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CHAPTER 1 

BACKGROUND AND PROBLEM FORMULATION 

 

1   Background 

 

1.1   Flash Memory  

 

Flash memory is a type of electrically erasable programmable read-only memory (EEPROM). 

Intel and Toshiba first introduce flash memory in 1980s. The behavior of flash memory in terms 

of read, write, erase are different from other programmable memories like magnetic hard disk 

and volatile RAM etc. More importantly, the memory cells in a flash device can be erased only 

limited number of times, between 10,000 and 1,000,000, after which they wear out and become 

unreliable [1]. 

 

It is a type of nonvolatile memory that erases data in units called blocks. A block stored on a 

flash memory chip must be erased before data can be written, or programmed, to the microchip. 

Flash memory retains data for an extended period of time whether a flash-equipped device is 

powered on or off, so it is used to store files and other persistent objects in handheld computers 

and mobile phones, in digital cameras, in portable music players, in workstations and servers and 

in numerous other devices. [1, 2]. 

 

By adapting clever management, functional life span of flash devices can be dramatically 

extended. The characteristics of flash memory are significantly different from Magnetic disks; 

the first difference that can be pointed out is the absence of mechanical components in the flash 

memory. This leads to no latency in flash memory where the magnetic disks have high latency 

with its moving parts. When considering the flash memories, there are two types of non-volatile 

flash memory technologies.  

Flash memory usually consists of many blocks and each block contains a fixed set of pages. 

Read/write operations are performed on page granularity, whereas erase operations use block 

granularity. Flash memory has characteristics of out-of-place update and asymmetric I/O 
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latencies for read write and erase operations.  Write/erase operations are relatively slow 

compared to read operations. 

 

1.1.1   NAND Vs. NOR Flash 

 

Flash memory could be made of either NAND or NOR architecture. The read latency of NOR is 

slightly lower than that of NAND and provides full address and data buses, allowing random 

access to any memory location, but its write and erase latencies are much higher. [3] The NAND 

architecture offers extremely high cell densities and a high capacity and the I/O interface of 

NAND flash does not provide a random-access. NOR flash is typically used for code storage and 

execution, NAND for data storage. Table 1 [4] below shows the different characteristics of two 

types of flash memory relaying various parameters. 

 

NAND 

Access Time 

(µs/4KB) 

Read 284.2 

Write 1833.0 

Erase 499.2 

Energy Consumption 

(µJ/4KB) 

Read 9.4 

Write 59.6 

Erase 16.5 

NOR 

Access Time 

(µs/4KB) 

Read 53.8 

Write 14054.4 

Erase 15616.0 

Energy Consumption 

(µJ/4KB) 

Read 8.6 

Write 3251.2 

Erase 3609.6 

 

Table 1: The characteristic of flash memory. 

 

 

NOR-based flash has long erase and write times than NAND. NAND flash memory support page 

I/O, and its write latency is about 10 times lower than the read latency given in table 1.1 .The 

internal characteristics of the individual flash memory cells exhibit characteristics similar to 

those of the corresponding gates. There are three main operations that are used in flash 

memories; read, write and erase. The read and write operation are performed in units of pages 

http://en.wikipedia.org/wiki/Random_access
http://en.wikipedia.org/wiki/Random_access
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which are usually 512 bytes in size. Erase operations are performed in units of pages, which 

consist of 32 pages (16KB) each. 

 

Because of the efficient architecture of NAND Flash, its cell size is much smaller than a NOR 

cell. This, in combination with a simpler production process, enables NAND architecture to offer 

higher densities with more capacity on a given size. The cost per bit is much lower than NOR. 

Figure below 1 a) and b) shows the simple hardware architecture of NOR and NAND flash 

memory respectively [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: NOR and NAND flash memory array organization. 

 (a) In NOR flash memory, cells are connected in parallel. (b) In NAND flash, memory cells are 

connected in series resulting in increased density [5].  

 

Flash memory uses floating gate transistors. These are arranged in a grid. Rather than a typical 

transistor that has one gate, flash NAND memory has two gates. Having two gates makes it 

possible to 'store' a voltage between the two gates so that it doesn't drain away, this is very 
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important and makes any information stored non-volatile. In fact, this 'trapped' voltage which 

represents information on the chip can stay in a locked state for many years or until we erase the 

memory. Information stored is erased by draining the voltage away from between the two gates 

by using the special floating gate feature that is unique to flash memory technology. Advantage 

of the flash memory comes from the fact that it is an electronic device, unlike the hard disk 

which is electromechanical and requires disk head and arm movement. This advantage frees the 

flash memory from the time-consuming seek and rotational delay. Even in high-end applications, 

flash memory can be arrayed together to offer capacity comparable to that of hard drives at 

higher speeds. 

Usually one page of flash memory consists of 32 sectors each with 512 bytes, and thus its size is 

usually 16 Kbytes. Such flash memory is called small page NAND flash. Flash memory vendors 

have started producing large page NAND flash with pages of 64 sectors and sectors of 

2,212bytes (thus, the size of a page is 128Kbytes) in order to allow faster write and erase 

operations for high-end applications. [6, 7] There are only three basic operations in a NAND 

flash: read a page, write a page, and erase a page.  

 

1.2   Memory Management 

 

Memory management is the functionality of an operating system which handles or manages 

primary memory. Memory management keeps track of each and every memory location either it 

is allocated to some process or it is free. It checks how much memory is to be allocated to 

processes. It decides which process will get memory at what time. It tracks which part of 

memory is currently in use and which is not. It also allocates memory for a process when 

required and de-allocates memory when work is temporarily finished [7].  

 

1.3   Paging 

 

Paging is the most popular memory management technique that implements virtual memory. The 

program generated address is called virtual address and the set of contagious addresses it ranges 

is called virtual address space. The address in main memory is called physical address. The part 

of CPU that maps the virtual address into physical address is done by unit is called memory 
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management unit (MMU). Paging techniques split the virtual address space into a units called 

pages the corresponding units in the main memory is called page frames. The pages and page 

frames are of same size. When a page is referenced, its virtual address must be mapped to 

physical address. The page table inside the MMU does this mapping, each entry in the page table 

holds a flag indicating whether the corresponding page is in main memory or not. If it is in main 

memory, the page table entry will contain the main memory address at which the page is stored.  

When a reference is made to a page by the system and if the page table entry for the page 

indicates that it is not currently in main memory, this situation is called page fault. The operating 

system picks the little used page frames form main memory to move it to the secondary storage 

to make the room for new page [7]. 

 

A paging algorithm is needed to manage paging which can be accomplished in three steps: 

fetching, placement and replacement. The fetch procedure decides which page to fetch (extract) 

from secondary memory to put in main memory, placement procedure determines free page 

frame to locate the fetched page and finally replacement procedure decides which page to be 

swapped out when required page have to be brought in. Further, paging algorithm can be demand 

paging or pre-paging. Demand paging places pages into memory only on their demand. Pre-

paging loads the pages before letting processes runs. Demand paging is considered to be better 

choice because its further uses but pre-paging is not in real use because it requires prediction of 

page uses which is difficult to predict [8].  

 

1.4   Page Replacement Algorithm 

 

There are lots of optimization has been done on various page replacement algorithm to fulfill the 

wider gap between processor speed and hard disk speed. As we know that, the data access time 

form main memory is much faster than from hard disk. Page replacement algorithms has critical 

role in improving this performance gap. When page fault occur the replacement algorithm must 

decide which page from the main memory should be removed to make the room for new page in 

such way that a page that is just flushed to the disk should not be brought in very soon because it 

adds extra overhead  and degrades performance. The best idea is to remove the page that has 

been unused for longest period.    
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The main goal of page replacement algorithms is to minimize the no page fault and to increase 

the no of page hits i.e. most referenced pages are in main memory. Every page fault limits the 

speed of those accesses because the process that suffers page fault must wait until swap is 

completed. Page fault rate is one of the criteria to evaluate performance of page replacement 

algorithm, which is calculated by running it on different memory reference pattern. Reference 

pattern refers to the list of referenced pages by processor. Page fault rate of algorithm adequately 

depends on the number of page frames available. Therefore, to determine the number of page 

fault the number of page frames that are used should also be known. [8] Different types of page 

replacement algorithms and their working behavior is described more detail in subsequent 

chapter.  

  

1.5   Replacement Strategy for Flash Memory Based Systems 

 

Flash memory has different characteristics than hard disk as discussed in the previous section. 

First, it has asymmetric I/O latencies among read, write and erase operations: a write/ erase 

operations are much slower than read operations. Second, it does not support in place update i.e. 

writing to same page cannot be done before the page is erased. Third, there is limited no of 

erasure in each cell of the flash memory. Therefore, the replacement algorithms which have been 

designed for the disk based system are not sufficient for flash based system. All the traditional 

algorithms like LRU, LFU, LRFU, 2Q, LIRS etc. are only focused on hit ratio improvement only 

but they do not have any concern about these different characteristics of flash-based storage. 

Therefore, it is necessary to revised them to adopt themselves for flash-based system. One of the 

basic approach they should fallow is to make the delay of eviction of dirty pages form memory 

or cache in order to reduce the erase operations which improves the overall performance of 

system. Thus, replacement algorithm for the flash-based system should consider both hit ratio 

and write count as measure criteria [6].    

 

1.6   Performance Metrics 

 
Performance metrics are the criteria for measuring the performance of any system or algorithm. 

In the case of page replacement algorithm page fault, hit rate, hit ratio, miss rate and miss ratio 

are the key terms for measuring the performance. Higher hit rate of the algorithm exhibits higher 
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performance. Furthermore, in context of flash memory, write count is the major criteria of 

performance measure. In short, higher hit rate and lesser number of write counts is measure for 

better algorithm. Following performance metrics are used to evaluate the existing and modified 

algorithm in this dissertation work [6]. 

 

i)   Page Fault Counts 

When the requested page by process is not found in memory it is considered as page fault. Page 

fault count can be measured by counting total number of page faults occurred between the some 

intervals of references. 

 

ii)   Hit Rate and Hit Ratio 

This is the rate of hitting the page in main memory or finding page in memory that is requested 

by process, out of total referenced pages Hit rate is calculated by using following formula.  

HR = 100 – MR ……............................1.1 

Where, HR is the hit rate and MR is the miss rate. 

Hit ratio is the fraction of total number of hits by total references. 

 

iii)   Miss Rate and Miss Ratio 

Miss rate (MR) is calculated by using formula: 

MR = 100 × ((PF - NDR) / (REF - NDR)) ……............................1.2 

Where, PF is the number of page faults, NDR is the number of distinct pages referenced and 

REF is the total number of referenced pages. 

