
1

 CHAPTER- ONE

 INTRODUCTION

1.1 Introduction

The performance and efficiency of multitasking operating systems mainly depends upon the use

of CPU scheduling algorithm. In time shared system, round robin (RR) scheduling gives optimal

solution because due to its fairness and starvation free nature towards the processes, which is

achieved by using the time quantum. As time quantum is static, it causes less context switching

in case of high time quantum and high context switches in case of less time quantum. So, the

performance of the system solely depends upon choice of the optimal time quantum which is

dynamic in nature [6]. Overall performance of the system depends on the choice of an optimum

time quantum, so the context switching can be reduced. Increasing context switches leads to high

overhead and degrades the system performance, which results into high average waiting time and

high average turnaround time. There are varieties of techniques to make quantum

dynamic[1,2,5,6,9,10,11,12,17]. One of the widely researched approach is "Dynamic time

quantum round robin scheduling algorithm. The idea of this approach is to make the time

quantum dynamic based on time Q. The time Q for one complete round robin of all active

process is to be kept constant, then quantum q can be computed dynamically after every Q

seconds (or cycle) to reduce the mentioned performance parameters.

1.2 Motivation

Modern operating systems become more complex they have evolved from a single task to a

multitasking environment in which process run in a concurrent manner. CPU scheduling is an

essential operating system task; therefore its scheduling is central to operating system design.

When there is more than one process in the ready queue waiting its turn to be assigned to the

CPU, the operating system much decide through the scheduler the order of execution [16].

Allocating CPU to a process requires careful attention to assures fairness and avoid process

starvation for CPU. Scheduling decision try to minimize the following: average turnaround time,

average waiting time, and number of context switches. The round robin algorithm is the main

concern of this research which is the oldest, simplest, fairest and most widely used scheduling

algorithm, designed especially for time-sharing systems. A small unit of time, called time slices

2

or quantum is defined. All runnable processes are kept in a circular queue. The CPU scheduler

goes around this queue, allocating the CPU to each process for a time interval of one quantum.

New processes are added to the tail of the queue. The CPU scheduler picks the first process from

the queue, sets a timer to interrupt after one quantum and dispatches the process. If the process is

still running at the end of the quantum, the CPU is preempted and the process is added to the tail

of the queue [14]. If the process finishes before the end of the quantum, the process itself

releases the CPU voluntarily. In either case, the CPU scheduler assigns the CPU to the next

process in the ready queue. The performance of the RR algorithm depends heavily on the size of

the time quantum [6, 12].At one extreme, if the time quantum is extremely large, it results into

poor response time and approximates FCFS. On the other hand, if the time quantum is extremely

small this causes too many context switches and lower the CPU efficiency. RR algorithm gives

better responsiveness but worse average turnaround time and waiting time [10, 12,13,17]. A lot

of attempts were developed to find a solution for the high turnaround time, high waiting time and

the overhead of the extra context switches in round robin, regardless of the different

methodologies used in these attempts; however all of these rely on the fixed time quantum. In

last few years different approaches are used to increase the performance of round robin.

SARR[12], DQRR[2], IRR[9], and TPBCS[3] based on dynamic time quantum was designed to

solve all critical previously mentioned problems in a practical, simple and applicable manner.

1.2.1 Dynamic Quantum Approaches

If the time Q for one complete round robin of all active processes is to keep constant, then q

(time quantum for a process) can be computed dynamically as:

q = Q/n

Here the relation between the quantum q and number of processes n is linear. This shows that the

quantum or time slice as inverse relation with the number of jobs in ready queue.

Another method of achieving dynamic quantum is based on median [4]. This method calculates

dynamic quantum by using the formula.

3

Median(M)={

Y(n + 1)/2 if n is odd

 ½(
Yn

2
+ Y (1 +

n

2
)) if n is even

Where, M= Median

Y= number located in the middle of a group of numbers arranged in ascending order

n = number of processes

Then, q = (highest Bt+ median (M))/2

Where, Bt =burst time

q = quantum

The optimal time quantum is assigned to each process and is recalculated taking the remaining

burst time in account after each cycle. This procedure goes on until the ready queue is empty.

As already stated large time quantum causes, results into poor response time and small quantum

results into large context switch overhead and hence gives poor CPU efficiency. Thus one main

goal of RR class schedulers is to keep the small quantum size and also minimize the number of

context switches, which are conflicting requirement. This means increasing quantum size

normally decreases context switches and vice versa. This dissertation work will propose an

approach of making quantum dynamic which will neither make time slice fixed for one quantum

nor will be based on burst time. Proposed approach will make quantum dynamic based on the

fraction of jobs finished in previous round of round robin scheduling.

1.3 Performance metrics

Performance metrics refers the criteria for measuring the performance of any system. In

the case of empirical evaluation of modified dynamic time quantum round robin

scheduling algorithm context switch, average waiting time and average turnaround time

are the key terms for measuring the performance. Lower the context switch, average

waiting time and average turnaround time exhibits higher performance.

4

(a) Context switch

The number of times the CPU switches from one process to another is called the context

switches. If context switches decreases, then throughput will increases.

(b) Turnaround time

This is the time difference of the arrival time and the finish time of the process. It is

generally the sum of the waiting time and the service time of the process. If average

turnaround time decreases, then throughput will increase.

att = Σ(ft- at)/n

where, att= average turnaround time

ft= finish time

at= arrival time

n= total number of jobs

(c) Waiting time

This is the amount of time that a process spends waiting on the ready queue. The waiting

time should be kept minimum. Waiting time and throughput are directly dependent on

each other. If average waiting time decreases, then it is clear that throughput will be

increased.

awt = Σ(tt- bt)/n

Where, awt= average waiting time

tt= turnaround time

bt= burst time

(d) Average response time

Time from the submission of a request until the first response is produce.

5

So, a good scheduling algorithm for real time and time sharing system must possess following

1. Minimize context switch

2. Maximize CPU utilization

3. Minimize average turnaround time

4. Minimize average waiting time

5. Minimize response time

1.4 Problem statement

The performance of the round robin algorithm depends heavily on the size of the time quantum.

If the time quantum is large, the round robin simply becomes FCFS and, if time quantum is

small, there are so many preemptions of the CPU. Many context switches decrease the utilization

of CPU because, in case of large number of context switch, CPU is busy with no fruitful work.

