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Chapter 1 

1. Introduction 
1.1. Background 

Mixed Model Just-in-Time (JIT) production system came into existence with the motto of 

reducing cost of diversified small lot instead large lot to minimize great inventories and to 

great shortage which produce only the necessary quantities at the necessary time of the 

competitive production centers have challenged to provide a variety of products at a very low 

cost by smoothing products and increasing computer applications. 

Mixed Model Just-in-Time production system minimizes both the earliness and the tardiness 

penalties which respond to the customs demands for a variety of models provoking massive 

shortage of the products. This model has the aim to hold inventory and shortage cost as small 

as possible like as it also sequence the problems that consider other operational characteristic 

though limited to a small subset of them of the line also is to minimize sequence dependent 

work overload [2]. This system consists of a hierarchy of a finite and distinct level such as 

products, sub-assemblies, component parts, raw materials, etc. 

The significant aim of the system is to obtain an optimum sequence of a number of products 

that minimizes deviation through the time between the actual and ideal production. This 

sequence always keeps the actual production one as close to each other as possible all the 

time. The sequence at the final level is crucial and affects all the supply chain as all other 

levels are also essentially fixed due to pull nature of the system. Balancing the schedule 

determines the Sequence of final Assembly which achieves the goals. 

JIT has been firstly introduced by modern Toyota Production system as a Just in time 

scheduling. This concept has been used for the control of assembly system. The main aim of 

the JIT system is to satisfy the customers’ demand for a variety of products without holding 

the large shortage also a JIT production system is to ensure that the quantity of each part used 

by the assembly process is kept as close to constant as possible per unit time. JIT system from 

conventional system is that subsequent process within the manufacturing system “pull” their 

parts require mends from the preceding processes. The pull process result in a Miltenburg and 

Sinnamon [20] and Miltenburg and Goldstrin [19] explain that the formulation of the multi-

level system.  The assembly line is used as a pull line and the system as a pull system. Kubiak 
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[17] gave a more specific distinction between these problems and the product refered single 

level problem as the Product Rate Variation (PRV) problem and the multi-level problem as 

the Output Rate Variation (ORV) problem. Kubiak also differentiated PRV problem as a total 

deviation PRV problem and maximum deviation PRV problem. The total deviation PRV 

problem goals to minimize the sum of total deviation and therefore looks on minimizing the 

total variation between the actual product and the ideal production in any shortage, such 

problem represents the problem considered by Miltenburg [21]. The maximum deviation 

PRV problem minimizes the maximum deviation of the actual product of a product from its 

ideal level of production. Such problem represents the problems considered by Steiner and 

Yeomnas [25]. The pull system where the final assembly line defines the scheduling and 

requests for demand down the level is represented by O.R.V. problem. The problems are 

considered by Miltenburg and Sinnamon [20] and Miltenburg and Goldstein [19] are 

categorized as ORV problem. 

Kubiak [16] proves that optimal JIT sequences are cyclic. This provided an important 

theoretical support to the usual for JIT systems practice of repeating relatively short sequence 

to build a sequence for a longer time horizon It also has important consequences on the 

computational time complexity if all existing algorithms for PRV [8]. In 2004 Brauner and 

Crama [7] determine a set of algebraic necessary and sufficient condition for existence of a 

maximum deviation JIT schedule with a give objective value. 

Miltenburg [21] and Miltenburg and Sinnamon [19] observe the existence of the cyclic 

sequences for the total PRV problems. Kubik [16] shows that the cyclic sequences are 

optimal and Dhamala and Kubiak [13] gave opinion that cyclic sequences in the ORV are 

optimal. 

1.2. Objective of the Study 

The main objective of this Dissertation is to study the Sequencing Approach for Mixed-

Model Just in Time Production system. In this dissertation, Heuristic and Dynamic 

Programming Approach only focus. 

The general objectives of this study were stated as: 

 To study different methods in Just-in-time production system. 
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 To study different objective functions under Just-in time production environment. 

 To find out possibility of sequencing approach in Just-in-time production system. 

1.3. Organization of the Thesis 

This is organized as follows: 

The Chapter 1 briefly describes the introduction to scheduling, significance of the problem, 

machine scheduling and scheduling problem and also introduces the scheduling environment.  

The Chapter 2 describes algorithms and computational complexity. The theoretical basis of 

computer science has been formulated. Computational resources and complexity classes are 

described. 

The Chapter 3 describes the formal description of scheduling theory, different types of 

scheduling problems and solution strategies. 

The Chapter 4 discusses the single machine scheduling problems and methods previously 

used to solve similar scheduling problems in the literature. 

The Chapter 5 describes the past work in the similar problem and some traditional approach 

to solve the Different types of sequencing Approaches. 

In the Chapter 6 computational experiments are performed on randomly generated real size 

data and the solutions obtained for both Heuristic Algorithm and Dynamic Algorithm are 

compared. 

In Chapter 7 Conclusion and directions of future research is given. 

1.4. Methodology 

A large number of papers related to the Scheduling, Optimization Problem, Heuristic 

Algorithm Problem, and Dynamic Algorithm Problem have been collected and studied that 

deal with the Mixed Model Just-in-time sequencing Production System. The necessary 

documents are collected from the internet and from my supervisor. Basically the papers are 

related with scheduling problem in JIT environment at single and Multi-Level production. 

Beyond papers, some books on scheduling algorithms are also followed.
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Chapter 2 

2. Computational Complexity  

Computational complexity theory is a branch of the theory of computation in computer 

science that investigates the problems related to the resources required to run algorithms, and 

the inherent difficulty in providing algorithms that are efficient algorithms for both general 

and specific computational problems. Complexity theory attempts to describe how difficult it 

is for an algorithm to find a solution to a problem. This differs from computability theory, 

which describes whether a problem can be solved at all. Furthermore, much of complexity 

theory deals with decision problems. A decision problem is one where the answer is always 

“yes” or “no”. Some problems are un-decidable, or at least seem so, so complexity theory can 

be used to distinguish problems where it is certain to get a correct “yes” or “no” (not 

necessarily both). A problem that reverses which can be relied upon is called a complement 

of that problem. Complexity theory analyzes the difficulty of computational problems in 

terms of many different computational resources. A problem can be described in terms of 

many requirements it makes on resources: time, space, randomness, alternation, and other 

less-intuitive measures (vague). 

2.1.  Turing Machine  

Turing Machine is basic abstract symbol-manipulating device which, despite their simplicity, 

can be adapted to simulate the logic of any computer algorithm. It was described in 1936 by 

Alan Turing. Turing Machine is not intended as a practical computing technology, but a 

thought experiment about the limits of mechanical computing. Thus it was not actually 

constructed. Studying its abstract properties yields many insights into computer science and 

complexity theory. 

A Turing Machine that is able to simulate any other Turing Machine is called Universal 

Turing Machine (UTM, or simply a universal machine). A more mathematical–oriented 

definition with a similar “universal” nature was introduced by Alonzo Church, whose work 

on lambda calculus intertwined with Turing’s in a formal theory of computation known as the 

Church-Turing thesis. The thesis states that Turing machines indeed capture the informal 

notion of effective method in logic and mathematics, and provide a precise definition of an 

algorithm or ‘mechanical procedure’. Some of the examples of Turing Machine are: Turing’s 

very first machine, copy routine, 3-state busy beaver.   
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2.2. Functions: 

A function associates one quantity, the argument of the function, also known as the input, 

with another quantity, the value of the function, also known as the output. A function assigns 

exactly one output to each input. The argument and the value may be real number, but they 

can also be elements from any given set. An example of a function is f (x) = 2x, a function 

which associates with every number the number twice as large. Thus, with the argument 5 the 

value 10 is associated, and this is written f (5) = 10. 

One precise definition of a function is an ordered triple of sets, written (X, Y, F), where X is 

the domain, Y is the co-domain, and F is a set of ordered pairs (a, b). In each of the ordered 

pairs, the first element is from the domain, the second element b is from the co-domain, and a 

necessary condition is that every element in the domain is the first element in exactly one 

ordered pair. The set of all b is known as the image of the function, and need not be the whole 

of the co-domain. Many authors use the term "range" to mean the image, while some use 

"range" to mean the co-domain. 

The notation ƒ: X→Y indicates that ƒ is a function with domain X and co-domain Y, and the 

function f is said to map or associate elements of X to elements of Y. A function f whose 

values are in the set of real number R is called a real-valued function and is non-negative 

if 𝑓 ≥ 0. Since we shall be mostly interested in teal valued function of real variable 

throughout this thesis, we write only ‘function’ to mean the real-valued function of real 

variable unless otherwise specified. The function f is said to be monotonically increasing if 

f(x)  ≤  f(y) wheneverx ≤  y. Similarly, f is a called monotonically decreasing if f(x)  ≥

 f(y) whenever x ≤ y. 

The function f is said unimodal if for some value such that either (a) or (b) holds: 

a. f is monotonically decreasing for x ≤ a and monotonically increasing for x ≥ a. In that 

case, the maximum value of f is f (a) and there are no other local minima. 

b. f is monotonically increasing for x ≤ a and monotonically decreasing for x ≤ a. In that 

case, the maximum value of f is f (a) and there are no other local maxima. 

If the domain and co-domain are both the set of real numbers, using the ordered triple scheme 

we can, for example, write the function y = x2 as 

http://en.wikipedia.org/wiki/Image_%28mathematics%29
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2.3. Graph Theoretical Denotations 

A graph G= (V, E), the edge set E consist of unordered pairs of vertices, rather than ordered 

pairs. That is, and edge is a set {u, v}, where, u, v ∈ V and u ≠v. The unqualified term graph 

usually means undirected graph. 

A path of length k from u to a vertex u’ in a graph G=(V, E), where {u, u’}∈E, is  a  sequence  

{ v0,  v1, ……….., vk} of  vertices  such  that u =v0,  u’= vk  and (vi-1,vi)∈E for i=1,2,….., k. 

The length of the path is the number of edges in the path. 

Let G=(V, E) be a graph in which the vertex set V can be partitioned into two disjoint sets, V1 

and V2 , and each edge in E has one vertex in V1 and other in V2. In such a case G is called a 

bipartite graph and we denote G = (V1  V2, E). If a graph has no such a partition, we say it 

non-bipartite. A bipartite graph G = (V1 V2, E) is said to be complete if each vertex of V1 is 

connected to each vertex of V2. The bipartite graph G=(V ∪ U, E) is a V-convex if there is an 

ordering on V such that [ vi, uk ] ∈ E and [ vj, uk] ϵ E with vi, vj ∈ V, vi <vj  implies that [vp, uk 

] ∈ E for vi ≤ vp≤ vj  [34]. 

The graph G = (V, E) together with a function W: E  R+ is called the edge weighted graph 

and together with a function W: V R+ is called vertex weighted graph, where R+ the set of 

all non-negative real numbers. 

2.4. Algorithms  

A computational problem is a mathematical object representing a general question that might 

want to solve and is independent of its specific input. A problem with a specific set of inputs 

is called an instance. Hence, a computational problem is a function ∏: Z Y, where Z is the 

set of all problems instances I and Y is the set of the solutions. An algorithm is a set of 

precise instructions for performing a computation or solving an optimization problem. 

In other words, an algorithm is any well defined computation procedure that takes some 

value, or a set of values, as input and produces some value, or set of values, as output. An 

algorithm is thus a sequence of computational steps that transforms the input into the output. 

To represent algorithms we use English language, however, for the simplicity we use pseudo 

code that can represent an algorithm in a clear manner like in English language and gives the 

implementation view as in the programming languages. 
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There are several properties that algorithms generally share. They are useful to keep in mind 

when algorithms are described. These properties are: 

1. Input /output: An algorithm has input or set of input values from the set that has possible 

input values and for each inputs an algorithm produces the solution of the problem that are 

in the set of output values. 

2. Definiteness: Each step must be clear and unambiguous. 

3.  Correctness: An algorithm produced output must be correct for each   set of input values. 

4.  Finiteness: An algorithm must terminate after finite amount of time for every possible set 

of values. 

5.  Effectiveness: Each step must be executable in finite time. 

6.  Generality: The devised algorithm must be capable of solving the   problem of similar 

kind for all possible inputs. 

Complexity of Algorithms 

When an algorithm is defined, it must be analyzed for its efficiency. The efficiency of an 

algorithm is measured in terms of complexity. The complexity of algorithms is mentioned in 

terms of resource needed by the algorithm. We generally consider two kinds of resources 

used by an algorithm, time and space. The measured of time required by an algorithm to run 

is given by time complexity and the measure of space (compute memory) required by an 

algorithm is given by space complexity. Let f and g be functions from the set of real numbers 

to the set of real numbers. A function f(x) =O (g(x)) if and only if there exists two constants c 

an n0 such that for all 𝑛 ≤ 𝑛0, 0 ≤ 𝑓(𝑛) ≤ 𝑐 × 𝑔(𝑛). 

                                        

Figure 1: Graphical notation of f(n) = O (g(n)) [5] 
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A polynomial time (polynomial) algorithm is the one whose time complexity functions T(k) 

∈ O (h(k)), where h is some polynomial and k is the input length of an instance I. If time 

complexity function cannot be bounded by the polynomial function, it is called exponential 

time algorithm. A computational problem ∏ is called polynomial solvable if there is a 

polynomial time algorithm solving it. A problem ∏ is called pseudo-polynomial solvable if 

the time complexity function T(k) is polynomial with respect to |I| and max(I), where |I| and 

max(I)  respectively denotes the input length and the largest number appearing in the instance 

I∈ ∏. Hence, the notion of pseudo-polynomial solvable depends on the magnitude of the 

largest input data involved. 