Miss ratio is the fraction of total number of misses by total references. 

 

iv)   Write Counts 

Write count is number of pages propagated to flash memory which can be calculated by counting 

the number of physical page writes to flash memory and at the end of each test the dirty pages in 

the buffer are flushed to the flash memory to get the exact write counts. 

 



17 

 

1.7   Program Behavior 

 
There are several factors, which influence the performance of page replacement algorithm. The 

performance of page replacement algorithm relies on the pattern of pages that are referenced. 

Behavior of program depends upon the access pattern it references in memory which is further 

depends upon working set and locality of reference [7, 8, 9]. 

 

1.7.1   Working set 

 
Working set is the smallest collection of frequently accessed pages, which are needed in main 

memory for execution. If the entire working set is in main memory then the system work without 

causing page fault until is completed or moves into another stage. Intuitively, it holds only 

relevant pages. If the working set is unable to fit in main memory, then there will be high number 

of page faults and it suffers from thrashing. 

 

1.7.2   Locality of Reference 

 
Locality of references is one of the properties of page reference pattern, which is used by many 

algorithms to predict about the future references. In computer science, locality of reference, also 

known as the principle of locality, is a phenomenon describing the same value, or related storage 

location being frequently accessed. There are two basic types of reference locality: temporal and 

spatial locality.  

 

Temporal locality is based on the time, which refers that if at one point in time a particular 

memory location is referenced, then it is likely that the same location will be referenced again in 

the near future. Looping, subroutines, stacks, variable used for counting & totaling etc. supports 

this assumption [10].  

 

Spatial locality is based on the space, and it refers that if a particular memory location is 

referenced at a particular time, then it is likely that nearby memory locations will be referenced 

in the near future. In this case, it is common to attempt to guess the size and shape of the area 

around the current reference for which it is worthwhile to prepare faster access. Array traversal, 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_storage
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sequential code execution, related variable declaration nearby in source code supports this 

assumption. Some memory pattern fallow the strong locality and some fallow weekly. Some 

algorithms are better works in strong locality and some in week locality. The algorithm that 

exhibits weak locality impacts the cache performance optimization. So, the locality of reference 

is most important principle in cache optimization [11]. 

 

1.7.3   Typical Memory Reference Pattern 

 
The changes in working set generates memory access pattern. The performance of page 

replacement algorithm depends on the pattern of the pages referenced. Each page replacement 

algorithm is evaluated by executing it on particular string of reference string. There are several 

identified page reference patterns which are discussed in the following sections. 

  

i)   Cyclic Pattern 

 
When the set of reference pages are repeated in fixed time in same order such types reference 

pattern is called cyclic pattern. For example if 10,12,14,16 are reference page then their cyclic 

pattern will likely to be 10,12,14,16,10,12,14,16  and so on. 

 

ii)   Probabilistic Pattern 

 
Each page in reference pattern associated stationary reference and probability. These pages are 

accessed based on their associated reference probability. For example if 1 and 2 are frequently 

accessed pages then the probabilistic pattern is likely to be 1,2,3,4,5,1,6,2,8,9,10,1. 

 

iii)   Temporally Clustered Pattern 

 
A temporally clustered pattern has property that page referenced recently likely to be referenced 

sooner in the future. For example temporally clustered pattern can be viewed as 

1,2,1,3,2,4,3,1,2,5,6. 
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iv)    Mixed Pattern 

 
Mixed pattern is the combination of all identified memory reference pattern. This means it is the 

mixed form of cyclic, probabilistic and temporal clustered patterns. For example, if 1,2,3,4, 

1,2,3,4 is cyclic pattern 1,2,4,5,1,6,2,10,1 is probabilistic pattern and 1,2,1,3,2,4,3,1,2 is 

temporally clustered pattern then the mixed pattern may whatever be like 

1,2,3,4,1,2,3,4,1,2,4,1,2,4,5,1,6,2,10,1 by containing any of these reference strings. 

            

1.8    Problem Formulation  

 
Since, in most operating systems which are customized for disk-based system, the replacement 

algorithm concerns only the number of memory hits. However, flash memory has asymmetric 

read and write/erase cost, most importantly the write cost. In the subsequent year, latest research 

have been done mainly focused on write count minimization which is most useful for the flash 

memory. Although, there is no any algorithm in literature review which balance the both of these 

parameter to improve the overall performance of the algorithm and system. Algorithm that are 

designed for flash-based system should also focus on write count as well to improve the overall 

performance of system. So, the main aim of this dissertation work is to modify CFLRU 

algorithm, which is designed for flash memory based system and then evaluate it using 

aforementioned performance metrics. The modification is done mainly in two component, i.e. 

giving one chance to dirty hot and clean hot both. More detail discussion will be done in 

following sections. 

 

1.8.1    Basic CFLRU Algorithm 

CFLRU (Clean First Least Recently Used) [12], which is modified from the LRU algorithm. 

CFLRU divides the LRU list into two regions to find a minimal cost point, as shown in Figure 1 

below. The working region consists of recently used pages and most of cache hits are generated 

in this region. The clean-first region consists of pages which are candidates for eviction. CFLRU 

selects a clean page to evict in the clean-first region first to save flash write cost. If there is no 

clean page in this region, a dirty page at the end of the LRU list is evicted.  
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For example, under the LRU replacement algorithm, the last page in the LRU list is always 

evicted first. Thus, the priority for being a victim page is in the order of P8, P7, P6, and P5, in 

Figure 1. However, under the CFLRU replacement algorithm, it is in the order of P7, P5, P8, and 

P6 as shown in figure below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Example of basic CFLRU algorithm. 

 

 

 

1.8.2    Proposed DCH-CFLRU Algorithm 

DCH-CFLRU (DirtyHot_CleanHot Second Chance CFLRU) is the proposed enhanced version 

of the basic CFLRU, where second chance is given to 'dirty hot' and 'clean hot' pages. DCH-

CFLRU also divides the LRU list into two regions to find a minimal cost point, as shown in 

Figure 2 below. The working region consists of recently used pages and most of cache hits are 

generated in this region. The clean-first region consists of pages which are candidates for 
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eviction. This algorithm selects a clean cold and dirty cold page to evict in the clean-first region 

first to save flash write cost and improve hit ratio. 

For example, under the CFLRU replacement algorithm, as discussed in previous section the 

order of page eviction is in the order of P7, P5, P8, and P6 in figure 2. But under the purposed 

DCH-CFLRU replacement algorithm it is done in the order of P5, P8, P7, and P6. Here the 

second chance is given to the pages P6 and P7 because they are flagged as 'Dirty Hot' and 'Clean 

Hot' respectively as shown in figure below:  

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 3: Example of DCH-CFLRU algorithm. 

 

 

1.9   Objective  

 

The main objective of this dissertation work is – To modify the basic CFLRU algorithm and 

design improved CFLRU algorithm for flash memory to achieve high hit ratio and minimum 

write count. 
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1.10   Motivation  

 

This work is motivated by the observation and study of various replacement policies of the 

existing flash based operating systems. CFLRU can effectively reduce the number of write and 

erase operations by delaying the flush of dirty page in the buffer cache in many cases. However, 

it does not consider the access frequencies of data, keeping cold dirty data and evicting hot clean 

data will perform more read operations than normal LRU, degrading overall I/O performance. 

Hence the concept of giving second chance even to clean pages which are hot (i.e. those who are 

accessed second times) is main focus of this work. In this dissertation, the basic algorithm for 

flash memory, CFLRU, is modified in such a way that the new algorithm maintain balanced hit 

ratio and minimize the write count too. 

 

1.11   Organization of the Thesis 

 

Following the brief introduction about the dissertation and background study in this chapter, the 

rest of the content is divided into following five subsequent chapters. 

Chapter 2 consists of literature review and methodology, which briefly reviews the related 

topics. Literature review includes summary of several traditional page replacement algorithms 

like Optimal, FIFO, LRU, LRU-K, MRU, ARC, 2Q etc and some algorithms that were designed 

for flash based system like CFLRU, CFDC, CCF-LRU, LRU-WSR, LIRS-WSR and ADLRU 

etc. This chapter also contains the research methodology part, which shows the main gist of the 

research.  

 

Chapter 3 is contains the program development steps of simulation. It includes detail design of 

the algorithm, program, flowchart and tracing of basic CFLRU and proposed DCH-CFLRU. 

 

Chapter 4 devoted to test result and analysis part, which includes data collection and details 

about generating traces of memory references that shows trace driven input, output results with 

several analyzing graphs, which are tested for both weak and strong locality workloads and 

different performance metrics. 

 

Finally, conclusion of the work and recommendations are given in chapter 5.     
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CHAPTER 2 

LITERATURE REVIEW AND METHEDOLOGY 

 

2   Literature Review 

 

Literature review describes the previous works and findings related to the field of study. First 

chapter briefly describe the background of page replacement algorithms. This chapter is 

dedicated to the description of some replacement algorithms, which are relevant to this work. 

          

2.1   Traditional Buffer Replacement Algorithms  

 

2.1.1   The Optimal Page Replacement Algorithm. 

 

The best possible page replacement algorithm is easy to describe but impossible to implement. It 

goes like this. At the moment that a page fault occurs, some set of pages is in memory. One of 

these will be referenced on the very next instruction (the page containing that instruction). Other 

pages may not be referenced until 10, 100 or perhaps 1000 instruction later. Each page can be 

labeled with the number of instructions that will be executed before that page is first referenced. 

The optimal page replacement algorithm simply says that “the page with the highest label should 

be removed”. The problem with this algorithm is that it is unrealizable. At the time of page fault, 

OS has no way of knowing when each page will be referenced next [7]. 
 

2.1.2   FIFO Page Replacement Algorithm  

 

Fist-In-First-Out (FIFO) page replacement algorithm [7] replaces oldest page during page fault. 

Conceptually FIFO is a queue with limited size. The operating system maintains a list of all 

pages currently in memory, with the page at the head of list the oldest one and the page at the tail 

the most recent arrival. On a page fault, the page at the head is removed and the new page added 

to the tail of the list. FIFO does not take advantage of locality trends. But, it can be modified 

very easily. 
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2.1.3   LRU Page Replacement Algorithm  

 

The LRU policy [8] replaces the page that has been unused for longest time. This algorithm 

considers that a page that is recently used will probably be used again very soon, and a page that 

has not been used for a longest time, will probably remain unused. To fully implement LRU it is 

necessary to maintain a linked list of all pages in memory, with the most recently used page at 

head and least recently used page at the tail. The difficulty is that the list must be updated on 

every memory reference. Finding a page in the list, deleting it and then moving it to the head is a 

very time consuming operation. 

