
1

CHAPTER 1: Background & Problem Formulation

1.1 Background

1.1.1 Subset Sum Problem (SSP)

SSP is an important problem in complexity theory and cryptography. SSP can simply be described as:

given a set of positive integers S and a target sum t, is there a subset of S whose sum is t? For example,

given the set {1, 2, 3, 4} and t=5, the answer is yes because the subsets {1, 4} and {2, 3} sum to 5. An

instance of the SSP is a pair (S, t), where S = {x1, x2, ..., xn} is a set of positive integers and t (the target)

is a positive integer. The decision problem asks for a subset of S whose sum is t [27].

In the optimization problem, finding the subset S’ of S whose sum is largest number but not larger than

t. Given a set of n data items with positive weights and a capacity c, the decision version of SSP asks

whether there exists a subset whose corresponding total weight is exactly the capacity c; the

maximization version of SSP is to find a subset such that the corresponding total weight is maximized

without exceeding the capacity c [24]. For example, a truck that can ship no more than t pounds, and n

different boxes to ship. Suppose weight of ith box is xi pounds. Fill the truck with as many boxes as

possible without exceeding its weight limit [17].

Problem has many applications; for example, a decision version of SSP with unique solutions represents

a secret message in a SSP-based cryptosystem. It also appears in more complicated combinatorial

problems [8], scheduling problems [2] [20], 0-1 integer programs [10] [1], and bin packing algorithms

[22] [32]. The Subset-Sum Problem (SSP) is one the most fundamental NP-complete problems, and

perhaps the simplest of its kind. The complexity of subset sum can be viewed as depending on two

parameters: n, the number of values, and m, the precision of the problem (number of bits required to state

the problem).

2

1.1.2 Complexity classes

Computational complexity theory is a branch of the theory of computation in theoretical computer

science and mathematics that focuses on classifying computational problems according to their inherent

difficulty, and relating those classes to each other. A computational problem is understood to be a task

that is in principle amenable to being solved by a computer, which is equivalent to stating that the

problem may be solved by mechanical application of mathematical steps, such as an algorithm.

The purposes of complexity theory are to ascertain the amount of computational resources required to

solve important computational problems, and to classify problems according to their difficulty [6]. The

complexity class is a set of problems of related resource-based complexity. The resource may be time or

space. The complexity classes could also be defined in terms of decision problems whose output is a

single boolean value: Yes or No.

Typically, a complexity class is defined by a model of computation, a resource (or collection of resources)

and a function known as the complexity bound for each resource. The models used to define complexity

classes fall into two main categories: machine based models, and circuit-based models. Turing machines

(TMs) and random-access machines (RAMs) are the two principal families of machine models. Circuits

were originally studied to model hardware. The hardware of electronic digital computers is based on

digital gates, connected into combinational and sequential networks. Also, circuits well capture the

notion of non-branching, straight-line computation.

The class of decision problems that are solvable in polynomial time is denoted by P [19]. The class P

contains many familiar problems that can be solved efficiently, such as finding shortest paths in networks,

parsing context-free grammars, sorting, matrix multiplication, and linear programming. P contains all

problems that can be solved by (deterministic) programs of reasonable worst-case time complexity [6].

The class NP can also be defined by means other than nondeterministic Turing machines. NP equals the

class of problems whose solutions can be verified quickly, by deterministic machines in polynomial time.

Equivalently, NP comprises those languages whose membership proofs can be checked quickly. The set

of decision problems where the verification by a Yes and a No answer quickly with a certificate is Class

NP and Class co-NP respectively. For example, one language in NP is the set of composite numbers,

3

written in binary. A proof that a number z is composite can consist of two factors z1 ≥ 2 and z2 ≥ 2 whose

product z1z2 equals z. This proof is quick to check if z1 and z2 are given, or guessed. Correspondingly,

one can design a nondeterministic Turing machine N that on input z branches to write down “guesses”

for z1 and z2, and then deterministically multiplies them to test whether z1.z2 = z. Then L(N), the

language accepted by N, equals the set of composite numbers, since there exists an accepting computation

path if and only if z really is composite. Note that N does not really solve the problem, it just checks the

candidate solution proposed by each branch of the computation. [6]