Many attempts are done previously to make the quantum dynamic. This dissertation work will

find answer to the question "What happens if we make the quantum dynamic by using: the

fraction of jobs finished in previous round" as shown below:

Quantum(q) ={
 q ∗

λ

f
 if f ≥ 0.0625

 4q if f ≤ 0.0625

Where, f= fraction of job finished in previous round

λ =0.25 (constant value)

1.5 Objective

The main objective of this dissertation work is:

(a). Experimental Evaluation of Modified Dynamic Time Quantum Round Robin Scheduling

(b). To compare Dynamic time quantum round robin scheduling and Modified dynamic time

quantum round robin scheduling in terms of context switch, average waiting time and average

turnaround time.

6

1.6 Thesis Organization

Introduction part of this dissertation work focuses on CPU scheduling algorithms and related

basic terminologies which are already mentioned along with introduction to dynamic time

quantum approach. This chapter also clarifies motivation and objectives of dissertation work.

Chapter two consists of background and literature review. In background part include concept of

multiprogramming, process model, CPU scheduler, categories of scheduling algorithms, stage of

scheduler and static and dynamic RR scheduling algorithm are discussed. Literature review

includes details of several dynamic round robin scheduling algorithms with their categories.

Chapter three includes algorithms studied with their illustrations. Chapter four describes the

implementation details which are used to implement this work such as tools, programming

language, interface, data structure, algorithms and flowcharts. Chapter five explains the

experimental analysis with three different cases. Chapter six concludes the whole dissertation

work and recommends for further research.

7

CHAPTER TWO

BACKGROUND AND LITERATURE REVIEW

2.1 Background

An operating system is system software which makes an interface between user and hardware.

Operating system provides a platform in which user can interact with hardware so that user can

handle the system in an efficient manner [16]. Modern operating system and time sharing system

are more complex, they have evolved from a single task to multitasking environment in which

processes run in synchronized manner. In multiprocessing and multitasking environment there

are several processes ready to run at the same time, the system must choose among them and

assigned to run on the available CPUs is called CPU scheduling. In any multiprogramming

system, the CPU switches from process to process quickly, running each for tens or hundreds of

milliseconds. While strictly speaking, at any instance of time, the CPU is running only one

process, in the course of one second, it may work on several of them, giving the illusion of

parallelism called pseudo parallelism. Pseudo parallelism is a concept that contrasts with the true

hardware parallelism of multiprocessor system (which has two or more CPUs sharing the

physical memory). Keeping track of multiple, parallel activities is hard for people to do.

Therefore, operating system designer over the years have involved a conceptual model

(sequential processes) that make parallelism easier to deal with.

2.1.1 Multiprogramming

To overcome the problem of underutilization of CPU and main memory, the multiprogramming

was introduced. The multiprogramming is interleaved execution of multiple jobs by the same

computer. In multiprogramming system, when one program is waiting for I/O transfer; there is

another program ready to utilize the CPU. So it is possible for several jobs to share the time of

the CPU. But it is important to note that multiprogramming is not defined to be the execution of

jobs at the same instance of time. Rather it does mean that there are a number of jobs available to

the CPU (placed in main memory) and a portion of one is executed then a segment of another

and so on. A simple process of multiprogramming is shown in figure below:

8

 Waiting data on disk

 I/O operation

 Job "B" is in execution

 Figure 2.1: Memory layout for a multiprogramming system

As shown in figure, at the particular situation, job A is not utilizing the CPU time because it is

busy in I/O operations. Hence the CPU becomes busy to execute the job B. Another job C is

waiting for the CPU for getting its execution time. So in this state the CPU will never be idle and

utilizes maximum of its time.

A program in execution is called a "process", "job" or a "task". The concurrent execution of

programs improves the utilization of system resources and enhances the system throughput as

compared to batch and serial processing. In this system, when a process requests some I/O to

allocate; meanwhile the CPU time is assigned to another ready process. So here when a process

is switched to an I/O operation, the CPU is not set idle.

Multiprogramming is a common approach to resource management. The essential components of

a single user operating system include a command processor, an input/output control system, a

file system, and a transient area. A multiprogramming operating system builds on this base,

subdividing the transient area to hold several independent programs and adding resource

management routines to the operating system's basic functions.

Supervisor

Job A

Job B

Job C(waiting for the

CPU time)

 CPU

Secondary storage

device

9

2.1.2 The Process Model

In this model, all runnable software on the computer, sometimes including the operating system,

is organized into a number of sequential processes. A process is just an interface of an executing

program, including the current values of the program counter, registers, and variables.

Conceptually, each process has its own virtual CPU. In reality, of course, the real CPU switches

back and forth from process to process[14,16], but to understand the system, it is much easier to

think about a collection of processes running in (pseudo) parallel then to try to track of how the

CPU switches from program to program.

One program counter four program counter

 Process D

 Switch C

 Process B

 A

 Time

Figure 2.2: Process execution in pseudo- parallelism

2.1.3 Process State

When a process is loaded in memory, it becomes ready to execute. When the scheduler selects

the process for execution, the process enters the running state. In this state, the process can either

be preempted which is the case when it exceeds the time quantum allocated or blocked while

waiting for I/O data. When process is preempted then the operating system puts the process on

the end of the ready queue of processes, but it remains ready to execute. If the process is blocked

while waiting for I/O operation, it is, then, taken from ready queue and put on the I/O queue.

When I/O channel completes the I/O operation for blocked process, the process reenters the

ready state, where it waits for CPU.

Thus, at any time each process may be in one of the following states:

A

B

C

D

A B C D

10

New: The process being created

Ready: In this state, the process is ready to run, and waiting for CPU. This is the only state from

where process can enter the running state.

Running: In this state, the process is using the CPU, and process can, either be preempted and

put in the ready state, or may go to blocked state for I/O operation or may terminate with or

without error. Simply, in this state instruction are being executed.

Blocked/Waiting: In this state, the process is waiting for I/O operation. When channel completes

its I/O operation, then, the process becomes ready and the operating system puts it on the back of

the ready queue.

Terminated: The process has finished execution.

 Figure 2.3: Process state diagram

2.1.4 CPU and I/O-bound processes

CPU-bound: CPU-bound means the rate at which process progresses is limited by the speed of

the CPU. A task that performs calculations on a small set of numbers, for example multiplying

small metrics, is likely to be CPU-bound.

11

I/O-bound: I/O-bound means the rate at which a process progresses is limited by the speed of

the I/O subsystem. A task that processes data from disk, for example, counting the number of

lines in a file is likely to be I/O-bound.

2.1.5 CPU Scheduling Algorithm

Scheduling is a fundamental operating system's function. CPU scheduling deals with the problem

of deciding which of the process in the ready queue is to be selected for CPU. Thus, whenever

the CPU becomes idle, the operating system must select from among the processes in memory

that are ready to execute, and allocates the CPU to it. The part of the operating system which

makes the choice as to which of the processes in the ready queue runs next is called scheduler,

and the algorithm it uses is called scheduling algorithm.