 
 

2.1.4   LRU-K Algorithm  

 

LRU-K algorithm [13] dynamically keeps the records of kth backward distance of each block 

where kth backward distance BK(x, t) is defined as the number of accessed blocks from last kth 

reference to the most recent reference. A block having maximum backward distance is evicted 

first. The parameter value k is positive integer like 1, 2 or 3. When k=1, it works like a simple 

LRU algorithm. Thus one may say that LRU-K algorithm as the generalization of LRU 

algorithm.  

 
 

 2.1.5   NRU Page Replacement Algorithm 

 

Pages are categorized into four classes in not recently used (NRU) algorithm [7]. Class 0 

contains pages that are neither referenced nor modified. Class 1 contains pages that are modified 

but not referenced. Class 2 contains pages that are referenced but not modified and Class 3 

contains pages that are modified as well as referenced. During page fault NRU evicts any page 

from the lowest class. 

 

2.1.6   LFU Page Replacement Algorithm  

 

The LFU policy [14] keeps the track of the number of references to each pages, and the page 

selected for replacement is the page that has the least number of references. The policy is based 

on the presumption that the page that has been more frequently referenced in the past is more 
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likely to be referenced in near future. This is accomplished by assigning a counter to every page 

that is loaded into the cache. When cache reaches its limit a page is needed to be removed to 

make room for new page, for this system will search the page with lowest counter and remove it 

from the cache.  

 

2.1.7   LRFU Page Replacement Algorithm   

 

Least Frequently Used (LFU) algorithm uses frequency factor for page replacement and LRU 

uses recency factor only. LRU and LFU are tuned to form adaptive algorithm called Least 

Recently Frequently Used policy (LRFU) [14] that considers both recency and frequency factors. 

The performance of the LRFU algorithm largely relies on a parameter called , which 

determines the relative weight of LRU or LFU and has to be adjusted according to the system 

configuration, even according to different workloads.  

 

2.1.8   2Q Page Replacement Algorithm 

 

The main intuition of 2Q algorithm [15] is the detection of real hot pages and removal of cold 

pages from the main memory.  Those pages which are considered important for replacement are 

called hot pages and those pages which are considered less important for replacement are called 

cold pages. It consists of two lists of pages where the first one is queue managed by FIFO which 

contains data accessed once and another is hot list managed by LRU stack. The first queue is 

further partitioned into two sets Fin and Fout. The first referenced block is placed in Fin list 

while Fout contains only information of a missed block. The re-accessed block on Finlist  is  

moved  to  the  hot  list  which  is  managed  by  LRU.  In this way algorithm distinguish 

frequently and infrequently accessed blocks.  However,  the  problem  is  the  management  of 

two  queues  and  migration  of  block  from  one  queue  to  another  which  is  complicated  for 

hardware implementation and cycle consuming. 
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2.1.9   ARC Algorithm 

 

ARC(Adaptive Replacement Cache) algorithm [16]  keeps  track  of  both  frequently and  

recently  used  pages  along  with  history data regarding eviction. ARC uses two types of LRU 

lists L1 and L2 to manage the pages. L1 holds pages accessed only once and L2 keeps the pages 

that were re-accessed at least once. These two lists are again partitioned in two sets top and 

bottom where top contains MRU part and Bottom contains LRU part so as │T1+T2│=c. where c 

is the cache size. Suppose │T1│= p then │T2│=c-p. The parameter p is dynamic and it may be 

incremented and decremented based on the respective size of two sets B1 and B2 same 

parameter controls the replacement point in L1 and L2. 

 

2.1.10   CLOCK Based Page Replacement Algorithm  

 

CLOCK, CAR, CART and CLOCK-Pro are all clock based algorithms. The pages in the cache 

are organized as circular ring and each block associates the reference bit to record the access 

information [7]. CLOCK based algorithms hold the information regarding how frequently block 

has been accessed and but these algorithms have limitation that unable to detect an access 

pattern. 

 

2.1.11   LIRS Algorithm 

 

The LIRS [17] chooses a victim block by considering the inter-reference recency (IRR) of each 

block. The scheme divides cache blocks into two block sets: low IRR (LIR) block set and high 

IRR (HIR) block set.  By replacing a block in HIR block set, which has comparatively low 

reference probability, the LIRS has good locality. It is accomplished by assuming that if the IRR 

of a block is large, the next IRR of the block is likely to be large again. However, the assumption 

is not always correct because of the constraint of timing scope.  
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2.2   Buffer Replacement Algorithms for Flash-Based Systems  

 

2.2.1   CFLRU (Clean -First LRU) 

 

CFLRU [10] is the first replacement algorithm designed for the flash based system. It modified 

the LRU algorithm. CFLRU divides the LRU list into two regions the working region and the 

clean first region is called window w to find a minimal cost point. The working region consists 

of recently used pages and most cache hits are generated in this region. The clean-first region 

consists of pages, which are candidates for eviction. CFLRU selects a clean page to evict from 

the clean-first region first to save flash write cost. If there is no clean page in this region, a dirty 

page at the end of LRU list is evicted. 

 

2.2.2   Clean First Dirty Clustered (CFDC) 

 

Clean First Dirty Clustered (CFDC) [18] manages the buffer in two regions: the working region 

W for keeping hot pages that are frequently and recently revisited, and the priority region P 

responsible for optimizing replacement costs by assigning varying priorities to page clusters. 

CFDC improves the efficiency of buffer manager by flushing pages in clustered fashion based on 

the observation that flash writes with strong spatial locality can be served by flash disks more 

efficiently than random writes.  

 

2.2.3   LRU-WSR replacement algorithm  

 

LRU-WSR policy consider the cold/hot property of dirty pages, which is not tackled by the 

CFLRU algorithm. LRU-WSR always tries to remain hot dirty pages in the buffer and first 

replaces the clean pages or cold-dirty pages. The main difference between CFLRU and LRU –

WSR is that the later considers the eviction of dirty cold pages. Hence, dirty cold pages will not 

reside in the buffer as long in the case of CFLRU which may cause the degradation hit ratio. In 

paper [4], LRU-WSR has been compared with LRU, CFLRU algorithms for different workloads 

collected from PostgreSQL, GCC, Viewperf and Cscope. LRU-WSR has been found 1.4 times 

faster than LRU.  In most of the cases, LRU-WSR has higher hit ratio than others. 
 



28 

 

2.2.4   CCF-LRU  

 

The authors of CCF-LRU [17] further refine the idea of LRU-WSR. It maintains two LRU 

queues, a cold clean queue and a mixed queue to maintain buffer pages. The cold clean queue 

stores cold clean pages (first referenced pages) while mixed queue stores dirty pages or hot clean 

pages. It always selects victim from cold clean queue and if cold clean queue is empty then 

employs same policy as that of LRU-WSR to select dirty page from mixed queue.  

 

2.2.5   LIRS-WSR algorithm 

 

The LIRS-WSR algorithm [2] is an improvement of LIRS [15] so that it can suit the 

requirements of flash-based systems. It is the integration of LIRS and WSR policy into single 

algorithm to reduce the writes of dirty pages from buffer to flash memory. It tries to improve the 

I/O performance by using recency and cleanness property of pages. LIRS-WSR algorithm 

improves the overall performance significantly by up 2 times faster than LRU algorithm by 

effectively reducing the number of physical writes and erase operations.  

 

2.2.6   AD-LRU (Adaptive Double LRU) 

 

AD-LRU algorithm [6] is buffer replacement algorithm for flash-based systems which focuses to 

reduce the write costs of the buffer replacement algorithm while keeping a high hit ratio. It tries 

to integrate the properties:  recency, frequency, and cleanness of pages into the buffer 

replacement policy. AD-LRU has two LRU queues: Cold LRU queue and Hot LRU queue, to 

capture the concept of recency and frequency of the page references, among which Cold LRU 

queue stores the pages referenced only once and Hot LRU queue maintains the pages that are 

referenced at least twice. The sizes of these two LRU queues are dynamically adjusted according 

to changes in reference patterns. When a page is first referenced, it is put in the head of cold 

LRU queue. The pages move from cold LRU queue to head of hot LRU queue when it is 

referenced again and when a page in hot LRU queue is selected as victim, it is demoted to head 

of cold LRU queue. 
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2.3   Research Methodology    

 

Research methodology is the very fundamental aspect, which underpin our work and methods we 

use in order to collect data and thus organize overall work in a systematic way [20]. In a 

scientific method of research, at first problem is formulated then output information is generated 

from collected input data and output is analyzed and finally the result is generalized. This 

dissertation work is truly scientific and flows in the same way. The topics flash memory and 

design has been studied from the early generation of computer. Page replacement algorithm is 

one of the major strategies to manage memory efficiently. The main contribution of this 

dissertation is to develop new flash memory friendly replacement algorithm DCH-CFLRU by 

modifying the basic CFLRU algorithm. Out of different types of research methodologies, this 

dissertation is based on the trace driven simulation approach. Page references used in this 

dissertation are secondary data, whereas data generated by the algorithm are primary data. 

Output information gathered is analyzed in a quantitative approach. Finally, conclusion is drawn 

with the help of analyzed data.  
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CHAPTER 3 

PROGRAM DEVELOPMENT 

 

3.1   Simulation Environment and Tools 
 

The implementation is done in simulator, which is programmed in C# programming language in 

.Net Framework. The simulation and testing is done in the computer system having Intel(R) 

Core(TM) i5-2430M CPU @ 2.40GHz speed processor with 4.00 GB RAM and 64-Bit Windows 

7 OS. In this simulation the four different types of references used namely random trace, read 

most, write most and zipf access type. Where first three have 100k references and last one have 

500k references. 

 

3.2   Basic CFLRU Algorithm 
 

As discussed in introduction portion earlier, CFLRU is the modified version of LRU algorithm 

addressing the flash memory properties. CFLRU divides the LRU list into two regions to find a 

minimal cost point. The size of the clean first region is called a window size. Large windows will 

increase the cache miss rate while small windows will increase the number of evicted dirty page. 

Hence the window size is kept half of cache size to balance both of these issue.  

 

The working region consists of recently used pages and most of cache hits are generated in this 

region. The clean-first region consists of pages which are candidates for eviction. CFLRU selects 

a clean page to evict in the clean-first region first to save flash write cost. If there is no clean 

page in this region, a dirty page at the end of the LRU list is evicted. 

 

3.2.1   Algorithm: 

 

1. BEGIN 

2. Set the cache size and window size (w) such that: 

 2.1. W contains the LRU pages and 
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 2.2. Remaining part contains the MRU pages. 

