IMPROVEMENT ON TRADITIONAL MILLET FERMENTATION PROCESS AND ITS BREWING QUALITY ASSESSMENT

Dissertation Submitted to the Central Department of Food Technology, Institute of Science and Technology, Tribhuvan University, Nepal, for the Award of Doctor of Philosophy (Ph.D.) Degree in Food Technology

> By **DHAN BAHADUR KARKI** April 2013 AD (Baisakh 2070 BS)

Recommendation

This is to certify that **Mr. Dhan Bahadur Karki** has completed dissertation entitled **Improvement on Traditional Millet Fermentation Process and Its Brewing Quality Assessment** for the award of the degree of Doctor of Philosophy (Ph.D.) in Food Technology under my supervision. To my knowledge, this research work has not been submitted for any other degree elsewhere.

Ganga P. Kharel, Ph.D. Professor (Food Technology) Supervisor

Date: 20 May 2013

Declaration

I hereby declare that the work presented in this dissertation has been done by myself and has not been submitted for the award of any degree elsewhere. All the sources of information used in this work have been acknowledged and fully cited in the bibliography section.

Dhan Bahadur Karki

Acknowledgements

I express my sincere gratitude to my respected guide Dr. Ganga P. Kharel, Professor of Food Technology, Central Campus of Technology, Dharan, Nepal, for his excellent supervision, encouragement, and valuable suggestions during the entire course of this study. I would like to offer my sincere gratitude to the Head of the Central Department of Food Technology and Assistant Dean of Central Campus of Technology, Dharan.

I would like to thank to all the sensory panelists for their cooperation and valuable information about the products, which served the foundation of this research work. I would also like to thank to the Dean and staffs of the Institute of Science and Technology, T.U., Nepal, for providing me the opportunity and partial financial support for this study.

Moreover, I would like to express my gratitude to SEAM-N, Dharan, for providing partial financial assistance. I would like to thank Mr. Ghana Shyam Jha, laboratory incharge and staffs of SEAM-N MMA Environmental Laboratory, Biratnagar, for their valuable help in analyzing different samples. Similarly, I am very much thankful to the chief and staffs of Eastern Regional Laboratory of DFTQC, Biratnagar, for their laboratory support.

I would like to thank to all my seniors, colleagues, and juniors who continuously encouraged and supported me especially, Mr. Rajendra Khanal and Atul Upadhyay for providing valuable journals and other relevant information.

I would like to thank to Gorkha Brewery, Nawalparasi, for providing barley malt and to Sungold Brewery Pvt, Ltd, Nawalparasi, for providing brewer's yeast.

Last but not the least, I would like to express my deepest gratitude to my wife, Sita, son Samit and daughter Shreya for their continual support and encouragement, without which this study would not have been completed.

Dhan Bahadur Karki

Abstract

Defined alcoholic fermentation starter for cereal fermentation was prepared using *R*. *oryzae* (ITCC N0. 4408) mold and *S. cerevisiae* yeast in wheat bran-rice flour mixture (25:75) and used for cereal fermentations. Effects of fermentation containers and raw materials on the quality of fermented cereals were studied. Finger millet (var. *Kabre*) was dehusked, cleaned, washed, soaked for 2 h, cooked, and cooled to room temperature. Fermentation starter was added at the rate of 1% by weight of millet; biomass developed for 2 days at 29 \pm 1 °C, filled into different containers and fermented at 26 \pm 1 °C for 15 days. Chemical and sensory quality of fermented millet, rice, maize, and wheat were also compared. Rice and wheat were incorporated to millet (singly and in combination) and their effects on the quality of fermented millet were studied.

Quality comparison between solid - and semi solid-state fermentations (biomass developed millet : water :: 1:0.5 and 1:1 m/v respectively) was carried out. Biochemical changes during millet fermentation, storage stability of fermented millet packed in polyvinylchloride (PVC) container at room temperature (25 ± 2 °C), and clarification of millet *jand* using fining agents were studied. Chemical and sensory quality of fermented millet using defined starter were compared with those found in the market.

Alcohol ($15 \pm 0.8\%$ v/m) and total ester (0.85 ± 0.06 g ethyl acetate /L alc) contents between plastic and wooden containers were not different (p>0.05), while earthen container resulted significantly lower alcohol (11.21% v/m) and higher total esters (1.831 g ethyl acetate /L alc) in the fermented millet. Millet fermented in earthen container had total aldehydes content by more than three times (0.850 g acetaldehyde /L alc) than that of plastic container. Total esters, TSS, total and fixed acidities and pH were significantly higher in wheat *jand*, while no remarkable difference in alcohol content was found among millet, rice, maize, and wheat *jands*. Sensory quality of rice *jand* was liked very much, whereas that of maize was disliked slightly. Total ester decreased by wheat addition, total aldehydes increased by both rice and/or wheat addition, while methanol content remained unaffected by cereal combination. Addition of wheat significantly impaired (p<0.05) the taste and smell of millet *jand*.

