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ABSTRACT

Solving single variable nonlinear equations efficiently is an important consideration

in numerical analysis and has wide range of applications in all fields of science

and engineering. Finding the analytic solutions of such equations is not always

possible. Newton’s method is the most widely used numerical method for solving

such equations. In this thesis, we have developed several new Newton type iterative

methods for solving nonlinear equations of a single variable. To obtain these

methods, we used different techniques such as:

(i) amalgamation of existing methods;

(ii) amalgamation of existing and our investigated methods with the secant

method;

(iii) amalgamation of existing methods and modified secant method;

(iv) idea of integral approximation; and

(v) use of inverse function methods.

The work done in this thesis is inspired by the work of Potra and Pták, Kas-

turiarachi, Jain, Weerakon and Fernando, Özban, Dhegain and Hajarian, Ujević,

Erceg and Lakić, Amit and Basqular, Hasanov, Ivanov and Nedzhibov as well as

recent work of McDaugall and Wotherspoon. For each method obtained in this

thesis, the order of convergence has been calculated and compared with that of the

similar existing methods. Also, most of the methods are supported by numerical

examples.
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Chapter 1

Introduction

In this chapter, we collect certain definitions, notions and basic results of calculus

and real analysis which have been used throughout the thesis. These things can be

found in any standard textbook of calculus and/or analysis. Also, in this chapter,

we give brief history of the work done by various researchers from time to time

which motivated us to carry out our own investigations.

1.1 Preliminaries

We begin with the following:

Definition 1.1.1. [19] A function f defined on the set R of real numbers has the

limit L at x0, written

lim
x→x0

f(x) = L

if, given any ε > 0, there exists δ > 0 such that

0 < |x− x0| < δ ⇒ |f(x)− L| < ε, x ∈ R.

Definition 1.1.2. [19] A function f defined on the set R of real numbers is said

to be continuous at x0 ∈ R if

lim
x→x0

f(x) = f(x0).

The function f is continuous on the set R if it is continuous at each point x0 ∈ R.

Definition 1.1.3. [19] Let f be a function defined in an open interval (a, b) con-
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taining x0. The function f is differentiable at x0 if

f ′(x0) := lim
x→x0

f(x)− f(x0)

x− x0

exists. The quantity f ′(x0) is called the derivative of f at x0. A function that has

a derivative at each point of R is said to be differentiable on R.

The following is the well known Mean Value Theorem.

Theorem 1.1.4. [17] If f is a function continuous on some interval [a, b] and

differentiable on (a, b), then there exists a number c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Next is the famous Intermediate Value Theorem.

Theorem 1.1.5. [51] Let f be a continuous function defined on some interval

[a, b] and f(a)f(b) < 0, then the equation f(x) = 0 has at least one real root in

the interval (a, b), i.e., there exists at least one point c ∈ (a, b) such that f(c) = 0.

The following Taylor’s Theorem will be used tremendously.

Theorem 1.1.6. [17] Suppose f is a continuous function on [a, b], has n continuous

derivatives on (a, b) and f (n+1) exists on [a, b]. Let α ∈ [a, b]. For every x ∈ [a, b],

there exists a number ξ between x and α such that

f(x) = Pn(x) +Rn(x),

where

Pn(x) =
n∑
k=0

fk(α)

k!
(x− α)k and Rn(x) =

f (n+1)(ξ)

(n+ 1)!
(x− α)n+1.

Moreover, if the function f has continuous derivative of all orders at x = α, then

the above expression becomes

f(x) =
∞∑
k=0

fk(α)

k!
(x− α)k

which is called the Taylor series expansion of f about α.

2



The following Binomial expansion for any index will also be used frequently

throughout the thesis.

Theorem 1.1.7. [103] Let n be a rational number and x be any real number such

that |x| < 1, then

(1 + x)n = 1 + C(n, 1)x+ C(n, 2)x2 + C(n, 3)x3 + · · ·+ C(n, r)xr + · · · .

Definition 1.1.8. [51] A real sequence {xn} is said to converge to a real number

L, written limn→∞ xn = L, if for given ε > 0, there exists N ∈ N such that

|xn − L| < ε, ∀ n ≥ N.

Definition 1.1.9. [51] If xn, xn−1, . . . , xn−m+1 are m approximations to the root

of the equation f(x) = 0, then a multipoint iteration method is defined by

xn+1 = φf (xn, xn−1, . . . , xn−m+1). (1.1.1)

The function φf is called the multipoint iteration function. For m = 1, we get the

one point iteration method

xn+1 = φf (xn). (1.1.2)

Definition 1.1.10. [17] A number x ∈ R is called a fixed point of a real valued

function f if

f(x) = x.

Remark 1.1.11. A function f may have only one fixed point, more than one fixed

points or no fixed point. For example, the function

f : (0, 2)→ R

defined by

f(x) = x2

has only one fixed point x = 1. The function

f : [0, 2]→ R

defined by

f(x) = x2

3



has two fixed point x = 0, 1. The function

f : (1,∞)→ R

defined by

f(x) =
1

x

has no fixed point. The identity function has all of its points fixed.

The existence and uniqueness of fixed points is given by the famous Banach

Fixed Point Theorem. Although the theorem is known for more general metric

spaces, we shall state it for only reals. First, we define following.

Definition 1.1.12. [69] A mapping f : R→ R is called a contraction mapping if

there is a positive real number α < 1 such that

|f(x)− f(y)| ≤ α|x− y|, x, y ∈ R.

Theorem 1.1.13. [69](Banach Fixed Point Theorem) Let f be a contraction

mapping on R. Then f has a unique fixed point.

Definition 1.1.14. [19] Let {xn} be a sequence of iterates of some numerical

method to solve a nonlinear equation f(x) = 0 and en be the error in xn, i.e.,

xn = α + en, α being an exact root of f(x) =0. The numerical method is said to

be of order p if p is the smallest positive number such that there exists a constant

A such that

en+1 = Aepn, n = 1, 2, 3, · · ·

This equation is generally known as the error equation for the corresponding nu-

merical method.

Definition 1.1.15. [51] The efficiency index of a numerical method is defined by

p
1
θ , where p is the order of the method and θ is the number of functions evaluation

per iteration.

Theorem 1.1.16. [51] Let α be a simple root of the equation f(x) = 0 and (1.1.2)

be the one point iteration method to approximate α. Then the method (1.1.2) is

of order p if and only if

φf (α) = α, φ′f (α) = φ′′f (α) = · · · = φp−1f (α) = 0, φpf (α) 6= 0.

4



Definition 1.1.17. [19] A root α of the equation f(x) = 0 is said to be a root of

multiplicity m if f can be written in the form

f(x) = (x− α)mq(x),

where q(α) 6= 0. A root of multiplicity one is called a simple root.

Theorem 1.1.18. [15] Let f be a continuous function with m continuous deriva-

tives. The equation f(x) = 0 has a root of multiplicity m at x = α if and only if

f(α) = f ′(α) = f ′′(α) = · · · = f (m−1)(α) = 0 but f (m)(α) 6= 0.

1.2 Some Classical Methods

In this section, we collect some classical iterative methods for solving nonlinear

equations and methods used to approximate definite integrals.

Let f(x) = 0 be the given nonlinear equation. There are several standard

classical methods to approximate the root of this equation see, e.g., [15], [17], [19],

[24], [36], [51]. The two commonly used methods are the Newton method

xn+1 = xn −
f(xn)

f ′(xn)
(1.2.1)

and the secant method

xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)
f(xn). (1.2.2)

The Newton method is one point iteration method. This method is of order

2 and requires two functions evaluation per iteration. Consequently the efficiency

index of Newton’s method is 2
1
2 ≈ 1.414.

The secant method is known to be of order 1.618. It is also known that it

requires only one function evaluation per iteration giving the efficiency index 1.618.

Comparing Newton’s and secant methods, it is observed that although Newton’s

method has better rate of convergence but secant method is more efficient.

Next, consider the definite integral

∫ b

a

f(x) dx. (1.2.3)

5



There are several methods to find an approximate value of the above integral.

Some of them to mention are trapezoidal rule, midpoint rule and Simpson’s rule

(see, [15], [17], [19], [24], [36], [51]) given respectively by

∫ b

a

f(x) dx ≈ (b− a)

2
[f(b) + f(a)], (1.2.4)

∫ b

a

f(x) dx ≈ (b− a)f

(
a+ b

2

)
, (1.2.5)

and ∫ b

a

f(x) dx ≈ (b− a)

6
[f(a) + 4f

(
a+ b

2

)
+ f(b)]. (1.2.6)

There are several other methods to approximate integral. Some of them may be

found in [1], [29], [33], [34], [45], [48], [56], [67], [74], [81], [99] and [104]. Few of

these type of methods will be discussed in the subsequent chapters and will be

used to derive efficient methods for solving nonlinear equations.

1.3 Brief Historical Background

Nonlinear equations are encountered quite often in all fields of science and en-

gineering but solving such equation analytically is not always possible. In those

situations, when an analytic solution cannot be obtained or it is difficult to ob-

tain, numerical methods are used. In the previous section, we mentioned two such

classical methods, namely, the Newton method and secant method. Some histori-

cal developments of the Newton and Newton type methods can be found in [20],

[27], [82] and [106]. Over the years tremendous methods have appeared for solving

nonlinear equations, each one is better than other in some or the other aspects.

Some of these methods can be found in the papers [16], [21], [22], [23], [31], [32],

[35], [38], [39], [44], [47], [55], [56], [57], [58], [61], [65], [66], [67], [68], [70], [71],

[72], [74], [80], [88], [89], [90], [91], [92], [93], [94], [100], [107], [110] and [111].

It is difficult to trace out the whole development of all methods. However,

in this section, we will mention the contribution of those researchers whose work

motivated us to carry out our own investigations.

To begin with, let us mention the work of Kasturiarachi [64] who suggested

that if the iteration of Newton’s method and secant method are used alternatively,

then the resulting method will be of order 3. The corresponding method is the

6



following:

xn+1 = xn −
f 2(xn)

f ′(xn)[f(xn)− f(x∗n)]
,

where

x∗n = xn −
f(xn)

f ′(xn)
.

The mixing of methods with the secant method has been seen to be very effective

in order to increase the order of convergence. Such technique has been used by

other authors as well, e.g., one may refer to [48], [49], [50] and [52].

In [104], Weerakoon and Fernando used the technique of numerical integration

to improve Newton’s method. In fact, they used the Newton’s theorem

f(x) = f(xn) +

∫ x

xn

f ′(t) dt (1.3.1)

and approximated the integral by trapezoidal rule that is

∫ x

xn

f ′(t) dt =
(x− xn)

2
[f ′(x) + f ′(xn)]. (1.3.2)

Then they obtained the variant of Newton’s method which is given by the formula

xn+1 = xn −
2f(xn)

f ′(xn) + f ′(x∗n)
, (1.3.3)

where x∗n = xn − f(xn)
f ′(xn)

. In [81], Özban suggested that, in (1.3.1), if the integral

is approximated by the mid point rule instead of the trapezoidal rule, then the

corresponding method becomes

xn+1 = xn −
f(xn)

f ′(xn+x
∗
n

2
)
, (1.3.4)

where x∗n same as in(1.3.3). Also in the same paper, Özban suggested the following

harmonic mean Newton’s method

xn+1 = xn −
f(xn)[f ′(xn) + f ′(x∗n)]

2f ′(xn)f ′(x∗n)
. (1.3.5)

It has been proved that the methods (1.3.3), (1.3.4) and (1.3.5) are all of order 3.

Based on the same technique, Hasanov, Ivanov and Nedzhibov [40] obtained the

7



following method which is based on Simson’s rule.

xn+1 = xn −
6f(xn)

f ′(xn) + 4f ′
(xn+x∗n

2

)
+ f ′(x∗n)

. (1.3.6)

Recently in 2010, Dehghan and Hajarian [29] approximated the integral in

(1.3.1) by the linear combination of trapezoidal integration rule, mid point inte-

gration rule and harmonic mean rule as follows:

∫ x

xn

f ′(t) dt = (x− xn)

[
− 2f ′(xn)f ′(x)

f ′(xn) + f ′(x)
+

3

2
f ′
(
xn + x

2

)
− 3

4
(f ′(xn) + f ′(x))

]
.

As a result, the following method was obtained:

xn+1 = xn −

[
f(xn)(f ′(xn) + f ′(x∗n))

2f(xn)f ′(x∗n)
+

2

3

f(xn)

f ′(xn+x
∗
n

2
)
− 4

3

f(xn)

f ′(xn) + f ′(x∗n)

]
,

(1.3.7)

where x∗n is same as in (1.3.3).

In [97], Ujević, Erceg and Lekić obtained a family of methods as a conclusion

of similar method obtained by Ujević in [95] and [96] using distinct quadrature

rules. Their method is following:

xn+1 = xn + (zn − xn)
f(xn)

βf(xn) + γf(zn)
, (1.3.8)

where zn = xn − α f(xn)
f ′(xn)

, 0 < α ≤ 1.

In [83], Potra and Pták suggested a modifications of Newton’s method with

third order convergence defined by

xn+1 = xn −
f(xn) + f

(
xn − f(xn)

f ′(xn)

)
f ′(xn)

. (1.3.9)

Secant method (1.1.2) can be consider as a simplification of Newton’s method

(1.1.1), where f ′(xn) is replace by

f(xn)− f(xn−1)

xn − xn−1
. (1.3.10)
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The main limitation of this method with respect to the Newton method is of order

since the expression (1.3.10) is not an optimal solution of f ′(xn). In order to avoid

this problem, Amat and Basqular [2] provided following generalization of secant

method:

xn+1 = xn − A−1n f(xn), (1.3.11)

where An = [yn, xn; f ] =
f(xn)− f(yn)

xn − yn
, yn = xn + δn(xn−1 − xn),

δn ≤ |O(εn)
3
2 |.

Very recently in 2014, McDaugall and Wotherspoon [75] obtained a modified

Newton’s method by a different strategy. Their method is the following:

If x0 is the initial approximation, then

x∗0 = x0 (1.3.12)

x1 = x0 −
f(x0)

f ′[1
2
(x0 + x∗0)]

. (1.3.13)

Subsequently for n ≥ 1, the iterations can be obtained as

x∗n = xn −
f(xn)

f ′[1
2
(xn−1 + x∗n−1)]

(1.3.14)

xn+1 = xn −
f(xn)

f ′[1
2
(xn + x∗n)]

. (1.3.15)

It was proved that the last method is of order 1 +
√

2. The methods presented in

this section motivated us to carry out our own investigations.

1.4 Objectives

In most of the scientific and engineering problems, we come across nonlinear equa-

tions which need to be solved. Finding the exact solutions of such nonlinear

equations is not always possible. Moreover many times, we do not require exact

solutions. In such situations numerical methods are used. Some of the classi-

cal methods for solving nonlinear equations are bisection method, secant method,

Regula-Falsi method and Newton’s method. During last two decades, a lot of new

methods have been obtained by several authors. Our main objective in the present

thesis is to contribute in this direction by obtaining some effective numerical meth-

ods.

9



Chapter 2

Methods Based on McDougall
and Wotherspoon Scheme

2.1 Introduction

Very recently in [75], McDougall and Wortherspoon obtained a method (1.3.12)-

(1.3.15) with a slight modification in the standard Newton method and achieved

order of convergence 1+
√

2. The method (1.3.12)-(1.3.15) is a predictor-corrector

type method. The predictor step is obtained just as the Newton step whereas in

the corrector step, an arithmetic average is obtained between the previous two

points and derivative is calculated at the average value.

First, we provide two variants of the method (1.3.12)-(1.3.15) by replacing the

arithmetic average with geometric average and harmonic average. The correspond-

ing methods are shown to be of order 1 +
√

2 each.

Next, we construct a hybrid method by combining the iterations of the method

(1.3.12)-(1.3.15) with the secant method. We show that the corresponding method

is of order 3.5615. The motivation of combining two methods comes from the

previous works of [48], [49], [50], [52] and [64], where the authors successfully

obtained higher order of convergence.

The contents of this chapter is based on the author’s paper [53].
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2.2 The Methods with Harmonic and Geometric

Averages

To begin with, we suggest the following method as a variant of (1.3.12)-(1.3.15)

by replacing the arithmetic average with the harmonic average:

x∗0 = x0 (2.2.1)

x1 = x0 −
f(x0)

f ′
(

2x0x∗0
x0+x∗0

) = x0 −
f(x0)

f ′(x0)
(2.2.2)

followed by (for n ≥ 1)

x∗n = xn −
f(xn)

f ′
(

2xn−1x∗n−1

xn−1+x∗n−1

) (2.2.3)

xn+1 = xn −
f(xn)

f ′
(

2xnx∗n
xn+x∗n

) . (2.2.4)

The convergence of the method has been discussed in the following:

Theorem 2.2.1. Let α be a simple zero of a function f which has sufficient num-

ber of smooth derivatives in a neighbourhood of α. Then for solving the nonlinear

equation f(x) = 0, the method (2.2.1)-(2.2.4) is convergent with order of conver-

gence 1 +
√

2.

Proof. Denote cj = 1
j!
.
f j(α)

f ′(α)
, j = 2, 3, 4 · · · . It is standard to work out that

the error equation in the Newton method (1.2.1) is given by

en+1 = c2e
2
n, (2.2.5)

where en denotes the error in the iterate xn and the terms with higher powers of

en are ignored.

Let us now proceed with convergence analysis of the method (2.2.1)-(2.2.4).

Let en and e∗n denote the errors in the iterates xn and x∗n, respectively. Then

obviously e∗0 = e0 and in the view of (2.2.5), the error equation for (2.2.2) is given

by

e1 = c2e
2
0 (2.2.6)

using which, Taylor series expansion and binomial expansion, the error equation
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for (2.2.3) with n = 1, i.e., for x∗1 is given by

e∗1 = e1 −
f(α + e1)

f ′(α + e0)

= e1 −
e1 + c2e

2
1 + c3e

3
1 +O(e41)

1 + 2c2e0 + 3c3e20 +O(e30)

= e1 −
(
e1 + c2e

2
1 + c3e

3
1 +O(e41)

) (
1− 2c2e0 − 3c3e

2
0 + 4c22e

2
0 +O(e30)

)
= 2c2e0e1

= 2c22e
3
0, (2.2.7)

neglecting the higher powers of e0.

Next, we find that

2x1x
∗

x1 + x∗1
=

2(α + e1)(α + e∗1)

(α + e1) + (α + e∗1)

=

(
α + (e1 + e∗1) +

e1e
∗
1

α

)(
1 +

e1 + e∗1
2α

)−1
= α +

e1 + e∗1
2

,

neglecting the higher powers of e1 and e∗1. Therefore, the error equation for (2.2.4)

with n = 1, i.e., x2 can be obtained as follows:

e2 = e1 −
f(α + e1)

f ′
(
α +

e1+e∗1
2

)
= e1 − (1 + c2e

2
1 + c3e

3
1)

[
1 + 2c2

(
e1 + e∗1

2

)
+ 3c3

(
e1 + e∗1

2

)2
]−1

= c2e1e
∗
1

= 2c42e
5
0

by using (2.2.6) and (2.2.7). It can be shown, in general, that for n ≥ 2, the errors

respectively in x∗n and xn can be obtained recursively by the relations

e∗n = c2enen−1

and

en+1 = c2ene
∗
n.
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Using the above information, the errors at each stage in x∗n and xn+1 are obtained

and are tabulated below:

Table 2.1: Successive errors.

n en e∗n

0 e0 e0

1 c2e
2
0 2c22e

3
0

2 2c42e
5
0 2c62e

7
0

3 22c112 e
12
0 23c162 e

17
0

4 25c282 e
29
0 27c402 e

41
0

5 212c692 e
70
0 217c982 e

99
0

...
...

...

Note that, we obtain the same sequences {en} and {e∗n} as obtained in [75].

