Cold region 

Step 3:-   page fetched= 0,4  

  MRU                                   LRU 

Pg no 4 1 3      

mode 0 1 0      

frequency 1 1 1      

           Cold region 

Step 4:-   page fetched= 0,2  

  MRU                                   LRU 

Pg no 2 4 1 3     

mode 0 0 1 0     

frequency 1 1 1 1     

           Cold region 



39 
 

Step 5:-   page fetched= 1,5  

  MRU                                   LRU 

Pg no 5 2 4 1 3    

mode 1 0 0 1 0    

frequency 1 1 1 1 1    

                      Cold region 

Step 6:-   page fetched= 0,2 which is re-referenced 

So it is moved to MRU position of hot LRU queue and hence c- - and h + +  

  MRU                                   LRU 

Pg no 5 4 1 3 2    

mode 1 0 1 0 0    

frequency 1 1 1 1 2    

            Cold region             Hot region 

Step 7:-   page fetchd= 1,1 which is re-referenced 

So it is moved to MRU position of hot LRU queue and hence c- - and h + +  

           MRU                         LRU 

Pg no 5 4 3 1 2    

mode 1 0 0 1 0    

frequency 1 1 1 2 2    

           Cold region   Hot region 

 

 

 



40 
 

Step 8:-   page fetchd= 0,9  

  MRU                                   LRU 

Pg no 9 5 4 3 1 2   

Mode 0 1 0 0 1 0   

frequency 1 1 1 1 2 2   

            Cold region  Hot region 

Step 9:-   page fetchd= 1,3  

  MRU                                   LRU 

Pg no 3 9 5 4 3 1 2  

Mode 1 0 1 0 0 1 0  

frequency 1 1 1 1 1 2 2  

            Cold region             Hot region 

Step 10:-   page fetchd= 0,6  

  MRU                                   LRU 

Pg no 6 3 9 5 4 3 1 2 

mode 0 1 0 1 0 0 1 0 

frequency 1 1 1 1 1 1 2 2 

            Cold region                      Hot region 

Step 11:-   page fetchd= 1,12  

Buffer is full hence Victimpage= LRU Cold Clean page = 0,3 

 

 

 



41 
 

  MRU                    victim page          LRU 

Pg no 6 3 9 5 4 3 1 2 

mode 0 1 0 1 0 0 1 0 

frequency 1 1 1 1 1 1 2 2 

           Cold region                      Hot region 

After 0,3 page is evicted new page 1,12 is maintainted at MRU 

position of Cold region as follows. 

MRU                                   LRU 

Pg no 12 6 3 9 5 4 1 2 

Mode 1 0 1 0 1 0 1 0 

Frequency 1 1 1 1 1 1 2 2 

             Cold region                       Hot region 

Step 12:-   page fetched= 0,11  

Buffer is full hence Victimpage= LRU Cold Clean page = 0,4 

  MRU                  victim page            LRU 

Pg no 12 6 3 9 5 4 1 2 

mode 1 0 1 0 1 0 1 0 

frequency 1 1 1 1 1 1 2 2 

            Cold region                      Hot region 

After 0,4 page is evicted new page 0,11 is maintainted at MRU 

position of Cold region as follows. 

 

 

 



42 
 

MRU                                   LRU 

Pg no 11 12 6 3 9 5 1 2 

mode 0 1 0 1 0 1 1 0 

frequency 1 1 1 1 1 1 2 2 

           Cold region                      Hot region 

Step 13:-   page fetched= 0,10 

Buffer is full hence Victimpage= LRU Cold Clean page = 0,9 

  MRU        victimpage                      LRU 

Pg no 11 12 6 3 9 5 1 2 

mode 0 1 0 1 0 1 1 0 

frequency 1 1 1 1 1 1 2 2 

           Cold region                      Hot region 

After 0,9 page is evicted new page 0,10 is maintainted at MRU 

position of Cold region as follows. 

MRU                                   LRU 

Pg no 10 11 12 6 3 5 1 2 

Mode 0 0 1 0 1 1 1 0 

Frequency 1 1 1 1 1 1 2 2 

             Cold region                        Hot region 

Since 0,2 page is referenced earlier than the page 0,9 but the frequency count of 0,9 is less than 

of page 0,2 hence according to the ADLRU policy 0,9 is evicted first for page replacement which 

clearifies that ADLRU considers recency, frequency and cleanliness of the referenced pages. 

 

 



43 
 

3.4 Determination of optimal window size (w) for CFLRU 

Finding the optimal window size of the clean-first region is important to minimize the 

replacement cost. Since a large window size may increase cache miss rate and a small window 

size may increase the number of evictedd dirty pages[18,21] i.e. the number of write counts. 

Therefore, the window size of the clean-first region needs to be decided properly in order to 

minimize the overall replacement cost. 

Hence, in this dissertation work, the optimal window size is determined with help of 

experimental/ simulation study since there is no exact formula or theory for finding the optimal 

owindow size. 

For this the values of w are varied from 0 to 0.9 and tested for minimal number of write counts 

with high hit rates, taking different workloads i.e. input traces. 

The impact of size of w in the write counts and hit rate for different workloads with different 

patterns for CFLRU are studied by changing the value of w from 0 to 0.9. 



44 
 

Chapter – Four 

Implementation and Testing 

4.1 Tools Used 

4.1.1 Programming Language 

Java programming language is used for the implementation of the algorithms in this dissertaion. 

Java is a high level programming language developed by Sun Microsystems which was 

originally called OAK. Java is a object oriented programming language similar to C++ but 

simplified to eliminate language features that cause common programming errors. Java source 

code files are compiled into a format called bytecodes which can then be executed by a Java 

interpreter. Compiled Java code can run on most computers because Java interpreters and 

runtime environments, known as Java Virtual Machines(JVM) exist for most Operating System. 

Bytecode can also be converted directly into machine language instructions by a Just in 

Time(JIT). 

Java is a general purpose programming language with a number of features that make the 

language well suited for use on the World Wide Web. Small Java applications are called 

Java applets and can be downloaded from a Web server and run on your computer by a Java-

compatible Web browser, such asNetscape Navigator or Microsoft Internet Explorer 

Java language is popular programming language due to some of the following main 

characterstics:- 

1. It is  simple, object-oriented and familiar. 

2. It is robust and secure. 

3. It is architecture-neutral and portable. 

4. It executes with high performance. 

5. It is interpreted, threaded, and dynamic. 

 

 



45 
 

4.1.2 NetBeans IDE 

NetBeans is an open source integrated development environment (IDE) for developing primarily 

with Java, but also with other languages. The NetBeans Platform allows applications to be 

developed from a set of modular software components called modules. The NetBeans project 

consists of a full-featured open source IDE written in the Java programming language and a rich 

client application platform, which can be used as a generic framework to build any kind of 

applications. 

 

4.2 Data Structures Used 

4.2.1 Doubly Linked List (DLL) 

A linked list in which all nodes are linked together by multiple number of links i.e. each node 

contains three fields (two pointer fields and one data field i.e. prev, next & info respectively) 

rather than two fields is called Doubly Linked List[8] (DLL). It provides bidirectional traversal. 

To implement the three algorithms in this dissertation, doubly linked list is used since it provides 

bidirectional traversal of nodes so that it is easy to adjust the page references during replacement 

phenomenon. 

The two node links allow traversal of the list in either direction. While adding or removing a 

node in a doubly-linked list requires changing more links than the same operations on a singly 

linked list, the operations are simpler and potentially more efficient (for nodes other than first 

nodes) because there is no need to keep track of the previous node during traversal or no need to 

traverse the list to find the previous node, so that its link can be modified. 

The first and last nodes of a doubly-linked list are immediately accessible (i.e., accessible 

without traversal, and usually called head and tail) and therefore allow traversal of the list from 

the beginning or end of the list, respectively: e.g., traversing the list from beginning to end, or 

from end to beginning, in a search of the list for a node with specific data value. Any node of a 



46 
 

doubly-linked list, once obtained, can be used to begin a new traversal of the list, in either 

direction (towards beginning or end), from the given node. 

But some tradeoffs are there. Doubly linked list occupy more space and often more operations 

are required for the similar tasks as compared to singly linked lists.  