Many CPU scheduling algorithms are used such as First come first served scheduling (FCFS),

shortest job first scheduling (SJF), priority scheduling, etc. All the above algorithms are non-

preemptive in nature and also not suitable for time sharing systems. In the first come first served

(FCFS), the process that arrives first in the ready queue is allocated the CPU first. In SJF, when

the CPU is available, it is assigned to the process that has the smallest next CPU burst. If two

processes have same next CPU burst time, FCFS scheduling is used to break the tie. In priority

scheduling algorithm, a priority is given to each process and the process having highest priority

is executed first and so on. Round robin scheduling is similar to FCFS scheduling, but

preemption is added to switch between processes. A small unit of time, called a time quantum or

time slice is defined and the CPU scheduler goes around the ready queue, allocating the CPU to

each process for a time interval of upto 1 time quantum. The round robin (RR) scheduling is one

of the most popular scheduling algorithms found in computer systems today. In addition it is

designed especially for time sharing systems and found in multiple processor system.

2.1.6 Categories of scheduling algorithms

Different scheduling algorithms are needed in different environment [16]. The objective of an

operating system has different goals than the others. In other words, what the scheduler should

optimize for is not the same in all systems, distinguishable three categories of operating systems,

through some systems have mixtures of them, are:

12

(a)Batch systems

Batch processing is the execution of a series of programs (jobs) on a computer without manual

intervention. Jobs are set up so they can be run to completion without human interaction. All

input parameters are predefined through scripts, command line segments, control files or job

control language. Non preemptive algorithms or preemptive algorithms with long time periods

for each process are often acceptable. This approach reduces process switches and thus improves

performance. The batch algorithms are actually fairly general and often applicable to other

situations as well, which makes them worth studying, even for people not involved in corporate

mainframe computing.

(b) Interactive system

In an interactive environment with interactive user, preemption is essential to keep one process

from hogging the CPU and denying service to others. Even if no process intentionally runs

forever, one might shut out all the others indefinitely due to a program bug. Preemption is

needed to prevent this behavior also falls into this category, since they normally serve multiple

(remote) users. All of whom are in a big hurry.

(c) Real time system

Real time systems detect and control the event outside the system under the timing constraints. If

these timing constraints must be made to avoid catastrophe, the system is hard real time system

otherwise non hard (soft) real time system. Real time systems add an extra dimension to the

system namely time which makes them even harder to develop than other system. The difference

with interactive system is that real time system run only programs that are intended to further the

application at hand. Interactive systems are general purpose and run arbitrary program that are

not cooperative or even malicious. Real time systems can be categorized into two categories: soft

and hard real time system.

13

2.1.7 Stages of scheduler

A process migrates between the various scheduling queues throughout its lifetime. The operating

system must select, for scheduling purposes, processes from this queue in some fashion. The

selection process is carried out by the appropriate scheduler [10]. Operating system may feature

up to three distinct types of scheduler [14].

(a)Long term scheduling

Long- term scheduling performs a gate keeping function. It decides whether there is enough

memory, or room, to allow new programs or jobs into the system. It limits the degree of multi-

tasking to prevent slow performance on current running programs. When a job gets past the long

term scheduler, it is sent on the medium- term scheduler.

(b)Medium term scheduling

The medium term scheduling makes the decision to send a job on or to sideline it until a more

important process is finished. Later, when the computer is less busy or has less important jobs,

the medium term scheduler allows the suspended job to pass.

(c)Short term scheduling

The short term scheduler takes jobs from the "ready" line and gives them the green light to run. It

decides which of them can have resources and for how long. The short term scheduler runs the

highest priority jobs first and must make on the spot decisions. For example, when a running

process is interrupted and may be changed, the short term scheduler must recalibrate and give the

highest priority job the green light.

14

Long-term scheduling Long-term scheduling

Short-term

 scheduling

 Medium-term scheduling Exit

 Event wait

 Figure 2.4: Queuing diagram for scheduling

All computer resources are scheduled before in use. So, CPU scheduling algorithm determines

how the CPU will be allocated to the process. CPU scheduling algorithms are two types, one is

non preemptive and another is preemptive scheduling algorithms [16]. In non-preemptive

scheduling, once the CPU is allocated to a process, the process keeps the CPU until it releases

the CPU either by terminating or by switching to the waiting state. But, in preemptive

scheduling, the CPU can release the processes even in the middle of the execution. A process is a

program at the time of execution. A process is the unit of work in most systems. Such a system

contains a collection of processes and it includes the program counter, the process stack, and the

contents of process register, etc. Operating system processes execute system code, and user

processes execute user code. All these processes may execute concurrently.

Terminated

New

Ready

Suspend
Ready

Waiting

Suspended

Waiting

Running

15

2.2 Literature Review

The evolution of scheduling closely tracked the development of computers. The concept of

scheduling is not new; Hennery L. Gantt, an American engineer and social scientist is credited

with the development of the bar chart (Gantt chart) in 1917 round robin scheduling algorithm.

There are many variations of the primitive round robin scheduling algorithms.

2.2.1 FCFS scheduling algorithm

First come first served scheduling algorithm is one of the simplest non- preemptive scheduling

algorithms. In this algorithm, the process that requests the CPU first gets the CPU first. The

implementation of this algorithm consists of a FIFO queue of the ready processes. The process

enters the ready queue and continuously moves to the front of the ready queue. When it reaches

to the front of the queue, it is allocated the processor when it becomes free. This algorithm,

generally, has long average waiting time. The main advantage of this algorithm is that it is easy

to understand, easy to program, and ensures fairness.

2.2.2 Round robin scheduling algorithm

It is one of the most popular algorithms found in computer systems today for multiprogramming

and time sharing environment. It is similar to FCFS, but preemption is included to switch the

CPU among the processes. A time duration called quantum is introduced in this algorithm, it is

the time for which CPU is assigned a process. Thus, each process is assigned the same time

interval (time quantum) and, if the process exceeds its time quantum, CPU is preempted and is

given to another process on the ready queue. The round robin scheduler has the advantage of

very little selection overhead as scheduling is done in constant time. Thus, scheduling time is

simply O(1) because it has to put running process to the end of the ready queue and has to select

the process from the front of the queue, which takes the constant amount of time.

