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ABSTRACT

Automated document classification is the task of assigning the given document into some class
of interest. Text classification is the subset of document classification as document can be
text, image, music, etc. Document classification has many applications in library science,
information science, computer science and others. It can be used for intellectual categorization
of documents, indexing of documents, filtering of spams, routing of emails, identification of
language, classification of genre, etc.

The problem of automated document classification can be solved in supervised, unsupervised
or semi-supervised way. Most of the learning and classification algorithms use document at-
tributes and human inference to learn and classify given documents. In this dissertation work,
many Natural Language Processing (NLP) techniques are used for document processing and
attribute selection. And, two learning based classification techniques are used namely, Artifi-
cial Neural Network(ANN) and Naive Bayes Classifier. ANN is a microbiological model of
leaning system and Naive Bayes Classifier is a probability based classification technique.

For the evaluation of the system, we have created Nepali text datasets for five class of doc-
uments: Business, Crime, Education, Health and Sports. There are two separate datasets for
training and testing of the system. Training set contains total 1253 documents with 243 for
Business, 147 for Crime, 250 for Education, 270 for Health, and 343 for Sports. Similarly,
testing dataset contains total 89 documents with 19 for Business, 20 for Crime, 12 for Edu-
cation, 19 for Health, and 19 for Sports. Training and testing is done by splitting training set
into two sets while keeping the testing set unique. Experimentation results show, feed-forward
multilayer perceptron based neural network classifier has lower classification error rate than
Naive Bayes based classifier. MLP classification system has the average system accuracy rate
of 87.55%, system error rate of 12.44%, precision rate of 80.29% recall rate of 93.41% and
f-score rate of 86.55%. Similarly, Naive Bayes classification system has the average system
accuracy rate of 87.09%, system error rate of 12.90%, precision rate of 79.37% recall rate of
93.87% and f-score rate of 86.05%.

Keywords:

Automated Document Categorization, Text Classification, Natural language processing, Nepali
language, Preprocessing, Feature extraction, Artificial Neural Networks, Multilayer Percep-
tron, Naive Bayes Classifier
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Chapter 1

INTRODUCTION

1.1 Introduction

1.1.1 Document Classification

Document classification has become a very important issue in the past few years as unstruc-
tured, congested, unordered documents in terms of both the amount of time spent on and the
resources needed to automatically classify the documents. Text classification [1] is big chal-
lenging problems due to the increased availability of documents in digital form and the ensuring
need to organize them that are paramount of disordered, congested and unstructured documents
as new documents are emerges or lost in different fields. It may be hard to find archived doc-
uments search for the previous documents with specified contents or features when the docu-
ments are not well structured or organized.

To make the documents manageable and structured, it can be classified into predefined category
based on properties of content or feature vector that represents the document in which it belongs
to. There are many research work had done for the text classification based on machine learning
approaches and rule- based approaches. Paper [1] introduces many learning approaches like
Naı̈ve Bayesian, Riccho Method, Neural Network, Decision tree, KNN method and so on for
text classification. But we analyze the concept of new classification model which classifies
self created database of Nepali collected documents to predefined classes such as education,
business, sport, health and crime etc. The task of Nepali document classification is unique
challenge in terms of accuracy.

1.1.2 Definition of Text Classification

Let d1, d2, . . . , dn be the number of documents, D is a domain of documents. Let C= {c1,
c2, . . . ,cn} be the predefined categories of classes. A value T assigned to (dj , ci) indicates a
decision to document dj to ci, while a value F indicates document dj not belongs to class ci.
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More formally, the task is approximate the unknown target function f : D ∗ C ∈ (T, F )which
describes how the documents ought to be classified. Hence, (T , F ) is called classifier.

1.1.3 Principles of Text Classification

The two main principle that are widely accepted are as follows:

• Content based classification: In this classification, the weight given to particular sub-
jects in a document determines the class to which the document is belongs to. In auto-
matic classification, it could be the number of times given words appears in a document.

• Request oriented classification: In this classification, the anticipated request from users
is influencing how documents are being classified.

1.1.4 Methods of Text classification

Text classification includes two main methods: topic based text classification and text genre-
based classification.

• Topic-based text categorization: classifies documents according to their topics.

• Texts genre- based classification: classifies document based on the genre which can be
defined as the way a text is created, the way it is edited, the register of language it uses,
and the kind of audience to whom it is addressed.

As considering the human interference, text classification can be categorized into manual or
automated.

1.1.4.1 Manual text classification

Text classification can be done manually which is very accurate when job is done by experts
and is consistent when the problem size and team is small. But, it is difficult and expensive to
scale.

1.1.4.2 Automatic text classification:

Automatic Text Classification [2] which automatically involves assigning a text document to
a set of pre-defined classes, using a machine learning technique. The classification is usually
done on the basis of significant words or features vectors extracted from the text document.

2



1.1.5 Nepali Text Classification

Nepali Text Classification is the act of dividing a set of input Nepali documents into two or more
classes where each document can be said to belong to one or multiple classes. We classified the
collected Nepali textual document into five different categories namely Business, Crime, Sport,
Health and Education. It is one of the challenging problems in the field of artificial intelligence
and machine learning. Today huge amount of information are being associated with the web
technology and the internet which are unstructured, unordered and congested. To gather useful
information from it these texts have to be classified [1]. Since, huge growth of information
flows and especially the explosive growth of Internet promoted the growth of automated text
classification. The development of computer hardware provided enough computing power to
allow automated text classification to be used in practical applications. Text classification is
commonly used to handle spam emails, classify large text collections into topical categories
and manage knowledge and also to help Internet search engines.

1.2 Applications of Document Classification

The motivation behind developing text classification systems is inspired by its wide range of
applications.

1. Spam Filtering: A spam filter is a program that is used to detect unsolicited and un-
wanted email and prevent those messages from getting to a user’s inbox. A text classi-
fication system could, in the ideal case, categorize incoming messages into genuine and
spam categories, rejecting these that it found to be spam.

2. Document Organization: A news or media company will typically get hundreds and
thousands of submissions every day. In order to efficiently handle such vast flow of infor-
mation, there is a need of an automatic text classification system, which would categorize
each document by topics so that they could be sent to the relevant recipient maintaining
the Integrity of the Specification.

3. Web page prediction: Text classification can be used to predict web page the user is
likely to click on. Each hyperlink text description is treated as a miniature document.
Also a text categorization system could be used to naively predict the next page for a fast
look-ahead caching system.

4. Pornography classification: The exponential increase of information in internet has
raised the issue of information security. Pornography web content is one of the biggest
harmful resources that pollute the mind of children and teenagers. Several web content
classification approaches have been proposed to avoiding these illicit web contents which
are accessing by the children.
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5. Automatic summary evaluation: Text classification could be applicable to evaluate
automatic summarization of text on the basis of feature vector of document.

1.3 Motivation

Nepali Text Classification is a special problem in the domain of Data mining and machine
intelligence. The field of Text Classification is split into two different categories: Automatic
classification and Manual classification. Due to information overload, efficient classification
and retrieval of relevant content has gained significant importance. The problem of classifica-
tion increases when we operate it in the automatic mode. There are lots of work has been done
in this area in the past few years. There are lots of research work have been done for English
as well as other language too. But there is no any research work done for the Nepali language,
so I was motivated to do this research work for Nepali language. Nepali Text Classification
system can also help in automatic organizing of web content, filtering, prediction of web pages
and any other. Automatic processing benefits into availability for their contents. Although, a
lot of approaches have been proposed for other languages, so automated text Classification is
still a major area of research.

1.4 Problem Definition

The high-level task of text classification is to classify the text into predefined classes such as
Education, Sports, Health, Business, Crime etc. The problem of Nepali text classification is
determined the class of input document according to its content. In this research work, the
problem of Nepali text classification is addressed. The classification task is carried out with
Naı̈ve Bayesian and Back Propagation approach. In this thesis work, to present models based
on Naı̈ve Bayesian and Back Propagation for classification of the text written in which is used
for Nepali language. Accuracy is one of the main concerns of the thesis. In order to classify
documents, a data sets are prepared by collecting documents from web pages, newspaper, arti-
cle, notices etc. The system performs document classification by searching the collections of
important words in document corpus using TF-IDF properties of text and principle component
analysis (PCA) is used to reduce high dimensionality of feature vector of text.

There are many sub-problems in the domain of document classification such as stop-words
removal, symbols and punctuation removal, white spaces removal, word stemming, feature
extraction, term weighting etc. These are also addressed with the most suitable solutions in the
literature for this research work.
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1.5 Objectives

The objective of this research work is to investigate various feature extraction techniques and
to compare Neural Network based text classification techniques namely Back propagation and
Naı̈ve Bayesian probabilistic techniques, to analyse the accuracy of Nepali text classification.
Comparative Performance matrices are analyzed. The sub-problem is also addressed such as
stop-words removal, symbol and punctuation mark removal, digit and Non-Nepali character
removal, stemming, feature extraction, term weighting etc. Main objective is given below:

1. To compare performance accuracy of Multilayer Perceptron and Naı̈ve Bayesian tech-
nique on Nepali text classification Problem.

1.6 Contribution of this Dissertation

The main contribution of this thesis to the field of automatic Nepali Text Classification can be
seen in its extensive experimental work. A more detailed list of the various contributions is
provided below:

• Use of Naive Bayes Classifier and Artificial Neural Network to analysis the Nepali Text
classification.

• Built a text classification model for Nepali language.

1.7 Outline of the Document

The remaining part of the document is organized as follows

Chapter 2 describes necessary background information and related work of document classi-
fication research on single document as well as in multi document.

Chapter 3 describes in detail the system model and the theoretical approaches for automated
Nepali document classification problem. It includes document preprocessing, feature extraction
and classification methods.

Chapter 4 describes the implementation details of the system. All the methods described in
the Chapter 3 are implemented for system evaluation.

Chapter 5 includes experimentation results and analysis of the systems.

Chapter 6 concludes the system performance and future directions.
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Chapter 2

BACKGROUND AND LITERATURE
REVIEW

2.1 Related Work

Text classification, which dates back to the beginning of the 1960 but only in 1990 did it be-
came major principle in the information systems discipline. Text categorization is now being
applied in many context based on a vocabulary to document indexing based on controlled vo-
cabulary, to document filtering , word sense disambiguation, etc. “Knowledge engineering” [1]
which is more popular approach used in late 1980 which consisting of set of rules encoding
expert knowledge on how to classify document under given categories. Furthermore, machine
learning approach was introduced due to the increasing popularity of classification introduces
an automatic text classifier by learning. If we survey previous works relevant to this research,
there exist other kinds of approaches to text categorization i.e heuristic and rule based ap-
proaches. Heuristic approaches were already applied to early commercial text categorization
systems [3]. However, rule based approaches have poor recall and require a time consuming
job of building rules manually. Nowadays, the extensive growth of the Internet and on-line
available digital documents, the task of organizing text data becomes one of the critical issues.
In these days, the best TC systems use the machine learning approach: the classifier learns rules
from examples, and evaluates them on a set of test documents.

There are lots of Machine learning algorithms were introduced among them, four approaches
to text categorization KNN (K-Nearest Neighbor), NB (Naı̈ve Bayes), SVM (Support Vector
Machine), and BP (Back propagation) have been used more popularly than any other traditional
approaches. KNN is evaluated as a simple and competitive classification algorithm where ob-
jects are classified by voting several labeled training examples with their smallest distance from
each object [1]. Sebastiani mentioned that SVM is also recommendable approach to text cat-
egorization. SVMs can handle with exponentially or even infinitely many features, because it
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does not have to represent examples in that transformed space, the only thing that needs to be
computed efficiently is the similarity of two examples. Similarly, NB learns training examples
in advance before given unseen examples. It classifies documents based on prior probabilities
of categories and probabilities that attribute values belong to categories. The Attributes are
considered as independent of each other; its performance is feasible, since its learning is fast
and simple [1, 4]. Another popular machine learning approach is BP. It classifies objects by
defining a set of input layer, hidden layer and output layer, since output layer defines class label,
it is applicable to only linearly separable distribution of training examples. In 1995, BP was
initially applied to text categorization by Wiener in his master thesis [5]. The evaluation ap-
proach to text categorization shown that BP is better than KNN in the context of classification
performance. There are lots of research work conducted based on machine learning by apply-
ing above algorithms up to date. Researchers of paper [6] describes the concept of assignment
of natural language documents to predefined categories based on the semantic content using
neural networks initialization with decision tree found effective for improving text categoriza-
tion accuracy. Research work [7] introduces the novel combination of support vector machine
with word-cluster representation which is compared with SVM based categorization using the
bag of words representation which simply outperforms in terms of categorization accuracy and
efficiency. An evaluation measure for TC involving either primary or secondary categories and
the results are obtained by reformulating well established classification problems such as single
or multilevel multiclass classification using Support Vector Machine and kernel based methods,
found in paper [8]. The dramatic increase in email creates complexity, hence researchers devel-
oped tools using multilayer neural network to implement Back propagation technique for man-
aging unstructured, congested, overloaded, prioritized email mentioned in paper [9]. Moreover,
a mobile SMS classification and document classification using Back propagation algorithm and
document frequency threshold are discussed in [10, 11, 12]. Researchers in paper [2] survey
how to deal with unstructured text, handling large number of attributes and selecting a machine
learning techniques to text classification.

Paper [13] describes best performance of Naive Bayes classifier which is measured by cross
validation experiments for five predefined categories for classifying about 300 non-vocalized
Arabic web documents per category thus accuracy achieved to 92.8%. Furthermore, tests car-
ried out on a manually collected evaluation set which consists of 10 documents from each of
the 5 categories, show that the overall classification accuracy achieved over all categories is
62%, and that the best result by category reaches 90%. TC system based on naive Bayes al-
gorithm that integrates strong independence assumptions in categorizing articles showed that
the accuracy obtained for training is 81.82% whereas the accuracy for testing is 47.62% [14].
The authors of [4] mentioned classification using Association Rule and Naı̈ve Bayes Classifier;
instead of using words word relation i.e. association rule from these words is used to derive
feature set from pre-classified text document instead of word to word relation.
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Identification in Asian language such as Chinese and Japanese is a difficult task. Researchers
used n-gram creating feature vector for a traditional feature selection process during 1994 to
1995. In 2001, significant notable achievement was obtained by calculating feature vector simi-
larities on Chinese and Japanese text classification by avoiding word segmentation [15]. A fast
Back propagation neural network is developed which assumes a three-layer structure as fast
learning algorithm [16]. The learning efficiency is very high because of the information con-
tained in the vector selected and for the output; Shannon entropy is used to tune the threshold
of the binary classifier. Hence, the output of the classifier is approximately accurate and effi-
cient. There are many research works for text classification found based on rule and machine
learning approaches. In conclusion, there is no comparison of various classification techniques
are available in the literature of Nepali text is made. Since, classification of Nepali text is chal-
lenging problem. There is a large corpus of research on the application of text classification
in different domains, but no system to date has achieved the goal of system acceptability for
Nepali text classification.