Consequently, the method (2.2.1)-(2.2.4) is convergent with order of convergence

1 +
√

2. 2

Next, we propose the following method that involves geometric average:

x∗0 = x0 (2.2.8)

x1 = x0 −
f(x0)

f ′(
√
x0x∗0 )

= x0 −
f(x0)

f ′(x0)
(2.2.9)

followed by (for n ≥ 1)

x∗n = xn −
f(xn)

f ′(
√
xn−1x∗n−1 )

(2.2.10)

xn+1 = xn −
f(xn)

f ′(
√
xnx∗n )

. (2.2.11)
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We prove the following:

Theorem 2.2.2. Let α be a simple zero of a function f which has sufficient number

of smooth derivatives in a neighbourhood of α. Then for solving nonlinear equation

f(x) = 0, the method (2.2.8)-(2.2.11) is convergent with order of convergence

1 +
√

2.

Proof. As in the proof of Theorem 2.2.1, e∗0 = e0 and e1 = c2e
2
0. For n = 1,

(2.2.10) becomes

x∗1 = x1 −
f(x1)

f ′(x0)
,

which is exactly the same as obtained from (2.2.3) for n = 1. Therefore, the error

e∗1 in (2.2.10) is as given by (2.2.7), i.e.,

e∗1 = 2c22e
3
0.

We now calculate the error in (2.2.11) for n = 1. We have

f ′
(√

x1x∗1

)
= f ′

(√
(α + e1)(α + e∗1)

)
= f ′

[
α

(
1 +

e1 + e∗1
α

+
e1e
∗
1

α2

) 1
2

]

= f ′
(
α +

e1 + e∗1
2

)
= f ′(α)[1 + c2(e1 + e∗1)]

using the binomial expansion for fractions, Taylor’s expansion and neglecting

higher power terms of e1 and e∗1. Using this, the error e2 in (2.2.11) can be

calculated as

e2 = e1 − (e1 + c2e
2
1 + c3e

3
1)[1 + c2(e1 + e∗1)]

−1

= c2e1e
∗
1

= 2c42e
5
0.

It can be shown, in general, that for n ≥ 2, the errors en and e∗n can be calculated
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recursively by the relations

e∗n = c2enen−1

en+1 = c2ene
∗
n.

These relations are exactly the same as obtained in Theorem 2.2.1. Consequently,

the method (2.2.8)-(2.2.11) is convergent with order of convergence 1 +
√

2. 2

Remark 2.2.3. For any n = 0, 1, 2, · · · , if xnx
∗
n < 0, then in the method (2.2.8)-

(2.2.11),
√
xnx∗n will not be real and hence the method will not proceed further.

To avoid such situation, one has to be a little cautious. Although, the exact root

of the given nonlinear equation is not known, but it is not difficult to know the

sign of the root, e.g., one can plot the corresponding curve. In the case of positive

root, if we start with a positive initial approximation x0, then since the method

is convergent, all iterates will be positive and there will be no negative product.

The case of negative root can be handled similarly.

2.3 Combining with Secant Method

In this section, we provide a method by combining the iterations of the method

(1.3.12)-(1.3.15) with secant method and show that the order of convergence of

the resulting method is more than 1 +
√

2. Precisely, we propose the following

method:

If x0 is the initial approximation, then

x∗0 = x0 (2.3.1)

x∗∗0 = x0 −
f(x0)

f ′[1
2
(x0 + x∗0)]

= x0 −
f(x0)

f ′(x0)
(2.3.2)

x1 = x∗∗0 −
x∗∗0 − x∗0

f(x∗∗0 )− f(x∗0)
f(x∗∗0 ) (2.3.3)
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followed by (for n ≥ 1)

x∗n = xn −
f(xn)

f ′[1
2
(xn−1 + x∗n−1)]

(2.3.4)

x∗∗n = xn −
f(xn)

f ′[1
2
(xn + x∗n)]

(2.3.5)

xn+1 = x∗∗n −
x∗∗n − x∗n

f(x∗∗n )− f(x∗n)
f(x∗∗n ). (2.3.6)

For convergence of this method, we prove the following:

Theorem 2.3.1. Let f be a function having sufficient number of continuous deriva-

tives in a neighbourhood of α which is a simple root of the equation f(x) = 0. Then

the method (2.3.1)-(2.3.6) to approximate the root α is convergent with order of

convergence 3.5615.

Proof. On the lines of the proofs of Theorems 2.2.1 and 2.2.2 and also the

error equation of the standard secant method, it can be shown that the errors

e∗0, e
∗∗
0 and e1 respectively in x∗0, x

∗∗
0 and x1 in the method (2.3.1)-(2.3.6) are given

by

e∗0 = e0

e∗∗0 = c2e
2
0

e1 = c2e
∗
0e
∗∗
0 = c22e

3
0.

Also the errors e∗1 and e∗∗1 respectively in x∗1 and x∗∗1 are given by

e∗1 = 2c2e0e1 = 2c32e
4
0

e∗∗1 = c2e1e
∗
1 = 22c42e

7
0.

It can be shown, in general, that for n ≥ 2, the errors e∗n, e
∗∗
n and en respectively

in x∗n, x
∗∗
n and xn in the method (2.3.1)-(2.3.6) can be calculated recursively by the

relations

e∗n = c2en−1en

e∗∗n = c2ene
∗
n

en = c2e
∗
n−1e

∗∗
n−1.

The corresponding errors at each stage in x∗n, x
∗∗
n and xn are obtained and tabulated

as follows:
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Table 2.2: Successive errors.

n en e∗n e∗∗n

0 e0 e0 c2e
2
0

1 c22e
3
0 2c32e

4
0 2c62e

7
0

2 22c102 e
11
0 22c132 e

14
0 24c242 e

25
0

3 26c382 e
39
0 28c492 e

50
0 214c882 e

89
0

4 222c1382 e1390 228c1772 e1780 250c3162 e3170

5 278c4942 e4950 2100c6332 e6340 2178c11282 e11290

...
...

...
...

We make the analysis of the table as done in [75]. Note that the powers of e0

in the error at each iterate from the sequence

3, 11, 39, 139, 495, 1763, 6279, 22363, · · ·

and the sequence of their successive ratios is

11

3
,

39

11
,

139

495
,

495

139
,

1763

495
,

6279

1763
,

22363

6279
, · · ·

or

3.67, 3.5454, 3.5641, 3.5611, 3.5616, 3.5615, 3.5615, · · · .

This sequence approaches to a fixed number which approximately can be taken as

3.5615 which is the order of convergence of the method (2.3.1)-(2.3.6). 2

Alternative Proof

Here, we present different approach to prove Theorem 2.3.1. On the lines of the

proofs of Theorems 2.2.1 and 2.2.2 and also the error equation of the standard

secant method, it can be shown that the errors e∗n, e
∗∗
n and en respectively in x∗n, x

∗∗
n

and xn for n ≥ 2 in the method (2.3.1)-(2.3.6) satisfy the following recursion
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formula:

e∗n = c2en−1en

e∗∗n = c2ene
∗
n = c22en−1e

2
n

en+1 = c42e
∗
ne
∗∗
n = c42e

2
n−1e

3
n. (2.3.7)

To find the order of convergence of the method, we need a relation of the form

en+1 = Aepn. (2.3.8)

Thus,

en = Aepn−1 or en−1 = A−
1
p e

1
p
n . (2.3.9)

From (2.3.7), (2.3.8) and (2.3.9), we have

Aepn = c42e
3
nA
−2/pe2/pn .

Equating the power of en, we obtain

p = 3 +
2

p

or, p2 − 3p− 2 = 0

or, p =
3±
√

17

2
.

Taking positive value, p = 3.5615. Thus, the order of convergence of the method

(2.3.1)-(2.3.6) is 3.5615 and Theorem 2.3.1 is completely proved. 2

Remark 2.3.2. Amalgamation of methods already exists in literature. For exam-

ple, Kasturiarachi [64] amalgamated standard Newton and Secant methods, Jain

[52] mixed iterations of Steffensen and Secant methods, Jain in [48] and [50] also

mixed several methods with secant as well as with modified secant methods. It

is noticed that whenever a method is combined with secant method, the order

of convergence of the method gets increased by 1. In the present situation, the

method (1.3.12)-(1.3.15) of McDougall and Wortherspoon [75] is of order 1 +
√

2

but the increment in our method (2.3.1)-(2.3.6) is more than 1 when combines

with the secant method.

It is natural to consider the variants of methods (2.3.1)-(2.3.6), where in (2.3.2)

and (2.3.5), the arithmetic mean is replaced by harmonic mean as well as geo-

metric mean as done in methods (2.2.1)-(2.2.4) and (2.2.8)-(2.2.11), respectively.
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Precisely, with harmonic mean, we propose the following method:

x∗0 = x0 (2.3.10)

x∗∗0 = x0 −
f(x0)

f ′
(

2x0x
∗
0

x0 + x∗0

) = x0 −
f(x0)

f ′(x0)
(2.3.11)

x1 = x∗∗0 −
x∗∗0 − x∗0

f(x∗∗0 )− f(x∗0)
f(x∗∗0 ) (2.3.12)

followed by (for n ≥ 1)

x∗n = xn −
f(xn)

f ′
(

2xn−1x
∗
n−1

xn−1 + x∗n−1

) (2.3.13)

x∗∗n = xn −
f(xn)

f ′
(

2xnx
∗
n

xn + x∗n

) (2.3.14)

xn+1 = x∗∗n −
x∗∗n − x∗n

f(x∗∗n )− f(x∗n)
f(x∗∗n ). (2.3.15)

and with the geometric mean, we propose the following:

x∗0 = x0 (2.3.16)

x∗∗0 = x0 −
f(x0)

f ′(
√
x0x∗0 )

= x0 −
f(x0)

f ′(x0)
(2.3.17)

x1 = x∗∗0 −
x∗∗0 − x∗0

f(x∗∗0 )− f(x∗0)
f(x∗∗0 ) (2.3.18)

followed by (for n ≥ 1)

x∗n = xn −
f(xn)

f ′
(√

xn−1x∗n−1
) (2.3.19)

x∗∗n = xn −
f(xn)

f ′ (
√
xnx∗n )

(2.3.20)

xn+1 = x∗∗n −
x∗∗n − x∗n

f(x∗∗n )− f(x∗n)
f(x∗∗n ). (2.3.21)

Using the arguments as used in the proofs of Theorems (2.2.1), (2.2.2) and (2.3.1),

the following result can be proved. We omit the details.

Theorem 2.3.3. Let f be a function having sufficient number of continuous
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derivatives in a neighbourhood of α which is a simple root of the equation f(x) = 0.

Then the methods (2.3.10)-(2.3.15) as well as (2.3.16)-(2.3.21) to approximate the

root α are convergent with order of convergence 3.5615.

2.4 Algorithms and Numerical Examples

We give below an algorithm in order to implement the method (2.3.1)-(2.3.6):

Algorithm 2.4.1. Step 1: For the given tolerance ε > 0 and iteration N , choose

the initial approximation x0 and set n = 0.

Step 2: Follow the following sequence of expressions:

x∗0 = x0

x∗∗0 = x0 −
f(x0)

f ′[1
2
(x0 + x∗0)]

= x0 −
f(x0)

f ′(x0)

x1 = x∗∗0 −
x∗∗0 − x∗0

f(x∗∗0 )− f(x∗0)
f(x∗∗0 ).

Step 3: For n = 1, 2, 3, . . ., calculate x2, x3, x4, . . . by the following sequence of

expressions:

x∗n = xn −
f(xn)

f ′[1
2
(xn−1 + x∗n−1)]

x∗∗n = xn −
f(xn)

f ′[1
2
(xn + x∗n)]

xn+1 = x∗∗n −
x∗∗n − x∗n

f(x∗∗n )− f(x∗n)
f(x∗∗n ).

Step 4: Stop if either |xn+1 − xn| < ε or n > N .

Step 5: Set n = n+ 1 and repeat Step 3.

Example 2.4.2. We apply Algorithm (2.4.1) on the nonlinear equation

cosx− xex + x2 = 0. (2.4.1)
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Figure 2.1: Graph of the function f(x) = cos x− xex + x2.

From Figure 2.1, it is clear that the equation (2.4.1) has a simple root in the

interval (0, 1). Table 2.3 shows the iterations of McDougall-Wortherspoon method

(1.3.12)-(1.3.15), a third order method ([104]) and our method (2.3.1)-(2.3.6).
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Table 2.3: Approximation of root of the equation (2.4.1) using different methods.

n McDougall-Wotherspoon A third order method [104] Present method

method (2.3.1)-(2.3.6)

1. 0.64132328499316349 0.64599588437664313 0.63915520442184104

2. 0.6391544362117092 0.63915411336536088 0.6391541004893474

3. 0.63915409833960735 0.63915408672427509 division by zero

4. 0.63915411809538092 0.63915409327226524

5. 0.63915407824650872 0.63915409982025551

6. 0.63915409800228429 0.63915410636824566

7. 0.63915411775805786 0.63915411291623581

8. 0.63915407790918577 0.63915408627515002

9. 0.63915409766496134 division by zero

10. 0.63915411742073491

11. 0.63915407757186271

12. 0.63915409732763828

13. 0.63915411708341185

14. 0.63915407723453976

15. 0.63915409699031522

16. 0.63915411674608891

17. 0.63915407689721671

18. 0.63915409665299228

19. 0.63915411640876585

20. 0.63915407655989365

Example 2.4.3. We refer to the problem of “Solving a Crime” from [17]. The

problem is of estimating the time of death of a person. It was noticed that the core

temperatures of the corpse were 90◦F and 85◦F at 8 PM and 9 PM, respectively.
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Also, it was noticed that due to the failure of air conditioner, the room temperature

increased at the rate of 1◦F per hour. Using the Newton’s Law of Cooling, the

problem reduces to solving the equations

(
18 +

1

k

)
e−k − 1

k
− 12 = 0 (2.4.2)

and (
18 +

1

k

)
e−kt + t− 1

k
− 26.6 = 0 (2.4.3)

simultaneously, where k denotes the constant of proportionality and t denotes the

time. The equations (2.4.2) and (2.4.3) are nonlinear and so precise values of k

and t is difficult to find. The author in [17] used secant method to solve (2.4.2)

with initial interval (0.1, 1). After six iterations, the approximate value of k was

obtained as 0.337114. Using k = 0.337114 in (2.4.3) and using secant method again

with initial interval (−2, 0), after six iterations, t was found to be −1.130939 which

means that the man would have been dead approximately 1 hour 8 minutes before

8 PM. In Tables 2.4 and 2.5, we demonstrate that if instead of secant method, we

apply our method (2.3.1)-(2.3.6), then we require much less than six iterations to

reach the same conclusion.
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Table 2.4: To calculate value of k in (2.4.2).

n Mcdougall-Wortherspoon A third order method [104] Present method

method (2.3.1)-(2.3.6)

1. 0.39424536527674747 0.28399501628622575 0.33729218050164789

2. 0.33712186735193811 0.33711307862711176 0.33711438414127259

3. 0.33711437423853269 0.33711439449543812 division by zero

4. 0.33711439130907683 division by zero

5. 0.33711437857729748

6. 0.33711439564784168

7. 0.33711438291606233

8. 0.33711437018428397

9. 0.33711438725482684

10. 0.33711437452304749
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Table 2.5: To calculate value of t in (2.4.3).

n McDougall-Wortherspoon A third order method [104] Present method

method (2.3.1)-(2.3.6

1. -0.43229389880795427 -1.4680241724237642 -1.1259217033754243

2. -1.1245149717844931 -1.1310367658010889 -1.1309393994384249

3. -1.1309384372848865 -1.13093937858347 division by zero

4. -1.1309393943474491 division by zero

5. -1.1309393977356448

6. -1.1309394011238405

7. -1.1309394045120362

8. -1.130939407900232

9. -1.1309394112884277

10. -1.1309394146766234

Remark 2.4.4. The examples in support of methods (2.3.10)-(2.3.15) as well as

(2.3.16)-(2.3.21) have also been tested and verified. For conciseness, we avoid the

details.

2.5 A Generalised Method

In this section, we propose the variant of Newton’s method (1.2.1) whose iterative

schemes are as follows:

If x0 is the initial approximation, then

x∗0 = x0 (2.5.1)

x1 = x0 −
f(x0)

f ′(ax0 + bx∗0)
= x0 −

f(x0)

f ′(x0)
, where a+ b = 1. (2.5.2)
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Subsequently for n ≥ 1

x∗n = xn −
f(xn)

f ′(axn−1 + bx∗n−1)
(2.5.3)

xn+1 = xn −
f(xn)

f ′(axn + bx∗n)]
. (2.5.4)

For the convergence of this method we prove following result.

Theorem 2.5.1. Let f be a function having sufficient number of continuous deriva-

tives in a neighbourhood of α which is a simple root of the equation f(x) = 0. Then

the method (2.5.1)-(2.5.4) to approximate the root α is convergent with order of

convergence 1 +
√

2 when a = 1
2

and b = 1
2

and for all other values of a and b, its

order of convergence is 2.

Proof. As in the lines of the proof of Theorem (2.2.1), denote cj = fj(α)
j!f ′(α)

. The

errors e∗0, e1 and e∗1 respectively in x∗0, x1 and x∗1 are given by

e∗0 = e0

e1 = c2e
2
0

e∗1 = 2c22e
3
0.

From (2.5.4), the error e2 in x2 is given by

e2 = e1 −
f(α + e1)

f ′[a(α + e1) + b(α + e∗1)

= e1 −
f(α + e1)

f ′[α + ae1 + be∗1)

= e1 − (e1 + c2e
2
1 + c3e

3
1 + · · · )[1 + 2c2(ae1 + be∗1) + · · · ]−1

= c2(2a− 1)e21 + 2c2be1e
∗
1 − c3e31 + · · · .

Thus, for k > 1, the error ek in xk is given by

ek = c2(2a− 1)e2k−1 + 2c2bek−1e
∗
k−1 − c3e3k−1 + · · · .

From above it is clear that if a and b are other than 1
2
, the rate of convergence of

method (2.5.1)-(2.5.4) is only 2 and when we take a = 1
2

and b = 1
2
, this method

becomes exactly the method (1.3.12)-(1.3.15) and hence order of convergence is

1 +
√

2. This completes the proof. 2
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Chapter 3

Methods Based on Weerakoon
and Fernando Scheme

3.1 Introduction

The method given by Weerakoon and Fernando [104] which is based on (1.3.1)

and the integral involved is approximated by the trapezoidal rule (1.3.2). As

a result, Weerakoon and Fernando obtained iterative method (1.3.3) for solving

nonlinear equation f(x) = 0. The method so obtained is of third order. Here,

the aim is to modify method (1.3.3). In fact, in (1.3.3), f ′ is a function of the

previously calculated iterate. In our modification, f ′ would be a function of some

other convenient points. It is proved that the corresponding method has order of

convergence 5.1925. We follow the technique of McDougall and Wotherspoon [75]

who modified Newton’s method in a similar way yielding the order of convergence

of their method as 1 +
√

2.

Further, in [48] and [50], it was proved that if any method for solving nonlinear

equation is used in conjunction with the standard secant method, then the order

of the resulting method is increased by 1. We shall show, in this chapter (see

Theorem 3.3.2), that this order can be increased by more than 1. In fact, we prove

that if our own method (which is of order 5.1925) is combined with the secant

method, then the new method is of order 7.275.

The contents of this chapter are based on the author’s paper [54].
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3.2 Method with Trapezoidal Rule

We propose the following method:

If x0 is the initial approximation, then

x∗0 = x0

x1 = x∗0 −
2f(x∗0)

f ′(x∗0) + f ′(z1)
,

where z1 = x0 −
f(x0)

f ′(x0)

x∗1 = x1 −
2f(x1)

f ′(x1) + f ′(z∗1)
,

with z∗1 = x1 −
f(x1)

f ′[1
2
(x0 + x∗0)]

= x1 −
f(x1)

f ′(x0)
.



(3.2.1)

Subsequently, for n ≥ 1, the iterations can be obtained as follows:

x∗n = xn −
2f(xn)

f ′(xn) + f ′(z∗n)
,

where z∗n = xn −
f(xn)

f ′[1
2
(xn−1 + x∗n−1)]

xn+1 = x∗n −
2f(x∗n)

f ′(x∗n) + f ′(zn+1)
,

with zn+1 = xn −
f(xn)

f ′[1
2
(xn + x∗n)]

.