4.2.2 Structure of LRU, CFLRU and ADLRU nodes:- 

Structure of LRU node 

package bufferreplacement_simulation; 

public class LRU 

{ 

    private PageNode head; 

    private int npf; 

    private int np; 

    private PageNode[] pt; 

    private int mem_size; 

    private int VM_SIZE; 

    private int free_mem_size; 

    LRU() 

    { 

        head=null; 

        npf=np=0; 

        free_mem_size=mem_size; 

        pt=new PageNode[VM_SIZE+1]; 

        for(int i=1;i<=VM_SIZE;i++) 



47 
 

        { 

            pt[i]=new PageNode(); 

            pt[i].pn=i; 

        } 

        trace(); 

    } 

Structure of CFLRU node 

package bufferreplacement_simulation; 

class PageNode 

{ 

    int pn; 

    boolean isclean; 

    boolean isresident; 

    PageNode next; 

    PageNode prev; 

    public PageNode() 

    { 

        isresident=false; 

        next=prev=null; 

    } 

} 

class CFLRU 

{ 



48 
 

    private PageNode head=new PageNode(); 

    private int npf; 

    private int np; 

    private int wc;    

    private PageNode[] pt; 

    private int mem_size;     

    private int VM_SIZE; 

    private int free_mem_size; 

    private double w; 

    CFLRU() 

    { 

        head=null; 

        npf=np=0; 

        wc=0; 

        mem_size=1024; 

        VM_SIZE=50000; 

        w=(0.5*mem_size); 

        free_mem_size=mem_size;         

        pt=new PageNode[VM_SIZE+1]; 

        for(int i=1;i<=VM_SIZE;i++) 

        { 

           pt[i]=new PageNode(); 

            pt[i].pn=i;             



49 
 

        }         

    } 

Structure of ADLRU node 

package bufferreplacement_simulation; 

class PageNode 

{ 

    int pn; 

    boolean isclean; 

    boolean iscold; 

    boolean isresident; 

    PageNode next; 

    PageNode prev; 

    int frequency; 

    public PageNode() 

    { 

        frequency=0; 

        iscold=(this.frequency<2); 

        isresident=false; 

        next=prev=null; 

    } 

} 

class ADLRU 

{ 



50 
 

    private PageNode head; 

    private int npf; 

    private int np; 

    private int wc; 

    private PageNode[] pt; 

    private int mem_size; 

    private int VM_SIZE; 

    private int free_mem_size;   

    ADLRU() 

    { 

        head=null; 

        npf=np=0; 

        wc=0; 

        mem_size=32; 

        VM_SIZE=50000; 

        free_mem_size=mem_size; 

        pt=new PageNode[VM_SIZE+1]; 

        for(int i=1;i<=VM_SIZE;i++) 

        {    

            pt[i]=new PageNode(); 

            pt[i].pn=i; 

        } 

    } 



51 
 

4.3 Flowcharts of the Algorithms taken:- 

4.3.1 LRU 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig.4.1 Flowchart of LRU Algorithm 

No Yes 

    Insert the page P at 

MRU position of the 

list 

Yes No 

Begin 

Is P available in    

buffer? 

Page Miss Occurs 

Is Buffer Full ? 

 

End 

Read page P with its 

mode (R/W)  

VictimPage = 

LeastRecentlyUsed page of the 

list  

Insert the new page P at 

MRU position of the list 

(Page Hit) & Move P to 

the MRU position of list 



52 
 

4.3.2 CFLRU 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.2 Flowchart of CFLRU Algorithm 

Yes 

No Yes 

    Insert the page P at 

MRU position of list 

Yes No 

Begin 

Is P available in    

buffer? 

(Page Hit) & Move P to 

the MRU position of list 
Page Miss Occurs 

Is Buffer Full ? 

 

End 

Read page P with its 

mode (R/W) and 

Read window size(w) 

VictimPage=LRUDirty Page 

from w & Increment 

write_count 

 

Is LRU Clean 

Page Exists in w 

 

VictimPage=LRU Clean 

Page from w 

No 

Insert the page P at MRU 

position of list 



53 
 

4.3.3 ADLRU 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig.4.3 Flowchart of ADLRU Algorithm 

    Insert the page P at 

MRU position ofCold 

list 

Begin 

Is P available in    

buffer? 

(Page Hit) 
Page Miss Occurs 

Is Buffer Full ? 

 

End 

Read page P with its 

mode (R/W) and 

Read window size(w) 

Is LRU 

ColdClean 

Page Exists ? 

 

VictimPage=LRU 

Cold Clean Page 

Insert the page P at 

MRU position of  cold 

list 

Is P is in hot 

list 

Insert the page P at 

MRU position of 

HOT list 

Insert the page P at 

MRU position of 

HOT  list & h++, c- - 

VictimPage=LRU  

Cold Dirty Page & 

Increment WriteCount 

Yes No 

Yes No 

Yes No 



54 
 

4.4 Sample Test Cases 

4.4.1 Random Data References 

Input data format = ( r/w mode, page_reference ) , where r i.e. 0  read and w i.e. 1  write 

1,8575      0,17754     0,33289     0,3838     0,19942     1,25113     1,35145     1,1939     0,40780     

0,12831     0,31724       1,37162      1,861      1,35912   0,39216     1,10863     0,15454     0,32425     

0,42141     1,34769     0,29923     1,3050     0,4043     0,39113     1,11686     1,25837     0,4941     

0,7882     0,39262     1,32631     0,36490     1,11934     1,8851     1,16962     0,37665     1,23980     

0,41727     0,15074     1,19029     1,1750     0,49554     1,18797     1,6747     0,31276     1,786     

1,42798     0,30971     0,42594     1,49503     0,23075     1,8717     1,13521     1,988     0,22467     

1,12586     1,45284     1,39329     0,45058     0,14795     0,21120     0,7786      1,43211     0,47655     

0,42213     0,919     0,603     0,4844      0,44923     1,29324     0,26292     1,31526     1,38097     

1,39819     0,30117     1,14208     1,27844     1,8361     1,16455     1,5699     0,10670     1,1066     

0,9039     1,6477     1,41170     0,23504     1,32354     0,14280     1,36795     1,8732     1,46002     

1,4880     1,5637     1,21680     1,3496     1,3220     0,13282     1,42670     0,11669     0,2716     

1,49749     0,12437     0,42550     0,27038     0,26790     1,44095     1,25674     0,4498     1,32206     

0,33123     0,9846     0,46190     0,20089     0,14060     1,28875     1,16434     1,12575     1,47687     

1,41433     0,16610     0,3411     1,23633     1,17429     0,49681     1,25625     1,34155     0,33804     

0,21089     0,16647     1,3104     0,3843     1,7142     0,30193     0,12695     1,28453     0,9115     

0,25532     0,47722     1,47868     1,49752     0,6476     1,41825     1,7631     0,14127     0,29127     

1,12805     0,48855     1,33911     0,41079     1,25483     1,39430     0,1037     0,3297     0,16599     

1,36036     0,15578     0,10091     1,25578     0,23037     0,24073     1,16386     0,15490     1,1048     

0,19682     0,8798     0,26493     0,48889     1,7791     1,35987     1,16638     1,45825     1,38057     

0,30566     0,48228     0,38949     1,47502     0,26137     1,22920     1,32430     1,7944     1,35589     

1,40867     1,47773     0,46838     1,44616     1,39286     1,39175     0,42242     1,20480     

1,22293     0,20389     0,23900     0,18555     0,46427     0,8516     1,49886     0,10679     0,9400     

1,24467     0,3709     0,411     0,25540     0,22153     1,3954     0,23179     0,9759     1,33020     

0,2711     1,42697     1,34063     1,22716     1,23599     0,25436     1,22036     0,34470     1,12097     

0,16505     0,30238     0,37133     1,47578     1,43832     1,12285     1,43630     1,25872     

1,22922     0,47801     0,33166     0,30809     0,22288     1,15530     1,18379     1,26444     



55 
 

0,15686     1,47213     0,23218     0,17078     0,9358     1,22390     1,12973     1,12756     0,14487     

1,14736     0,17512     0,16192     1,20303     0,13516     0,7694     0,46578     1,14630     0,44937     

0,8268     1,27634     1,42340     1,5782     0,18033     0,36288     1,20348     1,25705     0,13909     

0,48059     1,39900     1,42855     1,22621     0,19304     1,34024     1,12876     1,24241     