2.2 Overview of Data Mining Concepts

Data Mining is the process of extracting knowledge or discovering of new information from
large volumes of raw data [17]. The knowledge or information should be new and one must be
able to use it. It discovers patterns and relationship using data analysis tools and techniques to
build models.

There are two main kinds of models in data mining which are as follow:

• Predictive model: In this model, known data results are used to develop a model and
that can be used to explicitly predict values.

• Descriptive model: In this model, patterns are described from existing data and models
are abstract representation of reality which can be reflected to understand business and
suggest actions.

2.3 Data Mining

Data mining was introduced in the 1990s and it is traced back along three categories i.e classical
statistics, artificial intelligence and machine learning. Data mining is the process of discover-
ing patterns in large data sets involving methods at the intersection of artificial intelligence,
machine learning, statistics, and database systems. It is also known as knowledge discovery
i.e detecting something new from large–scale or information processing [17]. Its objective is
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to extract information from a data set and transform it into an understandable structure for fur-
ther use. It is mainly related to database and data management aspects, data pre-processing,
model and inference considerations, interestingness metrics, complexity considerations, post-
processing of discovered structures, visualization, and online updating. The data mining step
might identify multiple groups in the data, which can then be used to obtain more accurate
prediction results by a decision support system.

A Decision Support System [17] is a computer-based information system that supports busi-
ness or organizational decision making activities. It serves the management, operations, and
planning levels of an organization and help to make management decisions, which may be
rapidly changing and not easily specified in advance .Hence, the actual data mining task is the
automatic or semi-automatic analysis of large quantities of data to extract previously unknown
interesting patterns such as groups of data records (cluster analysis i.e grouping a set of objects
in such a way that objects in the same group are more similar to each other than to those in other
groups ), unusual records (anomaly detection i.e detection of outliers, noise, deviations or ex-
ceptions in large data sets) and dependencies (association rule mining i.e detecting interesting
relations between the variables in large databases).

2.3.1 Purpose of Data Mining

Data mining can automate the process of finding relationships and patterns in raw data. Thus,
results can be either utilized in an automated decision support system or assessed by a human
analyst. There are three main reasons to use data mining: especially in science and business
areas which need to analyze large amounts of data to discover trends which they could not
otherwise find.

• Too much data and too little information.

• There is a need to extract useful information from the data and to interpret the data.

• Predict outcomes of future situations.

2.3.2 Techniques in Data Mining

Data mining is the automated extraction of patterns representing knowledge implicitly stored
in large databases, data warehouses and other massive information repositories. Some of the
techniques adopted in data mining as given below:
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2.3.2.1 Association rule

In this technique, interesting association between attributes that are contained in a database are
discovered which are based on the frequency counts of the number of items occur in the event
(i.e. a combination of items), association rule tells if item X is a part of the event, then what is
the percentage of item Y is also the part of event.

2.3.2.2 Clustering

Clustering is a technique used to discover appropriate groupings of the elements for a set of
data. It is undirected knowledge discovery or unsupervised learning i.e, there is no target field
and relationship among the data is identified by bottom-up approach.

2.3.2.3 Decision Trees

In this technique, classification is performed by constructing a tree based training instance with
leaves having class labels. The tree is traversed for each test instance to find a leaf, and the class
of the leaf is predicted class. This is a directed knowledge discovery in the sense that there is a
specific field whose value we want to predict.

2.3.2.4 Neural Networks

It is often represented as a layered set of interconnected processors. These processor nodes are
frequently referred as neurons so as to indicate a relationship with the neurons of the brain.
Each node has a weight connection to several other nodes in adjacent layers, each individual
nodes take the received from connected nodes and use the weights together to compute output
values.

2.3.2.5 Classification and Prediction

Classification is the technique in which set of documents are classified in the predefined cate-
gory. Prediction is the process of predicting categorical class labels, constructing a model based
on the training set and class labels in a classifying attribute.

2.4 Automatic Text Classification

Automatic text Classification has an important application and research topic since the incep-
tion of digital documents. The TC task assigns category label to new documents based on the
knowledge gained in a classification system. A wide variety of supervised machine learning
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algorithms has been applied to this area using a training data set of categorized documents. TC
can play an important role in wide range of more flexible, dynamic and personalized task. In
general, it can be applied in many applications requiring document organization or selective
and adaptive document dispatching. Automatic document classification tasks can be divided
into three sorts:

2.4.1 Supervised Text Classification

In Supervised Learning, incorporates an external teacher, the set of possible classes is known in
advance so that each output unit is told what its desired response to input signals ought to be. It
may require global information during the learning process. Supervised learning include error-
correction learning, reinforcement learning and stochastic learning. An important concerning
issue of supervised learning is the problem of error convergence, i.e. the minimization of error
between the desired and computed unit values. The aim is to determine a set of weights which
minimizes the error. A paradigm of supervised learning is least mean square convergence which
is known method among many paradigms.

2.4.2 Unsupervised Text Classification

In unsupervised classification, the set of possible classes is not known. After classification,
we can try to assign a name to that class. It is called clustering, where the classification is
done entirely without reference to external information. It uses no external teacher and is based
upon only local information. It is also referred to as self-organization, in the sense that data are
organized by itself presented to the network and detects their emergent collective properties.
Paradigms of unsupervised learning are Hebbian learning and competitive learning.

2.4.3 Semi-supervised Document Classification

In this classification, parts of the documents are labeled by the external mechanism. It learns
with a small set of labeled examples and a large set of unlabeled examples i.e learning with
positive and unlabeled examples.

2.5 Automatic Text Classification Techniques

Dealing with unstructured text, handling large number of attributes, examining success of pre-
processing techniques , dealing with missing meta data and choice of a suitable machine learn-
ing technique for training a text classifier are major concerns of automatic text classification.
Since, no single method is found to be superior to all others for all types of classification. Some
of widely accepted techniques due to extensive increase in digital documents are as follows:
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2.5.1 Support Vector Machines

Support Vector Machines(SVMs) are a generally applicable tool for machine learning. Let
training examples be xi, and the target values yi ∈ {−1,1}. SVM searches for a separating
hyper plane, which separates positive and negative data samples from each other with maximal
margin, in other words, the distance of the decision surface and the closest example is maximal
[7, 18].

2.5.2 Artificial neural networks

A neural network is a powerful data-modeling tool that is able to capture and represent complex
input/output relationships [19]. The motivation for the development of neural network technol-
ogy stemmed from the desire to develop an artificial system that could perform ”intelligent”
tasks similar to those performed by the human brain. Neural networks resemble the human
brain in the following two ways:

• a neural network acquires knowledge through learning.

• a neural network’s knowledge is stored within inter-neuron connection strengths known
as synaptic weights.

Physical nervous system is highly parallel, distributed information processing system having
high degree of connectivity with capability of self learning. Human nervous system contains
about 10 billion neurons with 60 trillions of interconnections. These connections are modified
based on experience.

Artificial neural networks are composed of interconnecting artificial neurons that mimic the
properties of biological neurons which can be either be used to gain an understanding of biolog-
ical neural networks, or for solving artificial intelligence problems without necessarily creating
a model of a real biological system. The real biological nervous system is highly complex.
Artificial neural network algorithms attempt to abstract this complexity and focus on what may
hypothetically matter most from an information processing point of view. Another incentive
view is to reduce the amount of computation required to simulate artificial neural networks, so
as to allow one to experiment with larger networks and train them on larger data sets.

2.5.3 K-Nearest Neighbor

K-NN is a simplest type of machine learning algorithms. In the learning, function is approx-
imated locally and all computation is deferred until classification. It is well known as lazy
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learning algorithm or instance based learning. It is non parametric method used for classifica-
tion and regression in which input consists of k closest training set in the feature space. The
output depends on whether K-NN is used for classification or regression [20].

In K-NN classification: the output is a class membership. An object is classified by a majority
vote of its neighbors, with the object being assigned to the class most common among its k
nearest neighbors (where k is a positive integer, typically small). If k = 1, then the object is
simply assigned to the class of that single nearest neighbor. In k-NN regression, the output
is the property value for the object. This value is the average of the values of its k nearest
neighbors.

The training examples are vectors in a multidimensional feature space, each with a class label.
The training phase of the algorithm consists only of storing the feature vectors and class labels
of the training samples. In the classification phase, k is a user-defined constant, and an unla-
beled vector (a query or test point) is classified by assigning the label which is most frequent
among the k training samples nearest to that query point.

In this learning, Euclidean distance is commonly used for continuous variables and Hamming
distance is used for discrete variables for text classification problems. A common weighting

scheme consists in giving each neighbor a weight of
1

d
, where d is the distance to the neighbor.

2.5.4 Decision Tree

This learning algorithm constructs the decision tree with a divide and conquers strategy. Each
node in a tree is associated with a set of cases. At the beginning, only the root is present,
with associated the whole training set and with all case weights equal to 1. At each node the
following, divide and conquer algorithm is executed, trying to exploit the locally best choice,
with no backtracking allowed [6].

Let T be the set of cases associated at the node. The weighted frequency freq (Ci,T ) is com-
puted of cases in T whose class in Ci, i ∈ [1,N ]. If all cases in T belong to a same class Cj
(or the number of cases in T is less than a certain value) then the node is a leaf, with associated
class Cj .

If T1, T2, . . .Ts are the subsets of T and T contains cases belonging to two or more classes,
then the information gain of each attribute is calculated.

I = H(T )−
s∑
i=1

|Ti|
|T |

H(Ti) (2.1)

Where,

H(T ) = −
n∑
j=1

freq(cj, T )

|T |
∗ log(

freq(cj, T )

|T |
) (2.2)

is the entropy function.
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2.5.5 Naive Bayes Probabilistic Model

The most widely used method for text categorization is Naive Bayes Classifier, each word
position in a document is defined as an attribute and the value of that attribute to be the word
found in that position. Naive Bayes categorization is given by,

VNB = argmaxP (Vj)P (ai|Vj) (2.3)

To conclude, the Naive Bayes Categorization VNB is the categorization that maximizes the
probability the words that were actually found in the training documents. Naive Bayes is very
popular among spam filters, because it is very fast and simple for both training and testing.
Hence, it is simplicity to learn from new examples and the ability to modify an existing model.

2.6 Machine Learning

Machine learning is the development of algorithms and techniques, which allow computers to
learn. It is a wide area of artificial intelligence. Machine learning has a broad spectrum of
applications including search engines, medical diagnosis, and bio-informatics, detecting credit
card fraud, stock market analysis, classifying DNA sequences, speech recognition, computer
games, robot locomotion and spam filtering.

2.6.1 Learning

Learning is a process by which weights are determined, the free parameters of a neural net-
work are adapted through a process of stimulation by the environment in which the network is
embedded. Since, every neural network possesses knowledge, contained in the values of the
connections weights. The knowledge is modified in the network as a function of experience
implies a learning rule for changing the values of the weights. All learning methods used for
neural networks can be classified into two major categories: Supervised Learning and Unsu-
pervised Learning.

2.6.2 Text Categorization as a Supervised Machine Learning Problem

Text classification is a well-established area of research within the field of machine learning. A
machine learner acquires or learns a general concept from specific training sets; it uses available
examples of data to build a model that best generalizes to all possible sets. One of the issues
facing a machine learning text classification is which examples of data set should be used as
training data for different class. The proportion of text may represents the document to fall into
different category.
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Supervised machine learning method prescribes the input and output format. Machine Learn-
ing (ML) algorithms typically use a vector-space (attribute-value) representation of examples;
mostly the attributes correspond to words. However, word-pairs or the position of a word in
the text may have considerable information and practically infinitely many features can be con-
structed to enhance classification accuracy. Machine learning focuses on prediction based on
known properties learned from the training data. Since, no Machine Learning classification
is likely to be perfect. Classification errors are inevitable but the cost of misclassifying text
document is the extra challenge facing any text classification techniques. Misclassified text
document are known as false positives which are unacceptable and inconvenience.

The classifier uses the training set to learn how to associate labels with documents. The learning
mechanism may be statistical, geometrical, rule-based, neural and something else. The inputs
to a text classification problem can be viewed from three labels which are as follows:

• A set of labeled training documents (the ”training set”)

• A set of labeled text documents (the ”testing set”) and

• A classification algorithm (the ”classifier”).

The trained classifier is used to predict the label of each document in the test set. Since, the
correct labels are already known, the classifier can be scored based on its accuracy.
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Chapter 3

RESEARCH METHODOLOGY

3.1 Automatic Text Classification System Overview

The top level document classification system is divided into five sub-systems, data acquisition,
preprocessing, feature extraction, dimensionality reduction and classification. Each stages of
this theoretical model are briefly described in this section.

Detail of each subsystem is given in later sections. The top level of data flow diagram of
the proposed system is given in Figure 3.1. Various stages have to be performed to achieve
automatic text classification for the Nepali documents. Detailed sub-system flow is given in
Figure 3.2.

Figure 3.1: Flow-chart of Automated Text Classification System.
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Figure 3.2: The Detail Architecture of Automatic Text Classification System for Nepali Lan-
guage.

3.2 Data Acquisition

Data are acquired from different sources like Nepali newspaper, articles, books, magazines.
Data which are collected in huge amount are stored in UTF-8. UTF-8 is a variable-width en-
coding that can represent every character in the Unicode character set. The collected documents
are transformed into a uniform format which is understandable by machine learning algorithm
as input.

3.3 Preprocessing

An approach applied to remove the set of non-content-bearing functional words from the set
of words produced by word extraction is known as stop words removal. The next step of text
mining process is text preprocessing in which collected documents are analyzed syntactically
or semantically. Since, the collected text document is considered as a bag of words because the
words and its occurrences are used to represent the document. The algorithm applied in this
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stage is stemming, digit and non-Nepali text removal, stop word removal, number removal and
strip whitespaces.

Another task is tokenization which is the task of chopping it up into pieces, called tokens. We
have created dictionary for those common words that are useless and has a less discriminative
value that do not add meaningful content to the document (auxiliary verbs, conjunctions and
articles).

3.3.1 Stop Word Removal

Stop words are high-frequency words of a language which rarely contribute to useful informa-
tion in terms of document relevance and appear frequently in the text but provide less meaning
in identifying the important content of the document [9, 10]. Those common words that are
consider as stop words , useless and has a less discriminative value that do not add meaningful
content to the documents are auxiliary verbs , conjunctions and articles. Words are pruned at
the processing phase to reduce the number of features vector. The stop word lists for English
and other languages are freely available on the Web and often utilized in classification. But,
we cannot find easily the stop word list for Nepali language. We have prepared the list of stop
words for Nepali language manually for this dissertation. During the removal procedure all the
words that appear in a list of stop words are removed by matching from the source documents.
Some of the Nepali stop words are given in Figure 3.3. The details of dictionary used for stop
word removal is explained in Section 5.2.

