CARBON STOCK OF SELECTED TREE SPECIES IN A COMMUNITY MANAGED TROPICAL FOREST OF RUPANDEHI DISTRICT, WESTERN NEPAL

A dissertation Submitted for the partial Fulfillment of Master of Science in Botany, Institute of Science and Technology, Tribhuvan University Kathmandu, Nepal

> Submitted by: OKMAYA SHRISH Exam Roll No: 6277 Batch No: 065/068 (2008) T.U. Regd.No: 5-3-28-19-2008

Central Department of Botany, Tribhuvan University Kirtipur, Kathmandu, Nepal October 2012

RECOMMENDATION

This is to certify that the dissertation work entitled "**Carbon Stock Assessment of selected tree species in a Community managed tropical Forest of Karahiya VDC, Rupandehi district, Western Nepal**" submitted by **Okmaya Shrish** has been carried out under my supervision. The entire work is primarily based on the results of her thesis work and has not been submitted for any other degree. I recommend this dissertation work to be accepted for the partial fulfillment of Master of Science in Botany.

.....

Dr. Ram Kailash Yadav Supervisor Central Department of botany Tribhuvan University Kirtipur, Kathmandu, Nepal

10th October 2012

LETTER OF APPROVAL

The dissertation work entitled" **Carbon Stock Assessment of selected tree species in Community managed tropical Forest of Karahiya VDC, Rupandehi district, Western Nepal**" submitted by **Okmaya Shrish** has been accepted as a partial fulfillment of the requirements for the Masters of Science in Botany (Plant Ecology).

EXPERT COMMITTEE

(Supervisor) Dr. Ram Kailash Yadav Associate Professor Central Department of Botany Tribhuvan University Kathmandu, Nepal

(External Examiner)

Dr. Mohan Devkota Associate Professor Department of Botany Amrit Science Campus (T.U) Kathmandu, Nepal

Date of Examination: 14th October 2012

.....

Dr. Pramod Kumar Jha

Professor and Head Central Department of Botany Tribhuvan University Kathmandu, Nepal

.....

(Internal Examiner) Dr. Bharat Babu Shrestha Lecturer Central Department of Botany Tribhuvan University Kathmandu, Nepal

ACKNOWLEDGEMENTS

I express my deepest appreciation, sincere gratitude and deep sense of honour to my respected supervisor Associate Prof. Dr. Ram Kailash Prasad Yadav for his kind support, supervision, constructive suggestion, intellectual support and regular encouragement during the research by devoting his valuable time.

My profound gratitude goes to Dr. Pramod Kumar Jha, Professor and Head of Central Department of Botany, TU, Kirtipur for his administrative support, and I express my gratitude to Prof. Dr. Krishna Kumar Shrestha, former Head of the Department for his support.

I am highly thankful to R.A Mandal for providing the articles related to carbon stock and REDD.

I would like to thank Shivaraj Ghimire for his kind co-peration during lab work. I am also thankful to Krishna Sharma who guide me to run GPS. I am thankful to Sushila Shrestha. I express my thanks to my brother and father who helped me during my field work. My special thanks goes to Janardhan Mainali for his valuable help for creating Map of the study area. I also express my special thanks to Khum Thapa magar for his valuable guide and ideas in data analysis.

I am very much grateful to the authorities of Community Forest, Karahiya VDC for granting me permission to work in the forest. This M.Sc. dissertation has been possible with the financial support provided by Cornell Nepal Study Programme (CNSP). I am extremely thankful to the generosity extended by the CNSP.

Finally, I heartly express my thanks to my beloved parents for their continuous support, encouragement and inspiration for the completion of my master degree.

October 2012

Okmaya Shrish

ABSTRACT

Forest ecosystems play a critical role in the global carbon cycle, sequestering CO₂ through photosynthesis and storing carbon in plant biomass and in soil organic matter. So, forests have a significant potential to capture carbon and thus could play important role in climate change mitigation. Tropical forest also plays a significant role in carbon stock and climate change. For the present study four forest sites (1,2.3 and 5) was selected out of the seven sites of the community forest,(1,2,3,4,5,6and 7), sites 1 and 2 were dominated by *Dalbergia sissoo* and sites 3 and 5 were dominated by *Shorea robusta*. The forest sites 1and 2 was collectively taken as the *Dalbergia sissoo* dominated sites, similarly site 3and 5 was collectively taken as *Shorea robusta* dominated sites. For this study about 32 Quadrats of size 10×10m were laid randomly. Altogether biomass and soil carbon stock. Soil was sampled from the depth of 0-10cm and 10-20cm in each site. Total of 64 soil samples were collected. The sampled soils were air dried and brought to the laboratory for the further analysis. Bulk density and soil carbon stock were calculated at different horizontal depth of 0-10cm and 10-20cm. Then, biomass carbon and soil carbon stock.

The mean biomass, biomass carbon stock and soil carbon stock of the selected sites of Community Forest of Karahiya VDC were 436.60 Mg/ha, 205.12C Mg/ha, 66.21 C Mg/ha. From the research it was found that the total mean biomass carbon stock was not significantly different in sites dominated by *Dalbergia sissoo* and *Shorea robusta*. The total mean biomass carbon stock were 221.70 C Mg/ha and 188.55Mg/ha in the *Dalbergia sissoo* and *Shorea robusta* dominated sites. The mean soil carbon stock in *Shorea robusta* dominated sites of the forest was significantly higher (81.40 Mg/ha) than in the *Dalbergia sissoo* dominated sites (51.00 Mg/ha). Soil carbon stock and soil bulk density were not significantly different with depth. The bulk density at different depth were not significantly different 0.935 gm/cm³ at 0-10cm and 0.944 gm/cm³ at 10-20cm. The total mean bulk density in *Dalbergia sissoo* and *Shorea robusta* dominated site were not significantly different 0.922 gm/cm³. *Keywords: Tropical Community forest, Dalbergia sissoo, Shorea robusta, Biomass carbon*

stock, Soil carbon stock.