Results of solid versus semi-solid fermentations revealed that total esters, total-, freeand volatile acidities increased remarkably, while alcohol remained unaffected by semisolid fermentation of finger millet compared to solid-state one. Sensory evaluation revealed that taste, color, and smell of fermented millet were significantly impaired by semi-solid state fermentation. Chemical analysis of fermented finger millet packed in PVC container and kept at 25 ± 2 °C for 90 days showed that total aldehydes, esters and reducing sugar increased (p< 0.05) by 24, 58 and 13% respectively, whereas alcohol content decreased by 9% over the storage period. Remarkable improvement in sensory quality of fermented millet occurred during room temperature storage.

Different fining agents (bentonite, gelatin, tannin and tannin-gelatin combination) were tried for the clarification of finger millet *jand*. Addition of bentonite (3 g/L) resulted the best clarification of all the fining agents without significantly affecting the chemical and sensory quality of the clarified *jand*, while tannin-gelatin combination showed an adverse effect on *jand* clarification. The results of biochemical changes during millet fermentation showed that moisture, TSS, acidity and sugars increased, while starch decreased during fermentation. About 69% of the total alcohol was formed on day 6 with a final alcohol content of 14.58% (v/m) on day 12. Finger millet fermented for 3 and 6 days had total aldehydes (as acetaldehyde), esters (as ethyl acetate), methanol and fusel oil contents of 1.857 and 1.089, 2.121 and 1.124, 1.753 and 1.5 and 8.028 and 4.366 g/L alc respectively. Total oxalate decreased by 51% on day 6, phytic acid decreased by 4.5-fold on day 12, while total free amino acids increased by 6-fold on day 6 during fermentation. Phosphorous, manganese, sodium, potassium, and zinc contents increased while iron did not changed by fermentation.

Chemical analysis of fermented millet using defined starter (lab sample) and traditional starter (market sample) revealed that lab sample had higher alcohol, but similar fusel oil contents compared to market sample, while market sample had alarmingly higher total aldehydes (0.305 - 0.390 g acetaldehydes/L alc) and methanol (3.723 - 5.840 g/L alc) contents than that of lab sample. Millet fermented with defined starter had superior sensory quality than that fermented by traditional starter.

Brewing potential of six Nepalese finger millet varieties was investigated. Millets were soaked for 12 h at room temperature (26 - 28 °C), germinated for different times at 28 ±1 °C, dried at 50 ± 2 °C for 24 h and enzymatic activities and chemical characteristics of the malts were analyzed. Effect of malt kilning temperature and kilning methods on malt quality; mashing methods, barley malt and mold bran additions on wort properties, and gibberellic acid treatment during seed germination on malt quality were studied. Changes during millet and barley beer fermentation, and quality comparison between

barley and millet beers were carried out. Mashing condition for millet malt was optimized using response surface methodology.

Alpha-amylase activity was maximum in 72 h germinated *Dalle* millet malt (22. 96 units/g dry malt), while beta-amylse activity was maximum in 48 h germinated *Kabre* millet malt (385 units/g dry malt). Forty-hour germinated *Juwain* millet exhibited the highest carboxypeptidase activity (242.5 units/g dry malt) and FAN contents (57.8 mg glycine/100 g dry matter). Amylose to amylopectin ratios in native and malted millet starch were 29:71 and 28:72 respectively. Malt extract analysis showed that color, free amino nitrogen (FAN as glycine), and total reducing sugar (as maltose) ranged between 2.77 - 5.78 EBC units, 2.6 - 9.0 mg% (m/v) and 4.50 - 6.93 mg% (m/v) respectively among the six millet malt extracts. Higher kilning temperature (80 ± 2 °C) significantly decreased (p<0.05) α - amylase and carboxypeptidase activities, while β -amylase activity and FAN did not change compared to 50 ± 2 °C kilned millet malt. Malt extract color increased, while FAN decreased with increasing kilning temperature.

Incorporation of barley malt up to 40% (m/m) to millet malt did not improve the wort properties appreciably, while FAN increased by 58% over the control. Addition of mold bran to millet malt up to 2.5% reduced wort viscosity by 8% and increased FAN and formol nitrogen by 81 and 44% respectively in the wort compared to control. The US mashing process produced the highest reducing sugar (9.27%, m/v as maltose), FAN (17.4 mg%, m/v as glycine) and dextrin (3.49%, m/v) in the wort compared to infusion mashing at 70 °C and decantation mashing at 80 °C.

Evolution of TSS during millet and barley malts mashing using US mashing process revealed that millet starch had gelatinization temperature around 70 °C. Optimization of mashing temperature and pH for millet malt using response surface methodology in the US mashing process showed that the optimum temperature and pH for protein rest, dextrinizing and conversion periods were 57.62 °C and 5.47, 68 °C and 4.5, and 70 °C and 5.28 respectively.

