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   CHAPTER- ONE 

                                                   INTRODUCTION 

1.1 Introduction 

The performance and efficiency of multitasking operating systems mainly depends upon the use 

of CPU scheduling algorithm. In time shared system, round robin (RR) scheduling gives optimal 

solution because due to its fairness and starvation free nature towards the processes, which is 

achieved by using the time quantum. As time quantum is static, it causes less context switching 

in case of high time quantum and high context switches in case of less time quantum. So, the 

performance of the system solely depends upon choice of the optimal time quantum which is 

dynamic in nature [6]. Overall performance of the system depends on the choice of an optimum 

time quantum, so the context switching can be reduced. Increasing context switches leads to high 

overhead and degrades the system performance, which results into high average waiting time and 

high average turnaround time. There are varieties of techniques to make quantum 

dynamic[1,2,5,6,9,10,11,12,17]. One of the widely researched approach is "Dynamic time 

quantum round robin scheduling algorithm. The idea of this approach is to make the time 

quantum dynamic based on time Q. The time Q for one complete round robin of all active 

process is to be kept constant, then quantum q can be computed dynamically after every Q 

seconds (or cycle) to reduce the mentioned performance parameters. 

1.2 Motivation 

Modern operating systems become more complex they have evolved from a single task to a 

multitasking environment in which process run in a concurrent manner. CPU scheduling is an 

essential operating system task; therefore its scheduling is central to operating system design. 

When there is more than one process in the ready queue waiting its turn to be assigned to the 

CPU, the operating system much decide through the scheduler the order of execution [16]. 

Allocating CPU to a process requires careful attention to assures fairness and avoid process 

starvation for CPU. Scheduling decision try to minimize the following: average turnaround time, 

average waiting time, and number of context switches. The round robin algorithm is the main 

concern of this research which is the oldest, simplest, fairest and most widely used scheduling 

algorithm, designed especially for time-sharing systems. A small unit of time, called time slices 
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or quantum is defined. All runnable processes are kept in a circular queue. The CPU scheduler 

goes around this queue, allocating the CPU to each process for a time interval of one quantum. 

New processes are added to the tail of the queue. The CPU scheduler picks the first process from 

the queue, sets a timer to interrupt after one quantum and dispatches the process. If the process is 

still running at the end of the quantum, the CPU is preempted and the process is added to the tail 

of the queue [14]. If the process finishes before the end of the quantum, the process itself 

releases the CPU voluntarily. In either case, the CPU scheduler assigns the CPU to the next 

process in the ready queue. The performance of the RR algorithm depends heavily on the size of 

the time quantum [6, 12].At one extreme, if the time quantum is extremely large, it results into 

poor response time and approximates FCFS. On the other hand, if the time quantum is extremely 

small this causes too many context switches and lower the CPU efficiency. RR algorithm gives 

better responsiveness but worse average turnaround time and waiting time [10, 12,13,17]. A lot 

of attempts were developed to find a solution for the high turnaround time, high waiting time and 

the overhead of the extra context switches in round robin, regardless of the different 

methodologies used in these attempts; however all of these rely on the fixed time quantum. In 

last few years different approaches are used to increase the performance of round robin. 

SARR[12], DQRR[2], IRR[9], and TPBCS[3] based on dynamic time quantum was designed to 

solve all critical previously mentioned problems in a practical, simple and applicable manner.  

1.2.1 Dynamic Quantum Approaches 

If the time Q for one complete round robin of all active processes is to keep constant, then q 

(time quantum for a process) can be computed dynamically as: 

q = Q/n 

Here the relation between the quantum q and number of processes n is linear. This shows that the 

quantum or time slice as inverse relation with the number of jobs in ready queue. 

Another method of achieving dynamic quantum is based on median [4]. This method calculates 

dynamic quantum by using the formula. 
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Median(M)={
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Where, M= Median 

Y= number located in the middle of a group of numbers arranged in ascending order 

n = number of processes 

Then, q = (highest Bt+ median (M))/2 

Where, Bt =burst time 

q = quantum  

The optimal time quantum is assigned to each process and is recalculated taking the remaining 

burst time in account after each cycle. This procedure goes on until the ready queue is empty. 

As already stated large time quantum causes, results into poor response time and small quantum 

results into large context switch overhead and hence gives poor CPU efficiency. Thus one main 

goal of RR class schedulers is to keep the small quantum size and also minimize the number of 

context switches, which are conflicting requirement. This means increasing quantum size 

normally decreases context switches and vice versa. This dissertation work will propose an 

approach of making quantum dynamic which will neither make time slice fixed for one quantum 

nor will be based on burst time. Proposed approach will make quantum dynamic based on the 

fraction of jobs finished in previous round of round robin scheduling. 

1.3 Performance metrics 

Performance metrics refers the criteria for measuring the performance of any system. In 

the case of empirical evaluation of modified dynamic time quantum round robin 

scheduling algorithm context switch, average waiting time and average turnaround time 

are the key terms for measuring the performance. Lower the context switch, average 

waiting time and average turnaround time exhibits higher performance. 
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(a) Context switch 

The number of times the CPU switches from one process to another is called the context 

switches. If context switches decreases, then throughput will increases. 

(b) Turnaround time 

This is the time difference of the arrival time and the finish time of the process. It is 

generally the sum of the waiting time and the service time of the process. If average 

turnaround time decreases, then throughput will increase. 

att = Σ(ft- at)/n 

where, att= average turnaround time 

ft= finish time 

at= arrival time 

n= total number of jobs 

(c) Waiting time 

This is the amount of time that a process spends waiting on the ready queue. The waiting 

time should be kept minimum. Waiting time and throughput are directly dependent on 

each other. If average waiting time decreases, then it is clear that throughput will be 

increased. 

awt = Σ(tt- bt)/n 

Where, awt= average waiting time 

tt= turnaround time 

bt= burst time 

 

(d) Average response time 

Time from the submission of a request until the first response is produce. 
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So, a good scheduling algorithm for real time and time sharing system must possess following 

1. Minimize context switch 

2. Maximize CPU utilization 

3. Minimize average turnaround time 

4. Minimize average waiting time 

5. Minimize response time 

1.4 Problem statement 

The performance of the round robin algorithm depends heavily on the size of the time quantum. 

