SPECIES COMPOSITION, PRODUCTION AND NUTRIENT DYNAMICS IN TROPICAL FOREST OF SUNSARI DISTRICT, EASTERN NEPAL

A THESIS SUBMITTED TO THE CENTRAL DEPARTMENT OF BOTANY INSTITUTE OF SCIENCE AND TECHNOLOGY TRIBHUVAN UNIVERSITY

NEPAL

FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN BOTANY

BY

TILAK PRASAD GAUTAM

APRIL 2015

SPECIES COMPOSITION, PRODUCTION AND NUTRIENT DYNAMICS IN TROPICAL FOREST OF SUNSARI DISTRICT, EASTERN NEPAL

A THESIS SUBMITTED TO THE CENTRAL DEPARTMENT OF BOTANY INSTITUTE OF SCIENCE AND TECHNOLOGY TRIBHUVAN UNIVERSITY NEPAL

FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN BOTANY

BY

TILAK PRASAD GAUTAM

APRIL 2015

RECOMMENDATION

This is to recommend that **Tilak Prasad Gautam**has carried out research entitled **"Species composition, production and nutrient dynamics in tropical forest of Sunsari district, eastern Nepal"** for the award of Doctor of Philosophy (Ph.D.) in **Botany** under my supervision. To my knowledge, this work has not been submitted for any other degree.

He has fulfilled all the requirements laid down by the Institute of Science and Technology (IOST), Tribhuvan University, Kirtipur for the submission of the thesis for the award of Ph.D. degree.

Dr. Tej Narayan Mandal Professor, Supervisor, Department of Botany, Post Graduate Campus Tribhuvan University Biratnagar Nepal

[April 16, 2015]

LETTER OF APPROVAL

Date:15/06/2015

On the recommendation of Prof. Dr. **Tej Narayan Mandal**, this Ph. D. thesis submitted by Tilak Prasad Gautam, entitled**"Species composition, production and nutrient dynamics in tropical forest of Sunsari district, eastern Nepal"** is forwarded by Central Department Research Committee (CDRC) to the Dean, IOST, T.U.

Dr. Pramod Kumar Jha Professor, Head, Central Department of Botany, Tribhuvan University Kirtipur, Kathmandu Nepal

DECLARATION

Thesis entitled **"Species composition, production and nutrient dynamics in tropical forest of Sunsari district, eastern Nepal"** which is being submitted to the Central Department of Botany, Institute of Science and Technology (IOST), Tribhuvan University, Nepal for the award of the degree of Doctor of Philosophy (Ph.D.), is a research work carried out by me under the supervision of Prof. Dr. Tej Narayan Mandal, Post Graduate Campus, Tribhuvan University, Biratnagar.

This research is original and has not been submitted earlier in part or full in this or any other form to any university or institute, here or elsewhere, for the award of any degree.

.....

(Tilak Prasad Gautam) Research Scholar

[April 16, 2015]

ACKNOWLEDGEMENTS

I wish to express my heartfelt gratitude and indebtedness to my research supervisor Prof. Dr. Tej Narayan Mandal, Department of Botany, Post Graduate Campus, Tribhuvan University, Biratnagar for providing the valuable guidance, useful suggestions and constant encouragementsduring the course of the present study.

Thanks are due to the Head, Department of Botany, Post Graduate Campus, T.U., Biratnagar for theresearch facilities. I am very grateful to the Dean, Institute of Science and Technology, T.U., Kathmandu, Nepal, for granting the study leave. I wish to express my thanks to the Campus Chief and the Head of Botany Department, Mahendra Morang Adarsha Multiple Campus, T.U., Biratnagar for the recommendation of study leave.

Financial support from the University Grants Commission, Nepal to pursue Ph.D. research is highly acknowledged. I am indebted to the authorities of Banaras Hindu University, Varanasi, India for some laboratory works and library consultation. I am also thankful to the Head, and especially to SudarshanHumagain of the Department of Meteorology, eastern regional Office, Dharan for providing the climatic data of the study area.

Special thanks are due to Prof. Pramod Kumar Jha, the Head, Central Department of Botany, T.U., Kirtipur for encouragement and fruitful suggestions. I am thankful to Prof. Krishna Kumar Shrestha, Prof. SasinathJha, Prof. Min Raj Dhakal, Dr. Ambika Prasad Gautam (brother), Dr. UmeshKoirala and Dr. IndramaniBhagat for warmthand continuous encouragement.

I would like to express my deep sense of gratitude to Prof. K.P. Singh, former Head, Department of Botany, Banaras Hindu University, Varanasi, India for valuable comments, suggestions and encouragement. I am also indebted to Prof. A.S. Raghubanshi and Prof. NanditaGhosalofBanaras Hindu University, India, and Dr. S.C. GarkotiofJawaharlal Nehru University, India for their suggestions.