Given any problem instance I∈ Z of an optimization problem to minimize a certain sum or 

bottleneck objective function with respect to constraint X, the optimal solution is given by 

(x0) = min{ (x)| x ∈ X}, therefore ∏(I)= (x0). However the range Y must contain elements to 

represent “unbounded” and “infeasibility”, too, in general. A problem ∏ is called decision 

problem if Y ={yes, no}. Each optimization problem has its decision counterpart which is 

associated by defining an additional threshold value y for the corresponding objective 

function gamma. For example, given an additional threshold value y for the objective 

function   we ask: does there exists a feasible solution x ∈ X such that  (x) ≤ y ? 

In complexity classes, the set of all decision problems which are polynomial solvable is 

denoted by P. The class of all decision problems whose all yes instances can be checked for 

validity in polynomial time, given some additional information called certificate, is denoted 

by NP (Non-deterministic polynomial time). 

Similarly, the class of all problems that are complements of the problems in NP, i.e. for every 

instance I, there exists a concise certificate for I, which can be checked for validity in 

polynomial time, is denoted by co-NP.  

We say that a decision problem ∏2 reduces to another decision problem ∏1, denoted by ∏2 

∏1, if there exists a polynomial time transformation function h: Z2  Z1 such that ∏2 (I) = yes  

for I ∈ Z2 if and only if ∏1 (h(I)) = yes for h(I) ∈ Z1. A decision problem ∏1 is called NP-

complete if ∏1∈ NP and for any other known decision problem ∏2∈ NP we have ∏2  ∏1. 

Since, it follows from ∏2 ∏1 that the problem ∏1 is at least as hard as the problem, ∏2 it is 

sufficient to consider any known NP-complete problem ∏2 in the complexity hierarchy. The 
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“problem reducibility” relation is a transitive relation on the class of decision problems. A 

decision problem in NP is called NP-complete in strong sense if it can be solved pseudo-

polynomial only if P = NP, which is one of the major open problems in modern mathematics 

and theoretical computer science. An optimization problem is called NP-hard if the 

corresponding decision problem is NP-complete. 

2.5. Heuristics Programming: 

George Polya defines heuristic as "the study of the methods and rules of discovery and 

invention" (Polya 1945). This meaning can be traced to the term's Greek root, the verb 

eurisco, which means "I discover". When Archimedes emerged from his famous bath 

clutching the golden crown, he shouted "Eureka!' meaning "I have found it!'. In state space 

search, heuristics are formalized as rules for choosing those branches in a state space that are 

most likely to lead to an acceptable problem solution. 

Al problem solvers employ heuristics in two basic situations: 

1. A problem may not have an exact solution because of inherent ambiguities in the problem 

statement or available data. Medical diagnosis is an example of this. A given set of 

symptoms may have several possible causes; doctors use heuristics to choose the most 

likely diagnosis and formulate a plan of treatment. Vision is another example of an 

inherently inexact problem. Visual scenes are often ambiguous, allowing multiple 

interpretations of the connectedness, extent, and orientation of objects. Optical illusions 

exemplify these ambiguities. Vision systems use heuristics to select the most likely of 

several possible interpretations of a given scene. 

2. A problem may have an exact solution, but the computational cost of finding it may be 

prohibitive. In many problems (such as chess), state space growth is combinatorially 

explosive, with the number of possible states increasing exponentially or factorially with 

the depth of the search. In these cases, exhaustive, brute-force search techniques such as 

depth-first or breadth-first search may fail to find a solution within any practical length of 

time. Heuristics attack this complexity by guiding the search along the most "promising" 

path through the space. By eliminating unpromising states and their descendants from 

consideration, a heuristic algorithm can (its designer hopes) defeat this combinatorial 

explosion and find an acceptable solution. 
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Unfortunately, like all rules of discovery and invention heuristics are fallible. A heuristic is 

only an informed guess of the next step to be taken in solving a problem. It is often based on 

experience or intuition. Because heuristics use limited information, such as the descriptions 

of the states currently on the open list, they are seldom able to predict the exact behavior of 

the state space farther along in the search. A heuristic can lead a search algorithm to a 

suboptimal solution or fail to find any solution at all. This is an inherent limitation of 

heuristic search. It cannot be eliminated by "better" heuristics or more efficient search 

algorithms (Garey and Johnson 1979). 

Heuristics and the design of algorithms to implement heuristic search have long been a core 

concern of artificial intelligence research. Game playing and theorem proving are two of the 

oldest applications in artificial intelligence; both of these require heuristics to prune spaces of 

possible solutions. It is not feasible to examine every inference that can be made in a 

mathematics domain or every possible move that can be made on a chessboard. Heuristic 

search is often the only practical answer. 

2.6. Dynamic Programming: 

Dynamic programming solves problems by combining the solutions to sub-problems. This is 

a modification of the divide-and-conquers approach. Divide-and-conquer algorithms partition 

the problem into independent sun-problems, solve the sub-problem recursively, and then 

combine their solutions to solve the original problem. In contrast, dynamic programming is 

application when the sub problems are not independent, that is when sub-problems share sub-

sub-problem. 

A dynamic programming algorithm solves every sub-problem just once and then saves its 

answer in a table, thereby avoiding the work of re-computing the answer every time the sub-

problem is encountered. 

Dynamic programming is typically applied to optimization problems. In such problems there 

can be many possible solutions. Each solution has a value, and we wish to finish finding a 

solution with the optimal (minimum or maximum) value. We call such a solution an optimal 

solution to the problem, as opposed to the optimal solution, since there may be several 

solutions that achieve optimal value. 
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The development of a dynamic programming algorithm can be broken in to a sequence of 

four steps: 

1. Characterize the structure of an optimal solution. 

2. Recursively define the value of an optimal solution. 

3. Compute the value of an optimal solution in a bottom-up fashion. 

4. Construct an optimal solution for computed information. 

Step 1 to 3 from the basis of a dynamics programming solution to a problem. Steps 4 can be 

omitted if only the value of an optimal solution if required. When we do perform step 4, we 

sometimes maintain additional information during the computation in step 3 to each the 

construction of an optimal solution. 

2.7. Complexity Classes: 

In computational complexity theory, a complexity class is a set of problems of related 

complexity. A typical complexity class has a definition of the form: the set of problems that 

can be solved by abstract machine M using O(f(n)) of resource R (n is the size of the input) . 

A complexity class is the set of all the computational problems which can be solved using a 

certain amount of a certain computational resources. There are several complexity classes in 

the theory of computation. Some of the major classes are discuses 

2.7.1. Class P 

The complexity class P is the class of decision problems that can be solved by a deterministic 

machine in polynomial time. This class corresponds to an intuitive idea of the problems 

which can be effectively solved in the worst cases. 

Example 2.1 The problem of sorting n numbers can be done in O(n2) time using the quick 

sort algorithm in worst case. Thus all sorting problems are in P. 

2.7.2. Class NP 

The complexity class NP is the set of decision problems that can be solved by a Non-

deterministic Turing machine in polynomial time. This class contains many problems that 

people would like to be able to solve effectively, including the Boolean satisfiability problem, 
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the Hamiltonian path problem and the vertex cover problem. All the problems in this class 

have the property that their solutions can be checked efficiently. 

Example 2.2 A vertex cover of an undirected graph G = (V, E) is a subset of ⊆V such that 

if (u, v) ϵ E, then uϵ  and vϵ  or both. That is, each edge touches at least one vertex . The 

vertex-cover problem is to find such a vertex cover of minimal cardinality. This problem is in 

NP. 

2.7.3. NP-Complete 

In computational complexity theory, the complexity class NP-complete (abbreviated NP-C or 

NPC, NP standing for Nondeterministic polynomial time) is a class of problems having two 

properties: 

 Any given solution to the problem can be verified quickly (in polynomial time); the set of 

problems with this property is called NP. 

 If the problem can be solved quickly (in polynomial time), then so can every problem in 

NP. 

2.7.4.  NP-Hard 

NP-hard (nondeterministic polynomial-time hard), in computational complexity theory, is a 

class of problems informally “at least as hard as the hardest problems in NP”. A problem H is 

NP-hard if and only there is an NP-complete problem L that is polynomial time Turing-

reducible to H.  In otherworld’s, L can be solved in polynomial time by an oracle machine 

with an oracle for H. Informally we can think of an algorithm that can call such an oracle 

machine as subroutine for solving H, and solves L in polynomial time if the subroutine call 

takes only one step to compute. 

2.7.5. P=NP Question 

The question of whether NP=P (can problems that can be solved in nondeterministic 

polynomial time also always be solved in deterministic polynomial time ? ) is one of the most 

important open question in theoretical computer science and ultra modern mathematics 

because of the wide implications of a solution. If the answer is yes, many important problems 

can be shown to have more efficient solutions that are now used with reluctance because of 
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unknown edge cases. These include various types of integer programming in operations 

research, many problems in logistics, protein structure prediction in biology, and the ability to 

find formal proofs of pure mathematics theorems. The P=NP problem is one of the 

Millennium prize problems proposed by the Clay Mathematics Institute the solution of which 

is a US$1,000,000 prize for the first person to provide a solution . 

2.7.6. NP-Incomplete 

Incomplete problems are those neither in NP that are neither NP-complete nor in P. In other 

words, incomplete problems can neither be solved in polynomial time nor are they hard 

problems. It has been shown that if P=NP is found false then there exist NP-incomplete 

problems. 

2.7.7. Co-NP 

Co-NP is the set containing the complement problems (i.e. problems with the yes/no answers 

reversed) of NP problems. It is believed that the two classes are not equal; however it has not 

yet been proven. It has been shown that if these two complexity classes are not equal, then it 

follows that no NP-Complete problem can be in co-NP and no co-NP-Complete problem can 

be in NP.  

2.8. Combinatorial Optimization 

Some scheduling problem can be solved efficiently by reducing them to well known 

combinatorial optimization problems like linear programs, maximum flow problem or 

transportation problem. Others can be solved by using standard techniques like dynamic 

programming and branch and bounds methods. Here, we give a brief sketch of these 

combinatorial optimization problems and also discuss some of the methods. 

2.8.1. Integer Programming 

A linear programming refers to an optimization problem in which the objective and the 

constraints are linear in the variables to be determined. An LP can be expressed as follows: 

Minimize c1x1+c2x2+……+cnxn  .       (2.1) 

Subjected to: 
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   a11x1+a12x2+……. +a1nxn≤ b1 

   a21x1+a22x2+……. +a2nxn ≤ b2 

     . 

     .                                  +(2.2) 

     . 

   am1x1+ am2x2+ ... + amnxn ≤bm 

   xj ≥ 0 for j=1,2,…… n 

The objective is to minimize the costs. The c1, c2, ..…..,cn vector is referred to as the cost vector 

. The variable x1, x2 ,….., xn have to be determined so that the objective function 

c1x1+c2x2+……+cnxn is minimized. The quantities a1j, a2j, … ,amj defines the activity vector j. 

The b1, b2,…., bm are referred to as the resource. 

A non-linear program (NLP) is a generalization of a linear program that allows the objective 

function and / or the constraints to be non-linear in x1, x2,….., xn. An integer program (IP) is a 

linear program with the additional requirements that the variables x1, x2,….., xn have to be 

integers. 

The linear program (LP) is solvable problem and integer program is NP-hard problem. 

2.8.2. Bipartite Matching Problem 

A matching M of a graph G=(V, E) is a subset of the edges with the property that no two 

edges of M share the same node. Given a graph G=(V, E), the matching problem is to find a 

maximum matching M of G (see [29]) . When the cardinality of a matching is the largest 

possible in a graph with |V| nodes, we say that the matching is complete, or perfect and the 

problem of finding a perfect matching M of G is called the perfect matching problem  [24]. 

Let us consider a graph G = (V, E) together with a fixed matching M of G. Edges in M are 

called matched edges; the other edges are free. If [u, v] is a matched edge, then u and v are 
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mate to each other. Nodes that are not incident upon any matched edges are called exposed; 

the remaining nodes are matched. 

Now, consider a bipartite graph G= (V Y U, E) within n= |V| ≤ |U| = m. For any subset X of 

vertices, denote by N(X) the neighborhood of X, i.e. the set of all vertices adjacent to at-least 

one vertex in X. Clearly, n is an upper bound for the perfect matching in G. The following 

theorem due to Hall [1935]  [14,24] gives necessary and sufficient conditions for the 

existence of a matching with cardinality n. 

Theorem 2.8.2.1 ([14, 24]) Let G= (V Y U, E) be a bipartite graph within |V|≤|U| = m. Then 

there exists in G a matching with cardinality n if and only if | N(X) |≥ |X| for all X ⊆V. 

A maximum matching M in a bipartite graph G= (V Y U, E) can be calculated in 

O(min(|V|,|U|, |E|) time. 

Algorithm 2.8.2.1 The Bipartite Algorithm 

Input: A bipartite graph B= (V1 V2, E), 

Output: The maximum matching of B, represented by the array mate. 

begin 

 for all v ∈ V1  V2 do mate [v]=0; ( comment: initialize) 

State: begin 

 for all v ∈ V1 do exposed[v]=0; 

 A=  ; (comment: begin construction of the auxiliary graph (V, A)) 

 for all [v,u] ∈ E do 

 if mate[u]=0 then exposed[v]=u else 

  if mate[u]≠v then A=A (V, mate[u]); 

  Q= ; 
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  for all ∈ V1 do if mate[v] then Q=Q {v}, label[v]=0; 

 while Q ≠  do 

  begin 

  let v be a node in Q; 

  remove v from Q; 

  if exposed[v] ≠ 0 then argument(v), go to state; 

  else 

   for all unlabeled v’ such that (v, v’) ∈ A do 

   label[v’]=v; Q=Q {v’}; 

  end 

 end 

end 

procedure augment(v) 

 if label[v]=0 then mate[v]=exposed[v], 

   mate[exposed[v]]=v; 

 else begin 

  exposed[label[v]=mate[v]; 

  mate[v]=exposed[v]; 

  mate[exposed[v]]=v; 

  augment(label[v]); 
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 end 

2.8.3. Assignment Problem 

Consider the complete bipartite graph, G= (V1 V2, V1× ). Assume w.l.o.g that 

n=|V1|≤|V2|=m. Associated with each arc (i, j) there is a real number cij. An assignment is 

given by one-to-one mapping : V1  V2 . The assignment problem is to find an assignment 

such that  is minimized. 