If the time quantum is large, the round robin simply becomes FCFS and, if time quantum is 

small, there are so many preemptions of the CPU. Many context switches decrease the utilization 

of CPU because, in case of large number of context switch, CPU is busy with no fruitful work. 

Many attempts are done previously to make the quantum dynamic. This dissertation work will 

find answer to the question "What happens if we make the quantum dynamic by using: the 

fraction of jobs finished in previous round" as shown below: 

Quantum(q)  ={
          q ∗  

λ

f
   if f ≥ 0.0625

 4q if f ≤ 0.0625

 

Where, f= fraction of job finished in previous round 

λ =0.25 (constant value) 

1.5 Objective 

The main objective of this dissertation work is:  

(a). Experimental Evaluation of Modified Dynamic Time Quantum Round Robin Scheduling  

(b). To compare Dynamic time quantum round robin scheduling and Modified dynamic time 

quantum round robin scheduling in terms of context switch, average waiting time and average 

turnaround time. 
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1.6 Thesis Organization 

Introduction part of this dissertation work focuses on CPU scheduling algorithms and related 

basic terminologies which are already mentioned along with introduction to dynamic time 

quantum approach. This chapter also clarifies motivation and objectives of dissertation work. 

Chapter two consists of background and literature review. In background part include concept of 

multiprogramming, process model, CPU scheduler, categories of scheduling algorithms, stage of 

scheduler and static and dynamic RR scheduling algorithm are discussed. Literature review 

includes details of several dynamic round robin scheduling algorithms with their categories. 

Chapter three includes algorithms studied with their illustrations. Chapter four describes the 

implementation details which are used to implement this work such as tools, programming 

language, interface, data structure, algorithms and flowcharts. Chapter five explains the 

experimental analysis with three different cases. Chapter six concludes the whole dissertation 

work and recommends for further research.  
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CHAPTER TWO 

BACKGROUND AND LITERATURE REVIEW 

2.1 Background 

An operating system is system software which makes an interface between user and hardware. 

Operating system provides a platform in which user can interact with hardware so that user can 

handle the system in an efficient manner [16]. Modern operating system and time sharing system 

are more complex, they have evolved from a single task to multitasking environment in which 

processes run in synchronized manner. In multiprocessing and multitasking environment there 

are several processes ready to run at the same time, the system must choose among them and 

assigned to run on the available CPUs is called CPU scheduling. In any multiprogramming 

system, the CPU switches from process to process quickly, running each for tens or hundreds of 

milliseconds. While strictly speaking, at any instance of time, the CPU is running only one 

process, in the course of one second, it may work on several of them, giving the illusion of 

parallelism called pseudo parallelism. Pseudo parallelism is a concept that contrasts with the true 

hardware parallelism of multiprocessor system (which has two or more CPUs sharing the 

physical memory). Keeping track of multiple, parallel activities is hard for people to do. 

Therefore, operating system designer over the years have involved a conceptual model 

(sequential processes) that make parallelism easier to deal with. 

2.1.1 Multiprogramming 

To overcome the problem of underutilization of CPU and main memory, the multiprogramming 

was introduced. The multiprogramming is interleaved execution of multiple jobs by the same 

computer. In multiprogramming system, when one program is waiting for I/O transfer; there is 

another program ready to utilize the CPU. So it is possible for several jobs to share the time of 

the CPU. But it is important to note that multiprogramming is not defined to be the execution of 

jobs at the same instance of time. Rather it does mean that there are a number of jobs available to 

the CPU (placed in main memory) and a portion of one is executed then a segment of another 

and so on. A simple process of multiprogramming is shown in figure below: 
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                    Figure 2.1: Memory layout for a multiprogramming system 

As shown in figure, at the particular situation, job A is not utilizing the CPU time because it is 

busy in I/O operations. Hence the CPU becomes busy to execute the job B. Another job C is 

waiting for the CPU for getting its execution time. So in this state the CPU will never be idle and 

utilizes maximum of its time. 

A program in execution is called a "process", "job" or a "task". The concurrent execution of 

programs improves the utilization of system resources and enhances the system throughput as 

compared to batch and serial processing. In this system, when a process requests some I/O to 

allocate; meanwhile the CPU time is assigned to another ready process. So here when a process 

is switched to an I/O operation, the CPU is not set idle. 

Multiprogramming is a common approach to resource management. The essential components of 

a single user operating system include a command processor, an input/output control system, a 

file system, and a transient area. A multiprogramming operating system builds on this base, 

subdividing the transient area to hold several independent programs and adding resource 

management routines to the operating system's basic functions. 
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2.1.2 The Process Model 

In this model, all runnable software on the computer, sometimes including the operating system, 

is organized into a number of sequential processes. A process is just an interface of an executing 

program, including the current values of the program counter, registers, and variables. 

Conceptually, each process has its own virtual CPU. In reality, of course, the real CPU switches 

back and forth from process to process[14,16], but to understand the system, it is much easier to 

think about a collection of processes running in (pseudo) parallel then to try to track of how the 

CPU switches from program to program. 

 

One program counter         four program counter                                                                                           

                          Process                                                               D 

                          Switch                                                                C 

                                                                                       Process  B 

                                                                                                     A 

                                                                                                                      Time             

Figure 2.2: Process execution in pseudo- parallelism  

2.1.3 Process State 

When a process is loaded in memory, it becomes ready to execute. When the scheduler selects 

the process for execution, the process enters the running state. In this state, the process can either 

be preempted which is the case when it exceeds the time quantum allocated or blocked while 

waiting for I/O data. When process is preempted then the operating system puts the process on 

the end of the ready queue of processes, but it remains ready to execute. If the process is blocked 

while waiting for I/O operation, it is, then, taken from ready queue and put on the I/O queue. 

When I/O channel completes the I/O operation for blocked process, the process reenters the 

ready state, where it waits for CPU. 