3. Fetch the page with its mode Read/Write 

4. If cache is empty and fetched page is not found in cache then page fault occurs 

 4.1. Insert fetched page at MRU position and adjust queue. 

 4.2. Page fault++ 

5. Else //Cache is full 

 5.1. If the fetched page is found in the cache then page hit occurs 

5.1.1. Insert fetched page at MRU position and adjust queue 

 5.2. Else //Fetched page not found in cache and cache is full 

  5.2.1. Page fault++ 

  5.2.2. If LRU clean page is found in w 

   5.2.2.1 Victim page = LRU clean page 

   5.2.2.2 Return the reference to the victim page 

5.2.2.3 Insert fetched page at MRU position and adjust queue 

  5.2.3. Else //If LRU clean page is not found 

   5.2.3.1. Victim page = LRU dirty page from w 

   5.2.3.2. Increment the write count 

   5.2.3.3. Return the reference to the victim page 

5.2.3.4. Insert fetched page at MRU position and adjust queue. 

6. END 

 

3.2.2   Data Structure 

 

The CFLRU algorithm can be implemented by using doubly linked list. Each node contain page 

access type whether it is dirty or clean. A doubly linked list is collection of sequential records 

called nodes. Where each node contains different properties of pages such as clean or dirty and 

each node references the next and previous one. The advantages of using doubly linked list are 
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that if items are inserted and deleted from the list, the doubly linked list is very fast. Another 

beauty is that it can be traversed in both (forward and backward) more easily. The structure of 

doubly linked list is illustrated in figure 3.1.   

   

 

Figure 4: Structure of the Linked List 

 

While implementing CFLRU algorithm, two operations have to be performed- insertion of new 

referenced node at front of list and deletion from the tail of list when replacement occurs. If the 

existed page in linked list is re-referenced then this used node can be delinked from its middle 

and move it to the head of the list. Structure of node is given below. 

class CflruNode 
    { 
        public CflruNode prev { get; set; } 
        public object Data { get; set; } 
        public CflruNode next { get; set; } 
        public Pagestatus status; 
 
        public CflruNode() 
        { 
            Data = null; 
            prev = null; 
            next = null; 
        } 
 
        public CflruNode(object data, Pagestatus Pstatus) 
        { 
            status = Pstatus; 
            Data = data; 
            prev = null; 
            next = null; 
        } 

public enum PageStatus 
      { 
          Dirty, 
          Clean 
      }; 
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3.2.3   Flowchart of Basic CFLRU algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Flowchart of Basic CFLRU  
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3.2.4   Tracing of Basic CFLRU Algorithm 

 

Input References: 3,0  1,1  4,0  2,0  5,1  2,0  1,1  9,0  8,1  6,0 

Cache Size: 4 

No. of Distinct References: 8 

Total No. of Reference: 10 

Window Size: 2 (50% of total cache) 

Page Status: 0 = Clean, 1 = Dirty 

Notation: 

 MRU - Most Recently Used 

 LRU - Least Recently Used 

 W - Window Size 

 WR - Working Region 

 CFR - Clean First Region 

 

 

Step 1. Page Access: 3, 0 

 

Page 3    

Mode 0    

 

 

Table 2: Basic CFLRU Tracing - State at virtual time 1 

Page Fault = 1 

Hit Count = 0 

Write Count = 0 

 

 

 

 

 

 

w 

WR CFR 
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Step 2. Page Access: 1, 1 

 

Page 1 3   

Mode 1 0   

 

 

Table 3: Basic CFLRU Tracing - State at virtual time 2 

 

Page Fault = 2 

Hit Count = 0 

Write Count = 0 

 

Step 3. Page Access: 4, 0 

 

Page 4 1 3  

Mode 0 1 0  

 

 

Table 4: Basic CFLRU Tracing - State at virtual time 3 

 

Page Fault = 3 

Hit Count = 0 

Write Count = 0 

 

Step 4. Page Access: 2, 0 

 

Page 2 4 1 3 

Mode 0 0 1 0 

 

 

Table 5: Basic CFLRU Tracing - State at virtual time 4 

 

Page Fault = 4 

Hit Count = 0 

Write Count = 0 

 

w 

WR CFR 

w 

WR CFR 

w 

WR CFR 
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Step 5. Page Access: 5, 1 

 

Page 5 2 4 1 

Mode 1 0 0 1 

 

 

Table 6: Basic CFLRU Tracing - State at virtual time 5 

 

Page Fault = 5 

Hit Count = 0 

Write Count = 0 

 

Since, the cache is full and the new page reference is fetched which is not found in the 

cache, so cache miss occurs. Here the page replacement occur. According to CFLRU 

page replacement policy LRU page from the window is replaced as victim. 

 

 

Step 6. Page Access: 2, 0 

 

Page 2 5 4 1 

Mode 0 1 0 1 

 

 

Table 7: Basic CFLRU Tracing - State at virtual time 6 

 

Page Fault = 5 

Hit Count = 1 

Write Count = 0 

 

In this step page 2,0 is found in cache. Hence page hit occur and repositioned at MRU 

of the queue. 

 

 

 

 

 

w 

WR CFR 

w 

WR CFR 
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Step 7. Page Access: 1, 1 

 

Page 1 2 5 4 

Mode 1 0 1 0 

 

 

Table 8: Basic CFLRU Tracing - State at virtual time 7 

 

Page Fault = 5 

Hit Count = 2 

Write Count = 0 

 

Here, again page hit occur, so the page is repositioned at MRU. 

 

 

Step 8. Page Access: 9, 0 

 

Page 9 1 2 5 

Mode 0 1 0 1 

 

 

Table 9: Basic CFLRU Tracing - State at virtual time 8 

 

Page Fault = 6 

Hit Count = 2 

Write Count = 0 

 

According to CFLRU replacement policy, LRU page 4,0 is victim and new page is 

inserted at MRU. 

 

 

 

 

 

 

 

 

 

 

w 

WR CFR 

w 

WR CFR 
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Step 9. Page Access: 8, 1 

 

Page 8 9 1 5 

Mode 1 0 1 1 

 

 

Table 10: Basic CFLRU Tracing - State at virtual time 9 

 

Page Fault = 7 

Hit Count = 2 

Write Count = 0 

 

In this step, new page is fetched and not found in cache, hence page miss occur. And 

the LRU page is 'dirty'. So the algorithm look for clean page in window. That's why 2,0 

is victim. 

 

Step 10. Page Access: 3, 0 

 

Page 6 8 9 1 

Mode 0 1 0 1 

 

 

Table 11: Basic CFLRU Tracing - State at virtual time 10 

 

Page Fault = 8 

Hit Count = 2 

Write Count = 1 

 

 

In this step, new page is fetched and not found in cache, hence page miss occur. And 

the LRU page is 'dirty'. So the algorithm look for clean page in window. But there is no 

clean page in window. So LRU dirty page become victim. 

 

 

 

 

 

w 

WR CFR 

w 

WR CFR 
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3.3   DCH- CFLRU Algorithm   

As discussed in earlier sections of Chapter 1, DCH-CFLRU (DirtyHot_CleanHot Second Chance 

CFLRU) is the proposed improved algorithm based on basic CFLRU algorithm, where one 

chance is given to hot pages, whether they are dirty or cold, and replaced other pages even if it is 

dirty. This modification is done because CFLRU does not consider the access frequencies of 

data, keeping cold dirty data and evicting hot clean data will perform more read operations than 

normal LRU, degrading overall I/O performance. It divides the LRU list into two regions to find 

a minimal cost point. The working region consists of recently used pages and most of cache hits 

are generated in this region. The clean-first region consists of pages which are candidates for 

eviction. This algorithm selects a clean cold and dirty cold page to evict in the clean-first region 

first to save flash write cost and improve hit ratio. 

 

3.3.1   Algorithm  

 

1. BEGIN 

2. Set the cache size and window size (w) such that: 

  2.1. W contains the LRU pages and 

  2.2. Remaining part contains the MRU pages. 

3. Fetch the page with its mode Read/Write 

4. If cache is empty and fetched page is not found in cache then page fault occurs 

  4.1. Insert fetched page at the MRU position and adjust queue. 

  4.2. Page fault++ 

  4.3. Set cold flag i.e. cold = 1 

5. Else //Cache is full 

 5.1. If the fetched page is found in the cache then page hit occurs. 

   5.1.1. Insert fetched page at the MRU position and adjust queue. 

   5.1.2. Clear cold flag i.e. cold =0 

  5.2 Else //Fetched page not found in cache and cache is full 
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   5.2.1. Page fault++ 

   5.2.2. If LRU page is clean 

    5.2.2.1. If page is clean cold 

     5.2.2.1.1. Victim = LRU clean cold 

5.2.2.1.2. Insert fetched page at MRU position and adjust 

queue. 

5.2.2.1.3. Set cold flag i.e. cold = 1 

    5.2.2.2. Else if page is clean hot 

     5.2.2.2.1. While page is clean hot do 

5.2.2.2.1.1. Move page to MRU of Clean First 

region 

      5.2.2.2.1.2. Set cold flag i.e. cold = 1 

     5.2.2.2.2. Victim = Clean cold OR dirty cold  

   5.2.3. Else if LRU page is dirty 

    5.2.3.1. If page is dirty cold 

     5.2.3.1.1. Victim = dirty cold 

5.2.3.1.2. Insert fetched page at MRU position and adjust 

queue 

5.2.3.1.3. Set cold flag i.e. cold =1 

     5.2.3.1.4. Write count++ 

    5.2.3.2. Else //if page is dirty hot 

     5.2.3.2.1. While page is dirty hot do 

5.2.3.2.1.1. Move page to MRU of Clean First 

region 

      5.2.3.2.1.2. Set cold flag i.e. Cold = 1 

    5.2.3.3. Victim = Dirty cold 

6. END  
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3.2.2   Data Structure 
 

The DCH-CFLRU algorithm also implemented using doubly linked list as CFLRU algorithm. 

Major difference is that while implementing DCH-CFLRU each node contain page access type 

whether it is dirty or clean and in addition status such as cold or not cold (hot). The node 

structure is given as below: 

 

public class DCHCflruNode 
    { 
 
        public DCHCflruNode Prev { get; set; } 
        public string Data { get; set; } 
        public CflruNode Next { get; set; } 
        public PageStatus Status; 
        public PageFlage Flag; 
        public DCHCflruNode(string data, PageStatus pstatus) 
        { 
            Status = pstatus; 
            Data = data; 
            Flag = PageFlage.Cold; 
            Prev = null; 
            Next = null; 
        } 
    } 
 
    public enum PageStatus 
    { 
        Dirty, 
        Clean 
    }; 
 
    public enum PageFlage 
    { 
        Hot, 
        Cold 
    }; 
} 
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3.4.2   Flowchart of DCH-CFLRU Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              

 

 

Figure 6: Flowchart of DCH-CFLRU Algorithm 

Is LRU 

page Dirty 

Cold? 