Assume that V1 ={i, ….., n} and V2= (1,…….,m}. Then the assignment problem has the 

following linear programming formulation with 0-1 – variable xij : 

 

Such that: 

    i=1, ……….., n 

     j=1, ……….., n 

     i=1,…….., n ;  j=1, ………., m  

We describe the Hungarian method [24], and use the following terminology and notations: 

A label of vertices in a graph G=(V, E) is an array with |V| entries representing the 

predecessor vertex of all vertices. The label of a vertex v ∈ V is denoted by label[v]. To 

represent the current matching in the complete bipartite graph G=(VYU, E), we use the array 

mate having 2n entries where mate[w] for any vertex w ∈ V Y U denotes the vertex w’ which 

is the mate of w. For any v∈ V exposed [v] is a node of U that is exposed and is adjacent to v; 

if no such node exists, exposed[v]=0. Now, for j=1,2,….,n, slack [ uj ] is the minimum of ( 

cij–αiβj) over all labeled vertices vi of V and nhbor [uj] is the particular labeled vertex vi with 

which slack[vj] is achieved. 
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Algorithm 2.8.3.1 [24] the Hungarian Method 

Input: An n × n, matrix [cij] of non-negative integers. 

Output: An optional complete matching (given in terms of the array mate) of the complete 

bipartite graph G=(V Y U, E) with |V| =|U| =n under the cost cij. 

begin 

for all vi  V do mate [vi]:=0, αi =0; 

for all uj ∈U do mate [uj]: =0, βj: =  { cij}; 

(comment: initialize) 

for i:=1, ……, n do (comment: repeat for n stages) 

begin 

A:=∅; 

for all v∈V do exposed[v]:=0; 

for all u∈U do exposed[u]:= ; 

for all vi,  uj with vi∈V,  uj ∈U and αi+βj =cij do 

 if mate[uj]=0 then exposed [vi]:=uj 

 else A:= A  { (vi , mate [uj])}; 

(comment: construct the auxiliary graph) 

 Q:= ; 

 for all vi∈V do 
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  if mate[vi]=0 then 

  begin 

  if exposed[vi]≠o then augment (vi), go to endstage: 

  Q:=Q  {vi}; 

label[vi] :=0; 

for all uk∈U do 

if 0 < cjk –αj – βk < slack[uk] then slake[uk]: = cjk  - αj – βk, nhbor[uk]: =vj; 

end; 

 end 

modify; 

go to search 

endstage: end 

 end 

procedure modify 

(comment: it calculates θ1, updates the α’s and β’s, and activates new nodes to continue the 

search) 

begin 

1:=  

for all vi∈V do 

 if vi is labeled then αi:= αi + θ1 else αi:= αi-θ1; 
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for all uj∈U do 

 if slack[uj] =0 then βj:= βj – θ1 else βj: = βj + 1; 

for all u∈U with slack[u]>0 do 

 begin 

 slack[u]:=slack[u] -2 θ1; 

 if slack[u]=0 then (comment: new admissible edge) 

 if mate[u]=0 then exposed[nhbor[u]]:=augment(nhbor[u]), go to endstage; 

 else (comment: mate[u] ≠ 0) 

 label[mate[u]]:=nhbor[u],Q:=Q {mate[u]},A:=A  nhbor[u],mate[u])}; 

 end 

end 

procedure argument(v) 

if label[v] =0 then mate[v]:=exposed[v], mate[exposed[v]]:=v; 

else begin 

 exposed[label[v]]:= mate[v]; 

 mate[v]:= exposed[v]; 

 mate[exposed[v]]:=v; 

 augment(label[v]); 

end 

Theorem 2.8.3.1 The Algorithm 2.8.3.1 correctly solves the assignment problem for a 

complete bipartite graph with 2n nodes in O(n3) time. 
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Chapter 3 

3. Scheduling Problems 

In this chapter, the basic formulations of the scheduling problems are described. The 

classification of scheduling problems mentioned in this chapter follows the notation used in 

[8]. 

Scheduling problems are encountered in all types of systems, since it is necessary to organize 

AND/OR distribute the work between many entities. A definition of scheduling problem and 

its components are described in different literature in different way. 

“Scheduling is to forecast the processing of a work by assigning resources to tasks and fixing 

their start time. The different components of scheduling problem are the tasks, the potential 

constraints, the resources and the objective function. The tasks must be programmed to 

optimize a specific objective function. Of course, often it will be more realistic in practice to 

consider several criteria”, Carlier and Chretienne[ 9]. 

A schedule is an allocation of one or more time intervals to each job one or more machines. 

A scheduling is called optimal if it minimizes a given objective function means to establish 

an assignment of resources to consumers for a certain period of time in a way that a certain 

objective is optimized. The policy used to determine this assignment is called scheduling 

algorithm. 

Scheduling theory is excessively used in the computer manufacturing to schedule the jobs. 

The multiprogramming characteristic is due to the good scheduling of jobs in the CPU 

because the CPU can only process one job at a time. In this case, the objective function is to 

maximize the CPU utilization. 

3.1. Schedules and their representation 

Let there be m number of machines, Mi =1,2,…., m which have to process n jobs, Jj , 

j=1,2,…..,n. Besides, there is an objective function which gives the cost of scheduling. The 

problem is to assign the jobs an allocation of one or more time intervals on one or more 
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machines; such an assignment is called a schedule [8]. A schedule is often represented by 

Gantt chart. Gantt chart can be machine oriented or job oriented. 

 

Fig 2: Machine Oriented Gantt Chart [8] 

 

Fig 3: Job Oriented Gantt Chart [8] 

 

3.2. Some  Application  Area of Scheduling 

The application of scheduling is seen in diversified sectors of activity. Some application areas 

in computer science and engineering are described below. 

3.2.1 Production Scheduling 

Scheduling is an important tool for manufacturing and engineering, where it can have a major 

impact on the productivity of a process. In manufacturing, the purpose of scheduling is to 

minimize the production time and costs, by telling a production facility what to make, when, 

with which staff, and on which equipment. Production scheduling aims to maximize the 

efficiency of the operation and reduce costs.  
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Production scheduling tools greatly outperform older manual scheduling methods. These  

provides the production scheduler with powerful graphical interfaces which can be used to 

visually optimize real-time workloads in various stages of production, and pattern recognition 

allows the software to automatically create scheduling opportunities which might not be 

apparent without this view into the data. For example, an airline might wish to minimize the 

number of airport gates required for its aircraft, in order to reduce costs, and scheduling 

software can allow the planners to see how this can be done, by analyzing time tables, aircraft 

usage, or the flow of passengers.       

 

3.2.2 Scheduling in operation system 

Scheduling theory is excessively used in manufacturing to schedule the jobs in CPU, 

memory, printing buffer and other devices for processing jobs. The multiprogramming 

characteristic of computer is due to the good scheduling of jobs in the CPU because the CPU 

can only process the job at a time. In this case the objective function is to maximize the CPU 

utilization. Some basic algorithms used in OS for uni-processor computer are: 

a. First Come First Server (FCFS):  

At any instance when the machine is idle, select the available jobs in the order they request. 

When the first job enters in the system, it is started immediately and allowed to run as long as 

it wants. 

b. Shorts Job First (SJF):  

At any instance when the machine is idle, select the available job having shortest expected 

processing time. In this case of tie, the FCFS is used. 

c. Shortest Remaining Time Next (SRTN):  

At any instance, schedule the job whose remaining time is the shortest. When a new job 

arrives, its time is compared with the current process’ remaining time. If new job needs less 

time to finish than the current process, the current process is suspended and new job started. 

It is applicable to preemptive system. 
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d. Round-Robin:  

Each process is assigned a time interval, called quantum, which it is allowed to run. If the 

process is still running at the end of the quantum, the CPU is preempted and given another 

process. If the process has finished before the quantum has elapsed, the CPU switching is 

done when the process blocks, of course.  

3.2.3 I/O Scheduling 

 I/O scheduling is the term used to describe the method computer operating systems decide 

the order that block I/O operations will be submitted to the disk subsystem. I/O scheduling is 

sometimes called ‘disk scheduling’. I/O scheduling usually has to work with hard disks which 

share the property that there is long access time for requests which are far away from the 

current position of the disk head (this operation is called a seek).To minimize the effect this 

has on system performance, most I/O schedulers implement a variant of elevator algorithm 

which re-order the incoming randomly ordered requests into the order in which they will be 

found on the disk. 

3.2.4 Timetable Scheduling 

In timetable scheduling problems, examination subjects must be slotted to certain times that 

satisfy several of constraints. They are NP-completeness problems, which usually lead to 

satisfactory but suboptimal solutions. Along with this, timetable scheduling problems concern 

all educational establishments or universities, since they involve timetabling of courses 

assuring the availability of teachers, students and classrooms. These problems are just as 

much the object of studies. 

2.3.5 Project Scheduling 

Project Scheduling problems comprise a vast literature. We are interested more generally in 

problems of scheduling operations which use several resources simultaneously (money, 

personnel, equipment, raw material etc.), these resources being available in known amounts. 

In other words, we deal with the multi-resource scheduling problem with cumulative and 

non-renewable resources. 
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3.3.Earliest Due Date (EDD) Algorithm 

Whenever a machine is freed, the job with the earliest due date is selected to be processed 

next. This rule is to minimize the maximum lateness among the jobs waiting for processing. 

Actually, in a single machine setting, with n-jobs available at time 0, the EDD rule does 

minimize the maximum lateness. 

Example 3.2.1: 1|ri: pmtn||Li|max 

Is the problem of finding a preemptive schedule on one machine for a set of n-job with given 

release times ri≠ 0 and due dates di≠ 0 such that the objective function |Li|max is minimized. 

3.4.Benefit of Just-in-Time Production Systems 

JIT makes production operation more efficient, cost effective and customer responsive. JIT 

allows manufacturers to purchase and receive components just before they are needed on the 

assembly line, thus relieving manufacturers of the cost and burden of housing and managing 

idle parts. 

The main benefits of the manufacturing environment are listed below: 

1. Set up times are significantly reduced in the warehouse:  

Cutting down set up time to be more productive will allow the company to improve their 

bottom line to look more efficient and focus time spent on other area may need improvement. 

2. The flows of goods from warehouse to shelves are improved: 

Having employees focused on specific area of the system will allow them to process goods 

faster instead of having them vulnerable to fatigue from doing too many jobs at once and 

simplifies the task at hand. 

3. Employees who possess multiple skills are utilized more efficiently:  

Having employees trained to work on different parts of the inventory cycle system will allow 

companies to use workers in situation where they are needed when there is a shortage of 

workers and a high demand for a particular product. 
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4. Better consistency of scheduling and consistency of employee work hour:  

If there is no demand for a product at the time, workers don’t have to be working. This can 

save the company money by not having to pay workers for a job not completed or could have 

them focus on other jobs around the warehouse that would not necessarily be done on a 

normal day. 

5. Increased emphasis on supplier relationships:  

No company wants a break in their inventory system that would create a shortage of supplies 

while not having inventory sit on shelves. Having a trusting supplier relationship means that 

we can rely on goods being there when we need them in order to satisfy the company and 

keep the company name in good standing with the public. 

6. Supplies continue around the clock keeping workers productive and business 

focused on turnover:  

Having management focused on meeting deadline will make employees work hard to meet 

the company goals to see benefits in terms of job satisfaction, promotion or even higher pay. 

3.5.Applications of Just-In-Time Production System 

The following are the applications of JIT: 

1. In real time scheduling:  

Real time scheduling problems are principally online versions of Just-in-Time scheduling 

problems, but popularly, the nomenclature “Real Time” refers to computer related problems. 

These types of scheduling problems occur in real-time system. Generally a real-time system 

is an operating system embedded in some electrical device. In a real-time system, the correct 

functioning of the system depends on the time when jobs are completed. In a soft-real time 

system, early and tardy jobs degrade the quality of the output, while in a hard-real-time 

system; such jobs make the output invalid.  
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2. Just-In-Time Compilation: 

In computing, Just-In-Time, also known as dynamic translation for improving the runtime 

performance of a computer program. It converts, at runtime, code form one format into 

another, for example byte code into native machine code. The performance improvement 

originates from caching the results of translating blocks of code, not simply evaluating each 

line or operand separately, or compiling the code at development time. 

3. Just-in-Time Sensor Networks:  

Many areas of research in sensor networks deal directly with the ability to adapt to changing 

conditions. This has resulted in the ability to dynamically change attributes such as routing 

paths, MAC protocols, program images, and duty cycling. Yet there are several  sensor  

network  optimizations and adaptations that cannot be accomplished through software 

changes alone. The lack of hardware capabilities or poor geographic layouts of nodes are 

characteristics that create upper bounds on the ability of software protocols to optimize 

communication and coverage capabilities. Specially, a sensor network is deployed (either 

randomly or placed in a specific location), sits statically for several months collecting data, 

and adapts itself through various protocols. Yet this often overlooks potential optimizations 

gained by adding motes to the network on-demand and within seconds. This introduces a 

shift in the traditional outdoor, static sensor network paradigm by considering the 

possibilities and limitations of a rapid, just-in-time deployment. 