2.2.3 Weighted round robin (WRR)

The standard round robin does not deal with different priorities of processes. All processes are

equally executed. In weighted round robin, quantum is based on the priorities of the processes. A

high prioritized process receives a larger quantum, and by this, receives execution time

16

proportional with its priority. This is a very common extension to the primitive round robin

scheduler and will be referred to simply as the round robin scheduler.

2.2.4 Virtual round robin (VRR)

The virtual round robin scheduler described by S. William [15] is an extension of the standard

round robin scheduler. The round robin scheduler treat I/O bound processes and CPU- bound

processes equally, but an I/O bound process does not fully use its time- slice and thus gets an

unfair treatment compared to CPU- bound processes. The virtual round robin scheduler

addresses the unfair treatment of I/O- bound processes by allowing processes to maintain their

quantum when blocked, the quantum might be variable, and placing the blocked process at the

front of the ready queue when it returns to the ready queue. A process is only returned to the

back of the queue when it has used its full quantum. Researchers have shown that this algorithm

is better than the standard round robin scheduler in terms of fairness between I/O bound

processes and CPU-bound processes.

2.2.5 Virtual time round robin (VTRR)

The weighted round robin and virtual round robin schedulers both use a variable quantum for

processes, as priorities are implemented by changing the quantum given to each processes. In the

virtual time round robin N. Jason and T. Andrew [7] use a fixed quantum, but change the

frequency by which a process is executed in order to implement priorities. This has the

advantage that response times are generally improved for high prioritized processes, while the

selection overhead is still constant time.

2.2.6 Self adjusted round robin scheduling algorithm (SARR)

The static time quantum which is a limitation of RR was removed by taking dynamic time

quantum using median method introduced in SARR[12] algorithm. SARR algorithm is based on

a new approach called dynamic time quantum in which, the quantum is repeatedly adjusted

according to the burst time of the running processes.

17

2.2.7 Dynamic quantum with re-adjusted round robin scheduling algorithm (DQRRR)

The DQRRR [2] scheduling has improved the RR scheduling by improving the turnaround time,

waiting time and number of context switches. Processes are arranged in job mix order in the

ready queue and time quantum is found using median method. The CPU scheduler goes around

the ready queue, allocating the CPU to each process for a time interval of up to 1 time quantum.

Again the time quantum is calculated from the remaining burst time of the processes and so on.

New processes are added to the tail of the ready queue. The CPU scheduler picks the first

process from the ready queue and allocates the CPU to the process for 1 time quantum. DQRRR

gives better result than classical RR scheduling algorithm. According to[2], from a list of N

processes, the process which needs minimum CPU time is assigned the time quantum first and

the highest from the list and so on till the Nth process.

2.2.8 Improved round robin scheduling algorithm (IRR)

In IRR [9] algorithm, the processes are arranged in ascending order according to their burst time

present in the ready queue. Optimal time quantum is calculated by following the median method.

The optimal time quantum is assigned to each process and is recalculated taking the remaining

burst time in account after each cycle. This procedure goes on until the ready queue is empty.

This is better than DQRRR and RR. Here all the processes are CPU bound. No processes are I/O

bound.

2.2.9 A New proposed two processor based CPU scheduling algorithm with

Varying time quantum for real time system (TPBCS)

TPBCS[3] algorithm finds the time quantum in an intelligent way which gives better result in a

two- processor environment than dynamic quantum with readjusted round robin scheduling

algorithm(DQRRR) and RR scheduling. Out of the two processors one is solely dedicated to

execute CPU-intensive processes (CPU1) and the other CPU is solely dedicated to execute I/O-

intensive processes (CPU2). The algorithm is divided into part1 and part2. Part1 algorithm

classifies a process and dispatches it into an appropriate ready queue. Part2 algorithm calculates

the time quantum for both CPUs in a dynamic manner in each cycle of execution. The time

quantum is repeatedly adjusted in every round, according to the remaining burst of the currently

18

running processes. We have taken an approach to get the optimal time quantum, where a

percentage value <PCcpu, PCi/o> is assigned to each processes.

2.2.10 Average max round robin algorithm (AMRR)

P. Banerjee, S. S. Dhal, [5] developed a scheduling algorithm called Average Max Round Robin

algorithm (AMRR). Here time quantum is the mean of the summation of the average and

maximum burst time.

2.2.11 Min-Max Round Robin (MMRR):

S. K. Panda, S. K. Bhoi, [11] developed a scheduling algorithm called Min Max Round Robin

(MMRR). In this approach time quantum is taken as the range of the CPU burst time of all the

processes. The range of the processes is the difference between largest (maximum) and smallest

(minimum) values.

2.2.12 Comparative performance analysis of Multi-Dynamic time quantum round robin

(MDTQRR) algorithm with arrival time

Behera et al. [1] also proposed a method called Multi Dynamic Time Quantum Round Robin

(MDTQRR) which dynamically calculated the value of the time quantum and leads to increase in

system throughput.

2.2.13 Finding Time Quantum of Round Robin CPU Scheduling in general computing

systems using integer programming

S. M. Mostafa, S. Z. Rida, Hamad, [8] finding time quantum of Round Robin CPU Scheduling

algorithm in general computing system using integer programming. In this paper integer

programming has been proposed to solve equations that decide a value that is neither too large

nor too small such that every process has reasonable response time and the throughput of the

system is not decreased due to unnecessary context switches. This method developed a changing

time quantum in each round over the cyclic queue. This method is called as Changeable Time

Quantum (CTQ) technique

19

CHAPTER THREE

 ALGORITHMS STUDIED

3.1 Algorithm Study Framework

To describe the working of algorithms, Dynamic time quantum round robin scheduling and

Modified dynamic time quantum RR scheduling through hand tracing, a set of random number

of processes is taken (here five processes are taken). The algorithm works efficiently even if it

used with a very large number of processes. All the experiments are performed for uniprocessor

environment and the processes taken are CPU bound processes only. Here input process is

considered independent from each other and arrival time of each process taken is considered

zero. Time slice is assumed to be not more than the maximum burst time.

In this hand traced experiment, several input and output parameters are considered. The input

parameters consist of burst time, time quantum and number of processes. The output parameter

consists of average waiting time (awt), average turnaround time (att), and number of context

switch (cs).

3.2 Studied Algorithm

3.2.1 Dynamic Time Quantum RR scheduling

This scheduling algorithm, identify the impact on overall performance of batch MOS by Varying

quantum time over fixed time quantum round robin scheduling. The time quantum q may be

constant for long period of time or it may vary with process load [7]. If the time Q for one

complete round robin of all active processes is to be kept constant, then q can be computed

dynamically every Q seconds (or cycle) as:

q =Q/n

Here the relationship between the quantum q and number of processes n is linear i.e. the quantum

or time slice as inverse relationship with the number of jobs in the ready queue. Consequently,

whenever there are fewer jobs in the queue, jobs are privileged with larger quantum thereby

20

reducing the context switches. Inversely, whenever there are larger numbers of jobs, each job

will get small but optimal time slice maintaining the optimal result.