Begin 

Set cache and window size 

(w) and read page (p) with 

its mode Read/Write 

Is p found in 

cache? 

Page fault occurs 

Is cache 

full? Select Victim 

Is LRU page 

Clean Cold? 

Insert new page at 

MRU position of list 

Clear cold flag i.e. 

cold = 0 

Victim = LRU Page 

Insert new page at 

MRU position of 

list. Set Cold Flag 

i.e. cold = 1 

 

Is LRU page 

Clean Hot? 

WriteCount++ 
Move page to MRU 

position of list 

Set Cold Flag i.e. 

cold = 1 

 
Insert new page at 

MRU position of list 

Set Cold Flag i.e. 

cold = 1 

 

Hit Count++ 

 

 

Page Fault++ 

 
Stop 



43 

 

3.4.3   Tracing of DCH-CFLRU Algorithm 

 

Input References: 3,0  1,1  4,0  2,0  5,1  2,0  1,1  9,0  8,1  6,0 

Cache Size: 4 

No. of Distinct References: 8 

Total No. of Reference: 10 

Window Size: 2 (50% of total cache) 

Page Status: 0 = Clean AND/OR Hot, 1 = Dirty AND/OR Cold 

 

Notations: 

 MRU - Most Recently Used 

 LRU - Least Recently Used 

 W - Window Size 

 WR - Working Region 

 CFR - Cold First Region 

 

 

Step 1. Page Access: 3, 0 

 

Page 3    

Mode 0    

Cold Flag 1    

 

 

Table 12: DCH-CFLRU Tracing - State at virtual time 1 

Page Fault = 1 

Hit Count = 0 

Write Count = 0 

 

 

 

 

 

 

w 

WR CFR 
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Step 2. Page Access: 1, 1 

 

Page 1 3   

Mode 1 0   

Cold Flag 1 1   

 

 

Table 13: DCH-CFLRU Tracing - State at virtual time 2 

Page Fault = 2 

Hit Count = 0 

Write Count = 0 

 

Step 3. Page Access: 4, 0 

 

Page 4 1 3  

Mode 0 1 0  

Cold Flag 1 1 1  

 

 

Table 14: DCH-CFLRU Tracing - State at virtual time 3 

Page Fault = 3 

Hit Count = 0 

Write Count = 0 

 

Step 4. Page Access: 2, 0 

 

Page 2 4 1 3 

Mode 0 0 1 0 

Cold Flag 1 1 1 1 

 

 

Table 15: DCH-CFLRU Tracing - State at virtual time 4 

Page Fault = 4 

Hit Count = 0 

Write Count = 0 

w 

WR CFR 

w 

WR CFR 

w 
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Step 5. Page Access: 5, 1 

 

Page 5 2 4 1 

Mode 1 0 0 1 

Cold Flag 1 1 1 1 

 

 

Table 16: DCH-CFLRU Tracing - State at virtual time 5 

Page Fault = 5 

Hit Count = 0 

Write Count = 0 

 

Here in this step, the cache is full and the new page reference is fetched which is not 

found in the cache, so cache miss occurs. Here the page replacement occur. According 

to DCH-CFLRU page replacement policy cold LRU page from the window is replaced 

as victim. 

 

 

Step 6. Page Access: 2, 0 

 

Page 2 5 4 1 

Mode 0 1 0 1 

Cold Flag 0 1 1 1 

 

 

Table 17: DCH-CFLRU Tracing - State at virtual time 6 

Page Fault = 5 

Hit Count = 1 

Write Count = 0 

 

In this step page 2, 0 is found in cache. Hence page hit occur and repositioned at MRU 

of the queue and its cold flag has been cleared such that it will be considered as hot 

page in near future while replacement occurs. 

 

 

w 

WR CFR 

w 

WR CFR 
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Step 7. Page Access: 1, 1 

 

Page 1 2 5 4 

Mode 1 0 1 0 

Cold Flag 0 0 1 1 

 

 

Table 18: DCH-CFLRU Tracing - State at virtual time 7 

Page Fault = 5 

Hit Count = 2 

Write Count = 0 

 

Again, page hit occur and it is repositioned at MRU of the queue and its cold flag has 

been cleared such that it will be considered as hot page so that second chance will be 

given while replacement occurs afterward. 

 

 

Step 8. Page Access: 9, 0 

 

Page 9 1 2 5 

Mode 0 1 0 1 

Cold Flag 1 0 0 1 

 

 

Table 19: DCH-CFLRU Tracing - State at virtual time 8 

Page Fault = 6 

Hit Count = 2 

Write Count = 0 

 

Here also, the cache is full and the new page reference is fetched which is not found in 

the cache, so cache miss occurs. Hence, page replacement should be done. According 

to DCH-CFLRU page replacement policy cold LRU page (whether it is clean or dirty) 

from the window is replaced as victim 

 

 

w 

WR CFR 

w 

WR CFR 
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Step 9. Page Access: 8, 1 

 

Page 8 9 1 2 

Mode 1 0 1 0 

Cold Flag 1 1 0 0 

 

 

Table 20: DCH-CFLRU Tracing - State at virtual time 9 

Page Fault = 7 

Hit Count = 2 

Write Count = 1 

 

Here too, LRU page is victim according to DCH-CFLRU page replacement algorithm. 

 

Step 10. Page Access: 6, 0 

 

Page 3 8 9 2 

Mode 0 1 0 0 

Cold Flag 1 1 1 1 

 

 

Table 21: DCH-CFLRU Tracing - State at virtual time 10 

Page Fault = 8 

Hit Count = 2 

Write Count = 1 

 

Here, in this step 10, when new page occurs, cache is full and algorithm find out the reference 

page '2' as LRU page, but its cold flag is NOT set (i.e. the page is hot) so second chance is given 

and inserted into the MRU position of cold first region and it's status is also changed to cold and 

queue is adjusted. Then, algorithm checks for the page to evict at LRU and it finds reference 

page '1' as dirty and hot again, that's why second chance is given to this page also and queue is 

adjusted. Now, algorithm find '2' as a victim, because this time it is cold page. 

 

  

w 

WR CFR 

w 
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CHAPTER 4 

TEST RESULTS & ANALYSIS 

 

4.1   Data Collection 
 

Data is the basic element of any sort of research work which gives the meaningful result after 

processing and analyzing. Using the simulation tool discussed above, data are collected and 

tested carefully to obtain accurate and desired result.  

 

Here, in this dissertation work four types of trace data are used, i.e., Random trace, Read most 

trace, write-most trace, and Zipf trace as Workload 1, Workload 2, Workload 3 and Workload 4 

respectively. These four different traces with different nature are used as workloads for analyzing 

existing basic CFLRU and DCH-CFLRU. These data are real memory traces. Workload 

represents different locality of memory reference pattern that are generated during execution of 

process in real Operating System. There are total 100,000 page references in each of the first 

three traces, which are restricted to a set of pages whose numbers range from 0 to 49,999. The 

total number of page references in the Zipf trace is set to 500000 in order to obtain a good 

approximation, while the page numbers still fall in [0, 49999]. Zipf trace has a referential locality 

“20/80” meaning that eighty percent of the references deal with the most active twenty percent of 

the pages. Sample of Workload 1, Workload 2, Workload 3 and Workload 4 are in appendix A, 

appendix B, appendix C and appendix D respectively. Table 22 to Table 25 shows the details 

concerning these workloads [6].  

 

 

 

 

 

 

 

Table 22: Detailed properties of Random Access Reference 

 

Attributes Value 

Total I/O references 100,000 

Total Distinct references 43247 

Read/Write ratio 50% /50% 

Reference Patterns Uniform 
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Table 23: Detailed properties of Read Most Reference 

 

 

 

                                    

   

  

 

 

Table 24: Detailed properties of Write Most Access Reference 

 

 

Attributes Value 

Total I/O references 500,000 

Total Distinct references 47023 

Read/Write ratio 50% /50% 

Reference Locality 20%/80% 

         

Table 25: Detailed properties of Zipf Access Reference 

4.2 Testing 
 

For the analysis purpose, both the algorithm are tested with four distinct workload. Using the 

developed CFLRU and DCH-CFLRU simulator test has been carried out by varying cache size 

from 512 to 18192. Table below shows the test result. 

 

Attributes Value 

Total I/O references 100,000 

Total Distinct references 43212 

Read/Write ratio 90% /10% 

Reference Patterns Uniform 

Attributes Value 

Total I/O references 100,000 

Total Distinct references 43182 

Read/Write ratio 10% /90% 

Reference Patterns Uniform 
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i) Test Result of Workload 1 (Random Access) 

Total No. of references = 100,000 || Total No. of Distinct Pages = 35,843 

 

Cache Size 
Basic CFLRU DCH-CFLRU 

Hit Rate Write Count Hit Rate Write Count 

512 1.57 49161 1.53 48971 

1024 3.18 48428 3.19 47882 

2048 6.39 46868 6.41 45850 

4096 12.69 43726 12.70 41940 

8192 24.79 37428 24.62 34808 

10192 30.49 34345 30.38 31395 

12192 35.92 31349 35.94 28272 

14192 41.04 28361 41.20 25281 

16192 46.12 25448 46.29 22600 

18192 51.03 22421 51.14 19918 

Table 26: Test result of Workload 1 (Random Access) for both algorithm. 

 

ii) Test Result of Workload 2 (Read Most Access) 

Total No. of references = 100,000 || Total No. of Distinct Pages = 35,834 

 

Cache Size 
Basic CFLRU DCH-CFLRU 

Hit Rate Write Count Hit Rate Write Count 

512 1.62 9589 1.7 9728 

1024 3.28 9260 3.26 9561 

2048 6.38 8569 6.39 9253 

4096 12.55 7194 12.71 8557 

8192 24.71 4329 24.73 7252 

10192 30.46 2902 30.35 6621 

12192 35.91 1488 35.77 6036 

14192 41.31 1000 41.18 5396 

16192 46.44 800 46.26 4796 

18192 51.32 689 51.12 4175 

Table 27: Test result of Workload 2 (Read Most Access) for both algorithm. 
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iii) Test Result of Workload 3 (Write Most Access) 

Total No. of references = 100,000 || Total No. of Distinct Pages = 35,824 

Cache Size 
Basic CFLRU DCH-CFLRU 

Hit Rate Write Count Hit Rate Write Count 

512 1.67 87744 1.67 86899 

1024 3.31 86393 3.31 84737 

2048 6.51 83712 6.48 80634 

4096 12.66 78408 12.64 72916 

8192 24.58 67971 24.51 59216 

10192 30.15 62977 30.12 53273 

12192 35.50 58114 35.47 47831 

14192 40.85 53242 40.72 42647 

16192 46.03 48427 46.08 37600 

18192 50.99 43721 54.65 33104 

 

Table 28: Test result of Workload 3 (Write Most Access) for both algorithm. 