Algorithm 3.1 Stop Word Removal
1: Read text document.
2: Match the token of document with token in the stop word dictionary.
3: Remove matched token from document.
4: Repeat until all stop words are not removed.

Figure 3.3: Sample Stop Words.

3.3.2 Symbols Removal

Document may contain some symbols to represent some information. They are not so infor-
mative, like the symbols $, #, , %, etc are used to denote some information in the document.
So, we need to remove such symbols from the document before feature extraction. As in any
language, punctuations are used to organize the text and give the sentence a powerful meaning.
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The punctuation in the text summary does not have any value, so we remove all punctuation
which are not full stop. The data dictionary used for symbol removal is explained in section
5.2.

Algorithm 3.2 Symbol and Punctuation mark Removal
1: Read text document.
2: Match the token of document with token in the symbol and punctuation mark dictionary.
3: Remove matched token from document.
4: Repeat until all stop words are not removed.

3.3.3 Stemming

In a text document, a word may exist in different morphological variants, stemming reduces
such different morphological variant words into the number of unique root words. In text
categorization and many other similar tasks, the root word may have different forms. So, it is
desirable to combine these morphological variants of the same word into one canonical form.
The different morphological variant of the same word which is combined into a single canonical
form is called stemming or base word transformation [8].

Many NLP applications which use words as basic elements employ stemmers to extract the
stems of words. Mainly, it is used in information retrieval systems to improve performance.
Actually, this operation reduces the number of terms in the information retrieval system, thus
decreasing the size of the index files. Stemming helps to obtain the stem or root of each word,
which ultimately helps in semantic analysis and faster processing. There need a specific lan-
guage dependent stemmer, and is requires some significant linguistic expertise in the language.
A typical simple stemmer algorithm involves removing suffixes/prefixes using a list of frequent
suffixes/prefixes, while a more complex one would use morphological knowledge to derive a
stem from the words. The stemmer which simply prunes the suffixes/prefixes using the list of
frequent suffixes/prefixed is very efficient and lightweight approach compared to morphologic
parsing. Even though there are some advanced stemmers for languages such as English, the
algorithms which they employ do not work well for highly inflected languages such as Nepali.

Since, Nepali is a highly inflected language so there are many word forms to denote a single
concept. This situation is highly effected for the frequency of a term and therefore words have
to be stemmed before getting their frequencies. There is light weight stemmer and morpholog-
ical Analyzer that were developed under Madan Puraskar Pustakalaya, Nepal [21]. Stemming
algorithm for Nepali language is given in Algorithm 3.3.
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Algorithm 3.3 Stemming
1: Read text document.
2: Do the following for the string sequence in the input word
3: Strip off appeared at the end of the word, the very last letter of the input word. Record

as the suffix associated.

4: Strip off appeared at the end of the word from the end of the input word.

Record as the suffix associated.
5: Strip off from the input word which is appeared at the end of the word from the end.

Add to the end of the resulting word if the last letter of the word formed is a consonant.
Record as the suffix associated.

6: Exception holds the letter . If the last character of the resulting word is , strip it off and
add Record as the suffix associated.

7: If the initial letter is a vowel, stripe off from the word and insert in front of the

character which is followed by .

8: Stripe off . from the end of the word. Look for the resulting word in the free morpheme

list. If found record as the suffix.
9: The remaining part of the input word is root word.

3.4 Document Representation

Each document is typically represented by the feature vector or the bag of words. The most
common text representation is bag of word approach (BoW). Here, text is represented as a
vector. The BoW vectors are then refined by feature extraction, where vectors are removed
from the representation using computationally less discrimination value. The set of feature
vectors is of very high dimension in the vector space and each vector represents a unique term.
In order to improve the scalability of the text categorization system, dimensionality reduction
techniques should be employed to reduce the dimensionality of the feature vectors before they
are fed as input to the text classifier.

3.4.1 Document Term Matrix

If we have a large collection of documents and hence a large number of document vectors then it
is more convenient to organize into a matrix. The row vectors of the matrix correspond to terms
(words) and the column vectors correspond to documents. Hence, describes the frequency of
terms that occur in a collection of documents known as Document–Term matrix. Document
frequency of a feature is the number of documents in which the frequency occurs and is class
independent because of its simple computation and good performance [22].
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3.5 Feature Extraction

Feature extraction plays major role in the classification system and it is heart of the classi-
fication system. A good feature sets should represent characteristic of a class that helps to
distinguish it from other classes, while remaining invariant to characteristic differences within
the class. Hence, to improve the accuracy of the classifier, it is necessary to identify a set of
“good” features for object representation. To create improved features, measurement of various
object properties are carried out to identify good features from a set of raw features [7].

3.5.1 Term Frequency-Inverse Document Frequency (TF-IDF)

For machine learning method, TF-IDf is widely accepted technique.Tf-idf stands for term
frequency-inverse document frequency, often used in information retrieval and text mining.
It is used to evaluate how important a word to a document in a collection or corpus. The impor-
tance increases proportionally to the number of times as a word appears in the document but is
offset by the frequency of the word in the corpus. Every term are represented as a vector in a
vector space model. Therefore, most vectors represented for document are sparse. This is more
efficient method to extract the feature, since TF-IDF is constructed based on the word occurs
many times in a document. TF-IDF is often used as a weighting factor in text classification. It
is a central tool widely used in scoring and ranking a document’s relevance given a user query
and also used for stop-words filtering classification [7, 4].

Mathematically, it can be calculated as,

Wik =
tfiklog( N

nk
)∑t

k=1(tfik)
2[log( N

nk
)]2

(3.1)

Where,
tf = Term frequency.
idf = Inverse document frequency.
Tk = Term k in document Di.
tfik =frequency of term Tk in document Di.
idfk =Inverse document frequency of term Tk in document C.
N = Total number of document in the collection C.
nk = The number of document in C that contain Tk.
idfk = log(nk

N
)
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3.6 Dimensionality Reduction

3.6.1 Principal Component Analysis

Principal Component Analysis (PCA) is one of a family of techniques for taking high-dimensional
data, and using the dependencies between the variables to represent it in a more tractable, lower-
dimensional form, without losing too much information. PCA can be done by eigen value de-
composition of a data covariance or correlation matrix or singular value decomposition of a
data matrix, usually after mean centering and normalizing or using Z-scores, the data matrix
for each attribute. Using PCA, the dimension reduction process will reduce the original data
vector into small number of relevant features [23].

Let M to be the matrix of document terms weights as follows.

M =


a11 a12 ... a1m

a21 a22 .. a2m

... ... ... ...

an1 an2 ... anm

 (3.2)

Where, aij refers to the terms in the collection of documents, n is the number of terms and
m is the number of documents. Then we calculate the mean a and subtract it from each data
points a − ā. After variance-covariance matrix M can be calculated, where the new value of
aij = (aj − ā)(ai − ā). Then we determine eigenvalues and eigenvectors of the matrix M
where C is a real symmetric matrix so a positive real number λ and a nonzero vector α can
be found such that, Cα = λα where λ is called an eigenvalue and α is an eigenvector of C.
In order to find a nonzero vector α the characteristic equation |C − λI| must be solved. If
C is an n ∗ n matrix of full rank, n eigenvalues can be found such that (λ1, λ2, .., λn). By
using (C − λI)α = 0, all corresponding eigenvectors can be found. The eigenvalues and
corresponding eigenvectors will be sorted so that λ1 ≥ λ2 ≥ · · · ≥ λn. Then we select the
first d = n eigenvectors where d is the desired value.

3.7 Bayes Theorem

Bayes’ theorem was named after the Reverend Thomas Bayes during 1702–1761, who studied
how to compute a distribution for the probability parameter of a binomial distribution [24].
Bayes Theorem is defined as

P (H|X) =
P (X|H)P (H)

P (X)
(3.3)

Where,
P (H|X)is the posterior probability of H conditioned on X .
P (H) is the prior probability of hypothesis H .
P (X|H)is the posterior probability of X conditioned on H .
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P (X)is the prior probability of hypothesis X .

3.7.1 Naive Bayesian Classifier

A Bayes classifier is a simple probabilistic classifier based on applying Bayes theorem (from
Bayesian statistics) with strong (naive) independence assumptions. In simple terms, a naı̈ve
Bayes classifier assumes that the presence (or absence) of a particular feature of a class is unre-
lated to the presence (or absence) of any other feature. For example, a fruit may be considered
to be an apple if it is red, round, and about 4th diameter [25]. Even if these features depend
on each other or upon the existence of the other features, a naive Bayes classifier considers
all of these properties to independently contribute to the probability that this fruit is an apple.
Depending on the precise nature of the probability model, naive Bayes classifiers can be trained
very efficiently in a supervised learning setting. In many practical applications, parameter es-
timation for naive Bayes models uses the method of maximum likelihood; in other words, one
can work with the naive Bayes model without believing in Bayesian probability or using any
Bayesian methods.

In spite of their naive design and apparently over-simplified assumptions, Naive Bayes classi-
fiers have worked quite well in many complex real world situations. In 2004, analysis of the
Bayesian classification problem has shown that there are some theoretical reasons for the appar-
ently unreasonable efficiency of Naive Bayes classifiers [26]. Still, a comprehensive compari-
son with other classification methods in 2006 showed that Bayes classification is outperformed
by more current approaches, such as boosted trees or random forests [27].

An advantage of the Naive Bayes classifier is that it requires a small amount of training data
to estimate the parameters (means and variances of the variables) necessary for classification.
Because independent variables are assumed, only the variances of the variables for each class
need to be determined not the entire covariance matrix.

3.7.2 The Naive Bayes probabilistic model

The probability model for a classifier is a conditional model

P (C|F1, F2, . . . , Fn) (3.4)

Over a dependent class variable C with a small number of outcomes or classes, conditional on
several feature variables F1 through Fn. The problem is that if the number of features is large
or when a feature can take on a large number of values, then basing such a model on probability
tables is infeasible. We therefore reformulate the model to make it more tractable.Using Bayes’
theorem, we write

P (C|F1, F2, . . . , Fn) =
P (C)P ((F1, F2, . . . , Fn)|C)

P (F1, F2, . . . , Fn)
(3.5)

In plain English the above equation can be written as,

posterior =
(prior ∗ likelihood)

evidence
(3.6)
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In practice we are only interested in the numerator of that fraction, since the denominator does
not depend on and the values of the features Fi are given, so that the denominator is effectively
constant. The numerator is equivalent to the joint probability model,

P (C,F1, F2, . . . , Fn)

Which can be rewritten as follows, using repeated applications of the definition of conditional
probability:

P (C,F1, F2, . . . , Fn) = P (C)P (F1|C)P (F2|C,F1)P (F3|C,F1, F2), . . . , P (Fn|C,F1, F2, . . . , Fn−1)
(3.7)

Now the ”Naive” conditional independence assumptions come into play: assume that each
feature Fi is conditionally independent of every other feature Fj for j 6= i. This means that
P (Fi|C,Fj) = P (Fi|C) For i 6= j , and so the joint model can be expressed as

P (C|F1, F2, . . . , Fn) = P (C)
n∏
i=1

P (Fi|C) (3.8)

This means that under the above independence assumptions, the conditional distribution over
the class variable can be expressed like this:

P (C|F1, F2, . . . , Fn) =
1

z
P (C)

n∏
i=1

P (Fi|C) (3.9)

Where z (the evidence) is a scaling factor dependent only on, i.e. a constant if the values of the
feature variables are known.

3.7.3 Parameter Estimation

All model parameters (i.e., class priors and feature probability distributions) can be approxi-
mated with relative frequencies from the training set. These are maximum likelihood estimates
of the probabilities. A class’ prior may be calculated by assuming equi-probable classes (i.e.,
priors = 1 / (number of classes)), or by calculating an estimate for the class probability from
the training set (i.e., (prior for a given class) = (number of samples in the class) / (total number
of samples)). To estimate the parameters for a feature’s distribution, one must assume a dis-
tribution or generate nonparametric models for the features from the training set [28]. If one
is dealing with continuous data, a typical assumption is that the continuous values associated
with each class are distributed according to a Gaussian distribution.

For example, suppose the training data contains a continuous attribute, x. we first segment the
data by the class, and then compute the mean and variance of x in each class. Let µc be the
mean of the values x in associated with class c, and let σ2

c be the variance of the values in x
associated with class c. Then, the probability of some value given a class, P (x = v|c), can be
computed by plugging v into the equation for a Normal distribution parameterized by µc and
σ2
c .

That is,

P (x = v|c) =
1√

(2πσ2
c )
e

−(v−µc)2

2σ2c (3.10)
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Another common technique for handling continuous values is to use binning to discretize the
values. In general, the distribution method is a better choice if there is a small amount of
training data, or if the precise distribution of the data is known. The discretization method
tends to do better if there is a large amount of training data because it will learn to fit the
distribution of the data. Since Naive Bayes is typically used when a large amount of data is
available (as more computationally expensive models can generally achieve better accuracy),
the discretization method is generally preferred over the distribution method.

3.7.4 Sample Correction

If a given class and feature value never occurs together in the training set then the frequency-
based probability estimate will be zero. This is problematic since it will wipe out all infor-
mation in the other probabilities when they are multiplied. It is therefore often desirable to
incorporate a small-sample correction in all probability estimates such that no probability is
ever set to be exactly zero.

3.7.5 Constructing a classifier from the probability model

The discussion so far has derived the independent feature model, that is, the Naive Bayes
probability model. The Naive Bayes classifier combines this model with a decision rule. One
common rule is to pick the hypothesis that is most probable; this is known as the maximum a
posteriori or MAP decision rule. The corresponding classifier is the function classify defined
as follows:

Classify(f1, f2, . . . , fn) = argmaxcP (C = c)
n∏
i=1

P (Fi = fi|C = c) (3.11)

3.7.6 Method Applied for Nepali Document Classification

Here is worked example of Naive Bayesian classification to the document classification prob-
lem. Imagine that documents are drawn from a number of classes of documents which can
be modeled as sets of words where the (independent probability that the ith word of a given
document occurs in a document from class C can be written as P (Wi|C). Then the probability
that a given document D contains all of the words Wi, given a class C, is

P (D|C) =
∏
i

P (Wi|C) (3.12)

Now by definition,

P (D|C) =
P (D ∩ C)

P (C)
(3.13)

And

P (C|D) =
P (C ∩D)

P (D)
(3.14)

Bayes theorem manipulates these into a statement of probability in terms of likelihood.

P (C|D) = P (D|C)
P (C)

P (D)
(3.15)
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Since we have five classes such that every element is in either one or another.