There exist a large number of practical problems in NP such that if any one of them were in P then the

whole of NP would be equal to P. The evidence that supports the conjecture P ≠ NP therefore also lends

credence to the view that none of these problems can be solved by a polynomial-time algorithm in the

worst case. Such problems are called NP-complete. To be NP-complete, a decision problem must belong

to NP and it must be possible to polynomially reduce any other problem in NP to that problem [15]. The

hardest problem in NP is contained in NP-complete (NPC) class. There is no fast solution for NPC. Also,

the time required to solve the problem using any currently known algorithm increases very quickly as

the size of the problem grows. These are the hardest problems in NP, in the sense that if there would be

a solution to an NP-complete problem then there would be a solution to any problem in NP [18].

NP-hard class problems are as hard as the hardest problems in NP, the problems do not have to be

elements of NP, indeed, they may not even be decidable problems, for example the halting problem. No

NP-hard problem can be solved in polynomial time in the worst case under the assumption that P ≠ NP

[15].

Figure1: Euler diagram for P, NP, NP-complete, and NP-hard set of problems

4

A numeric algorithm runs in pseudo-polynomial time if its running time is polynomial in the numeric

value of the input, but is exponential in the length of the input – the number of bits required to represent

it.

Let’s consider the problem of checking whether a number N is prime or not. Suppose N is 3127. One

way of solving this would be to check whether any number from 2 to 3127 divides N or not. Assuming

that the divisor check in constant time O(1) can be performed, this would take at most 3127 steps. It can

easily be seen that for a general number N, this would need O(N) steps. So is there any polynomial time

algorithm for primality testing? Not really. This is because 3127 when given as input is not 3127 bits

long. It is just 4 digits long (in base 10) or 12 binary bits long. This is real input and its length is not equal

to N. It is of the order of log(N). And hence apparently polynomial time algorithm actually takes O(2log(N))

steps, that is, it is exponential in the input size. Algorithm that runs in time which is a polynomial in the

input size, not the value the input represents. And hence the above algorithm isn't truly a polynomial time

algorithm. Such algorithms are called pseudo-polynomial time algorithms.

The term sub-exponential time is used to express that the running time of some algorithm may grow

faster than any polynomial but is still significantly smaller than an exponential. Or, a sub-exponential-

time algorithm is one whose running time is a function of the size x of its input grows more slowly than

bx for every base b > 1 [26]. The term 2O(√x) denotes the sub-exponential complexity.

1.1.3 Approaches for solving SSPs

1.1.3.1 Backtracking

Backtracking is a general algorithm for finding all (or some) solutions to some computational problems,

notably constraint satisfaction problems that incrementally builds candidates to the solutions, and

abandons each partial candidate c ("backtracks") as soon as it determines that c cannot possibly be

completed to a valid solution. It is a refinement of the brute force approach, which systematically searches

for a solution to a problem among all available options. It is a general algorithmic technique that considers

searching every possible combination in order to solve an optimization problem. It is also known as

depth-first search or branch and bound. By inserting more knowledge of the problem, the search tree can

be pruned to avoid considering cases that don't look promising. Representing it in a

5

binary state space tree as:

1. Starting at Root, the options are A and B.

Choose A.

2. At A, options are C and D. Choose C.

3. C is not a solution. Go back to A.

4. At A, already tried C, and it failed. Try

D.

5. D is not a solution. Go back to A.

6. At A, no options left to try. Go back to

Root.

7. At Root, already tried A. Try B.

8. At B, options are E and F. Try E.

9. E is a solution. Congratulations!

Figure2: Backtracking

1.1.3.2 Dynamic Programming

Dynamic programming is a method for solving a complex problem by breaking it down into a collection

of simpler sub-problems. It is applicable to problems exhibiting the properties of overlapping sub-

problems and optimal substructure. When applicable, the method takes far less time than other methods

that don't take advantage of the sub-problem overlap.