Thus, at any time each process may be in one of the following states: 

A  

 

B 

 

C 

D 

A B C D 
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New: The process being created 

Ready: In this state, the process is ready to run, and waiting for CPU. This is the only state from 

where process can enter the running state. 

Running: In this state, the process is using the CPU, and process can, either be preempted and 

put in the ready state, or may go to blocked state for I/O operation or may terminate with or 

without error. Simply, in this state instruction are being executed. 

Blocked/Waiting: In this state, the process is waiting for I/O operation. When channel completes 

its I/O operation, then, the process becomes ready and the operating system puts it on the back of 

the ready queue. 

Terminated: The process has finished execution. 

 

 

                       Figure 2.3: Process state diagram 

 

2.1.4 CPU and I/O-bound processes 

CPU-bound: CPU-bound means the rate at which process progresses is limited by the speed of 

the CPU. A task that performs calculations on a small set of numbers, for example multiplying 

small metrics, is likely to be CPU-bound. 
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I/O-bound: I/O-bound means the rate at which a process progresses is limited by the speed of 

the I/O subsystem. A task that processes data from disk, for example, counting the number of 

lines in a file is likely to be I/O-bound. 

2.1.5 CPU Scheduling Algorithm 

Scheduling is a fundamental operating system's function. CPU scheduling deals with the problem 

of deciding which of the process in the ready queue is to be selected for CPU. Thus, whenever 

the CPU becomes idle, the operating system must select from among the processes in memory 

that are ready to execute, and allocates the CPU to it. The part of the operating system which 

makes the choice as to which of the processes in the ready queue runs next is called scheduler, 

and the algorithm it uses is called scheduling algorithm. 

Many CPU scheduling algorithms are used such as First come first served scheduling (FCFS), 

shortest job first scheduling (SJF), priority scheduling, etc. All the above algorithms are non-

preemptive in nature and also not suitable for time sharing systems. In the first come first served 

(FCFS), the process that arrives first in the ready queue is allocated the CPU first. In SJF, when 

the CPU is available, it is assigned to the process that has the smallest next CPU burst. If two 

processes have same next CPU burst time, FCFS scheduling is used to break the tie. In priority 

scheduling algorithm, a priority is given to each process and the process having highest priority 

is executed first and so on. Round robin scheduling is similar to FCFS scheduling, but 

preemption is added to switch between processes. A small unit of time, called a time quantum or 

time slice is defined and the CPU scheduler goes around the ready queue, allocating the CPU to 

each process for a time interval of upto 1 time quantum. The round robin (RR) scheduling is one 

of the most popular scheduling algorithms found in computer systems today. In addition it is 

designed especially for time sharing systems and found in multiple processor system. 

2.1.6 Categories of scheduling algorithms 

Different scheduling algorithms are needed in different environment [16]. The objective of an 

operating system has different goals than the others. In other words, what the scheduler should 

optimize for is not the same in all systems, distinguishable three categories of operating systems, 

through some systems have mixtures of them, are: 
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(a)Batch systems 

Batch processing is the execution of a series of programs (jobs) on a computer without manual 

intervention. Jobs are set up so they can be run to completion without human interaction. All 

input parameters are predefined through scripts, command line segments, control files or job 

control language. Non preemptive algorithms or preemptive algorithms with long time periods 

for each process are often acceptable. This approach reduces process switches and thus improves 

performance. The batch algorithms are actually fairly general and often applicable to other 

situations as well, which makes them worth studying, even for people not involved in corporate 

mainframe computing. 

(b) Interactive system 

In an interactive environment with interactive user, preemption is essential to keep one process 

from hogging the CPU and denying service to others. Even if no process intentionally runs 

forever, one might shut out all the others indefinitely due to a program bug. Preemption is 

needed to prevent this behavior also falls into this category, since they normally serve multiple 

(remote) users. All of whom are in a big hurry. 

(c) Real time system 

Real time systems detect and control the event outside the system under the timing constraints. If 

these timing constraints must be made to avoid catastrophe, the system is hard real time system 

otherwise non hard (soft) real time system. Real time systems add an extra dimension to the 

system namely time which makes them even harder to develop than other system. The difference 

with interactive system is that real time system run only programs that are intended to further the 

application at hand. Interactive systems are general purpose and run arbitrary program that are 

not cooperative or even malicious. Real time systems can be categorized into two categories: soft 

and hard real time system. 
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2.1.7 Stages of scheduler 

A process migrates between the various scheduling queues throughout its lifetime. The operating 

system must select, for scheduling purposes, processes from this queue in some fashion. The 

selection process is carried out by the appropriate scheduler [10]. Operating system may feature 

up to three distinct types of scheduler [14]. 

(a)Long term scheduling 

Long- term scheduling performs a gate keeping function. It decides whether there is enough 

memory, or room, to allow new programs or jobs into the system. It limits the degree of multi-

tasking to prevent slow performance on current running programs. When a job gets past the long 

term scheduler, it is sent on the medium- term scheduler. 

(b)Medium term scheduling 

The medium term scheduling makes the decision to send a job on or to sideline it until a more 

important process is finished. Later, when the computer is less busy or has less important jobs, 

the medium term scheduler allows the suspended job to pass. 

(c)Short term scheduling 

The short term scheduler takes jobs from the "ready" line and gives them the green light to run. It 

decides which of them can have resources and for how long. The short term scheduler runs the 

highest priority jobs first and must make on the spot decisions. For example, when a running 

process is interrupted and may be changed, the short term scheduler must recalibrate and give the 

highest priority job the green light. 
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                    Figure 2.4: Queuing diagram for scheduling 

 

All computer resources are scheduled before in use. So, CPU scheduling algorithm determines 

how the CPU will be allocated to the process. CPU scheduling algorithms are two types, one is 

non preemptive and another is preemptive scheduling algorithms [16]. In non-preemptive 

scheduling, once the CPU is allocated to a process, the process keeps the CPU until it releases 

the CPU either by terminating or by switching to the waiting state. But, in preemptive 

scheduling, the CPU can release the processes even in the middle of the execution. A process is a 

program at the time of execution. A process is the unit of work in most systems. Such a system 

contains a collection of processes and it includes the program counter, the process stack, and the 

contents of process register, etc. Operating system processes execute system code, and user 

processes execute user code. All these processes may execute concurrently. 
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2.2 Literature Review 

The evolution of scheduling closely tracked the development of computers. The concept of 

scheduling is not new; Hennery L. Gantt, an American engineer and social scientist is credited 

with the development of the bar chart (Gantt chart) in 1917 round robin scheduling algorithm. 