I always appreciate the significant help of my colleague Mr. Krishna Prasad Bhattarai for his support and help during field and laboratory works. Further, I extend my grateful acknowledgements toDr. ChitraBahadurBaniyaand Mr. SaligramAdhikareefor statistical analyses.

Thanks are due to Prof. Shiva Kumar Rai, Dr. BhabindraNiraula, Dr. Dil Kumar Limbu, Mr. Kul Prasad Limbu, Mr. Ram Kumar Raiand all the faculty members of Department of Botany, Mahendra Morang A.M. Campus, T.U., Biratnagar, Nepal for constructive comments, valuable suggestions and criticisms.I also acknowledge the help from staff members of Department of Botany, Post Graduate Campus, Biratnagar, especially from Dharma Adhikari during laboratory analysis.

I am extremely grateful to my wife Durga, daughter Reeya and son Riyaj for their sincere sacrifice, support and encouragement in completing the study. I acknowledge the help of my brothers, sisters and other family members for their moral support. Finally, I dedicate this work to my parents (late Laxmi Prasad Gautamand late Ananta Devi Gautam) for their eternal love and inspiration.

Tilak Prasad Gautam April 16, 2015

ABSTRACT

Tropical forests provide a variety of goods and services to human beings; maintain diverse flora and fauna, and influence climate and carbon cycle. Accelerating rate of deforestation and forest degradationhas reduced the carbon sequestration capacity of tropical forests. In these contexts, understanding and quantifying the tropical forest's functioning is urgently essential. Present study aims to quantify the soil physicochemical properties and microbial biomass, species composition and forest structure, biomass and net production, and nutrient storage and flux in moist tropical forest ofSunsari district, eastern Nepal.

Forest was divided into two parts: central part treated as undisturbed forest (UF) and peripheral as disturbed forest (DF). The soil was sandy loam. The soil organic carbon (SOC), total N, total P and K were higher in UF than DF. The C stock (Mg ha⁻¹ soil) in 0–30 cm soil depth was 88.1in UF and 59.3 in DF. Annual mean soil microbial biomass C, N and P were 558.4, 50.7 and 12.3 μ g g⁻¹, respectively in UFwhich decreased to 438.5, 39.9 and 9.7 μ g g⁻¹, respectively in DF. Microbial biomass showed distinct seasonality with maximum value in summer season.

Species number of herbs and shrubs increased while that of trees decreased with forest disturbance. Among 60 species of trees belonging to 51 genera and 32 families, 11 were canopy trees, 22 middle storey trees and rest 27understorey trees. Shannon-Wiener index and species richness of herbs and shrubs increased, while that of trees decreased from 3.08 to 2.80 and 9.11 to 6.78, respectively with disturbance. Conversely, Simpson's index for herbs and shrubs decreased (from 0.08–0.05 and 0.18–0.13, respectively) while that for trees increased (from 0.08–0.11) with forest disturbance.

Stand density of herbs and shrubs increased; while that of trees decreased (466–234 individual ha⁻¹) with forest disturbance. Similarly, basal area of trees (m² ha⁻¹) also decreased from 111.6 to 52.3. The large diameter trees (> 460 cm gbh) were present only in UF. Based on species IVI, *Shorearobusta*(Sal) occupied the top rank with*value* of 60.4 in UF and 60.9 in DF. In terms of family importance value, Dipterocarpaceae occupied the top rank (53.6 in UF and 53.9 in DF).

The total stand biomass decreased due to forest disturbance from 960.4 to 449.1 Mg ha⁻¹. The total biomass (Mg ha⁻¹) of the tree layer was 948.0 in UF, which decreased to 438.4 in DF. The biomass of shrubs increased from 4.4 Mg ha⁻¹ at UF to 6.1 Mg ha⁻¹ at DF. The aboveground herbaceous biomass contributed 0.1% in UF and 0.3% in DF. The annual fine root biomass was 6.6 Mg ha⁻¹ in UF and 3.4 Mg ha⁻¹ in DF. Total annual litterfallin UF was 11.8 Mg ha⁻¹yr⁻¹ which decreased by 54.2% in DF. Fresh litter mass accounted 64% of the total litter mass in both forest stands.

The total net primary production (NPP) of vegetation was 26.58 Mg ha⁻¹yr⁻¹ (equivalent to 12.26 Mg C ha⁻¹yr⁻¹) in UF and 14.91 Mg ha⁻¹yr⁻¹ (i.e. 6.88 Mg C ha⁻¹yr⁻¹) in DF. Total C input into soil through litter plus root turnover was 6.78 and 3.35 Mg ha⁻¹yr⁻¹ in UF and DF, respectively; indicating substantial retention of C in the vegetation over the annual cycle (45% in UF and 51% in DF). This budget shows that the present forest is C accumulating system.

