

Comparative Study and measurement of performance of Serial, Parallel and Concurrent Mark Sweep Collectors algorithm on JVM

Dissertation

Submitted To

Central Department of Computer Science & Information Technology

Tribhuvan University

Kirtipur, Kathmandu Nepal

In Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science & Information Technology

Submitted By:-

Saroj Bhatta

August, 2014

Supervisor

Mr. Arjun Singh Saud

Tribhuvan University Institute of Science and Technology Central Department of Computer Science and Information Technology

Student's Declaration

I hereby declare that I am the only author of this work and that no sources other than the listed here have been used in this work.

....

Saroj Bhatta Date: August, 2014

Tribhuvan University Institute of Science and Technology Central Department of Computer Science and Information Technology

Supervisor's Recommendation

I hereby recommend that the dissertation prepared under my supervision by **Mr. Saroj Bhatta** entitled "**Comparative Study and Measurement of Performance of Serial, Parallel, and Concurrent Mark Sweep Collectors on JVM**" be accepted as in fulfilling partial requirement for the completion of Masters Degree of Science in Computer Science & Information Technology.

Mr. Arjun Singh Saud

Lecturer,

Central Department of Computer Science and Information Technology,

Institute of Science and Technology,

Kirtipur, Kathmandu, Nepal

Date: August, 2014

Tribhuvan University Institute of Science and Technology Central Department of Computer Science and Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation work and in our opinion it is appreciable for the scope and quality as a dissertation in the partial fulfillment of the requirements of Masters Degree of Science in Computer Science & Information Technology.

Evaluation Committee

Asst. Prof. Nawaraj Paudel Head of Department Central Department of Computer Science & Information Technology Tribhuvan University Kirtipur Mr. Arjun Singh Saud Lecturer Central Department of Computer Science and Information Technology (Supervisor)

(External Examiner)

(Internal Examiner)

Date: August, 2014

ABSTRACT

Java Virtual Machine (JVM) works as a software module that executes java application bytecode and translates the byte code into hardware and operating system-specific instructions. By doing so, the JVM enables java program to be executed in different environments. It also performs the function of memory allocation as objects are created and freeing when they are no longer needed. In java programming language, garbage collector automatically manage the objects generated by the keyword new inside Java Virtual machine. But in other programming languages like C/C++ objects created are managed by free or delete.

Garbage collection is the process of automatic storage reclamation in which those objects which are no longer referenced from any live objects or from program are collected. One of the advantages of garbage collection is that the garbage collection ensures program integrity. It is an important part of java security strategy. Garbage collectors are becoming the essential part of compilers. Most of the high level languages like java and C# have incorporated garbage collectors for automatic memory management. This study compares three garbage collectors (Serial, Parallel and Concurrent Mark Sweep). After performing different tests, this dissertation work showed that Serial GC is better choice if we have to use single threaded programs and parallel GC is better choice in case of multithreaded.

Keywords:

Serial garbage Collector, Parallel Garbage Collector, Concurrent mark Sweep Garbage Collector, Java Virtual Machine, Java Heap Memory.

Acknowledgement

I would like to express my gratitude to all the people who supported and accompanied me during the preparation of this dissertation "Comparative Study and measurement of performance of Serial, Parallel, and Concurrent Mark Sweep Collectors algorithm on JVM". This research work has been performed under Central Department of Computer Science and Information Technology (*Tribhuvan University*), Kirtipur. I am very grateful to my department for giving me an enthusiastic support.

Firstly, I would like to deeply extend my heartly acknowledgement to my respected teacher and dissertation supervisor **Mr. Arjun Singh Saud,** for his wholehearted cooperation, encouragement and strong guidelines throughout the preparation of this study. He is the one who listened to all my problems I faced during this thesis and showed me the way to overcome them.

Most importantly I would like to thank to respected Head of Department of Central Department of Computer Science and Information Technology, Asst. Prof. Nawaraj Paudel for his kind support, help and constructive suggestions. I am very much grateful and thankful to all the respected teachers Prof. Dr. Shashidharram Joshi, Prof. Dr. Subarna Sakya, Prof. Sudarsan Karanjit, Mr. Min Bahadur Khati, Mr. Bishnu Gautam, Mr. Jagdish Bhatta, Mr. Dheeraj Kedar Pandey, Mr. Sarbin Sayami, Mrs. Lalita Sthapit, Mr. Yoga Raj Joshi and Mr. Bikash Balami of CDCSIT, TU, for providing me such a broad knowledge and inspirations.

All my class fellows are worthy of my gratefulness for their direct or indirect support in completion of my dissertation. Finally, I would like to thank my friends Mr. Dabal Singh Mahara and Mr. Niranjan Kathayat for their kind co-operation during my work.