4. Just-in-Time to Enable Optical Networking For Grids 

Many of today’s computer and data intensive e-science applications are looking to Grid based 

technologies to meet their high demands. Until   recently, the Grid community focused 

primarily on maximizing the availability, sharing, and utilization of resources such as CPU 

power and storage. Now, many in the Grid community are starting to regard the network as 

another vital Grid resource, to be used to provide large, fast data flows with minimal latency 

and jitter. MCNC Research and Development Institute and North Carolina State University 

(NCSU) have developed a Just-in-Time control plane, signaling scheme, and various 

software and hardware components that are synergistic with these needs. This includes an 

overview of the Just-In-Time control plane and Grid JIT service that has been developed for 

optical networks and describes several related projects. 
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Chapter 4 

4. Mathematical Model Formulation 

When production system consists of constant rate of usage of all parts, Just-in-time systems 

are suitable. However, the variability between the actual and the ideal production due to 

integral nature of production appears. This leads the sequencing problem to minimize the 

variation so that a balanced sequence of  diversified products that minimizes the earliness and 

tardiness penalties could be obtained in a reasonable time. Before starting problem 

formulation, we assume that the systems have sufficient capacity, negligible switch-over cost 

and production in unit time. Kubiak [2] refers to single level problem as Product Rate 

Variation (PRV) problem and multi level problem as Output Rate Variation (ORV) problem. 

4.1. The Output Rate Variation Problem (ORVP) Formulation  

The production system consists of hierarchy of several distinct production levels such as 

products, sub-assemblies, component parts, raw material, etc. A mixed-model multi-level 

problem falls under ORV problem. Consideration of part demand rate reduces problem into 

the ORV problem. 

   

         

                                                             

    

 

 

 

4.2.Product Rate Variation Problem 

Mixed model single-level JIT assembly system, a particular case of multi-level system with 

only one level, the product level; assumes that different products or models require the same 

number and mix of components and that the processes have negligible switch over costs from 
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Level 2: sub-products  

 

Level 3: Component 

Figure 4: Mixed-Model Multi-Level Production System [20] 
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one product to another and so allow for diversified small-lot production. In this section the 

mathematical formulation of the single-level system are discussed. Assume that there are n 

products or models to be produced during a specified planning time horizon with demands d1, 

d2,…,dn for all i = 1,2,….,n. Put D =  and the time horizon be divided into D time units 

( i.e. an implied time  horizon of D time units can be inferred), where one copy is produced in 

each  time period. A schedule is called an ideal schedule if at each time period; k = 1,2,….D, 

the line has been assembled 𝑘
𝑑𝑖

𝐷
 parts of product i; i=1,2,…,n. The aim of JIT sequence is to 

keep the real production of a product I in each time unit k as close as possible to the ideal 

production rate ri=  . Let xi,k  denote the real cumulative production of product i in time 

periods 1 to k, inclusive.  

The most important goal of JIT production system is to keep the schedule as balanced as 

possible. Thus our objective is to schedule the assembly line so that the proportion of each 

product i produced over a time period to the total production is as close to , as possible. In 

other words, this model aims to hold inventory and shortage costs as smooth as possible by 

keeping the production rate of each as product as balanced as possible by keeping the 

quantity of each product of each product used  by assembly line as constant as possible. The 

objectives formulations of PRVP are given as follows. 

For each i=1,2,…n; let fi, be a unimodel  convex function with minimum in (0)=0 

(i=1,2,………V). Then minmax  and minsum PRVP can be formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [𝐹 = 𝑚𝑎𝑥𝑖,𝑘𝑓𝑖(𝑥𝑖,𝑘 − 𝑘𝑟𝑖)]………………… .……………………………… . . (4.1) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [𝐹 = ∑ ∑ 𝑓𝑖
𝑛
𝑖=1

𝑑
𝑘=1 (𝑥𝑖,𝑘 − 𝑘𝑟𝑖)]…………………… .…… . .………………… . . (4.2)  

Subject to the contraints; 

∑ 𝑥1,𝑘 = 𝑘,                           𝑘 = 1,2,…………… ,𝐷                                                                  (4.3)
𝑛
𝑖=1   

𝑥𝑖,𝐷 = 𝑑𝑖  ,                                 𝑖 = 1, 2,…………… . , 𝑛                                                                  (4.4)  

𝑥𝑖,0 = 0 ,                                   𝑖 = 1, 2,…………… . , 𝑛                                                                  (4.5) 

𝑥𝑖,𝑘 − 𝑥𝑖,𝑘−1 ≥ 0,                  𝑖 = 1, 2,…………… . , 𝑛; 𝑘 = 1,2,……… .𝐷,                               (4.6) 
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𝑥𝑖,𝑘 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                   𝑖 = 1, 2, …………… . , 𝑛; 𝑘 = 1,2,……… .𝐷,                              (4.7) 

Here, equality (4.3) means that k parts (copies) have to be produced in first k time periods ; 

equality (4.4) indicates that all demands must be fulfilled within D time periods; inequality 

(4.6) shows that a produced copy cannot be destroyed ( i.e. for each i, the number of 

produced copies of i cannot decrease with time).  

Here 𝑓𝑚𝑎𝑥  seeks to minimize the deviations for each product and here maximum deviation, 

where as 𝑓𝑠𝑢𝑚  objective is to find the lowest possible total deviation. More specifically we 

consider the following cases: 

Case 1: if 𝑓𝑖(𝑥) = |𝑥| for all 𝑖 = 1, 2,… . , 𝑛 . Under this case,  

(4.1) takes the form: 

𝐹𝑚𝑎𝑥
𝑎 = max

1≤𝑖≤𝑛;1≤𝑘≤𝐷
|𝑥𝑖,𝑘 − 𝑘𝑟𝑖 |                                                                        (4.8) 

And (4.2) takes from: 

𝐹𝑠𝑢𝑚
𝑎 =∑∑| 𝑥𝑖,𝑘 − 𝑘𝑟𝑖 |

𝑛

𝑖=1

𝐷

𝑘=1

                                                                          (4.9) 

Case 2: if 𝑓𝑖(𝑥) = 𝑥
2 under which (4.6) takes the form: 

𝐹𝑚𝑎𝑥
𝑠 = max

1≤𝑖≤𝑛;1≤𝑘≤𝐷
( 𝑥𝑖,𝑘 − 𝑘𝑟𝑖 )

2                                                                      (4.10) 

And (4.7) takes from: 

𝐹𝑠𝑢𝑚
𝑠 =∑∑( 𝑥𝑖,𝑘 − 𝑘𝑟𝑖)

2

𝑛

𝑖=1

𝐷

𝑘=1

                                                                    (4.11) 

For simplicity, we introduce the abbreviation that problem 𝐹𝑚𝑎𝑥
𝑎  means the problem defined 

by (4.1) with objective function (4.8) under the constraints (4.3), (4.4), (4.5), (4.6) and (4.7); 

problem; 𝐹𝑠𝑢𝑚
𝑎  means the problem defined by (4.2) with objective function (4.9) under the 

constraints (4.3), (4.4), (4.5), (4.6) and (4.7). We find the pseudo-polynomial algorithms 

separately for the problem 𝐹𝑚𝑎𝑥
𝑎 , 𝐹𝑚𝑎𝑥

𝑠 , 𝐹𝑠𝑢𝑚. 
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The mixed-model JIT sequencing problems are repressively denoted by maximum deviation 

Just-in –Time (MDJIT) problems. Similarly the abbreviated from MMJIT refers to mixed-

model Just-in-Time and MMJITSP refers to MMJIT sequencing problem. 

4.3. Pegged ORV Problem: 

Steiner and Yeomans [25] shows that the ORV problem under the puffing assumption can be 

reduced to weighted PRV problem. Under the pegging assumption, part of output i at 

production levels which fed the level l are dedicated or pegged to the specific final product 

into which they will be assembled. This assumption decomposes the lower level parts that 

will be assembled into different level l products into disjoint sets. As a result, a distinction is 

made between  𝑡𝑖𝑙ℎ  and 𝑡𝑖𝑙𝑝 , ℎ ≠ 𝑝 for each part i at level l. with this assumption the multi 

level min-sum JIT sequencing problem can be reduced to a weighted single level problem. 

Similarly with the same assumption the weighted max-abs ORV problem can be formulated. 

                                   𝐺𝑚𝑎𝑥
𝑝𝑒𝑔

= max
𝑝,𝑖,𝑙,𝑘

{𝑊𝑝1 |𝑥𝑝1𝑘 − 𝑘𝑟𝑝1|,𝑊𝑖𝑙|𝑥𝑝1𝑘𝑡𝑖𝑙𝑝 − 𝑘𝑖𝑙𝑝𝑟𝑝1|} 

                                              = max
𝑝,𝑖,𝑙,𝑘

{𝑊𝑖𝑙 𝑡𝑖𝑙𝑝|𝑥𝑝𝑙𝑘 − 𝑘𝑟𝑝1|}  

𝑝 = 1,… , 𝑛1; 𝑖 = 1,… , 𝑛𝑙; 𝑘 = 1,… ,𝐷𝑙;  𝑙 = 1,… , 𝐿.   Now letting 𝑊𝑝1 = max
𝑖,𝑙
{𝑤𝑖𝑙𝑡𝑖𝑙𝑝} the 

objective function reduced to  𝐺𝑚𝑎𝑥
𝑝𝑒𝑔

= max
𝑝,𝑖,𝑙,𝑘

{𝑊𝑖𝑙 𝑡𝑖𝑙𝑝|𝑥𝑝𝑙𝑘 − 𝑘𝑟𝑝1|}. Now dropping out the 

superfluous subscript 1 the problem is reduced to the weighted PRV problem.  

𝑚𝑖𝑛 [𝐺𝑚𝑎𝑥
𝑝𝑒𝑔

= 𝑚𝑎𝑥{𝑤𝑖 |
𝑖,𝑘
𝑥𝑖𝑘 − 𝑘𝑟𝑖 |}] , 𝑖 = 1, … , 𝑛; 𝑘 = 𝑎, … , 𝐷. 
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Chapter 5 

5. Solution Procedure for PRV Problem 

5.1. Heuristic Approach  

The ORVP is computationally more challenging. The problem  𝐺̃ is NP-hard in the ordinary 

sense as the NP-hard scheduling problem, around the shortest job reduces to the ORVP and 

the problem 𝐹𝑎̃ with only two levels is NP-hard in the strong sense as the strongly NP-hard 3-

partition problem transforms into the ORVP in pseudo- polynomial time. However, a number 

of heuristics gives rise to suboptimal solutions.   

 The goal chasing methods GCM I and GCM II used in Toyota, construct a sequence filling 

one position at a time from first slot to the last one. The variability is considered at the sub-

assembly level whereas the variability at the product level is ignored. GCM II compared to 

GCM I represents a decrease in computational time because the sum is formed only on the 

components of a given product in GCM II. GCM I and GCM II are my topic. A myopic 

polynomial heuristic, extended goal chasing method (EGCM) that considers more levels, 

adopts GCM I and GCM II as a special case. The myopia lies in the fact that it only takes one 

step. Taking two steps into account, the myopia can be reduced.  

 Three algorithms and two heuristics are formulated in [21]. The algorithm 1 and the 

algorithm 3 with heuristic 1 (MA3H1) consider the product rates, not the parts usage rates. It 

is a one-stage myopic heuristic with complexity 𝑂(𝑛𝐷). The algorithms may not yield 

feasible sequence but if feasible it is optimal, too. The algorithm 3 with heuristic 2 (MA3H2) 

is the improved two-stage heuristic with complexity 𝑂(𝑛2𝐷). MA3H2 is of highest quality 

for feasible solutions among GCM I, GCM II, MA3H1 and MA3H2. 

Time spread (TS) heuristic employs similar procedure as GCM1 with function in which time 

required to assemble products are applied. Comparison of different methods through 

simulation analysis show that TS and MA3H2 seem to be effective [25].  

 Inman and Bulfin’s earliest due date (EDD) rule based on ideal time of production of each 

product [13], Ding and Cheng’s two-stage algorithm that minimizes the variation of the two 
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stages and MA3H2 heuristic obtain good solutions. Modified forms of these, with appropriate 

weights, are useful alternatives for frequent updates of sequencing.  

A local search heuristic that attempts to swap the order of assembly of a pair of products 

provides near-optimal sequence for realistic-size problems in a reasonable time. It may be 

extended considering release date and due date constraints. 

The problem with a bicriterion objective of part usage and setup time has inversely correlated 

objective values. An efficient frontier, where simultaneously maximization of feasibility and 

minimization of setup is desired, is exploited. Such frontier is explored using heuristics such 

as tabu search, simulated annealing, genetic algorithm, ant colony optimization approach, 

beam search heuristic, artificial neural network etc. 

Suboptimal solutions using heuristics, for example, tabu search and branch and bound to the 

problem with the objective for parts usage and work load [26], parts usage and line length, 

parts usage and line stoppage, [15] can be obtained.   

 

5.2. Dynamic programming  

Let the weighted case of the objective 𝐺𝑚𝑎𝑥
′  and  𝐺𝑠𝑢𝑚

′′  can be formulated as: 

𝐺𝑚𝑎𝑥
′𝑤 = max

𝑖,𝑙,𝑘
𝑤𝑖𝑙 |𝑥𝑖𝑙𝑘 − 𝑦𝑙𝑘𝑟𝑖𝑙| 

𝐺𝑠𝑢𝑚
′′𝑤 = ∑∑∑𝑤𝑖𝑙

nl

i=1

L

l=1

(𝑥𝑖𝑙𝑘 − 𝑦𝑙𝑘𝑟𝑖𝑙)
2

𝐷𝑙

𝑘=1

 

Where 𝑤𝑖𝑙  be a weighting factor which reflects the relative importance of balancing the 

sequence for part 𝑖 at level l. 