The nutrient concentrations and their storage in vegetation were in the order: N > K > P in both forest stands. The concentrations of all nutrients were highest in leaves. The quantities (kg ha⁻¹) of nutrients in total vegetation in UF were 5738.2 N, 537.7 P and 5232.1 K while in DF they were 2704.4 N, 252.9 P and 2470.8 K. The gross uptakes of nutrients (kg ha⁻¹yr⁻¹) in vegetation ranged from 156.8–282.4 N, 16.5–30.1 P, and 124.2–217.7 K while net uptake (kg ha⁻¹yr⁻¹) ranged from 116.8–207.7 N, 10.7–19.4 P and 100.5–164.2 K, with minimum in DF and maximum in UF.

Litterfall returned about 1.5 times greater amount of nutrients than fine roots in both forest stands. The nutrient-use efficiencies were in the order: trees > shrubs > herbs. The turnover time (year) for nutrients in standing vegetation of both forest stands was maximum for K (19.9–24.0) followed by N (17.2–20.3) and minimum for P (15.3–17.9). Standing state of nutrients in litter mass followed the order: N > K > P in both forest stands but it decreased with forest disturbance. Total returns of nutrients with respect to net uptake were 60–69% for N, 54–60% for P and 51–62% for K, and rest amount were retained in vegetation.

In conclusion, various types of disturbance activities altered the structure and functioning particularly, carbon sink capacity and nutrient cyclingof Sal dominated forest.

TABLE OF CONTENTS

	Pages
Declaration	i
Recommendation	ii
Letter of approval	iii
Acknowledgements	iv–v
Abstract	vi–vii
List of acronyms and abbreviations	viii
List of tables	ix–xiii
List of figures	xiv–xv
Table of contents	xvi–xx
1. INTRODUCTION	1–21
1.1 Introduction	1
1.2 Rationale	20
1.3 Management implications	20
1.4 Objectives	20
2. STUDY AREA	22–27
2.1 Location	22
2.2 Status of the forest in the study area	22
2.3 Climate	24
2.4 Soil	26
2.5 Vegetation	26
3. SOIL CHARACTERS AND MICROBIAL BIOMASS	28–49
3.1 INTRODUCTION	28
3.2 LITERATURE REVIEW	29
3.2.1 Soil physicochemical characteristics	29
3.2.1.1 Works done outside Nepal	29

3.2.1.2 Works done in Nepal	32
3.2.2 Soil microbial biomass	33
3.3 MATERIALS AND METHODS	36
3.3.1 Soil sampling and analysis	36
3.3.2 Determination of soil microbial biomass	37
3.4 RESULTS	38
3.4.1 Soil physicochemical characteristics	38
3.4.2 Spatial and seasonal variation in microbial biomass	41
3.4.3 Relationship between the microbial biomass and soilproperties	43
3.5 DISCUSSION	45
3.5.1 Soil physicochemical characteristics	45
3.5.2 Spatial variation in microbial biomass	47
3.5.3 Seasonal variation in microbial biomass	48
3.5.4 Relationship between the microbial biomass and soilproperties	49
4. COMPOSITION AND STRUCTURE OF FOREST	50-92
4.1 INTRODUCTION	50
4.2 LITERATURE REVIEW	51
4.2.1 Works done outside Nepal	51
4.2.2 Works done in Nepal	55
4.3 MATERIALS AND METHODS	58
4.3.1 Sampling and vegetation analysis	58
4.3.2 Ordination and cluster analysis	59
4.4 RESULTS	60
4.4.1 Herb layer	60
4.4.2 Shrub layer	62
4.4.3 Tree layer	64
4.4.3.1 Species content	64
4.4.3.2 Species diversity	66
4.4.3.3Family diversity	67
4.4.3.4Stand density	70
4.4.3.5Basal area	74
4.4.3.6Species IVI	74
4.4.3.7Girth class	75
4.4.3.8 Stratification	77
4.4.3.9 Phenology	77

4.4.3.10Pattern of dispersion	78
4.4.3.11 Ordination and cluster analysis	78
4.4.3.11.1 Ordination	78
4.4.3.11.2 Species and plots clustering	83
4.5 DISCUSSION	86
4.5.1 Herb and shrub layer	86
4.5.2 Tree layer	87
4.5.2.1 Species content	87
4.5.2.2 Species diversity	87
4.5.2.3 Stand density	90
4.5.2.4 Basal area	90
4.5.2.5 Species IVI	91
4.5.2.6 Phenology of some dominant tree species	91
4.5.2.7 Pattern of dispersion	91
5. BIOMASS AND NET PRIMARY PRODUCTION	93–143
5.1 INTRODUCTION	93
5.2 LITERATURE REVIEW	95
5.2.1 Biomass production and carbon dynamics	95
5.2.2 Litterfall	101
5.2.3 Fine root	102
5.3 MATERIALS AND METHODS	106
5.3.1 Plant biomass estimation	106
5.3.2 Litter mass and litterfall	108
5.3.3 Net production	109
5.3.4 Carbon estimation in vegetation and litter	110
5.3.5 Statistical analysis	111
5.4 RESULTS	111
5.4.1 Plant biomassin the context of disturbance	111
5.4.2 Interrelations between biomass and soil properties	114
5.4.3 Litterfall, litter mass and turnover	114
5.4.4 Net production in the context of disturbance	116
5.4.5 Carbon budget and fluxin undisturbed and disturbed forest stands	121
5.4.6 Fine root dynamicsin undisturbed and disturbed forest stands	123
5.4.6.1 Spatial distribution of FRB	123
5.4.6.2 Vertical distribution of FRB	124