Gibberellic acid (GA₃) treatment (5-ppm solution in water) during millet germination at 28 ± 1 °C significantly increased amylase activities and FAN contents in all millet malts compared to control. *Kabre* millet variety exhibited a strong response to GA₃ in increasing enzyme activities and FAN, and produced better malt when germinated for 56 h of all millet varieties studied. Results of chemical changes during millet and barley beer fermentation showed that most of the chemical properties of the wort substantially changed over the first three days of fermentation in both millet and barley malt worts; however, the changes were relatively faster in barley beer. Fusel oil and methanol decreased, while total aldehydes and esters increased with fermentation time.

Chemical and sensory analyses of millet and barley beer showed that dextrin content was lower in barley beer (0.89% m/v) than in millet beer (average of 1.42% m/v). Total phenolics content (as gallic acid) was 59.2 mg% (m/v) in barley beer, while it was 48.6 mg% (m/v) (average of two beers) in millet beer. Formaldehyde content was higher in barley beer (0.33 ppm) than in millet beer (average of 0.235 ppm). Fusel oil content was lower in barley beer (228.85 g/100 L alc), while menthol (249.71 g/100 L alc) and total aldehydes (32.23 g/100 L alc) were higher in barley beer compared to millet beers. Vicinal diketones content was higher in barley beer (0.33 ppm). Sensory quality of millet beer was comparable to that of barley beer, except that body of millet beer was better compared to barley beer.

Keywords: Millet, defined starter, traditional fermentation, brewing potential, analyses

Table of contents

Title page	i
Recommendation	ii
Declaration	iii
Acknowledgement	iv
Abstract	v
List of Tables	xvi
List of Figures	xix
List of Appendices	xxiv
1. Introduction	1
1.1 Background information	1
1.2 Problem statement	4
1.3 Significance of the study	6
2. Objectives of the study	8
3. Literature review	9
3.1 Introduction to millet	9
3.2 Chemical composition of finger millet	10
3.2.1 Proximate composition	10
3.2.2 Phytic acid	11
3.2.3 Minerals	12
3.2.4 Tannin and oxalate	12
3.2.5 Total phenolics	13
3.3 Traditional cereal-based alcoholic beverages	14
3.3.1 Classification of traditional beverages	14
3.3.2 Technology of traditional cereal-based alcoholic beverages making	17
3.3.3 Traditional cereal-based alcoholic beverages of Nepal	19
3.3.3.1 Traditional process of millet fermentation	19
3.3.3.2 Some important cereal-based alcoholic beverages of Nepal	23
3.4 Cereal based alcoholic fermentation starters	30
3.4.1 Introduction to traditional fermentation starters	30
3.4.2 Methods of preparing fermentation starters	32
3.4.3 Plants used for starter preparation in Nepal	34
3.4.4 Traditional starter for cereal-based alcoholic fermentation in Nepal	35

3.4.5 Physico-chemical and microbiological quality of fermentation starters	43
3.5 Chemical composition of different indigenous cereal-based alcoholic beverages	45
3.6 Flavoring compounds produced in alcoholic beverages	52
3.6.1 Esters	52
3.6.2 Aldehydes	53
3.6.3 Organic acids	53
3.6.4. Higher alcohols	54
3.7 Biochemical changes during cereal-based traditional alcoholic fermentation	55
3.7.1 Microbial changes	55
3.7.2 Physico-chemical changes	56
3.8 Changes during cereal germination	61
3.8.1 Protein and amino acids	61
3.8.2 Changes in carbohydrates	62
3.8.3 Changes in minerals	63
3.8.4 Changes in phytate contents	64
3.8.5 Changes in total polyphenols contents	64
3.8.6 Changes in crude fat contents	65
3.8.7 Changes in tannin contents	65
3.8.8 Changes in enzymes activity	66
3.8.9 Antioxidant activity	67
3.9 Malt composition	67
3.10 Wort composition	71
3.11 Composition of beer	73
4. Materials and methods	81
4.1. Finger millet fermentation using defined starter	81
4.1.1. Materials	81
4.1.2 Experimental methods	81
4.1.2.1 Selection of <i>murcha</i> for yeast isolation	81
4.1.2.2 Isolation and purification of yeasts	82
4.1.2.3 Selection of the best of yeast	82
4.1.2.4 Preparation of mold <i>koji</i>	82