Now, in this section we summarized implicit enumeration dynamic programming (DP) 

procedures which can optimize the problem 𝐺𝑚𝑎𝑥
′ . By definition, we have 

𝑥𝑖𝑙𝑘 − 𝑦𝑙𝑘𝑟𝑖𝑙 =∑ 𝑡𝑖𝑙𝑝𝑥𝑝𝑙𝑘 − 𝑟𝑖𝑙∑∑𝑡𝑖𝑙𝑝𝑥𝑝𝑙𝑘

𝑛𝑙

𝑖=1

𝑛𝑙

𝑝=1

𝑛𝑙

𝑝=1
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                        = ∑(𝑡𝑖𝑙𝑝 − 𝑟𝑖𝑙∑𝑡𝑖𝑙𝑝

𝑛𝑙

𝑝=1

)

𝑛𝑙

𝑝=1

𝑥𝑝𝑙𝑘  

                       = ∑𝛿𝑖𝑙𝑝𝑥𝑝𝑙𝑘

𝑛𝑙

𝑝=1

 

Where ;  𝛿𝑖𝑙𝑝 = 𝑡𝑖𝑙𝑝 − 𝑟𝑖𝑙∑𝑡𝑖𝑙𝑝

𝑛𝑙

𝑝=1

 

Since 𝑤𝑖𝑙  ≥ 0,  𝑥𝑖𝑙𝑘  ≥ 0  and 𝑟𝑖𝑙  ≥ 0, then the deviation for part 𝑖 at level l at stage k for 

𝐺𝑚𝑎𝑥
′  would be 

𝑤𝑖𝑙|𝑥𝑖𝑙𝑘 − 𝑦𝑙𝑘𝑟𝑖𝑙| = |𝑤𝑖𝑙 (∑𝛿𝑖𝑙𝑝𝑥𝑝𝑙𝑘

𝑛𝑙

𝑝=1

)| = |∑𝛾𝑖𝑙𝑝𝑥𝑝𝑙𝑘

𝑛𝑙

𝑝=1

|, 

Where 𝛾𝑖𝑙𝑝 = 𝑤𝑖𝑙𝛿𝑖𝑙𝑝 is the measure of the weighted deviation in the usage of part 𝑖 at level l 

from the proportional usage per unit of product p. Let Γ = (𝛾𝑖𝑙𝑝)𝑛×𝑛1 be the matrix where 

𝑛 = ∑ 𝑛𝑙
𝐿
𝑙=1  is the total number of different parts and products. Each row of Γ corresponds to 

either a product or a part at the corresponding levels. The value 𝛾𝑖𝑙𝑝  will be the element 

appearing in the (∑ 𝑛𝑚 + 1
𝑙−1
𝑚=1 )

𝑡ℎ
row and the 𝑝𝑡ℎ  column of the matrix Γ. The maximum 

norm of a vector a = (a1, … . , an) is defined to be ||a||1 = max
1<𝑖<𝑛

{|ai |} . Then the objective 

function 𝐺𝑚𝑎𝑥
′𝑤 can be written as𝐺𝑚𝑎𝑥

′𝑤 = max
𝑘
||ΓX𝑘||1, where Xk = (xilk, … . , xn1lk) is the 

cumulative, level 1 production vector through the first k stage. Let the demands vector at 

level 1 be 𝑑 = 𝑑11, … . . , 𝑑𝑛11 = 𝑑1, … . . , 𝑑𝑛1 and the states in a sequence be 𝑋 =

(𝑥1, …… . , 𝑥𝑛1) with |𝑋| = ∑ 𝑥𝑖
𝑛1
𝑖=1  , i = 1, … . , n1 where 𝑥𝑖 is the cumulative production of 

product 𝑖, 𝑥𝑖 ≤ 𝑑𝑖. Let 𝑒𝑖 = (0,… ,1,… ,0) be the unit vector with 𝑛1 entries all of which are 

zero except for a single 1 in the 𝑖𝑡ℎ  row. Let 𝜙(𝑋) be the minimum value of the maximum 

deviation for all parts and products over all partial sequences which lead to stage X. The 

norm||ΓX||1 represents the maximum deviation of actual production from desired one over all 

products and parts in stage X at 𝑘 = |𝑋|.. The following DP recursion holds for 𝜙(𝑋). 

𝜙(∅) = 𝜙(𝑋:𝑋 = 0) = 0 
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𝜙(∅) = 𝜙(𝑥1, … . . , 𝑥𝑛1) = min {max{𝜙(𝑋 − 𝑒𝑖), ||ΓX𝑘||1, } : 𝑖 = 1,… . , 𝑛1; 𝑥𝑖 ≥ 1} 

It c be observed that 𝜙(𝑋) ≥ 0   and ||Γ(𝑋:𝑋 = 𝑑)||1 = 0  for any state X. 

Theorem 5.2.1 

The DP recursion solves the JIT scheduling problem in  

𝑂(𝑛∏(𝑑𝑖

𝑛

𝑖=1

+ 1))  𝑡𝑖𝑚𝑒 𝑎𝑛𝑑 𝑂 (𝑛∏(𝑑𝑖

𝑛

𝑖=1

+ 1))  𝑠𝑝𝑎𝑐𝑒. 

 

5.3. Assignment Method  

The problem can be solved pseudo-polynomials transforming the problem into an equivalent 

assignment problem. Calculation of the assignment costs is based on the level curves 

𝑓𝑖(𝑗 − 𝑘𝑟𝑖), 𝑗 = 0,1,… , 𝑑𝑖;   𝑘 = 0,1,…𝐷 and the positions in which each copy 𝑗 of product 𝑖,

𝑗 = 0,1,… , 𝑑𝑖;   𝑖 = 1, …𝑛 is sequenced.   

If all copies of product  𝑖 are sequenced at their ideal positions 𝑍𝑖𝑗 = ⌈
2𝑗−1

2𝑟𝑖
⌉, the ceiling of the 

unique crossing point satisfying 𝑓𝑖(𝑗 − 𝑘𝑟𝑖) = 𝑓𝑖(𝑗 − 1 − 𝑘𝑟𝑖), 𝑗 = 0,1,… , 𝑑𝑖 , the product 𝑖 

will contribute the cost   to the total cost in  𝑓𝑗𝑓𝑖(𝑗 − 𝑘𝑟𝑖) of the solution and an optimal 

sequence is obvious. Sequencing the products at their ideal positions minimizes the problems 

𝐹 and 𝐺, however, leads to infeasibility when more than one copy competes for the same 

ideal position in the sequence. Competition occurs in general case. Higher priority is given to 

 𝑗′ over 𝑗   whenever  𝑗′ < 𝑗 to avoid competition and (𝑖, 𝑗) is assigned to a position  𝑘, 𝑘 ≠

⌈
2𝑗−1

2𝑟𝑖
⌉.    

The new assignment contributes additional cost  𝐶𝑖𝑗𝑘 ≥ 0   where   

      𝐶𝑖𝑗𝑘 = {

∑ 𝜓𝑖𝑗𝑙               𝑖𝑓 𝑘 < 𝑍𝑖𝑗,
𝑥𝑖𝑗−1

𝑙=𝑘

0                              𝑖𝑓 𝑘 = 𝑍𝑖𝑗,

∑ 𝜓𝑖𝑗𝑙
𝑘−1
𝑙=𝑧𝑖𝑗

            𝑖𝑓 𝑘 > 𝑍𝑖𝑗,
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With 𝜓𝑖𝑗𝑙 = {
𝑓(𝑗 − 𝑙𝑟𝑖) − 𝑓𝑖(𝑗 − 1 − 𝑙𝑟𝑖),   𝑖𝑓 𝑙 < 𝑧𝑖𝑗 ,

𝑓(𝑗 − 1 − 𝑙𝑟𝑖) − 𝑓𝑖(𝑗 − 𝑙𝑟𝑖),   𝑖𝑓 𝑙 ≥ 𝑧𝑖𝑗
 

The assignment problem equivalent to the problem  𝐺 is,  

min∑ ∑ ∑ 𝐶𝑖𝑗𝑘
𝑑𝑖
𝑗=1

𝑛
𝑖=1

𝐷
𝑘=1 𝑥𝑖𝑗𝑘                (3.1) 

subject to, 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑑𝑖
𝑗=1

𝑛
𝑖=1 = 1, 𝑘 = 1, … ,𝐷     (3.2) 

∑ 𝑥𝑖𝑗𝑘
𝐷
𝑘=1 = 1, 𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑑𝑖    (3.3) 

 

Where  𝑥𝑖𝑗𝑘 = {
1,   𝑖𝑓 (𝑖, 𝑗)  is assigned to time unit 𝑘.
0, otherwis                                                

   

Let 𝜒 = {(𝑖, 𝑗, 𝑘)|𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑑𝑖; 𝑘 = 1,… , 𝐷}, be the set of the assignment of  (𝑖, 𝑗) 

to 𝑘. A set 𝑋 ⊆ 𝜒 is X-feasible if the following constraints hold.  

𝑐1 : For each 𝑘, 𝑘 = 1,… , 𝐷, there is exactly one (𝑖, 𝑗), 𝑖 = 1,… , 𝑛;   𝑗 = 1,… , 𝑑𝑖, such 

that (𝑖, 𝑗, 𝑘) ∈ 𝑋, i.e., exactly one copy is produced at one time unit.  

𝑐2 : For each (𝑖, 𝑗), 𝑖 = 1, … , 𝑛; 𝑗 = 1, … , 𝑑𝑖, there is exactly one 𝑘, 𝑘 = 1,… , 𝐷, such 

that (𝑖, 𝑗, 𝑘) ∈ 𝑋, i.e., each copy is produced exactly once.  

𝑐3 : If (𝑖, 𝑗, 𝑘), (𝑖, 𝑗′, 𝑘′) ∈ 𝑋, there is exactly one 𝑘 <  𝑘′,then 𝑗 <  𝑗′ i.e., lower indices 

copies are produced earlier.  

Constraints 𝑐1  and  𝑐2 are related to the assignment problem. Constraint 𝑐3 imposes an order 

on copies of a product.  

Theorem 5.1  

For any feasible 𝑋 ⊂ 𝜒, 𝐺 = ∑ 𝐶𝑖𝑗𝑘 +∑ ∑ 𝑖𝑛𝐷
𝑘=1 𝑓𝑗

𝑛
𝑖=1(𝑖,𝑗,𝑘)∈𝑋 𝑓𝑖(𝑗 − 𝑘𝑟𝑖).   
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The result becomes an inequality without 𝑐3. An optimal solution cannot be obtained by 

simply solving the assignment problem since 𝑐3  is not the assignment type.  

Theorem 5.2   

If  𝑋 satisfies 𝑐1 and 𝑐2  , then  𝑋∗   satisfying 𝑐1, 𝑐2, 𝑐3 with 𝑐(𝑋) ≥ 𝑐(𝑋∗) can be determined 

in 𝑂(𝐷) time. Moreover, each copy in the sequence 𝑠∗ from 𝑋∗ preserves the order that it has 

in the sequence   from𝑋  .  

Since there are 𝐷2 values 𝜓𝑖𝑗𝑙, 𝐷
2 values 𝐶𝑖𝑗𝑘  and each takes 𝑂(𝐷) time to calculate, the 

Hungarian method takes 𝑂(𝐷3) time to solve the assignment problem with 2𝐷 nodes. The 

assignment can be made order preserving in 𝑂(𝐷) time. Hence, an optimal solution to the 

problem G can be obtained in 𝑂(𝐷3) time. A number of algorithms solve the assignment 

problem of the problem G   [24].  

The approach for the problem G is applicable in every 𝑙𝑝- norm and particular to 𝑙∞- norm, 

see [21].  

The corresponding assignment problem equivalent to the problem F is  

                   min ∑ ∑ ∑ 𝐵𝑖𝑗𝑘
𝑑𝑖
𝑗=1

𝑛
𝑖=1

𝐷
𝑘=1 𝑥𝑖𝑗𝑘                                   (3.4) 

subject to the constraints (3.2) and (3.3) where  

𝐵𝑖𝑗𝑘 = max{𝑓𝑖(𝑗 − 1 − (𝑘 − 1)𝑟𝑖) , 𝑓𝑖(𝑗 − 𝑘𝑟𝑖)}, 𝑖 = 1,… , 𝑛;   𝑗 = 1, … , 𝑑𝑖;   𝑘 = 1,… ,𝐷.  

The assignment costs grow to the left and to the right from the ideal positions   in the 

assignment matrix, [3]. One ideal position exists in each row of the matrix; however, there 

exist two ideal positions in the case of a competition.   

The problem is solved by means either of specific bottleneck assignment algorithms or as a 

sequence of assignment problem with some modifications such as use of a binary matrix 

instead of the bottleneck assignment matrix and application of bisection search to find the 

optimal bottleneck value [3]. Optimal solution can be obtained in 𝑂(𝐷3) time.  
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The bottleneck assignment costs 𝐵𝑖𝑗𝑘  for which  𝑓𝑖(𝑥𝑖𝑘 − 𝑘𝑟𝑖) < 1, 𝑖 = 1, … , 𝑛; 𝑘 = 1, … ,𝐷, 

can be calculated in time 𝑂(𝑛𝐷), but it remains open whether the problem can be solved 

in 𝑂(𝑛𝐷). If it exists, it would be better than the existing solution procedures [17].  