 

iv) Test Result of Workload 4 (Zipf Trace Access) 

Total No. of references = 500,000 || Total No. of Distinct Pages = 40,612 

Cache Size 
Basic CFLRU DCH-CFLRU 

Hit Rate Write Count Hit Rate Write Count 

512 30.39 180406 29.98 168061 

1024 38.02 163207 37.58 149449 

2048 46.76 143278 46.33 128292 

4096 56.77 119804 56.28 103904 

8192 68.21 91125 67.76 75536 

10192 72.12 80881 71.72 65795 

12192 75.49 71774 75.07 57592 

14192 78.33 63727 77.97 50402 

16192 80.84 56419 80.51 44064 

18192 83.09 49688 82.78 38350 

 

Table 29: Test result of Workload 4 (Zipf Trace Access) for both algorithm. 
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4.3   Analysis 
 

The result obtained by simulating these algorithms is analyzed by using different graphs. Hit 

ratio and write count is taken as measure criteria for measuring their performance. The algorithm 

that has higher hit ratio and lower write count is considered to be good in the case of flash-based 

system. The result is different for different workloads according to the reference pattern.  

 

4.3.1   Hit Ratio Analysis 

 

 

 

Figure 7: Hit ratio analysis for workload 1 (Random Access) for both algorithm. 
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Figure 8: Hit ratio analysis for workload 2 (Read Most Access) for both algorithm. 

 

 

Figure 9: Hit ratio analysis for workload 3 (Write Most Access) for both algorithm. 
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Figure 10: Hit ratio analysis for workload 4 (Zipf Trace Access) for both algorithm. 

 

 

The line graph from Figure 7 to Figure 10 shows that the basic CFLRU algorithm and DCH-

CFLRU algorithm have almost identical hit ratio. Hit ratio is the case when the page requested 

by process is found on memory. Here, both the algorithm are tested with four different types of 

page reference traces, namely random, read-most, write-most and zipf type with varied cache 

size. In these workloads there is not clear distinction between hot and cold pages as reference 

locality is not high. Despite the nature of page reference in write most workloads, DCH-CFLRU 

has slightly better hit ratio when cache size increases. Reason of occurring almost identical hit 

ratio is that in both algorithm try to put dirty page in memory for a while, but DCH-CFLRU 

algorithm gives second chance to all the pages other than cold pages.   

 

The graph of Figure 10 shows significantly difference in hit rate in zipf workload in comparison 

to other three page reference type. This is due to high reference locality of page references in zipf 

trace where 80% of pages references deal with active 20 % of pages. But both the algorithm 

gives same result in this page reference pattern too. In this workload both the algorithm has 

higher hit ratio even in small cache size but the case is different in other workloads. 
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As a maximum value DCH-CFLRU has 4% higher hit rate than basic CFLRU algorithm for 

write most workload when cache size is larger than 16000 approximately. But in other workloads 

there is no significant difference in hit ratio.  

 

4.3.2   Write count Analysis (Line Graph) 

 

 

Figure 11: Write count analysis for workload 1 (Random Access) for both algorithm. 
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Figure 12: Write count analysis for workload 2 (Read Most Access) for both algorithm. 

 

 

 

Figure 13: Write count analysis for workload 3 (Write Most Access) for both algorithm. 
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Figure 14: Write count analysis for workload 4 (Zipf Trace Access) for both algorithm. 

 

The graphs in figure 11 to 14 shows the write count of basic CFLRU and proposed DCH-

CFLRU in four different workloads. Write count is the number of dirty pages flushed to flash 

memory. The number is obtained by counting the eviction of page references with write request 

during page replacement event. From the above line graphs it is clear that DCH-CFLRU has less 

write count for all the workload except read most workload. 

Random access reference pattern is uniformally distributed having 50-50% read/write pages. 

When the cache size is smaller, there is small differences between the algorithms. But as cache 

size increases DCH-CFLRU outperform CFLRU significantly. This is because, when buffer size 

increases, DCH-CFLRU get large room in working region to moves those write pages to MRU 

giving second chance and stay in buffer for long duration. And thus have more chances of hit in 

subsquent fetch. 

Workload 2 has read most access pattern containing 10% writes and 90% reads page references. 

For small cache size both the algorithm have almost equal number of write counts. But when 

cache size increase CFLRU outperform the DCH-CFLRU, tending to zero in case of CFLRU and 

steady decrement in DCH-CFLRU. Reason behind this is that, in workload 2, there are very less 
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number of write pages and when the cache size increase largly, there is very high probablity of 

cantaining all write pages in cache. 

In type three workload, write most, DCH-CFLRU gives better result CFLRU when the cache 

size increased. This type of workload contains 90% write pages and 10% read pages. This is due 

to there are large number of write pages and DCH-CFLRU has policy of keeping those pages in 

working region giving one chance. 

In context of zipf trace, there is a constant difference in term of write count for both algorithms. 

This is because the trace has 50%/50% read/write references but has high reference locality of 

80% page references are references to 20% of pages. DCH-CFLRU adapts changes in reference 

pattern and locality. So it has less write count than CFLRU for all buffer size.  

Excluding read most traces, in all the three workload DCH-CFLRU has less number of write 

counts upto 14% (14900 write count) less than basic CFLRU. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

Conclusion 
 

In this dissertation work, an efficient buffer algorithm for flash memory, named DCH-CFLRU is 

proposed, originally based on basic CFLRU algorithm. It gives the second chance to hot pages 

whether they are dirty or clean and evict cold pages when replacement occurs. Trace-driven 

experiment in a simulation environment using four types of synthesized traces.  The experiments 

have shown that the proposed algorithm DCH-CFLRU outperforms CFLRU in terms of write 

count in all the workload except read most workload. Whereas, in read most case CFLRU gives 

better result. Regarding the hit ratio, both algorithm gives the almost same result and DCH-

CFLRU, at least preserve the CFLRU's performance. 

Newly proposed algorithm, DCH-CFLRU proves that by adopting the strategy of giving second 

chance to both clean hot and dirty hot pages can reduce the number of write count in various 

workload pattern. This nature of replacement algorithm efficiently support the characteristic of 

flash storage devices. 

Recommendation 
 

In this work, the window size is kept fixed during the experiment, to balance hit ratio and write 

count. But it is yet to discover that, what value of window gives better result in which types of 

workload. Recommendation is that, finding the optimal value of window size which could refine 

and improves the performance of the algorithm. Algorithm could be more dynamic in nature by 

using various technique like adding more queue to get higher hit ratio and lesser write count on 

several workloads too. 

And, it is also recommended that, the analysis could be done regarding the performance of DCH-

CFLRU with respect to other flash memory based page replacement algorithms using other 

benchmarks and additional real input traces for further performance evaluation. 
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Appendix 1: Random Trace Input Sample 

1,8575 

0,17754 

0,33289 

0,3838 

0,19942 

1,25113 

1,35145 

1,1939 

0,40780 

0,12831 

0,31724 

1,37162 

1,861 

1,35912 

0,39216 

1,10863 

0,15454 

0,32425 

0,42141 

1,34769 

0,29923 

1,3050 

0,4043 

0,39113 

1,11686 

1,25837 

0,4941 

0,7882 

0,39262 

1,32631 

0,36490 

1,11934 

1,8851 

1,16962 

0,37665 

1,23980 

0,41727 

0,15074 

1,19029 

1,1750 

0,49554 

1,18797 

1,6747 

0,31276 

1,786 

1,42798 

0,30971 

0,42594 

1,49503 

0,23075 

1,8717 

1,13521 

1,988 

0,22467 

1,12586 

1,45284 

1,39329 

0,45058 

0,14795 

0,21120 

0,7786 

1,43211 

0,47655 

0,42213 

0,919 

0,603 

0,4844 

0,44923 

1,29324 

0,26292 

1,31526 

1,38097 

1,39819 

0,30117 

1,14208 

1,27844 

1,8361 

1,16455 

1,5699 

0,10670 

1,1066 

0,9039 

1,6477 

1,41170 

0,23504 

1,32354 

0,14280 

1,36795 

1,8732 

1,46002 

1,4880 

1,5637 

1,21680 

1,3496 

1,3220 

0,13282 

1,42670 

0,11669 

0,2716 

1,49749 

1,8672 

1,33281 

0,8337 

0,16815 

0,14078 

0,23123 

1,38627 

1,3974 

1,39029 

0,24143 

0,45127 

1,6153 

0,21868 

1,3032 

0,49348 

0,27357 

0,2787 

1,41676 

0,45740 

1,12125



  

Appendix 2: Read Most Trace Input Sample 

0,18468 

0,34788 

0,16056 

0,48011 

0,3932 

0,25030 

1,16770 

0,21941 

0,29929 

0,38177 

0,7153 

0,18859 

0,3268 

0,28072 

0,9315 

0,28505 

0,49719 

0,44878 

0,18673 

0,6906 

0,15112 

1,16270 

0,36671 

0,18313 

0,45554 

0,37062 

0,14371 

0,48320 

0,2162 

0,27188 

0,24383 

0,9427 

0,23379 

0,39283 

0,24410 

0,16370 

0,4033 

0,21778 

0,45129 

0,16800 

0,11839 

0,40554 

0,583 

0,25881 

0,8353 

0,22762 

1,8476 

0,2452 

0,21562 

0,49935 

0,38578 

0,24493 

0,1086 

0,48678 

0,12792 

0,589 

0,14086 

0,23292 

0,9893 

0,30087 

0,12275 

0,48986 

0,20596 

0,10714 

0,5776 

0,39721 

0,29714 

1,27136 

0,8363 

0,41959 

0,3181 

1,11001 

0,25168 

0,8592 

1,39601 

0,8962 

0,26716 

0,39017 

0,11701 

1,18572 

0,22024 

1,40558 

0,3330 

1,4020 

0,15769 

0,9032 

1,33398 

0,26794 

0,17359 

0,6901 

0,46199 

0,45489 

0,49561 

0,37635 

0,1892 

0,46703 

0,25444 

0,43238 

0,11309 

0,30281 

0,28294 

0,7946 

0,2748 

0,36907 

0,5078 

0,27022 

1,14669 

0,37419 

0,12382 

0,8955 

0,43073 

0,4139 

0,37292 

0,31386 

0,15131 

0,44501 

0,40518 

0,6139 

0,49892 

0,22521 



  