5.4.6.3 Seasonality in FRB	125
5.4.6.4 Fine root production and turnover	125
5.4.6.5 Environmental variables and their correlation with fine root	126
5.4.6.6 Carbon stock in fine roots	130
5.5 DISCUSSION	130
5.5.1 Biomassin the context of disturbance	130
5.5.2 Litterfall and litter mass	134
5.5.3 Net primary production in the context of disturbance	135
5.5.4 Carbon budget and fluxin undisturbed and disturbed forest stands	139
5.5.5 Fine root dynamicsin undisturbed and disturbed forest stands	140
5.5.5.1 Spatial variation in FRB	140
5.5.5.2 Vertical distribution of FRB	140
5.5.5.3 Fine root biomass and soil variables	141
5.5.5.4 Seasonality in FRB	141
5.5.5 Variation in fine root production	142
5.5.5.6 Fine root turnover	142
5.5.7 Carbon stock in fine roots	143
6. STORAGE AND FLUX OF NUTRIENTS	144–162
6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION	144–162 144
6. STORAGE AND FLUX OF NUTRIENTS6.1 INTRODUCTION6.2 LITERATURE REVIEW	144–162 144 145
 6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION 6.2 LITERATURE REVIEW 6.3 MATERIALS AND METHODS 	144–162 144 145 148
 6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION 6.2 LITERATURE REVIEW 6.3 MATERIALS AND METHODS 6.3.1 Plant and litter chemical analysis 	144–162 144 145 148 148
 6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION 6.2 LITERATURE REVIEW 6.3 MATERIALS AND METHODS 6.3.1 Plant and litter chemical analysis 6.3.2 Computation procedure 	144–162 144 145 148 148 148
 6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION 6.2 LITERATURE REVIEW 6.3 MATERIALS AND METHODS 6.3.1 Plant and litter chemical analysis 6.3.2 Computation procedure 6.4 RESULTS 	144–162 144 145 148 148 148 149
 6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION 6.2 LITERATURE REVIEW 6.3 MATERIALS AND METHODS 6.3.1 Plant and litter chemical analysis 6.3.2 Computation procedure 6.4 RESULTS 6.4.1 Nutrient concentration 	144–162 144 145 148 148 148 148 149 149
 6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION 6.2 LITERATURE REVIEW 6.3 MATERIALS AND METHODS 6.3.1 Plant and litter chemical analysis 6.3.2 Computation procedure 6.4 RESULTS 6.4.1 Nutrient concentration 6.4.2 Nutrient stocks in vegetation 	144–162 144 145 148 148 148 149 149 150
 6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION 6.2 LITERATURE REVIEW 6.3 MATERIALS AND METHODS 6.3.1 Plant and litter chemical analysis 6.3.2 Computation procedure 6.4 RESULTS 6.4.1 Nutrient concentration 6.4.2 Nutrient stocks in vegetation 6.4.3 Nutrient uptake and re-translocation 	144–162 144 145 148 148 148 149 149 150 152
 6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION 6.2 LITERATURE REVIEW 6.3 MATERIALS AND METHODS 6.3.1 Plant and litter chemical analysis 6.3.2 Computation procedure 6.4 RESULTS 6.4.1 Nutrient concentration 6.4.2 Nutrient stocks in vegetation 6.4.3 Nutrient uptake and re-translocation 6.4.4 Nutrient return through litterfall 	144–162 144 145 148 148 148 149 149 150 152 154