(3.2.2)

Below, we prove the convergence result for the method (3.2.1)-(3.2.2).

Theorem 3.2.1. Let α be a simple zero of a function f which has sufficient number

of smooth derivatives in a neighborhood of α. Then the method (3.2.1)-(3.2.2) is

convergent and has the order of convergence 5.1925.

Proof. Let en and e∗n denote, respectively, the errors in the terms xn and x∗n.

Also, we denote cj =
f j(α)

j!f ′(α)
, j = 2, 3, 4, · · · , which are constants. The error

equation for the method (1.3.3) as obtained by Weerakoon and Fernando [104] is

given by

en+1 = ae3n,

where a = c22 + 1
2
c3 and we have neglected higher power terms of en. In particular,
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the error e1 in x1 in the equations (3.2.1) is given by

e1 = ae30. (3.2.3)

We now proceed to calculate the error e∗1 in x∗1. By using Taylor series expansion

and binomial expansion, we get

f(x1)

f ′(x0)
=
f(α + e1)

f ′(α + e0)

=
(
e1 + c2e

2
1 + c3e

3
1 +O(e41)

)(
1 + 2c2e0 + 3c3e

2
0 +O(e30)

)−1
= e1 − 2c2e0e1 +O(e50)

so that

x1 −
f(x1)

f ′(x0)
= α + 2c2e0e1 +O(e50).

Consequently, by Taylor series expansion, it can be calculated that

f ′(z∗1) = f ′
(
x1 −

f(x1)

f ′(x0)

)
= f ′

(
α + 2c2e0e1 +O(e50)

)
= f ′(α)

(
1 + 4c22e0e1 +O(e50)

)
.

Also

f ′(x1) = f ′(e1 + α)

= f ′(α)
(
1 + 2c2e1 + 3c3e

2
1 +O(e31)

)
so that

f ′(x1) + f ′(z∗1) = 2f ′(α)
(
1 + c2e1 + 2c22e0e1 +O(e50)

)
. (3.2.4)

Now, using (3.2.3) and (3.2.4), the error e∗1 in x∗1 in the equation (3.2.1) can be

calculated as

e∗1 = e1 −
(
e1 + c2e

2
1 +O(e31)

)(
1 + c2e1 + 2c22e0e1 +O(e50)

)−1
= 2c22e0e

2
1

= ba2e70,
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where b = 2c22. Using e∗1, we now compute the error e2 in the term

x2 = x∗1 −
2f(x∗1)

f ′(x∗1) + f ′(z2)
,

where

z2 = x1 −
f(x1)

f ′
(x1+x∗1

2

) .
Now

f ′
(x1 + x∗1

2

)
= f ′

(
α +

e1 + e∗1
2

)
= f ′(α)

(
1 + c2e1 + c2e

∗
1 +

3

4
c3e

2
1 +O(e90)

)
so that

f(x1)

f ′
(x1+x∗1

2

) =
(
e1 + c2e

2
1 +O(e31)

)(
1 + c2e1 + c2e

∗
1 +

3

4
c3e

2
1 +O(e90)

)−1
= e1 +

1

4
c3e

3
1 − c2e1e∗1

and therefore

z2 = α− 1

4
c3e

3
1 + c2e1e

∗
1,

where the higher power terms are neglected. Thus

f ′(z2) = f ′(α)
(
1− 1

2
c2c3e

3
1 + 2c22e1e

∗
1

)
and

f ′(x∗1) = f ′(α)
(
1 + 2c2e

∗
1 + 3c3e

∗
1
2
)
.

Using the above considerations, the error e2 in x2 is given by

e2 = e∗1 −
(
e∗1 + c2e

∗
1
2 + c3e

∗3
1

)(
1 + c2e

∗
1 −

1

4
c2c3e

3
1

)−1
= −1

4
c2c3e

3
1e
∗
1

= ce31e
∗
1,

where c = −1
4
c2c3. In fact, it can be worked out that for n ≥ 1, the following
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relation holds:

en+1 = ce3ne
∗
n. (3.2.5)

In order to compute en+1 explicitly, we need to compute e∗n. We already know e∗1.

We now compute e∗2. We have

x∗2 = x2 −
2f(x2)

f ′(x2) + f ′(z∗2)
,

where

z∗2 = x2 −
f(x2)

f ′
(x1+x∗1

2

) .
Like above, it can be calculated that the error e∗2 is given by

e∗2 = de1e
2
2,

where d = c22 and, again, it can be checked that in general, for n ≥ 2, the following

relation holds:

e∗n = den−1e
2
n. (3.2.6)

In the view of (3.2.5) and (3.2.6), the errors at each stage in x∗n and xn+1 are

calculated which are tabulated below:

Table 3.1: Successive errors.

n en e∗n

0 e0 e0

1 ae30 a2be70

2 a5bce160 a11b2c2de350

3 a26b5c6de830 a57b11c13d3e1820

4 a135b26c32d6e4310 a296b57c70d14e9450

5 a701b135c167d32e22380 ...

...
...

...

It is observed that the powers of e0 in the errors at each iterate form a sequence

3, 16, 83, 431, 2238, · · · (3.2.7)
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and the sequence of their successive ratios is

16

3
,

83

16
,

431

83
,

2238

431
, · · ·

or,

5.3334, 5.1875, 5.1927, 5.1925, · · · .

This sequence seems to converge to the number 5.1925 approximately. Indeed, if

the terms of the sequence (3.2.7) are denoted by {αi }, then it can be seen that

αi = 5αi−1 + αi−2, i = 2, 3, 4 · · · (3.2.8)

If we set the limit
αi
αi−1

=
αi−1
αi−2

= R,

Then dividing (3.2.8) by αi−1, we obtain

R2 − 5R− 1 = 0

which has its positive root as R =
5 +
√

29

2
≈ 5.1925. Hence the order of conver-

gence of the method is at least 5.1925. 2

Next, we give two variants of the method (3.2.1)-(3.2.2). Note that, in (3.2.1)-

(3.2.2), the arithmetic average of the points xn, x
∗
n, n = 0, 1, 2, · · · has been used.

We propose methods in which the arithmetic average is replaced by harmonic

as well as geometric averages. With harmonic average, we propose the following

method:

If x0 is the initial approximation, then

x∗0 = x0

x1 = x∗0 −
2f(x∗0)

f ′(x∗0) + f ′(z1)
,

where z1 = x0 −
f(x0)

f ′
(

2x0x∗0
x0+x∗0

) = x0 −
f(x0)

f ′(x0)

x∗1 = x1 −
2f(x1)

f ′(x1) + f ′(z∗1)
,

with z∗1 = x1 −
f(x1)

f ′
(

2x0x∗0
x0+x∗0

) = x1 −
f(x1)

f ′(x0)
.



(3.2.9)
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Subsequently, for n ≥ 1, the iterations can be obtained as follows:

x∗n = xn −
2f(xn)

f ′(xn) + f ′(z∗n)
,

where z∗n = xn −
f(xn)

f ′
(

2xn−1x∗n−1

xn−1+x∗n−1

)
xn+1 = x∗n −

2f(x∗n)

f ′(x∗n) + f ′(zn+1)
,

with zn+1 = xn −
f(xn)

f ′
(

2xnx∗n
xn+x∗n

) .



(3.2.10)

For the geometric average of the points xn, x
∗
n, n = 0, 1, 2, · · · , the following

method is proposed:

x∗0 = x0

x1 = x∗0 −
2f(x∗0)

f ′(x∗0) + f ′(z1)
,

where z1 = x0 −
f(x0)

f ′ (
√
x0x∗0 )

= x0 −
f(x0)

f ′(x0)

x∗1 = x1 −
2f(x1)

f ′(x1) + f ′(z∗1)
,

with z∗1 = x1 −
f(x1)

f ′ (
√
x0x∗0 )

= x1 −
f(x1)

f ′(x0)
.



(3.2.11)

Subsequently, for n ≥ 1, the iteration can be obtained as follows:

x∗n = xn −
2f(xn)

f ′(xn) + f ′(z∗n)
,

where z∗n = xn −
f(xn)

f ′
(√

xn−1x∗n−1
)

xn+1 = x∗n −
2f(x∗n)

f ′(x∗n) + f ′(zn+1)
,

with zn+1 = xn −
f(xn)

f ′ (
√
xnx∗n )

.


(3.2.12)

The convergence of the methods (3.2.9)-(3.2.10) and (3.2.11)-(3.2.12) can be

proved on the similar lines as those in Theorem 3.2.1. We only state the results

below:

Theorem 3.2.2. Let α be a simple zero of a function f which has sufficient number

of smooth derivatives in a neighborhood of α. Then for solving nonlinear equation
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f(x) = 0, the method (3.2.9)-(3.2.10) is convergent with order of convergence

5.1925.

Theorem 3.2.3. Let α be a simple zero of a function f which has sufficient number

of smooth derivatives in a neighborhood of α. Then for solving nonlinear equation

f(x) = 0, the method (3.2.11)-(3.2.12) is convergent with order of convergence

5.1925.

3.3 Combining with Secant Method

In this section, we obtain a new iterative method by combining the iterations of

method (3.2.1)-(3.2.2) with secant method and prove that the order of convergence

is more than 5.1925. Precisely, we propose the following method:

If x0 is the initial approximation, then

x∗0 = x0

x∗∗0 = x∗0 −
2f(x∗0)

f ′(x∗0) + f ′(z1)
,

where z1 = x0 −
f(x0)

f ′(x0)

x1 = x∗∗0 −
x∗∗0 − x∗0

f(x∗∗0 )− f(x∗0)
f(x∗∗0 ).


(3.3.1)

Subsequently, for n ≥ 1, the iterations can be obtained as follows:

x∗n = xn −
2f(xn)

f ′(xn) + f ′(z∗n)
,

where z∗n = xn −
f(xn)

f ′
(xn−1+x∗n−1

2

)
x∗∗n = x∗n −

2f(x∗n)

f ′(x∗n) + f ′(zn+1)
,

where zn+1 = xn −
f(xn)

f ′
(xn+x∗n

2

)
xn+1 = x∗∗1 −

x∗∗n − x∗n
f(x∗∗n )− f(x∗n)

f(x∗∗n ).



(3.3.2)

Remark 3.3.1. In [48] and [50], it was proved that if the iterations of any

method of order p for solving nonlinear equations are used alternatively with se-

cant method, then the new method will be of order p + 1. Thus, in view of that
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result, the method (3.3.1)-(3.3.2) is certainly of order at least 6.1925. However,

we prove below that the order is more.

Theorem 3.3.2. Let f be a function having sufficient number of smooth deriva-

tives in a neighborhood of α which is a simple root of the equation f(x) = 0.

Then method (3.3.1)-(3.3.2) to approximate the root α is convergent with order of

convergence 7.275.

Proof. We argue on the lines of that of Theorem 3.2.1 and the error equation of

the standard secant method. In particular, the errors e∗0, e
∗∗
0 and e1, respectively,

in x∗0, x
∗∗
0 and x1 in (3.3.1) are given by

e∗0 = e0

e∗∗0 = ae30, where a = c22 +
1

2
c3

e1 = c2e
∗
0e
∗∗
0 = λae40, where λ = c2.

Also, the errors e∗1 in x∗1 in (3.3.2) is given by

e∗1 = 2c22e0e
2
1

= λ2a2be90, where b = 2c22

and the error e∗∗1 in x∗∗1 in (3.3.2) is given by

e∗∗1 = −1

4
c2c3e

3
1e
∗
1

= ce31e
∗
1,

where c = −1
4
c2c3. In fact, it can be worked out that for n ≥ 1, the following

relation holds:

e∗∗n = ce3ne
∗
n. (3.3.3)

In order to compute e∗∗n explicitly, we need to compute en and e∗n. We have already

computed e1 and e∗1. From the proof of Theorem 3.2.1

e∗2 = de1e
2
2,
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where d = c22 and, again, it can be checked that the following relation holds:

e∗n = den−1e
2
n. (3.3.4)

Also from (3.3.2), it can be shown that

e2 = λe∗1e
∗∗
2 .

Thus, for n ≥ 1, it can be shown that the error en+1 in xn+1 in the method

(3.3.1)-(3.3.2) satisfies the following recursion formula

en+1 = λe∗ne
∗∗
n . (3.3.5)

Using the above information, the errors at each stage in x∗n, x
∗∗
n and xn are obtained

and tabulated as follows:

Table 3.2: Successive errors.

n en e∗n e∗∗n

0 e0 e0 ae30

1 λae40 λ2a2be90 λ5a5bce210

2 λ8a7b2ce300 λ17a15b5c2e640 λ42a36b11c6e1540

3 λ60a51b13c8e2180 λ128a109b29c17e4660 λ308a260b68c42e11200

4 λ437a369b97c59e15860 λ934a789b208c126e33900 λ2245a1896b499c304e81480

5 λ3180a2685b707c430e115380 ... ...

...
...

...
...

We do the analysis of Table 3.2 as done in the proof of Theorem 3.2.1 for Table

3.1. Note that the powers of e0 in the error at each iterate from the sequence

4, 30, 218, 1586, 11538, · · · (3.3.6)
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and the sequence of their successive ratios is

30

4
,

218

30
,

1586

218
,

11538

1586
, · · ·

or

7.5, 7.2667, 7.2752, 7.2749, · · · .

If the terms of the sequence (3.3.6) are denoted by {Ni}, then it can be seen that

Ni = 7Ni−1 + 2Ni−2, i = 2, 3, 4, · · · .

Thus, as in Theorem 3.2.1, the rate of convergence of method (3.3.1)-(3.3.2) is at

least 7.275. 2

Alternative Proof

Theorem 3.3.2 can also be proved using Definition 1.1.14 of the order of conver-

gence. On the lines the proof of Theorem 3.3.2 and also the error equation of

the standard secant method, it can be shown that the errors e∗n, e
∗∗
n and en+1, re-

spectively, in x∗n, x
∗∗
n and xn+1 for n ≥ 1 in the method (3.3.1)-(3.3.2) satisfy the

following recursion formula:

e∗n = den−1e
2
n

e∗∗n = ce3ne
∗
n = cden−1e

5
n

en+1 = λe∗ne
∗∗
n = λcd2e2n−1e

7
n. (3.3.7)

To find the order of convergence of the method, we need a relation of the form

en+1 = Aepn, (3.3.8)

where A is some constant. Thus, we have

en = Aepn−1 or en−1 = A−
1
p e

1
p
n . (3.3.9)

From (3.3.7), (3.3.8) and (3.3.9), we obtain

Aepn = λcd2A−2/pe2/pn e7n.
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Equating the power of en,

p =
2

p
+ 7

or, p2 − 7p− 2 = 0

or, p =
7±
√

57

2
.

Taking positive value, p = 7.275. Thus, the order of convergence of the method

(3.3.1)-(3.3.2) is 7.275 and Theorem 3.3.2 is completely proved. 2

It is natural to consider the variants of the method (3.3.1)-(3.3.2), where in

the expression of zn and z∗n, the arithmetic mean is replaced by harmonic mean as

well as geometric mean as done in methods (3.2.9)-(3.2.10) and (3.2.11)-(3.2.12),

respectively. Precisely, with harmonic mean, we propose the following method:

x∗0 = x0

x∗∗0 = x∗0 −
2f(x∗0)

f ′(x∗0) + f ′(z1)
,

where z1 = x0 −
f(x0)

f ′
(

2x0x∗0
x0+x∗0

) = x0 −
f(x0)

f ′(x0)

x1 = x∗∗0 −
x∗∗0 − x∗0

f(x∗∗0 )− f(x∗0)
f(x∗∗0 )


(3.3.10)

followed by (for n ≥ 1)

x∗n = xn −
2f(xn)

f ′(xn) + f ′(z∗n)
,

where z∗n = xn −
f(xn)

f ′
(

2xn−1x∗n−1

xn−1+x∗n−1

)
x∗∗n = x∗n −

2f(x∗n)

f ′(x∗n) + f ′(zn+1)
,

where zn+1 = xn −
f(xn)

f ′
(

2xnx∗n
xn+x∗n

)
xn+1 = x∗∗1 −

x∗∗n − x∗n
f(x∗∗n )− f(x∗n)

f(x∗∗n )



(3.3.11)
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and with the geometric mean, we propose the following :

x∗0 = x0

x∗∗0 = x∗0 −
2f(x∗0)

f ′(x∗0) + f ′(z1)
,

where z1 = x0 −
f(x0)

f ′ (
√
x0x∗0 )

= x0 −
f(x0)

f ′(x0)

x1 = x∗∗0 −
x∗∗0 − x∗0

f(x∗∗0 )− f(x∗0)
f(x∗∗0 )


(3.3.12)

followed by (for n ≥ 1)

x∗n = xn −
2f(xn)

f ′(xn) + f ′(z∗n)
,

where z∗n = xn −
f(xn)

f ′
(√

xn−1x∗n−1
)

x∗∗n = x∗n −
2f(x∗n)

f ′(x∗n) + f ′(zn+1)
,

where zn+1 = xn −
f(xn)

f ′ (
√
xnx∗n )

xn+1 = x∗∗1 −
x∗∗n − x∗n

f(x∗∗n )− f(x∗n)
f(x∗∗n ).



(3.3.13)

The convergence of the methods (3.3.10)-(3.3.11) and (3.3.12)-(3.3.13) can be

proved by using the arguments as used in the proof of Theorem 3.3.2. We only

state the results for conciseness.

Theorem 3.3.3. Let α be a simple zero of a function f which has sufficient number

of smooth derivatives in a neighborhood of α. Then for solving nonlinear equation

f(x) = 0, the method (3.3.10)-(3.3.11) is convergent with order of convergence

7.275.

Theorem 3.3.4. Let α be a simple zero of a function f which has sufficient number

of smooth derivatives in a neighborhood of α. Then for solving nonlinear equation

f(x) = 0, the method (3.3.12)-(3.3.13) is convergent with order of convergence

7.275.

3.4 Algorithms and Numerical Examples

We give below an algorithm to implement method (3.2.1)-(3.2.2):
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Algorithm 3.4.1. Step 1: For the given tolerance ε > 0 and iteration N , choose

the initial approximation x0 and set n = 0.

Step 2: Follow the following sequence of expressions:

x∗0 = x0

x1 = x∗0 −
2f(x∗0)

f ′(x∗0) + f ′(z1)
,

where z1 = x0 −
f(x0)

f ′(x0)

x∗1 = x1 −
2f(x1)

f ′(x1) + f ′(z∗1)
,

where z∗1 = x1 −
f(x1)

f ′
(x0+x∗0

2

) = x1 −
f(x1)

f ′(x0)
.

Step 3: For n = 1, 2, 3, . . ., calculate x2, x3, x4, . . . by the following sequence of

expressions:

x∗n = xn −
2f(xn)

f ′(xn) + f ′(z∗n)
,

where z∗n = xn −
f(xn)

f ′
(xn−1+x∗n−1

2

)
xn+1 = x∗n −

2f(x∗n)

f ′(x∗n) + f ′(zn+1)
,

where zn+1 = xn −
f(xn)

f ′
(xn+x∗n

2

)
Step 4: Stop if either |xn+1 − xn| < ε or n > N .

Step 5: Set n = n+ 1 and repeat Step 3.