There are many variations of the primitive round robin scheduling algorithms. 

2.2.1 FCFS scheduling algorithm 

First come first served scheduling algorithm is one of the simplest non- preemptive scheduling 

algorithms. In this algorithm, the process that requests the CPU first gets the CPU first. The 

implementation of this algorithm consists of a FIFO queue of the ready processes. The process 

enters the ready queue and continuously moves to the front of the ready queue. When it reaches 

to the front of the queue, it is allocated the processor when it becomes free. This algorithm, 

generally, has long average waiting time. The main advantage of this algorithm is that it is easy 

to understand, easy to program, and ensures fairness. 

2.2.2 Round robin scheduling algorithm 

It is one of the most popular algorithms found in computer systems today for multiprogramming 

and time sharing environment. It is similar to FCFS, but preemption is included to switch the 

CPU among the processes. A time duration called quantum is introduced in this algorithm, it is 

the time for which CPU is assigned a process. Thus, each process is assigned the same time 

interval (time quantum) and, if the process exceeds its time quantum, CPU is preempted and is 

given to another process on the ready queue. The round robin scheduler has the advantage of 

very little selection overhead as scheduling is done in constant time. Thus, scheduling time is 

simply O(1) because it has to put running process to the end of the ready queue and has to select 

the process from the front of the queue, which takes the constant amount of time. 

2.2.3 Weighted round robin (WRR) 

The standard round robin does not deal with different priorities of processes. All processes are 

equally executed. In weighted round robin, quantum is based on the priorities of the processes. A 

high prioritized process receives a larger quantum, and by this, receives execution time 
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proportional with its priority. This is a very common extension to the primitive round robin 

scheduler and will be referred to simply as the round robin scheduler. 

2.2.4 Virtual round robin (VRR) 

The virtual round robin scheduler described by S. William [15] is an extension of the standard 

round robin scheduler. The round robin scheduler treat I/O bound processes and CPU- bound 

processes equally, but an I/O bound process does not fully use its time- slice and thus gets an 

unfair treatment compared to CPU- bound processes. The virtual round robin scheduler 

addresses the unfair treatment of I/O- bound processes by allowing processes to maintain their 

quantum when blocked, the quantum might be variable, and placing the blocked process at the 

front of the ready queue when it returns to the ready queue. A process is only returned to the 

back of the queue when it has used its full quantum. Researchers have shown that this algorithm 

is better than the standard round robin scheduler in terms of fairness between I/O bound 

processes and CPU-bound processes. 

2.2.5 Virtual time round robin (VTRR) 

The weighted round robin and virtual round robin schedulers both use a variable quantum for 

processes, as priorities are implemented by changing the quantum given to each processes. In the 

virtual time round robin N. Jason and T. Andrew [7] use a fixed quantum, but change the 

frequency by which a process is executed in order to implement priorities. This has the 

advantage that response times are generally improved for high prioritized processes, while the 

selection overhead is still constant time.    

2.2.6 Self adjusted round robin scheduling algorithm (SARR) 

The static time quantum which is a limitation of RR was removed by taking dynamic time 

quantum using median method introduced in SARR[12] algorithm. SARR algorithm is based on 

a new approach called dynamic time quantum in which, the quantum is repeatedly adjusted 

according to the burst time of the running processes. 
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2.2.7 Dynamic quantum with re-adjusted round robin scheduling algorithm (DQRRR) 

The DQRRR [2] scheduling has improved the RR scheduling by improving the turnaround time, 

waiting time and number of context switches. Processes are arranged in job mix order in the 

ready queue and time quantum is found using median method. The CPU scheduler goes around 

the ready queue, allocating the CPU to each process for a time interval of up to 1 time quantum. 

Again the time quantum is calculated from the remaining burst time of the processes and so on. 

New processes are added to the tail of the ready queue. The CPU scheduler picks the first 

process from the ready queue and allocates the CPU to the process for 1 time quantum. DQRRR 

gives better result than classical RR scheduling algorithm. According to[2], from a list of N 

processes, the process which needs minimum CPU time is assigned the time quantum first and 

the highest from the list and so on till the Nth process. 

2.2.8 Improved round robin scheduling algorithm (IRR) 

In IRR [9] algorithm, the processes are arranged in ascending order according to their burst time 

present in the ready queue. Optimal time quantum is calculated by following the median method. 

The optimal time quantum is assigned to each process and is recalculated taking the remaining 

burst time in account after each cycle. This procedure goes on until the ready queue is empty. 

This is better than DQRRR and RR. Here all the processes are CPU bound. No processes are I/O 

bound. 

2.2.9 A New proposed two processor based CPU scheduling algorithm with  

Varying time quantum for real time system (TPBCS)   

TPBCS[3] algorithm finds the time quantum in an intelligent way which gives better result in a 

two- processor environment than dynamic quantum with readjusted round robin scheduling 

algorithm(DQRRR) and RR scheduling. Out of the two processors one is solely dedicated to 

execute CPU-intensive processes (CPU1) and the other CPU is solely dedicated to execute I/O-

intensive processes (CPU2). The algorithm is divided into part1 and part2. Part1 algorithm 

classifies a process and dispatches it into an appropriate ready queue. Part2 algorithm calculates 

the time quantum for both CPUs in a dynamic manner in each cycle of execution. The time 

quantum is repeatedly adjusted in every round, according to the remaining burst of the currently 
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running processes. We have taken an approach to get the optimal time quantum, where a 

percentage value <PCcpu, PCi/o> is assigned to each processes.  