P (D|B) =
∏
i

P (Wi|B) (3.16)

P (D|C) =
∏
i

P (Wi|C) (3.17)

P (D|E) =
∏
i

P (Wi|E) (3.18)

P (D|H) =
∏
i

P (Wi|H) (3.19)

P (D|S) =
∏
i

P (Wi|S) (3.20)

And
P (D|¬B) =

∏
i

P (Wi|¬B) (3.21)

P (D|¬C) =
∏
i

P (Wi|¬C) (3.22)

P (D|¬E) =
∏
i

P (Wi|¬E) (3.23)

P (D|¬H) =
∏
i

P (Wi|¬H) (3.24)

P (D|¬S) =
∏
i

P (Wi|¬S) (3.25)

Using the Bayesian result above, we can write:

P (B|D) =
P (B)

P (D)

∏
i

P (Wi|B) (3.26)

P (C|D) =
P (C)

P (D)

∏
i

P (Wi|C) (3.27)

P (E|D) =
P (E)

P (D)

∏
i

P (Wi|E) (3.28)

P (H|D) =
P (H)

P (D)

∏
i

P (Wi|H) (3.29)

P (S|D) =
P (S)

P (D)

∏
i

P (Wi|S) (3.30)

And

P (¬B|D) =
P (¬B)

P (D)

∏
i

P (Wi|¬B) (3.31)

P (¬C|D) =
P (¬C)

P (D)

∏
i

P (Wi|¬C) (3.32)
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P (¬E|D) =
P (¬E)

P (D)

∏
i

P (Wi|¬E) (3.33)

P (¬H|D) =
P (¬H)

P (D)

∏
i

P (Wi|¬H) (3.34)

P (¬S|D) =
P (¬S)

P (D)

∏
i

P (Wi|¬S) (3.35)

3.8 Back Propagation Learning Algorithm

Back propagation is a form of supervised learning for multi-layer nets, also known as the
generalized delta rule. It is a multilayer feed forward supervised network. It provides an
effective means of allowing a computer to examine data patterns that may be incomplete or
noisy.

In this learning algorithm, error data at the output layer is ”back propagated” to earlier ones,
allowing incoming weights to these layers to be updated. It is most often used as training algo-
rithm in current neural network applications. The back propagation algorithm was developed
by Paul Werbos in 1974 and rediscovered independently by Rumelhart and Parker [29]. Since
its rediscovery, the back propagation algorithm has been widely used as a learning algorithm in
feed forward multilayer neural networks. In general, the difficulty with multilayer Perceptrons
is calculating the weights of the hidden layers in an efficient way that resulting the least (or
zero) output error; it becomes more difficult if there are more hidden layers. To update the
weights, one must calculate an error. At the output layer this error is measured; since error is
the difference between the actual and desired (target) outputs. At the hidden layers, however,
there is no direct observation of the error; hence, some other technique must be used. To calcu-
late an error at the hidden layers that will cause minimization of the output error, as this is the
ultimate goal [19].

Figure 3.4: Multilayer Back propagation Network.

Let us assume, [X1, X2, . . . , Xn] be the input layer which can have more than one hidden
layer. Let net1, net2, . . . , neth derive unit for each neuron and target output H1, H2,. . . ,Hh,
to be used as the input to derive the result for output layer and [Y1, Y2, . . . , Yj] be the output
layer and Wij . be weights. The nodes in the hidden layers organize themselves in a way that
different nodes learn to recognize different features of the total input space. Initially, set up
the network based on the problem domain and randomly generate weights Wij . Then feed a
training set, [X1, X2, . . . , Xn], into BPN in order to compute the weighted sum and apply the
transfer function on each node in each layer. Feeding the transferred data to the next layer until
the output layer is reached. The output pattern is compared to the desired output and an error is
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computed for each unit. Feedback error is back to each node in the hidden layer. Each unit in
hidden layer receives only a portion of total errors and these errors then feedback to the input
layer, until the error is very small.

Back propagation algorithm

1. Back propagation (training examples, η, nin, nhidden, nout )

2. Each training examples is a pair of the form (x, t) where x is the vector of network input
values and t is the vector of target output values.

3. η is the learning rate. nin is the number of network input, nhidden is the number of units
in hidden layer and nout the number of output units.

4. The input unit from unit I into unit j is denoted by xij and weight from unit I into unit j
is denoted by wij

5. Create a feed-forward network with nin inputs, nhidden hidden units and nout output units.

6. Initialize all network weight to a small random numbers (e.g.,Between -0.5 and 0.5).

7. Until the termination condition is met do

8. For each (x, t) in training examples, do

(a) Propagate the input forward through the network
• Input the instance x to the network and the compute the output ou of every unit

in the network

(b) Propagate the error backward through the network
• For each network output unit k, calculate its error term δk.

δk ← ok(1− ok)(tk − ok) (3.36)

• For each hidden unit h, calculate its error term δh

δh ← oh(1− oh)
∑

k∈outputs

Wkhδk (3.37)

• Update each network weight

Wji ← wji + ∆wji∆ (3.38)

Wji = ηδjXji (3.39)

3.9 Categories of classification for Nepali documents

For the empirical evaluation of the hypothesis, Nepali document database is created by collect-
ing documents from the web pages, books, newspaper etc. There are five classes of documents:

1. Business
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2. Crime

3. Education

4. Health

5. Sport

More detail about the collected datasets is given in the Section 5.1.

3.10 System Evaluation Measures

The correctness of a classification can be evaluated by computing the number of correctly rec-
ognized class examples (true positives), the number of correctly recognized examples that do
not belong to the class (true negatives), examples that either were incorrectly assigned to the
class (false positives) and examples that were not recognized as class examples (false nega-
tives). These four counts constitute a confusion matrix [30].

Measures for multi-class classification based on a generalization of the measures of binary clas-
sification for many classes Ci are given below. Where, tpi represent true positive for class Ci,
fpi represent false positive for class Ci, fni represent false negative for class Ci, tni represent
true negative for class Ci, and µ represent micro averaging.

3.10.1 Average System Accuracy

Average system accuracy evaluates the average per-class effectiveness of a classification sys-
tem.

Average Accuracy =

∑l
i=1

tpi+tni
tpi+fni+fpi+tni

l
(3.40)

3.10.2 System Error

System error is the average per-class classification error of the system.

Error Rate =

∑l
i=1

fpi+fni
tpi+fni+fpi+tni

l
(3.41)

3.10.3 Precision

Precision (also called positive predictive value) is the number of correctly classified positive
examples divided by the number of examples labeled by the system as positive.

Micro precision is the agreement of the data class labels with those of a classifiers if calculated
from sums of per-test decisions.

Precisionµ =

∑l
i=1 tpi∑l

i=1 tpi + fpi
(3.42)
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3.10.4 Recall

Recall(also called sensitivity)is the number of correctly classified positive examples divided by
the number of positive examples in the test dataset.

Micro recall is the effectiveness of a classifier to identify class labels if calculated from sums
of per-test decisions.

Recallµ =

∑l
i=1 tpi∑l

i=1 tpi + fni
(3.43)

3.10.5 F-Score

F-Score is the combination of the precision and recall.

Micro F-Score is the relation between data’s positive labels and those given by a classifier based
on sums of per-test decisions.

Fscoreµ =
(β2 + 1)PrecisionµRecallµ
β2Precisionµ +Recallµ

(3.44)

where β is the measure of effectiveness of classification with respect to class β times as much
importance to recall as precision.
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Chapter 4

IMPLEMENTATION TOOLS AND
TECHNIQUES

All the algorithms of purposed classification system are implemented in Eclipse platform 4.3
version. Eclipse is installed on a Intel(R) Core(TM) i5 CPU M 520 @ 2.40 GHz, 2.40 GHz
processor. The Computer has total main memory of 4 Gigabyte and 64-bit Operating system,
x64-based processor and Microsoft Windows8 Enterprise operating system installed in it.

4.1 Programming Language and IDE

4.1.1 Java

Java is a programming language originally developed by James Gosling at Sun Microsystems
and released in 1995 as a core component of Sun Microsystems’ Java platform. The language
derives much of its syntax from C and C++ but has a simpler object model and fewer low-level
facilities than either C or C++. Java applications are typically compiled to byte-code (class file)
that can run on any Java Virtual Machine (JVM) regardless of computer architecture. Java is a
general-purpose, concurrent, class-based, object-oriented language that is specifically designed
to have as few implementation dependencies as possible. It is intended to let application de-
velopers ”write once, run anywhere” (WORA), meaning that code that runs on one platform
does not need to be recompiled to run on another. Java is as of 2012 one of the most popular
programming languages in use, particularly for client-server web applications, with a reported
10 million users. The original and reference implementation Java compilers, virtual machines,
and class libraries were developed by Sun from 1995. As of May 2007, in compliance with the
specifications of the Java Community Process, Sun relicensed most of its Java technologies un-
der the GNU General Public License. Others have also developed alternative implementations
of these Sun technologies, such as the GNU Compiler for Java and GNU Class path.

4.1.2 Eclipse IDE

The Eclipse Platform is specially designed for building integrated development environments
(IDEs), and arbitrary tools. The Eclipse Platform’s principal role is to provide tool providers
with mechanisms to use, and rules to follow, that lead to seamlessly-integrated tools. These
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mechanisms are exposed via well-defined API interfaces, classes, and methods. The Platform
also provides useful building blocks and frameworks that facilitate developing new tools. It
contains large set of functionality required to build an IDE. It supports both GUI and non-GUI-
based application development environments and runs on a wide range of operating systems,
including Windows R©, LinuxTM, Mac OS X, Solaris AIX and HP-UX.

Eclipse Platform enables the tool or application to integrate with other tools and applications
also written using the Eclipse Platform. The Eclipse Platform is turned in a Java IDE by adding
Java development components (e.g. the JDT) and it is turned into a C/C++ IDE by adding
C/C++ development components (e.g. the CDT). It becomes both a Java and C/C++ develop-
ment environment by adding both sets of components. However, the Eclipse Platform is itself
a composition of components; by using a subset of these components, it is possible to build
arbitrary applications. Hence, Eclipse SDK, Eclipse Rich Client Platform (RCP) and Eclipse
IDE are popular framework which are widely used.

• The Eclipse SDK includes Java Development Tools and Plug-in Development Environ-
ment.

• It includes building applications that work in conjunction with application servers, databases
and other backend resources to deliver product providing a rich and consistent experience
for it’s users.

• Eclipse IDE is designed to Support the construction of a variety of tools for application
development. It support tools to manipulate arbitrary content types (e.g., HTML, Java,
C, JSP, EJB, XML, and GIF).

4.2 Machine Learning Library and Plug-ins

A piece of program or application that is use to create, debug, maintain and support other
applications is called Programming tool. It is a simple program which is integrated together
to accomplish a task or support other program, to fix application. They make easier to do
some specific tasks such as IDE combine the features of many tools in one package to develop
applications.

Another term is Plug-in, which is a software component that is used to support a specific feature
to an existing software application, to enable customization. For this research work, Weka is
used as additional tool.

4.2.1 Weka

Weka (Waikato Environment for Knowledge Analysis) is a comprehensive and free available
suite of Java class libraries that support the implementation of machine learning algorithms
for data mining tasks. Weka contains tools for: data pre-processing, classification, regression,
clustering, association rules, and visualization. It allows users to apply Weka class libraries of
machine learning techniques to their own data regardless of computer platform. It is developed
in Java platforms to support data mining tools, a suite of Java packages to provide facilities for
developers.
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The core package contains classes that are accessed from almost every other class in Weka.
The most important classes in it are Attribute, Instance, and Instances. An object of class
”Attribute” represents an attribute-it contains the attribute’s name, its type, and, in case of
a nominal attribute, it’s possible values. An object of class ”Instance” contains the attribute
values of a particular instance; and an object of class Instances contains an ordered set of
instances-in other words, a dataset.

Weka is used for Neural Network and Naive Bayes Classifier Training and Testing.
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Chapter 5

EXPERIMENTATIONS AND RESULTS

Multi class Nepali text classification system is experimented by creating two training dataset
and one test dataset of Nepali text documents of five classes. This chapter describes the datasets
and data dictionaries used in the experiments and corresponding empirical results. Training and
testing datasets are described the Section 5.1 and all other NLP data dictionaries used in the
system are described in the Section 5.2. Experimentation results and graphical analysis are
described in the Section 5.3.

5.1 Training and Testing Datasets

We have collected five classes of Nepali text documents for system evaluation. Documents are
collected from various online sources, such as www.karobardaily.com, www.nagariknews.com,
www.onlinekhaber.com, www.swasthyakhabar.com, and www.nepalhealthnews.com; and var-
ious offline sources, such as books, manuscripts, and articles.

1. Business : Business class of the text documents contains information about the trade
of goods and/or services. Sample documents of business class are given in Figure 5.1.
Sample Business dictionary which is used to evaluate the effectiveness of the business
class is of the input document is given in the Figure 5.2.
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Figure 5.1: Sample Business Documents.

Figure 5.2: Sample Business Dictionary.

2. Crime : Crime class of documents contains information about unlawful acts or pun-
ishable acts. Criminal acts may include murder, rape, theft etc. Sample documents of
crime class are given in Figure 5.3. Sample Crime dictionary which is used to evaluate
the effectiveness of the crime class is of the input document is given in the Figure 5.4.

Figure 5.3: Sample Crime Documents.
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Figure 5.4: Sample Crime Dictionary.

3. Education : Education class contains all the documents related to academic stuffs which
contains knowledge, skills, and habits and teaching, training, or research strategies. Sam-
ple documents of education class are given in Figure 5.5. Sample Education dictionary
which is used to evaluate the effectiveness of the education class is of the input document
is given in the Figure 5.6.

Figure 5.5: Sample Education Documents.

Figure 5.6: Sample Education Dictionary.

4. Health : Health class of dataset contains all the documents that are related to illness,
injury, pain and diagnostics. It also contains documents related to nutrition, health care
and health educations. Sample documents of health class are given in Figure 5.7. Sample
health dictionary which is used to evaluate the effectiveness of the health class is of the
input document is given in the Figure 5.8.
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Figure 5.7: Sample Health Documents.

Figure 5.8: Sample Health Dictionary.

5. Sports : Sports class of dataset contains the documents related to sports. It includes
sport competitions, tournaments, and other related news and events. Sample documents
of sports class are given in Figure 5.9. Sample Sport dictionary which is used to evaluate
the effectiveness of the sport class is of the input document is given in the Figure 5.10.

Figure 5.9: Sample Sports Documents.
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Figure 5.10: Sample Sports Dictionary.