Contents

Page

Recommendations	
Letter of Approval	
Acknowledgement	i
Abstracti	i
Contentsii	ii
List of tablesv	i
List of figures	/i
Photo platev	ii
Acronymsvi	ii
Chapter 1: Introduction	1
1.1 Background	1
1.2 Carbon stock in forest vegetation	3
1.3 Carbon stock in forest soil	4
1.4 Carbon stock in community forest	5
1.5 Rationale of study	б
1.6 Research Questions	7
1.7 Objectives	7
1.8 Limitations	8
Chapter 2: Study Area	8
2.1 Geographical location topography and elevation	8
2.2 Climate	8
2.3 Vegetation	2
Chapter 3: Materials and Methods1	3

3.1 Description of studied sites of the forest	
3.2 Site selection and Biomass sampling	16
3.2.1 Estimation of Basal Area	17
3.2.2 Estimation of Tree Trunk Volume (TTV)	
3.2.3 Estimation of biomass	
3.2.3.1 Above ground tree biomass (AGTB)	19
3.2.3.2 Above ground sapling biomass (AGSB)	19
3.2.3.3 Below ground biomass	20
3.2.4 Total biomass carbon stock	20
3.3 Soil Sampling	20
3.4 Soil analysis	20
3.4.1 Soil bulk density	21
3.4.2 Soil organic carbon	21
3.5 Soil carbon stock	
3.6 Total carbon stock in forest	
3.7 Statistical analysis	22
Chapter 4: Results	23
4.1 Basal Area	23
4.2 Tree Trunk Volume	23
4.3 Biomass	24
4.4 Biomass carbon stock	26
4.5 Soil bulk density	26
4.6 Soil carbon stock	27
4.7 Total carbon stock in the selected sites of the forest	
Chapter 5: Discussion	

5.1 Community forest management	29
5.2 Basal Area	29
5.3 Tree Trunk Volume	30
5.4 Biomass	
5.4.1 Above ground biomass	
5.4.2 Below ground biomass	31
5.5 Biomass carbon stock	32
5.5.1 Above ground biomass carbon stock	32
5.5.2 Below ground biomass carbon stock	33
5.5.3 Total biomass carbon stock	33
5.5.4 Soil bulk density	
5.5.5 Soil carbon stock	34
5.5.6 Total carbon stock in the selected sites of forest ecosystem	35
Chapter 6: Conclusion and Recommendation	
References	
Annexes	
Photo Plates	

List of Tables

Table No.	Page
Table.1 : Number of Seedlings, Saplings and Trees	12
Table. 2 : Biomass in <i>Dalbergia sissoo</i> and <i>Shorea robusta</i> dominated sites of the forest	25
Table. 3 : Soil bulk density at different depth (cm) in <i>Dalbergia sissoo</i> and <i>Shorea robusta</i> dominated site of the forest	27

List of figures

Figure. 1: Five years (2007-2011) average minimum-maximum temperature and rainfall of	
Bhairahawa station	9
Figure.2: Map showing study area with reference to Nepal	10
Figure: 3. Location map of all the sites of Community forest of karahiya VDC	11
Figure. 4: Measurement of tree height by observer using clinometer	17
Figure.5. Basal area in <i>Dalbergia sissoo</i> and <i>Shorea robusta</i> dominated sites in forest	23
Figure.6: Tree trunk volume in <i>Dalbergia sissoo</i> and <i>Shorea robusta</i> dominated sites of the forest	24
Figure.7: Total biomass (Mean ± S.E) in the <i>Dalbergia sissoo</i> and <i>Shorea robusta</i> dominated site of the forest	25
Figure. 8 : Total biomass carbon stock (Mean ± SE) in <i>Dalbergia sissoo</i> and <i>Shorea robusta</i> dominated sites of forest	26
Figure. 9 : The soil carbon stock (Mean ± SE) in <i>Dalbergia sissoo</i> and <i>Shorea robusta</i> dominated site of the forest	27

Figure.10: Carbon stock in different parts as above ground, root and soil of *Dalbergia sissoo*(a) and *Shorea robusta* (b) dominated site of the forest......28

PHOTO PLATE

- Photo 1 : Dalbergia sissoo dominated site
- Photo 2 : Shorea robusta dominated site
- **Photo 3** : Collection of soil samples.
- **Photo 4** : Measurement of DBH in sampling site.

ACRONYMES

AGTB	Above ground tree biomass
AGSB	Above ground sapling biomass
ANSAB	Asia Network for Sustainable Agriculture and Bioresources
BA	Basal area
BD	Bulk Density
DBH	Diameter at breast height
CFs	Community Forests
CNSP	Cornell Nepal Study Programme
CO_2	Carbon dioxide
C Mg/ha	Carbon Metric gram per hectare
GHG	Green House Gases
ICIMOD	International Centre for Integrated Mountain Development
IPCC	Intergovernmental Panel on Climate Change
KCF	Karahiya Community Forest
КР	Kyoto Protocol
LULUCF	Land Use, Land Use Change Forestry
ppmv	parts per million by volume
REDD	Reducing Emission from Deforestation and Forest Degradation
SD	Standard Deviation
SE	Standard Error
SOC	Soil Organic Carbon
TTV	Tree Trunk Volume
UNFCC	United Nations Framework Convention on Climate Change
VDC	Village Development Committee