2.2.10 Average max round robin algorithm (AMRR) 

P. Banerjee, S. S. Dhal, [5] developed a scheduling algorithm called Average Max Round Robin 

algorithm (AMRR). Here time quantum is the mean of the summation of the average and 

maximum burst time. 

2.2.11 Min-Max Round Robin (MMRR): 

S. K. Panda, S. K. Bhoi, [11] developed a scheduling algorithm called Min Max Round Robin 

(MMRR). In this approach time quantum is taken as the range of the CPU burst time of all the 

processes. The range of the processes is the difference between largest (maximum) and smallest 

(minimum) values. 

2.2.12 Comparative performance analysis of Multi-Dynamic time quantum round robin 

(MDTQRR) algorithm with arrival time 

Behera et al. [1] also proposed a method called Multi Dynamic Time Quantum Round Robin 

(MDTQRR) which dynamically calculated the value of the time quantum and leads to increase in 

system throughput. 

2.2.13 Finding Time Quantum of Round Robin CPU Scheduling in general computing 

systems using integer programming 

S. M. Mostafa, S. Z. Rida, Hamad, [8] finding time quantum of Round Robin CPU Scheduling 

algorithm in general computing system using integer programming. In this paper integer 

programming has been proposed to solve equations that decide a value that is neither too large 

nor too small such that every process has reasonable response time and the throughput of the 

system is not decreased due to unnecessary context switches. This method developed a changing 

time quantum in each round over the cyclic queue. This method is called as Changeable Time 

Quantum (CTQ) technique 
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CHAPTER THREE 

      ALGORITHMS STUDIED 

3.1 Algorithm Study Framework 

To describe the working of algorithms, Dynamic time quantum round robin scheduling and 

Modified dynamic time quantum RR scheduling through hand tracing, a set of random number 

of processes is taken (here five processes are taken). The algorithm works efficiently even if it 

used with a very large number of processes. All the experiments are performed for uniprocessor 

environment and the processes taken are CPU bound processes only. Here input process is 

considered independent from each other and arrival time of each process taken is considered 

zero. Time slice is assumed to be not more than the maximum burst time. 

In this hand traced experiment, several input and output parameters are considered. The input 

parameters consist of burst time, time quantum and number of processes. The output parameter 

consists of average waiting time (awt), average turnaround time (att), and number of context 

switch (cs). 

3.2 Studied Algorithm 

3.2.1 Dynamic Time Quantum RR scheduling 

This scheduling algorithm, identify the impact on overall performance of batch MOS by Varying 

quantum time over fixed time quantum round robin scheduling. The time quantum q may be 

constant for long period of time or it may vary with process load [7]. If the time Q for one 

complete round robin of all active processes is to be kept constant, then q can be computed 

dynamically every Q seconds (or cycle) as: 

q =Q/n 

Here the relationship between the quantum q and number of processes n is linear i.e. the quantum 

or time slice as inverse relationship with the number of jobs in the ready queue. Consequently, 

whenever there are fewer jobs in the queue, jobs are privileged with larger quantum thereby 
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reducing the context switches. Inversely, whenever there are larger numbers of jobs, each job 

will get small but optimal time slice maintaining the optimal result. 

Subsequently, 

(a) att = Σ(ft- at)/n 

Where, att= average turnaround time 

ft= finish time 

at= arrival time 

n= total number of jobs 

(b) awt = Σ(tt- bt)/n 

where, awt= average waiting time 

tt= turnaround time 

bt= burst time 

(c) The scheduling algorithm runs in constant time known as O(1), regardless of number 

of jobs in the system. 

3.2.2 Modified Dynamic Time Quantum Round Robin (MDTRR) Scheduling 

Algorithm 

In Dynamic time quantum round robin scheduling, the value of Q may be constant in all 

round while calculating quantum q. In modified algorithm, first of all the value of 

quantum q is given fixed. After that we calculate the quantum q dynamically by using 

modified formula as: 

Quantum (q) ={
          q ∗  

λ

f
   if f ≥ 0.0625

 4q if f ≤ 0.0625
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Where, f= fraction of job finished in previous round 

λ =0.25 (constant value) 

Here, we assume the value of λ fixed which is 0.25 and then calculating the f which is 

fraction of jobs finished in previous round. The value of f is calculated as: 

f =number of jobs finished in previous round/total number of jobs in that round 

After calculating f, we check the value of f with 0.0625. if f is greater than or equal to 

6.25% then the value of quantum q is minimized but not less than four times which is 

given by formula q= q* λ/f. In some condition, instead of decreasing it increases the 

value to make the quantum optimum, and when value of f is less than 6.25% then the 

value of quantum q is maximized but not more than four times which is given by formula 

q= 4q and hence maintaining the optimal result. 

3.3 Illustration 

To demonstrate above mentioned algorithms(Dynamic time quantum round robin 

scheduling and modified dynamic time quantum round robin scheduling), arrival time is 

considered to be zero for the given processes P1, P2, P3, P4, P5 and corresponding burst 

time are random number. Burst time of these processes(P1, P2, P3, P4, P5) are 69, 35, 51, 

52 and51 respectively shown in table number 3.1 and table number 3.2 shows the 

comparison result of  DTRR and MDTRR. Gantt chart for each of these two algorithms is 

shown in figure 3.1 and figure 3.2 

Number of processes Burst time 

P1 

P2 

P3 

P4 

P5 

 

69 

35 

51 

52 

51 

Table 3.1 Data in random order 
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First of all the value of Quantum 'Q' =100 and number of process 'n' is given. Here n=5. 