Subsequently,

(a) att = Σ(ft- at)/n

Where, att= average turnaround time

ft= finish time

at= arrival time

n= total number of jobs

(b) awt = Σ(tt- bt)/n

where, awt= average waiting time

tt= turnaround time

bt= burst time

(c) The scheduling algorithm runs in constant time known as O(1), regardless of number

of jobs in the system.

3.2.2 Modified Dynamic Time Quantum Round Robin (MDTRR) Scheduling

Algorithm

In Dynamic time quantum round robin scheduling, the value of Q may be constant in all

round while calculating quantum q. In modified algorithm, first of all the value of

quantum q is given fixed. After that we calculate the quantum q dynamically by using

modified formula as:

Quantum (q) ={
 q ∗

λ

f
 if f ≥ 0.0625

 4q if f ≤ 0.0625

21

Where, f= fraction of job finished in previous round

λ =0.25 (constant value)

Here, we assume the value of λ fixed which is 0.25 and then calculating the f which is

fraction of jobs finished in previous round. The value of f is calculated as:

f =number of jobs finished in previous round/total number of jobs in that round

After calculating f, we check the value of f with 0.0625. if f is greater than or equal to

6.25% then the value of quantum q is minimized but not less than four times which is

given by formula q= q* λ/f. In some condition, instead of decreasing it increases the

value to make the quantum optimum, and when value of f is less than 6.25% then the

value of quantum q is maximized but not more than four times which is given by formula

q= 4q and hence maintaining the optimal result.

3.3 Illustration

To demonstrate above mentioned algorithms(Dynamic time quantum round robin

scheduling and modified dynamic time quantum round robin scheduling), arrival time is

considered to be zero for the given processes P1, P2, P3, P4, P5 and corresponding burst

time are random number. Burst time of these processes(P1, P2, P3, P4, P5) are 69, 35, 51,

52 and51 respectively shown in table number 3.1 and table number 3.2 shows the

comparison result of DTRR and MDTRR. Gantt chart for each of these two algorithms is

shown in figure 3.1 and figure 3.2

Number of processes Burst time

P1

P2

P3

P4

P5

69

35

51

52

51

Table 3.1 Data in random order

22

First of all the value of Quantum 'Q' =100 and number of process 'n' is given. Here n=5.

DTRR

 20 20 25 100

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P3 P4 P5 P1

0 20 40 60 80 100 120 135 155 175 195 220 231 243 254 258

Figure 3.1: Gantt chart for DTRR

No of context switches = 14

Average waiting time = 132

Average turnaround time = 183

MDTRR

 20 80

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

0 20 40 60 80 100 149 164 195 227 258

Figure 3.2: Gantt chart for MDTRR

Number of context switches = 9

Average waiting time = 107

Average turnaround time = 158

Accumulated View of Scheduler Algorithms

Algorithms QT CS Awt Atat

DTRR 20,20,25,100 14 132 183

MDTRR 20,80 9 107 158

Table 3.2: Comparison Table DTRR and MDTRR

23

 CHAPTER FOUR

 IMPLEMENTATION

4.1 Tools Used

4.1.1 Programming Language

C# programming language in .NET framework is used for simulating the DTRR and

MDTRR algorithms. .NET is designed to provide an environment within which we can

develop almost any application to run on windows, whereas C# is a programming

language designed specially to work with the .NET framework. This simulator is

developed on Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz 2.50GHz, 4GB RAM,

window 8.1, 64-bit OS.

4.2 Data Structure Used

4.2.1 List

A list will be used to implement both the scheduling algorithms. Each node of list will

contain different necessary data related to process. Lists are a way to store many different

values under a single variable. Every item in this list is numbered with an index. By

calling the list and passing it a particular index value, a programmer can pull out any item

placed into it. The advantage of using list is that; linked list will usually take more

memory than list because it needs space for all those next/previous references and the

data will probably have less locality of reference, as each node is a separate object. The

structure of list is illustrated in figure below:

Figure 4.1: Structure of list

24

4.3 Algorithms and Flowcharts taken in this dissertation

4.3.1 Pseudo code for DTRR Scheduling Algorithm

1. I/P: Process (Pn), burst time(bt), arrival time(at), ready queue(rq)

 O/P: context switch (cs), average waiting time (awt), average turnaround time (att)

2. Initialize: ready queue=0, cs=0, awt=0, att=0, N= number of jobs in ready queue at a

particular time, n= total number of jobs

3. for each process i

rbt[i]= bt[i]

4. Initialize the value of Quantum Q

5. Read Process in Ready Queue

6. While (ready queue!= EMP)

 6.1 q= Q/N

 6.2 for each process i

 If (rbt[i]<=q)

 Record finish time ft[i]

 Remove job from ready queue

 N--

 Else

 rbt[i]= rbt[i]-q

 cs++

6.3 end for

25

7. end while

8. for each process i

 Calculate tat[i]=ft[i]-at[i]

 Calculate wt[i]= tat[i]-bt[i]

9. calculate Awt and Att

 Awt= ∑wt[i]/n

 Att= ∑tat[i]/n

10. stop and exit

26

4.3.2 Flowchart of DTRR Scheduling Algorithm

 F T

 T F

 Figure 4.2: Flowchart of DTRR

Start

Pn ,bt,at, rq

Rq=0, cs=0, awt=0, att=0

For each process pi

Rbt[i]=bt[i]

While rq!=EMP

Calculate ATT,AWT,CS

Rbt[i]=rbt[i]-q

CS++
Record ft[i]
N--

q= Q/N

If rbt[i]<=q

For each process pi

Stop

Output CS,AWT,ATT

27

4.3.3 Pseudo code for MDTRR Scheduling Algorithm

1. I/P: Process (Pn), burst time (bt), arrival time(at), ready queue(rq)

 O/P: context switch (cs), average waiting time (awt), average turnaround time (att)

2. Initialize: ready queue=0, cs=0, awt=0, att=0, λ= 0.25

3. for each process i

rbt[i]= bt[i]

4. While (ready queue!= EMP)

 4.1 for each process i

If (rbt[i]<=q)

 Record finish time ft[i]

 Remove job from ready queue

 N--

 Else

 rbt[i]= rbt[i]-q

 cs++

 4.2 end for

 4.3 calculate f= jobs finished in previous round/ total number of jobs in that round