1,44899     0,44903     0,47548     0,2683     1,15201     1,40903     0,49098     0,11108     1,8735     

1,23818     0,9948     0,2917     0,17513     1,26798     0,37204     1,48172     0,41628     0,21196     

0,16265     1,33034     0,49456     1,20361     0,46366     0,49157     0,22078     1,21714     

0,36970     1,8646     1,9469     0,36225     1,46020     1,1702     1,2979     1,21191     1,46458     

0,48207     1,29311     1,33363     0,18666     1,9636     1,25704     1,43329     1,32357     0,34652     

1,29324     0,12938     1,36894     0,43868     1,47460     1,47637     0,24355     1,12176     

0,12286     1,7957     0,41794     0,49251     1,29601     0,45568     0,43907     1,10770     0,27169     

1,45435     0,9439     1,46069     0,14691     1,2992     0,20988     1,23961     0,42924     0,16206     

1,17346     1,17766     0,19820     1,17517     0,1382     0,41472     1,21713     0,47315     1,3598     

0,22383     0,54     0,28589     0,39334     1,5327     1,31446     0,11905     0,2578     0,42675     

1,36464     0,10865     1,38028     1,10859     0,21603     0,31835     0,47015     0,11141     

1,37753     0,41532     0,5012     1,42335     1,19108     1,6948     0,3639     0,37524     0,14929     

1,30811     0,39972     1,17926     1,20116     1,24335     0,49921     0,42809     1,20340     1,3331     

0,46753     1,20246     1,2500     1,30976     1,18790     1,35884     1,8436     1,8547     0,40654     

0,37234     1,4720     0,14709     0,49005     1,120     1,49345     1,21382     0,5659     1,8975     

1,35557     0,10747     0,22871     0,40127     1,8215     0,32476     1,5622     0,11686     1,7083     

0,47138     0,8859     1,49704     1,26240     0,36223     1,4757     1,46740     1,43596     1,44175     

1,11825     1,10458     0,30016     1,43645     0,28919     1,6579     1,47380     0,4275     0,47727     

1,21962     1,32498     0,15530     1,22466     1,45797     0,44519     0,47839     0,34722     

0,29879     0,7742     1,35170     0,8487     0,32399     0,48678     0,33246     1,46767     0,889     

1,15261     1,45658     0,14995     1,18321     0,7303     1,1460     1,2724     1,14771     1,49585     

0,2935     1,3603     0,47776     0,48439     0,36931     1,27169     1,48598     0,10737     1,23017     

1,46089     0,32556     0,1153     1,12834     1,8672     1,33281     0,8337     0,16815     0,14078     

0,23123     1,38627     1,3974     1,39029     0,24143     0,45127     1,6153     0,21868     1,3032     

0,49348     0,27357     0,2787     1,41676     0,45740     1,12125     1,35064     1,6677     0,36840     

0,23619     0,28071     0,4706     0,33306     0,45229     0,44371     1,41742     0,29463     1,35470     

1,20690     1,21422     0,2804     0,9359     1,23231     0,21345     0,1137     1,49613     0,17119     



56 
 

Chapter – Five 

Test Results and Analysis 

5.1 Data Collection 

Data are raw facts or the sources of information which are used as input to the replacement 

algorithms, that produces meaningful results after processisng[23]. So, all the data’s (i.e. the 

page references ) with (mode, page number) format in this dissertation work are taken from the 

standard synthetic traces generated by the simulaions. In this study, altogether three types of 

synthetic traces (i.e. random, readmost, and writemost traces) are used and tested. These three 

different traces with different nature are used as workloads for the studied buffer replacement 

algorithms. The output generated by the algorithms are then used to calculate  hit rates in 

percentage and the total number ofwrite counts. Each of the workloads taken in this dissertation 

contains 1,00,000 page references and the page numbers ranges from 0 to 49,999. The workloads 

taken are categorized as Workload 1 (random traces), Workload 2 (readmost traces), and 

Workload 3 (writemost traces). The sample of each of the workloads are given in Appendices 

A,B, and C respectively. The input is (mode, page number), where mode is either read or write 

i.e 0 represents read mode and 1 represents write mode of the page and the page number is the 

value of the page reference or fetched page number. 

5.2 Testing 

These three workloads are separately tested in the simulator  in this dissertation. Each workload 

is tested in LRU, CFLRU and AD-LRU simulator by varying the cache size from 4 to 1024.In 

the case of CFLRU one of the paramenter i.e. the size of window(w) is varied from 0.1 to 0.9 

and the optimal window size is taken for each workloads. The optimal value of window size is 

taken on the basis of high hit rate and at the same time the less number of write counts (wc).So 

for each workload the optimal value of w is taken and then the algorithms are compared for 

quantitative  evaluation. 

 

 



57 
 

5.2.1 Test result of Workload 1[random traces] 

5.2.1.1 Test result for CFLRU for finding optimal value of window size(w) for 

Workload 1 

Total number of page referenced (np)=100000  total number of distinct pages (tdp) =43247 

 buffer_size =1024 

Window size (w)                                      CFLRU 

Npf mr (%) hr (%) write count(wc) 

0.1 99396 98.93 1.07 99106 

0.25 98680 97.67 2.33 98023 

0.4 98026 96.52 3.48 97125 

0.5 97947 96.38 3.62 96923 

0.6 97123 94.93 5.07 97009 

0.75 96056 93.05 6.95 97314 

0.9 94135 89.66 10.34 97191 

Table 5.1 Test result for CFLRU for finding optimal value of window size for workload 1 

 Since the hit rate of CFLRU may be affected by w. So from above experiment it is clear that the 

optimal value of window size is 0.5 since the write counts is least at that value of w . Though the 

hit rate of CFLRU is maximum at 0.75 but it has greater number of write counts. Hence the 

parameter w is taken 0.5 which means half of the buffer is used as clean first window. 

5.2.1.2 Test result for three algorithms with varying buffer size 

Total number of pages referenced =1,00,000 Total number of distinct pages = 43247 Window size= 0.5 

Buffer 

Size 

LRU CFLRU ADLRU 

Page 

faults 

Miss 

rate(%) 

Hit 

rate(%) 

Write 

count 

Page 

faults 

Miss 

rate(%) 

Hit 

rate(%) 

Write 

count 

Page 

faults 

Miss 

rate(%) 

Hit 

rate(%) 

Write 

count 

4 99993 99.98 0.02 N  

O 

99986 99.97 0.03 99982 99531 99.17 0.83 99486 

8 99989 99.97 0.03 99981 99.96 0.04 99973 99016 98.26 1.74 98953 



58 
 

16 99982 99.96 0.04  

P 

R 

O 

V 

I 

S 

I 

O 

N 

99971 99.42 0.58 99955 97921 96.33 3.67 94120 

32 99971 99.42 0.58 99939 99.34 0.66 99907 96867 94.47 5.53 93028 

64 99947 99.37 0.63 99884 99.29 0.71 99820 96003 92.95 7.05 92371 

128 99897 99.31 0.69 99775 99.26 0.74 99647 95246 91.62 8.38 91369 

256 99783 99.28 0.72 99531 99.22 0.78 99275 93486 88.52 11.48 89567 

512 99602 99.23 0.77 99013 98.26 1.74 98501 92228 86.30 13.70 87430 

1024 98107 96.66 3.34 97947 96.38 3.62 96923 87712 78.35 21.65 73591 

Table 5.2 Test results of Workload 1 with varying buffer size 

5.2.2 Test result of Workload 2[readmost traces] 

5.2.2.1 Test result for CFLRU for finding optimal value of window size(w) for 

Workload 2 

np=100000  tdp=43212  buffer_size =1024  

Window size (w)                                      CFLRU 

Npf mr (%) hr (%) Wc 

0.1 97689 5.93 4.07 81921 

0.25 91557 85.13 14.87 76508 

0.4 84962 73.51 26.49 42472 

0.5 84601 72.88 27.12 42721 

0.6 83367 70.71 29.29 43059 

0.75 85698 74.81 25.19 42904 

0.9 85147 74.84 25.16 46595 

Table 5.3 Test result for CFLRU for finding optimal value of window size for workload 2 

So from above experiment the optimal value of window_size(w) =0.4 

 



59 
 

5.2.2.2 Test result for three algorithms with varying buffer size 

Total number of pages referenced =1,00,000 Total number of distinct pages = 43212 Window size= 0.4 

buffer 

size 

LRU CFLRU ADLRU 

Page 

faults 

Miss 

rate(%) 