In order to solve a given problem, using a dynamic programming approach, solve different parts of the

problem (sub-problems), and then combine the solutions of the sub-problems to reach an overall solution.

The dynamic programming approach seeks to solve each sub-problem only once, thus reducing the

number of computations: once the solution to a given sub-problem has been computed, it is stored or

"memo-ized": the next time the same solution is needed, it is simply looked up. This approach is

especially useful when the number of repeating sub-problems grows exponentially as a function of the

size of the input. Let’s consider the set S = {2, 3, 4, 5} and let t = 8. The worked out DP can be tabulated

as:

Table1: Dynamic Programming

 0 1 2 3 4 5 6 7 8

2 T F T F F F F F F

3 T F T T F T F F F

4 T F T T T T T T F

5 T F T T T T T T T

6

Since A[5, 8] = T rue , there exists a subset of S that sum up to t(8). [5]

1.1.3.3 Dynamic Dynamic Programing (DDP)

This algorithm is the extension of the dynamic programming with a dynamically allocated list of target

sums. It splits the input array into two sub-arrays. Perform dynamic programming to produce a target

map, and backtracking to enumerate the targets of subsets. The search terminates successfully when a

subset T is discovered such that t − Σ(S) is in the target map. This hybrid approach has some of the

advantages of each previous method, while quadratically reducing the space complexity.

The list of target sums is initialized with the original target. For each yi in a set of positive integers S=

{y1,y2,.....yn}, targets is added to the list by subtracting yi from the existing targets. The list grows with

each of the early iterations, reaching a peak in iteration i when 2i first exceeds the maximum value on the

current target list. From that point on, the list shrinks in size. The new targets added to the list are pruned

from the list when the sum of the remaining numbers in the set is not sufficient to reach them, also

suppress duplication of targets on the list. [3]

1.2 Introduction

SSP is an important problem in complexity theory and cryptography. SSP can simply be described as:

given a set of positive integers S and a target sum t, is there a subset of S whose sum is t? For example,

given the set {1, 2, 3, 4} and t=5, the answer is yes because the subsets {1, 4} and {2, 3} sum to 5. Thus,

SSP is decision problem that seeks answer either yes or no. the optimization problem associated with this

decision problem arises in many practical applications. In the optimization problem subset S’ of S whose

sum is largest number but not larger than t it to be found.

The complexity of subset sum can be viewed as depending on two parameters: n, the number of decision

variables or number of values, and m, the precision of the problem (number of binary place values or bits

that it takes to state the problem). The complexity of the best known algorithms is exponential in the

smaller of the two parameters m and n. Thus, the problem is most difficult if n and m are of the same

order. It only becomes easy if either n or m becomes very small. If n is small, then an exhaustive search

for the solution is practical. If m is a small fixed number, then there are dynamic programming algorithms

7

that can solve it exactly [7]. There are two ways to count the solution space in the SSP. One is to count

the number of ways the variables can be combined. There are 2n possible ways to combine the variables.

However, with n = 10, there are only 1024 possible combinations to check. These can be counted easily

with a branching search. The other way is to count all possible numerical values that the combinations

can take. There are 2m possible numerical sums. However, with m = 5 there are only 32 possible

numerical values that the combinations can take. These can be counted easily with a dynamic

programming algorithm.

SSP is interesting because, depending on what parameter is used to characterize the size of the problem

instance, it can be shown to have polynomial, sub-exponential, or strongly exponential worst-case time

complexity. It is known to be NP Complete [3] and hence difficult problem to solve generally. There are

several ways to solve SSP in exponential and polynomial time. A naive algorithm with time complexity

O(n.2n) solves SSP by iterating all the possible subsets and each for its subset comparing its sum with

target t. A backtracking algorithm for SSP can be modeled as a binary tree where each node represents a

single activation of the recursive code. Each activation processes one element of S, and it makes at most

two recursive calls. So the total number of recursive calls cannot exceed the number of nodes in a full

binary tree of depth n, and the worst-case time complexity is O(2n) when size of the input set (denoted

n) is used as the complexity parameter [7]. When the maximum value in the set (denoted m) is used as

the complexity parameter, dynamic programming can be used to solve the problem in O(m.n2) time,

which is polynomial in n and m. If m = 2n, O(m.n2) is really O(n2. 2n), which is called pseudo-polynomial

time complexity. This is actually worse than O(2n) – worse than backtracking. A variant of dynamic

programming called Dynamic Dynamic programming (DDP) has been shown to have a worst-case sub-

exponential time complexity of 2O(√x) when the total bit length x of the input set is used as the complexity

parameter [7].