Example 3.4.2. We apply method (3.2.1)-(3.2.2) on the nonlinear equation

cosx− xex + x2 = 0. (3.4.1)

This equation has a simple root in the interval (0, 1). Taking initial approximation

as x0 = 1, Table 3.3 shows the iterations of McDougall-Wotherspoon method, a

third order method (1.3.3) and our method (3.2.1)-(3.2.2).
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Table 3.3: Approximation of root of the equation (3.4.1) using different methods.

n WF method (1.3.3) MW method Present method (3.2.1)-(3.2.2)

1. 1.1754860092539474 0.89033621746836966 0.64406452481689269

2. 0.7117526001461193 0.66469560530044569 0.63915407608296659

3. 0.63945030188514695 0.63928150457301036 0.63915411559451774

4. 0.63915408656045591 0.63915408990276223 0.6391540955014231

5. 0.63915410631623149 0.63915410965853769 0.63915407540832936

6. 0.63915412607200606 0.6391540698096656 0.6391541149198805

7. 0.63915408622313585 0.63915408956544117 0.63915409482678587

8. 0.63915410597891142 0.63915410932121663 0.63915407473369212

9. 0.639154125734686 0.63915406947234454 0.63915411424524327

10. 0.63915408588581579 0.63915408922812 0.63915409415214863

11. 0.63915410564159136 0.63915410898389557 0.63915407405905489

12. 0.63915412539736594 0.63915406913502348 0.63915411357060603

13. 0.63915408554849573 0.63915408889079894 0.6391540934775114

14. 0.63915410530427119 0.63915410864657451 0.63915407338441765

15. 0.63915412506004576 0.63915406879770231 0.6391541128959688

16. 0.63915408521117556 0.63915408855347788 0.63915409280287416

17. 0.63915410496695113 0.63915410830925345 0.63915407270978042

18. 0.6391541247227257 0.63915406846038125 0.63915411222133156

19. 0.6391540848738555 0.63915408821615682 0.63915409212823693

20. 0.63915410462963107 0.63915410797193239 0.63915407203514318

Example 3.4.3. We consider the same equation as in Example 3.4.2 but now

implement method (3.3.1)-(3.3.2) and compare with other methods. Table 3.4,

shows the corresponding iterates. One can also compare the last columns of Table
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3.3 and Table 3.4 which correspond to methods (3.2.1)-(3.2.2) and (3.3.1)-(3.3.2),

respectively. This clearly indicates the fast convergence of (3.3.1)-(3.3.2) .

Table 3.4: Comparision of numerical solution of equation (3.4.1) using different

methods.

n WF method (1.3.3) MW method Present method (3.3.1)-(3.3.2)

1. 1.1754860092539474 0.89033621746836966 0.63919747126530391

2. 0.7117526001461193 0.66469560530044569 0.63915410580338361

3. 0.63945030188514695 0.63928150457301036 0.63915409891807362

4. 0.63915408656045591 0.63915408990276223 0.63915409203276374

5. 0.63915410631623149 0.63915410965853769 0.63915408514745375

6. 0.63915412607200606 0.6391540698096656 0.63915411145121981

7. 0.63915408622313585 0.63915408956544117 division by zero

8. 0.63915410597891142 0.63915410932121663

9. 0.639154125734686 0.63915406947234454

10. 0.63915408588581579 0.63915408922812

11. 0.63915410564159136 0.63915410898389557

12. 0.63915412539736594 0.63915406913502348

13. 0.63915408554849573 0.63915408889079894

14. 0.63915410530427119 0.63915410864657451

15. 0.63915412506004576 0.63915406879770231

16. 0.63915408521117556 0.63915408855347788

17. 0.63915410496695113 0.63915410830925345

18. 0.6391541247227257 0.63915406846038125

19. 0.6391540848738555 0.63915408821615682

20. 0.63915410462963107 0.63915410797193239
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Chapter 4

Methods Based on Integral
Approximation and Inverse
Functions

4.1 Introduction

We consider the iterative methods to find the simple root of nonlinear equations

f(x) = 0, where f : D ⊆ R→ R for an open interval D is a scalar function. One of

the most widely used numerical methods is Newton’s method (1.2.1). In the recent

years, tremendous variants of this method have appeared showing one or the other

advantages over this method in some sense. Weerakoon and Fernando in [104] used

the Newton’s theorem (1.3.1) and approximated the integral in Newton’s theorem

by trapezoidal rule (1.2.4) and then they obtained the variant of Newton’s method.

Let us recall from Chapter 1 that Weerakoon and Fernando [104] used the

techniques of numerical integration in order to improve Newton’s method and

obtained method based on trapezoidal rule. Later this technique was used by

other people and obtained some similar methods based on harmonic mean rule,

midpoint rule, Simpson’s rule etc.

In [29], Dehghan and Hajarian approximated the integral
∫ x
xn
f ′(t) dt by a lin-

ear combination of trapezoidal rule, midpoint rule and harmonic mean rule and

obtained the following method:

xn+1 = xn −

[
f(xn)(f ′(xn) + f ′(x∗n))

2f(xn)f ′(x∗n)
+

2

3

f(xn)

f ′(xn+x
∗
n

2
)
− 4

3

f(xn)

f ′(xn) + f ′(x∗n)

]
.

(4.1.1)

In this chapter, to begin with, we generalize the method (4.1.1) and we propose
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the method:

xn+1 = xn−

[
a

2f(xn)

f ′(xn) + f ′(x∗n)
+ b

f(xn)(f ′(xn) + f ′(x∗n))

2f ′(xn)f ′(x∗n)
+ c

f(xn)

f ′(xn+x
∗
n

2
)

]
. (4.1.2)

We shall prove that, in general, for any values of a, b, c, the method (4.1.2) is of

order 3 if a+b+c = 1. However, the method can be made of order 4 for particular

values of a, b and c. This is done in the Section 4.2. In Section 4.3, we study

certain methods which are based on inverse function technique. This technique

for certain other methods has been used by Jain [48], Homeir [45] etc.

Section 4.4 is devoted to the method that is composed of the Wang’s method

[99] and harmonic mean method. Some numerical examples based on these meth-

ods have been collected in Section 4.5. In Section 4.6 and 4.7, we study some

hybrid methods which are combinations of some known methods. The order of

convergence of these hybrid methods are more than the combining methods. Fi-

nally, in Section 4.8, we present more numerical examples to implement these

methods.

Some contents of this chapter are based on author’s papers [59] and [60]

4.2 Combination of Arithmetic Mean, Harmonic

Mean and Midpoint Rule

As the main result of this section, we prove the following convergence result re-

garding the method (4.1.2):

Theorem 4.2.1. Let the function f has sufficient number of continuous deriva-

tives in a neighbourhood of α which is a simple zero of f(x) = 0, that is, f(α) = 0

and f ′(α) 6= 0. Then for any values of a, b, c with a+ b+ c = 1, the method (4.1.2)

is of order 3. Moreover, a = −2
3
, b = 1 and c = 2

3
, then the method (4.1.2) is of

order 4.

Proof. Suppose that en is the error in nth iterate, that is, xn = α+ en. Then

using Taylor’s expansions and after some calculation as in [81] and [104], we get

2f(xn)

f ′(xn) + f ′(x∗n)
= en − (c22 +

1

2
c3)e

3
n +O(e4n), (4.2.1)
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f(xn)[f ′(xn) + f ′(x∗n)]

2f ′(xn)f ′(x∗n)
= en −

1

2
c3e

3
n +O(e4n) (4.2.2)

and
f(xn)

f ′(xn+x
∗
n

2
)

= en + (
1

4
c3 − c22)e3n +O(e4n), (4.2.3)

where cj = 1
j!
fj(α)
f ′(α)

, j = 2, 3, · · · . Substituting the values from (4.2.1), (4.2.2) and

(4.2.3) in (4.1.2), we get

en+1 = en − (a+ b+ c)en + a(c22 +
1

2
c3)e

3
n + b(

1

2
c3e

3
n)− c(1

4
c3 − c22)e3n +O(e4n)

= (
a

2
+
b

2
− c

4
)c3e

3
n + (a+ c)c22e

3
n +O(e4n).

Hence from above, the rate of convergence of method (4.1.2) is at least three and

it become four for unique value of a = −2
3
, b = 1 and c = 2

3
. Thus, fourth order

convergent method is

xn+1 = xn +
2

3

2f(xn)

f ′(xn) + f ′(x∗n)
− f(xn)(f ′(xn) + f ′(x∗n))

2f(xn)f ′(x∗n)
− 2

3

f(xn)

f ′(xn+x
∗
n

2
)
. (4.2.4)

2

The method (4.2.4) is same as Dehghan and Hajarian method [29] but they

approximated the indefinite integral in Newton’s theorem by linear combination

of trapezoidal integration rule, midpoint integral rule and harmonic mean rule

and there is no idea how they choose constants. The cost of getting fourth order

method from third order methods is only we have to evaluate one more function.

4.3 Inverse Function Method

Homeir [45] and Jain [48] used Newton’s theorem (1.3.1) for the inverse function

x = f−1(y) = g(y) instead of y = f(x), that is,

g(y) = g(yn) +

∫ y

yn

g′(t) dt. (4.3.1)

If we approximate the indefinite integral in (4.3.1) by harmonic mean rule, we get

∫ y

yn

g′(t) dt = (y − yn)
2g′(yn)g′(y)

g′(yn) + g′(y)
. (4.3.2)
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Hence from (4.3.1) and (4.3.2), we obtain

g(y) = g(yn) + (y − yn)
2g′(yn)g′(y)

g′(yn) + g′(y)
,

where yn = f(xn). Now using the fact that g′(y) = (f−1)′(y) = [f ′(x)]−1 and that

y = f(x) = 0, we obtain

x = xn + (0− f(xn))
2 1
f ′(xn)

1
f ′(x)

1
f ′(xn)

+ 1
f ′(x)

= xn −
2f(xn)

f ′(xn) + f ′(x)
.

Thus when x→ xn+1 and in right side if we use x∗n = xn+1 = xn− f(xn)
f ′(xn)

, then, we

get the iterative formula

xn+1 = xn −
2f(xn)

f ′(xn) + f ′(x∗n)
. (4.3.3)

This formula is exactly same as the formula (1.3.3) obtained by approximating the

indefinite integral of Newton’s theorem (1.3.1) using the trapezoidal rule for the

function y = f(x).

Again, if we approximate the indefinite integral in (4.3.1) by midpoint rule, we

get ∫ x

yn

g′(t) dt = (y − yn)g′
(
y + yn

2

)
.

Hence from equation(4.3.1), we get

g(y) = g(yn) + (y − yn)g′
(
y + yn

2

)
or, x = xn + (0− f(xn))

1

f ′(x+xn
2

)
.

Consequently, we obtain the following iterative formula

xn+1 = xn −
f(xn)

f ′(xn+x
∗
n

2
)
, (4.3.4)

where x∗n = xn − f(xn)
f ′(xn)

. This method is exactly same as the method given by
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(1.3.4).

Finally if we approximate the indefinite integral in equation (4.3.1) by trape-

zoidal rule, we get

∫ y

yn

g′(t) dt =
(y − yn)

2
[g′(y) + g′(yn)].

Also from (4.3.1), we get

g(y) = g(yn) +
(y − yn)

2
[g′(y) + g′(yn)]

or, x = xn +
(0− f(xn)

2
[

1

f ′(x)
+

1

f ′(xn)
]

= xn −
f(xn)[f ′(xn) + f ′(x)]

2f(xn)f ′(x)
.

Therefore the following iterative formula is obtained:

xn+1 = xn −
f(xn)[f ′(x) + f ′(x∗n)]

2f(xn)f ′(x∗n)
, (4.3.5)

where x∗n = xn − f(xn)
f ′(xn)

. This formula is same as the (1.3.5) obtained by approxi-

mating the indefinite integral of equation (1.3.1) using the harmonic mean rule for

the function y = f(x). From above it is clear that the fourth-order convergence

method based on inverse function obtained by combining the methods which are

obtained respectively by approximating the indefinite integral of Newton’s formula

by harmonic mean rule, midpoint rule and trapezoidal rule is also given the same

formula as (4.2.4).

4.4 Combination of Harmonic Mean Rule and

Wang’s Rule

Wang [99] approximated the integral in Newton’s theorem (1.3.1) by using formula

∫ x

xn

f ′(t) dt = (x− xn)

[
(1− β)f ′(xn) + βf ′

(
xn −

f(xn)

2βf ′(xn)

)]
, β 6= 0 (4.4.1)

and in [81], Özban approximated the integral by using the harmonic mean rule,
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that is, ∫ x

xn

f ′(t) dt = (x− xn)
2f ′(x)f ′(xn)

f ′(x) + f ′(xn)
. (4.4.2)

From Section 4.3, Newton’s theorem (1.3.1) for the inverse function x = f−1(y) =

g(y) instead of y = f(x), takes the form (4.3.1). If we approximate the integral in

(4.3.1) by harmonic mean rule, we obtain

∫ y

yn

g′(t) dt = (y − yn)
2g′(y)g′(yn)

g′(y) + g′(yn)
, (4.4.3)

and from Wang formula (4.4.1 )

∫ y

yn

g′(t) dt = (y − yn)

[
(1− β)g′(yn) + βg′

(
yn −

g(yn)

2βg′(yn)

)]
. (4.4.4)

If we approximate the integral of (4.3.1) by linear combination of harmonic and

Wang rules, we get

g(y) = g(yn) + (y − yn)

[
(1− θ) 2g′(y)g′(yn)

g′(y) + g′(yn)

+θ

(
(1− β)g′(yn) + βg′

(
yn −

g(yn)

2βg′(yn)

))]
,

where yn = f(xn) and θ is any real number. Now using the fact that g′(y) =

(f−1)′(y) = [f ′(x)]−1 and that y = f(x) = 0 as in [48], we get

xn+1 = xn−(1−θ) 2f(xn)

f ′(xn) + f ′(x∗n)
−θf(xn)

[
(1− β)

f ′(xn)
+

β

f ′ (xn − f(xn)/2βf ′(xn))

]
,

(4.4.5)

where x∗n = xn − f(xn)
f ′(xn)

.

We shall prove below that the order of convergence of the method (4.4.5) is at

least three in general and for particular values of θ and β, it can be more.

Theorem 4.4.1. Let function f has sufficient number of derivative in the neigh-

borhood of α, which is a simple zero of f, that is, f(α) = 0, f ′(α) 6= 0. Then, the

method (4.4.5) is of order at least 3 and for unique values of θ = 5
3

and β = 5
8
, it

is of order 4.

Proof. Suppose en is the error in the nth iterate xn and denote cj = 1
j!
fj(α)
f ′(α)

, j =
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2, 3, 4, · · · . Then xn = α + en. From Taylor’s series about α, we obtain

f(xn) = f(α + en)

= f(α) + enf
′(α) +

e2n
2!
f ′′(α) +

e3n
3!
f ′′′(α) +O(e4n)

= f ′(α)[en + c2e
2
n + c3e

3
n +O(e4n)], (4.4.6)

and

f ′(xn) = f ′(α + en)

= f ′(α) + enf
′′(α) +

e2n
2!
f ′′′(α) +

e3n
3!
f iv(α) +O(e4n)

= f ′(α)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n +O(e4n)]. (4.4.7)

From equation(4.4.6 ) and (4.4.7 )

f(xn)

f ′(xn)
=
(
en + c2e

2
n + c3e

3
n +O(e4n)

)(
1 + 2c2en + 3c3e

2
n +O(e3n)

)−1
= en − c2e2n + 2(c22 − c3)e3n +O(e4n) (4.4.8)

and hence

x∗n = α + c2e
2
n + 2(c3 − c22)e3n +O(e4n). (4.4.9)

After some calculations, we get

f ′(x∗n) = f ′(α)[1 + 2c22e
2
n + 4(c2c3 − c22)e3n +O(e4n)],

f ′(xn) + f ′(x∗n) = 2f ′(α)

[
1 + 2c2en +

(
c22 +

3

2
c3

)
e2n + 2(c2c3 − c32 + c4)e

3
n +O(e4n)

]
,

(4.4.10)

f ′
(
xn −

f(xn)

2βf ′(xn)

)
= f ′(α)

[
1 + 2c2(1−

1

2β
)en +

(
c22
β

+ 3c3

(
1− 1

2β

)2
)
e2n +O(e3n)

]
,

(4.4.11)

2f(xn)

f(xn) + f ′(x∗n)
= en − (c22 +

1

2
c3)e

3
n +O(en)4 (4.4.12)
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and

f(xn)

(1− β)

f ′(xn)
+

β

f ′
(
xn −

f(xn)

2βf ′(xn)

)
 = en +

[
1

β
c22 − (2c22 − c3)−

3

4β
c3

]
e3n +O(en)4.

(4.4.13)

Consequently, from (4.4.5)

en+1 = en − (1− θ)
[
en −

(
c22 +

1

2
c3

)
e3n +O(en)4

]
−θ
[
en +

(
1

β
c22 − (2c22 − c3)−

3

4β
c3

)
e3n +O(en)4

]
= (1− θ)(c22 +

1

2
c3)e

3
n + θ[− 1

β
c22 + (2c22 − c3) +

3

4β
c3]e

3
n +O(e4n). (4.4.14)

For unique values of θ = 5
3

and β = 5
8
, we get from the (4.4.14) that en+1 = O(e4n).

Thus, the order of convergence of family of method (4.4.5) is at least three and

it gives the fourth order method for unique value of θ = 5
3

and β = 5
8
. The new

fourth order method is, thus, given by

xn+1 = xn +
4

5

f(xn)

f(xn) + f ′(x∗n)
− 5

24
f(xn)

 3

f ′(xn)
+

5

f ′
(
xn −

4f(xn)

5f ′(xn)

)
 ,

(4.4.15)

where x∗n = xn − f(xn)
f ′(xn)

. Hence, theorem (4.4.1) is completely proved. 2

4.5 Numerical Examples

In order to check the performance of the introduced fourth-order method (4.4.15),

we give the numerical results on some functions. We also compare the results of

this method with Newton’s method (NM), Weerakoon and Fernando (WF) method

and Wang Method. Numerical computations have been performed using the Mat-

lab software rounding to 16 significant decimal digits. We use the stopping criteria

|xn+1 − xn| < ε where ε = (10)−8 for the iterative process of our results.

The functions and their roots α which are used as numerical examples are given

below:

1. f1(x) = cos x− xex + x2, α = 0.639154069332008

2. f2(x) = (x− 1)8 − 1, α = 2
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3. f3(x) = x3 + 4x2 − 10, α = 1.365230013414007

Table 4.1: f1(x) = cos x− xex + x2 and initial guess x0 = 1.

n Newton method WF method Wang method Present method (4.4.15)

1 0.724644697567095 0.665881945014898 0.662938687425796 0.645000328957045

2 0.644658904870270 0.639169572742496 0.639163361765903 0.639154096912870

3 0.639177807467281 0.639154096332011 0.639154096332008

4 0.639154096773051

Table 4.2: f2(x) = (x− 1)8 − 1, and initial guess x0 = 2.5.

n Newton method WF method Wang method Present method (4.4.15)

1 2.319815957933242 2.244107083493465 2.236236164659438 2.177268585515064

2 2.172758071196855 2.068965943835277 2.060772262760990 2.014981732655870

3 2.067131900591505 2.003572340012848 2.002277983579724 2.000002165842810

4 2.013060520391305 2.000000704582805 2.000000159604880 2.000000000000000

5 2.000574370391506 2.000000000000000 2.000000000000000

6 2.000001152667968

7 2.000000000004650

Table 4.3: f3(x) = x3 + 4x2 − 10 and initial guess x0 = 1.

n Newton method WF method Wang method Present method (4.4.15)

1 1.454545454545455 1.345024237239806 1.346506300114548 1.369968652351256

2 1.368900401069519 1.365227728691384 1.365228321128059 1.365230013487738

3 1.365236600202116 1.365230013414097 1.365230013414097

4 1.365230013435367
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Table 4.4: Comparision of different methods.

Function
Newton method W-F method Wang method Present method (4.4.15

TNFE TNI TNFE TNI TNFE TNI TNFE TNI

f1 8 4 9 3 9 3 8 2

f2 14 7 15 5 15 5 16 4

f3 8 4 9 3 9 3 8 2

TNI : Total number of iterations, TNFE : Total number of functions evaluation

From above discussion, it turns out that the method (4.4.5) is a family of at least

third order methods which contains Weerakoon and Fernando method, inverse

Wang method as well as many other third order methods. For the unique value of

θ and β, it gives a fourth order method which is actually linear combination of two

third order methods, inverse harmonic mean and inverse Wang. The numerical

experiment results shows that new introduced fourth order method can easily

compete with classical Newton method, Wang method as well as Weerakoon and

Fernando method. Also this method does not require the computation of second

or higher order derivatives.

4.6 Method Based on Simpson Rule

In [40], Hassanov, Ivnov and Nedhzhibov suggested a new iterative method (1.3.6)

by approximating the integral in Newton’s theorem (1.3.1) using the Simpson rule.