Hit 

rate(%) 

Write 

count 

Page 

faults 

Miss 

rate(%) 

Hit 

rate(%) 

Write 

count 

Page 

faults 

Miss 

rate(%) 

Hit 

rate(%) 

Write 

count 

4 98185 96.8 3.2 N  

O 

 

P 

R 

O 

V 

I 

S 

I 

O 

N 

98121 96.6 3.4 86305 97677 95.9 4.1 85304 

8 98036 96.5 3.5 98000 96.47 3.5 84391 96433 93.72 6.28 82163 

16 97769 96.07 3.03 97689 95.93 4.07 81921 94891 91 9 78001 

32 96981 94.52 5.48 96314 93.5 6.5 80751 92997 87.66 12.34 71112 

64 95289 91.7 8.3 95128 91.42 8.58 78648 91388 84.84 15.16 62586 

128 93505 88.56 11.44 92893 87.48 12.52 61826 90624 83.45 16.55 54792 

256 91007 84.16 15.84 90657 83.54 16.46 58122 87035 77.17 22.83 46399 

512 88679 80.06 19.94 88251 79.31 20.69 54036 79293 63.54 36.46 42106 

1024 85147 73.84 26.16 84962 73.51 26.49 42472 71111 49.19 50.81 39248 

Table 5.4 Test results of Workload 2 with varying buffer size 

5.2.3 Test result of Workload 3[writemost traces] 

5.2.3.1 Test result for CFLRU for finding optimal value of window size(w) for 

Workload 3 

Total number of pages referenced =1,00,000 Total number of distinct pages = 43182 buffer_size= 1024 

Window size (w)                                      CFLRU 

Npf mr (%) hr (%) Wc 

0.1 97938 96.37 3.63 97598 

0.25 95854 92.7 7.3 95007 

0.4 86369 76.01 23.9 91102 



60 
 

0.5 81004 66.57 33.43 89224 

0.6 73377 53.42 46.58 86722 

0.75 72825 52.17 47.83 88050 

0.9 71205 49.32 50.68 87983 

Table 5.5Test result for CFLRU for finding optimal value of window size(w) for Workload 3 

So from above experiment the optimal value of window_size(w) =0.6 

5.2.3.2Test result for three algorithms with varying buffer size 

Total number of pages referenced =1,00,000 Total number of distinct pages = 43182 Window size= 0.6 

buffer 

size 

LRU CFLRU ADLRU 

Page 

faults 

Miss 

rate(%) 

Hit 

rate(%) 

Write 

count 

Page 

faults 

Miss 

rate(%) 

Hit 

rate(%) 

Write 

count 

Page 

faults 

Miss 

rate(%) 

Hit 

rate(%) 

Write 

count 

4 99586 99.79 0.21 N  

O 

 

P 

R 

O 

V 

I 

S 

I 

O 

N 

97993 96.98 3.02 97868 97020 95.26 4.74 96997 

8 98122 97.2 0.8 97089 95.38 4.62 96771 96988 95.2 4.8 96123 

16 97315 95.78 4.22 96854 94.96 5.04 96844 95024 91.73 8.27 94556 

32 95020 91.72 8.28 93125 88.37 11.63 95026 91165 84.89 15.11 91085 

64 93169 88.44 11.56 91625 85.71 14.29 94119 87050 77.62 22.38 93838 

128 91377 85.27 14.73 87000 77.53 22.47 94006 81819 68.36 31.64 91641 

256 89884 82.63 17.37 84555 73.2 26.8 91125 80056 65.24 34.76 90037 

512 85090 74.14 25.86 81092 67.07 32.93 88912 72521 51.91 48.09 87881 

1024 78141 61.85 32.15 73377 53.42 46.58 86722 63559 36.05 63.95 85581 

Table 5.6 Test results of Workload 3 with varying buffer size 

 

 

 



61 
 

5.3 Anlysis 

All the collected data’s are then analyzed by drawing different graphs. Hit rates in percentage 

and the total number of write counts of algorithms are used as criteria for analyzing their 

performances. 

 

Figure 5.1 Graph for Table 5.1 showing hit rate for CFLRU with varying window_size 

 

Figure 5.2 Graph for Table 5.1 showing write_counts for CFLRU with varying 

window_size  

0

2

4

6

8

10

12

0.1 0.25 0.4 0.5 0.6 0.75 0.9

h
it
_r
at
e
%

window_size(w)

CFLRU

95500

96000

96500

97000

97500

98000

98500

99000

99500

0.1 0.25 0.4 0.5 0.6 0.75 0.9

w
ri
te
_c
o
u
n
t(
w
c)

window_size(w)

CFLRU



62 
 

 

Figure 5.3 Graph for Table 5.2  showing hit rate 

 

 

Figure 5.4 Graph for Table 5.2  showing write counts 

 

 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

4 8 16 32 64 128 256 512 1024

h
it
_r
at
e
(%

)

buffer_size

LRU

CFLRU

ADLRU

0

20000

40000

60000

80000

100000

120000

4 8 16 32 64 128 256 512 1024

w
ri
te
_c
o
u
n
ts

buffer_size

CFLRU

ADLRU



63 
 

 

Figure 5.5 Graph for Table 5.3 showing hit rate for CFLRU with varying window_size 

 

 

 

Figure 5.6 Graph for Table 5.3 showing write_count for CFLRU with varying window_size 

 

 

0

5

10

15

20

25

30

35

0.1 0.25 0.4 0.5 0.6 0.75 0.9

h
it
_r
at
e
(%

)

window_size(w)

CFLRU

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0.1 0.25 0.4 0.5 0.6 0.75 0.9

w
ri
te
_c
o
u
n
t(
w
c)

window_size(w)

CFLRU



64 
 

 

Figure 5.7 Graph for Table 5.4 showing hit rates 

 

 

Figure 5.8 Graph for Table 5.4 showing write counts 

 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

4 8 16 32 64 128 256 512 1024

h
it
_r
at
e
(%

)

buffer_size

LRU

CFLRU

ADLRU

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 8 16 32 64 128 256 512 1024

w
ri
te
_c
o
u
n
ts

buffer_size

CFLRU

ADLRU



65 
 

 

Figure 5.9 Graph for Table 5.5 showing hit rate for CFLRU with varying window_size 

 

 

Figure 5.10 Graph for Table 5.5 showing write_count for CFLRU with varying 

window_size 

 

0

10

20

30

40

50

60

0.1 0.25 0.4 0.5 0.6 0.75 0.9

h
it
_r
at
e
(%

)

window_size(w)

CFLRU

80000

82000

84000

86000

88000

90000

92000

94000

96000

98000

100000

0.1 0.25 0.4 0.5 0.6 0.75 0.9

w
ri
te
_c
o
u
n
t(
w
c)

window_size(w)

CFLRU



66 
 

 

Figure 5.11 Graph for Table 5.6 showing hit rates 

 

Figure 5.12 Graph for Table 5.6 showing write counts 

Figure 5.1 shows that increasing in window size gradually from 0.1 to 0.9 also increase in the hit 

rate. But hit rate only is not the factor for evaluating the performance of buffer replacement 

algorithms for flash memory based systems. For this another factor write counts also must be 

taken. Hence, Figure 5.2 shows that the minimum write count of CFLRU algorithm is at window 

size 0.5 for random traces i.e. Workload 1. Similarly Figure 5.5, Figure 5.6 are used to calculate 

the optimal window size for Workload 2 and Figure 5.9, Figure 5.10 are also used to calculate 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

4 8 16 32 64 128 256 512 1024

h
it
_r
at
e
(%

)

buffer_size

LRU

CFLRU

ADLRU

78000

80000

82000

84000

86000

88000

90000

92000

94000

96000

98000

100000

4 8 16 32 64 128 256 512 1024

w
ri
te
_c
o
u
n
ts

buffer_size

CFLRU

ADLRU



67 
 

the optimal value of window size for Workload 3. After finding the optimal value of window 

size for each of the three Workloads taken, that value is taken for CFLRU for window size and 

then the algorithms LRU, CFLRU and ADLRU are compared which is shown clearly in graphs 

of Figure 5.3, Figure 5.4, Figure 5.7, Figure 5.8, Figure 5.11 and Figure 5.12. 