5.1.1 Training Datasets

5.1.1.1 Dataset I

Statistics about dataset I are given in the Table 5.1

Table 5.1: Dataset I

Classes No. of samples
Business 121
Crime 73
Education 125
Health 135
Sports 171
Total 625

5.1.1.2 Dataset II

Statistics about dataset II are given in the Table 5.2

Table 5.2: Dataset II

Classes No. of samples
Business 122
Crime 74
Education 125
Health 135
Sports 172
Total 628

5.1.2 Testing Dataset

Statistics about test dataset is given in the Table 5.3

Table 5.3: Test Dataset

Classes No. of samples
Business 19
Crime 20
Education 12
Health 19
Sports 19
Total 89

38



5.2 Data Dictionaries

5.2.1 Stop Word Dictionary

Stop word dictionary contains all the common and less informative words. Un-useful words are
removed from the document in pre-processing stage to make feature space smaller. The words
in the document that matched with the words listed in the stop word dictionary are excluded.
Some of the stop words from the stop word dictionary are given in the Figure 5.11.

Figure 5.11: Stop Word Dictionary.

5.2.2 Symbol Dictionary

The symbols that don’t carry the special meanings are removed in the pre-processing stage.
Some of the special symbols are given in Figure 5.12.

Figure 5.12: Symbol Dictionary.
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5.3 Experimentation Results

System is trained and tested against collected datasets described in the Section 5.1. Various
performance matrices (Section 3.10) are evaluated. This section describes all the empirical
results and analysis of the outcomes.

5.3.1 Experiment 1

First experiment is carried in Training Dataset I (Section 5.1.1.1) and Testing Dataset (Section
5.1.2). Experimentation results shows Naive Bayes classifier performs better than Neural Net-
work based classifier. Table 5.4 shows results of the experiment 1. Figure 5.13 shows graphical
representation of the results. Table 5.5 show confusion matrix corresponding to Neural Net-
work classifier and Table 5.6 show confusion matrix corresponding to Naive Bayes classifier.

Table 5.4: Experimentation Results (Experiment 1)

Algorithm Avg. Sys. Acc. (%) Err (%) Precision (%) Recall (%) F-Score (%)
MLP 85.92 14.08 77.56 92.12 84.63

Naı̈ve Bayes 86.17 13.83 77.75 93.51 84.90

Figure 5.13: Graph of Experiment 1.

Table 5.5: Confusion Matrix (Experiment 1 - Neural Network)

Class Business Crime Education Health Sport
Business 13 0 5 1 0

Crime 6 10 1 3 0
Education 1 1 9 1 0

Health 1 0 0 18 0
Sport 0 0 0 1 18

40



Table 5.6: Confusion Matrix (Experiment 1 - Naive Bayes)

Class Business Crime Education Health Sport
Business 9 1 8 0 1

Crime 3 13 2 2 0
Education 1 1 10 0 0

Health 0 0 0 19 0
Sport 0 0 1 0 18

5.3.2 Experiment 2

First experiment is carried in Training Dataset II (Section 5.1.1.2) and Testing Dataset (Section
5.1.2). Experimentation results shows Neural Network based classifier performs better than
Naive Bayes classifier. Table 5.7 shows results of the experiment 2. Figure 5.14 shows graph-
ical representation of the results. Table 5.8 show confusion matrix corresponding to Neural
Network classifier and Table 5.9 show confusion matrix corresponding to Naive Bayes classi-
fier.

Table 5.7: Experimentation Results (Experiment 2)

Algorithm Avg. Sys. Acc. (%) Err (%) Precision (%) Recall (%) F-Score (%)
MLP 89.19 10.81 83.02 94.70 88.48

Naı̈ve Bayes 88.02 11.98 80.99 94.24 87.11

Figure 5.14: Graph of Experiment 2.
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Table 5.8: Confusion Matrix (Experiment 2 - Neural Network)

Class Business Crime Education Health Sport
Business 13 0 2 3 1

Crime 0 14 1 5 0
Education 1 0 9 2 0

Health 0 0 2 17 0
Sport 0 0 0 0 19

Table 5.9: Confusion Matrix (Experiment 2 - Naive Bayes)

Class Business Crime Education Health Sport
Business 14 3 1 0 1

Crime 1 14 4 1 0
Education 1 0 11 0 0

Health 1 0 5 13 0
Sport 0 0 0 0 19

5.4 Result Analysis

Aggregate results of both the experiments are shown in Table 5.10.

Table 5.10: Aggregate System Results

Algorithm Avg. Sys. Acc. (%) Err (%) Precision (%) Recall (%) F-Score (%)
MLP 87.55 12.44 80.29 93.41 86.55

Naı̈ve Bayes 87.09 12.90 79.37 93.87 86.05

Results shows Neural Network based classifier has slight less error rates than Naive Bayes
based classifier.

System results greatly influenced by number of training and testing data and extracted features.
Classifier parameters also play important roles for better learning of the system. Computational
and efficiency effectiveness can be enhanced by code optimization and distributed computing.
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Chapter 6

CONCLUSION

6.1 Conclusion

An automatic multi class text classification problem for Nepali language is addressed in this
dissertation work. As the solution of the stated problem, two machine learning based classifi-
cation techniques are experimented and performance is measured for both the cases.

Classification systems take input a unknown text document and assign to a known class among
five classes (”Business”, ”Crime”, ”Education”, ”Health”,”Sport”). Input text document is
passed through various pre-processing steps like stop-word removal, symbol removal and stem-
ming. Then, fine grained document is passed into feature extractor, where term frequency based
features are extracted. Feature vector is than fed to classification systems-which are previously
trained with given datasets and given classes in supervised manner.

Empirical results shows, Neural Network based classifier (MLP) performs better than Naive
Bayes based classifier. MLP classification system has the average system accuracy rate of
87.55%, system error rate of 12.44%, precision rate of 80.29% recall rate of 93.41% and f-
score rate of 86.55%. Similarly, Naive Bayes classification system has the average system
accuracy rate of 87.09%, system error rate of 12.90%, precision rate of 79.37% recall rate of
93.87% and f-score rate of 86.05%.

6.2 Limitations and Future Scope

The performance of the proposed system may further be improved by improving pre-processing
techniques. Exploring more features and enhancing data dictionaries can improve classification
accuracy.

System performance is greatly influenced by training and testing corpus. Classifier parameters
also play important roles for better learning of the system. Hence,accuracy can be enhanced by
code optimization and distributed computing.

Due to the unavailability of standard training and test datasets, system performance can not be
generalized well. To conclude, results are promising and can be enhanced further.
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Appendix A

Sample Data

Sample Input

Symbol and Digit Removed
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Stemming

Training Sample

Testing Sample
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Appendix B

Sample Source Code

Document Preprocessing

1 p u b l i c c l a s s P r e p r o c e s s i n g {
2 p u b l i c L i s t <L i s t <S t r i n g >> s topwordRomoval ( L i s t <S t r i n g > s t op wo rd Dic t ,
3 L i s t <L i s t <S t r i n g >> i n p u t ) {
4 L i s t <L i s t <S t r i n g >> o u t p u t = remove ( s to pw ord Di c t , i n p u t ) ;
5 r e t u r n o u t p u t ;
6 }
7

8 p u b l i c L i s t <L i s t <S t r i n g >> symbolRemoval ( L i s t <S t r i n g > symbolDic t ,
9 L i s t <L i s t <S t r i n g >> i n p u t ) {

10 L i s t <L i s t <S t r i n g >> o u t p u t = remove ( symbolDic t , i n p u t ) ;
11 r e t u r n o u t p u t ;
12 }
13 p u b l i c L i s t <L i s t <S t r i n g >> d i g i t R e m o v a l ( L i s t <L i s t <S t r i n g >> i n p u t ) {
14 L i s t <L i s t <S t r i n g >> o u t p u t =new A r r a y L i s t<L i s t <S t r i n g >>() ;
15 i n t n C l a s s e s = i n p u t . s i z e ( ) ;
16 f o r ( i n t i C l a s s =0; i C l a s s <n C l a s s e s ; i C l a s s ++){
17 i n t nSamples= i n p u t . g e t ( i C l a s s ) . s i z e ( ) ;
18 L i s t <S t r i n g > sOut = new A r r a y L i s t<S t r i n g >() ;
19 f o r ( i n t iSample =0; iSample<nSamples ; iSample ++){
20 S t r i n g s e n t e n c e = i n p u t . g e t ( i C l a s s ) . g e t ( iSample ) ;
21 i f ( s e n t e n c e . l e n g t h ( ) >0) {
22 s e n t e n c e = s e n t e n c e . r e p l a c e A l l ( ” [ n e p a l i D i g i t s ]+ ” , ” ” ) ; / /

n e p a l i D i g i t s c o n t a i n N e p a l i d i g i t s .
23 s e n t e n c e = s e n t e n c e . r e p l a c e A l l ( ” [0−9]+ ” , ” ” ) ;
24 s e n t e n c e = s e n t e n c e . r e p l a c e A l l ( ” [A−Za−z ]+ ” , ” ” ) ;
25 }
26 sOut . add ( iSample , s e n t e n c e ) ;
27 }
28 o u t p u t . add ( i C l a s s , sOut ) ;
29 }
30 r e t u r n o u t p u t ;
31 }
32

33 p r i v a t e L i s t <L i s t <S t r i n g >> remove ( L i s t <S t r i n g > n o i s e ,
34 L i s t <L i s t <S t r i n g >> i n p u t ) {
35 i n t n C l a s s e s = i n p u t . s i z e ( ) ;
36

37 L i s t <L i s t <S t r i n g >> o u t p u t = new A r r a y L i s t<L i s t <S t r i n g >>() ;
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38 f o r ( i n t i = 0 ; i < n C l a s s e s ; i ++) {
39 i n t nSamples = i n p u t . g e t ( i ) . s i z e ( ) ;
40 L i s t <S t r i n g > sampleAr ray = new A r r a y L i s t<S t r i n g >() ;
41 f o r ( i n t j = 0 ; j < nSamples ; j ++) {
42 L i s t <S t r i n g > t o k e n A r r a y = new A r r a y L i s t<S t r i n g >() ;
43 S t r i n g [ ] t A r r a y = i n p u t . g e t ( i ) . g e t ( j )
44 . s p l i t ( ” [ . | ] + ” ) ;
45 i f ( t A r r a y . l e n g t h == 0) {
46 c o n t i n u e ;
47 }
48 f o r ( i n t k = 0 ; k < t A r r a y . l e n g t h ; k ++) {
49 i f ( ! t A r r a y [ k ] . i sEmpty ( ) | | ! t A r r a y [ k ] . t r i m ( ) . i sEmpty ( ) )
50 t o k e n A r r a y . add ( t A r r a y [ k ] . t r i m ( ) ) ;
51 }
52 i f ( t o k e n A r r a y . i sEmpty ( ) ) {
53 c o n t i n u e ;
54 }
55 t o k e n A r r a y . removeAl l ( n o i s e ) ;
56 S t r i n g B u i l d e r b u i l d e r = new S t r i n g B u i l d e r ( ) ;
57 f o r ( S t r i n g s : t o k e n A r r a y ) {
58 b u i l d e r . append ( s ) ;
59 b u i l d e r . append ( ” ” ) ;
60 }
61 sampleAr ray . add ( j , b u i l d e r . t o S t r i n g ( ) ) ;
62 t o k e n A r r a y . c l e a r ( ) ;
63 }
64 o u t p u t . add ( i , s ampleAr ray ) ;
65 }
66 r e t u r n o u t p u t ;
67 }
68

69 p u b l i c L i s t <L i s t <S t r i n g >> stemming ( L i s t <L i s t <S t r i n g >> i n p u t ) {
70 L i s t <L i s t <S t r i n g >> o u t p u t = new A r r a y L i s t<L i s t <S t r i n g >>() ;
71 i n t n C l a s s e s = i n p u t . s i z e ( ) ;
72 f o r ( i n t i C l a s s = 0 ; i C l a s s < n C l a s s e s ; i C l a s s ++) {
73 i n t nSamples = i n p u t . g e t ( i C l a s s ) . s i z e ( ) ;
74 L i s t <S t r i n g > sTempOut = new A r r a y L i s t<S t r i n g >() ;
75 L i s t <S t r i n g > sOut = new A r r a y L i s t<S t r i n g >() ;
76 f o r ( i n t iSample = 0 ; iSample < nSamples ; iSample ++) {
77 S t r i n g s e n t e n c e = i n p u t . g e t ( i C l a s s ) . g e t ( iSample ) ;
78 i f ( s e n t e n c e . l e n g t h ( ) > 0) {
79 sTempOut = S t e m m e r S t a r t . s temmer ( s e n t e n c e ) ; / / S t e m m e r S t a r t .

s temmer ( ) i s a N e p a l i Madan P u r u s k a r P u s t a k a l a y a ’ s
stemmer .

80 S t r i n g B u i l d e r b u i l d e r = new S t r i n g B u i l d e r ( ) ;
81 f o r ( S t r i n g s : sTempOut ) {
82 b u i l d e r . append ( s ) ;
83 b u i l d e r . append ( ” ” ) ;
84 }
85 sOut . add ( b u i l d e r . t o S t r i n g ( ) ) ;
86 } e l s e {
87 sOut . add ( ” ” ) ;
88 }
89 }
90 o u t p u t . add ( i C l a s s , sOut ) ;
91 }
92 r e t u r n o u t p u t ;
93 }
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94

95 p u b l i c L i s t <S t r i n g > l i s t T o k a n i z e ( L i s t <S t r i n g > i n p u t ) {
96

97 L i s t <S t r i n g > temp = new A r r a y L i s t<S t r i n g >() ;
98

99 f o r ( O b j e c t o : i n p u t ) {
100 S t r i n g [ ] t t = o . t o S t r i n g ( ) . s p l i t ( ” [ , ? ?\ t \n ] ” ) ;
101 f o r ( i n t i = 0 ; i < t t . l e n g t h ; i ++) {
102 i f ( ! t t [ i ] . t r i m ( ) . i sEmpty ( ) ) {
103 temp . add ( t t [ i ] ) ;
104 }
105 }
106 }
107 r e t u r n temp ;
108 }
109

110 @Override
111 p u b l i c L i s t <S t r i n g > s e n t e n c e T o k a n i z e ( S t r i n g s e n t e n c e ) {
112 L i s t <S t r i n g > temp = new A r r a y L i s t<S t r i n g >() ;
113 S t r i n g [ ] t t = s e n t e n c e . s p l i t ( ” [ , | . \ t ] ” ) ;
114 f o r ( i n t i = 0 ; i < t t . l e n g t h ; i ++) {
115 i f ( ! t t [ i ] . t r i m ( ) . i sEmpty ( ) ) {
116 temp . add ( t t [ i ] ) ;
117 }
118 }
119 r e t u r n temp ;
120 }
121