Combining this method with the quadratically convergent method due to Kanwar,

Kukreja, and Singh [63],

xn+1 = xn −
2f(xn)

f ′(xn) + p
√
f ′2(xn) + 4f 2(xn)

, (4.6.1)
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Mir, Ayub and Rafiq [77] obtained a new third order method,

xn+1 = xn −
6f(xn)

f ′(xn) + 4f ′
(
x∗n+1+xn

2

)
+ f ′(x∗n+1)

(4.6.2)

where x∗n+1 = xn −
2f(xn)

f ′(xn) + p
√
f ′2(xn) + 4f 2(xn)

,

for solving nonlinear equation f(x) = 0, where p is chosen as positive or nega-

tive sign so as to make the denominator largest in magnitude to avoid numerical

difficulties. Our aim, in this section, is to find a variant of method (4.6.2).

Using inverse function x = f−1(y) = g(y) instead of y = f(x) in Newton’s

theorem (1.3.1), we get (4.3.1). If we approximate the integral in (4.3.1) by using

Simpson rule, we get

g(y) = g(yn) +

(
y − yn

6

)[
g′(yn) + 4g′

(
y + yn

2

)
+ g′(y)

]
,

where yn = f(xn). Now using the fact that g′(y) = (f−1)′(y) = [f ′(x)]−1 and that

y = f(x) = 0, we obtain

x = xn −
1

6
f(xn)

[
1

f ′(xn)
+

4

f ′
(
x+xn

2

) +
1

f ′(x)

]
.

Thus, we obtain the iterative formula

xn+1 = xn −
1

6

 f(xn)

f ′(xn)
+

4f(xn)

f ′
(
x∗n+1+xn

2

) +
f(xn)

f ′(x∗n+1)

 (4.6.3)

where x∗n+1 = xn −
2f(xn)

f ′(xn) + p
√
f ′2(xn) + 4f 2(xn)

.

For the convergence analysis of method (4.6.3), we prove the following result.

Theorem 4.6.1. Let f be a function having sufficient number of derivatives in a

neighborhood of α which is a simple zero of equation f(x) = 0. Then the iterative

method (4.6.3) is of order three for p = 1

Proof. Suppose en is the error in the nth iterate xn and denote cj = 1
j!
fj(α)
f ′(α)

, j =
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2, 3, 4, · · · . Then xn = α+ en. On the line of the proof of Theorem 4.4.1, we have

f(xn) = f ′(α)[en + c2e
2
n + c3e

3
n +O(e4n)],

f ′(xn) = f ′(α)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n +O(e4n)],

f(xn)

f ′(xn)
= en − c2e2n + 2(c22 − c3)e3n +O(e4n).

Also x∗n+1 can be written as

x∗n+1 = xn −
2f(xn)

f ′(xn)

1(
1 +

√
1 + 4

(
f(xn)
f ′(xn)

)2) . (4.6.4)

Substituting the value of f(xn)
f ′(xn)

and using the binomial theorem for any rational

number, after some calculations, we get

x∗n+1 = α + c2e
2
n + [2(c3 − c22) + 1]e3n +O(e4n). (4.6.5)

Now, by using Taylor’s series, we have

f ′(x∗n+1) = f ′(α)[1 + 2c22e
2
n + {4c2(c3 − c22) + 2}(e3n) +O(e4n)]. (4.6.6)

Also,

x∗n+1 + xn
2

= α +
1

2
[en + c2e

2
n + {2(c3 − 2c22) + 1}(e3n) +O(e4n)]. (4.6.7)

Using Taylor’s series again, we find that

f ′
(
x∗n+1 + xn

2

)
= f ′(α)[1 + c2en + (c22 +

3

4
c3)e

2
n +O(e3n)]. (4.6.8)

So that

f(xn)

f ′
(
x∗n+1+xn

2

) = en + (c3 − 2c22 −
3

4
c3 + c22)e

3
n +O(e4n)

= en + (
1

4
c3 − c22)e3n +O(e4n), (4.6.9)
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and
f(xn)

f ′(x∗n+1)
= en + c2e

2
n + (c3 − 2c22)e

3
n +O(e4n). (4.6.10)

Thus, the error equation of (4.6.3) becomes

en+1 = en −
1

6

[
en − c2e2n + 2(c22 − c3)e3n +O(e4n) + 4{en + (

1

4
c3 − c22)e3n +O(e4n)}

+en + c2e
2
n + (c3 − 2c22)e

3
n +O(e4n)

]
=

2

3
c22e

3
n +O(e4n). (4.6.11)

Hence order of convergence of method (4.6.3) is 3. 2

4.7 Increasing the Order of Convergence

In this section, we obtain two variants of Mir, Ayab and Rafiq method (4.6.2) by

combining with secant and modified secant methods.

The order of convergence of Mir, Ayab and Rafiq method (4.6.2) for solving

nonlinear equation can be raised to 4 if the iterations are performed alternately

with secant method (1.2.2). The corresponding method becomes

xn+1 = xn −
xn − xn

f(xn)− f(xn)
f(xn), (4.7.1)

where xn = xn −
6f(xn)

f ′(xn) + 4f ′
(
x∗n+1+xn

2

)
+ f ′(x∗n+1)

(4.7.2)

with x∗n+1 = xn −
2f(xn)

f ′(xn) + p
√
f ′2(xn) + 4f 2(xn)

. (4.7.3)

In this method, p is chosen positive or negative sign so as to make the denominator

largest in magnitude to avoid numerical difficulties. For the order of convergence

of the method (4.7.1)-(4.7.3), we prove the following.

Theorem 4.7.1. Let f be a function having sufficient number of derivatives in a

neighborhood of α which is a simple root of equation f(x) = 0. Then, the iterative

method (4.7.1)-(4.7.3) is of order 4 for p = 1 .

Proof. Let en and en be the errors in xn and xn, respectively, that is, xn =

α + en and xn = α + en. Denote cj = fj(α)
j!f ′(α)

, j = 2, 3, 4 · · · . It was shown by Mir,
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Ayub and Rafiq in [77] that the error equation of (4.7.2) is given by

en = c22e
3
n +O(e4n). (4.7.4)

Here,

xn − xn = (α + en)− (α + en)

= en − en

= c22e
3
n − en +O(e4n)

By Taylor’s expansion, we get

f(xn) = f(α + en)

= f ′(α)[en + c2e
2
n + c3e

3
n +O(e4n)]

and using (4.7.4), we obtain

f(xn) = f(α + en)

= f ′(α)[c22e
3
n +O(e6n)].

Thus, we get

f(xn)− f(xn) = f ′(α)[c22e
3
n +O(e6n)]− f ′(α)[en + c2e

2
n + c3e

3
n +O(e4n)]

= −f ′(α)en[1 + c2en + (c3 − c22)e2n +O(e3n)]

and

(xn − xn)f(xn)

f(xn)− f(xn)
=

[c22e
3
n − en +O(e4n)]f ′(α)[c22e

3
n +O(e6n)]

−f ′(α)en[1 + c2en + (c3 − c22)e2n +O(e3n)]

= [c22e
3
n +O(e5n)][1 + c2en + (c3 − c22)e2n +O(e3n)]−1

= c22e
3
n − c32e4n +O(e5n).
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Thus, the error equation in (4.7.1) is given by

en+1 = en − c22e3n + c32e
4
n +O(e5n)

= c22e
3
n +O(e4n)− c22e3n + c32e

4
n +O(e5n)

= Ae4n +O(e5n),

where A is some constant. The assertion is, therefore, proved. 2

Next, the iterations of Mir, Ayab and Rafiq method (4.6.2) are performed

alternately with modified secant method (1.3.11). Then the corresponding method

becomes

x∗n+1 = xn −
2f(xn)

f ′(xn) + p
√
f ′2(xn) + 4f 2(xn)

xn = xn −
6f(xn)

f ′(xn) + 4f ′
(
x∗n+1+xn

2

)
+ f ′(x∗n+1)

xn+1 = xn − A−1n f(xn), (4.7.5)

where An = [yn, xn; f ] =
f(xn)− f(yn)

xn − yn

with yn = xn + δn(xn − xn), δn ≤ |O(en)
3
2 |.

For the convergence analysis of method (4.7.5), we prove following result:

Theorem 4.7.2. Let f be a function having sufficient number of derivatives in a

neighborhood of α which is a simple root of f(x) = 0. Then, the iterative method

(4.7.5) is of order at least 6 for p = 1.

Proof. We prove this theorem in the line of proof of Theorem 4.7.1. The error

en in xn is given by

en = c22e
3
n +O(e4n).

Since

yn = xn + δn(xn − xn) = xn + an, where an = δn(xn − xn),

by using Taylor expansion, we get

f(yn) = f(xn + an) = f(xn) + anf
′(xn) +

a2n
2
f ′′(xn) + · · · .
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Also

An =
f(xn)− f(yn)

xn − yn

=
anf

′(xn) +
a2n
2
f ′′(xn) + · · ·

an

= f ′(xn) +
an
2
f ′′(xn) + · · ·

= f ′(xn) +O(an).

Thus, from (4.7.5), we have

xn+1 = xn −
f(xn)

An

= xn −
f(xn)

f ′(xn) +O(an)

= xn −

f(xn)

f ′(xn)

1 +O(an)

= xn −
f(xn)

f ′(xn)
[1 +O(an)]−1

= xn −
f(xn)

f ′(xn)
[1−O(an) +O(a2n) + · · · ]

= xn −
f(xn)

f ′(xn)
+O(an).

Thus, the method (4.7.5) can be written as

xn+1 = xn −
f(xn)

f ′(xn)
+O(δn|xn − xn|). (4.7.6)
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From (4.7.6), we have

en+1 = en −
f(α + en)

f ′(α + en)
+O(δn|α + en − α− en|)

= en −
(
en + c2en

2 + c3en
3 +O(en

4)
)(

1 + 2c2en + 3c3en
2 +O(en

3)
)−1

+O(δn|en − en|)

= en − (en + c2en
2 − c2en2 +O(en

3) +O(δn|en − en|)

= c2en
2 +O(δn|en − en|) + · · ·

= c2(c
2
2e

3
n)2 +O(δn|en − c22e3n|) + · · ·

= c52e
6
n +O(δn|en − c22e3n|) + · · · (4.7.7)

Since δn ≤ |O(en)
3
2 |, so if we assume that δn ≤ |O(en)2|, that is, δn ≤ |O(en)6|,

then the order of the method (4.7.5) is at least 6. 2

Remark 4.7.3. In practice, we do not have any information about the solution.

In this situation, we use the same strategy as the Amat and Basquier indicated in

[2] to obtain δn. The possible strategy to obtain {δn} can be

δ0 = O(10−k) ≤ O(e0)
3
2

δn = O(δ2
n

0 ),

where k is an integer such that

O(10−k) ≤ |f(α)− f(x0)| = |f(x0)| ≤ O(|α− x0|).

4.8 Further Numerical Examples

In this section, we shall compare the performance of newly introduced methods

(4.6.3), (4.7.1) and (4.7.5) with the some existing methods. To avoid the numerical

difficulties in newly introduced methods, we take p equal to 1 or -1 so as to make the

denominator largest in magnitude. For the comparison, we use Matlab Software

and stopping criteria |xn+1− xn| < (10)−12 or |f(xn+1)| < (10)−14 for the iterative

process of our results.

Example 4.8.1. We apply methods (4.6.3), (4.7.1) and (4.7.5) on the nonlinear

equation

x6 − x− 1 = 0 (4.8.1)
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Figure 4.1: Graph of the function f(x) = x6 − x− 1.

From the Figure 4.1, it is clear that one of the simple roots of (4.8.1) lies in the

interval (1, 2). Taking initial approximation as x0 = 1, Table 4.5 shows the itera-

tions of the Newton method, Mir, Ayab and Rafiq method (4.6.2), and introducing

methods (4.6.3), (4.7.1) and (4.7.5).
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Table 4.5: Comparision of different methods.

Method n xn |xn − xn−1| |f(xn)|

1 1.200000000000000 0.200000000000000 0.785983999999999

2 1.143575842503044 0.056424157496956 0.093031957363097

3 1.134909462242086 0.008666380260958 0.001907397172335

Newton’s 4 1.134724221386558 0.000185240855528 0.000000853719439

method 5 1.134724138401536 0.000000082985022 0.000000000000171

6 1.134724138401519 0.000000000000017 0.000000000000001

Mir 1 1.114331079664285 0.114331079664285 0.199698426927704

Ayub 2 1.134671170083933 0.020340090419648 0.000544848619648

and 3 1.134724138400651 0.000052968316718 0.000000000008935

Rafiq 4 1.134724138401519 0.000000000000868 0.000000000000001

method(p=1)

Present 1 1.124122502547814 0.124122502547814 0.106305164737796

method 2 1.134719404836294 0.010596902288480 0.000048696604577

(4.6.3) 3 1.134724138401519 0.000004733565225 0.000000000000005

(p=1)

Present 1 1.142859996170415 0.142859996170415 0.085360616958645

method 2 1.134724198032685 0.008135798137730 0.000000613463385

(4.7.1) 3 1.134724138401519 0.000000059631166 0.000000000000001

Present 1 1.134888830552744 0.134888830552744 0.001694966368938

method 2 1.134724138401519 0.000164692151225 0.000000000000003

(4.7.5) (δ0 = 0.15)

Example 4.8.2. We apply methods (4.6.3), (4.7.1)and (4.7.5) on the nonlinear
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equation

sin2 x− x2 + 1 = 0. (4.8.2)

Figure 4.2: Graph of the function f(x) = sin2 x− x2 + 1.

From the Figure 4.2, it is clear that one of the simple roots of (4.8.2) lies in

the interval (1, 2). Taking initial approximation as x0 = 2, Table 4.6 shows the

iterations of the Kanwar, Kukreja, and Singh method (4.6.1), Mir, Ayab and Rafiq

method (4.6.2), and introducing methods (4.6.3), (4.7.1)and (4.7.5) when we apply

on (4.8.2).
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Table 4.6: Comparision of different methods.

Method n xn |xn − xn−1| |f(xn)|

1 1.611941042164389 0.388058957835611 0.600045855942974

Kanwar, 2 1.436057898886696 0.175883143277692 0.080307137216431

Kukreja, 3 1.405269547988669 0.030788350898027 0.001932292231027

and Singh 4 1.404492122350878 0.000777425637791 0.000001177029015

method 5 1.404491648215517 0.000000474135360 0.000000000000437

6 1.404491648215341 0.000000000000176 0.000000000000000

Mir, 1 1.463929732530918 0.536070267469082 0.154467321201545

Ayab, 2 1.404614185557379 0.059315546973539 0.000304224828280

and Rafiq 3 1.404491648216471 0.000122537340908 0.000000000002804

method 4 1.404491648215341 0.000000000001130 0.000000000000000

(p=-1)

Present 1 1.457909810256813 0.542090189743187 0.138190341228102

methods 2 1.404554376091742 0.053355434165071 0.000155727901671

(4.6.3) 3 1.404491648215442 0.000062727876299 0.000000000000251

4 1.404491648215341 0.000000000000101 0.000000000000000

(p=-1)

Present 1 1.422910813234791 0.577089186765209 0.046386337604170

method 2 1.404491702133259 0.018419111101532 0.000000133849771

(4.7.1) 3 1.404491648215341 0.000000053917918 0.000000000000000

Present 1 1.404751654708388 0.595248345291612 0.000645590555316

method 2 1.404491648215341 0.000260006493047 0.000000000000000

(4.7.5)(δ0 = 0.1)
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Remark 4.8.3. From the above comparison tables, we observe that newly in-

troduced methods are easily compete with existing Newton’s method, Kanwar,

Kukreja, and Singh’s method (4.6.1) and Mir, Ayab and Rafiq’s method (4.6.2).

For the suitable choice of the values of p and δ0, these methods provide better

results.
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Chapter 5

Methods Based on Ujević, Erceg
and Lekić Scheme

5.1 Introduction

In the process of finding efficient numerical method for solving nonlinear equations,

Ujević, Erceg and Lekić [97] suggested a family of methods (1.3.8) as a conclusion

of two methods suggested by Ujević in [95] and [96] using different quadrature rules.

To find the method effective in practice, they seek the best possible parameters in

the method (1.3.8) and the particular method becomes

xn+1 = xn + (zn − xn)
f(xn)

f(xn)− f(zn)
,

where zn = xn −
f(xn)

f ′(xn)
.

 (5.1.1)

The order of convergence of above method is 3. In Section 5.2, we modify this

method by using modified Newton method given by McDougall and Wotherspoon

instead of classical Newton method and in Section 5.3, we combine our method

which we will obtain in Section 5.2 with secant method. In both cases, the order

of convergence is increased. Section 5.4 contains certain numerical examples based

on these methods.

5.2 McDaugall and Wortherspoon Type Method

We suggest the following method as a variant of Ujević, Erceg and Lekić method.

If x0 is the initial approximation, then
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x∗0 = x0

x1 = x0 +
(z0 − x0)f(x0)

f(x0)− f(z0)
,

where z0 = x0 −
f(x0)

f ′(
x∗0+x0

2
)

= x0 −
f(x0)

f ′(x0)
.


(5.2.1)

Subsequently, for n ≥ 1, the iterations can be obtained as follows:

x∗n = xn +
(z∗n − xn)f(xn)

f(xn)− f(z∗n)
,

where z∗n = xn −
f(xn)

f ′
(
xn−1+x∗n−1

2

)
xn+1 = xn +

(zn − xn)f(xn)

f(xn)− f(zn)
,

where zn = xn −
f(xn)

f ′[1
2
(xn + x∗n)]

.


(5.2.2)

Below we prove the convergent result for the method (5.2.1)-(5.2.2).

Theorem 5.2.1. Let α be a simple zero of a function f which has sufficient num-

ber of smooth derivatives in a neighborhood of α. Then for solving nonlinear equa-

tion f(x) = 0, the method (5.2.1)-(5.2.2) is convergent with order of convergence
3+
√
17

2
≈ 3.5615.

Proof Let en and e∗n denote respectively the errors in the terms xn and x∗n.

Also, we denote cj =
f j(α)

j!f ′(α)
, j = 2, 3, 4..., which are constants. Then from (5.2.1)

x∗0 = x0 implies e∗0 = e0. We now proceed to calculate the error e1 in x1. By using

Taylor series expansion and binomial expansion, we get

z0 = x0 −
f(x0)

f ′(x0)

= α + e0 −
f(α + e0)

f ′(α + e0)

= α + e0 −
f ′(α)[e0 + c2e

2
0 + c3e

3
0 +O(e40)]

f ′(α)[1 + 2c2e0 + 3c3e20 + 4c4e30 +O(e40)]

= α + e0 − [e0 + c2e
2
0 + c3e

3
0 +O(e40)][1 + 2c2e0 + 3c3e

2
0 + 4c4e

3
0 +O(e40)]

−1

= α + e0 − [e0 − c2e20 + 2(c22 − c3)e30 +O(e40)]

= α + c2e
2
0 + (2c3 − 2c22)e

3
0 +O(e40).
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So that after some calculation, we get

z0 − x0 = −e0 + c2e
2
0 + (2c3 − 2c22)e

3
0 +O(e40),

f(z0) = f ′(α)[c2e
2
0 + (2c3 − 2c22)e

3
0 +O(e40)],

f(x0)− f(z0) = e0f
′(α)[1 + 2c22e

2
0 − c3e20 +O(e30)],

and
(z0 − x0)f(x0)

f(x0)− f(z0)
= −e0 + c22e

3
0 +O(e40).

Hence from (5.2.1),

α + e1 = α + e0 − e0 + c22e
3
0 +O(e40)

so that

e1 = ae30, (5.2.3)

where a = c22 and we have neglected the higher power of en. Again,

x∗1 = x1 +
(z∗1 − x1)f(x1)

f(x1)− f(z∗1)
. (5.2.4)

Here

z∗1 − x1 = x1 −
f(x1)

f ′[1
2
(x0 + x∗0)]

− x1 = − f(x1)

f ′(x0)
,

so that

(z∗1 − x1)f(x1) = − [f(x1)]
2

f ′(x0)
.