I have done my best to complete this research work. Suggestions from the readers are always welcomed, which will improve this work.

Saroj Bhatta August, 2014

ABBREVIATIONS

CPU	Central Processing Unit
CMS	Concurrent Mark Sweep
DFS	Depth First Search
GB	Giga Byte
GC	Garbage Collector
GC	Garbage Collection
GHz	Giga Hertz
JDK	Java Development Kit
JVM	Java Virtual Machine
KB	Kilo Byte
MHz	Mega Hertz
PGC	Parallel Garbage Collection
SGC	Serial Garbage Collection

TABLE OF CONTENTS

Pages

ABSTRACT	i
ACKNOWLEDGEMENT	ii
ABBREVIATION	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vii
LIST OF TABLES	viii
CHAPTER ONE	1
BACKGROUND AND INTRODUCTION	1
1.1 Background	1
1.1.1 Java Virtual Machine	1
1.1.2 Explicit vs. Automatic Memory Management	3
1.1.3 Memory Fragmentation and Compaction	4
1.1.4 Garbage Collection	6
1.1.4.1 Desirable Garbage Collector Characteristics	7
1.1.5 Java Heap Memory	8
1.2 Introduction	10
1.2.1 Problem Definition	10
1.2.2 Objectives	11
1.3 Performance Metrics	11
1.4 Motivation	11
1.5 Structure of Thesis	12
CHAPTER TWO	13
Research Methodology and Literature Review	13
2.1 Literature Review	13
2.2 Research Methodology	16
CHAPTER THREE	17
GARBAGE COLLECTION ALGORITHMS	17
3.1 Serial Garbage Collector	17

3.2	Parallel Garbage Collector	19
3.3	3 Concurrent Mark Sweep Garbage Collector	20
С	HAPTER FOUR	22
DI	ESIGN AND IMPLEMENTATION	22
4.	1 Programming Language	22
4.2	2 Tools Used	22
	4.2.1 VisualVM	22
	4.2.2 Javac	22
	4.2.3Java	23
4.3	Data Structures	24
	4.3.1 Integer Object	24
	4.3.2 Vector	24
	4.3.3 Strings	24
4.4 P	Programming Language Features	24
	4.4.1 Multithreading	24
	4.4.2 Generics	25
4.5 Ex	xperimental Setup	26
4.6 Te	est Case Design	26
4.	.6.1 Test Case1	27
4	.6.2 Test Case2	28
4.	.6.3 Test Case3	29
4	.6.4 Test Case4	31
СНАР	TER FIVE	33
DATA	COLLECTION AND ANALYSIS	33
5.1	CPU and Memory Usage for Test Case1	33
5.2	CPU and Memory Usage for Test Case2	35
5.3	CPU and Memory Usage for Test Case3	37
5.4	CPU and Memory Usage for Test Case4	39
5.5	Summarizing GC Performance	40

CHAP	TER SIX	43
CONC	LUSION AND RECOMMENDATION	43
6.1	Conclusion	43
6.2	Further Recommendation	44
REFERENCES		45

LIST OF FIGURES

Figure 1.1: Compiling Java Program	1
Figure 1.2: JVM Architecture	2
Figure 1.3: Memory Fragmentation	5
Figure 1.4: Memory Compaction	5
Figure 1.5: Java Heap Memory	9
Figure 3.1: Serial Garbage Collector	17
Figure 3.2: Serial Young Generation Collection	18
Figure 3.3: Parallel Garbage Collector	19
Figure 3.4: Concurrent Mark Sweep Collector	21
Figure 5.1: CPU and Memory Usage with Serial GC	33
Figure 5.2: CPU and Memory Usage with parallel GC	33
Figure 5.3: CPU and Memory Usage with CMS GC	34
Figure 5.4: CPU and Memory Usage with Serial GC	35
Figure 5.5: CPU and Memory Usage with Parallel GC	35
Figure 5.6: CPU and memory Usage with CMS GC	36
Figure 5.7: CPU and memory Usage with Serial GC	37
Figure 5.8: CPU and memory Usage with Parallel GC	37
Figure 5.9: CPU and memory Usage with CMS GC	38
Figure 5.10: CPU and memory Usage with Serial GC	39
Figure 5.11: CPU and memory Usage with Parallel GC	39
Figure 5.1 2: CPU and memory Usage with CMS GC	40
Figure 5.14: Graph for Table 5.13	41
Figure 5.16: Graph for Table 5.15	42

LIST OF TABLES

Table 5.13: Summary of maximum CPU and Memory Usage	41
Table 5.15: Average CPU and Memory Usage	42