122 @Override
123 p u b l i c L i s t <S t r i n g > l i s t S e n t e n c i s e ( L i s t <S t r i n g > i n p u t ) {
124 L i s t <S t r i n g > temp = new A r r a y L i s t<S t r i n g >() ;
125 f o r ( S t r i n g s : i n p u t ) {
126 S t r i n g [ ] t t = s . t r i m ( ) . s p l i t ( ” [ ? . | \ n ] ” ) ;
127 f o r ( i n t i = 0 ; i < t t . l e n g t h ; i ++) {
128 i f ( t t [ i ] . l e n g t h ( ) != 0 | | ! t t [ i ] . t r i m ( ) . e q u a l s ( ” ” )
129 | | ! t t [ i ] . t r i m ( ) . i sEmpty ( ) ) {
130 temp . add ( t t [ i ] . t r i m ( ) ) ;
131 }
132 }
133 }
134 r e t u r n temp ;
135 }
136 }

Feature Extraction

1 p u b l i c c l a s s F e a t u r e E x t r a c t i o n {
2 p u b l i c d ou b l e d f ( L i s t <L i s t <S t r i n g >> i n p u t , S t r i n g t o k e n ) {
3 do ub l e d f = 1 . 0 ; / / no a v o i d d i v i d e by z e r o e r r o r
4 i n t n C l a s s e s = i n p u t . s i z e ( ) ;
5 f o r ( i n t i C l a s s = 0 ; i C l a s s < n C l a s s e s ; i C l a s s ++) {
6 i n t nSamples = i n p u t . g e t ( i C l a s s ) . s i z e ( ) ;
7 f o r ( i n t iSample = 0 ; iSample < nSamples ; iSample ++) {
8 S t r i n g doc = i n p u t . g e t ( i C l a s s ) . g e t ( iSample ) ;
9 i f ( ! doc . i sEmpty ( ) ) {
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10 Boolean found = A r r a ys . a s L i s t ( doc . s p l i t ( ” ” ) ) . c o n t a i n s (
11 t o k e n ) ;
12 i f ( found ) {
13 df = df + 1 ;
14 }
15 }
16 }
17 }
18

19 r e t u r n d f ;
20 }
21

22 p u b l i c d ou b l e i d f ( L i s t <L i s t <S t r i n g >> i n p u t , S t r i n g t o k e n ) {
23 i n t N = 0 ; / / T o t a l number o f documents i n t h e c o l l e c t i o n
24 f o r ( i n t i C l a s s = 0 ; i C l a s s < i n p u t . s i z e ( ) ; i C l a s s ++)
25 f o r ( i n t iSample = 0 ; iSample < i n p u t . g e t ( i C l a s s ) . s i z e ( ) ;

iSample ++)
26 N = N + 1 ;
27 do ub l e d f t = d f ( i n p u t , t o k e n ) ;
28 do ub l e i d f = Math . log10 (N / d f t ) ;
29 r e t u r n i d f ;
30 }
31

32 p u b l i c d ou b l e t f ( Map<S t r i n g , I n t e g e r > docFreqMap , S t r i n g t o k e n ) {
33 i n t t f t d = 0 ;
34 i f ( docFreqMap . c o n t a i n s K e y ( t o k e n ) ) {
35 t f t d = docFreqMap . g e t ( t o k e n ) ;
36 }
37 r e t u r n (1 + Math . log10 ( t f t d ) ) ;
38 }
39

40 p u b l i c Map<S t r i n g , I n t e g e r > wordFrequencyCount ( S t r i n g doc ) {
41 Map<S t r i n g , I n t e g e r > hmap = new HashMap<S t r i n g , I n t e g e r >() ;
42 f o r ( S t r i n g t e m p S t r : doc . s p l i t ( ” [ ]+ ” ) ) {
43 i f ( hmap . c o n t a i n s K e y ( t e m p S t r ) ) {
44 I n t e g e r i = hmap . g e t ( t e m p S t r ) ;
45 i += 1 ;
46 hmap . p u t ( t empSt r , i ) ;
47 } e l s e
48 hmap . p u t ( t empSt r , 1 ) ;
49 }
50 r e t u r n hmap ;
51 }
52

53 p u b l i c d ou b l e t f i d f ( d ou b l e t f , dou b l e i d f ) {
54 r e t u r n t f ∗ i d f ;
55 }
56

57 p u b l i c d ou b l e [ ] [ ] c r e a t e F e a t u r e V e c t o r ( HashSet<S t r i n g > d i c t ,
58 L i s t <L i s t <S t r i n g >> i n p u t ) {
59 i n t nDocs = 0 ; / / T o t a l number o f documents
60 f o r ( i n t i C l a s s = 0 ; i C l a s s < i n p u t . s i z e ( ) ; i C l a s s ++)
61 f o r ( i n t iSample = 0 ; iSample < i n p u t . g e t ( i C l a s s ) . s i z e ( ) ;

iSample ++)
62 nDocs = nDocs + 1 ;
63

64 / / T o t a l number o f f e a t u r e s
65 i n t n F e a t u r e s = 1 + d i c t . s i z e ( ) ; / / 1 f o r c l a s s i n d e x
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66

67 O b j e c t [ ] d i c t i o n a r y = d i c t . t o A r r a y ( ) ;
68 do ub l e [ ] [ ] f e a t u r e V e c t o r = new d ou b le [ nDocs ] [ n F e a t u r e s ] ;
69 f o r ( i n t i = 0 ; i < nDocs ; i ++) {
70 f o r ( i n t j = 0 ; j < n F e a t u r e s ; j ++) {
71 f e a t u r e V e c t o r [ i ] [ j ] = 0 . 0 ;
72 }
73 }
74

75 i n t iDoc = 0 ;
76 f o r ( i n t i C l a s s = 0 ; i C l a s s < i n p u t . s i z e ( ) ; i C l a s s ++) {
77 f o r ( i n t iSample = 0 ; iSample < i n p u t . g e t ( i C l a s s ) . s i z e ( ) ;

iSample ++) {
78 Map<S t r i n g , I n t e g e r > docFreqMap = wordFrequencyCount ( i n p u t .

g e t (
79 i C l a s s ) . g e t ( iSample ) ) ;
80 f e a t u r e V e c t o r [ iDoc ] [ 0 ] = i C l a s s ; / / f e a t u r e V e c t o r [ doc Id

] [ 0 ] = c l a s s I d
81 f o r ( Ent ry<S t r i n g , I n t e g e r > e n t r y : docFreqMap . e n t r y S e t ( ) )

{
82 S t r i n g iWord = e n t r y . getKey ( ) ;
83 I n t e g e r v a l u e = e n t r y . g e t V a l u e ( ) ;
84 i n t iWordIndex = Ar ra y s . a s L i s t ( d i c t i o n a r y ) . indexOf (

iWord ) ;
85 i f ( iWordIndex != −1) { / / I f word i s n o t i n d i c t i o n a r y

,
86 / / l e a v e i t .
87 do ub l e t f = t f ( docFreqMap , iWord ) ;
88 do ub l e i d f = i d f ( i n p u t , iWord ) ;
89 do ub l e t f i d f = t f i d f ( t f , i d f ) ;
90 f e a t u r e V e c t o r [ iDoc ] [ iWordIndex + 1] = t f i d f ;
91 }
92 }
93 iDoc ++;
94 }
95 }
96 r e t u r n f e a t u r e V e c t o r ;
97 }
98 }

ANN Training/Testing

1

2 i m p o r t weka . c l a s s i f i e r s . C l a s s i f i e r ;
3 i m p o r t weka . c l a s s i f i e r s . E v a l u a t i o n ;
4 i m p o r t weka . c l a s s i f i e r s . f u n c t i o n s . M u l t i l a y e r P e r c e p t r o n ;
5 i m p o r t weka . c o r e . A t t r i b u t e ;
6 i m p o r t weka . c o r e . F a s t V e c t o r ;
7 i m p o r t weka . c o r e . I n s t a n c e ;
8 i m p o r t weka . c o r e . I n s t a n c e s ;
9 i m p o r t weka . c o r e . U t i l s ;

10

11 p u b l i c c l a s s ANN{
12 p u b l i c C l a s s i f i e r trainANN ( i n t numClasses , i n t a t t r i b S i z e , do ub l e [ ] [ ]

f e a t u r e V e c t o r )
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13 t h ro ws E x c e p t i o n {
14 / / D e c l a r e two numer ic a t t r i b u t e s
15 A t t r i b u t e [ ] f v A t t r i b u t e = new A t t r i b u t e [ a t t r i b S i z e ] ;
16 f o r ( i n t i = 0 ; i < a t t r i b S i z e ; i ++) {
17 S t r i n g a t t r i b n a m e = ” ” + i ;
18 f v A t t r i b u t e [ i ] = new A t t r i b u t e ( a t t r i b n a m e ) ;
19

20 }
21 / / D e c l a r e t h e c l a s s a t t r i b u t e a l o n g wi th i t s v a l u e s
22 F a s t V e c t o r f v C l a s s V a l = new F a s t V e c t o r ( numClasses ) ; / / C l a s s e s
23 f o r ( i n t i = 0 ; i < numClasses ; i ++) {
24 S t r i n g className = ” ” + i ;
25 f v C l a s s V a l . addElement ( c lassName ) ;
26 }
27

28 A t t r i b u t e C l a s s A t t r i b u t e = new A t t r i b u t e ( ” c l a s s e s ” , f v C l a s s V a l ) ;
29

30 / / D e c l a r e t h e f e a t u r e v e c t o r
31 F a s t V e c t o r f v W e k a A t t r i b u t e s = new F a s t V e c t o r ( a t t r i b S i z e + 1) ;
32 f o r ( i n t i = 0 ; i < a t t r i b S i z e ; i ++) {
33 f v W e k a A t t r i b u t e s . addElement ( f v A t t r i b u t e [ i ] ) ;
34

35 }
36 f v W e k a A t t r i b u t e s . addElement ( C l a s s A t t r i b u t e ) ;
37

38 / / C r e a t e an empty t r a i n i n g s e t
39 I n s t a n c e s t r a i n i n g S e t = new I n s t a n c e s ( ” Rel ” , f v W e k a A t t r i b u t e s ,
40 f e a t u r e V e c t o r . l e n g t h ) ;
41

42 / / S e t c l a s s i n d e x
43 t r a i n i n g S e t . s e t C l a s s I n d e x ( a t t r i b S i z e ) ;
44

45 / / F i l l t h e t r a i n i n g s e t
46 I n s t a n c e iSample = new I n s t a n c e ( a t t r i b S i z e + 1) ;
47

48 f o r ( i n t i = 0 ; i < f e a t u r e V e c t o r . l e n g t h ; i ++) {
49 i n t k = 0 ;
50 f o r ( i n t j = 1 ; j < f e a t u r e V e c t o r [ i ] . l e n g t h ; j ++) {
51 iSample . s e t V a l u e ( ( A t t r i b u t e ) f v W e k a A t t r i b u t e s . e l emen tAt ( k ) ,
52 f e a t u r e V e c t o r [ i ] [ j ] ) ;
53 k ++;
54 }
55 iSample . s e t V a l u e (
56 ( A t t r i b u t e ) f v W e k a A t t r i b u t e s . e l emen tAt ( a t t r i b S i z e ) ,
57 I n t e g e r . t o S t r i n g ( ( i n t ) f e a t u r e V e c t o r [ i ] [ 0 ] ) ) ;
58 t r a i n i n g S e t . add ( iSample ) ;
59

60 }
61

62 do ub l e l e a r n i n g R a t e = 0 . 3 ; / / be tween [0 1 ]
63 do ub l e momentum = 0 . 9 ; / / be tween [0 1 ]
64 i n t numEpoch =500;
65 i n t v a l i d a t i o n S e t =0 ; / / be tween [0 100]
66 i n t s eed =0; / / g e a t e r o r e q u a l t o 0 , we igh t s eed
67 i n t c o n s e q u t i v e E r r T h r e s h =20; / / d e f a u l t 20
68 i n t h iddenLaye rNeurons =100;
69 C l a s s i f i e r cModel = ( C l a s s i f i e r ) new M u l t i l a y e r P e r c e p t r o n ( ) ;
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70 S t r i n g o p t =” −L ”+ l e a r n i n g R a t e +” −M ”+momentum+” −N ”+numEpoch+” −V ”+
v a l i d a t i o n S e t +” −S ”+ seed +” −E ”+ c o n s e q u t i v e E r r T h r e s h +” −H ”+
h iddenLaye rNeurons ;

71 cModel . s e t O p t i o n s ( U t i l s . s p l i t O p t i o n s ( o p t ) ) ;
72 cModel . b u i l d C l a s s i f i e r ( t r a i n i n g S e t ) ;
73 r e t u r n cModel ;
74 }
75

76 p u b l i c d ou b l e [ ] [ ] testANN ( C l a s s i f i e r cModel , i n t numClasses , i n t
a t t r i b S i z e , do ub l e [ ] [ ] f e a t u r e V e c t o r )

77 t h ro ws E x c e p t i o n {
78 / / D e c l a r e two numer ic a t t r i b u t e s
79 i n t n u m I n s t a n c e s = f e a t u r e V e c t o r . l e n g t h ;
80

81 A t t r i b u t e [ ] f v A t t r i b u t e = new A t t r i b u t e [ a t t r i b S i z e ] ;
82 f o r ( i n t i = 0 ; i < a t t r i b S i z e ; i ++) {
83 S t r i n g a t t r i b n a m e = ” ” + i ;
84 f v A t t r i b u t e [ i ] = new A t t r i b u t e ( a t t r i b n a m e ) ;
85

86 }
87 F a s t V e c t o r f v C l a s s V a l = new F a s t V e c t o r ( numClasses ) ; / / C l a s s e s
88 f o r ( i n t i = 0 ; i < numClasses ; i ++) {
89 S t r i n g className = ” ” + i ;
90 f v C l a s s V a l . addElement ( c lassName ) ;
91 }
92

93 A t t r i b u t e C l a s s A t t r i b u t e = new A t t r i b u t e ( ” c l a s s e s ” , f v C l a s s V a l ) ;
94

95 / / D e c l a r e t h e f e a t u r e v e c t o r
96 F a s t V e c t o r f v W e k a A t t r i b u t e s = new F a s t V e c t o r ( a t t r i b S i z e + 1) ;
97 f o r ( i n t i = 0 ; i < a t t r i b S i z e ; i ++) {
98 f v W e k a A t t r i b u t e s . addElement ( f v A t t r i b u t e [ i ] ) ;
99 }

100 f v W e k a A t t r i b u t e s . addElement ( C l a s s A t t r i b u t e ) ;
101

102 / / C r e a t e an empty t r a i n i n g s e t
103 I n s t a n c e s t e s t i n g S e t = new I n s t a n c e s ( ” Rel ” , f v W e k a A t t r i b u t e s ,
104 f e a t u r e V e c t o r . l e n g t h ) ;
105

106 / / S e t c l a s s i n d e x
107 t e s t i n g S e t . s e t C l a s s I n d e x ( a t t r i b S i z e ) ;
108 / / F i l l t h e t r a i n i n g s e t
109 I n s t a n c e iSample = new I n s t a n c e ( a t t r i b S i z e + 1) ;
110