Thomas E. O’Neil [7] showed that DDP has lower step counts than both of the other algorithms for

medium-density to low-density problem instances. This dissertation work evaluates the performance of

BT, DP and DDP algorithms empirically in terms of total bit length used to represent input sets.

1.3 Problem Definition

All the algorithms: Backtracking, Dynamic Programming, and Dynamic Dynamic Programming have

strongly exponential time complexity when the complexity parameter is the number of integers in the

8

input set. At the same time, DDP is known to have sub-exponential worst-case time complexity when

the complexity parameter is the total bit length of the input set [7]. Now the question is: What happens

when total bit length of input set is used to evaluate performance of above mentioned algorithms for

solving SSP? This dissertation work answers the question.

1.4 Objective

The main objective of this research work is to evaluate performance of the algorithms: BT, DP and DDP

for solving SSPs in terms of total bit length used to represent the inputs.

1.5 Motivation

Subset Sum Problem is an important problem in cryptography, scheduling and many more. It is an NP

Complete problem. The general algorithms for solving SSP have exponential complexity. The

complexity of SSP could be studied depending on two parameters: n and m, where n is the input size and

m is the total bit length. When n is considered as the complexity parameter, the algorithms: DDP, DP

and BT have exponential complexity. And when m is considered as the complexity parameter, DDP has

sub-exponential complexity, but the complexity of DP and BT was unknown. So, to explore their

response through the empirical analysis is motivational.

1.6 Report Organization

The background part of this dissertation work focuses on Subset Sum Problems (SSP), the complexity

classes and the algorithms: Dynamic Dyamic Programming (DDP), Dynamic Programming (DP) and

Backtracking (BT), for solving SSP. Also, a briefly introduced the SSP in context of the complexities of

the SSP solving algorithms when the parameters are input-size and total bit-length.

The problem formulation part states the main problem for which this dissertation work is going to have

it as its goal. The goal is stated in its 'Objective'. And the motivation to this dissertation is described in

'Motivation' section.

Chapter 2 consists of literature review which verifies reviews the related topics. Literature review

includes summary of definitions of SSP, algorithms: DDP, DP & BT for solving SSP and their

complexities when the evaluating parameter is input size or total bit length of the input set. This chapter

also contains the research methodology which shows the flow of this dissertation work.

9

Chapter 3 consists of 'Design & Implementation' section which lists the tools, programming language

and data-structure used. It also describes the algorithms for solving SSP, their flow and trace each

algorithm in detail.

Chapter 4 consists of 'Data collection & Analysis' section. The data collection part describes the number

of data collected, the maximum number and which ranges they are limited to. The analysis part analyzes

the different cases of N (input size) and M (total bit-length) by plotting the graph: M versus the step-

counts.

Finally, Chapter 5 consists of 'Conclusion and Limitations' of this whole dissertation work. This section

also shows the guidelines for future research.

Chapter 2: Literature Review & Methodology

2.1 Literature Review

SSP is a well-known hard (NP-complete) problem that is generally solved by algorithms: BT, DP, and

DDP. It is known to have a pseudo-polynomial-time solution [5]. Time complexity may be polynomial,

sub-exponential, or exponential depending on the parameter chosen to characterize the size of the

problem instance. Let n represent the size of the input set S, and let m be the maximum value in the set.