4.1.2.5 Preparation of defined fermentation starter	82
4.1.2.6 Effect of fermentation containers and raw materials on chemical and sensory quality of fermented cereals	83
4.1.2.7 Solid vs semi-solid fermentations of finger millet	83
4.1.2.8 Storage stability of fermented millet packaged in polyvinyl chloride (PVC) container	83
4.1.2.9 Clarification of millet <i>jand</i> using fining agents	84
4.1.2.9.1 Preparation of millet <i>jand</i>	84
4.1.2.9.2 Selection of fining agents	84
4.1.2.9.3 Effect of bentonite concentration, <i>jand</i> acidity, holding time and temperature on millet <i>jand</i> clarification	84
4.1.2.9.4 Effect of the sequence of bentonite addition	85
4.1.2.10 Bio-chemical changes during finger millet fermentation	85
4.1.2.11 Quality comparison between finger millet fermented using defined starter and market samples	85
4.1.3 Analytical methods	85
4.1.3.1 Analysis of proximate composition	85
4.1.3.2 Determination of mineral contents	86
4.1.3.3 Determination of alcohol and other volatiles	86
4.1.3.4 Determination of total solids, insoluble solids, total soluble solids, sugars and turbidity	86
4.1.3.5 Determination of pH, acidities and conductivity	87
4.1.3.6 Analyses of soluble protein and other nitrogenous components	87
4.1.3.7 Determination of starch, total phenolics and antioxidant activity	87
4.1.3.8 Determination of phytic acid and total oxalate	88
4.1.3.9 Enumeration of yeast and mold counts	88
4.1.3.10 Sensory evaluation	88
4.1.3.11 Statistical analysis	88
4.2 Assessment of brewing potential of Nepalese finger millet varieties	89
4.2.1 Materials	89
4.2.2 Experimental methods	89
4.2.2.1 Preparation of finger millet malts	89
4.2.2.2 Extraction of enzymes	90
4.2.2.3 Kilning of millet malts at different temperatures	90
4.2.2.4 Gibberellic acid (GA ₃) treatment during millet germination	91
4.2.2.5 Mashing of finger millet malt by different methods	91

4.2.2.6 Mashing of finger millet (var. <i>Kabre</i>) malt in combination with commercial barley malt and mold bran	92
4.2.2.7 Optimization of mashing process	92
4.2.2.7.1 Optimization of holding time at constant mashing temperature and pH	92
4.2.2.7.2 Optimization of mashing pH and temperature	93
4.2.2.8 Preparation of millet and barley beers and their quality analysis	94
4.2.2.8.1 Preparation of millet malt	94
4.2.2.8.2 Preparation of beer	94
4.2.2.9 Changes during millet and barley beer fermentation	95
4.2.3 Analytical methods	95
4.2.3.1 Determination of enzyme activities	95
4.2.3.1.1 Determination of α -amylase activity	95
4.2.3.1.2 Determination of β -amylase activity	96
4.2.3.1.3 Determination of total diastatic activity (DP)	96
4.2.3.1.4 Determination of carboxypeptidase activity	96
4.2.3.2 Determination of chemical characteristics of native and malted millets	97
4.2.3.3 Analysis of proximate composition	97
4.2.3.4 Determination of minerals contents	97
4.2.3.5 Analysis of malt extract, wort and beer	97
4.2.3.6 Sensory evaluation	98
5. Results and discussion	99
5.1 Fermentation of finger millet using defined fermentation starter	99
5.1.1 Effect of fermentation containers and cereals on chemical and sensory quality of fermented finger millet	99
5.1.1.1 Effect of fermentation containers	99
5.1.1.2 Effects of raw materials on the chemical and sensory quality of <i>jands</i>	101
5.1.1.3 Effect of cereal combinations on the chemical and sensory characteristics of fermented cereals	103
5.1.2 Solid versus semi-solid fermentations of finger millet (<i>Eleusine coracana</i>)	108
5.1.2.1 Effect of solid and semi-solid fermentations on chemical characteristics of millet <i>jand</i>	108
5.1.2.2 Effect of solid and semi-solid state fermentations on sensory quality of millet <i>jands</i>	110

5.1.3 Storage stability of fermented finger millet packaged in polyvinylchloride (PVC) container under ambient conditions	111
5.1.3.1 Chemical characteristics of fermented millet packaged in PVC container	111
5.1.3.2 Sensory quality of fermented millet packed in PVC container after 90 days of storage at 25 ± 2 °C and at – 30 °C	112
5.1.4 Clarification of finger millet <i>jand</i> using fining agents	113
5.1.4.1 Selection of fining agents	113
5.1.4.2 Effect of bentonite concentration and acidity on the clarification of millet <i>jand</i>	115
5.1.4.3 Effect of holding temperature, time and sequence of bentonite addition on the clarification of millet <i>jand</i>	115
5.1.4.4 Effect of bentonite treatment on chemical and sensory characteristics of finger millet <i>jand</i>	118
5.1.4.4.1 Effect of on chemical characterstics of millet jand	118
5.1.4.4.2 Effects on organoleptic quality of millet jand	118
5.1.5 Bio-chemical changes during finger millet fermentation	120
5.1.5.1 Changes in chemical characteristics during millet fermentation	120
5.1.5.2 Changes in volatile constituents during millet fermentation	123
5.1.5.3 Changes in proximate composition and mineral contents	125
5.1.5.4 Microbial changes during millet fermentation	127
5.1.6 Quality comparison of fermented finger millet using traditional and defined fermentation starters	128
5.1.6.1 Chemical characteristics of lab and market samples of fermented millet	128
5.1.6.2 Sensory quality of finger millet fermented using defined and traditional starters	130
5.2 Assessment of brewing potential of Nepalese finger millet varieties	131
5.2.1 Effect of finger millet variety and germination time on enzymatic activities and chemical characteristics of millet malts	131
5.2.1.1 Effect on enzymatic activities	131
5.2.1.2 Effect on total free amino acids (TFAAs) and free amino nitrogen (FAN) contents of millet malts	137
5.2.1.3 Effect of finger millet varieties on chemical characteristics of their malts	139
5.2.1.3.1 Changes in carbohydrates during malting of finger millets	139
5.2.1.3.2 Changes in phenolic compounds and antioxidant activity	142
5.2.1.4 Effect of millet varieties on chemical characteristics of their malt extracts	145