Since

f(x1) = f(α + e1)

= f ′(α)[e1 + c2e
2
1 + c3e

3
1 +O(e41)],
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we have

[f(x1)]
2

f ′(x0)
=

[f(α + e1)]
2

f ′(α + e0)

= [f ′(α)]2
[e1 + c2e

2
1 + c3e

3
1 +O(e41)]

2

[1 + 2c2e0 + 3c3e20 + 4c4e30 +O(e40)]

= f ′(α)[e21 + 2c2e
3
1 + · · · ][1 + 2c2e0 + 3c3e

2
0 + 4c4e

3
0 +O(e40)]

−1

= f ′(α)[e21 − 2c2e
2
1e0 + · · · ]

= e1f
′(α)[e1 − 2c2e0e1 +O(e50).

Also

f(z∗1) = f

[
x1 −

f(x1)

f ′(x0)

]
= f

[
α + e1 −

e1 + c2e
2
1 + c3e

3
1 +O(e41)

1 + 2c2e0 + 3c3e20 +O(e30)

]
After some calculation, we get

f(z∗1) = f ′(α)[2c2e0e1 + 3c3e0
2e1 − 4c22e

2
0e1 +O(e60)]

so that

f(x1)− f(z∗1) = e1f
′(α)[1− (2c2e0 + 3c3e

2
0 − 4c22e

2
0) +O(e30)]

and

(z∗1 − x1)
f(x1)

f(x1)− f(z∗1)
= −[e1 − 2c2e0e1 +O(e50)][1− (2c2e0 + 3c3e

2
0 − 4c22e

2
0) +O(e30)]

−1

= −[e1 − 2c2e0e1 +O(e50)][1 + 2c2e0 + 3c3e
2
0 − 4c22e

2
0 + 4c22e

2
0 + · · · ]

= −e1 + (4c22 − 3c3)e
2
0e1 +O(e60). (5.2.5)

Now, using (5.2.5), the error e∗1 in x∗1 in (5.2.4) can be calculated as

e∗1 = e1 + [−e1 + (4c22 − 3c3)e
2
0e1 + 0(e60)]

= (4c22 − 3c3)e
2
0e1

= abe50, (5.2.6)
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where b =4c22 − 3c3 and we have neglected the higher power terms of e0. Now, we

compute the error e2 in the term

x2 = x1 + (z1 − x1)
f(x1)

f(x1)− f(z1)
,

where

z1 = x1 −
f(x1)

f ′
(
x1+x∗1

2

) .
Now

f ′
(
x1 + x∗1

2

)
= f ′(α +

e1 + e∗1
2

)

= f ′(α)(1 + c2e1 + c2e
∗
1 +

3

4
c3e

2
1 +O(e31)

so that

f(x1)

f ′
(
x1+x∗1

2

) = (e1 + c2e
2
1 +O(e31))

(
1 + c2e1 + c2e

∗
1 +

3

4
c3e

2
1 +O(e31)

)−1
= e1 +

1

4
c3e

3
1 − c2e1e∗1

and therefore

z1 = α− 1

4
c3e

3
1 + c2e1e

∗
1,

where the higher power terms are neglected. Thus

f(z1) = f ′(α)[c2e1e
∗
1 + c22e

2
1e
∗
1 −

1

4
c3e

3
1]

and

f(x1)− f(z1) = e1f
′(α)(1 + c2e1 + c3e

2
1 − c2e∗1 − c22e1e∗1 +

5

4
c3e

2
1).

Also

(z1 − x1)f(x1) = − [f(x1)]
2

f ′[1
2
(x1 + x∗1)],

so that

(z1 − x1)f(x1) = −e1f ′(α)(e1 + c2e
3
1 − c2e1e∗1 +

5

4
c3e

3
1).
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Using above considerations, the error e2 in x2 is given by

e2 = −3c22e
2
1e
∗
1 + c22e1(e

∗
1)

2

= −3c22e
2
1e
∗
1

= ce21e
∗
1,

where c = −3c22. In fact it can be worked out for n ≥ 1, the following relation

holds:

en+1 = ce2ne
∗
n. (5.2.7)

In order to compute en+1 explicitly, we need e∗n. We already find e∗1. We now

compute e∗2. We have

x∗2 = x2 + (z∗2 − x2)
f(x2)

f(x2)− f(z∗2)
,

where z∗2 = x2 −
f(x2)

f ′(
x1+x∗1

2
).

Similar as above, it can be calculated the error e∗2 is given by

e∗2 = de21e2,

where d = 4
3
c3 and, again, it can be checked that in general for n ≥ 2, the following

relation holds:

e∗n = de2n−1en. (5.2.8)

In the view of (5.2.7) and (5.2.8), the error at each stage in x∗n and xn+1 are

calculated which are tabulated below:
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Table 5.1: Successive errors.

n en e∗n

0 e0 e0

1 ae30 abe50

2 a3bce110 a5bcde170

3 a11b3c4de390 a17b5c6d2e610

4 a39b11c15d4e1390 a61b17c23d7e2170

5 a139b39c44d15e4950 ...

...
...

...

It is observed that the powers of e0 in the errors at each iterate from a sequence

3, 11, 39, 139, 495, 1763, 6279, 22363, ... (5.2.9)

and the sequence of their successive ratios is

11

3
,

39

11
,

139

39
,

495

139
,

1763

495
,

6279

1763
,

22363

6279
, · · ·

or,

3.67, 3.5454, 3.5641, 3.5611, 3.5616, 3.5615, 3.5615, · · · .

This sequence seems to converge the number 3.5615 approximately. The numbers

αi in the sequence (5.2.9) are related by the relation

αi = 3αi−1 + 2αi−2, i = 2, 3, 4 · · · . (5.2.10)

If we set the limit
αi
αi−1

=
αi−1
αi−2

= R,
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Then dividing (5.2.10) by αi−1, we obtain

R2 − 3R− 2 = 0,

which has its positive root as R = 3+
√
17

2
≈ 3.5615.

Hence we conclude that the order of convergence of method is at least 3.5615. 2

5.3 Increasing the Order of Convergence

In this section, we derive a new method by combining the iterations of method

(5.2.1)-(5.2.2) with the secant method and show that order of convergence of re-

sulting method is increased by more than one. Precisely, we propose the following

method:

If x0 is the initial approximation, then

x∗0 = x0

x∗∗0 = x0 +
(z0 − x0)f(x0)

f(x0)− f(z0)
,

where z0 = x0 −
f(x0)

f ′(x0)

x1 = x∗∗0 −
x∗∗0 − x∗0

f(x∗∗0 )− f(x∗0)
f(x∗∗0 ).


(5.3.1)

Subsequently, for n ≥ 1, the iteration can be obtained as follows:

x∗n = xn +
(z∗n − xn)f(xn)

f(xn)− f(z∗n)
,

where z∗n = xn −
f(xn)

f ′
(
xn−1+x∗n−1

2

)
x∗∗n = xn −

(zn − xn)f(xn)

f(xn)− f(zn)
,

where zn = xn −
f(xn)

f ′[1
2
(xn + x∗n)]

xn+1 = x∗∗n −
x∗∗n − x∗n

f(x∗∗n )− f(x∗n)
f(x∗∗n ).



(5.3.2)

For the convergence of this method, we prove the following:

Theorem 5.3.1. Let f be a function having sufficient number of smooth deriva-
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tives in a neighborhood of α which is a simple root of f(x) = 0. Then the method

(5.3.1)-(5.3.2) to approximate the root α is convergent with order of convergence

2 + 2
√

2 ≈ 4.828.

Proof We prove this theorem on the line of the proof of Theorem 5.2.1 and

error equation of standard secant method. In particular, the errors e∗0, e
∗∗
0 and e1,

respectively, in x∗0, x
∗∗
0 and x1 in (5.3.1) are given by

e∗0 = e0

e∗∗0 = ae30, where a = c22

e1 = c2e
∗
0e
∗∗
0 = λae40, where λ = c2.

Also the error e∗1 in x∗1 in (5.3.2) is given by

e∗1 = (4c22 − 3c3)e
2
0e1 = λabe60, where b = 4c22 − 3c3

and the error e∗∗1 in x∗∗1 in (5.3.2) is given by

e∗∗1 = ce21e
∗
1 = cλ3a3be140 , where c = −3c22.

In fact, it can be worked out that for n ≥ 1, the following relation holds:

e∗∗n = ce2ne
∗
n. (5.3.3)

In order to compute e∗∗n explicitly, we need to compute en and e∗n. We have already

computed e1 and e∗1. From the proof of Theorem 5.2.1,

e∗2 = de21e2,

where d = 4
3
c3 and again it can be verified that the following relation holds:

e∗n = de2n−1en. (5.3.4)

Also from (5.3.2), it can be shown that

e2 = λe∗1e
∗∗
1 = λ5a4b2ce200 .
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Thus, for n ≥ 1, it can be shown that the error en+1 in xn+1 in the method

(5.3.1)-(5.3.2) satisfies the following recursion formula

en+1 = λe∗ne
∗∗
n . (5.3.5)

Using the above information, the error at each stage in x∗n, x∗∗n , and xn are obtained

and calculated as follows:

Table 5.2: Successive errors.

n en e∗n e∗∗n

0 e0 e0 ae30

1 λae40 λabe60 λ3a3be140

2 λ5a4b2ce200 λ7a6b2cde280 λ17a14b6c4de680

3 λ25a20b8c5d2e960 λ35a28b12c7d3e1360 λ75a68b28c18d7e3280

4 λ111a96b40c25d10e4640 λ161a136b56c35d15e6560 λ383a328b136c86d25e15840

5 λ545a464b192c121d40e22400 ... ...

...
...

...
...

We construct the analysis of the table as done in [75]. Note that powers of e0

in the error at each iterate form the sequence

4, 20, 96, 464, 2240, · · · (5.3.6)

and sequence of their successive ratios is

20

4
,

96

20
,

464

96
,

2240

464
, · · ·

or,

5, 4.8, 4.84, 4.82, · · · .
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If the terms of the sequence (5.3.6) are denoted by αi, then it can be seen that

αi = 4αi−1 + 4αi−2.

Thus, the rate of convergence of method (5.3.1)-(5.3.2) is at least 2 + 2
√

2 ≈ 4.82.

2

5.4 Numerical Examples

In order to check the performance of the newly introduced methods (5.2.1)-(5.2.2)

and (5.3.1)-(5.3.2), the test functions and their roots α which are used as numerical

examples are as follows:

(i) f1(x) = (x− 1)8 − 1, α = 2

(ii) f2(x) = sin2 x− x2 + 1, α = 1.40449164821534

(iii) f3(x) = cos x− xex + x2, α = 0.639154069332008

(iv) f4(x) = x3 + 4x2 − 10, α = 1.365230013414097

Numerical computations have been performed using Matlab software and stopping

criteria |xn+1 − xn| < 10−12 and |f(xn)| < 10−14. We also compare the result of

these methods between them as well as with Newton’s method and Ujević, Erceg

and Lekić (UEL)method
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Table 5.3: f1(x) = (x− 1)8 − 1 and initial guess x0 = 3.

n Newton’s method UEL method Present method Present method

(5.2.1)-(5.2.2) (5.3.1)-(5.3.2)

1 2.750976562500000 2.621212292220119 2.621212292220119 2.536240556881722

2 2.534581615819526 2.321482528817460 2.240259790619724 2.116363645929317

3 2.348995976046720 2.106434089229419 2.029715679791304 2.000368108924736

4 2.195747198046065 2.009090545951117 2.000022929984292 2.000000000000000

5 2.082041836760382 2.000008831906093 2.000000000000000

6 2.018764916659598 2.000000000000008

7 2.001166173395949 2.000000000000000

8 2.000004743257317

9 2.000000000078744

10 2.000000000000000

Table 5.4: f2(x) = sin2 x− x2 + 1 and initial guess x0 = 1.

n Newton’s method UEL method Present method Present method

(5.2.1)-(5.2.2) (5.3.1)-(5.3.2)

1 1.649190196932272 1.320546154049013 1.320546154049013 1.442226482471086

2 1.439042347687187 1.404061768716632 1.404460568207670 1.404491649744238

3 1.405385086160459 1.404491648166524 1.404491648215341 1.404491648215341

4 1.404492272936243 1.404491648215341

5 1.404491648215647

6 1.404491648215341
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Table 5.5: f3(x) = cos x− xex + x2 and initial guess x0 = 1.

n Newton’s method UEL method Present method Present method

(5.2.1)-(5.2.2) (5.3.1)-(5.3.2)

1 0.724644697567095 0.660764858475215 0.660764858475215 0.644691946674196

2 0.644658904870270 0.639160213376992 0.639154122061457 0.639154096332009

3 0.639177807467281 0.639154096332008 0.639154096332008

4 0.639154096773051

5 0.639154096332008

Table 5.6: f4(x) = x3 + 4x2 − 10 and initial guess x0 = 1.5.

n Newton’s method UEL method Present method Present method )

(5.2.1)-(5.2.2) (5.3.1)-(5.3.2)

1 1.500000000000000 1.365738635364349 1.365738635364349 1.365262021937744

2 1.373333333333333 1.365230013445703 1.365230013414097 1.365230013414097

3 1.365262014874627 1.365230013414097

4 1.365230013916147

5 1.365230013414097

In this chapter, we have obtained two new higher order Newton type iterative

methods for solving nonlinear equations. The method (5.2.1)-(5.2.2) needs one

more function evaluation than Ujević, Erceg and Lekić method and two more

functions evaluation than Newton’s method. However, numerical examples have

shown that this method is easily compete with cited methods. Also we derived

new hybrid method (5.3.1)-(5.3.2) by combining method (5.2.1)-(5.2.2) with secant

method. It is shown that resulting method is of order 4.828 and the computational

cost is comparable with that of the methods cited in the tables.
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Chapter 6

Method Based on Potra and Pták
Scheme

6.1 Introduction

In [83], Potra and Pták propose the third order iterative method (1.3.9 ) for solving

nonlinear equations of single variables as a modification of Newton’s method. In

Section 6.2, we modify this method using McDougall and Wortherspoon scheme

and obtain new method having order of convergence 3.5615. Again, in Section

6.3 and 6.4, we combine the iterations of this method with secant method and

modified secant method given by Amat and Busquier in [2], respectively, and

obtain two new methods having order of convergence 4 and 6. Finally, we observe

some numerical examples to compare the performance of these modified methods

with some existing methods.

6.2 McDougall and Wortherspoon Type Scheme

As the first aim of this chapter, we propose the following method by modifying

the method (1.3.9) given by Potra and Pták using McDaugall and Wotherspoon

Scheme:
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If x0 is the initial approximation, then

x∗0 = x0 (6.2.1)

x1 = x0 −

f

x0 − f(x0)

f ′
(
x0+x∗0

2

)
+ f(x0)

f ′
(
x0+x∗0

2

)

= x0 −
f

[
x0 −

f(x0)

f ′(x0)

]
+ f(x0)

f ′(x0)
. (6.2.2)

Subsequently, for n ≥ 1, the iterations can be obtained as follows:

x∗n = xn −

f

xn − f(xn)

f ′
(
xn−1+x∗n−1

2

)
+ f(xn)

f ′
(
xn−1+x∗n−1

2

) , (6.2.3)

xn+1 = xn −
f

[
xn −

f(xn)

f ′
(xn+x∗n

2

)]+ f(xn)

f ′
(xn+x∗n

2

) . (6.2.4)

For the convergence of the method (6.2.1)-(6.2.4), we prove the following:

Theorem 6.2.1. Let α be a simple zero of a function f which has sufficient number

of smooth derivatives in a neighborhood of α. If x0 is sufficiently close to α, then

the method (6.2.1)-(6.2.4) is convergent and has the order of convergence 3.5615.

Proof. Let en and e∗n denote, respectively, the errors in the terms xn and

x∗n. Also, we denote cj =
f j(α)

j!f ′(α)
, j = 2, 3, 4..., which are constants. Then from

(6.2.1), x∗0 = x0 implies e∗0 = e0. We now proceed to calculate the error e1 in x1.

By using Taylor series expansion and binomial expansion, we get

x0 −
f(x0)

f ′(x0)
= α + e0 −

f(α + e0)

f ′(α + e0)

= α + e0 −
f ′(α)[e0 + c2e

2
0 + c3e

3
0 +O(e40)]

f ′(α)[1 + 2c2e0 + 3c3e20 + 4c4e30 +O(e40)]

= α + e0 − [e0 + c2e
2
0 + c3e

3
0 +O(e40)][1 + 2c2e0 + 3c3e

2
0 + 4c4e

3
0 +O(e40)]

−1

= α + c2e
2
0 + (2c3 − 2c22)e

3
0 +O(e40),
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so that after some calculations, we get

f

(
x0 −

f(x0)

f ′(x0)

)
= f ′(α)[c2e

2
0 + (2c3 − 2c22)e

3
0 + c32e

4
0 +O(e50)],

f

(
x0 −

f(x0)

f ′(x0)

)
+ f(x0) = f ′(α)[e0 + 2c2e

2
0 + 3c3e

3
0 − 2c22e

3
0 + c32e

4
0 +O(e50)]

and

f
(
x0 − f(x0)

f ′(x0)

)
+ f(x0)

f ′(x0)
= [e0 + 2c2e

2
0 + 3c3e

3
0 − 2c22e

3
0 + c32e

4
0 +O(e50)]

[1 + 2c2e0 + 3c3e
2
0 + 4c4e

3
0 +O(e40)]

−1

= e0 − 2c22e
3
0 +O(e40).

Hence from (6.2.2),

α + e1 = α + e0 − e0 + 2c22e
3
0 +O(e40)

i.e., e1 = ae30, (6.2.5)

where a = 2c22 and we have neglected the higher power of en. Again, from (6.2.3)

x∗1 = x1 −
f

[
x1 −

f(x1)

f ′(x0)

]
+ f(x1)

f ′(x0)
. (6.2.6)

Here

f(x1) = f(α + e1)

= f ′(α)[e1 + c2e
2
1 + c3e

3
1 +O(e41)],

f ′(x0) = f ′(α + e0)

= 1 + 2c2e0 + 3c3e
2
0 + 4c4e

3
0 +O(e40).
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Also

f

[
x1 −

f(x1)

f ′(x0)

]
= f

[
α + e1 −

e1 + c2e
2
1 + c3e

3
1 +O(e41)

1 + 2c2e0 + 3c3e20 +O(e30)

]
.

After some calculation, we get

f

[
x1 −

f(x1)

f ′(x0)

]
= f ′(α)[2c2e0e1 + 3c3e0

2e1 − 4c22e
2
0e1 +O(e60)]

so that

f

[
x1 −

f(x1)

f ′(x0)

]
+ f(x1) = f ′(α)[e1 + 2c2e0e1 + 3c3e

2
0e1 − 4c22e

2
0e1 + · · · ]

and

f

[
x1 −

f(x1)

f ′(x0)

]
+ f(x1)

f ′(x0)
= [e1 + 2c2e0e1 + 3c3e

2
0e1 − 4c22e

2
0e1 + · · · ]

[1 + 2c2e0 + 3c3e
2
0 + · · · ]−1

= e1 − 4c22e
2
0e1 +O(e40). (6.2.7)

From (6.2.6), the error e∗1 in x∗1 can be calculated as

e∗1 = e1 − [e1 − 4c22e
2
0e1 +O(e40)]

= 4c22e
2
0e1 +O(e40)

= abe50, (6.2.8)

where b = 4c22 and we have neglected the higher power terms of e0.

Next, we compute the error e2 in x2. Now,

f(x1)

f ′
(
x1+x∗1

2

) =
f ′(α)[e1 + c2e

2
1 + c3e

3
1 +O(e41)]

f ′
(
α + e1+e2

2

)
=

e1 + c2e
2
1 + c3e

3
1 +O(e41)

1 + c2e1 + c2e∗1 + 3
4
c3e21 +O(e31)

= e1 +
1

4
c3e

3
1 − c2e1e∗1 − c22e21e∗1 + · · ·
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so that

x1 −
f(x1)

f ′
(
x1+x∗1

2

) = α− 1

4
c3e

3
1 + c2e1e

∗
1 + c22e

2
1e
∗
1,

where the higher power terms are neglected. Thus

f

x1 − f(x1)

f ′
(
x1+x∗1

2

)
 = f ′(α)[c2e1e

∗
1 + c22e

2
1e
∗
1 −

1

4
c3e

3
1]

and

f

x1 − f(x1)

f ′
(
x1+x∗1

2

)
+f(x1) = e1f

′(α)(1+c2e1+c3e
2
1+c2e

∗
1+c22e1e

∗
1−

1

4
c3e

2
1+· · · ).