DTRR 

                   20                                   20                                            25                          100 

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P3 P4 P5 P1 

0     20       40      60       80      100    120     135     155     175    195     220   231    243   254    258            

Figure 3.1: Gantt chart for DTRR 

No of context switches = 14 

Average waiting time = 132 

Average turnaround time = 183 

MDTRR 

                20                                                                     80                      

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 

0          20             40             60           80          100          149        164           195         227      258       

Figure 3.2: Gantt chart for MDTRR 

Number of context switches = 9 

Average waiting time = 107 

Average turnaround time = 158 

Accumulated View of Scheduler Algorithms 

Algorithms QT CS Awt Atat 

DTRR 20,20,25,100 14 132 183 

MDTRR 20,80 9 107 158 

 

Table 3.2: Comparison Table DTRR and MDTRR 
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      CHAPTER FOUR 

    IMPLEMENTATION 

4.1 Tools Used 

4.1.1 Programming Language 

C# programming language in .NET framework is used for simulating the DTRR and 

MDTRR algorithms. .NET is designed to provide an environment within which we can 

develop almost any application to run on windows, whereas C# is a programming 

language designed specially to work with the .NET framework. This simulator is 

developed on Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz 2.50GHz, 4GB RAM, 

window 8.1, 64-bit OS. 

4.2 Data Structure Used 

4.2.1 List 

A list will be used to implement both the scheduling algorithms. Each node of list will 

contain different necessary data related to process. Lists are a way to store many different 

values under a single variable. Every item in this list is numbered with an index. By 

calling the list and passing it a particular index value, a programmer can pull out any item 

placed into it. The advantage of using list is that; linked list will usually take more 

memory than list because it needs space for all those next/previous references and the 

data will probably have less locality of reference, as each node is a separate object. The 

structure of list is illustrated in figure below: 

 

 

Figure 4.1: Structure of list 
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4.3 Algorithms and Flowcharts taken in this dissertation 

4.3.1 Pseudo code for DTRR Scheduling Algorithm 

1. I/P: Process (Pn), burst time(bt), arrival time(at), ready queue(rq) 

    O/P: context switch (cs), average waiting time (awt), average turnaround time (att) 

2. Initialize: ready queue=0, cs=0, awt=0, att=0, N= number of jobs in ready queue at a 

particular time, n= total number of jobs  

3. for each process i 

rbt[i]= bt[i] 

4. Initialize the value of Quantum Q 

5. Read Process in Ready Queue 

6. While (ready queue!= EMP) 

    6.1 q= Q/N 

    6.2 for each process i 

     If (rbt[i]<=q) 

           Record finish time ft[i] 

          Remove job from ready queue 

          N--  

       Else 

 rbt[i]= rbt[i]-q 

 cs++ 

6.3 end for 
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7. end while 

8. for each process i 

 Calculate tat[i]=ft[i]-at[i] 

 Calculate wt[i]= tat[i]-bt[i] 

9. calculate Awt and Att 

 Awt= ∑wt[i]/n 

 Att= ∑tat[i]/n 

10. stop and exit 
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4.3.2 Flowchart of DTRR Scheduling Algorithm 

 

 

 

 

 

 

                  

       F                                                         T                                                                            

 

                                                                                            

                          T                                                                                F 

                                                                                             

  

 

 

  Figure 4.2: Flowchart of DTRR 

 

 

 

 

Start 

Pn ,bt,at, rq 

Rq=0, cs=0, awt=0, att=0 

For each process pi 

Rbt[i]=bt[i] 

While rq!=EMP 

Calculate ATT,AWT,CS 

Rbt[i]=rbt[i]-q 

CS++ 
Record ft[i]  
N-- 

q= Q/N 

If rbt[i]<=q 

For each process pi 

 

Stop  

Output CS,AWT,ATT 
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4.3.3 Pseudo code for MDTRR Scheduling Algorithm 

1. I/P: Process (Pn), burst time (bt), arrival time(at), ready queue(rq) 

    O/P: context switch (cs), average waiting time (awt), average turnaround time (att) 

2. Initialize: ready queue=0, cs=0, awt=0, att=0, λ= 0.25 

3. for each process i 

rbt[i]= bt[i] 

4. While (ready queue!= EMP) 

    4.1 for each process i 

If (rbt[i]<=q) 

           Record finish time ft[i] 

          Remove job from ready queue 

          N--  

       Else 

 rbt[i]= rbt[i]-q 

 cs++ 

       4.2 end for 

       4.3 calculate f= jobs finished in previous round/ total number of jobs in that round 

       4.4 if (f>= 0.0625) 

  q = q*λ/f 

 else 
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  q = 4q 

5.end while 

6. for each process i 

 Calculate tat[i]=ft[i]-at[i] 

 Calculate wt[i]= tat[i]-bt[i] 

7. calculate Awt and Att 

 Awt= ∑wt[i]/n 

 Att= ∑tat[i]/n 

8. stop and exit 
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4.3.4 Flowchart of MDTRR Scheduling Algorithm 
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                                                 Figure 4.3: Flowchart of MDTRR 

 

 

 

 

Start 

Pn, bt, At, rq 

Rq=0, cs=0, awt=0, att=0, λ=0.25 

For each process pi 

Rbt[i]=bt[i] 

While rq!=EMP 

Calculate f  
Rbt[i] =rbt[i]-q 
CS++ 

Record ft[i]  

N-- 

Assign value of q 

If rbt[i]<=q 

For each process pi 

 

Stop  

If f>=0.0625 
q= q*λ/f 

q=4q 

Calculate AWT, ATT, CS 



30 
 

  CHAPTER FIVE 

                                    DATA COLLECTION AND ANALYSIS 

 

5.1 Test Case Design 

To evaluate the algorithms taken in this dissertation, three different test cases are designed, in 

which each test case design is again categorized into three different cases such that the number of 

processes in each case is same but with different burst time ranges. In this way, the burst time 

range of each test case design as low, medium and high. Finally the algorithms taken are 

evaluated with three different test case design but taking the same parameters. 

5.1.1 Test Case 1: 

In this test case input number of processes are varies from 20 to 200 with interval size 20. Burst 

time of each process is generated using random number generator and the range of the burst time 

of these processes is taken in between 25 to 200 in data set 1, 200 to 500 in data set 2 and 500 to 

1000 in data set 3. 

5.1.2 Test Case 2: 

In this test case input number of processes are varies from 50 to 500 with interval size 50. Burst 

time of each process is generated using random number generator and the range of the burst time 

of these processes is taken in between 200 to 500 in data set 1, 500 to 700 in data set 2 and 700 

to 1000 in data set 3. 