5.2.1.5 Effect of millet varieties on the chemical properties of their malt worts	147
5.2.2 Proximate and mineral compositions of unmalted and malted finger millet (variety <i>Kabre</i>)	148
5.2.2.1 Proximate composition of unmalted and malted finger millet	148
5.2.2.2 Mineral composition of unmalted and malted finger millet (variety <i>Kabre</i>)	150
5.2.3 Effects of kilning methods on enzyme activities, FAN contents and extract quality of finger millet malts	151
5.2.3.1 Effects of kilning methods on enzymes activity and FAN content of millet malts	152
5.2.3.2 Effect of kilning methods on chemical characteristics of malt extracts	154
5.2.4 Effect of Gibberellic acid (GA ₃) treatment on enzymatic activity and chemical properties of finger millet malts	155
5.2.4.1 Effect on amylase activity and FAN contents	155
5.2.4.2 Effect of GA ₃ treatment on the extract quality of <i>Kabre</i> and GPU 0025 millet malts	160
5.2.5 Effect of mashing methods on the chemical properties of finger millet (variety <i>Kabre</i>) malt wort	161
5.2.6 Effect of barley malt incorporation on millet malt wort quality	163
5.2.7 Effect of mold bran addition on the chemical properties of millet malt wort	165
5.2.7.1 Preparation of wheat mold bran using <i>R. oryzae</i> , ITCC No. 4408 mold	165
5.2.7.2 Mashing of finger millet (variety Kabre) malt with mold bran	165
5.2.8 Optimization of mashing stages	167
5.2.8.1 Changes in free amino nitrogen (FAN) and total soluble solids (TSS) during millet and barley malt mashing	167
5.2.8.2 Optimization of holding time for millet malt mashing at each stage of US mashing process	169
5.2.9 Optimization of pH and temperature at pre-selected mashing time using response surface method (RSM)	172
5.2.9.1 Effect of process variables on different responses during protein rest period	172
5.2.9.1.1 Effect of process variables on free amino nitrogen (FAN) content during protein rest period	172
5.2.9.1.2 Effect of process variables on total soluble solids (TSS) during protein rest period	174
5.2.9.2 Effect of process variables on different response variables during dextrinizing period of mashing	176

5.2.9.2.1 Effect of process variables on FAN content during dextrinizing period	176
5.2.9.2.2 Effect of process variables on TSS during dextrinizing period	178
5.2.9.2.3 Effect of process variables on total reducing sugar (RS) during dextrinizing period	180
5.2.9.2.4 Effect of process variables on glucose content during dextrinizing period	183
5.2.9.2.5 Effect of process variables on fructose content during dextrinizing period	185
5.2.9.3 Effect of process variables on different responses during conversion period	187
5.2.9.3.1 Effect of process variables on FAN content during conversion period	187
5.2.9.3.2 Effect of process variables on TSS content during conversion period	189
5.2.9.3.3 Effect of process variables on total reducing sugar contents during conversion period	191
5.2.9.3.4 Effect of process variables on glucose content during conversion period	193
5.2.9.3.5 Effect of process variables on fructose content during conversion period	196
5.2.9.4 Optimization of process variables	198
5.2.9.4.1 Compromized optimum conditions for protein rest period	198
5.2.9.4.2 Compromized optimum conditions for dextrinizing period	199
5.2.9.4.3 Compromized optimum conditions for conversion period	201
5.2.10 Chemical, physical and sensory quality analyses of finger millet and barley beers	202
5.2.10.1 Chemical characteristics of millet and barley beers	202
5.2.10.2 Mineral contents of millet and barley beers	205
5.2.10.3 Volatile constituents of millet and barley beers	207
5.2.10.4 Physical properties of millet and barley beers	208
5.2.10.5 Sensory quality of millet and barley beers	209
5.2.11 Changes during finger millet and barley beer fermentation	210
6. Conclusions	215
7. Summary and recommendations	216
References	224
Appendices	247
List of publications	256