 6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION 6.2 LITERATURE REVIEW 6.3 MATERIALS AND METHODS 6.3.1 Plant and litter chemical analysis 6.3.2 Computation procedure 6.4 RESULTS 6.4.1 Nutrient concentration 6.4.2 Nutrient stocks in vegetation 6.4.3 Nutrient uptake and re-translocation 6.4.4 Nutrient return through litterfall 6.4.5 Nutrient-use efficiency 	144–162 144 145 148 148 148 148 149 149 150 152 154 155
 6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION 6.2 LITERATURE REVIEW 6.3 MATERIALS AND METHODS 6.3.1 Plant and litter chemical analysis 6.3.2 Computation procedure 6.4 RESULTS 6.4.1 Nutrient concentration 6.4.2 Nutrient stocks in vegetation 6.4.3 Nutrient uptake and re-translocation 6.4.4 Nutrient return through litterfall 6.4.5 Nutrient-use efficiency 6.4.6 Turnover of nutrients in standing vegetation 	144–162 144 145 148 148 148 149 149 150 152 154 155
 6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION 6.2 LITERATURE REVIEW 6.3 MATERIALS AND METHODS 6.3.1 Plant and litter chemical analysis 6.3.2 Computation procedure 6.4 RESULTS 6.4.1 Nutrient concentration 6.4.2 Nutrient stocks in vegetation 6.4.3 Nutrient uptake and re-translocation 6.4.4 Nutrient return through litterfall 6.4.5 Nutrient-use efficiency 6.4.6 Turnover of nutrients in standing vegetation 6.4.7 Nutrients in litter mass and turnover of nutrients on forest floor 	144–162 144 145 148 148 148 149 149 150 152 155 155 155
 6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION 6.2 LITERATURE REVIEW 6.3 MATERIALS AND METHODS 6.3.1 Plant and litter chemical analysis 6.3.2 Computation procedure 6.4 RESULTS 6.4.1 Nutrient concentration 6.4.2 Nutrient stocks in vegetation 6.4.3 Nutrient uptake and re-translocation 6.4.4 Nutrient return through litterfall 6.4.5 Nutrient-use efficiency 6.4.6 Turnover of nutrients in standing vegetation 6.4.7 Nutrients in litter mass and turnover of nutrients on forest floor 6.4.8 Nutrient budget and flux 	144–162 144 145 148 148 148 149 149 149 150 152 154 155 155 155 156 157
 6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION 6.2 LITERATURE REVIEW 6.3 MATERIALS AND METHODS 6.3.1 Plant and litter chemical analysis 6.3.2 Computation procedure 6.4 RESULTS 6.4.1 Nutrient concentration 6.4.2 Nutrient stocks in vegetation 6.4.3 Nutrient uptake and re-translocation 6.4.4 Nutrient return through litterfall 6.4.5 Nutrient-use efficiency 6.4.6 Turnover of nutrients in standing vegetation 6.4.7 Nutrients in litter mass and turnover of nutrients on forest floor 6.4.8 Nutrient budget and flux 6.5 DISCUSSION 	144–162 144 145 148 148 148 149 149 150 152 154 155 155 155 156 157
 6. STORAGE AND FLUX OF NUTRIENTS 6.1 INTRODUCTION 6.2 LITERATURE REVIEW 6.3 MATERIALS AND METHODS 6.3.1 Plant and litter chemical analysis 6.3.2 Computation procedure 6.4 RESULTS 6.4.1 Nutrient concentration 6.4.2 Nutrient stocks in vegetation 6.4.3 Nutrient uptake and re-translocation 6.4.4 Nutrient return through litterfall 6.4.5 Nutrient-use efficiency 6.4.6 Turnover of nutrients in standing vegetation 6.4.7 Nutrients in litter mass and turnover of nutrients on forest floor 6.4.8 Nutrient budget and flux 6.5 DISCUSSION 6.5.1 Nutrients concentrations, stocks and turnover 	144–162 144 145 148 148 148 149 149 150 152 154 155 155 155 155 156 157 158