All the column graphs of Figure 5.3, Figure 5.7 and Figure 5.11 are for comparing the algorithms 

on the basis of hit rates. And similarly all the line graphs of Figure 5.4, Figure 5.8 and Figure 

5.12 are for comparing the algorithms on the basis of write counts. Hence from all those different 

graphs it is clear that for all the Workloads the hit rate of ADLRU outperforms the LRU and 

CFLRU. Similarly the write counts of ADLRU and CFLRU for Workload 1 i.e. for random 

traces, they are comparative though less number of write counts of ADLRU. For Workload 2 i.e 

for readmost traces, for smaller sized buffer the write counts of both algorithms is same but as 

the buffer size also increases the write counts of ADLRU drastically decreases. But in case of 

Workload 3, the write counts of ADLRU is less than CFLRU upto buffer size 32. But, for buffer 

size 64, again the write count of both CFLRU and ADLRU algorithms becomes equal. Again, by 

increasing the buffer size further upto 1024, the write count also decreases for both algorithms. 

Hence from the experiments performed, the consequence is that in most of the cases the ADLRU 

outperforms its competitive algorithm CFLRU buffer replacement algorithm and the traditional 

disk based algorithm LRU, in both hit rates and the write counts since ADLRU captures both the 

frequency and recency of page references. It also uses the adaptive mechanism to make the sizes 

of the two lists cold and hot LRU suitable for different reference patterns. 

 



68 
 

Chapter – Six 

Conclusion and Recommendation 

6.1 Conclusion 

Since, the use of flash memory requires buffer replacement policies considering not only 

buffer hit ratios or miss ratios but also replacement costs incurring when a dirty page has to 

be propagated to flash memory not in the buffer i.e . write counts and erase counts.  As a 

consequence a replacement policy should minimize the number of write/erase operations on 

flash memory and at the same time increase the hit ratio. Since LRU only considers the 

recency of page references while CFLRU considers recency & cleanliness properties of the 

reference pages but AD-LRU not only considers recency & Cleanliness but also the 

frequency[25] of page refereces, the LRU algorithm has the worst performance for each of 

the workloads which clearly indicates that the traditional disk based replacement algorithms 

will not work well in flash memory based systems since it do not have any provisions 

regarding the write or  erase counts. CFLRU clearly indicates that it is a good choice to first 

evict clean pages from the buffer while replacement for flash based systems. Similarly, 

ADLRU clearly indicates that it is a good choice to first evict cold clean page i.e. a clean 

page with frequency less than 1. Hence from the simulations and experiments performed so 

far, ADLRU algorithm has a lower number of write counts and at the same time high hit 

ratio which clearly indicates that ADLRU exhibits superior performance behavior than the 

others. 

For buffer size 1024, the performance of CFLRU has a little bit higher than LRU about 

0.28% but at the same time, the performance of ADLRU has 17.73% higher than CFLRU 

and 18.01% highr than LRU for Workload 1 i.e. for random type of page refernces. The 

performance gain by ADLRU for Workload 2 i.e. for readmost type of page refernces is 

about 24.32% higher than the other algorithms. Similarly, the performance gain of ADLRU 

for Workload 3 i.e. for writemost ype of page refernces, it is about 31.8% hogher than LRU 

and 17.7% higher than CFLRU. Thus from above results, the dissertation concludes that, 

ADLRU is superior than CFLRU and LRU in most of the cases for flash memory based 

systems, since it considers recency, cleanliness as well as frequency of the page references 



69 
 

and it uses an adaptive mechanism to make the size of hot and cold LRU lists suitable for 

different page reference patterns. 

6.2 Recommendation 

The algorithms in this dissertation can also be implemented using other standard 

benchmarks and additional real input traces for further performance evaluations. Another 

future work many be to use two or more than two queues to organize the buffer pages so 

that different types of frequencies can be supported. But the additional overhead may arise 

using more queues but it may be helpful to improve the hit rates as well as to reduce the 

write counts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

 

                                                                                         References 

[1] L.M.Grupp, A.M. Caulfield, J.Cobum, “Characterizing Flash Memory: Anomalies, 

Observations and Applications”, MICRO, Dec. 2009. 

[2] J. In,I. Shin, H. Kim, “SWL- A Search While-Load Demand Paging Scheme with NAND 

Flash Memory”, Samsung Electronics Co. Ltd., ACM-2007. 

[3] L.Grippa, R. Micheloni, I.Motta, & M. Sangalli, “NonVolatile Memories: NOR Vs. NAND 

Architecture”, Springer-Verlag Berlin Heidelberg, 2008. 

[4] Y. Yoo, H. Lee, Y. Ryu, H. Bahn, “Page replacement algorithms for NAND ash memory 

storages”, in: computational Science and Its Applications (ICCSA 07), 2007. 

[5] Y. Ou. T. Harder, “Clean First or Dirty First: a Cost-Aware Self-Adaptive Buffer 

Replacement Policy”, in: Proc. of the 14th International Database Engineering & Applications 

Symposium, ACM, 2010. 

[6] H. Jung, H. Shim, S. Park, S. Kang, J. Cha, “LRU-WSR: Integration of LRU and Writes 

Sequence Reordering for Flash Memory”, IEEE Trans. on Consumer Electronics (2008). 

[7] Y.Joo, Y.Choi, J.Park, “Energy and Performance Optimization of Demand Paging with 

OneNAND Flash Memory”, IEEE,2008. 

[8] Silberschatz, A., Galvin, P. B., & Gagne, G., “Operating system concepts”, 7th Edition, 

2004 

[9] S. Jing, F. Chen, X. Zhang, “CLOCK-Pro – An Effective Improvement of the CLOCK 

Repalcement”, USENIX Annual Technical Conference, 2005. 

[10] Amit S. Charan, Kartik R. Nayak, “A Comparasion of Page Repalcement ALgorithms”, 

IACSIT International Journal of Engineering and Technology, Vol. 3, April 2011. 

[11] E. O'neil, P. O'neil, G. Weikum, “The LRU-K Page Replacement Algorithm for Database 

Disk Buffering”, 1993. 

[12] D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, C. Kim, “LRFU: A Spectrum of Policies 

that Subsumes the Least Recently Used and Least Frequently Used Policies”, IEEE Trans. on 

Computers (2001). 

[13] T. Johnson, S. D., “2Q: A Low Overhead High Performance Buffer Management 

Replacement Algorithm”, 1994. 



71 
 

[14] S. Jiang, X. Zhang, “LIRS: An Efficient Low Inter-Reference Recency Set Replacement 

Policy to Improve Buffer Cache Performance”, ACM New York, NY, USA, 2002. 

[15] X. Tang, X. Meng,”ACR: an Adaptive Cost Aware Buffer replacement Algorithm for 

Flash Storage Devices”, IEEE-2010 

 [16] S. Bansal and D.Modha, “CAR: Clock with Adaptive Replacement”,Proceedings of the 

3nd USENIX Symposium on File and Storage Technologies, 2004.  

[17] A.S. Tanenbaum, Modern Operating Systems (Prentice Hall Second Edition),  2007.  

[18]S.Y. Park, D. Jung, J. Kang, “CFLRU-A Replacement Algorithm for Flash Memory”, 

Korean Advanced institute of Science & Technology, ACM-2007 

[19] N. Megiddo, D. S. Modha, “ARC: A Self-Tuning, Low Overhead Replacement Cache”, 

2003. 

[20] Y. Ou, T. Harder, P. Jin, “CFDC: a Flash-Aware Replacement Policy for Database Buffer 

Management”, in: Proc. of the 5th International Workshop on Data Management on New 

Hardware, ACM, 2009. 

[21] H. Jung, K. Yoon, H. Shim, S. Park, S. Kang, J. Cha, “LIRS-WSR: Integration of LIRS 

and Writes Sequence Reordering for Flash Memory”, 2007. 

[22] P. Jin, Yi Ob, T. Harder, Z. Li, “The AD-LRU: An Efficient Buffer Replacement 

Algorithm for Flash Based Systems”, Department of Computer Science and Information 

Technology, University of Science & Technology of China, September 2011. 

[23] Z. Li, P. Jin, X.Su, “CCF-LRU: A new Buffer Replacement Algorithm for Flash 

Memory”, Transaction on Consumer Electronics,2009. 

