

TRIBHUVAN UNIVERSITY

INSTITUTE OF SCIENCE AND TECHNOLOGY

COMPARATIVE ANALYSIS OF DECISION TREE CLASSIFICATION ALGORITHMS

Thesis

Submitted to:

Central Department of Computer Science and Information Technology

Kirtipur, Kathmandu, Nepal

In Partial Fulfillment of the Requirements for

Master's Degreein Computer Science& Information Technology

Submitted by:

Ms.Shikha Karmachrya

Date: 30 May, 2014

Under the Guidance of

Prof. Dr. Subarna Shakya

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk, Nepal

ACKNOWLEDGEMENT

I am highly indebted tomy thesis supervisor**Prof. Dr.SubarnaShakya,**Department of Electronics and Computer Engineering Institute of Engineering, Pulchowk, Nepal for his valuable and constructive suggestion during the planning and development of this research. His willingness to give his time so generously has been very much appreciated.

My gratitude goes to **Prof. Dr. SubarnaShakya**of the **Research Committee**, Central Department of Computer Science and Information Technology, Kirtipur, Kathmandu, Nepal for providing me an opportunity to conduct this research as well as frequent feedbacks.

I would like to gratitude **Mr. IndraChaudhary** for his kind support as well as valuable suggestions and frequent discussion. Similarly, I extend my debt of gratitude to my friends and best wishers who exhorted me for the initiation.

ABSTRACT

In our daily life there is lots of records, phone call records, salary records, homework

records, assignment record, personal details record, sales record, song, videos and so

on. These all records kept in a table are called data; we have lots of data in different

field. Whenever there is data we can have lots of information, patterns, meaning etc.

Data mining applications has got rich focus due to its significance of classification

algorithms. The comparison of classification algorithm is a complex and it is an open

problem. First, the notion of the performance can be defined in many ways: accuracy,

speed, cost, reliability, etc. Second, an appropriate tool is necessary to quantify this

performance. Third, a consistent method must be selected to compare with the

measured values. The selection of the best classification algorithm for a given dataset

is a very widespread problem. In this sense it requires to make several methodological

choices. So this research focused in the analysis of decision tree classification

algorithm in different datasets of multiple attributes and multiple instances. Where

analysis was done among five decision tree algorithms (BFTree, J48, RandomTree,

REPTree and SimpleCart). J48 was able to classify 82.16% of the data correctly which

was best among all in comparison to results of evaluation metrics (Accuracy,

Precision, Recall and F-Measure) and SimpleCart was able to build decision tree with

small tree size of 17.24 (averaged value).

Keywords:BFTree,CART, Data Mining, Decision Tree, J48,RandomTree,

REPTree.

Ш

TABLE OF CONTENTS

TITLE		PAGE
COVER PAGE		
ACKNOWLEDGI	EMENT	II
ABSTRACT		III
TABLE OF CONTENTS LIST OF TABLE LIST OF FIGURE		IV-VI
		VII
		VIII
LIST OF ABBRIVATION		IX
CHAPTER 1	INTRODUCTION	1 -3
1.1.	Background of the Study	1
1.2.	Statement of the Problem	1
1.3.	Objectives of the Study	2
1.4.	Limitation of the Study	2
1.5.	Structure of the Report	2
CHAPTER 2	LITERATURE REVIEW	4-11
2.1.	Data Mining	4
	2.1.1. Classification	5
2.2.	Application Programming Interface (API) for	r Data Mining9
	2.2.1. WEKA	10
2.3.	Related Works	10
CHAPTER 3	RESEARCHMETHODOLOGY	12 - 18
3.1.	Background	12

3.2.	Source of Data	12
3.3.	Algorithms	12
	3.3.1. BFTree	12
	3.3.2. J48	13
	3.3.3. RandomTree	15
	3.3.4. REPTree	15
	3.3.5. SimpleCart	16
3.4.	Experiments Protocol	17
	3.4.1. Validation	18
	3.4.2Experiment Setup 18	
CHAPTER 4	EXPERIMENT AND RESULT ANALYSIS	19-28
4.1.	Background	19
4.2.	Tool	19
4.3.	List of Data	20
4.4.	Experiments and Results	20
	4.4.1. 5-fold cross-validation	21
	4.4.2. Confusion Matrix	21
	4.4.3. Accuracy	21
	4.4.4. Precision	23
	4.4.5. Recall	24
	4.4.6. F-Measure	25
	4.4.7. Tree Size	26
	4.4.8. Averages of Evaluation Metrics	27
4.5.	Context Analysis	27

CHAPTER 5	CONCLUSION AND FUTURE WORK	29
5.1.	Conclusion	29
5.2.	Future Works	29
REFERENCES		30-31
APPENDIX		32-36

LIST OF TABLE

TABLE	TOPIC	PAGE
Table 3.1:	Experimental Parameters	18
Table 4.1:	List of Data	20
Table 4.2:	Confusion Matrix	21
Table 4.3:	Result taking Accuracy	22
Table 4.4:	Result taking Precision	23
Table 4.5:	Result taking Recall	24
Table 4.6:	Result taking F-Measure	25
Table 4.7:	Result taking Tree Size	26
Table 4.8:	Result taking averages of Evaluation Metrics	27

LIST OF FIGURE

FIGURE	TOPIC	PAGE
Figure 2.1:	Data mining as confluence of multiple disciplines	4
Figure 2.2:	Decision tree example	5
Figure 2.3:	Possibility of attribute as node	7
Figure 4.1:	Graph of table 4.3	22
Figure 4.2:	Graph of table 4.4	23
Figure 4.3:	Graph of table 4.5	24
Figure 4.4:	Graph of table 4.6	25
Figure 4.5:	Graph of table 4.7	26
Figure 4.6:	Graph of table 4.8	27

LIST OF ABBREVIATION

API : Application Programming Interface

ARFF : Attribute-Relation File Format

CART : Classification and Regression Tree

CDR : Call Detail Record

GATree : Genetically Evolved Decision Tree

GNU : General Public License

ID3 : Iterative Dichotomiser

KDD : Knowledge Discovery from Data

MARS : Multivariate Adaptive Regression Splines

Q0S : Quality of Service

REPTree Reduced Error Pruning Tree

RF : Random Forest

RT : Random Tree

TN : TreeNet

URL : Uniform Resource Locator

WEKA : Waikato Environment for Knowledge Analysis

WWW : World Wide Web