A standard dynamic programming algorithm for the problem can be shown to have polynomial time

complexity O(n2 m). On the other hand, there is an algorithmic model that includes both backtracking

and dynamic programming in the research literature that is shown to have a strongly exponential lower

10

bound of 2Ω(n) on the closely related Knapsack problem when n alone is used as the complexity parameter.

And finally, a variant of dynamic programming called Dynamic Dynamic Programming has been shown

to have a worst-case sub-exponential time complexity of 2O(√x) when the total bit length x of the input set

is used as the complexity parameter. [7]

The SSP is a special case of the knapsack problem and in the cryptology literature is often referred to as

the knapsack problem. The SSP is hard; its decision problem was shown to be NP-complete by Karp

[25]. SSP is the general form of Partition problem. In Partition problem the Set is partitioned into two

subsets that have the same sum where as in the SSP a subset of the Set has to meet a target integer [3]. It

will be shown that the related search problem of actually finding a solution, even when a solution is

known to exist, is at least as hard as any NP-complete problem [29].

The experiment in which the number of integers in the input set is considered as the complexity parameter,

all three algorithms have strongly exponential time complexity. But DDP is known to have sub-

exponential worst-case time complexity when the complexity parameter is the total bit length of input

set. This suggests that an additional experiment, one in which step counts are plotted as a function of

total bit length of input, is needed to further corroborate published analytical results. [7]

A slightly more efficient algorithm checks out all possible 2n subsets. One typical way to do this is to

express all numbers from 0 to (2n – 1) in binary notation and form a subset of elements whose indexes

are equal to the bit positions that correspond to 1. For example, if n is 4 and the current number, in

decimal, is say 10 which in binary is 1010. Then check the subset that consists of 1st and 3rd elements of

S. One advantage of this approach is that it uses constant space. In each iteration, examine a single

number. But this approach will lead to a slower solution if |S' | is small. Consider the case where t = S[n

/2]. Examine around O(2n/ 2) different subsets to reach the solution.[5]

An obvious exponential-time search BT algorithm successively generates all subsets and computes their

sums. But DP is not so obviously exponential, it uses a Boolean array A[t] with index range from 0 to t

(target) with A[0] initially true and the rest false. The problem is solved in n passes over the array, one

pass for each x in the set. During the ith pass A[j+xi] is set to true for each j where Ai-1[j] is true. A subset

with the target sum t is discovered if A[t] becomes true. The complexity depends on m (max number in

the set). The complexity is generally polynomial. But the hard instances of the problem have m = O(2n).

11

In computational complexity theory, problems within the NP-complete class have no known algorithms

that run in polynomial time. NP-complete problems can still be solved, but either the input data must be

restricted to reasonably small sizes to accommodate super-polynomial time algorithms or accuracy must

be compromised in implementing faster approximation algorithms, neither of which are amenable

conditions. [30]

The DP algorithm is considered to be pseudo-polynomial because it behaves as a polynomial time

algorithm for large elements in S and relatively small T, but it is not actually polynomial time. However,

it is reasonable to conclude that its runtime is O(n 2n) because this represents the worst-case conditions

according to order of growth analysis, and one cannot ensure that T is indeed bounded by the sum of the

elements in the set. Note that the complete search algorithm given earlier also runs in O(n 2n). Although

the time complexities of both algorithms are identical, the dynamic programming one is generally faster

due to its use of optimal substructure and overlapping sub-problems. In fact, this is the fastest known

runtime of any classical algorithm for the SSP. [30]

DDP is the algorithm that combines BT and DP. The input set is ordered and partitioned into a denser

and sparser subset. BT is employed on the sparse subset, while DP is used for the dense subset. The

results are combined to achieve time complexity 2O(√x), where x is the total length in bits of the input set.