Appendix 3: Write Most Trace Input Sample 

1,23302 

1,13471 

1,14359 

1,21971 

1,20334 

1,31838 

1,49621 

1,28811 

1,3897 

1,43040 

1,27843 

1,32634 

1,27524 

1,16779 

1,43505 

1,25441 

1,44214 

1,2239 

1,21654 

1,40382 

1,27730 

0,25933 

0,23356 

1,32532 

1,5623 

0,2742 

1,14485 

1,21326 

1,36952 

1,29226 

1,15461 

0,16820 

1,22017 

0,9035 

1,25265 

1,11212 

1,33356 

1,27032 

1,14152 

1,15124 

1,47528 

1,7678 

0,23761 

1,48844 

1,29099 

0,3500 

1,26389 

1,2172 

1,11354 

0,6325 

1,42822 

1,26389 

1,5102 

1,34110 

0,21757 

1,20043 

1,43395 

1,14065 

1,16337 

1,43311 

1,34617 

1,29231 

0,5727 

1,27015 

0,34690 

1,40669 

1,19798 

1,28686 

1,20363 

1,34354 

1,44407 

1,24634 

1,16787 

1,38452 

1,42688 

1,40239 

1,1854 

0,4638 

1,42761 

1,26164 

1,16350 

1,22821 

0,28702 

1,6451 

1,32037 

1,47186 

1,18653 

1,45641 

1,16091 

1,29841 

1,10516 

1,7979 

1,168 

1,30352 

1,3196 

1,46214 

1,30409 

1,43742 

1,48075 

1,26852 

1,35557 

1,29788 

1,47754 

1,17588 

1,17838 

1,42179 

1,38931 

1,32941 

1,38931 

1,32941 

1,47935 

1,48613 

1,42451 

1,13432 

1,25523 

1,16903 

1,30117 

1,34689 

1,32151 

1,49445 



  

Appendix 4: Zipf Trace Input Sample 

1,8550 

0,3609 

1,654 

1,17913 

0,145 

0,2550 

1,5970 

0,2461 

1,33806 

0,17 

0,1 

0,17 

0,7186 

1,370 

0,159 

0,10290 

0,54 

0,4 

1,40078 

0,481 

0,14300 

0,1 

0,16 

0,18 

1,1167 

0,7 

1,27473 

0,47 

0,127 

0,286 

0,35 

1,1 

0,63 

0,15 

0,17 

0,574 

1,1815 

0,173 

0,6 

0,9172 

0,5565 

1,69 

1,7723 

0,39491 

0,2020 

1,1 

0,16 

1,17217 

1,3717 

1,3294 

1,31 

1,40143 

0,49198 

0,15221 

0,191 

0,49491 

1,2842 

1,2797 

0,25825 

0,7165 

1,40 

0,3 

1,47 

0,6 

0,8631 

0,7375 

0,9649 

0,3530 

0,21 

1,508 

1,8 

0,16 

1,20349 

1,4506 

1,279 

1,111 

0,1472 

0,2768 

0,36002 

0,168 

0,631 

0,50 

0,44415 

1,800 

0,1847 

0,1353 

0,115 

0,28497 

1,2611 

0,697 

1,1728 

0,1 

1,32 

0,57 

1,358 

0,522 

1,4 

0,612 

0,2599 

1,2 

1,5 

0,47719 

1,8 

1,889 

0,345 

0,1136 

0,242 

1,10958 

0,1178 

0,17 

1,3 

1,20063 

0,1992 

0,4 

1,7485 

1,1406 

0,168 

1,87 

1,602 

0,1638 



  

Appendix 5: Source Code of Basic CFLRU Algorithm 

Basic CFLRU Algorithm: 
namespace ThesisLastUpdate 
{ 
    //this for to show page status 
    public enum Pagestatus { dirty, clean }; 
 
    //node structure 
    class CflruNode 
    { 
 
        public CflruNode prev { get; set; } 
        public object Data { get; set; } 
        public CflruNode next { get; set; } 
        public Pagestatus status; 
 
        public CflruNode() 
        { 
            Data = null; 
            prev = null; 
            next = null; 
        } 
 
        public CflruNode(object data, Pagestatus Pstatus) 
        { 
 
            status = Pstatus; 
            Data = data; 
            prev = null; 
            next = null; 
        } 
 
        // returns entire list 
        public CflruNode(Pagestatus statuss, CflruNode datavalue) 
            : this(statuss, null, datavalue, null) 
        { 
        } 
 
        //this constructor fills all parameters on their respective fields 
        public CflruNode(Pagestatus statuss, CflruNode previousnode, CflruNode datavalue, 
CflruNode nextnode) 
        { 
            status = statuss; 
            prev = previousnode; 
            Data = datavalue; 
            next = nextnode; 
        } 
    } 
 
 
    /// <summary> 
    /// Class for List of nodes with all necessary operation in the list  
    /// </summary> 
    class cache 
    { 
        public CflruNode firstnode { get; set; } 



  

        public CflruNode lastnode { get; set; } 
        public string name; 
 
        /// <summary> 
        /// Initialization of the list 
        /// </summary> 
        /// <param name="listname"></param> 
        public cache(string listname) 
        { 
            name = listname; 
            firstnode = null; 
            lastnode = null; 
        } 
        public cache() 
            : this("list") 
        { } 
 
        /// <summary> 
        /// Insert node at the firts position of the list 
        /// </summary> 
        /// <param name="insertNode"></param> 
        public void InsertAtFront(CflruNode insertNode) 
        { 
            if (IsEmpty()) 
            { 
                firstnode = lastnode = insertNode; 
            } 
            else 
            { 
                insertNode.next = firstnode; 
                firstnode.prev = insertNode; 
                firstnode = insertNode; 
            } 
 
        } 
 
        /// <summary> 
        /// To check whether the list is empty 
        /// </summary> 
        /// <returns></returns> 
        public bool IsEmpty() 
        { 
            return firstnode == null; 
        } 
 
 
        /// <summary> 
        /// To search the node in the list 
        /// </summary> 
        /// <param name="node"></param> 
        /// <returns></returns> 
        public CflruNode findnode(CflruNode node) 
        { 
            CflruNode newnode = new CflruNode(); 
 
            for (CflruNode temp = firstnode; temp != lastnode.next; temp = temp.next) 
            { 
                if (temp.Data.Equals(node.Data)) 



  

                { 
                    newnode = temp; 
                } 
            } 
            return newnode; 
        } 
 
        /// <summary> 
        /// Search the node in the List 
        /// </summary> 
        /// <param name="nodetobeSearched"></param> 
        /// <returns></returns> 
        public bool search(CflruNode nodetobeSearched) 
        { 
            bool checkpoint = false; 
 
            if (IsEmpty()) 
            { 
                checkpoint = false; 
            } 
 
            else 
            { 
                for (CflruNode temp = firstnode; temp != lastnode.next; temp = temp.next) 
                { 
                    if (temp.Data.Equals(nodetobeSearched.Data)) 
                    { 
                        checkpoint = true; 
                    } 
                } 
            } 
            return checkpoint; 
        } 
 
        public bool CheckCleanPage(int noOfStepsTomove) 
        { 
            bool checkpoint = false; 
            int count = 0; 
            if (IsEmpty()) 
            { 
                checkpoint = false; 
            } 
 
            else 
            { 
                for (CflruNode temp = lastnode; temp != firstnode.next; temp = temp.prev) 
                { 
                    if (noOfStepsTomove > count) 
                    { 
                        if (temp.status.Equals(Pagestatus.clean)) 
                        { 
                            //Remove node from here 
                            checkpoint = true; 
                        } 
                    } 
                    else 
                        break; 
                    count++; 



  

                } 
            } 
            return checkpoint; 
        } 
 
 
        //get least recent used block 
        public CflruNode GetLeastUsedCleanNode(int length) 
        { 
            CflruNode newnode = new CflruNode(); 
            var count = 0; 
            for (CflruNode temp = lastnode; temp != firstnode.prev; temp = temp.prev) 
            { 
                if (length > count) 
                { 
                    if (temp.status.Equals(Pagestatus.clean)) 
                    { 
                        newnode = temp; 
                        break; 
                    } 
                    count++; 
                } 
                else 
                    break; 
            } 
            return newnode; 
        } 
 
        /// <summary> 
        /// Moving the Current page to the first position of the list 
        /// </summary> 
        /// <param name="node"></param> 
        public void MoveAtFirsPos(CflruNode node) 
        { 
            if (node.prev == null) 
            { 
                //Do nothing since the node itself is first node 
            } 
 
            else if (node.next == null) 
            { 
                node.prev.next = null; 
                lastnode = node.prev; 
                node.next = firstnode; 
                node.prev = null; 
                firstnode.prev = node; 
                firstnode = node; 
 
            } 
            else 
            { 
                node.prev.next = node.next; 
                node.next.prev = node.prev; 
                node.next = firstnode; 
                node.prev = null; 
                firstnode.prev = node; 
                firstnode = node; 
            } 



  

        } 
 
        /// To delete the node tempom the list 
        /// <param name="delenode"></param> 
        public void Deletenode(CflruNode delenode) 
        { 
            for (CflruNode temp = firstnode; temp != lastnode.next; temp = temp.next) 
            { 
                if (temp.Data.Equals(delenode.Data)) 
                { 
                    if (temp.next == null) 
                    { 
                        lastnode = lastnode.prev; 
                        lastnode.next = null; 
                        break; 
                        //temp.prev = null; 
                    } 
                    else if (temp.prev == null) 
                    { 
                        firstnode = firstnode.next; 
                        firstnode.prev = null; 
                        break; 
                        //temp.next = null; 
                    } 
                    else 
                    { 
                        temp.next.prev = temp.prev; 
                        temp.prev.next = temp.next; 
                        //temp.prev = null; 
                        //temp.next = null; 
                        break; 
                    } 
                } 
            } 
        } 
 
        public void RemoveLastNode() 
        { 
            lastnode = lastnode.prev; 
            lastnode.next = null; 
        } 
        // To show the Current status of the all nodes in the list 
                public void showstatus() 
        { 
            if (IsEmpty()) 
            { 
                Console.WriteLine("Empty " + name); 
            } 
 
            else 
            { 
                Console.WriteLine("\t"); 
            } 
        } 
    } 
    //Main class starts from here 
    class LFLRU : CflruNode 
    { 