 4.4 if (f>= 0.0625)

 q = q*λ/f

 else

28

 q = 4q

5.end while

6. for each process i

 Calculate tat[i]=ft[i]-at[i]

 Calculate wt[i]= tat[i]-bt[i]

7. calculate Awt and Att

 Awt= ∑wt[i]/n

 Att= ∑tat[i]/n

8. stop and exit

29

4.3.4 Flowchart of MDTRR Scheduling Algorithm

 F

 T

 T F

 T F

 Figure 4.3: Flowchart of MDTRR

Start

Pn, bt, At, rq

Rq=0, cs=0, awt=0, att=0, λ=0.25

For each process pi

Rbt[i]=bt[i]

While rq!=EMP

Calculate f
Rbt[i] =rbt[i]-q
CS++

Record ft[i]

N--

Assign value of q

If rbt[i]<=q

For each process pi

Stop

If f>=0.0625
q= q*λ/f

q=4q

Calculate AWT, ATT, CS

30

 CHAPTER FIVE

 DATA COLLECTION AND ANALYSIS

5.1 Test Case Design

To evaluate the algorithms taken in this dissertation, three different test cases are designed, in

which each test case design is again categorized into three different cases such that the number of

processes in each case is same but with different burst time ranges. In this way, the burst time

range of each test case design as low, medium and high. Finally the algorithms taken are

evaluated with three different test case design but taking the same parameters.

5.1.1 Test Case 1:

In this test case input number of processes are varies from 20 to 200 with interval size 20. Burst

time of each process is generated using random number generator and the range of the burst time

of these processes is taken in between 25 to 200 in data set 1, 200 to 500 in data set 2 and 500 to

1000 in data set 3.

5.1.2 Test Case 2:

In this test case input number of processes are varies from 50 to 500 with interval size 50. Burst

time of each process is generated using random number generator and the range of the burst time

of these processes is taken in between 200 to 500 in data set 1, 500 to 700 in data set 2 and 700

to 1000 in data set 3.

5.1.3 Test Case 3:

In this test case input number of processes are varies from 100 to 1000 with interval size 100.

Burst time of each process is generated using random generator and the range of the burst time of

these processes is taken in between 200 to 500 in data set 1, 500 to 700 in data set 2 and 700 to

1000 in data set 3.

Here, in all above three cases, the value of Q can be selected as: Q= N*10

31

5.2 Data Collection and Analysis

5.2.1 For Test case 1:

Table 5.1Input processes are taken in 20 to 200 and their burst time ranges in between (25 to

200)

Table 5.2 Input processes are taken in 20 to 200 and their burst time range in between (200 to

500)

No of
process

 DTRR MDTRR

 AWT ATT CS AWT ATT CS

20 1676 1801 212 1619 1744 73

40 3380 3499 412 3151 3270 131

60 4301 4408 535 4104 4212 238

80 6195 6309 763 5808 5919 302

100 8994 9117 1078 8574 8697 341

120 10236 10355 1226 9895 10014 407

140 10210 10320 1255 10177 10287 561

160 12246 12357 1495 11860 11971 619

180 13770 13879 1678 13108 13217 583

200 14918 15027 1838 14494 14604 781

No of
process

 DTRR MDTRR

 AWT ATT CS AWT ATT CS

20 5572 5917 622 5248 5593 79

40 11513 11867 1258 10491 10845 157

60 18007 18365 1943 16431 16790 238

80 22557 22899 2436 20733 21074 317

100 29799 30158 3204 2681 27179 396

120 35549 35901 3797 32960 33312 476

140 42322 42682 4530 38334 38693 556

160 47375 47712 5061 42316 42670 631

180 51525 51868 5514 46892 47235 711

200 59397 59752 6321 54102 54456 795

32

No of
process

 DTRR MDTRR

 AWT ATT CS AWT ATT CS

20 13913 14716 1509 11906 12709 86

40 25725 26472 2725 20311 21058 169

60 25386 26133 2695 21372 22120 172

80 52588 53347 5511 42693 43452 346

100 65268 66009 6811 52946 53687 426

120 77385 78125 8047 62727 63467 513

140 92787 93543 9635 77921 78676 605

160 104808 105558 10866 88623 89373 688

180 118605 119352 12278 97859 98607 772

200 129607 130348 13453 105712 106453 854

Table 5.3 Input processes are taken in 20 to 200 and their burst time range in between (500 to

1000)

Figure 5.1: Graph for Table 5.1

0

2000

4000

6000

8000

10000

12000

14000

16000

20 40 60 80 100 120 140 160 180 200

A
W

T
,

A
T

T
,

C
S

No. of processes

AWT DTRR

AWT MDTRR

ATT DTRR

ATT MDTRR

CS DTRR

CSMDTRR

33

Figure 5.2: Graph for Table 5.2

Figure 5.3: Graph for Table 5.3

0

10000

20000

30000

40000

50000

60000

70000

20 40 60 80 100 120 140 160 180 200

A
W

T
,

A
T

T
,

C
S

No. of processes

AWT DTRR

AWT MDTRR

ATT DTRR

ATT MDTRR

CS DTRR

CSM

0

20000

40000

60000

80000

100000

120000

140000

20 40 60 80 100 120 140 160 180 200

A
W

T
,

A
T

T
,

C
S

No. of processes

AWT DTRR

AWT MDTRR

ATT DTRR

ATT MDTRR

CS DTRR

CS MDTRR

34

If we look at case 1; in figure 5.1, the average waiting time of MDTRR is 3.52% to 4.89% lower

and average turnaround time is 5.79% to 10.96% lower with respect to DTRR; in figure 5.2, the

average waiting time of MDTRR is 6.17% to 11.11% lower and average turnaround time is

5.79% to 10.96% lower with respect to DTRR and in figure 5.3, , the average waiting time of

MDTRR is 16.85% to 23.27% lower and average turnaround time is 15.79% to 22.44% lower

with respect to DTRR. In all three figures, the context switch decreases drastically. In figure 5.3,

AWT and ATT are decreased by greater percentage than in figure 5.1 and 5.2. It is only because

of greater burst range value.