111 f o r ( i n t i = 0 ; i < f e a t u r e V e c t o r . l e n g t h ; i ++) {
112 i n t k = 0 ;
113 f o r ( i n t j = 1 ; j < f e a t u r e V e c t o r [ i ] . l e n g t h ; j ++) {
114 iSample . s e t V a l u e ( ( A t t r i b u t e ) f v W e k a A t t r i b u t e s . e l emen tAt ( k ) ,
115 f e a t u r e V e c t o r [ i ] [ j ] ) ;
116 k ++;
117 }
118 iSample . s e t V a l u e (
119 ( A t t r i b u t e ) f v W e k a A t t r i b u t e s . e l emen tAt ( a t t r i b S i z e ) ,
120 I n t e g e r . t o S t r i n g ( ( i n t ) f e a t u r e V e c t o r [ i ] [ 0 ] ) ) ;
121 t e s t i n g S e t . add ( iSample ) ;
122

123 }
124 / / T e s t t h e model
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125 E v a l u a t i o n e T e s t = new E v a l u a t i o n ( t e s t i n g S e t ) ;
126 e T e s t . e v a l u a t e M o d e l ( cModel , t e s t i n g S e t ) ;
127

128

129 do ub l e [ ] [ ] o u t p u t = new d ou b le [ n u m I n s t a n c e s ] [ numClasses ] ;
130 f o r ( i n t i = 0 ; i < n u m I n s t a n c e s ; i ++)
131 f o r ( i n t j = 0 ; j < numClasses ; j ++)
132 o u t p u t [ i ] [ j ] = 0 . 0 ;
133

134 f o r ( i n t i = 0 ; i < n u m I n s t a n c e s ; i ++) {
135 do ub l e y = e T e s t . eva lua teMode lOnce ( cModel , t e s t i n g S e t . i n s t a n c e ( i ) ) ;
136 f o r ( i n t k = 0 ; k < numClasses ; k ++) {
137 i f ( ( i n t ) y == k ) {
138 o u t p u t [ i ] [ k ] = 1 ;
139 b r e a k ;
140 }
141 }
142 }
143

144 f o r ( i n t i = 0 ; i < n u m I n s t a n c e s ; i ++){
145 f o r ( i n t j = 0 ; j < numClasses ; j ++){
146 System . o u t . p r i n t ( ” ”+ o u t p u t [ i ] [ j ] ) ;
147 }
148 System . o u t . p r i n t l n ( ) ;
149 }
150

151 / / Get t h e c o n f u s i o n m a t r i x
152 do ub l e [ ] [ ] cmMatrix = e T e s t . c o n f u s i o n M a t r i x ( ) ;
153 f o r ( i n t r o w i = 0 ; r o w i < cmMatrix . l e n g t h ; r o w i ++) {
154 f o r ( i n t c o l i = 0 ; c o l i < cmMatrix . l e n g t h ; c o l i ++) {
155 System . o u t . p r i n t ( cmMatrix [ r o w i ] [ c o l i ] ) ;
156 System . o u t . p r i n t ( ” | ” ) ;
157 }
158 System . o u t . p r i n t l n ( ) ;
159 }
160 r e t u r n o u t p u t ;
161 }
162 }

Naive Bayes Training/Testing

1

2 i m p o r t weka . c l a s s i f i e r s . C l a s s i f i e r ;
3 i m p o r t weka . c l a s s i f i e r s . E v a l u a t i o n ;
4 i m p o r t weka . c l a s s i f i e r s . bayes . NaiveBayes ;
5 i m p o r t weka . c o r e . A t t r i b u t e ;
6 i m p o r t weka . c o r e . F a s t V e c t o r ;
7 i m p o r t weka . c o r e . I n s t a n c e ;
8 i m p o r t weka . c o r e . I n s t a n c e s ;
9

10 p u b l i c c l a s s Naive {
11 p u b l i c C l a s s i f i e r t r a i n N a i v e ( i n t numClasses , i n t a t t r i b S i z e , do ub l e [ ] [ ]

f e a t u r e V e c t o r )
12 t h ro ws E x c e p t i o n {
13 / / D e c l a r e two numer ic a t t r i b u t e s
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14

15 A t t r i b u t e [ ] f v A t t r i b u t e = new A t t r i b u t e [ a t t r i b S i z e ] ;
16 f o r ( i n t i = 0 ; i < a t t r i b S i z e ; i ++) {
17 S t r i n g a t t r i b n a m e = ” ” + i ;
18 f v A t t r i b u t e [ i ] = new A t t r i b u t e ( a t t r i b n a m e ) ;
19

20 }
21 / / D e c l a r e t h e c l a s s a t t r i b u t e a l o n g wi th i t s v a l u e s
22 F a s t V e c t o r f v C l a s s V a l = new F a s t V e c t o r ( numClasses ) ; / / C l a s s e s
23 f o r ( i n t i = 0 ; i < numClasses ; i ++) {
24 S t r i n g className = ” ” + i ;
25 f v C l a s s V a l . addElement ( c lassName ) ;
26 }
27

28 A t t r i b u t e C l a s s A t t r i b u t e = new A t t r i b u t e ( ” c l a s s e s ” , f v C l a s s V a l ) ;
29

30 / / D e c l a r e t h e f e a t u r e v e c t o r
31 F a s t V e c t o r f v W e k a A t t r i b u t e s = new F a s t V e c t o r ( a t t r i b S i z e + 1) ;
32 f o r ( i n t i = 0 ; i < a t t r i b S i z e ; i ++) {
33 f v W e k a A t t r i b u t e s . addElement ( f v A t t r i b u t e [ i ] ) ;
34

35 }
36 f v W e k a A t t r i b u t e s . addElement ( C l a s s A t t r i b u t e ) ;
37

38 / / C r e a t e an empty t r a i n i n g s e t
39 I n s t a n c e s t r a i n i n g S e t = new I n s t a n c e s ( ” Rel ” , f v W e k a A t t r i b u t e s ,
40 f e a t u r e V e c t o r . l e n g t h ) ;
41

42 / / S e t c l a s s i n d e x
43 t r a i n i n g S e t . s e t C l a s s I n d e x ( a t t r i b S i z e ) ;
44 / / F i l l t h e t r a i n i n g s e t
45 I n s t a n c e iSample = new I n s t a n c e ( a t t r i b S i z e + 1) ;
46

47 f o r ( i n t i = 0 ; i < f e a t u r e V e c t o r . l e n g t h ; i ++) {
48 i n t k = 0 ;
49 f o r ( i n t j = 1 ; j < f e a t u r e V e c t o r [ i ] . l e n g t h ; j ++) {
50 iSample . s e t V a l u e ( ( A t t r i b u t e ) f v W e k a A t t r i b u t e s . e l emen tAt ( k ) ,
51 f e a t u r e V e c t o r [ i ] [ j ] ) ;
52 k ++;
53 }
54 iSample . s e t V a l u e (
55 ( A t t r i b u t e ) f v W e k a A t t r i b u t e s . e l emen tAt ( a t t r i b S i z e ) ,
56 I n t e g e r . t o S t r i n g ( ( i n t ) f e a t u r e V e c t o r [ i ] [ 0 ] ) ) ;
57 t r a i n i n g S e t . add ( iSample ) ;
58

59 }
60 C l a s s i f i e r cModel = ( C l a s s i f i e r ) new NaiveBayes ( ) ;
61 cModel . b u i l d C l a s s i f i e r ( t r a i n i n g S e t ) ;
62

63 r e t u r n cModel ;
64 }
65

66 p u b l i c d ou b l e [ ] [ ] t e s t N a i v e ( C l a s s i f i e r cModel , i n t numClasses , i n t
a t t r i b S i z e , do ub l e [ ] [ ] f e a t u r e V e c t o r )

67 t h ro ws E x c e p t i o n {
68 / / D e c l a r e two numer ic a t t r i b u t e s
69 i n t n u m I n s t a n c e s = f e a t u r e V e c t o r . l e n g t h ;
70
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71 A t t r i b u t e [ ] f v A t t r i b u t e = new A t t r i b u t e [ a t t r i b S i z e ] ;
72 f o r ( i n t i = 0 ; i < a t t r i b S i z e ; i ++) {
73 S t r i n g a t t r i b n a m e = ” ” + i ;
74 f v A t t r i b u t e [ i ] = new A t t r i b u t e ( a t t r i b n a m e ) ;
75

76 }
77 F a s t V e c t o r f v C l a s s V a l = new F a s t V e c t o r ( numClasses ) ; / / C l a s s e s
78 f o r ( i n t i = 0 ; i < numClasses ; i ++) {
79 S t r i n g className = ” ” + i ;
80 f v C l a s s V a l . addElement ( c lassName ) ;
81 }
82

83 A t t r i b u t e C l a s s A t t r i b u t e = new A t t r i b u t e ( ” c l a s s e s ” , f v C l a s s V a l ) ;
84

85 / / D e c l a r e t h e f e a t u r e v e c t o r
86 F a s t V e c t o r f v W e k a A t t r i b u t e s = new F a s t V e c t o r ( a t t r i b S i z e + 1) ;
87 f o r ( i n t i = 0 ; i < a t t r i b S i z e ; i ++) {
88 f v W e k a A t t r i b u t e s . addElement ( f v A t t r i b u t e [ i ] ) ;
89

90 }
91 f v W e k a A t t r i b u t e s . addElement ( C l a s s A t t r i b u t e ) ;
92

93 / / C r e a t e an empty t r a i n i n g s e t
94 I n s t a n c e s t e s t i n g S e t = new I n s t a n c e s ( ” Rel ” , f v W e k a A t t r i b u t e s ,
95 f e a t u r e V e c t o r . l e n g t h ) ;
96

97 / / S e t c l a s s i n d e x
98 t e s t i n g S e t . s e t C l a s s I n d e x ( a t t r i b S i z e ) ;
99 / / F i l l t h e t r a i n i n g s e t

100 I n s t a n c e iSample = new I n s t a n c e ( a t t r i b S i z e + 1) ;
101

102 f o r ( i n t i = 0 ; i < f e a t u r e V e c t o r . l e n g t h ; i ++) {
103 i n t k = 0 ;
104 f o r ( i n t j = 1 ; j < f e a t u r e V e c t o r [ i ] . l e n g t h ; j ++) {
105 iSample . s e t V a l u e ( ( A t t r i b u t e ) f v W e k a A t t r i b u t e s . e l emen tAt ( k ) ,
106 f e a t u r e V e c t o r [ i ] [ j ] ) ;
107 k ++;
108 }
109 iSample . s e t V a l u e (
110 ( A t t r i b u t e ) f v W e k a A t t r i b u t e s . e l emen tAt ( a t t r i b S i z e ) ,
111 I n t e g e r . t o S t r i n g ( ( i n t ) f e a t u r e V e c t o r [ i ] [ 0 ] ) ) ;
112 t e s t i n g S e t . add ( iSample ) ;
113 }
114 / / T e s t t h e model
115 E v a l u a t i o n e T e s t = new E v a l u a t i o n ( t e s t i n g S e t ) ;
116 e T e s t . e v a l u a t e M o d e l ( cModel , t e s t i n g S e t ) ;
117

118 do ub l e [ ] [ ] o u t p u t = new d oub le [ n u m I n s t a n c e s ] [ numClasses ] ;
119 f o r ( i n t i = 0 ; i < n u m I n s t a n c e s ; i ++)
120 f o r ( i n t j = 0 ; j < numClasses ; j ++)
121 o u t p u t [ i ] [ j ] = 0 . 0 ;
122

123 f o r ( i n t i = 0 ; i < n u m I n s t a n c e s ; i ++) {
124 do ub l e y = e T e s t . eva lua teMode lOnce ( cModel , t e s t i n g S e t . i n s t a n c e (

i ) ) ;
125 f o r ( i n t k = 0 ; k < numClasses ; k ++) {
126 i f ( ( i n t ) y == k ) {
127 o u t p u t [ i ] [ k ] = 1 ;
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128 b r e a k ;
129 }
130 }
131 }
132 r e t u r n o u t p u t ;
133 }
134 }

System Evaluation

1 p u b l i c c l a s s Confus ion {
2 p u b l i c vo id c o n f u s i o n R e s u l t s ( dou b l e [ ] [ ] t a r g e t s , do ub l e [ ] [ ] o u t p u t s ) {
3 C o n f u s i o n R e s u l t s c r = c o n f u s i o n ( t a r g e t s , o u t p u t s ) ;
4 c r . p r i n t C ( ) ;
5 c r . pr in tCm ( ) ;
6 c r . p r i n t I n d ( ) ;
7 c r . p r i n t P e r ( ) ;
8 E v a l u a t i o n R e s u l t s e r = e v a l u a t i o n ( c r ) ;
9 e r . p r i n t E v a l u a t i o n R e s u l t s ( ) ;

10 }
11 p u b l i c C o n f u s i o n R e s u l t s c o n f u s i o n ( dou b l e t a r g e t s [ ] [ ] , do ub l e o u t p u t s

[ ] [ ] ) {
12 C o n f u s i o n R e s u l t s c r = new C o n f u s i o n R e s u l t s ( ) ;
13

14 i n t numClasses = o u t p u t s . l e n g t h ;
15 c r . s e t C l a s s e s ( numClasses ) ;
16 i f ( numClasses == 1) {
17 System . o u t . p r i n t l n ( ” Code i s n o t w r i t t e n f o r t h i s c a s e . ” ) ;
18 / / r e t u r n ;
19 }
20

21 / / Unknown / dont−c a r e t a r g e t s
22 / / Code i s n o t w r i t t e n t o h a n d l e i n f i n i t e o r nan numbers i n t h e

t a r g e t and o u t p u t .
23

24 i n t numSamples = t a r g e t s [ 0 ] . l e n g t h ;
25 c r . s e t S a m p l e s ( numSamples ) ;
26 / / T rans fo rm o u t p u t s ( maximum v a l u e i s s e t t o 1 and o t h e r v a l u e s

t o 0 , column−wise )
27 f o r ( i n t c o l = 0 ; c o l < numSamples ; c o l ++) {
28 do ub l e max = o u t p u t s [ 0 ] [ c o l ] ;
29 i n t i n d = 0 ;
30

31 f o r ( i n t row = 1 ; row < numClasses ; row ++) {
32 i f ( o u t p u t s [ row ] [ c o l ] > max ) {
33 max = o u t p u t s [ row ] [ c o l ] ;
34 i n d = row ;
35 }
36 o u t p u t s [ row ] [ c o l ] = 0 . 0 ;
37 }
38 o u t p u t s [ 0 ] [ c o l ] = 0 . 0 ;
39 o u t p u t s [ i n d ] [ c o l ] = 1 ;
40 }
41 / / Con fus ion v a l u e
42 i n t c o u n t = 0 ;
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43 f o r ( i n t row = 0 ; row < numClasses ; row ++) {
44 f o r ( i n t c o l = 0 ; c o l < numSamples ; c o l ++) {
45 i f ( t a r g e t s [ row ] [ c o l ] != o u t p u t s [ row ] [ c o l ] )
46 c o u n t ++;
47 }
48 }
49 do ub l e c = ( d oub l e ) c o u n t / ( d ou b l e ) (2 ∗ numSamples ) ;
50