7. GENERAL DISCUSSION	163-169
7.1 Effect of disturbance on plant properties	163
7.2 Effect of disturbance on soil properties	165
7.3 Nutrient dynamics in the context of disturbance	166
8. CONCLUSIONS AND RECOMMENDATIONS	170–172
8.1 CONCLUSIONS	170
8.2 RECOMMENDATIONS	
9. SUMMARY	173–180
10. REFERENCES	181–214
11. APPENDICES	215-217

LIST OF TABLES

		Pages
Table 1.	Soil variables in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	39
Table 2.	F values of the effects of forest stand (S) and soil depth (SD) on sand, silt, clay, soil moisture, water holding capacity (WHC), bulk density (BD), pH, soil organic carbon (SOC), total nitrogen (TotN), total phosphorus (TotP) and exchangeable potassium (Pot) as obtained by analysis of variance.	40
Table 3.	F values of the effects of forest stand and season on microbial biomass carbon (MB-C), nitrogen (MB-N) and phosphorus (MB-P) as obtained by analysis of variance.	41
Table 4.	Soil microbial biomass carbon (C), nitrogen (N) and phosphorus (P) with their ratios in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	42
Table 5.	Soil microbial biomass C, N and P as percentages of soil organic C, total N and total P respectively in undisturbed and disturbed stands of moist tropical forest in Sunsari district, eastern Nepal.	42
Table 6.	Correlation between soil microbial biomass and other soil chemical properties in undisturbed forest stand of moist tropical forest in Sunsari district, eastern Nepal.	43
Table 7.	Correlation between soil microbial biomass and other soil chemical properties in disturbed forest stand of moist tropical forest in Sunsari district, eastern Nepal.	43
Table 8.	Density (D; individual ha ⁻¹), biomass (B; Mg ha ⁻¹) and Importance Value Index (IVI) of herb species in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	61
Table 9.	Density (D; individual ha ⁻¹), basal area (BA; m ² ha ⁻¹) and Importance Value Index (IVI) of shrub species in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	63
Table 10.	Enumeration of tree species found in undisturbed stand (UF) and disturbed stand (DF) in moist tropical forest of Sunsari district, eastern Nepal.	64
Table 11.	Ratio of species, genus and family in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	66

Table 12.	Diversity parameters of trees, shrubs and herbs components in undisturbed and disturbed stands of moist tropical forest in Sunsari district, eastern Nepal.	67
Table 13.	Sorenson's similarityindices in different growth forms of vegetation between undisturbed and disturbed forest stands in moist tropical forest of Sunsari district, eastern Nepal.	67
Table 14.	Family composition and Importance value (FIV) in undisturbed forest stand of moist tropical forest in Sunsari district, eastern Nepal.	69
Table 15.	Family composition and Importance value (FIV) in disturbed forest stand of moist tropical forest in Sunsari district, eastern Nepal.	70
Table 16.	Density (D; individual ha^{-1}), basal area (BA; $m^2 ha^{-1}$) and Importance Value Index (IVI) of tree species in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	71
Table 17.	Distribution of tree species richness according to their height in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	77
Table 18.	Phenological behavior of some dominant tree species in undisturbed forest stand of moist tropical forest in Sunsari district of eastern Nepal.	78
Table 19.	DCA result for samples by species datasets from undisturbed and disturbed forest stands in moist tropical forest of Sunsari district, eastern Nepal.	79
Table 20.	DCA with over fitting of environmental variables for undisturbed and disturbed forest stands in moist tropical forest of Sunsari district, eastern Nepal.	80
Table 21.	CCA summary for the datasets from undisturbed and disturbed forest stands in moist tropical forest of Sunsari district, eastern Nepal.	80
Table 22.	CCA environmental variable by axes for undisturbed and disturbed forest stands in moist tropical forest of Sunsari district, eastern Nepal. Bold entries represented the significant axes.	81
Table 23.	Shannon-Wiener index (H') for the tree species in tropical and subtropical forests of Asia.	89
Table 24.	Stand density of tree species in tropical forests of Nepal and India.	90
Table 25.	Basal area of trees in some tropical forests of Nepal.	90

Table 26.	Allometric relationships between the biomass of tree and shrub components (Y, kg tree ^{-1}) and circumference of tree (X, cm at 1.37 m height) and shrub (X, cm at 10 cm height).	107
Table 27.	Oven dried stand biomass (Mg $ha^{-1}\pm$ SE) and carbon stock (Mg C ha^{-1}) in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	112
Table 28.	Biomass (Mg $ha^{-1}\pm$ SE) of trees and shrubs and their distribution (%) in different components in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	113
Table 29.	Carbon stock ((Mg C ha ⁻¹)) estimates for undisturbed and disturbed forest stands of moist tropical forest inSunsari district, eastern Nepal.	113
Table 30.	Annual litterfall (Mg ha ^{-1} yr ^{-1}) with their carbon stocks (Mg C ha ^{-1} yr ^{-1}) in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	114
Table 31.	Forest floor litter mass (Mg $ha^{-1} \pm SE$, average of three seasons) in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	116
Table 32.	Turnover (rate and time) of litter in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	116
Table 33.	Net primary production (NPP; Mg ha^{-1} yr^{-1}) and carbon allocation (Mg C ha^{-1} yr^{-1}) in different components of vegetation in undisturbed and disturbed forest stands of moist tropical forest of Sunsari district, eastern Nepal.	117
Table 34.	Net primary production (Mg $ha^{-1} yr^{-1}$) of trees and shrubs and their distribution (%) in different components of vegetation in undisturbed and disturbed forest stands of moist tropical forest of Sunsari district, eastern Nepal.	118
Table 35.	Net primary production (NPP; Mg ha ⁻¹ yr ⁻¹) and carbon allocation (Mg C ha ⁻¹ yr ⁻¹) of trees and shrubs (March 2011 to February 2012) in undisturbed and disturbed forest stands in moist tropical forest of Sunsari district, eastern Nepal.	119
Table 36.	Pearson's correlations between soil variables (0–15 cm depth), and biomass (BM) and net production (NP) of trees in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	120
Table 37.	Pearson's correlations between stand density, basal area, biomass and net production in undisturbed and disturbed forest	121

stands of moist tropical forest in Sunsari district, eastern Nepal.