 A cyclic sequence substantially reduces the time complexity. Such sequences exist in the 

problem 𝐺𝑠 [47, 49]. The cyclic sequences are optimal, too. A concatenation 𝑠𝑚 of 𝑚 copies 

of an optimal sequence 𝑠 for the instance (𝑑1, … , 𝑑𝑛) of the problem 𝐺𝑎 is optimal 

for (𝑚𝑑1, … ,𝑚𝑑𝑛), 𝑚 ≥ 1 . It builds a sequence for a longer time horizon. Such a sequence 

can be found under the assumption 𝑓𝑖 = 𝑓∀𝑖 , 𝑖 = 1,… , 𝑛 where f is convex and symmetric 

with minimum 0 at 0.   

5.4. Perfect Matching Method  

The problem 𝐹𝑎 is solved by reducing it to an order-preserving perfect matching problem via 

single machine scheduling release/due date decision problem. The perfect matching problem 

is constructed in a 𝑉1-convex bipartite graph 𝐺 = (𝑉1 ∪ 𝑉2, ℇ with 𝑉2 = {(𝑖, 𝑗)| 𝑖 =

1,… , 𝑛; 𝑗 = 1,…𝑑𝑖}, set of the  𝑗𝑡ℎ  copy of product 𝑖, 𝑉1 = {1,… , 𝐷}, the starting times and 

the edge set ℇ with the earliest starting time 𝐸(𝑖, 𝑗) and the latest starting time 𝐿(𝑖, 𝑗) for  

(𝑖, 𝑗) defined as ℇ = {(𝑘, (𝑖, 𝑗))|𝑘 ∈ [𝐸(𝑖, 𝑗), 𝐿(𝑖, 𝑗) ⊆ 𝑉1. For a given bound B and the level 

curves |𝑗 − 𝑘𝑟𝑖|, 𝑖 = 1,… , 𝑛; 𝑗 = 0,1, … , 𝑑𝑖; 𝑘 = 0,1,… ,𝐷, the values 𝐸(𝑖, 𝑗) and  𝐿(𝑖, 𝑗), 𝑖 =

1,… , 𝑛; 𝑗 = 1,… , 𝑑𝑖, are calculated in time 𝑂(𝐷) as the unique integers 𝐸(𝑖, 𝑗) = ⌈
𝑗−𝐵

𝑟𝑖
⌉  and 

𝐿(𝑖, 𝑗) = ⌊
𝑗−1−𝐵

𝑟𝑖
+ 1⌋[7].  

A modified version of earliest due date (EDD) rule with O (|E|) in 𝑉1-convex bipartite graph 

(𝑉1 ∪ 𝑉2, ℇ) finds an order-preserving perfect matching for the upper bound 𝐵 ≤ 1.  

A stronger upper bound has been obtained for the problem 𝐹𝑎. If 𝐵∗ be any optimal value, 

then  
1

∆𝑖
⌊
∆𝑖

2
⌋ ≤ 𝐵∗ ≤ 1 −

1

𝐷
 where,  ∆𝑖=

𝐷

gcd (𝑑𝑖,𝐷)
, 𝑖 = 1,… , 𝑛 [7], and𝐵∗ ≤ 1−

1

2(𝑛−1)
. 

Therefore, it holds  
1

∆𝑖
⌊
∆𝑖

2
⌋ ≤ 𝐵∗ ≤ 1 −max {

1

𝐷
,

1

2(𝑛−1)
} for 𝑛 ≥ 2. The optimal value 𝐵∗ 

cannot be less than  
1

2
 for even ∆𝑖  since  

1

∆𝑖
⌊
∆𝑖

2
⌋ =

1

2
   and cannot be less than 

1

3
 for odd ∆𝑖 

since 
1

3
≤

1

∆𝑖
⌊
∆𝑖

2
⌋ <

1

2
 . It is natural to seek instances with optimal value less than 

1

2
.  
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It has been shown that only the standard instance i.e. the instance with 𝑑1 ≤ ⋯ ≤, 𝑑𝑛, 

 gcd(𝑑1, … , 𝑑𝑛) = 1 has optimal 𝐵 =
2𝑛−1−1

2𝑛−1
<

1

2
 if and only if 𝑑𝑖 = 2

𝑖−1, 𝑖 = 1, … , 𝑛 [35, 

14]. It came into existence as the small deviations conjecture [13]. If optimal 𝐵 =
1

2
, all 

products must be sequenced in the ideal position optimal 𝐵 =
2𝑗−1

2𝑟𝑖
 for each optimal 𝑗, which 

happens if optimal 𝑑𝑛 is divisible by each optimal 𝑑𝑖 , 𝑖 = 1,… , 𝑛 − 1. This geometric proof 

exploits a natural symmetry of regular polygons inscribed in a circle of circumference D such 

that each polygon corresponds to a different product having optimal 𝑑𝑖 corners for product 

optimal 𝑖   at optimal ⌈
2𝑗−1

2𝑟𝑖
⌉ points on the perimeter of the circle. Consequently, n demands 

are the first   non-negative powers of 2.  

The small deviations conjecture is shown to be true as a consequence of the Fraenkel’s 

conjecture for symmetric case using a fact that a solution to the problem  𝐹𝑎 with 𝑑𝑖 = 2𝑖−1 

for 𝑖 = 1,… , 𝑛, 𝑛 > 2, is periodic, symmetric and balanced word. The Fraenkel’s conjecture 

for symmetric case states that a periodic, symmetric and balanced word with  𝑟1 < ⋯ <

 𝑟𝑛, 𝑛 > 2, exists if and only if  𝑟𝑖 =
2𝑖−1

2𝑛−1
 .  

 A 𝛿-balanced word on a finite set {1,… , 𝑛} is an infinite sequence  𝑠 = 𝑠1 𝑠2…    with  𝑠𝑖 ∈

{1, … , 𝑛} such that every two subsequences of equal length consist of only those letters whose 

numbers of occurrences in each subsequence differ by at most a positive integer 𝛿. Note that 

1-balanced word is a balanced word. Consider a finite word 𝑊 on 1,… , 𝑛 of length 𝐷 with 𝑑𝑖 

occurrences of a letter 𝑖 and 𝑟𝑖 =
𝑑𝑖

𝐷
, the rate of letter 𝑖 with 𝑟1 ≤ ⋯ ≤ 𝑟𝑛. 𝑊 is said to be 

symmetric if 𝑊 = 𝑊𝑅 , a mirror reflection of 𝑊. An infinite word 𝑤  is periodic if 𝑤 =

𝑊𝑊… for some 𝑊.  

For a sequence 𝑠 with maximum deviation B, any infinite periodic word 𝑤, with period 𝑠 is 1-

balanced, 2-balanced and 3-balanced on each product 𝑖, if 𝐵 <
1

2
, 𝐵 <

3

4
, and 𝐵 < 1,  , 

respectively.   

Unfortunately, the 1-balanced words are unlikely for most rates to exist. There exists an 

optimal sequence for the problem 𝐹𝑎 in the set of all 3-balanced words. However, it remains 

unresolved whether there always exist 2-balanced word that is optimal for the problem 𝐹𝑎. 
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The challenging problem of balanced words in practice is to construct an infinite periodic 

sequence over a finite set of letters with given rates and distributed as evenly as possible.  

Though, only the instance  𝑑𝑖 = 2
𝑖−1, 𝑖 = 1,… , 𝑛, 𝑛 > 2, has 𝐵 <

1

2
 for the problem 𝐹𝑎, 

for 𝑛 = 2, infinitely many instances with 𝐵 <
1

2
 exist i.e. the optimal value of the problem 𝐹𝑎, 

is less than 
1

2
 if and only if one of demands  𝑑1 or  𝑑2 is odd and the other even [14]. A 

sequence with distances ⌈
𝐷

𝑑1
⌉ and ⌈

𝐷

𝑑1
⌉  for product 1 with demand  𝑑1 and ⌈

𝐷

𝑑2
⌉ and ⌈

𝐷

𝑑2
⌉ for 

product 2 with demand  𝑑2 is optimal for two product case. This procedure solves both the 

problem  𝐹𝑎 and the response time variability problem for 𝑛 = 2, which is not true in general 

for 𝑛 > 2. The response time variability problem minimizes the variability of time for which 

clients, events, jobs or products wait for the next turn in obtaining the resources necessary for 

their advance. This problem intends to utilize the resources so as to ensure a fair sharing of 

common resources between the products which requires to be evenly distributed such that the 

occurrences in any two consecutive items of the same product is to keep at constant distance 

as much as possible all the time. The general case of the problem is NP-hard. This result 

naturally motivates to look at other possible common solutions with respect to different 

objectives.   

The EDD algorithm matches each ascending 𝑘 ∈ 𝑉1 to the unmatched (𝑖, 𝑗) with the 

smallest 𝐿(𝑖, 𝑗). Since 𝐸(𝑖, 𝑗) and 𝐿(𝑖, 𝑗) are strictly monotonic increasing for consecutive 

copies of each product and 𝐸(𝑖, 𝑗 + 1) cannot be less than 𝐿(𝑖, 𝑗) with 𝐵 < 1 the algorithm 

ensures the perfect matching to be order-preserved.   

The weighted problem can analogously be reduced to the order-preserved perfect matching 

problem. Heavy weightage for particular copies of a product restricts the time window 

[𝐸(𝑖, 𝑗), 𝐿(𝑖, 𝑗) and increases the separation of consecutive copies of that product in the 

sequence. 𝐸(𝑖, 𝑗) And 𝐿(𝑖, 𝑗) are calculated as the integers 𝐸(𝑖, 𝑗) = ⌈
𝑗𝑤𝑖−𝐵

𝑟𝑖𝑤𝑖
 ⌉ and 𝐿(𝑖, 𝑗) =

⌊
(𝑗+1)𝑤𝑖+𝐵

𝑟𝑖𝑤𝑖
+ 1⌋.  

An order-preserved perfect matching gives rise to a feasible solution.  

The necessary and sufficient condition for a feasible solution to the problem 𝐹𝑎 is the 

following.   
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Theorem 5.3   

The problem  𝐹𝑎 has a feasible solution if and only if for all 𝑘1,  𝑘2 ∈ {1, … ,𝐷} with 𝑘1 <  𝑘2 

and, ∑ 𝑚𝑎𝑥 (0, ⌊( 𝑘2𝑟𝑖 + 𝐵⌋
𝑛
𝑖=1 − ⌈ (𝑘1 − 1)𝑟𝑖 − 𝐵⌉) ≥ 𝑘2− 𝑘1 + 1 

and  ∑ 𝑚𝑎𝑥 (0, ⌈( 𝑘2𝑟𝑖 + 𝐵⌉
𝑛
𝑖=1 − ⌊ (𝑘1 − 1)𝑟𝑖 + 𝐵⌋) ≤ 𝑘2− 𝑘1 + 1. 

The theorem tests the feasibility of B in time 𝑂(𝑛𝐷2)  though less efficient than 𝑂(𝐷) time 

and of a pair (𝑘1,  𝑘2),  𝑘1,  𝑘2 ∈ {1,… ,𝐷} in 𝑂(𝑛) time [38].  

The perfect matching using a certain bound obtained through a bisection search in the interval 

[1 − 𝑟𝑚𝑎𝑥 , 1 −
1

𝐷
  ] yields an optimal sequence in 𝑂(𝐷 𝑙𝑜𝑔 𝐷) time. The lower bound 

1 − 𝑟𝑚𝑎𝑥  is tight. 

Since the deviations are multiples of  
1

𝐷
  and the upper bound is 1 −

1

𝐷
 the bound for the 

optimal value can be only 𝐵 =
𝑘

𝐷
 with 𝑘 ∈ {1,… , 𝐷 − 1} [42]. This fact can be implemented 

to calculate possible optimal values for the problem 𝐹𝑎 only for these values. The optimal 

sequences of an instance 𝑑1 = 2, 𝑑2 = 3, 𝑑3 = 5 obtained at bound 𝐵 =
1

2
 are 3-2-1-3-2-3-3-

1-2-3 and 3-2-1-3-3-2-3-1-2-3, here the 5𝑡ℎ and the 6𝑡ℎ positions are swapped.  

An optimal sequence for the weighted problem is obtained as follows:  

Theorem 5.4   

An optimal sequence for the weighted problem can be determined when a bisection search is 

performed in the interval [𝑚𝑖𝑛𝑖𝑤𝑖(1 − 𝑟𝑖), 𝑚𝑎𝑥𝑖𝑤𝑖] in exact pseudo-polynomial 

time 𝑂(𝐷 log(𝐷Φ𝑚𝑎𝑥𝑖(𝑤𝑖))), where Φ is a positive integer constant that depends on the 

problem data.   

The exact complexity of the problem 𝐹𝑎 still remains open. The problem 𝐹𝑎 has been proved 

to be Co-NP but remains open whether it is Co-NP-complete or polynomially solvable [13]. 

Observation of the input size 𝑂(∑ log𝑑𝑖
𝑛
𝑖=1 ) = 𝑂(𝑛 log𝐷) and the involvement of   

variables 𝑛𝐷 and 𝑂(𝑛𝐷) constraints in the model indicate that an expectation of a polynomial 

algorithm for this problem seems far from trivial.   
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There exists cyclic optimal sequence for the problem 𝐹𝑎. Let 𝑢𝑖 be a factor of D and 𝑑𝑖 with 

𝑑𝑖 = 𝑢𝑖 𝑣𝑖  for product 𝑖. Each copy of product 𝑖 is labeled as (𝑒 − 1)𝑣𝑖 + 𝑗 where 𝑒 =

1,… , 𝑢𝑖  and 𝑗 = 1, … , 𝑣𝑖, the 𝑒𝑡ℎ period of copies of product 𝑖 that consists of 𝑣𝑖  copies of 

product 𝑖. There will be 𝑢𝑖  such periods for each product. If all of one period’s early (late) 

starting times are calculated, then the early and the late starting times for all copies in all 

periods can be calculated from these values. When 𝑢𝑖 = gcd(𝑑𝑖 , 𝐷) = 1, the time required to 

calculate the starting times can be reduced by a factor of  2.   