5.2.2 For Test Case 2:

No of
process

 DTRR MDTRR

 AWT ATT CS AWT ATT CS

50 13682 14019 1487 12599 12935 196

100 28725 29067 3083 26900 27242 398

150 45071 45428 4816 40342 40698 595

200 57987 58336 6190 53391 53740 791

250 75842 76200 8059 68654 69012 993

300 88173 88523 9389 81104 81453 1194

350 102620 102969 10941 93617 93966 1388

400 115144 115489 12233 105912 106257 1582

450 131900 132249 14033 121392 121741 1788

500 144874 145220 15387 133472 133819 1979

Table 5.4: Input processes are taken in 50 to 500 and their burst time range in between(200 to

500)

35

No of
process

 DTRR MDTRR

 AWT ATT CS AWT ATT CS

50 27127 27717 2855 19287 19877 199

100 56096 56701 5829 39979 40584 399

150 83798 84400 8684 59786 60388 599

200 111258 111853 11515 79316 79911 799

250 139324 139922 14409 99255 99853 999

300 168934 169536 17438 120251 120853 1199

350 196175 196776 20276 139674 140275 1399

400 223971 224570 23131 159324 159923 1599

450 252868 253469 26119 180371 180972 1799

500 278946 279542 28804 198543 199139 1999

Table 5.5: Input processes are taken in 50 to 500 and their burst time range in between(500 to

700)

No of
process

 DTRR MDTRR

 AWT ATT CS AWT ATT CS

50 38574 39421 4030 31492 32339 222

100 80153 81015 8288 69097 69959 456

150 118362 119211 12198 99191 100040 675

200 158782 159634 16324 133072 133925 900

250 200671 201528 20623 170395 171251 1136

300 239438 240294 24585 202967 203822 1361

350 276238 277086 28333 228696 229544 1569

400 318208 319059 32644 270235 271086 1800

450 355924 356770 36457 302197 303043 2026

500 397414 398267 40733 337263 338116 2254

Table 5.6: Input processes are taken in 50 to 500 and their burst time range in between(700 to

1000)

36

Figure 5.4: Graph for Table 5.4

Figure 5.5: Graph for Table 5.5

0

20000

40000

60000

80000

100000

120000

140000

160000

50 100 150 200 250 300 350 400 450 500

A
W

T
,

A
T

T
,

C
S

No. of processes

AWT DTRR

AWT MDTRR

ATT DTRR

ATT MDTRR

CS DTRR

CS MDTRR

0

50000

100000

150000

200000

250000

300000

50 100 150 200 250 300 350 400 450 500

A
W

T
,

A
T

T
,

C
S

No. of processes

AWT DTRR

AWT MDTRR

ATT DTRR

ATT MDTRR

CS DTRR

CS MDTRR

37

Figure 5.6: Graph for Table 5.6

If we look at case 2; in figure 5.4, the average waiting time of MDTRR is 8.54% to 10.46%

lower and average turnaround time is 8.38% to 10.41% lower with respect to DTRR; in figure

5.5, the average waiting time of MDTRR is 40.36% to 40.64% lower and average turnaround

time is 39.44% to 40.12% lower with respect to DTRR and in figure 5.6, the average waiting

time of MDTRR is 17.76% to 22.48% lower and average turnaround time is 17.67% to 21.89%

lower with respect to DTRR. In all three figures, the context switch decreases drastically. Here,

in figure 5.5, AWT and ATT is decreased by greater percentage than in figure 5.4 and 5.6

because in some condition, the modified algorithm q*λ/f doesn’t decrease the value. Instead of

decreasing it increases the value to make the quantum optimum and gives better result.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

50 100 150 200 250 300 350 400 450 500

A
W

T,
 A

TT
, C

S

No. of processes

AWT DTRR

AWT MDTRR

ATT DTRR

ATT MDTRR

CS DTRR

CS MDTRR

38

5.2.3 For Test Case 3

No of

process

 DTRR MDTRR

AWT ATT CS AWT ATT CS

100 29056 29406 3116 25962 26312 393

200 60819 61178 6490 54925 55285 795

300 92515 92879 9856 83794 84159 1196

400 113505 113844 12099 104765 105104 1580

500 146038 146385 15530 134188 134535 1981

600 176511 176860 18727 161296 161646 2378

700 206805 207156 21931 188396 188747 2776

800 241712 242069 25690 218016 218373 3178

900 264964 265314 28151 242224 242573 3570

1000 297116 297468 31582 270444 270796 3969

Table 5.7: Input processes are taken in 100 to 1000 and their burst time range in between(200 to

500)

No of

process

 DTRR MDTRR

AWT ATT CS AWT ATT CS

100 54262 54847 5647 38875 39461 399

200 111330 111929 11541 79363 79962 799

300 168018 168617 17366 119786 120385 1199

400 224822 225424 23219 159620 160222 1599

500 282520 283132 29166 200427 201031 1999

600 334586 335184 34483 238252 238849 2399

700 394642 395245 40675 280411 281014 2799

800 448077 448676 46210 318903 319501 3199

900 502187 502784 51674 358450 359047 3599

1000 559037 559635 57671 398772 399370 3999

Table 5.8: Input processes are taken in 100 to 1000 and their burst time range in between(500 to

700)

39

No of

process

 DTRR MDTRR

AWT ATT CS AWT ATT CS

100 78636 79486 8122 66794 67644 452

200 158387 159237 16277 132686 133536 900

300 237754 238602 24405 195665 196512 1343

400 314072 314915 32201 264159 265002 1792

500 395501 396350 40556 327889 328738 2248

600 475573 476421 48694 396040 396888 2697

700 552909 553756 56636 462785 463631 3135

800 635044 635895 65049 536453 537304 3609

900 715664 716514 73198 600950 601800 4043

1000 792793 793643 81201 661414 662264 4504

Table 5.9: Input processes are taken in 100 to 1000 and their burst time range in between(700 to

1000)

Figure 5.7: Graph for Table 5.7

0

50000

100000

150000

200000

250000

300000

350000

100 200 300 400 500 600 700 800 900 1000

A
W

T,
 A

TT
, C

S

No. of processes

AWT DTRR

AWT MDTRR

ATT DTRR

ATT MDTRR

CS DTRR

CS MDTRR

40

Figure 5.8: Graph for Table 5.8

Figure 5.9: Graph for Table 5.9

0

100000

200000

300000

400000

500000

600000

100 200 300 400 500 600 700 800 900 1000

A
W

T,
 A

TT
, C

S

No. of processes

AWT DTRR

AWT MDTRR

ATT DTRR

ATT MDTRR

CS DTRR

CS MDTRR

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

100 200 300 400 500 600 700 800 900 1000

A
W

T
,

A
T

T
,

C
S

No. of processes

AWT DTRR

AWT MDTRR

ATT DTRR

ATT MDTRR

CS DTRR

CS MDTRR

41

If we look at case 3; in figure 5.7, the average waiting time of MDTRR is 8.83% to 11.91%

lower and average turnaround time is 8.80% to 11.75% lower with respect to DTRR; in figure

5.8, the average waiting time of MDTRR is 39.58% to 40.96% lower and average turnaround

time is 38.99% to 40.83% lower with respect to DTRR and in figure 5.9, , the average waiting

time of MDTRR is 17.72% to 20.62% lower and average turnaround time is 17.50% to 20.56%

lower with respect to DTRR. In all three figures, the context switch decreases drastically. Here

also, in figure 5.8, AWT and ATT are decreased by greater percentage than in figure 5.7 and 5.9,

because in some condition modified algorithm q=q* λ /f increases the value instead of decreasing

for better result.