A simpler algorithm that achieves a similar time complexity is defined and it can be used for both SSP

and Partition problem. [3]

In order to apply DP, the SSP must exhibit optimal substructure and overlapping sub-problems. Optimal

substructure appears when the solution to a problem relies on the solutions to smaller cases. In the SSP,

suppose that one element xj of the solution subset is known. The original problem is now reduced to

finding a subset of n - 1 elements that adds up to T - xj, so this sub-problem consists of fewer elements

and a smaller sum. Thus, an algorithm for the SSP can utilize optimal substructure by iterating over all

xi to create the sub-problems, iterating over xi recursively on those sub-problems until a base case is

reached, and then conflating the solutions in order to solve the original problem, thereby reducing the

number of time-consuming operations done.[25]

The DP algorithm is considered to be pseudo-polynomial because it behaves as a polynomial time

algorithm for large elements in S and relatively small T, but it is not actually polynomial time as

previously shown. However, it is reasonable to conclude that its runtime is O(n 2n) because this represents

12

the worst-case conditions according to order of growth analysis, and one cannot ensure that T is indeed

bounded by the sum of the elements in the set. Note that the complete search algorithm given earlier also

runs in O(n 2n). Although the time complexities of both algorithms are identical, the dynamic

programming one is generally faster due to its use of optimal substructure and overlapping sub-problems.

In fact, this is the fastest known runtime of any classical algorithm for the SSP.[25]

There is no mutual dependence between the number of objects in the set n and the maximum value m.

The bit length of a problem instance is O(n·log m), and analysis based on this measure actually yields a

result that is distinct from 2O(n/2) and O(m3). Stearns and Hunt [30 used input length x to demonstrate that

an algorithm for the Partition problem (a special case of Subset Sum) exhibits sub-exponential time:

2O(√x). The significance of this result was probably obscured by the claim in the same paper that the

Clique problem is also sub-exponential, while its dual problem Independent Set remains strongly

exponential. This apparent anomaly is a representation-dependent distinction, and it disappears when a

symmetric representation for the problem instance is used [28]. Sub-exponential time for Partition,

however, appears to have stronger credibility. This result was replicated explicitly for Subset Sum (using

a different algorithm) in [3], and it seems unlikely that symmetric representation will make it disappear.

This sets the stage for the current study, in which empirical evidence that instances of Subset Sum where

the input set is dense (n is Θ(m)) are very easy to solve. The ultimate goal, beyond the scope of this paper,

is to develop an algorithm for Subset Sum that remains sub-exponential even under the test of symmetric

representation for the input set. This would solidify the argument that Subset Sum is truly an easier hard

problem. [21]

Subset Sum is apparently has upper bound O(2n/2) when size of the input set (denoted n) is used as the

complexity parameter . When the maximum value in the set (denoted m) is used as the complexity

parameter, DP can be used to solve the problem in O(m3) time. The SSP is known to be NP-Complete

[12] and hence difficult problem to solve generally. Cook, Karp and others, defined such class of

problems as NP Hard problem [16]. Some of the NP Hard problems include Travelling Salesman

Problem (TSP), Boolean Satisfiability Problem, Knapsack Problem, Hamiltonian Path Problem, Post

Correspondence Problem (PCP), and Vertex Cover Problem (VCP). There are several ways to solve SSP

in exponential and polynomial time. A naive algorithm with time complexity O(n2n) solves SSP by

iterating all the possible subsets and each for its subset comparing its sum with target X. A better

algorithm proposed in 1974 using the Horowitz and Sahni decomposition scheme which achieves time

O(n 2n/2). If the target T is relatively small then there exist dynamic programming algorithms that can

run much faster. A classic Pseudo-Polynomial algorithm Bellman Recursion solves SSP in both time and

13

space O(nc). And there are many other algorithms, for example Ibam and Kim [13] developed a fully

polynomial approximation scheme for the SSP in 1975. It was improved upon by Lawler [14] and Lam

by Martello and Toth [31]. Martello and Toth reported very good results for several approximation

schemes in their survey and experimental analysis [9]. [4]

2.2 Methodology

The research is totally experimental. It is a traced driven approach in which random numbers of input

size (n) varying from 15 to 25 are generated for the input set, the maximum number (m) of the input set

is set to the number of the parameterized bit length. That is, if the parameterized bit length is 10 then the

maximum number in the set is set to 1024. For the better result, m is varied from 10 to 20. The algorithms:

BT, DP and DDP are implemented on those randomly generated sets on above bounding cases (n = 15

to 25 and m = 10 to 20) and step counts are noted for each set instances. Average of 50 similar instances

is calculated and a graph of the average step-count verses the total bit length is plotted.