5.1.3 Test Case 3: 

In this test case input number of processes are varies from 100 to 1000 with interval size 100. 

Burst time of each process is generated using random generator and the range of the burst time of 

these processes is taken in between 200 to 500 in data set 1, 500 to 700 in data set 2 and 700 to 

1000 in data set 3. 

Here, in all above three cases, the value of Q can be selected as: Q= N*10 
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5.2 Data Collection and Analysis 

5.2.1 For Test case 1: 

 

 

Table 5.1Input processes are taken in 20 to 200 and their burst time ranges in between (25 to 

200) 

 

 

 

 

 

 

 

 

 

 

Table 5.2 Input processes are taken in 20 to 200 and their burst time range in between (200 to 

500) 

No of 
process 

                            DTRR                                   MDTRR 

     AWT       ATT       CS      AWT       ATT        CS 

20 1676 1801 212 1619 1744 73 

40 3380 3499 412 3151 3270 131 

60 4301 4408 535 4104 4212 238 

80 6195 6309 763 5808 5919 302 

100 8994 9117 1078 8574 8697 341 

120 10236 10355 1226 9895 10014 407 

140 10210 10320 1255 10177 10287 561 

160 12246 12357 1495 11860 11971 619 

180 13770 13879 1678 13108 13217 583 

200 14918 15027 1838 14494 14604 781 

No of 
process 

                            DTRR                                   MDTRR 

     AWT       ATT       CS      AWT       ATT        CS 

20 5572 5917 622 5248 5593 79 

40 11513 11867 1258 10491 10845 157 

60 18007 18365 1943 16431 16790 238 

80 22557 22899 2436 20733 21074 317 

100 29799 30158 3204 2681 27179 396 

120 35549 35901 3797 32960 33312 476 

140 42322 42682 4530 38334 38693 556 

160 47375 47712 5061 42316 42670 631 

180 51525 51868 5514 46892 47235 711 

200 59397 59752 6321 54102 54456 795 
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No of 
process 

                            DTRR                                   MDTRR 

     AWT       ATT       CS      AWT       ATT        CS 

20 13913 14716 1509 11906 12709 86 

40 25725 26472 2725 20311 21058 169 

60 25386 26133 2695 21372 22120 172 

80 52588 53347 5511 42693 43452 346 

100 65268 66009 6811 52946 53687 426 

120 77385 78125 8047 62727 63467 513 

140 92787 93543 9635 77921 78676 605 

160 104808 105558 10866 88623 89373 688 

180 118605 119352 12278 97859 98607 772 

200 129607 130348 13453 105712 106453 854 

 

Table 5.3 Input processes are taken in 20 to 200 and their burst time range in between (500 to 

1000) 

 

 

Figure 5.1: Graph for Table 5.1 
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Figure 5.2: Graph for Table 5.2 

 

 

Figure 5.3: Graph for Table 5.3 
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If we look at case 1; in figure 5.1, the average waiting time of MDTRR is 3.52% to 4.89% lower 

and average turnaround time is 5.79% to 10.96%  lower with respect to DTRR;  in figure 5.2, the 

average waiting time of MDTRR is 6.17% to 11.11% lower and average turnaround time is 

5.79% to 10.96% lower with respect to DTRR and in figure 5.3, , the average waiting time of 

MDTRR is 16.85% to 23.27% lower and average turnaround time is 15.79% to 22.44% lower 

with respect to DTRR. In all three figures, the context switch decreases drastically. In figure 5.3, 

AWT and ATT are decreased by greater percentage than in figure 5.1 and 5.2. It is only because 

of greater burst range value.  

 

 

5.2.2 For Test Case 2: 

No of 
process 

                            DTRR                                   MDTRR 

     AWT       ATT       CS      AWT       ATT        CS 

50 13682 14019 1487 12599 12935 196 

100 28725 29067 3083 26900 27242 398 

150 45071 45428 4816 40342 40698 595 

200 57987 58336 6190 53391 53740 791 

250 75842 76200 8059 68654 69012 993 

300 88173 88523 9389 81104 81453 1194 

350 102620 102969 10941 93617 93966 1388 

400 115144 115489 12233 105912 106257 1582 

450 131900 132249 14033 121392 121741 1788 

500 144874 145220 15387 133472 133819 1979 

 

Table 5.4: Input processes are taken in 50 to 500 and their burst time range in between(200 to 

500) 
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No of 
process 

                            DTRR                                   MDTRR 

     AWT       ATT       CS      AWT       ATT        CS 

50 27127 27717 2855 19287 19877 199 

100 56096 56701 5829 39979 40584 399 

150 83798 84400 8684 59786 60388 599 

200 111258 111853 11515 79316 79911 799 

250 139324 139922 14409 99255 99853 999 

300 168934 169536 17438 120251 120853 1199 

350 196175 196776 20276 139674 140275 1399 

400 223971 224570 23131 159324 159923 1599 

450 252868 253469 26119 180371 180972 1799 

500 278946 279542 28804 198543 199139 1999 

 

Table 5.5: Input processes are taken in 50 to 500 and their burst time range in between(500 to 

700)  

 

No of 
process 

                            DTRR                                   MDTRR 

     AWT       ATT       CS      AWT       ATT        CS 

50 38574 39421 4030 31492 32339 222 

100 80153 81015 8288 69097 69959 456 

150 118362 119211 12198 99191 100040 675 

200 158782 159634 16324 133072 133925 900 

250 200671 201528 20623 170395 171251 1136 

300 239438 240294 24585 202967 203822 1361 

350 276238 277086 28333 228696 229544 1569 

400 318208 319059 32644 270235 271086 1800 

450 355924 356770 36457 302197 303043 2026 

500 397414 398267 40733 337263 338116 2254 

 

Table 5.6: Input processes are taken in 50 to 500 and their burst time range in between(700 to 

1000)  
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Figure 5.4: Graph for Table 5.4 

 

 