 More importantly, in all three cases, the percentage value increases or decreases mainly due to

the selection process of Q.

42

 CHAPTER SIX

 CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

Several attempts have been made to improve the round robin scheduling with fixed quantum. In

basic version of round robin scheduling algorithm, if the size of time quanta is decreased, the

number of context switches is increased. The relation between number of context switch and size

of time quanta is inversely proportional to each other. Now when the time quanta for RR is

calculated dynamically, then the calculation of dynamic quanta can be done with various

measures such as mean, median, mode, quartile, percentage requirement, etc. DTRR uses the

time Q for one complete round of all active processes is to keep constant. From Q and number of

jobs ‘n’, we calculate quantum q as q= Q/n. Here the relation between q and n is linear. i.e.

quantum q as inverse relation with the number of jobs in ready queue. This dissertation work

modifies the dynamic quantum selection strategy of DTRR policy as below:

Quantum(q) ={
 q ∗

λ

f
 if f ≥ 0.0625

 4q if f ≤ 0.0625

This equation is mainly focused on fraction of jobs finished in previous round of RR scheduling

algorithm. From this it is clear that quantum value used in MDTRR is optimum than the quantum

value used in DTRR.

The performance of DTRR is compared with MDTRR; it is found that average waiting time of

MDTRR is 3.52% to 40.96% less than DTRR scheduler and average turnaround time is 4.89% to

40.83% less than DTRR scheduler. Besides this, MDTRR uses optimum quantum size than

DTRR policy and at the same time number of context switches decreases drastically in MDTRR

policy. This is another great achievement of this dissertation work.

Hence the dissertation is successful to experimentally verify that MDTRR policy is far superior

than DTRR policy.

43

6.2 Recommendation

Now the further work may be to investigate the other statistics to calculate the size of dynamic

quanta for round robin scheduling such as mean, mode, quartile, etc and possible modification on

these statistics to produce better size of time quanta in which the scheduling algorithm performs

better with respect to response time, waiting time, turnaround time and number of context

switch. Another interesting further work is to make quantum dynamic on the basis of λ and f

value. Idea is to increase the quantum size if there is some other value of λ and f.

44

References:

[1] Behera, H. S., Mohanty, R., Bhoi, S. K., Sahu, S., “Comparative performance analysis of

Multi- Dynamic Time Quantum Round Robin algorithm with arrival time”, Indian Journal of

Science and Engineering, 2(2), 262-271, 2011

[2] Behera, H. S., Mohanty, R., Nayak, D., “A New Proposed Dynamic Quantum with Re-

Adjusted Round Robin scheduling algorithm and its performance analysis”, International Journal

of computer Applications(0975-8887) volume 5-No.5, August 2010

[3]Behera, H. S., Panda, Jajneseni, Thakur, Dipanwita and SahooSubasini, “A New proposed

Two Processor Based CPU Scheduling Algorithm with Varying Time Quantum for Real Time

Systems”, Journal of global research in computer science(JGRCS), ISSN-2229-371 X, volume2,

No.4, April 2011

[4] C. Yaashuwanth, and R. Ramesh, “Intelligent Time Slice for Round Robin in Real Time

Operating Systems”, IJRRAS, 2(2), 126-131, 2010

[5] Dhal, Shwetasonali, Pallabbenerjee, “Comparative performance analysis of Average Max

Round Robin Scheduling algorithm using Static Time Quantum”, IJITEE, ISSN-2278-3075,

volume-1, Issue-3, August 2012

[6] Ghishing, Ashim,”Analysis of the Varying Time Quantum Round Robin Scheduling”, Master

degree in Computer Science and Information Technology thesis; CDCSIT, TU

[7] Jason Neigh, Chris Waill, and HuaZhong, “Virtual-time round robin: An O(1) proportional

share scheduler”, In Proceeding of the 2001 USENIX Annual Technical Conference, June, 2001

[8]Mostafa, S. M., Rida, S. Z. and Hamad, S. H. “Finding time quantum of round robin CPU

scheduling in general computing systems using integer programming”, International Journal of

Research and Review in Applied Science. 5(1), 64-71, 2010

[9] Nayak, D., Malla, S.K. and Debadarshini, D., “Improved Round Robin Scheduling using

Dynamic Time Quantum”, International Journal of Computer Applications, Volume-38, No.5,

2012

45

[10] Noon, A., Kalakech, A. And Kadry, S., “A New Round Robin Based Scheduling algorithm

for operating systems: Dynamic Quantum time Mean Average”, International Journal of

Computer Science Issues. 8(3), 224-229, 2011. Issues-8(3), 224-229, 2011

[11] Panda, Sanjaya Kumar, Bhoi, Sourav Kumar, “An Effective Round Robin Algorithm using

Min Max Dispersion Measure”, International Journal of Advanced Research in computer science

and software engineering, Volume-2, Issue-11, November, 2012

[12] Rami, J., Matarneh, “Self-Adjusted Time Quantum in Round Robin Algorithm Depending

on Burst Time of the Now Running Processes”, Department of Management Information

Systems, American Journal of Applied Sciences 6(10): 1831-1837, ISSN-1546-9239, 2009

[13] ShahramSaeidi, HakimehAlemiBaktash, “Determining the Optimum Time Quantum Value

in Round Robin Process Scheduling Method ”, Information Technology of Computer Science,

volume-10, 67-73, 2012

[14] Silberschatz, A., Galvin, P. B., and Gagne, G., Operating Systems Concepts, 7th Edition,

John Wiley and Sons, USA

[15] Stalling, W., Operating Systems Internals and Design Principles, 5th Edition

[16] Tanenbaun, A. S., Modern operating Systems, 3rd Edition, Prentice Hall, ISBN: 13:

9780136006633, PP:1104, 2008

[17]Varma, P. Surendra, “A Best Possible Time Quantum for Improving Shortest Remaining

Burst Round Robin(SRBRR) Algorithm”, International Journal of Computer Science and

Engineering(IJCSE).