  

        public static void Main() 
        { 
            double mediumValue; //var will determine the range of MRU and LRU. 
            int totalsize, i;//hold the user inputed cache size 
            int np = 0, pageCount = 0, pagehit = 0, pagefault = 0, distinctpages = 0, 
wrcount = 0; 
            Console.WriteLine("Algorithm: CLFLRU"); 
            Console.WriteLine("Cache size:"); 
            totalsize = int.Parse(Console.ReadLine());//reads user inputed cache size 
            mediumValue = totalsize / 2; 
            //check whole and double number, if it is whole number then do nothing 
otherwise it makes whole number with ceiling function. 
            if (Math.Floor(mediumValue) != mediumValue) 
            { 
                mediumValue = Math.Ceiling(mediumValue); 
            } 
            CflruNode node;// temporary node 
 
            using (StreamReader r = new StreamReader("D:\\data-random 100k references-50k 
pages.txt")) // give file directory here, reads file based on this directory 
            { 
                cache newlist = new cache(); 
                string refpage; 
                List<string> pageList = new List<string>(); 
 
                while ((refpage = r.ReadLine()) != null || (refpage = r.ReadLine()) != 
"") // reads entire lines included within file 
                { 
                    #region 
                    if (refpage == null) 
                        break; 
                    var distinguishedpageNPageStatus = refpage.Split(',');//splits input 
string by , and convert this into array 
                    object data = distinguishedpageNPageStatus[1]; 
 
                    if (!pageList.Any(x => x.Contains(data.ToString()))) 
                    { 
                        pageList.Add(data.ToString()); 
                        distinctpages++; 
 
                    } 
                    Console.WriteLine("Page:" + data); 
                    if (distinguishedpageNPageStatus[0].Trim() == "0") 
                        node = new CflruNode(data, Pagestatus.clean); // creates new 
instance  
                    else 
                        node = new CflruNode(data, Pagestatus.dirty); 
                    pageCount++; 
                    //if page is exist in the list 
                    if (newlist.search(node)) 
                    { 
                        pagehit++; 
                        //Find that particular node in the list 
                        CflruNode CurrentPage = newlist.findnode(node); 
 
                        if (node.status == Pagestatus.dirty && CurrentPage.status == 
Pagestatus.clean) 
                            CurrentPage.status = Pagestatus.dirty; 



  

 
                        //Move  Current page at the begining of the list 
                        newlist.MoveAtFirsPos(CurrentPage); 
                    } 
                    //page in not in the list 
                    else 
                    { 
                        pagefault++; 
                        np++; 
                        //admit the newly acccessed block to the MRU list till there is 
no more free slot 
                        if (np <= totalsize) 
                        { 
                            newlist.InsertAtFront(node); 
                            //    newlist.showstatus(); 
                        } 
                        //promote the newly accessed  
                        else 
                        { 
                            int noOfStepsTomove = totalsize - 
Convert.ToInt32(mediumValue); 
                            if (newlist.CheckCleanPage(noOfStepsTomove)) 
                            { 
                                //get least used clean page 
                                var cleanBlock = 
newlist.GetLeastUsedCleanNode(noOfStepsTomove); 
                                //Remove clean node  
                                newlist.Deletenode(cleanBlock); 
                                //Add new at the front 
                                newlist.InsertAtFront(node); 
                            } 
                            else 
                            { 
                                wrcount++; 
                                //Remove Last node from list 
                                newlist.RemoveLastNode(); 
                                //Add new one at the front 
                                newlist.InsertAtFront(node); 
                            } 
                        } 
                    } 
                    #endregion 
                     
                } 
            } 
                      
            Console.WriteLine("Total Number of Pages:" + pageCount); 
            Console.WriteLine("Total Number of distinct Pages:" + distinctpages); 
            Console.WriteLine("Totol Number Of Page fault:" + pagefault); 
            Console.WriteLine("Totol Number Of Page Hit:" + pagehit); 
            Console.WriteLine("Totol Number Of Write Count:" + wrcount); 
            Console.ReadLine(); 
        } 
 
 
    } 
 
} 



  

Appendix 6: Source Code of Moidifed CFLRU Algorithm 

Modified CFLRU Algorithm: 
namespace CFLRU_DirtyHot_CleanHot 
{ 
    class CflruDirtyHotCleanHot : CflruOperationBase 
    { 
        public CflruDirtyHotCleanHot(int posTomove) 
            : base(posTomove) 
        { 
        } 
 
        public override void MovePageToMruRegion(ref LinkedList<CflruNode> cache) 
        { 
            var lastPage = cache.LastOrDefault(); 
            if (lastPage != null && ((lastPage.Status == PageStatus.Dirty && 
lastPage.Flag == PageFlage.Hot) || (lastPage.Status == PageStatus.Clean && lastPage.Flag 
== PageFlage.Hot))) 
            { 
                lastPage.Flag = PageFlage.Cold; 
                var nodelist = cache.Find(cache.ElementAt(PosTomove)); 
                cache.RemoveLast(); 
                if (nodelist != null) cache.AddBefore(nodelist, lastPage); 
                MovePageToMruRegion(ref cache); 
            } 
        } 
    } 
} 

namespace CFLRU_DirtyHot 
{ 
    //node structure 
    public class CflruNode 
    { 
 
        public CflruNode Prev { get; set; } 
        public string Data { get; set; } 
        public CflruNode Next { get; set; } 
        public PageStatus Status; 
        public PageFlage Flag; 
        public CflruNode(string data, PageStatus pstatus) 
        { 
            Status = pstatus; 
            Data = data; 
            Flag = PageFlage.Cold; 
            Prev = null; 
            Next = null; 
        } 
    } 
 
    public enum PageStatus 
    { 
        Dirty, 
        Clean 
    }; 
 



  

    public enum PageFlage 
    { 
        Hot, 
        Cold 
    }; 
} 

namespace CFLRU_DirtyHot_CleanHot 
{ 
    public class Algorithm : CflruBase 
    { 
        public static void Main() 
        { 
 
            Console.WriteLine("Algorithm: CFLRU Dirty Hot Clean Hot"); 
            Console.WriteLine("Cache size:"); 
            var totalsize = int.Parse(Console.ReadLine()); 
            var mediumValue = CalculateMediumValue(totalsize); 
            var cache = new LinkedList<CflruNode>(); 
 
            using (var r = new StreamReader("D:\\data-random 100k references-50k 
pages.txt")) 
            { 
                string refpage; 
                while ((refpage = r.ReadLine()) != null) // reads entire lines included 
within file 
                //foreach (var refpage in InputString) 
                { 
                    var node = SetNode(refpage); 
                    PageCount++; 
                    if (cache.Any(x => x.Data == node.Data)) 
                    { 
                        Pagehit++; 
                        var currentPage = cache.FirstOrDefault(x => x.Data == node.Data);   
//Find that particular node in the list 
                        cache.Remove(currentPage); 
 
                        if (node.Status == PageStatus.Dirty && currentPage.Status == 
PageStatus.Clean) 
                            node.Status = PageStatus.Dirty; 
                        node.Flag = PageFlage.Hot; 
 
                        cache.AddFirst(node);//Move Current page at the begining of the 
list 
                    } 
                    else //page in not in the list 
                    { 
                        Np++; 
                        Pagefault++; 
                        if (Np <= totalsize) 
                        { 
                            cache.AddFirst(node); //admit the newly acccessed block to 
the MRU list till there is no more free slot 
                        } 
                        else //promote the newly accessed 
                        { 
                            var lastPage = cache.LastOrDefault(); 



  

                            if (lastPage != null && ((lastPage.Status == PageStatus.Dirty 
&& lastPage.Flag == PageFlage.Hot) || (lastPage.Status == PageStatus.Clean && 
lastPage.Flag == PageFlage.Hot))) 
                            { 
                                var opw = new 
CflruDirtyHot(Convert.ToInt32(mediumValue)); 
                                opw.MovePageToMruRegion(ref cache); 
                                cache.RemoveLast(); 
                                cache.AddFirst(node); 
                            } 
                            else 
                            { 
                                if (cache.Last().Status == PageStatus.Dirty) 
                                { 
                                    WriteCount++; 
                                } 
                                cache.RemoveLast();  //Remove Last node from list 
                                cache.AddFirst(node); //Add new one at the front 
                            } 
                        } 
                    } 
                } 
            } 
            ShowResult(); 
            Console.ReadLine(); 
        } 
    } 
} 

public abstract class CflruOperationBase 
    { 
        protected readonly int PosTomove; 
 
        protected CflruOperationBase(int posTomove) 
        { 
            PosTomove = posTomove; 
        } 
        public abstract void MovePageToMruRegion(ref LinkedList<CflruNode> cache); 
        
 
    } 

public class CflruBase 
    { 
        public static int Np = 0, PageCount = 0, Pagehit = 0, Pagefault = 0, WriteCount = 
0; 
        private static int _distinctpages = 0; 
        //public static string[] InputString = { "0,3", "1,1", "0,4", "0,2", "1,5", 
"0,2", "1,1", "0,9", "1,3", "0,6", "1,12", "0,11", "0,10", "1,13", "0,14", "1,8" }; 
        static readonly List<string> List = new List<string>(); 
        public static double CalculateMediumValue(int totalSize) 
        { 
            double mediumValue = totalSize / 2; 
            if (!Math.Floor(mediumValue).Equals(mediumValue))//check whole and double 
number, if it is whole number then do nothing otherwise it makes whole number with 
ceiling function. 
            { 



  

                mediumValue = Math.Ceiling(mediumValue); 
            } 
            return mediumValue; 
        } 
        public static CflruNode SetNode(string refpege) 
        { 
            var distinguishedpageNPageStatus = refpege.Split(',');//splits input string 
by , and convert this into array 
            var data = distinguishedpageNPageStatus[1]; 
            Console.WriteLine(data); 
            DistinctPageCounter(data); 
            return distinguishedpageNPageStatus[0].Trim() == "0" ? new CflruNode(data, 
PageStatus.Clean) : new CflruNode(data, PageStatus.Dirty);// temporary node 
        } 
 
        private static void DistinctPageCounter(string page) 
        { 
            if (List.Any(x => x.Contains(page))) return; 
            List.Add(page); 
            _distinctpages++; 
        } 
        public static void ShowResult() 
        { 
            Console.WriteLine("Total Number of Pages:" + PageCount); 
            Console.WriteLine("Total Number of distinct Pages:" + _distinctpages); 
            Console.WriteLine("Total Number Of Page fault:" + Pagefault); 
            Console.WriteLine("Total Number Of Page Hit:" + Pagehit); 
            Console.WriteLine("Write Count:" + WriteCount); 
        } 
    } 

 

 