 [24] M.L.Singh, “Understanding Research Methodology”, Scientific Method and Research. 

[25] L.P. Chang, T.W. Kuo, “Efficient Management for Large Scale Flash Memory Storage 

Systems with Resource Conservation”, ACM Transaction 2005. 

 

 

 

 

 

 

 



72 
 

APPENDIX A : A sample trace of Workload 1(random traces) 

1,8575 0,17754 0,33289 0,3838 0,19942 1,25113 1,35145 1,1939 

0,40780 0,12831 0,31724 1,37162 1,861 1,35912 0,39216 1,10863 

0,15454 0,32425 0,42141 1,34769 0,29923 1,3050 0,4043 0,39113 

1,11686 1,25837 0,4941 0,7882 0,39262 1,32631 0,36490 1,11934 

1,8851 1,16962 0,37665 1,23980 0,41727 0,15074 1,19029 1,1750 

0,49554 1,18797 1,6747 0,31276 1,786 1,42798 0,30971 0,42594 

1,49503 0,23075 1,8717 1,13521 1,988 0,22467 1,12586 1,45284 

1,39329 0,45058 0,14795 0,21120 0,7786 1,43211 0,47655 0,42213 

0,919 0,603 0,4844 0,44923 1,29324 0,26292 1,31526 1,38097 

1,39819 0,30117 1,14208 1,27844 1,8361 1,16455 1,5699 0,10670 

1,1066 0,9039 1,6477 1,41170 0,23504 1,32354 0,14280 1,36795 

1,8732 1,46002 1,4880 1,5637 1,21680 1,3496 1,3220 0,13282 

1,42670 0,11669 0,2716 1,49749 0,12437 0,42550 0,27038 0,26790 

1,44095 1,25674 0,4498 1,32206 0,33123 0,9846 0,46190 0,20089 

0,14060 1,28875 1,16434 1,12575 1,47687 1,41433 0,16610 0,3411 

1,23633 1,17429 0,49681 1,25625 1,34155 0,33804 0,21089 0,16647 

1,3104 0,3843 1,7142 0,30193 0,12695 1,28453 0,9115 0,25532 

0,47722 1,47868 1,49752 0,6476 1,41825 1,7631 0,14127 0,29127 

1,12805 0,48855 1,33911 0,41079 1,25483 1,39430 0,1037 0,3297 

0,16599 1,36036 0,15578 0,10091 1,25578 0,23037 0,24073 1,16386 

0,15490 1,1048 0,19682 0,8798 0,26493 0,48889 1,7791 1,35987 

1,16638 1,45825 1,38057 0,30566 0,48228 0,38949 1,47502 0,26137 

1,22920 1,32430 1,7944 1,35589 1,40867 1,47773 0,46838 1,44616 

1,39286 1,39175 0,42242 1,20480 1,22293 0,20389 0,23900 0,18555 

0,46427 0,8516 1,49886 0,10679 0,9400 1,24467 0,3709 0,411 

0,25540 0,22153 1,3954 0,23179 0,9759 1,33020 0,2711 1,42697 

1,34063 1,22716 1,23599 0,25436 1,22036 0,34470 1,12097 0,16505 

0,30238 0,37133 1,47578 1,43832 1,12285 1,43630 1,25872 1,22922 

0,47801 0,33166 0,30809 0,22288 1,15530 1,18379 1,26444 0,15686 

1,47213 0,23218 0,17078 0,9358 1,22390 1,12973 1,12756 0,14487 

1,14736 0,17512 0,16192 1,20303 0,13516 0,7694 0,46578 1,14630 

0,44937 0,8268 1,27634 1,42340 1,5782 0,18033 0,36288 1,20348 

1,25705 0,13909 0,48059 1,39900 1,42855 1,22621 0,19304 1,34024 

1,12876 1,24241 1,44899 0,44903 0,47548 0,2683 1,15201 1,40903 

0,49098 0,11108 1,8735 1,23818 0,9948 0,2917 0,17513 1,26798 

0,37204 1,48172 0,41628 0,21196 0,16265 1,33034 0,49456 1,20361 

0,46366 0,49157 0,22078 1,21714 0,36970 1,8646 1,9469 0,36225 

1,46020 1,1702 1,2979 1,21191 1,46458 0,48207 1,29311 1,33363 

0,18666 1,9636 1,25704 1,43329 1,32357 0,34652 1,29324 0,12938 



73 
 

1,36894 0,43868 1,47460 1,47637 0,24355 1,12176 0,12286 1,7957 

0,41794 0,49251 1,29601 0,45568 0,43907 1,10770 0,27169 1,45435 

0,9439 1,46069 0,14691 1,2992 0,20988 1,23961 0,42924 0,16206 

1,17346 1,17766 0,19820 1,17517 0,1382 0,41472 1,21713 0,47315 

1,3598 0,22383 0,54 0,28589 0,39334 1,5327 1,31446 0,11905 

0,2578 0,42675 1,36464 0,10865 1,38028 1,10859 0,21603 0,31835 

0,47015 0,11141 1,37753 0,41532 0,5012 1,42335 1,19108 1,6948 

0,3639 0,37524 0,14929 1,30811 0,39972 1,17926 1,20116 1,24335 

0,49921 0,42809 1,20340 1,3331 0,46753 1,20246 1,2500 1,30976 

1,18790 1,35884 1,8436 1,8547 0,40654 0,37234 1,4720 0,14709 

0,49005 1,120 1,49345 1,21382 0,5659 1,8975 1,35557 0,10747 

0,22871 0,40127 1,8215 0,32476 1,5622 0,11686 1,7083 0,47138 

0,8859 1,49704 1,26240 0,36223 1,4757 1,46740 1,43596 1,44175 

1,11825 1,10458 0,30016 1,43645 0,28919 1,6579 1,47380 0,4275 

0,47727 1,21962 1,32498 0,15530 1,22466 1,45797 0,44519 0,47839 

0,34722 0,29879 0,7742 1,35170 0,8487 0,32399 0,48678 0,33246 

1,46767 0,889 1,15261 1,45658 0,14995 1,18321 0,7303 1,1460 

1,2724 1,14771 1,49585 0,2935 1,3603 0,47776 0,48439 0,36931 

1,27169 1,48598 0,10737 1,23017 1,46089 0,32556 0,1153 1,12834 

1,8672 1,33281 0,8337 0,16815 0,14078 0,23123 1,38627 1,3974 

1,39029 0,24143 0,45127 1,6153 0,21868 1,3032 0,49348 0,27357 

0,2787 1,41676 0,45740 1,12125 1,35064 1,6677 0,36840 0,23619 

0,28071 0,4706 0,33306 0,45229 0,44371 1,41742 0,29463 1,35470 

1,20690 1,21422 0,2804 0,9359 1,23231 0,21345 0,1137 1,49613 

0,17119 0,33336 1,32844 1,3105 0,13328 1,27617 0,21679 0,23756 

0,1447 1,16627 0,10501 1,6270 1,48493 0,16937 0,3405 1,35778 

0,40294 1,19994 0,19317 1,21849 0,16686 1,10258 0,37921 0,37620 

1,34475 0,39281 1,7300 0,44227 1,13074 0,24621 1,14952 0,21515 

0,19190 1,3207 1,37054 0,45755 1,793 0,15683 0,13356 1,15584 

1,41297 0,13732 0,3287 0,35325 0,45480 0,9126 0,6162 1,45840 

0,16771 0,34900 0,8499 0,44231 1,23597 1,30814 1,5684 0,32808 

1,39345 0,6659 1,9489 1,13594 1,30040 0,18013 1,27989 0,38871 

1,44336 0,30589 0,27927 0,11027 1,2111 1,24641 0,27437 1,13143 

0,7526 1,13994 1,15792 0,39187 0,21976 0,12247 1,44256 1,14579 

0,27233 0,35737 0,49200 0,5252 1,1753 1,39824 1,39857 1,13701 

0,4107 1,23362 0,49430 0,40719 1,37172 0,20166 1,4892 1,30819 

1,41838 0,38020 0,33332 1,23075 1,24285 1,49272 1,19458 0,20474 

0,15879 1,11600 0,48591 0,48481 1,29903 1,11074 0,30888 1,49938 

0,16396 0,6674 1,43204 1,43781 1,26073 1,41564 1,3268 1,34426 

0,19360 0,41111 1,29064 0,16136 1,38420 1,2721 0,46284 0,49374 

0,11741 0,49831 1,11262 1,36635 0,25753 1,30251 0,13295 1,9735  



74 
 

APPENDIX B : A sample trace of Workload 2(readmost traces) 