List of Tables

3.2 3.3	Proximate composition, vitamins and minerals composition of finger millet Mineral contents in different finger millets and their malts Examples of cereal alcoholic beverages prepared in the Asia- Pacific region Factors affecting overall sensory quality of <i>jand</i> Fermentation starters used in different countries	11 13 16 25
3.3	Examples of cereal alcoholic beverages prepared in the Asia- Pacific region Factors affecting overall sensory quality of <i>jand</i>	16
]	Pacific region Factors affecting overall sensory quality of <i>jand</i>	
3.4		25
	Formentation startens used in different countries	
3.5	Fermentation starters used in different countries	32
3.6	Plants used for murcha making in the Eastern Nepal	36
3.7	A typical recipe for the preparation of <i>murcha</i>	40
3.8	A typical recipe for preparing murcha	41
3.9	A typical recipe for preparing murcha	42
3.10	Microbial profile of traditional murcha starters	43
3.11	Characteristics of defined and traditional fermentation starters	43
	Physiochemical and microbiological properties of <i>murcha</i> and defined starter	44
3.13	Approximate and mineral composition of <i>takju</i>	46
3.14	Chemical composition of the distillate	46
	Chemical characteristics of ungerminated and germinated finger millet during fermentation	47
3.16	Chemical characteristics of finger millet jand during storage	48
3.17	Chemical characteristics of different jands	49
3.18	Composition of cooked and fermented finger millet	50
3.19	Chemical composition of cooked and fermented rice	51
	Chemical composition of 3 days fermented commercial Egyptian <i>bouza</i>	51
3.21	Composition of <i>kaffir</i> beer	52
3.22	Chemical composition of Zambian opaque maize beer	52
3.23	Composition of different brandy samples	54
3.24	Origin of fusel alcohols from amino acid precursors	54
3.25	Acidity and volatile flavor compounds in different rum samples	55
	Acidity and volatile flavor compounds in different rum, Scotch whisky and brandy	55
3.27	Volatile flavor compounds in different whisky samples	55

3.28	Chemical characteristics of fermented millet	58
3.29	Chemical changes during fermentation	59
3.30	Changes on alcohol and fusel oil contents during <i>tape ketan</i> fermentation	60
3.31	Changes in mineral contents during germination and roasting of pearl millet	63
3.32	Composition of millet malt	69
3.33	Effect of air-rest period on sorghum malt quality	69
3.34	Chemical composition of naked barley and barley malts	70
3.35	Chemical characteristics of Nepalese naked barley and barley malt worts	71
3.36	Composition of worts derived from finger millet and barley malt combinations	72
3.37	Composition of ragi wort derived from cooked ragi and barley malt with and without protease	73
3.38	Quality control test for American lager beer	74
3.39	Composition of ragi beer made with and without added barley malt	74
3.40	Beer characteristics according to Nepal standard	75
3.41	Chemical composition of naked barley and commercial barley beers	75
3.42	Chemical composition of wort and beer	76
3.43	Chemical composition of wheat and barley beers	77
5.1	Effect of fermentation container on chemical characteristics of fermented millet	99
5.2	Chemical characteristics of <i>jands</i> prepared from different cereals	102
5.3	Effects of cereal combinations on the chemical characteristics of fermented cereals	104
5.4	Effect of solid and semi-solid fermentations on the chemical characteristics of finger millet <i>jand</i>	108
5.5	Chemical characteristics of PVC container packaged fermented millet after 90 days of storage	112
5.6	Effect of bentonite treatment on the chemical characteristics of finger millet <i>jand</i>	119
5.7	Chemical changes during finger millet fermentation	122
5.8	Changes in proximate composition and mineral contents during millet fermentation	126
5.9	Chemical characteristics of lab and market fermented finger millet	129

5.10	Chemical changes during malting of finger millets	140
5.11	Physico-chemical characteristics of finger millet malt extracts	146
5.12	Chemical properties of finger millet malt worts	148
5.13	Proximate composition of native and malted finger millets	149
5.14	Mineral composition of native and malted finger millet	151
5.15	Effects of kilning methods on the chemical characteristics of millet malts	155
5.16	Chemical properties of malt extracts obtained from <i>Kabre</i> and <i>GPU 0025</i> millet malts germinated for 56 h at 28 ± 1 °C	161
5.17	Effect of mashing methods on chemical properties of finger millet malt wort	162
5.18	Chemical properties of millet malt worts mashed in combination with commercial barley malt	164
5.19	Chemical properties of millet malt wort mashed with mold bran	166
5.20	Multiresponse optimization constraints of protein rest period	199
5.21	Predicted and actual values of the responses at the optimized condition for protein rest period	199
5.22	Multiresponse optimization constraints of dextrinizing period	200
5.23	Predicted and actual values of the responses at the optimized conditions for dextrinizing period	200
5.24	Compromized optimum condition for conversion period	201
5.25	Predicted and actual values of the responses at the optimized condition for conversion rest period	202
5.26	Chemical characteristics of finger millet and barley beers	203
5.27	Mineral composition of millet and barley beers	206
5.28	Volatile constituents of finger millet and barley beers	207
5.29	Physical properties of finger millet and barley beers	208
5.30	Sensory evaluation scores of millet and barley beers	209