Table 38.	Fine root biomass (Mg ha ⁻¹) in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	124
Table 39.	F values of the effects of forest stand, season and soil depth on fine root biomass (FRB), and the effects of stand and soil depth on fine root production (FRP) as obtained by analysis of variance.	124
Table 40.	Seasonal variation in fine root biomass (Mg ha ⁻¹) in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	125
Table 41.	Fine root production (Mg $ha^{-1} yr^{-1}$) in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	126
Table 42.	Turnover rate and turnover time of fine root in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	126
Table 43.	Pearson's correlation coefficient between the soil variables, and fine root biomass and production in 0–15 cm soil depth of undisturbed forest stand of moist tropical forest in Sunsari district, eastern Nepal.	128
Table 44.	Pearson's correlation coefficient between the soil variables, and fine root biomass and production in $0-15$ cm soil depth of disturbed forest stand of moist tropical forest in Sunsari district, eastern Nepal.	128
Table 45.	Carbon stocks (kg ha ⁻¹) in fine root at undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	130
Table 46.	Dry biomass (Mg ha ⁻¹) of different tropical forests of World.	131
Table 47.	Biome-average tropical forest biomass carbon stock (Mg C ha ⁻¹) estimates.	132
Table 48.	Carbon stocks (Pg) of different forests of World.	132
Table 49.	Litterfall (Mg ha ^{-1} y ^{-1}) in different forests of World.	134
Table 50.	Net primary production (NPP) of different forests of World.	136
Table 51.	Nutrient concentrations ($\% \pm SE$) in tree, shrub, herb and fine root in undisturbed and disturbed forest stands of moist tropical forest of Sunsari district, eastern Nepal.	150

Table 52.	Nutrient stocks (kg ha ^{-1}) in tree, shrub, herb and fine root in undisturbed and disturbed forest stands of moist tropical forest of Sunsari district, eastern Nepal (mean \pm SE).	151
Table 53.	Gross uptake of nutrients (kg $ha^{-1} y^{-1}$) in tree, shrub, herb and fine root in undisturbed and disturbed forest stands of moist tropical forest of Sunsari district, eastern Nepal.	152
Table 54.	Percentage nutrient re-translocation during leaf senescence in moist tropical forest of Sunsari district, eastern Nepal.	153
Table 55.	Net uptake of nutrients (kg $ha^{-1} y^{-1}$) after adjustment for re- translocation in tree, shrub, herb and fine root in undisturbed and disturbed forest stands of moist tropical forest of Sunsari district, eastern Nepal.	153
Table 56.	Concentration of nutrients ($\% \pm SE$) in litter in undisturbed and disturbed forest stands of moist tropical forest of Sunsari district, eastern Nepal.	154
Table 57.	Amount of nutrients (kg $ha^{-1}yr^{-1} \pm SE$) in litterfall in undisturbed and disturbed forest stands of moist tropical forest of Sunsari district, eastern Nepal.	154
Table 58.	Nutrient-use efficiency of different nutrients in different growth forms in undisturbed and disturbed forest stands of moist tropical forest inSunsari district, eastern Nepal.	155
Table 59.	Turnover time (year) for different nutrients in standing vegetation in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	155
Table 60.	Standing state of nutrients (kg $ha^{-1} \pm SE$) in litter layer in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	156
Table 61.	Turnover rate (k) and turnover time (t) of litter nutrients on forest floor in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	156
Table 62.	Nitrogen, Phosphorus and Potassium budget for vegetation in undisturbed forest stand (UF) and disturbed stand (DF) of moist tropical forest in Sunsari district, eastern Nepal.	157
Table 63.	Comparison of nutrient storage (kg ha ⁻¹) in vegetation of some tropical forests of the world.	160
Table 64.	Comparative account of ecosystem properties in undisturbed forest stand (UF) and disturbed forest stand (DF) of moist tropical forest in Sunsari district, eastern Nepal.	164