0,47138 0,8885 0,46509 0,30725 1,15160 0,2460 0,9807 0,46791 

1,5087 0,11237 0,22932 0,37902 0,6713 0,34922 0,4119 0,42689 

0,25737 0,39402 0,9355 0,10606 0,641 0,27320 0,38193 0,21972 

0,42518 0,10783 0,28314 1,1900 0,13867 0,39219 0,46605 1,38017 

0,46494 0,23527 0,38630 1,21176 0,293 0,12907 0,39277 0,40610 

0,7266 1,41366 0,30769 1,8749 1,10029 0,1320 0,46614 0,41918 

0,26128 0,41673 0,19547 0,48693 0,37972 0,38947 0,15954 0,3438 

0,18472 0,16481 0,6566 0,9291 0,43502 1,33032 0,3183 0,19948 

0,6053 1,38512 0,46694 0,33131 0,29974 0,19584 0,49468 1,24278 

0,17376 0,46130 0,4161 0,3133 0,45468 0,35567 0,36470 0,24196 

1,34021 0,39449 0,18771 0,19982 0,26021 0,17350 0,44669 0,11232 

0,2877 0,14913 0,26197 0,37578 0,44932 0,27057 0,8577 0,21545 

1,19614 0,26010 0,31719 0,21978 0,9246 0,32690 0,35125 0,29523 

0,34981 1,3135 1,2971 0,1054 0,15836 0,29720 0,39483 0,42668 

0,23341 1,7058 1,37083 0,5836 0,39234 0,30664 0,47423 0,48384 

0,49832 0,47732 0,6181 0,28049 0,20673 0,14815 1,16584 0,35416 

0,15178 1,22743 0,37824 0,20809 0,43815 0,7992 1,22767 1,981 

0,6349 0,22302 0,1909 0,37810 0,24271 0,27349 0,21940 0,11289 

0,3186 0,14000 0,38546 1,20359 0,34039 0,3939 0,3492 0,44098 

0,2151 0,17422 0,30562 1,24662 0,23074 0,26344 1,31895 0,6416 

0,48410 0,15522 0,14390 0,34163 0,13073 0,19750 0,985 0,48011 

1,18012 0,11608 0,14481 0,34997 0,22648 0,26672 0,15980 0,49335 

1,34079 0,11814 0,31534 0,20259 0,11874 0,45185 1,20792 0,39186 

0,18681 0,24097 0,8582 0,26107 1,11335 0,33248 0,31662 0,47539 

0,2856 0,41237 0,19933 0,10902 1,6574 0,14599 0,39656 0,15879 

0,9645 0,32760 0,11311 0,14258 0,38921 0,47086 0,24615 0,36799 

1,23373 0,30556 0,6997 0,5647 0,22385 0,14890 0,5537 0,11311 

0,18829 0,9608 0,44776 0,35106 0,21597 0,18245 0,25921 0,19819 

0,41022 0,2924 0,33953 0,9818 0,21029 0,1955 0,26130 0,48683 

0,16144 0,42243 0,1071 0,48155 0,17289 0,24699 1,19033 0,18424 

0,39192 0,45975 0,949 0,25811 0,35775 0,28294 0,7946 0,2748 

0,36907 0,5078 0,27022 1,14669 0,37419 0,12382 0,8955 0,43073 

0,4139 0,37292 0,31386 0,15131 0,44501 0,40518 0,6139 0,49892 

0,22521 0,9057 1,43638 0,45879 0,30391 0,14690 0,25367 0,10125 

0,24894 0,41810 0,49555 0,38776 0,16140 0,49637 0,36102 0,13534 

0,4838 1,33623 0,19639 0,33611 1,38969 0,34042 0,32887 0,13925 

0,12100 0,10997 0,8528 0,11794 0,23601 0,15213 0,29736 0,47737 

0,15336 0,16109 0,10809 0,36945 0,49102 0,40775 1,2132 0,12292 

1,28002 0,29787 0,12657 0,27496 0,11586 0,35950 0,19189 0,7309 



75 
 

0,16707 0,45708 0,43469 0,32897 0,21864 0,18648 0,36112 0,29233 

0,18148 0,37425 0,21023 0,8947 0,30022 0,43937 0,18352 0,32213 

0,26617 0,6472 0,9465 0,1001 0,33444 0,38882 0,20992 0,19267 

0,31603 0,47080 0,36330 0,27784 0,9610 0,2085 0,47824 0,8152 

0,2037 0,7399 0,2509 0,15924 0,21722 0,22456 0,1344 0,31460 

0,26839 0,13079 0,9131 0,4649 0,42108 0,8980 0,31326 0,1164 

0,2116 1,33931 0,19819 0,21947 0,43479 0,12174 0,34616 0,18643 

0,9172 0,15023 0,16227 0,33152 0,25781 1,32700 0,27830 0,33616 

0,43438 0,24311 0,33625 0,27599 0,5211 0,12664 0,41573 0,46198 

0,49994 1,31239 0,47727 0,646 1,37050 0,12074 0,32477 0,42313 

0,47770 0,46694 0,20214 0,26103 0,5700 0,16571 1,16484 0,27397 

0,42946 0,31008 0,29316 0,7067 0,26433 0,28105 1,13643 0,21567 

0,41547 0,43496 0,27556 0,13613 0,43995 0,6948 0,13336 0,14920 

1,37646 1,17696 0,28939 0,25819 0,41267 0,8789 0,49076 0,43432 

0,34655 0,18554 1,2156 0,29334 0,23288 0,20318 0,23510 0,29543 

0,20736 0,25775 0,41235 0,20547 0,48593 0,14735 0,15425 0,37705 

0,20563 0,5176 0,23816 0,4212 0,73 0,1533 0,31879 0,35956 

0,33468 0,18525 0,16509 0,21445 0,49441 1,27666 0,48467 0,18078 

0,20598 0,2954 0,3779 1,42299 0,41212 0,49422 0,5285 0,34482 

0,2121 0,12208 0,16843 0,43890 0,5114 0,29368 0,18048 0,46923 

0,8388 0,38472 0,26362 0,22877 0,47095 0,16052 0,25752 1,28985 

0,18284 0,20430 0,19205 0,6473 1,6948 0,3957 0,4795 0,41872 

0,17352 1,2385 0,44678 0,36418 0,40141 0,39450 0,11828 0,18181 

0,28935 0,26468 0,32854 0,3130 0,39175 0,37648 0,6903 0,33788 

0,25156 0,10791 0,20301 0,38533 1,33099 0,22855 0,14319 0,32810 

0,13657 0,18918 0,10063 1,45405 0,41789 0,19834 0,8878 0,42519 

0,22301 0,31632 0,34843 0,9710 0,29224 0,45669 0,33202 0,28723 

0,28469 0,19276 1,48889 0,32789 0,22921 0,37976 1,14042 0,40266 

0,10572 0,2371 0,1856 0,27864 0,48851 0,12320 0,8046 0,36058 

0,26917 0,45898 0,13012 0,33703 0,37801 0,35456 0,46517 1,39406 

0,42940 0,34131 0,25288 0,10775 0,20746 0,18061 0,382 0,28769 

0,4438 0,45124 0,14697 1,39087 0,15722 0,27004 0,20125 0,34195 

0,43287 0,49173 0,36883 0,16981 0,29870 0,31391 0,32459 0,20107 

1,30190 0,23806 1,19013 0,28304 0,49550 0,6669 0,4493 0,14581 

0,8351 0,11261 0,20004 0,41954 0,24849 0,62 0,28875 1,3940 0,429 

1,34690 1,4804 0,24203 0,46097 0,22611 0,31691 0,34656 0,9863 

0,46018 0,18755 0,47633 0,3477 0,32363 0,13419 0,33842 0,36158 

1,25152 0,49592 1,1617 0,26068 0,35534 0,48057 0,1741 0,11145 

0,47406 0,17319 0,13342 0,32230 0,9724 0,7757 0,17773 0,3723 

0,26021 0,9208 0,10427 0,27148 0,37419 0,42750 0,43348 1,41872 

0,11259 0,23443 0,41763 0,49494 0,18709 0,34267 0,14046 0,27289  



76 
 

APPENDIX C : A sample trace of Workload 3(writemost traces) 