Theorem 5.5  

If 𝑢 = 𝑔𝑐𝑑(𝑑𝑖, … , 𝑑𝑛) , 𝑖 = 1, … , 𝑛, then the problem 𝐹𝑎 consists of 𝑢 repetitions of the 

optimal sequence.  

 The problem G can be represented as a complete convex bipartite weighted graph on 𝑉1 =

{1, … ,𝐷}. Since each (𝑖, 𝑗) can be produced at any instant 𝑘, it is clear that 𝐸(𝑖, 𝑗) = 1 and 

𝐿(𝑖, 𝑗) = 𝐷. The cost 𝐶𝑖𝑗𝑘 for (𝑖, 𝑗) at 𝑘 is taken as the weight for the edge (𝑘, (𝑖, 𝑗))  . The 

problem is to find a perfect matching with minimum sum of the weights.  

Theorem 5.6  

A sequence s for the problem G is optimal if and only if there is a minimum weight perfect 

matching M with a weight function 𝑤: 𝑉1 ∪ 𝑉2 → 𝑅  such that 𝑤𝑘 +𝑤𝑖,𝑗 ≤ 𝐶𝑖𝑗𝑘∀(𝑘, (𝑖, 𝑗)) ∈

ℇ and ∑ 𝑤𝑘𝑘∈𝑉1 + ∑ 𝑤𝑖,𝑗(𝑖,𝑗)∈𝑉2 =  ∑ 𝐶𝑘,(𝑖,𝑗)∈𝑀 𝑖𝑗𝑘
= 𝑠.  

 Let us say an incomplete convex bipartite graph on 𝑉1 if weights are attributed to only those 

edges (𝑘, (𝑖, 𝑗)) of which 𝑘 ∈ [𝐸(𝑖, 𝑗), 𝐿(𝑖, 𝑗)] with 𝐵 ≤ 1. This substantially reduces the 

number of weights to be calculated. A 1-bounded optimal solution for the problem G, if 

exists, could be obtained in 𝑂(𝑛𝐷2 log𝐷) time, since |𝐸| ≤ (𝑛 + 2)𝐷 holds for 𝐵 ≤ 1 [56].  

Theorem 5.7  

The sequence optimal to the problem G with  𝑓𝑖 = 𝑓, ∀𝑖 and −1 ≤ 𝑥𝑖𝑘 − 𝑘𝑟𝑖 ≤ 1 for the 

incomplete graph is also optimal to the problem G for the complete graph.  

This result cannot be generalized for non-identical cost functions in [−1, 1] As an example, 

the instance (24, 24, 28, 28,42, 42, 42, 48, 16)  with the cost functions, 𝑓1(𝑥) = 𝑓2(𝑥) =
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𝛼1|𝑥|, 𝑓3(𝑥) = 𝑓4(𝑥) = 𝛼2|𝑥|, 𝑓5(𝑥) = 𝑓6(𝑥) = 𝑓7(𝑥) = 𝑓8(𝑥) = 𝛼3|𝑥| ,  𝑓9(𝑥) = 𝛼4|𝑥|,

𝑓10(𝑥) = 𝛼5|𝑥|, where 𝛼1 = 1682. 8.7. 𝛼2,  𝛼2 = 168
2. 6.6. 𝛼3, 𝛼3 = 168

2. 4.2. 𝛼4, 𝛼4 =

1682. 7. 𝛼5, 𝛼5 = 1 shows that −1 ≤ 𝑥𝑖𝑘 − 𝑘𝑟𝑖 ≤ 1 will not hold for some positions.  

But the existence of such a solution is rarely possible. The question of determining minimum 

𝐵 such that the optimal solution to the problem 𝐺 is 𝐵-bounded remains unanswered. It is 

shown that the upper bound on the optimal value of the problem 𝐺 is 𝑛𝐷 though the bound is 

not tight. However, the lower bound for the problem 𝐺𝑠 is ∑
𝐷2−𝑑𝑖

2

12𝐷

𝑛
𝑖=1  . Note that a solution is 

said to be 𝐵-bounded or 𝐵-feasible if the deviation is less than a given bound 𝐵.   

The perfect matching method can also be applied to the generalized pinwheel scheduling 

problem or the Liu-Layland periodic scheduling in hard real-time environments, see. The 

generalized pinwheel scheduling problem for 𝑛 pairs of positive integers (𝑎1, 𝑏1),… , (𝑎𝑛 , 𝑏𝑛) 

is to find an infinite sequence 𝑠 = 𝑠1𝑠1…   on finite set {1,… , 𝑛} such that  𝑠𝑗 ∈ (1,… , 𝑛}, 𝑗 ∈

𝑁 and any subsequence of 𝑠 consisting of 𝑏𝑖 consecutive elements of 𝑠 contains 𝑖 at least 𝑎𝑖 

times, 𝑖 ∈ {1,… , 𝑛}. The solution procedure to the problem 𝐹𝑎 with 𝐵 < 1 and the rates 𝑟𝑖 =

𝑎𝑖+1

𝑏1
, 𝑖 = 1, … , 𝑛 yields a generalized pinwheel schedule for the instance (𝑎1, 𝑏1),… , (𝑎𝑛 , 𝑏𝑛) 

if ∑
𝑎𝑖

𝑏𝑖
+

1

𝑏𝑖

𝑛
𝑖=1 ≤ 1 [17]. The Liu-Layland periodic scheduling problem is to find an infinite 

sequence 𝑠 = 𝑠1𝑠1… on a finite set {1, … , 𝑛} such that 𝑠𝑗 ∈ {1,… , 𝑛}, 𝑗 ∈ 𝑁 and a preemptive 

and periodic job 𝑗 occurs exactly 𝐶𝑖 times on any subsequence of 𝑠 consisting of 𝑇𝑖 

consecutive elements of 𝑠 with 𝐶𝑖  ≤ 𝑇𝑖, 𝑖 ∈ {1,… , 𝑛}, where 𝐶𝑖 and 𝑇𝑖 are the run-time and 

request period for job 𝑖. The solution to the problem 𝐹𝑎 with 𝐵 < 1 and rates 𝑟𝑖 =
𝐶𝑖

𝑇𝑖
, 𝑖 =

1,… , 𝑛, is a periodic schedule.   

5.5. Simultaneous optimality  

Study of finding solutions that minimize a number of objective functions simultaneously is 

useful. Such solutions not only reduce time complexity of the problem but also are more 

applicable in practice.   

A Pareto algorithm that determines all Pareto optimal sequences for the bicriterion 

sequencing problem with the objectives 𝐹𝑎 and 𝐺 exist. The algorithm determines an order 

preserving perfect matching with 𝐵 ≤ 1. Then a minimum weight order-preserving perfect 
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matching with the weight 𝐶𝑖𝑗𝑘  for the edge (𝑘, (𝑖, 𝑗)), 𝑖 = 1,… , 𝑛; 𝑗 − 1,…𝑑𝑖; 𝑘 = 1,… , 𝐷 is 

determined. The corresponding production sequence is a Pareto optimal sequence. A Pareto 

optimal solution can be determined in 𝑂(𝑛𝐷2 log𝐷) time and all Pareto optimal solutions in 

𝑂(𝑛𝑑𝑚𝑎𝑥𝐷
2 log𝐷) time. 

Let 𝑆1 be the set of all 1-feasible sequences. The two problems are 𝑆1-equivalent if both have 

the same set of optimal sequences on 𝑆1. The problems 𝐺𝑎 and 𝐺𝑠 on 𝑆1   have the same cost 

𝐶𝑖𝑗𝑘 ≥ 0 for 𝑘 ∈ [𝐸(𝑖, 𝑗), 𝐿(𝑖, 𝑗) [18] and are 𝑆1-equivalent [9]. The assumption in that the 𝑆1-

equivalence is due to symmetry and convexity of the objectives is not true. The instance 

(23, 23, 1, 1, 1, 1) with the function 

𝑓(𝑥𝑖𝑘 − 𝑘𝑟𝑖) =

{
 

 −
1

1−𝑥∗
(𝑥𝑖𝑘 − 𝑘𝑟𝑖) −

𝑥∗

1−𝑥∗
     (𝑥𝑖𝑘 − 𝑘𝑟𝑖)  ≤  −𝑥

∗                        

0                                                           − 𝑥∗ ≤ (𝑥𝑖𝑘 − 𝑘𝑟𝑖) ≤ 𝑥∗

1

1−𝑥∗
(𝑥𝑖𝑘 − 𝑘𝑟𝑖) −

𝑥∗

1−𝑥∗
                       𝑥∗  ≤  (𝑥𝑖𝑘 − 𝑘𝑟𝑖)           

    

is a counterexample [9], where 𝑥∗ is optimal value to the problem 𝐹𝑎. An optimal sequence 

for the problem 𝐺𝑎 in 𝑆1is optimal for the problem 𝐺𝑠 in 𝑆1 too. With this, the problem 𝐺𝑠 can 

be solved by means of solving the problem 𝐺𝑎 in 𝑆1. It is advantageous for the complexity 

since the conversion of the floating point numbers to integers of absolute penalties required is 

smaller in magnitude than that of the square penalties. An optimal solution in 𝑆1 to the 

problem 𝐺𝑠 may not be optimal to the problem 𝐺𝑎 [9]. If the problem 𝐺𝑎 has no optimal 

solution in 𝑆1, the optimality is not guaranteed, however, it provides a lower and upper 

bounds for the optimal solution to the problem 𝐺𝑠. The problems 𝐺𝑎 and 𝐺𝑠 may not have 

optimal sequences in 𝑆1[9].   
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Chapter 6 

6. Solution Procedure for ORV Problem: 

Here, we introduce the solution procedure for ORVP. The ORVP has been shown to be 

strongly NP-hard by reducing the known NP-hard scheduling problem “Around the shortest 

job to ORVP”. 

6.1  Heuristic nearest integer point: 

For a stage k, schedule the product I with the lowest 𝑥𝑖,𝑘−1 − 𝑘𝑟𝑖. 

This is a myopic heuristic in that it does not consider the effect on future stages of its current 

decision. Its grate advantage is that it is one-pass algorithm. It does one calculation for each 

product and then makes a selection. For each stage the computational complexity is O(n) 

since n comparison should be made in each stage. This is found to be satisfactory algorithm. 

Because of the myopic nature of this heuristic the following two pass heuristic of complexity 

O(n2) for each stage was developed by Miltenburg [21]. 

Step 1: Set h=1 

Step 2: Tentatively schedule product h to be produced in stage k. calculates the variation for 

stage k and calls it V11. 

Step 3: Schedule the product I with lowest  𝑥𝑖,𝑥 − (𝑘 + 1)𝑟𝑖 for stage k+1. Notice that this is 

the decision rule of heuristic. Calculate the variation for stage k+1 & call it V2h. 

Calculate Vh= V1h+ V2h. 

Step 4: Put h=h+1, if h>n go to step 5, otherwise go to step 2, where n is the number of 

products. 

Step 5: Schedule the product h with the lowest Vh. 

 

It is observed that this heuristic bases its scheduling decision on two stages- the current stage 

and the next stage. It approximates the variability over these two stages & schedules so that 

this variability is as small as possible. 

 

Example: 6.1.1 For the demand vector (2000, 3000, 5000, 1000) the corresponding data are 

presented in Table 1: Schedule generated for demand vector D = (2000, 3000, 5000, 1000) 

using heuristic, in which the sequence is the 1000 reparation of the cycle 3-2-1-3-4-3-2-3-1-

2-3.  
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Table 1: Schedule generated for demand vector D= (2000, 3000, 5000, 1000) using Heuristic Nearest integer 

point 

 

6.2  Miltenburg and Sinnamon Heuristic Approach: 

Suppose that each product has significantly different sub-assembly, component and raw 

material requirements. Then the variation at all levels in the system must be considered when 

selecting a product schedule. Beginning with stage 1, compose a schedule stage by stage 

using the following decision rule at each stage k, taking the schedule already determined for 

stage 1, 2, 3, ……, k-1 as fixed. 

The mathematical expression of this decision rule is: 

Schedule the product I with the lowest; 

𝐻𝑝𝑘 = 𝑊𝑙(𝑥𝑝𝑙(𝑘−1) − 𝑘𝑟𝑝𝑙) + 0.5 ×∑𝛽𝑝𝑙𝑘

𝐿

𝑙=2

 

𝑊ℎ𝑒𝑟𝑒, 𝛽𝑝𝑙𝑘 =∑𝑊𝑙[(𝑥𝑝𝑙(𝑘−1) − 𝑡𝑖𝑙𝑝)

𝑛𝑙

𝑖=1

− (𝑦𝑙(𝑘−1) + 𝛼𝑙𝑝) × 𝑟𝑖𝑙]
2 

And 

𝛼𝑙𝑝 =∑𝑡𝑖𝑙𝑝

𝑛𝑙

𝑖=1

 

To see this consider a stage k, if product p is scheduled, the affected terms in the objective 

function of P4.1 for stage k are: 

𝑉𝑝 = 𝑊1 +∑∑𝑊𝑙[(𝑥𝑖𝑙(𝑘−1) − 𝑡𝑖𝑙𝑝)

𝑛𝑙

𝑖=1

− (𝑦𝑙(𝑘−1) + 𝛼𝑙𝑝) × 𝑟𝑖𝑙]
2

𝐿

𝑖=2

 

𝑊ℎ𝑒𝑟𝑒 𝛼𝑙𝑝 =∑𝑡𝑖𝑙𝑝

𝑛𝑙

𝑖=1
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Since the objective function is to be minimized. Let product p be scheduled rather than 

product 𝑝′ 𝑖𝑓 𝑉𝑝 < 𝑉𝑝′ . Cancelling the identical terms and simplifying the expression will 

show that this is equivalent to saying that 𝐻𝑝𝑘 < 𝐻 𝑝′𝑘. 