LIST OF FIGURES

		Pages
Figure 1.	A framework for understanding the carbon cycle of forests.	15
Figure 2.	Map of the study area (moist tropical forest of Sunsari district in eastern Nepal.	23
Figure 3.	Google map of the study area showing river, tributaries, and settlements above and below the forest.	24
Figure 4.	Ombrothermic representation of the climate in the study area.	25
Figure 5.	Relative humidity in the study area.	25
Figure 6.	Relationships between soil organic carbon (SOC) and total nitrogen (TN) in 0–15 and 15–30 cm soil depths in undisturbed forest (UF) and disturbed forest (DF) of moist tropical forest in Sunsari district, eastern Nepal.	41
Figure 7.	Relationships between soil properties (SOC: soil organic carbon; TN: total nitrogen; TP: total phosphorus) and soil microbial biomass (MB-C: carbon; MB-N: nitrogen; MB-P: phosphorus) in 0–15 cm soil depth of undisturbed forest stand of moist tropical forest in Sunsari district, eastern Nepal.	44
Figure 8.	Relationships between soil properties (SOC: soil organic carbon; TN: total nitrogen; TP: total phosphorus) and soil microbial biomass (MB-C: carbon; MB-N: nitrogen; MB-P: phosphorus) in 0–15 cm soil depth of disturbed forest stand of moist tropical forest in Sunsari district, eastern Nepal.	45
Figure 9.	Spatial distribution of species richness in undisturbed and disturbed forest stands of moist tropical forest in Sunsari district, eastern Nepal.	66
Figure 10.	Species individual relationships in undisturbed forest stand of moist tropical forest in Sunsari district, eastern Nepal.	73
Figure 11.	Species individual relationships in disturbed forest stand of moist tropical forest in Sunsari district, eastern Nepal.	73
Figure 12.	Importance Value Index for trees and their sequence inundisturbed forest stand of moist tropical forest in Sunsari district, eastern Nepal.	74
Figure 13.	Importance Value Index for trees and their sequence indisturbed forest stand of moist tropical forest in Sunsari district, eastern Nepal.	75
Figure 14.	Distribution of species content, density and basal area of tree in different girth classes in the undisturbed and disturbed forest	76

stands of moist tropical forest in Sunsari district, eastern Nepal.Figure 15.CCA biplot for undisturbed forest dataset.

82

- Figure 16. CCA biplot for disturbed forest dataset. 82 Figure 17. Hierarchical clustering of species from undisturbed forest stand 84 of moist tropical forest in Sunsari district, eastern Nepal. . Figure 18. Hierarchical clustering of species from disturbed forest stand of 84 moist tropical forest in Sunsari district, eastern Nepal. Figure 19. Hierarchical clustering for plots from undisturbed forest stand of 85 moist tropical forest in Sunsari district, eastern Nepal... Figure 20. Hierarchical clustering for plots from undisturbed forest stand of 85 moist tropical forest in Sunsari district, eastern Nepal. Figure 21. Monthly litterfall in undisturbed forest stand of moist tropical 115 forest in Sunsari district, eastern Nepal. Figure 22. Monthly litterfall in disturbed forest stand of moist tropical 115 forest in Sunsari district, eastern Nepal. Figure 23. Seasonal variation in litterfall in undisturbed and disturbed forest 115 stands of moist tropical forest in Sunsari district, eastern Nepal. Figure 24. Regression between basal area and biomass of trees in 121 undisturbed stand of moist tropical forest in Sunsari district, eastern Nepal. Figure 25. Compartment model showing annual carbon budget for the 122 undisturbed forest stand of moist tropical forest in Sunsari district, eastern Nepal. Figure 26. Compartment model showing annual carbon budget for the 122 disturbed forest stand of the moist tropical forest inSunsari district, eastern Nepal. Box plots of fine root biomass (Mg ha⁻¹) of three seasons in Figure 27. 129 moist tropical forest of Sunsari district, eastern Nepal. Figure 28. Regression analyses of fine root production (FRP) with soil 129 organic carbon, total nitrogen, microbial biomass carbon and nitrogen in undisturbed forest stand of moist tropical forest in Sunsari district, eastern Nepal. Figure 29. Model showing the distribution and cycling of nutrients, N, P and 167 K in undisturbed forest stand of moist tropical forest inSunsari
- Figure 30. Model showing the distribution and cycling of nutrients, N, P and 168 K in disturbed forest stand of moist tropical forest inSunsari district eastern Nepal.

district eastern Nepal.

LIST OF ACRONYMS AND ABBREVIATIONS

BD	Bulk density
DF	Disturbed Forest
FRP	Fine Root Production
FRT	Fine Root Turnover
GBH	Girth at Breast Height
GPP	Gross Primary Production
ha	Hectare
IVI K	Importance Value Index Potassium
MB-C (MBC)	Microbial Biomass Carbon
MB-N (MBN)	Microbial Biomass Nitrogen
MB-P (MBP)	Microbial Biomass Phosphorus
Mg	Mega Gram (1Mg = 1000 kg)
msl	Mean Sea Level
NEP	Net Ecosystem Production
NPP	Net Primary Production
Pg	Petagram (1 Pg = 1×10^{12} kg)
рН	Potential of Hydrogen Atom
SOC	Soil Organic Carbon
Soil mois	Soil Moisture
SOM	Soil Organic Matter
TotN	Total Nitrogen
TotP	Total Phosphorus
UF	Undisturbed Stand
WHC	Water Holding Capacity