1,12527 1,1216 1,698 1,35286 1,39722 1,25887 1,45028 1,47558 

1,44966 1,10018 1,41052 0,8011 1,42731 1,9714 1,39263 1,40196 

1,6269 1,39623 1,33031 1,1853 1,29107 1,5242 1,1010 1,28122 

1,35606 1,27792 1,19845 1,24155 1,20899 1,37819 1,27592 1,1272 

1,2536 1,35733 1,33645 1,37360 1,13287 1,35073 1,24973 1,31865 

1,7424 1,5993 1,8751 1,2237 1,39556 1,8440 1,35811 1,25015 

1,42880 1,12603 1,8230 1,45262 1,10924 0,40802 1,24112 1,38237 

1,31304 1,5412 1,43801 1,29898 1,10638 1,47683 1,4487 1,44810 

1,8571 1,9911 1,33896 0,35169 1,35950 1,9344 1,2859 1,32483 

1,2158 1,46525 1,32777 1,20380 0,25035 1,5188 1,6797 0,24879 

1,8889 1,19975 1,8644 1,8494 1,17945 1,5175 1,29078 1,36322 

1,46605 0,3722 1,23254 1,35573 1,44707 1,16353 1,23944 1,24724 

0,40235 1,9453 1,33001 1,23185 1,19468 1,4818 1,18662 1,14189 

0,1378 1,16011 1,18092 1,36090 1,37183 1,4364 1,33538 1,41008 

1,19253 1,34763 1,21453 1,5052 1,38178 1,39783 1,33887 1,46310 

1,2396 1,41563 1,18490 1,18554 1,46076 1,3812 1,46712 1,22442 

0,15937 1,38230 1,45473 1,6945 1,24479 1,9632 1,21724 1,12421 

1,20451 1,35388 0,980 1,4486 1,47436 1,44968 1,42560 1,34505 

1,42484 1,8868 1,13237 1,45460 1,40381 1,46871 1,18937 1,1389 

1,22092 1,20688 1,30869 0,45818 1,47306 1,3497 1,1803 1,6096 

1,24012 1,43783 1,7630 1,24744 1,47367 1,42187 1,43951 1,21302 

1,26076 1,12092 0,38106 1,21666 1,45645 1,12638 1,5712 0,14779 

1,33647 1,29306 1,20191 1,33315 1,26443 1,11996 1,28139 1,18374 

1,24340 1,26206 1,6606 1,1590 1,16723 1,48509 1,29078 1,36414 

1,5498 0,24528 1,43092 1,11633 1,27217 1,10035 1,5380 1,2269 

1,41075 1,7928 1,8105 1,3437 1,22547 1,45582 0,8817 1,38670 

1,20172 1,30414 1,47214 1,19627 1,26446 1,40787 1,39687 1,3454 

1,37369 1,30931 1,33101 1,18169 1,22790 1,11904 0,47052 1,3672 

1,42585 1,9384 1,5275 1,13720 1,19348 1,49136 1,20843 1,19068 

1,25883 1,16481 1,27189 0,29307 1,16008 1,45273 0,9839 1,38955 

1,48500 1,48560 1,47897 1,37830 1,39217 1,9133 1,18904 0,10499 

1,48972 0,42043 1,45152 1,1636 1,12524 1,39143 1,37057 1,9006 

1,47238 1,45840 1,5534 1,45368 0,28865 1,6060 1,41228 1,31789 

1,48175 1,22391 1,23196 1,34069 0,27033 1,11358 1,21846 1,38558 

1,36046 1,4791 1,26938 1,20824 1,4823 1,48716 1,44135 1,28505 

1,49252 1,44939 1,36081 1,29232 0,30656 0,47723 1,48222 1,35146 

1,878 1,18288 1,8098 1,31077 1,8318 0,21097 0,7152 0,13565 

1,46677 1,1957 1,31401 1,39787 1,27588 1,17227 1,31164 1,47753 

1,12432 1,2839 1,47863 1,26882 1,6630 1,21134 1,19651 1,27453 



77 
 

1,14355 1,10102 1,29343 0,7942 1,1493 1,28572 0,38982 1,9057 

1,15971 1,890 1,41953 1,49738 1,23491 1,31693 1,33812 1,32832 

1,9872 0,9447 1,3797 0,32651 1,40169 1,10428 1,46901 1,21121 

0,43432 1,31932 1,31178 1,48543 0,22614 1,46575 1,48943 1,39342 

1,48404 1,1240 1,43650 1,49269 0,9064 0,21974 1,45434 1,46811 

1,48624 1,49290 1,11505 1,448 1,11224 1,11304 1,47535 1,15242 

1,36174 1,12490 1,4666 1,42262 1,41583 1,17152 1,12715 0,18951 

1,21008 1,16825 1,25648 1,7780 0,32453 1,31306 1,31417 1,8739 

1,26541 1,29079 1,20598 0,32708 1,20379 1,7102 1,47144 1,6410 

1,34135 1,46739 1,30138 1,31747 1,31348 0,6005 1,22079 1,27629 

1,27350 1,14363 1,32636 1,6512 1,38772 1,31748 1,40623 1,46464 

0,7840 1,38240 1,41170 1,48485 0,9147 1,13603 1,21382 1,23347 

1,32522 1,18992 1,48222 1,38319 1,45065 1,35093 1,29744 1,16979 

0,12561 1,4371 1,11740 1,9723 1,4997 0,6338 1,9511 1,1668 1,6783 

1,13377 1,2671 1,16732 1,25981 1,27165 1,81 1,35553 1,31878 

1,22785 1,17572 1,9548 1,21927 1,48014 1,17879 1,17783 1,47687 

1,49421 1,24950 1,45829 1,22042 1,36591 0,20713 1,26414 1,30873 

1,41931 1,32470 1,17745 1,14697 1,35251 1,44569 1,43227 1,17229 

1,17520 1,49316 1,14564 1,33594 1,7837 1,1316 1,35393 1,36273 

1,34393 1,31050 1,17156 1,83 1,3210 1,9195 1,41171 1,39217 

1,16562 1,1466 1,41723 1,36963 0,47959 1,19432 1,29369 1,15640 

1,15839 1,13620 1,7344 1,16065 1,39560 1,11159 1,40807 1,26421 

1,5383 0,43262 1,2821 1,16617 1,6729 1,26508 0,23680 1,9374 

1,35984 1,20078 1,22442 1,12644 1,48135 0,39378 1,25798 0,14005 

1,23302 1,13471 1,14359 1,21971 1,20334 1,31838 1,49621 1,28811 

1,3897 1,43040 1,27843 1,32634 1,27524 1,16779 1,43505 1,25441 

1,44214 1,2239 1,21654 1,40382 1,27730 0,25933 0,23356 1,32532 

1,5623 0,2742 1,14485 1,21326 1,36952 1,29226 1,15461 0,16820 

1,22017 0,9035 1,25265 1,11212 1,33356 1,27032 1,14152 1,15124 

1,47528 1,7678 0,23761 1,48844 1,29099 0,3500 1,26389 1,2172 

1,11354 0,6325 1,42822 1,26389 1,5102 1,34110 0,21757 1,20043 

1,43395 1,14065 1,16337 1,43311 1,34617 1,29231 0,5727 1,27015 

0,34690 1,40669 1,19798 1,28686 1,20363 1,34354 1,44407 1,24634 

1,16787 1,38452 1,42688 1,40239 1,1854 0,4638 1,42761 1,26164 

1,16350 1,22821 0,28702 1,6451 1,32037 1,47186 1,18653 1,45641 

1,16091 1,29841 1,10516 1,7979 1,168 1,30352 1,3196 1,46214 

1,30409 1,43742 1,48075 1,26852 1,35557 1,29788 1,47754 1,17588 

1,17838 1,42179 1,38931 1,32941 1,47935 1,48613 1,42451 1,13432 

1,25523 1,16903 1,30117 1,34689 1,32151 1,49445 1,20582 1,27493 

1,41441 1,37480 1,32555 1,43946 1,5870 1,49112 0,11214 1,36303 

1,18266 1,9420 1,33141 0,31688 1,32068 1,40259 1,16869 1,35169  