Figure 5.5: Graph for Table 5.5 
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Figure 5.6: Graph for Table 5.6 
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5.5, the average waiting time of MDTRR is 40.36% to 40.64% lower and average turnaround 

time is 39.44% to 40.12% lower with respect to DTRR and in figure 5.6,  the average waiting 

time of MDTRR is 17.76% to 22.48% lower and average turnaround time is 17.67% to 21.89% 

lower with respect to DTRR. In all three figures, the context switch decreases drastically. Here, 

in figure 5.5, AWT and ATT is decreased by greater percentage than in figure 5.4 and 5.6 

because in some condition, the modified algorithm q*λ/f doesn’t decrease the value. Instead of 

decreasing it increases the value to make the quantum optimum and gives better result. 
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5.2.3 For Test Case 3 

No of 

process 

                            DTRR                                   MDTRR 

AWT       ATT       CS AWT       ATT        CS 

100 29056 29406 3116 25962 26312 393 

200 60819 61178 6490 54925 55285 795 

300 92515 92879 9856 83794 84159 1196 

400 113505 113844 12099 104765 105104 1580 

500 146038 146385 15530 134188 134535 1981 

600 176511 176860 18727 161296 161646 2378 

700 206805 207156 21931 188396 188747 2776 

800 241712 242069 25690 218016 218373 3178 

900 264964 265314 28151 242224 242573 3570 

1000 297116 297468 31582 270444 270796 3969 

 

Table 5.7: Input processes are taken in 100 to 1000 and their burst time range in between(200 to 

500) 

 

No of 

process 

                            DTRR                                   MDTRR 

AWT       ATT       CS AWT       ATT        CS 

100 54262 54847 5647 38875 39461 399 

200 111330 111929 11541 79363 79962 799 

300 168018 168617 17366 119786 120385 1199 

400 224822 225424 23219 159620 160222 1599 

500 282520 283132 29166 200427 201031 1999 

600 334586 335184 34483 238252 238849 2399 

700 394642 395245 40675 280411 281014 2799 

800 448077 448676 46210 318903 319501 3199 

900 502187 502784 51674 358450 359047 3599 

1000 559037 559635 57671 398772 399370 3999 

 

Table 5.8: Input processes are taken in 100 to 1000 and their burst time range in between(500 to 

700)  
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No of 

process 

                            DTRR                                   MDTRR 

AWT       ATT       CS AWT       ATT        CS 

100 78636 79486 8122 66794 67644 452 

200 158387 159237 16277 132686 133536 900 

300 237754 238602 24405 195665 196512 1343 

400 314072 314915 32201 264159 265002 1792 

500 395501 396350 40556 327889 328738 2248 

600 475573 476421 48694 396040 396888 2697 

700 552909 553756 56636 462785 463631 3135 

800 635044 635895 65049 536453 537304 3609 

900 715664 716514 73198 600950 601800 4043 

1000 792793 793643 81201 661414 662264 4504 

 

Table 5.9: Input processes are taken in 100 to 1000 and their burst time range in between(700 to 

1000)  

 

 

Figure 5.7: Graph for Table 5.7 
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Figure 5.8: Graph for Table 5.8 

 

Figure 5.9: Graph for Table 5.9 
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If we look at case 3; in figure 5.7, the average waiting time of MDTRR is 8.83% to 11.91% 

lower and average turnaround time is 8.80% to 11.75%  lower with respect to DTRR;  in figure 

5.8, the average waiting time of MDTRR is 39.58% to 40.96% lower and average turnaround 

time is 38.99% to 40.83% lower with respect to DTRR and in figure 5.9, , the average waiting 

time of MDTRR is 17.72% to 20.62% lower and average turnaround time is 17.50% to 20.56% 

lower with respect to DTRR. In all three figures, the context switch decreases drastically. Here 

also, in figure 5.8, AWT and ATT are decreased by greater percentage than in figure 5.7 and 5.9, 

because in some condition modified algorithm q=q* λ /f increases the value instead of decreasing 

for better result. 

 More importantly, in all three cases, the percentage value increases or decreases mainly due to 

the selection process of Q. 
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  CHAPTER SIX 

                      CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

Several attempts have been made to improve the round robin scheduling with fixed quantum. In 

basic version of round robin scheduling algorithm, if the size of time quanta is decreased, the 

number of context switches is increased. The relation between number of context switch and size 

of time quanta is inversely proportional to each other. Now when the time quanta for RR is 

calculated dynamically, then the calculation of dynamic quanta can be done with various 

measures such as mean, median, mode, quartile, percentage requirement, etc. DTRR uses the 

time Q for one complete round of all active processes is to keep constant. From Q and number of 

jobs ‘n’, we calculate quantum q as q= Q/n. Here the relation between q and n is linear. i.e. 

quantum q as inverse relation with the number of jobs in ready queue. This dissertation work 

modifies the dynamic quantum selection strategy of DTRR policy as below:  

Quantum(q)  ={
          q ∗  

λ

f
   if f ≥ 0.0625

       4q     if f ≤ 0.0625

 

This equation is mainly focused on fraction of jobs finished in previous round of RR scheduling 

algorithm. From this it is clear that quantum value used in MDTRR is optimum than the quantum 

value used in DTRR. 

The performance of DTRR is compared with MDTRR; it is found that average waiting time of 

MDTRR is 3.52% to 40.96% less than DTRR scheduler and average turnaround time is 4.89% to 

40.83% less than DTRR scheduler. Besides this, MDTRR uses optimum quantum size than 

DTRR policy and at the same time number of context switches decreases drastically in MDTRR 

policy. This is another great achievement of this dissertation work. 

Hence the dissertation is successful to experimentally verify that MDTRR policy is far superior 

than DTRR policy. 
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6.2 Recommendation 

Now the further work may be to investigate the other statistics to calculate the size of dynamic 

quanta for round robin scheduling such as mean, mode, quartile, etc and possible modification on 

these statistics to produce better size of time quanta in which the scheduling algorithm performs 

better with respect to response time, waiting time, turnaround time and number of context 

switch. Another interesting further work is to make quantum dynamic on the basis of λ and f 

value. Idea is to increase the quantum size if there is some other value of λ and f. 
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