Also

f

x1 − f(x1)

f ′
(
x1+x∗1

2

)
+ f(x1)

f ′
(
x1+x∗1

2

) = e1 −
3

2
c3e

2
1e
∗
1 + · · · .

From (6.2.4),

x2 = x1 −

f

x1 − f(x1)

f ′
(
x1+x∗1

2

)
+ f(x1)

f ′
(
x1+x∗1

2

)
Thus, substituting the values, we get

α + e2 = α + e1 − (e1 −
3

2
c3e

2
1e
∗
1 + · · · )

⇒ e2 =
3

2
c3e

2
1e
∗
1 +O(e120 )

∴ e2 =
3

2
c3e

2
1e
∗
1 = a3bce110 ,

where c = 3
2
c3. In fact, it can be worked out for n ≥ 1, that the following relation

holds:

en+1 = ce2ne
∗
n. (6.2.9)

In order to compute en+1 explicitly, we need e∗n. We already find e∗1. We now
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compute e∗2. From (6.2.3)

x∗2 = x2 −

f

x2 − f(x2)

f ′
(
x1+x∗1

2

)
+ f(x2)

f ′
(
x1+x∗1

2

) .

Using similar process as above, the error e∗2 in x∗2 can be calculated as

e∗2 = de21e2,

where d = c22 and, again, it can be checked that, in general, for n ≥ 2, the following

relation holds:

e∗n = de2n−1en. (6.2.10)

From (6.2.9) and (6.2.10), it is clear that the errors e∗n and en+1, respectively, in

x∗n and xn+1 for n ≥ 2 in the method (6.2.1)-(6.2.4) satisfy the following recursion

formula:

e∗n = de2n−1en (6.2.11)

en+1 = ce2ne
∗
n. (6.2.12)

To find the order of convergence of the method, we need a relation of the form

en+1 = Aepn, (6.2.13)

where A is some constant. Thus,

en = Aepn−1 or en−1 = A−
1
p e

1
p
.

n (6.2.14)

From (6.2.11), (6.2.12), (6.2.13) and (6.2.14),

Aepn = ce2ne
∗
n = ce2nde

2
n−1en = cde2nA

−2
p e

2
p
nen = cdA

−2
p e

(3+ 2
p
).

n

Equating the power of en,
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p = 3 +
2

p

or, p2 − 3p− 2 = 0

or, p =
3±
√

17

2
.

Taking positive value, p = 3.5615. Thus, the order of convergence of the method

(6.2.1)-(6.2.4) is 3.5615. 2

6.3 Combining With Secant Method

The aim of this section is to improve the rate of convergence of the method (1.3.9)

given by Potra and Pták in [83]. For this, we propose the following method in

which iterations are performed alternately from method (1.3.9) and secant method

(1.2.2):

xn+1 = xn −
xn − xn

f(xn)− f(xn)
f(xn), (6.3.1)

where xn = xn −
f(xn) + f

(
xn − f(xn)

f ′(xn)

)
f ′(xn)

. (6.3.2)

Let us now discuss the convergence of the above mentioned method (6.3.1)-(6.3.2).

Theorem 6.3.1. Let α be a simple zero of sufficiently differentiable function f :

D ⊆ R → R for an open interval D. If x0 is sufficiently close to α, then the

proposed method (6.3.1)-(6.3.2) has convergence of order at least 4.

Proof. Let en and en be the errors in xn and xn, respectively, that is, xn =

α + en and xn = α + en. Denote cj =
f j(α)

j!f ′(α)
. If we give a little attention on the

proof of Theorem 6.2.1, it is clear that the error equation of (6.3.2) is given by

en = 2c22e
3
n +O(e4n)

= Ae3n +O(e4n), where A = 2c22. (6.3.3)
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Here

xn − xn = (α + en)− (α + en)

= en − en

= Ae3n − en +O(e4n)

By Taylor’s expansion, we get

f(xn) = f(α + en)

= f ′(α)[en + c2e
2
n + c3e

3
n +O(e4n)]

and using (6.3.3), we obtain

f(xn) = f(α + en)

= f ′(α)[Ae3n +O(e6n)].

Thus, we get

f(xn)− f(xn) = f ′(α)[Ae3n +O(e6n)]− f ′(α)[en + c2e
2
n + c3e

3
n +O(e4n)]

= −f ′(α)en[1 + c2en + (c3 − A)e2n +O(e3n)]

and

(xn − xn)f(xn)

f(xn)− f(xn)
=

[Ae3n − en +O(e4n)]f ′(α)[Ae3n +O(e6n)]

−f ′(α)en[1 + c2en + (c3 − A)e2n +O(e3n)]

= [Ae3n +O(e5n)][1 + c2en + (c3 − A)e2n +O(e3n)]−1

= [Ae3n − Ac2e4n +O(e5n)].

Thus, the error equation in (6.3.1) is given by

en+1 = en − Ae3n + Ac2e
4
n +O(e5n)]

= Ae3n +O(e4n)− Ae3n + Ac2e
4
n +O(e5n)

= λe4n +O(e5n),
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where λ is some constant. Thus, the order of convergence of the method (6.3.1)-

(6.3.2) is at least 4 and the theorem is proved. 2

6.4 Combining with Modified Secant Method

Again, we recall the following derivative free method presented by the Amat and

Basquier in [2]:

xn+1 = xn − A−1n f(xn), (6.4.1)

where An = [yn, xn; f ] =
f(xn)− f(yn)

xn − yn
,

yn = xn + δn(xn−1 − xn), δn ≤ |O(en)
3
2 |.

This is the second order method. They obtained this method by modifying classical

secant method. We shall prove that if we use the iterates alternatively from the

method (1.3.9) and this method, the resulting method will be of order at least 6

for the suitable choice of δ. Thus, we propose following method:

xn+1 = xn − A−1n f(xn), (6.4.2)

where An = [yn, xn; f ] =
f(xn)− f(yn)

xn − yn
,

yn = xn + δn(xn − xn), δn ≤ |O(en)
3
2 |

and xn = xn −
f(xn) + f

(
xn −

f(xn)

f ′(xn)

)
f ′(xn)

.

For the convergence of method (6.4.2), we prove the following:

Theorem 6.4.1. Let α be a simple zero of a sufficiently differentiable function

f : D ⊆ R → R for an open interval D. If x0 is sufficiently close to α, then

the method (6.4.2) has convergence of order at least 5.5 and it become 6 for the

suitable choice of δ.

Proof. We prove this theorem on the line of the proof of Theorem 4.7.2. From

Theorem 6.3.1, the error en in xn is given by

en = 2c22e
3
n +O(e4n).
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Since

yn = xn + δn(xn − xn) = xn + an, an = δn(xn − xn),

we have by Taylor expansion

f(yn) = f(xn + an) = f(xn) + anf
′(xn) +

a2n
2
f ′′(xn) + · · · .

Also from the proof Theorem (4.7.2), the method (6.4.2) can be written as

xn+1 = xn −
f(xn)

f ′(xn)
+O(an).

Thus, the method (6.4.2) can be written as

xn+1 = xn −
f(xn)

f ′(xn)
+O(δn|xn − xn|), (6.4.3)

From (6.4.3), we have

en+1 = en −
f(α + en)

f ′(α + en)
+O(δn|α + en − α− en|)

= en −
(
en + c2en

2 + c3en
3 +O(en

4)
)(

1 + 2c2en + 3c3en
2 +O(en

3)
)−1

+O(δn|en − en|)

= en − (en + c2en
2 − 2c2en

2 +O(en
3) +O(δn|en − en|)

= c2en
2 +O(δn|en − en|) + · · ·

= c2(2c
2
2e

3
n)2 +O(δn|en − 2c22e

3
n|) + · · ·

= 4c52e
6
n +O(δn|en − 2c22e

3
n|) + · · · . (6.4.4)

Since δn ≤ |O(en)
3
2 |, so if we assume that δn ≤ |O(en)2|, that is, δn ≤ |O(en)6|,

then the order of convergence of the method (6.4.2) is at least 6. But, if we take

δn = |O(en)
3
2 |, then order of convergence of the method becomes 5.5. 2

Remark 6.4.2. If the solution of nonlinear equation is unknown, we use the same

idea as indicated in Remark 4.7.3 to determine the value of δn.
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6.5 Numerical Examples

In this section, we present numerical examples which demonstrate the performance

of methods obtained in the previous sections. We compare these methods with

Newton’s method, Weerakoon and Fernando (WF) method [104] and Potra and

Pták (PP) method (1.3.9). To perform the numerical calculation, we use Matlab

Software and stopping criteria |xn+1 − xn| < (10)−12 or |f(xn+1| < (10)−14.

Example 6.5.1. We apply methods (6.2.1)-(6.2.4) and (6.3.1)-(6.3.2) on the non-

linear equation

3x+ sinx− ex = 0. (6.5.1)

To determine appropriate initial approximation of root, let us draw the graph of

function f(x) = 3x+ sinx− ex.

Figure 6.1: Graph of the function f(x) = 3x+ sinx− ex.

From Figure 6.1, it is clear that the equation (6.5.1) has a simple root in (1, 2) and

another simple root in (0, 1). Taking initial approximation as x0 = 3. Table 6.1

shows the iterations of Newton’s method, Potra and Pták method (1.3.9), Weer-

akoon and Fernando method [104] and our methods (6.2.1)-(6.2.4) and (6.3.1)-

(6.3.2).
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Example 6.5.2. Again, we apply methods (6.2.1)-(6.2.4) and (6.3.1)-(6.3.2) on

the nonlinear equation

f(x) = x3 + 2x2 − 3x− 1 = 0. (6.5.2)

From the Intermediate Value Theorem, it is clear that at least one of the roots of

this equation lies in the interval (0, 2) since f(0)f(2) < 0. Taking initial approx-

imation as x0 = 2, Table 6.2 shows the iterations of the same methods which we

use in example 6.5.1

Example 6.5.3. Finally, we apply methods (6.3.1)-(6.3.2) and (6.4.2) on the

nonlinear equation

(x− 2)23 − 1 = 0 (6.5.3)

By inspection of above equation, it is clear that x = 3 is the root of this equation.

Taking initial approximation as x0 = 4. Table 6.3 shows the iterations of New-

ton’s method, Potra and Pták method (1.3.9) and our methods (6.3.1)-(6.3.2) and

(6.4.2).
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Table 6.1: Comparision of different methods.

Method n xn |xn − xn−1| |f(xn)|

1 2.394517490417379 0.605482509582621 3.099858826809431

2 2.038072024241837 0.356445466175543 0.668781324813446

Newton’s 3 1.907609975098321 0.130462049143516 0.070325609970161

method 4 1.890320120516808 0.017289854581513 0.001142545401351

5 1.890029810354966 0.000290310161841 0.000000319010836

6 1.890029729251992 0.000000081102975 0.000000000000025

7 1.890029729251985 0.000000000000006 0.000000000000000

1 2.223022716747521 0.776977283252479 1.771401528396967

2 1.918429998489068 0.304592718258453 0.114786469963655

PP 3 1.890068371118427 0.028361627370641 0.000151999733143

method 4 1.890029729252092 0.000038641866335 0.000000000000419

5 1.890029729251985 0.000000000000107 0.000000000000000

WF 1 2.182401798156115 0.817598201843885 1.501646202703620

method 2 1.905217119872699 0.277184678283415 0.060614766751669

3 1.890033324087735 0.015183795784964 0.000014139991158

4 1.890029729251985 0.000003594835750 0.000000000000000

Present 1 2.223022716747521 0.776977283252479 1.771401528396967

method 2 1.903254578217390 0.319768138530131 0.052683015289491

(6.2.1 3 1.890030006989384 0.013224571228006 0.000001092453759

-(6.2.4) 4 1.890029729251985 0.000000277737399 0.000000000000000

Present 1 2.072980588934883 0.927019411065118 0.853003949652775

method 2 1.891066539031407 0.181914049903475 0.004082261437855

(6.3.1 3 1.890029729254035 0.001036809777372 0.000000000008063

-(6.3.2) 4 1.890029729251985 0.000000000002050 0.000000000000000
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Table 6.2: Comparision of different methods.

Method n xn |xn − xn−1| |f(xn)|

1 1.470588235294118 0.529411764705882 2.093832688784858

2 1.247132678773134 0.223455556520984 0.308997039524917

Newton’s 3 1.200698732423872 0.046433946349262 0.012278976846436

method 4 1.198694926456477 0.002003805967394 0.000022485705760

5 1.198691243528430 0.000003682928048 0.000000000075905

6 1.198691243515997 0.000000000012432 0.000000000000000

1 1.347421606542067 0.652578393457933 1.035129693410847

PP 2 1.202167869692565 0.145253736849502 0.021293690797169

method 3 1.198691313272115 0.003476556420450 0.000000425885336

4 1.198691243515997 0.000000069756118 0.000000000000001

1 1.317412413069151 0.682587586930849 0.805382355879769

WF 2 1.199882716602041 0.117529696467110 0.007282302633090

method 3 1.198691245071338 0.001191471530703 0.000000009495896

4 1.198691243515997 0.000000001555341 0.000000000000000

Present 1 1.347421606542067 0.652578393457933 1.035129693410847

method 2 1.199673166705735 0.147748439836332 0.006000378396200

(6.2.1 3 1.198691243536719 0.000981923169016 0.000000000126513

-(6.2.4) 4 1.198691243515997 0.000000000020722 0.000000000000000

Present 1 1.262611277391092 0.737388722608908 0.413379428130185

method 2 1.198711091370871 0.063900186020221 0.000121180247031

(6.3.1 3 1.198691243515997 0.000019847854874 0.000000000000000

-(6.3.2)
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Table 6.3: Comparision of different methods.

n PP method Present method Present method Present method

(6.3.1)-(6.3.2) (6.4.2) (6.4.2)

δn = (3− xn)3/2 δn = (3− xn)2

1 3.881762281757005 3.843143104308642 3.814658265096324 3.729238036112728

2 3.770514691012868 3.698588407251381 3.645089902139495 3.526770236835179

3 3.665844113356311 3.565371837885375 3.484739002121267 3.361258490695884

4 3.567362235341004 3.442608817238754 3.338026931042994 3.220194565600152

5 3.474705145072179 3.329507542251746 3.205117622709691 3.099435117528323

6 3.387535965688113 3.225479138393579 3.088517260188958 3.014759658594771

7 3.305558823234900 3.130819006660631 3.010352168613209 3.000003318880189

8 3.228575744377471 3.050435204423297 3.000000483378891

9 3.156705026488715 3.004892673718495 3.000000000000000

10 3.091180490016622 3.000001327332550

11 3.036856948205285 3.000000000000000

12 3.005553045154960

13 3.000036207524484

14 3.000000000011477

15 3.000000000000000

92



Chapter 7

Conclusion

7.1 Summary of the Work Done

In the present thesis entitled “Newton Type Iterative Methods for Solving

Nonlinear Equations”, an attempt has been made to investigate and obtain

new numerical methods for solving nonlinear equations. Chapter 1 contains basic

preliminaries required in the subsequent chapters. Also brief historical background

has been given in this chapter motivating the present study. Chapters 2-6 contain

our own investigation given briefly below.

Chapter 2 is inspired by the method of McDaugall and Wotherspoon [75] which

is of order 1 +
√

2. We have obtained new iterative methods for solving nonlinear

equations. Also we derived certain hybrid methods by using these methods and

the standard secant method. The resulting methods turned out to be of higher

order of convergence and are more efficient than the existing ones.

Newton type iterative methods with higher order of convergence are obtained

in Chapter 3 which are based on the work of Weerakoon and Fernando [104] and

also the same techniques of Chapter 2 have been used.

Chapter 4 contains results which are based on integral approximation and

inverse functions. We obtained a fourth order method by combining arithmetic

mean Newton’s method, Harmonic mean Newton’s method and midpoint Newton’s

method. Again, a method has been obtained by using the idea of inverse function

and approximating the integral in Newton’s theorem by the linear combination of

harmonic mean rule and a more general mean given by Wang [99]. Also a method

based on Simpson’s rule and inverse function has been made. Moreover, two

variants of Mir, Ayub and Rafiq method [77] have been presented by amalgamating

this method with the standard secant method and modified secant method [2].
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Chapter 5 is motivated by the method obtained by Ujević, Erceg and Lekić

[97] while Chapter 6 is based on the work of the Potra and Pták [83]. In these

chapters, we used the McDaugall and Wotherspoon scheme [75] and the idea of

combining the known methods with the secant method as well as the modified

secant method [2].

For all the methods that have been obtained, we have computed the order of

convergence and compared these methods with similar existing methods. Also all

these methods are free from second and higher order derivatives. All methods are

supported by numerical examples.

7.2 Recommendation for Further Work

There is a lot of scope of the work done in this thesis. The work on this thesis

is rich with new idea and results which may motivate for further research on this

area. In the literature, several Newton type methods are dealing with system of

nonlinear equations. Also the Newton’s method and its various generalization are

known in the framework of Banach spaces. For such work one may refer to [3], [4],

[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [18], [23], [25], [26], [28], [30], [37], [41],

[42], [43], [46], [62], [73], [76], [78], [79], [84], [85], [86], [101], [102], [105], [108],

[109] and [112]. It is of interest if the numerical methods obtained in this thesis

could be generalized and studied for the system of nonlinear equations as well as

in the framework of Banach space.
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1. INTRODUCTION

Quite often, we come across numerous nonlinear equations which need to
be solved. If the equation is not a polynomial equation, then it is not always
easy to deal with such equations. To this end, one or the other numerical
iterative method is employed. One such classical standard method is the
Newton method

xn+1 = xn − f(xn)
f ′(xn)

which is quadratically convergent. Over the years, a lot of methods have
appeared, each one claims to be better than the other in some or the other
aspect. We mention here the method given by Weerakoon and Fernando [8]
which is based on the Newton’s theorem

f(x) = f(xn) +
∫ x

xn

f ′(λ) dλ

and the integral involved is approximated by the trapezoidal rule, i.e.,∫ x

xn

f ′(λ) dλ = (x−xn)
2

(
f ′(x) + f ′(xn)

)
.
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As a result, Weerakoon and Fernando obtained the following iterative method
for solving the nonlinear equationf(x) = 0 :

(1) xn+1 = xn − 2f(xn)
f ′(xn)+f ′(zn+1) ,

where zn+1 = xn − f(xn)
f ′(xn) .

The method so obtained is of third order. In the present paper, the aim
is to modify method (1). In fact, in (1), f ′ is a function of the previously
calculated iterate. In our modification, f ′ would be a function of some other
convenient point. It is proved that the corresponding method has order of
convergence 5.1925. We follow the technique of McDougall and Wotherspoon
[7] who modified Newton’s method in a similar way yielding the order of
convergence of their method as 1 +

√
2.

Further, in [3], it was proved that if any method for solving nonlinear equa-
tion is used in conjunction with the standard secant method then the order
of the resulting method is increased by 1. We shall show, in this paper (see
Theorem 3.2), that this order can be increased by more than 1. In fact, we
prove that if our own method (which is of order 5.1925) is combined with the
secant method than the new method is of order 7.275.

2. THE METHOD AND THE CONVERGENCE

We propose the following method:
If x0 is the initial approximation, then

(2)

x∗0 = x0

x1 = x∗0 −
2f(x∗0)

f ′(x∗0)+f ′(z1) ,

where z1 = x0 − f(x0)
f ′(x0)

x∗1 = x1 − 2f(x1)
f ′(x1)+f ′(z∗1 ) ,

with z∗1 = x1 − f(x1)
f ′[ 1

2 (x0+x∗0)]
= x1 − f(x1)

f ′(x0) .