This is a myopic heuristic in that is does not consider the effect of its current decision on the 

variation in future cycled. That is, it may achieve low variability at stage k at the expense of 

high variability at stage k+1. 

Miltenburg and Sinnamon [20] introduce another scheduling heuristic of complexity 

𝑂(𝑛1
2(𝑛2 +⋯+ 𝑛1)

2 for each stage. This is heuristic attempts to remedy the myoic problem 

of previous heuristic. 

For each cycle k: 

 

Step 1: Set l=1 

Step 2: Tentatively schedule product l to be produced in stage k. Calculate the variation for 

stage k and call it V1. 

Step 3: Find the product p with the lowest H p (k-1) for stage k+1. Calculate the variation for 

stage k+1 and call it V2. Compute Vl= V1+ V2. 

Step 4: Increment l (l=l+1). If l>n1 go to step 5, otherwise go to step 2. Where n1 is number 

of product. 

Step 5: Schedule the product p with the lowest V1 in stage k. 

 

Example 6.2.1. We Consider only two levels-product and sub-assembly. Suppose n1=2 

products with demands 600, 500 units. The product consists of n2=3 different sub-assemblies. 

The bills of material are shown in figure 4. 

 

Figure 5: Input Demand for ORVP 

To develop a production schedule tilp, dil and ril are calculated from these data and shown in 

Table 2: Assembly and demand data for example 6.2.1 
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 tilp – Number of parts for one unit of product 1  

 Product Sub-assembly, l=2  Demand Ratio 

l=1 i=1 2 3 Total dil ril 

1 1 0 1 2 3 0.5455 

2 2 4 0 6 5 0.4545 

Demand       

dil 16 20 6 42   

Ratios       

 ril 0.38 0.4762 0.1429     

Table 2: Assembly and Demand Data for Example 6.2.1 

The calculations for heuristic of Miltenburg and Sinnamon for the first 13 stage are shown in 

table 4: Detail Schedule of Example 6.2.1. This procedure is repaired for 100 times and final 

schedule is 1-2-1-2-1-2-1-2-1-2-1 with a total variation of 163.5116484000000159 over 13 

cycles. 

 

6.3  Dynamic Programming Algorithm: 

In this section we discuss a dynamic programming (DP) algorithm to deal with JIT 

production schedule for a mixed model facility. The procedure has considered the joint 

problem with the two typical goals. 

1. Usage Goal: maintaining a constant rate of usage of all items in the facility. 

2. Loading Goal: smoothing the work load on the final assembly process to reduce the 

chance of production delays and stoppages. 

It is to be noted that goal 1 is mainly focused in this dissertation and is more important than 

foal 2. Indeed, goal 2 is a classical one. 

Let there are n products to be produced with demands d1, d2, …… dn, a certain time horizon. 

The time to produce one unit of product i be denoted by ti ;i=1,2,….n and put 𝐷 =

∑ 𝑑𝑖 , 𝑟𝑖
𝑛
𝑖=1 =

𝑑𝑖

𝐷
. 

The specified time horizon be inferred into D time units and during each time period k; k=1, 

2,…., D; exactly one unit of a product should be produced. Let 𝑥𝑖,𝑘  denote the total 
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production of product I over the first k periods; where 0 ≤ 𝑥𝑖,𝑘≤ di for all i=1, 2, …. ,n be k=1, 

2, …. D. 

Suppose that the schedule for the first k stages be determined i.e. 𝑥𝑖,𝑘  for i=1,2,…..n be 

known. Then the usage variability at stage k is 𝑈𝑘 =  ∑ (𝑥𝑖,𝑘
𝑛
𝑖=1 − 𝑘𝑟𝑖)

2 and the loading 

variability at stage k is 𝐿𝑘 = ∑ 𝑡𝑖
2(𝑥𝑖,𝑘

𝑛
𝑖=1 − 𝑘𝑟𝑖)

2. 

Therefore the problem defined can be formulated as; 

Minimize ∑(𝛼𝑈𝑈𝑘

𝐷

𝑘=1

− 𝛼𝐿𝐿𝑘)
2 

Where 𝛼𝑈 ,  𝛼𝐿  are relative weights for the USAGE goal and LOADING goal respectively. So 

the problem defined is a joint problem. 

Let 𝑓𝑛denote the joint variability at stage k. Then  

𝑓𝑘 = 𝛼𝑈∑(

𝑛

𝑖=1

𝑥𝑖,𝑘 − 𝑘𝑟𝑖)
2 + 𝛼𝐿∑𝑡𝑖

2

𝑛

𝑖=1

(𝑥𝑖,𝑘 − 𝑘𝑟𝑖)
2 

       = ∑(

𝑛

𝑖=1

𝛼𝑈 − 𝛼𝐿𝑡𝑖
2)(𝑥𝑖,𝑘 − 𝑘𝑟𝑖)

2 

        = ∑𝑇𝑖
2

𝑛

𝑖=1

(𝑥𝑖,𝑘 − 𝑘𝑟𝑖)
2;   Where  𝑇𝑖

2 = 𝛼𝑈 − 𝛼𝐿𝑡𝑖
2 

Therefore the objective function of the problem defined by takes the form: 

Mininize∑ ∑ 𝑇𝑖
2𝑛

𝑖=1 (𝑥𝑖,𝑘 − 𝑘𝑟𝑖)
2𝐷

𝑘=1   ; Where 𝑇𝑖 , the implied production time for period i.  

Now we consider the DP procedure. 

Let 𝑑 = (𝑑1, 𝑑2, … . , 𝑑𝑛) be the product requirements vector. Define subsets in a schedule 

as 𝑋 = (𝑥1, 𝑥2, … . , 𝑥𝑛); where 𝑥𝑖 is a non negative integer representing the production of 

exactly 𝑥𝑖 units of product i, 𝑥𝑖 ≤ 𝑑𝑖 for all i. Let 𝑒𝑖 be the ith unit vector; with n entries, 

having ith entry 1 and remaining all zero. A subset X cab be scheduled in the first k stages 

if 𝑘 = |𝑋| = ∑ 𝑥𝑖
𝑛
𝑖−1 . 
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Let f(X) be the minimal total variation of any schedule where the products in X are scheduled 

during the first k stages. Let 𝑔(𝑋) = ∑ 𝑇𝑗
2𝑛

𝑗=1 (𝑥𝑗 − 𝑘𝑟𝑗)
2.  The following (DP) recursion 

(R1) holds for f(X). 

𝑓(𝑋) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = min  {𝑓(𝑋 − 𝑒𝑖) + 𝑔(𝑋)| 𝑖 = 1,2,… . 𝑛; 𝑥𝑖 − 1 ≥ 0} 

𝑓(𝑋) = 𝑓(𝑋|𝑥1 = 0 ; 𝑖 = 1,2,… . 𝑛) = 𝑓(0,0,… . ,0) = 0. 

Clearly 𝑓(𝑋) ≥ 0 and 𝑔(𝑋|𝑥1 = 0 ; 𝑖 = 1,2,… . 𝑛) = 0 . The following theorem tells about 

the computational efficiency of the above procedure [22]. 

Example 6.3.1 Demand Vector (300, 600, 900) and Time T= (2, 5, 1) the schedule generated 

by DP  is shown in Table 3: Schedule generated by dynamic programming, with number of 

cycle 300. 

Stagge (k) (x1, x2, x3,…) P-Index Product Schedule X-e f(x-e) g(x) f(x) Expand 

1 1-0-1 
 

1 000 0 5.806 5.806 E 

1 0-1-0 
 

2 000 0 11.472 11.472 E 

1 0-0-1 
 

3 000 0 3.139 3.139 E 

2 1-1-1 3 2 100 5.806 5.555 11.362 E 

2 1-0-1 4 3 100 5.806 12.889 18.695 
 

2 1-1-0 5 1 011 11.472 5.555 17.028 
 

2 0-2-0 6 2 011 11.472 45.889 57.36100 E 

2 0-1-1 7 3 011 11.472 3.222 14.69399 
 

2 1-0-1 8 1 001 3.139 12.889 16.028 E 

2 0-1-1 9 2 001 3.139 3.222 6.361 E 

2 0-0-2 10 3 001 3.139 12.556 15.69499 E 

3 1-2-0 11 2 110 11.362 28.25 39.612 E 

3 1-1-1 12 3 110 11.362 1.25 12.612 
 

3 1-2-0 13 1 020 57.361 28.25 85.611 
 

3 0-2-1 14 3 020 57.361 28.25 83.611 
 

3 1-1-1 15 2 101 16.028 1.25 17.278 
 

3 1-0-2 16 3 101 16.028 26.25 42.278 
 

3 1-1-1 17 1 011 6.361 1.25 7.611 E 

3 0-2-1 18 2 011 6.361 26.25 32.611 E 

3 0-1-2 19 3 011 6.361 1.25 7.611 E 

3 1-0-2 20 1 002 15.6945 26.25 41.945 E 

3 0-1-2 21 2 002 15.6945 1.25 16.945 
 

3 0-0-2 22 3 002 15.6945 28.25 43.045 E 

Schedule: 1-3-2-3-3-2-1 

No. of Cycle: 300 

Table 3: Schedule generated by dynamic programming 
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Theorem 6.3.1 [22] 

The DP recursion solves the JIT scheduling problem in  

𝑂(𝑛∏(𝑑𝑖

𝑛

𝑖=1

+ 1))  𝑡𝑖𝑚𝑒 𝑎𝑛𝑑 𝑂 (𝑛∏(𝑑𝑖

𝑛

𝑖=1

+ 1))  𝑠𝑝𝑎𝑐𝑒. 

Proof: 

Suppose g(X) represents the contribution of each product to the objective function at stage k. 

the minimization in recursion (R1) is done over all possible choices of the product to be in 

this last position. Since xi can assume the values 0, 1, 2, …. , di, the number of sets, or states, 

in the DP recursion is ∏ (𝑑𝑖
𝑛
𝑖=1 +1). 

For each set X there are at most n f(X-ei) values, to each of which must be added g(X), whose 

calculation required O(n) times. Therefore, the computational time is O(n) for each set, and 

𝑂(𝑛∏ (𝑑𝑖
𝑛
𝑖=1 + 1))  

for the entire problem. The value f(x) and the produce i, where the minimum occurs in 

recursion (R1), must be saved for each set X, so that the optimal solution can be sondtructed 

at the end. Therefore, the space requirements are 𝑂(𝑛∏ (𝑑𝑖
𝑛
𝑖=1 + 1)). 

Notice that the total number of feasible schedules is, 

𝐷!

𝑑1!, 𝑑2! ………… . 𝑑𝑙!
 

This is considerably larger than the number of states in the DP recursion. Furthermore, 

∏(𝑑1

𝑛

𝑖=1

+ 1) ≤  (
𝑑1, 𝑑2………… . 𝑑𝑛 + 𝑛

𝑛
)
𝑛

 

= (
𝐷 + 𝑛

𝑛
)
𝑛

 

Therefore the growth rate of the number of sets is polynomial in D although it is exponential 

with n. this clearly shows that the procedure is effective for small n even with large D. we see 

that the DP algorithms is efficient only for practical sized problems with the analysis are 

proposed in [22]. 
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Chapter 7 

Conclusion and Recommendation 

 

Mixed model JIT system requires producing only the necessary products in necessary 

quantities at necessary time. This problem minimizes both the earliness and the tardiness 

penalties that respond to the customer demands for a variety of models without holding large 

inventories or incurring shortage. PRVP is an important production problem that arises on 

mixed model JIT assembly line. This problem consists in sequencing copies of different 

products in such a way that actual productions are as close as possible to their ideal 

production. 

 In this dissertation, the mathematical models for MMJITSP and different sequencing 

approaches developed till date have been analyzed. The MMJITSP with the goal of keeping 

constant rate of usage of parts is focused. The study shows that the problems have real world 

exciting applications as well as interesting mathematical features of theoretical value. We 

explicitly explore, with justification of the ground for future research, the questions which 

still remain open and are challenging.  

 The problem, under the assumption that the products require approximately the same number 

and mix of parts or the pegging assumption (single-level) is solvable. A pseudo- polynomial 

algorithm of the assignment problem is applicable to the problem G. The approach can also 

be applied to the bottleneck PRVP with necessary modification. 

The relation between different sequencing approaches will be foremost topic for the further 

investigation and to determine an algorithm which simultaneously optimizes both Dynamic 

and Heuristics objectives will be the most interesting topic for the research. 

Different types of sequencing approaches for PRVP are optimal and existence of such 

sequences considerably reduces the computational effort. The question, whether sequencing 

approaches to ORVP are optimal, is still open. 
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Appendix  

Basic Mathematic Notations 

 

Set theory, Sequence and Series 

 

N : Set of Naturals 

R : Set of real Numbers 

R+ : Set of Positive Real Number 

{a1, a2, … , an} : Set of Objects a1, a2, … , an 

(a1, a2, … , an} : A sequence of numbers  a1, a2, … , an 

S : A sequence 

 

 

Data Problems 

 

n : Number of jobs 

m : Number of machine 

l : Product Level 

Ji : Job number i = 1, 2, … ,n. 

ni : Number of operations of job Ji 

ml : number of machines at stage l 

Mj : Machine number j  = 1, 2, … ,m. 

Oi, j : Operation j of job Ji 

ri : Release time of job Ji 

di : Due date of job Ji 

si : desired start time of job Ji 

pi, j : Processing time of job Oi, j 

Wi or wi : Weight associated to job Ji 

D : Total Demand 
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