Fig. No.	Title	Page No.
3.1	Flow charts for the manufacture of Indonesian take <i>ketan</i> and India <i>Bhattejaanr</i>	17
3.2	Flow chart for the production of rice wines in China and Korea	18
3.3	Flow charts for the processing of <i>takju</i> and <i>tapuy</i>	18
3.4	Steps involved in the traditional finger millet fermentation process in Nepal	19
3.5	Okhali and Janto	20
3.6	Nanglo	21
3.7	Biomass development of cooked millet.	22
3.8	Ghyampo – a customary cereal fermentation vessel	22
3.9	Interdependency of various factors affecting jand quality	24
3.10	Toongba – a vessel used for serving fermented millet	26
3.11	A conventional assembly used for raksi distillation	27
3.12	A protocol for <i>poko</i> preparation	27
3.13	An outline of traditional method of hyaun thon preparation	28
3.14	Classification of fermentation starters as described in chi-Min- Yao-Su	31
3.15	Flow chart for the preparation of solid fermented starters in different countries	33
3.16	Flow chart for the preparation of solid fermented starters in Indonesia and Philippines	33
3.17	Flow charts for the solid fermentation of <i>chu</i> preparation	34
3.18	Traditional method of murcha making in Nepal	38
3.19	Traditional method of preparing manapu and mana.	39
4.1	Germination of finger millet	89
4.2	Drying of germinated finger millets	90
5.1	Effect of fermentation containers on the sensory quality of finger millet <i>jands</i>	100
5.2	Effect of cereals on the sensory quality of jand	103
5.3	Effect of cereal combinations on the sensory quality of millet <i>jand</i>	107
5.4	Effects of solid and semi-solid state fermentations on the sensory quality of millet <i>jand</i>	110
5.5	Effect of storage time on sensory quality of fermented millet	113

List of Figures

5.6	Effect of bentonite concentration on the clarification of millet <i>jand</i>	114
5.7	Effect of tannin, gelatine and tannin-gelatin treatments on the clarification of millet <i>jand</i>	114
5.8	Effect of bentonite concentration and acidity on the clarification of millet <i>jand</i>	115
5.9	Effect of bentonite concentration and holding conditions on the clarification of millet <i>jand</i>	116
5.10	Effect of holding time on the clarification of millet <i>jand</i>	117
5.11	Effect of sequence of bentonite addition on the clarification of millet <i>jand</i>	117
5.12	Effect of bentonite treatment on the sensory quality of clarified <i>jand</i>	120
5.13	Changes in volatile constituents during millet fermentation	123
5.14	Changes in phytic acid and total free amino acids (TFAAs) contents during millet fermentation	124
5.15	Changes in total oxalates and non-protein nitrogen (NPN) during millet fermentation	124
5.16	Changes in yeast and mold counts during millet fermentation	128
5.17	Sensory quality of <i>jand</i> made from lab and traditionally fermented finger millet	130
5.18	Effect of millet variety and germination time on α -amylase activity of millet malts	131
5.19	Effect of millet variety and germination time on β -amylase activity of millet malts	133
5.20	Total diastatic power (DP) of millet malts germinated at 28 ± 1 °C for 48 h	134
5.21	Effect of millet variety and germination time on carboxypeptidase activity of millet malts	136
5.22	Effect of millet variety and germination time on total free amino acids (TFAAs) contents of millet malts	137
5.23	Effect of millet variety and germination time on free amino nitrogen (FAN) contents of millet malts	139
5.24	Relationship between total phenolics and antioxidant activity in native millets	144
5.25	Effects of kilning methods on α - amylase, β -amylase and carboxypeptidase activities and FAN content of millet malts	153
5.26	Effect of varieties and germination time on alpha-amylase activity in gibberellic acid treated finger millet malts	156
5.27	Effect of varieties and germination time on beta-amylase activity in gibberellic acid treated finger millet malts	157

5.28	Eeffect of varieties and germination time on FAN contents in gibberellic acid treated finger millet malts	159
5.29	Development of α - and β -amylase activities in wheat bran during incubation at 30° C	165
5.30	Evolution of FAN during finger millet and barley malts mashing	167
5.31	Changes in TSS during millet and barley malts mashing	168
5.32	Changes in FAN and total reducing sugar contents during protein rest period	169
5.33	Changes in FAN and total reducing sugar contents during sugar rest period	170
5.34	Changes in FAN and total reducing sugar contents during dextrinizing period	171
5.35	Effect of holding time on FAN and total reducing sugar production during conversion period	171
5.36	Interaction plot of temperature and pH for FAN formation during protein rest period	173
5.37	Residual plot for FAN contents during proterin rest period	173
5.38	Response surface plot for FAN content as a function of temperature and pH during protein rest period	174
5.39	Interaction plot of temperature and pH for TSS during protein rest period	175
5.40	Residual plot for TSS contents during proterin rest period	175
5.41	Response surface plot for TSS content as a function of temperature and pH during protein rest period	176
5.42	Interaction plot of temperature and pH for FAN content during dextrinizing period	177
5.43	Residual plot for FAN content during dextrinizing period of mashing	178
5.44	Response surface plot for FAN content as a function of temperature and pH during dextrinizing period	178
5.45	Interaction plot of temperature and pH for TSS content during dextrinizing period	179
5.46	Residual plot for TSS content during dextrinizing period of mashing	180
5.47	Response surface plots for TSS content as a function of temperature and pH during dextrinizing period	180
5.48	Interaction plot of temperature and pH for total reducing sugar (RS as maltose content during dextrinizing period	182
5.49	Residual plot for total reducing sugar content during dextrinizing period of mashing	182