51 / / Con fus ion m a t r i x
52 i n t [ ] [ ] cm = new i n t [ numClasses ] [ numClasses ] ;
53 f o r ( i n t row = 0 ; row < numClasses ; row ++) {
54 f o r ( i n t c o l = 0 ; c o l < numClasses ; c o l ++) {
55 cm [ row ] [ c o l ] = 0 ;
56 }
57 }
58

59 i n t [ ] i = new i n t [ numSamples ] ;
60 i n t [ ] j = new i n t [ numSamples ] ;
61

62 f o r ( i n t c o l = 0 ; c o l < numSamples ; c o l ++) {
63 f o r ( i n t row = 0 ; row < numClasses ; row ++) {
64 i f ( t a r g e t s [ row ] [ c o l ] == 1 . 0 ) {
65 i [ c o l ] = row ;
66 b r e a k ;
67 }
68 }
69 }
70

71 f o r ( i n t c o l = 0 ; c o l < numSamples ; c o l ++) {
72 f o r ( i n t row = 0 ; row < numClasses ; row ++) {
73 i f ( o u t p u t s [ row ] [ c o l ] == 1 . 0 ) {
74 j [ c o l ] = row ;
75 b r e a k ;
76 }
77 }
78 }
79

80 f o r ( i n t c o l = 0 ; c o l < numSamples ; c o l ++) {
81 cm [ i [ c o l ] ] [ j [ c o l ] ] = cm [ i [ c o l ] ] [ j [ c o l ] ] + 1 ;
82 }
83

84 / / I n d i c e s
85 i n t [ ] [ ] [ ] i nd1 = new i n t [ numClasses ] [ numClasses ] [ 3 ] ;
86

87 S t r i n g [ ] [ ] i n d = new S t r i n g [ numClasses ] [ numClasses ] ;
88 f o r ( i n t row = 0 ; row < numClasses ; row ++)
89 f o r ( i n t c o l = 0 ; c o l < numClasses ; c o l ++)
90 i n d [ row ] [ c o l ] = ” ” ;
91

92

93 f o r ( i n t c o l = 0 ; c o l < numSamples ; c o l ++) {
94 i f ( i n d [ i [ c o l ] ] [ j [ c o l ] ] . e q u a l s ( ” ” ) )
95 i n d [ i [ c o l ] ] [ j [ c o l ] ] = new S t r i n g B u i l d e r ( ) . append ( c o l ) .

t o S t r i n g ( ) ;
96 e l s e
97 i n d [ i [ c o l ] ] [ j [ c o l ] ] = new S t r i n g B u i l d e r ( ) . append ( i n d [ i [ c o l

] ] [ j [ c o l ] ] ) . append ( ” , ” ) . append ( c o l ) . t o S t r i n g ( ) ;
98 }
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99

100 / / P e r c e n t a g e s
101

102 do ub l e [ ] [ ] p e r = new d oub le [ numClasses ] [ 4 ] ;
103 f o r ( i n t row = 0 ; row < numClasses ; row ++) {
104 f o r ( i n t c o l = 0 ; c o l < 4 ; c o l ++) {
105 p e r [ row ] [ c o l ] = 0 . 0 ;
106 }
107 }
108

109 f o r ( i n t row = 0 ; row < numClasses ; row ++) {
110 do ub l e [ ] y i = new d ou b le [ numSamples ] ;
111 do ub l e [ ] t i = new d ou b le [ numSamples ] ;
112 f o r ( i n t c o l = 0 ; c o l < numSamples ; c o l ++) {
113 y i [ c o l ] = o u t p u t s [ row ] [ c o l ] ;
114 t i [ c o l ] = t a r g e t s [ row ] [ c o l ] ;
115

116 }
117

118 i n t a = 0 , b = 0 ;
119 f o r ( i n t c o l = 0 ; c o l < numSamples ; c o l ++) {
120 i f ( y i [ c o l ] != 1 && t i [ c o l ] == 1) a = a + 1 ;
121 i f ( y i [ c o l ] != 1 ) b = b + 1 ;
122 }
123 p e r [ row ] [ 0 ] = ( do ub l e ) a / ( do ub l e ) b ;
124

125

126 a = 0 ;
127 b = 0 ;
128 f o r ( i n t c o l = 0 ; c o l < numSamples ; c o l ++) {
129 i f ( y i [ c o l ] == 1 && t i [ c o l ] != 1 ) a = a + 1 ;
130 i f ( y i [ c o l ] == 1) b = b + 1 ;
131 }
132 p e r [ row ] [ 1 ] = ( do ub l e ) a / ( do ub l e ) b ;
133

134

135 a = 0 ;
136 b = 0 ;
137 f o r ( i n t c o l = 0 ; c o l < numSamples ; c o l ++) {
138 i f ( y i [ c o l ] == 1 && t i [ c o l ] == 1) a = a + 1 ;
139 i f ( y i [ c o l ] == 1) b = b + 1 ;
140 }
141 p e r [ row ] [ 2 ] = ( do ub l e ) a / ( do ub l e ) b ;
142

143 a = 0 ;
144 b = 0 ;
145 f o r ( i n t c o l = 0 ; c o l < numSamples ; c o l ++) {
146 i f ( y i [ c o l ] != 1 && t i [ c o l ] != 1 ) a = a + 1 ;
147 i f ( y i [ c o l ] != 1 ) b = b + 1 ;
148 }
149 p e r [ row ] [ 3 ] = ( do ub l e ) a / ( do ub l e ) b ;
150

151 }
152 / /NAN h a n d l i n g
153 f o r ( i n t row = 0 ; row < numClasses ; row ++) {
154 f o r ( i n t c o l = 0 ; c o l < 4 ; c o l ++) {
155 i f ( Double . isNaN ( p e r [ row ] [ c o l ] ) )
156 p e r [ row ] [ c o l ] = 0 . 0 ;
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157 }
158 }
159

160 c r . s e tC ( round ( c , 2 ) ) ;
161 c r . setCm ( cm ) ;
162 c r . s e t I n d ( i n d ) ;
163 c r . s e t P e r ( p e r ) ;
164 r e t u r n c r ;
165

166 }
167 p u b l i c E v a l u a t i o n R e s u l t s e v a l u a t i o n ( C o n f u s i o n R e s u l t s c r ) {
168

169 do ub l e [ ] [ ] p e r = c r . g e t P e r ( ) ;
170 i n t numClasses = c r . g e t C l a s s e s ( ) ;
171

172 / / Average Accuracy ( The a v e r a g e per−c l a s s e f f e c t i v e n e s s o f a
c l a s s i f i e r )

173 do ub l e avgAccuracy = 0 . 0 ;
174 do ub l e fn = 0 . 0 , fp = 0 . 0 , t p = 0 . 0 , t n = 0 . 0 ;
175 f o r ( i n t i =0 ; i<numClasses ; i ++){
176 fn = p e r [ i ] [ 0 ] ;
177 fp = p e r [ i ] [ 1 ] ;
178 t p = p e r [ i ] [ 2 ] ;
179 t n = p e r [ i ] [ 3 ] ;
180 avgAccuracy =+ avgAccuracy + ( ( t p + t n ) / ( t p + fn + fp + t n ) ) ;
181 }
182 avgAccuracy = avgAccuracy / numClasses ;
183

184 / / E r r o r Rate ( The a v e r a g e per−c l a s s c l a s s i f i c a t i o n e r r o r )
185 do ub l e e r r R a t e = 0 . 0 ;
186 f o r ( i n t i =0 ; i<numClasses ; i ++){
187 fn = p e r [ i ] [ 0 ] ;
188 fp = p e r [ i ] [ 1 ] ;
189 t p = p e r [ i ] [ 2 ] ;
190 t n = p e r [ i ] [ 3 ] ;
191 e r r R a t e =+ e r r R a t e + ( ( fp + fn ) / ( t p + fn + fp + t n ) ) ;
192 }
193 e r r R a t e = e r r R a t e / numClasses ;
194

195 / / P r e c i s i o n−Micro ( Agreement o f t h e d a t a c l a s s l a b e l s w i th t h o s e o f
a c l a s s i f i e r s i f c a l c u l a t e d from sums of per− t e x t d e c i s i o n s )

196 do ub l e n u m e r a t o r = 0 . 0 ;
197 do ub l e d e n o m i n a t o r = 0 . 0 ;
198 f o r ( i n t i =0 ; i<numClasses ; i ++){
199 fn = p e r [ i ] [ 0 ] ;
200 fp = p e r [ i ] [ 1 ] ;
201 t p = p e r [ i ] [ 2 ] ;
202 t n = p e r [ i ] [ 3 ] ;
203 n u m e r a t o r = n u m e r a t o r + t p ;
204 d e n o m i n a t o r = d e n o m i n a t o r + ( t p + fp ) ;
205 }
206

207 do ub l e p r e c i s i o n M i c r o = n u m e r a t o r / d e n o m i n a t o r ;
208

209 / / R e c a l l−Micro ( E f f e c t i v e n e s s o f a c l a s s i f i e r t o i d e n t i f y c l a s s
l a b e l s i f c a l c u l a t e d from sums of per− t e x t d e c i s i o n s )

210 n u m e r a t o r = 0 . 0 ;
211 d e n o m i n a t o r = 0 . 0 ;
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212 f o r ( i n t i =0 ; i<numClasses ; i ++){
213 fn = p e r [ i ] [ 0 ] ;
214 fp = p e r [ i ] [ 1 ] ;
215 t p = p e r [ i ] [ 2 ] ;
216 t n = p e r [ i ] [ 3 ] ;
217 n u m e r a t o r = n u m e r a t o r + t p ;
218 d e n o m i n a t o r = d e n o m i n a t o r + ( t p + fn ) ;
219 }
220

221 do ub l e r e c a l l M i c r o = n u m e r a t o r / d e n o m i n a t o r ;
222

223 / / Fscore−Micro ( R e l a t i o n s between d a t a ’ s p o s i t i v e l a b e l s and t h o s e
g i v e n by a c l a s s i f i e r based on sums of per− t e x t d e c i s i o n s )

224 do ub l e b e t a =1;
225 n u m e r a t o r =( Math . pow ( be t a , 2 ) +1) ∗ p r e c i s i o n M i c r o ∗ r e c a l l M i c r o ;
226 d e n o m i n a t o r =Math . pow ( be t a , 2 ) ∗ p r e c i s i o n M i c r o + r e c a l l M i c r o ;
227 do ub l e f s c o r e M i c r o = n u m e r a t o r / d e n o m i n a t o r ;
228

229 / / P r e c i s i o n−Macro ( An a v e r a g e per−c l a s s ag reemen t o f t h e d a t a c l a s s
l a b e l s w i th t h o s e o f a c l a s s i f i e r s )

230 do ub l e p r e c i s i o n M a c r o = 0 . 0 ;
231 f o r ( i n t i =0 ; i<numClasses ; i ++){
232 fn = p e r [ i ] [ 0 ] ;
233 fp = p e r [ i ] [ 1 ] ;
234 t p = p e r [ i ] [ 2 ] ;
235 t n = p e r [ i ] [ 3 ] ;
236 p r e c i s i o n M a c r o = p r e c i s i o n M a c r o +( t p / ( t p + fp ) ) ;
237 }
238

239 p r e c i s i o n M a c r o = p r e c i s i o n M a c r o / numClasses ;
240

241 / / R e c a l l−Micro ( An a v e r a g e per−c l a s s e f f e c t i v e n e s s o f a c l a s s i f i e r
t o i d e n t i f y c l a s s l a b e l s )

242 do ub l e r e c a l l M a c r o = 0 . 0 ;
243

244 f o r ( i n t i =0 ; i<numClasses ; i ++){
245 fn = p e r [ i ] [ 0 ] ;
246 fp = p e r [ i ] [ 1 ] ;
247 t p = p e r [ i ] [ 2 ] ;
248 t n = p e r [ i ] [ 3 ] ;
249 r e c a l l M a c r o = r e c a l l M a c r o +( t p / ( t p + fn ) ) ;
250 }
251 r e c a l l M a c r o = r e c a l l M a c r o / numClasses ;
252

253 / / Fscore−Macro ( R e l a t i o n s between d a t a ’ s p o s i t i v e l a b e l s and t h o s e
g i v e n by a c l a s s i f i e r based on a per−c l a s s a v e r a g e )

254 b e t a =1;
255 n u m e r a t o r =( Math . pow ( be t a , 2 ) +1) ∗ p r e c i s i o n M a c r o ∗ r e c a l l M a c r o ;
256 d e n o m i n a t o r =Math . pow ( be t a , 2 ) ∗ p r e c i s i o n M a c r o + r e c a l l M a c r o ;
257 do ub l e f s c o r e M a c r o = n u m e r a t o r / d e n o m i n a t o r ;
258

259 E v a l u a t i o n R e s u l t s e r =new E v a l u a t i o n R e s u l t s ( ) ;
260 e r . se tAvgAccuray ( round ( avgAccuracy , 4 ) ) ;
261 e r . s e t E r r R a t e ( round ( e r r R a t e , 4 ) ) ;
262 e r . s e t P r e c i s i o n M i c r o ( round ( p r e c i s i o n M i c r o , 4 ) ) ;
263 e r . s e t R e c a l l M i c r o ( round ( r e c a l l M i c r o , 4 ) ) ;
264 e r . s e t F s c o r e M i c r o ( round ( f s c o r e M i c r o , 4 ) ) ;
265 e r . s e t P r e c i s i o n M a c r o ( round ( p r e c i s i o n M a c r o , 4 ) ) ;
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266 e r . s e t R e c a l l M a c r o ( round ( r e c a l l M a c r o , 4 ) ) ;
267 e r . s e t F s c o r e M a c r o ( round ( f sco reMacro , 4 ) ) ;
268 r e t u r n e r ;
269

270 }
271 p u b l i c d ou b l e round ( d ou b l e valueToRound , i n t numberOfDec imalP laces )
272 {
273 do ub l e m u l t i p i c a t i o n F a c t o r = Math . pow ( 1 0 , numberOfDec imalP laces ) ;
274 do ub l e i n t e r e s t e d I n Z e r o D P s = valueToRound ∗ m u l t i p i c a t i o n F a c t o r ;
275 r e t u r n Math . round ( i n t e r e s t e d I n Z e r o D P s ) / m u l t i p i c a t i o n F a c t o r ;
276 }
277

278 }
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