Subsequently, for n ≥ 1, the iterations can be obtained as follows:

(3)

x∗n = xn − 2f(xn)
f ′(xn)+f ′(z∗n) ,

where z∗n = xn − f(xn)
f ′[ 1

2 (xn−1+x∗n−1)]

xn+1 = x∗n −
2f(x∗n)

f ′(x∗n)+f ′(zn+1) ,

with zn+1 = xn − f(xn)
f ′[ 1

2 (xn+x∗n)]
.


Below, we prove the convergence result for the method (2)–(3).
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Theorem 1. Let α be a simple zero of a function f which has sufficient
number of smooth derivatives in a neighborhood of α. Then the method (2)–(3)
is convergent and has the order of convergence 5.1925.

Proof. Let en and e∗n denote respectively the errors in the terms xn and x∗n.
Also, we denote cj = fj(α)

j!f ′(α) , j = 2, 3, 4..., which are constants. The error
equation for the method (1) as obtained by Weerakoon and Fernando [8] is
given by

en+1 = ae3
n,

where a = c2
2 + 1

2c3 and we have neglected higher power terms of en. In
particular, the error e1 in x1 in the equations (2) is given by

(4) e1 = ae3
0.

We now proceed to calculate the error e∗1 in x∗1. By using Taylor series expan-
sion and binomial expansion, we get

f(x1)
f ′(x0) = f(α+e1)

f ′(α+e0)

=
(
e1 + c2e

2
1 + c3e

3
1 +O(e4

1)
)(

1 + 2c2e0 + 3c3e
2
0 +O(e3

0)
)−1

= e1 − 2c2e0e1 +O(e5
0)

so that
x1 − f(x1)

f ′(x0) = α+ 2c2e0e1 +O(e5
0).

Consequently, by Taylor series expansion, it can be calculated that

f ′(z∗1) = f ′(α)
(
1 + 4c2

2e0e1 +O(e5
0)
)
.

Also
f ′(x1) = f ′(α)

(
1 + 2c2

2e1 + 3c3e
2
1 +O(e3

1)
)

so that

(5) f ′(x1) + f ′(z∗1) = 2f ′(α)
(
1 + c2e1 + 2c2

2e0e1 +O(e5
0)
)
.

Now, using (4) and (5), the error e∗1 in x∗1 in the equation (2) can be calculated
as

e∗1 = e1 −
(
e1 + c2e

2
1 +O(e3

1)
)(

1 + c2e1 + 2c2
2e0e1 +O(e5

0)
)−1

= 2c2
2e0e

2
1

= ba2e7
0,

where b = 2c2
2. Using e∗1, we now compute the error e2 in the term

x2 = x∗1 −
2f(x∗1)

f ′(x∗1)+f ′(z2) ,

where
z2 = x1 − f(x1)

f ′
(x1+x∗1

2
) .
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Now

f ′
(x1+x∗1

2
)

= f ′
(
α+ e1+e∗1

2
)

= f ′(α)
(
1 + c2e1 + c2e

∗
1 + 3

4c3e
2
1 +O(e9

0)
)

so that
f(x1)

f ′
(x1+x∗1

2

) =
(
e1 + c2e

2
1 +O(e3

1)
)(

1 + c2e1 + c2e
∗
1 + 3

4c3e
2
1 +O(e9

0)
)−1

= e1 + 1
4c3e

3
1 − c2e1e

∗
1

and therefore
z2 = α− 1

4c3e
3
1 + c2e1e

∗
1,

where the higher power terms are neglected. Thus

f ′(z2) = f ′(α)
(
1− 1

2c2c3e
3
1 + 2c2

2e1e
∗
1
)

and
f ′(x∗1) = f ′(α)

(
1 + 2c2e

∗
1 + 3c3e

∗
1

2).
Using the above considerations, the error e2 in x2 is given by

e2 = e∗1 −
(
e∗1 + c2e

∗
1

2 + c3e
∗3
1
)(

1 + c2e
∗
1 − 1

4c2c3e
3
1
)−1

= −1
4c2c3e

3
1e
∗
1

= ce3
1e
∗
1,

where c = −1
4c2c3. In fact, it can be worked out that for n ≥ 1, the following

relation holds:

(6) en+1 = ce3
ne
∗
n.

In order to compute en+1 explicitly, we need to compute e∗n. We already know
e∗1. We now compute e∗2. We have

x∗2 = x2 − 2f(x2)
f ′(x2)+f ′(z∗2 ) ,

where
z∗2 = x2 − f(x2)

f ′
(x1+x∗1

2
) .

Like above, it can be calculated that the error e∗2 is given by

e∗2 = de1e
2
2,

where d = c2
2 and, again, it can be checked that in general, for n ≥ 2, the

following relation holds:

(7) e∗n = den−1e
2
n.

In the view of (6) and (7), the error at each stage in x∗n and xn+1 are calculated
which are tabulated below:
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n en e∗n
0 e0 e0
1 ae3

0 a2be7
0

2 a5bce16
0 a11b2c2de35

0
3 a26b5c6de83

0 a57b11c13d3e182
0

4 a135b26c32d6e431
0 a296b57c70d14e945

0
5 a701b135c167d32e2238

0
...

...
...

Table 1. Successive errors.

It is observed that the powers of e0 in the errors at each iterate form a
sequence

(8) 3, 16, 83, 431, 2238, ...

and the sequence of their successive ratios is

16
3 ,

83
16 ,

431
83 ,

2238
431 , ...

or,

5.3334, 5.1875, 5.1927, 5.1925, ...

This sequence seems to converge to the number 5.1925 approximately. Indeed,
if the terms of the sequence (8) are denoted by {αi }, then it can be seen that

(9) αi = 5αi−1 + αi−2, i = 2, 3, 4...

If we set the limit
αi
αi−1

= αi−1
αi−2

= R,

Then dividing (9) by αi−1, we obtain

R2 − 5R− 1 = 0

which has its positive root as R = 5+
√

29
2 ≈ 5.1925. Hence the order of

convergence of the method is at least 5.1925. �

Next, we give two variants of the method (2)–(3). Note that, in (2)–(3),
the arithmetic average of the points xn, x∗n, n = 0, 1, 2... has been used. We
propose methods in which the arithmetic average is replaced by harmonic as
well as geometric averages. With harmonic average, we propose the following
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method: If x0 is the initial approximation, then

(10)

x∗0 = x0

x1 = x∗0 −
2f(x∗0)

f ′(x∗0)+f ′(z1) ,

where z1 = x0 − f(x0)

f ′
( 2x0x∗0
x0+x∗0

) = x0 − f(x0)
f ′(x0)

x∗1 = x1 − 2f(x1)
f ′(x1)+f ′(z∗1 ) ,

with z∗1 = x1 − f(x1)

f ′
( 2x0x∗0
x0+x∗0

) = x1 − f(x1)
f ′(x0) .


Subsequently, for n ≥ 1, the iterations can be obtained as follows:

(11)

x∗n = xn − 2f(xn)
f ′(xn)+f ′(z∗n) ,

where z∗n = xn − f(xn)

f ′

(
2xn−1x∗n−1
xn−1+x∗n−1

)
xn+1 = x∗n −

2f(x∗n)
f ′(x∗n)+f ′(zn+1) ,

with zn+1 = xn − f(xn)

f ′
( 2xnx∗n
xn+x∗n

) .


For the geometric average of the points xn, x∗n, n = 0, 1, 2..., the following
method is proposed:

(12)

x∗0 = x0

x1 = x∗0 −
2f(x∗0)

f ′(x∗0)+f ′(z1) ,

where z1 = x0 − f(x0)
f ′(
√
x0x∗0 ) = x0 − f(x0)

f ′(x0)

x∗1 = x1 − 2f(x1)
f ′(x1)+f ′(z∗1 ) ,

with z∗1 = x1 − f(x1)
f ′(
√
x0x∗0 ) = x1 − f(x1)

f ′(x0) .


Subsequently, for n ≥ 1, the iteration can be obtained as follows:

(13)

x∗n = xn − 2f(xn)
f ′(xn)+f ′(z∗n) ,

where z∗n = xn − f(xn)
f ′(√xn−1x∗n−1 )

xn+1 = x∗n −
2f(x∗n)

f ′(x∗n)+f ′(zn+1) ,

with zn+1 = xn − f(xn)
f ′(
√
xnx∗n ) .


The convergence of the methods (10)–(11) and (12)–(13) can be proved on

the similar lines as those in Theorem 1. We only state the results below:
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Theorem 2. Let α be a simple zero of a function f which has sufficient
number of smooth derivatives in a neighborhood of α. Then for solving non-
linear equation f(x) = 0, the method (10)–(11) is convergent with order of
convergence 5.1925.

Theorem 3. Let α be a simple zero of a function f which has sufficient
number of smooth derivatives in a neighborhood of α. Then for solving non-
linear equation f(x) = 0, the method (12)–(13) is convergent with order of
convergence 5.1925.

3. METHODS WITH HIGHER ORDER CONVERGENCE

In this section, we obtain a new iterative method by combining the iterations
of method (2)–(3) with secant method and prove that the order of convergence
is more than 5.1925. Precisely, we propose the following method: If x0 is the
initial approximation, then

(14)

x∗0 = x0

x∗∗0 = x∗0 −
2f(x∗0)

f ′(x∗0)+f ′(z1) ,

where z1 = x0 − f(x0)
f ′(x0)

x1 = x∗∗0 −
x∗∗0 −x

∗
0

f(x∗∗0 )−f(x∗0)f(x∗∗0 ).


Subsequently, for n ≥ 1, the iterations can be obtained as follows:

(15)

x∗n = xn − 2f(xn)
f ′(xn)+f ′(z∗n) ,

where z∗n = xn − f(xn)

f ′
(xn−1+x∗n−1

2
)

x∗∗n = x∗n −
2f(x∗n)

f ′(x∗n)+f ′(zn+1) ,

where zn+1 = xn − f(xn)

f ′
(xn+x∗n

2
)

xn+1 = x∗∗1 −
x∗∗n −x∗n

f(x∗∗n )−f(x∗n)f(x∗∗n ).


Remark 4. In [3], it was proved that if the iterations of any method of order

p for solving nonlinear equations are used alternatively with secant method,
then the new method will be of order p + 1. Thus, in view of that result,
the method (14)–(15) is certainly of order at least 6.1925. However, we prove
below that the order is more.

Theorem 5. Let f be a function f having sufficient number of smooth
derivatives in a neighborhood of α which is a simple root of the equation f(x) =
0. Then method (14)–(15) to approximate the root α is convergent with order
of convergence 7.275.
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Proof. We argue on the lines of that of Theorem 1 and the error equa-
tion of the standard secant method. In particular, the errors e∗0, e∗∗0 and e1,
respectively, in x∗0, x

∗∗
0 and x1 in equations (14) are given by
e∗0 = e0

e∗∗0 = ae3
0, where a = c2

2 + 1
2c3

e1 = λae4
0, where λ = c2.

Also, the errors e∗1 in x∗1 in equation (15) is given by
e∗1 = 2c2

2e0e
2
1

= λ2a2be9
0, where b = 2c2

2

and the error e∗∗1 in x∗∗1 in equation (15) is given by
e∗∗1 = −1

4c2c3e
3
1e
∗
1

= ce3
1e
∗
1,

where c = −1
4c2c3. In fact, it can be worked out that for n ≥ 1, the following

relation holds:
(16) e∗∗n = ce3

ne
∗
n.

In order to compute e∗∗n explicitly, we need to compute en and e∗n. We have
already computed e1 and e∗1. From the proof of Theorem 1

e∗2 = de1e
2
2,

where d = c2
2 and, again, it can be checked that the following relation holds:

(17) e∗n = den−1e
2
n.

Also from (15), it can be shown that
e2 = λe∗1e

∗∗
2 .

Thus, for n ≥ 1, it can be shown that error en+1 in xn+1 in the method
(14)–(15) satisfies the following recursion formula
(18) en+1 = λe∗ne

∗∗
n

Using the above information, the errors at each stage in x∗n, x
∗∗
n and xn are

obtained and tabulated as follows:

We do the analysis of Table 2 as done in the proof of Theorem 1 for Table
1. Note that the powers of e0 in the error at each iterate from the sequence
(19) 4, 30, 218, 1586, 11538, ....
and the sequence of their successive ratios is

30
4 ,

218
30 ,

1586
218 ,

11538
1586 , ...

or
7.5, 7.2667, 7.2752, 7.2749, ....
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n en e∗n e∗∗n
0 e0 e0 ae3

0
1 λae4

0 λ2a2be9
0 λ5a5bce21

0
2 λ8a7b2ce30

0 λ17a15b5c2e64
0 λ42a36b11c6e154

0
3 λ60a51b13c8e218

0 λ128a109b29c17e466
0 λ308a260b68c42e1120

0
4 λ437a369b97c59e1586

0 λ934a789b208c126e3390
0 λ2245a1896b499c304e8148

0
5 λ3180a2685b707c430e11538

0
...

...
...

...

Table 2. Successive errors.

If the terms of the sequence (19) are denoted by {Ni}, then it can be seen that

Ni = 7Ni−1 + 2Ni−2, i = 2, 3, 4, ....

Thus, as in Theorem 1, the rate of convergence of method (14)–(15) is at least
7.275. �

It is natural to consider the variants of the method (14)–(15), where in
the expression of zn and z∗n, the arithmetic mean is replaced by harmonic
mean as well as geometric mean as done in methods (10)–(11) and (12)–(13),
respectively. Precisely, with harmonic mean, we propose the following method:

(20)

x∗0 = x0

x∗∗0 = x∗0 −
2f(x∗0)

f ′(x∗0)+f ′(z1) ,

where z1 = x0 − f(x0)

f ′
( 2x0x∗0
x0+x∗0

) = x0 − f(x0)
f ′(x0)

x1 = x∗∗0 −
x∗∗0 −x

∗
0

f(x∗∗0 )−f(x∗0)f(x∗∗0 )


followed by (for n ≥ 1)

(21)

x∗n = xn − 2f(xn)
f ′(xn)+f ′(z∗n) ,

where z∗n = xn − f(xn)

f ′

(
2xn−1x∗n−1
xn−1+x∗n−1

)
x∗∗n = x∗n −

2f(x∗n)
f ′(x∗n)+f ′(zn+1) ,

where zn+1 = xn − f(xn)

f ′
( 2xnx∗n
xn+x∗n

)
xn+1 = x∗∗1 −

x∗∗n −x∗n
f(x∗∗n )−f(x∗n)f(x∗∗n )





10 Newton type iterative methods 23

and with the geometric mean, we we propose the following :

(22)

x∗0 = x0

x∗∗0 = x∗0 −
2f(x∗0)

f ′(x∗0)+f ′(z1) ,

where z1 = x0 − f(x0)
f ′(
√
x0x∗0 ) = x0 − f(x0)

f ′(x0)

x1 = x∗∗0 −
x∗∗0 −x

∗
0

f(x∗∗0 )−f(x∗0)f(x∗∗0 )


followed by (for n ≥ 1)

(23)

x∗n = xn − 2f(xn)
f ′(xn)+f ′(z∗n) ,

where z∗n = xn − f(xn)
f ′(√xn−1x∗n−1 )

x∗∗n = x∗n −
2f(x∗n)

f ′(x∗n)+f ′(zn+1) ,

where zn+1 = xn − f(xn)
f ′(
√
xnx∗n )

xn+1 = x∗∗1 −
x∗∗n −x∗n

f(x∗∗n )−f(x∗n)f(x∗∗n ).


The convergence of the methods (20)–(21) and (22)–(23) can be proved by
using the arguments as used in the proof of Theorem 5. We skip the details
for conciseness.

4. ALGORITHMS AND NUMERICAL EXAMPLES

We give below an algorithm to implement the method (2)–(3):

Algorithm 6. Step 1 : For the given tolerance ε > 0 and iteration N ,
choose the initial approximation x0 and set n = 0.

Step 2 : Follow the following sequence of expressions:

x∗0 = x0

x1 = x∗0 −
2f(x∗0)

f ′(x∗0)+f ′(z1) ,

where z1 = x0 − f(x0)
f ′(x0)

x∗1 = x1 − 2f(x1)
f ′(x1)+f ′(z∗1 ) ,

where z∗1 = x1 − f(x1)

f ′
(x0+x∗0

2
) = x1 − f(x1)

f ′(x0)
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Step 3 : For n = 1, 2, 3, . . ., calculate x2, x3, x4, . . . by the following sequence
of expressions:

x∗n = xn − 2f(xn)
f ′(xn)+f ′(z∗n) ,

where z∗n = xn − f(xn)

f ′
(xn−1+x∗n−1

2
)

xn+1 = x∗n −
2f(x∗n)

f ′(x∗n)+f ′(zn+1) ,

where zn+1 = xn − f(xn)

f ′
(xn+x∗n

2
)

Step 4 : Stop if either |xn+1 − xn| < ε or n > N .
Step 5 : Set n = n+ 1 and repeat Step 3.
Example 7. We apply method (2)–(3) on the nonlinear equation

(24) cosx− xex + x2 = 0.
This equation has a simple root in the interval (0, 1). Taking initial approx-
imation as x0 = 1, Table 3 shows the iterations of McDougall-Wotherspoon
method, a third order method (1) and our method (2)–(3).

n W-F Method (1) M-W method (2)–(3) method
1. 1.1754860092539474 0.89033621746836966 0.64406452481689269
2. 0.7117526001461193 0.66469560530044569 0.63915407608296659
3. 0.63945030188514695 0.63928150457301036 0.63915411559451774
4. 0.63915408656045591 0.63915408990276223 0.6391540955014231
5. 0.63915410631623149 0.63915410965853769 0.63915407540832936
6. 0.63915412607200606 0.6391540698096656 0.6391541149198805
7. 0.63915408622313585 0.63915408956544117 0.63915409482678587
8. 0.63915410597891142 0.63915410932121663 0.63915407473369212
9. 0.639154125734686 0.63915406947234454 0.63915411424524327
10. 0.63915408588581579 0.63915408922812 0.63915409415214863
11. 0.63915410564159136 0.63915410898389557 0.63915407405905489
12. 0.63915412539736594 0.63915406913502348 0.63915411357060603
13. 0.63915408554849573 0.63915408889079894 0.6391540934775114
14. 0.63915410530427119 0.63915410864657451 0.63915407338441765
15. 0.63915412506004576 0.63915406879770231 0.6391541128959688
16. 0.63915408521117556 0.63915408855347788 0.63915409280287416
17. 0.63915410496695113 0.63915410830925345 0.63915407270978042
18. 0.6391541247227257 0.63915406846038125 0.63915411222133156
19. 0.6391540848738555 0.63915408821615682 0.63915409212823693
20. 0.63915410462963107 0.63915410797193239 0.63915407203514318

Table 3. Numerical results for different methods.
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Example 8. We consider the same equation (24) but now implement method
(14)–(15) and compare with other methods. Table 4, shows the correspond-
ing iterates. One can also compare the last columns of Table 3 and Table 4
which correspond to methods (2)–(3) and (14)–(15), respectively. This clearly
indicates the fast convergence of (14)–(15).

n W-F Method (1) M-W method (14)–(15) method
1. 1.1754860092539474 0.89033621746836966 0.63919747126530391
2. 0.7117526001461193 0.66469560530044569 0.63915410580338361
3. 0.63945030188514695 0.63928150457301036 0.63915409891807362
4. 0.63915408656045591 0.63915408990276223 0.63915409203276374
5. 0.63915410631623149 0.63915410965853769 0.63915408514745375
6. 0.63915412607200606 0.6391540698096656 0.63915411145121981
7. 0.63915408622313585 0.63915408956544117 division by zero
8. 0.63915410597891142 0.63915410932121663
9. 0.639154125734686 0.63915406947234454
10. 0.63915408588581579 0.63915408922812
11. 0.63915410564159136 0.63915410898389557
12. 0.63915412539736594 0.63915406913502348
13. 0.63915408554849573 0.63915408889079894
14. 0.63915410530427119 0.63915410864657451
15. 0.63915412506004576 0.63915406879770231
16. 0.63915408521117556 0.63915408855347788
17. 0.63915410496695113 0.63915410830925345
18. 0.6391541247227257 0.63915406846038125
19. 0.6391540848738555 0.63915408821615682
20. 0.63915410462963107 0.63915410797193239

Table 4. Numerical results for different methods.
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