5.50	Response surface plot for total reducing sugar content as a function of temperature and pH during dextrinizing period	183
5.51	Interaction plot of temperature and pH for glucose content during dextrinizing period	184
5.52	Residual plot for glucose content during dextrinizing period of mashing	184
5.53	Response surface plot for glucose content as a function of temperature and pH during dextrinizing period	185
5.54	Interaction plot of temperature and pH for fructose content during dextrinizing period	186
5.55	Residual plot for fructose content during dextrinizing period of mashing	186
5.56	Response surface plot for fructose content as a function of temperature and pH during dextrinizing period	187
5.57	Interaction plot of temperature and pH for FAN content during conversion period	188
5.58	Residual plot for FAN content during conversion period of mashing	188
5.59	Response surface plot for FAN content as a function of temperature and pH during conversion period	189
5.60	Interaction plot of temperature and pH for total soluble solid (TSS) content during conversion period of mashing	190
5.61	Residual plot for total soluble solid (TSS) content during conversion period of mashing	191
5.62	Response surface plot for TSS content as a function of temperature and pH during conversion period	191
5.63	Interaction plot of temperature and pH for total reducing sugar content during conversion period of mashing	192
5.64	Residual plot for total reducing sugar content (as maltose) during conversion period of mashing	193
5.65	Response surface plot for total reducing sugar as a function of temperature and pH during conversion period of mashing	193
5.66	Interaction plot of temperature and pH for glucose formation during conversion period of mashing	195
5.67	Residual plot for glucose content during conversion period of mashing	195
5.68	Response surface plot for glucose content as a function of temperature and pH during conversion period of mashing	196
5.69	Interaction plot of temperature and pH for fructose content during conversion period of mashing	197
5.70	Residual plot for fructose content during conversion period of mashing	197

5.71	Response surface plot for fructose content as a function of temperature and pH during conversion period	198
5.72	Changes in total soluble solids and total reducing sugars during millet and barley beer fermentation	210
5.73	Glucose and fructose profiles during millet and barley beer fermentation	211
5.74	Changes in total acidity (as lactic acid) during millet and barley beer fermentation	212
5.75	Changes in free amino nitrogen (FAN) and alcohol during millet and barley beer fermentation	212
5.76	Changes in fusel oil and methanol during millet and barley beer fermentation	213
5.77	Changes in total esters and total aldehydes during millet and barley beer fermentation	214
5.78	Changes in vicinal diketones (VDK) during millet and barley beer fermentation	214

List of Appendices

Table No.	Title	Page No.
1	Experimental design in coded form for response surface analysis	247
2	Values of independent variables at three levels of the center composite face centered design (CCFCD)	247
3	Experimental design for mashing with coded and uncoded variable levels	248

Appendix A: Experimental design for response surface analysis

Appendix B : Analysis of variances (ANOVA) Tables

Table No.	Title	Page No.
1	Analysis of variance for FAN and TSS models during protein rest period	248
2	Regression model fitted to FAN and TSS data during protein rest preiod	249
3	Analysis of variance for FAN, TSS, RS, glucose and fructose models during dextrinizing period	249
4	Regression model fitted to FAN, TSS, RS, glucose and fructose data during dextrinizing preiod	249
5	Analysis of variance for FAN, TSS, RS, glucose and fructose models during conversion period	250
6	Regression model fitted to FAN, TSS, RS, glucose and fructose data during conversion period	250

Appendix C: Contour plots for various response variables

Fig. No.	Title	Page No.
1	Contour plots for FAN content during protein rest period of mashing	251
2	Contour plots for TSS content during protein rest period of ashing	251
3	Contour plots for FAN content during dextrinizing period of mashing	252
4	Contour plots for TSS content during dextrinizing period of mashing	252

5	Contour plots for reducing sugar during dextrinizing period of mashing	252
6	Contour plots for glucose content during dextrinizing period of mashing	253
7	Contour plots for fructose content during dextrinizing period of mashing	253
8	Contour plots for FAN content during conversion period of mashing	253
9	Contour plots for TSS content during conversion period of mashing	254
10	Contour plots for reducing sugar during conversion period of mashing	254
11	Contour plots for glucose during conversion period of mashing	254
12	Contour plots for fructose content during conversion period of mashing	255

Appendix D: Sensory evaluation score sheet

Sensory evaluation score sheet

255