Chapter 3: Design & Implementation

3.1 Tools & Language: The tools used during the dissertation work are

listed as follows:

1. Sublime Text 2: It’s the text editor in which the ruby code in .rb file extension is written. The

text editor is very easy to use for multiple selections to rename variables quickly.

2. iTerm: The written code are run through the terminal to display the output: step-counts. Its very

easy for the repeating command and copy paste feature.

3. LibreOffice Calc: This is the spreadsheet program for storing the step-counts for different set

instances. It is intuitive, easy to learn and has a comprehensive range of advanced functions.

4. QtiPlot: It is a fully fledged plotting software. It can make two and three dimensional plots of

14

publication quality, both from datasets and functions. It can do non-linear fitting and multi-peak

fitting. The tool has been used to plot the graph: step-count vs. total bit length.

5. Ruby: The programming language used is “ruby 1.9.3p484”. It is an object oriented

programming language. It can easily be formatted to fit the needs and work as efficiently as

possible. There are alots of built-in functions which can be used to make the task easy and

efficient. Some of the used built-in functions are to_a.sample, times, sort, reverse, length,

include?, Math.log2 etc. The only array data-structure is enough for the implementation.

3.2 Algorithms

3.2.1 Dynamic Dynamic Programming (DDP)

DDP is the extension of the dynamic programming. In dynamic programming the list of sum set is

maintained. The length of the sum-set list is fixed. But in DDP the list of target is maintained which can

grow and shrink in size. The search terminates successfully when the processing number is in the list of

targets. The algorithm for the DDP can be stated as follows:

Algorithm

procedure: Dynamic Dynamic Programming

input: S-Set of numbers, target

output: true or false

1. if (target = 0 or target = Σ(S))

- solution found

2. else if (target > Σ(S))

- solution not found

3. else

 - if (target > Σ(S)/2)

- target = Σ(S) − target

 - if (target ∈ S)

- solution found

- else

- List target_list = {target}

- sum_of_ rest = Σ(S)

15

- for each num in S from high to low

- sum_of_ rest = sum_of_ rest − num;

- List newlist = {}

- for each t in target_list

- if (t − num = 0 or t − num = sum_of_ rest)

- solution found

- else if (t − num > 0 and t − num < sum_of_ rest)

- newlist.append(t − num)

- else

- newlist.truncate(sum_of_ rest)

- target_list.mergewith(newlist)

4. Terminate

At first, the list of targets is initialized with the original target. Then for each number in the given set is

processed and subtracted from each target in the list of targets. The solution is found if the result from

subtraction is found in the targets list. Otherwise, the result is appended in targets list if its positive and

the result is less than the sum of the remaining numbers to be processed in the given set. The targets

which are greater than the sum of numbers to be processed are removed. In this way, the appending

increases the length of targets list and removal of targets decreases the length of the targets list.

3.2.2 DDP Example Trace

Lets trace DDP for SSP in which S = {2, 3, 5, 7, 10}, and t = 14.

Here, ΣS = 27.

The steps: 1 and 2 do not get satisfied and second 'else' of the step 3 is reached assigning target_list =

{14} and sum_of_rest = 27.

processing each number in S = {10, 7, 5, 3, 2}(descending order),

Step1: Take number 10

sum_of_rest = 27 – 10 = 17

new_list = {}

for each target in target_list ie {14}

16

processing target 14

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (14 – 10 ==0 or 14 – 10 == 17) results

negative

 checking the condition (t − num > 0 and t − num < sum_of_ rest) => (14 – 10 > 0 and 14 – 10 < 17)

results positive, so new_list += {t – num} => new_list = {14 – 10 } => new_list = {4}

after merging new_list with target_list, target_list = {14, 4}

Step2: Take number 7

sum_of_rest = 17 – 7 = 10

new_list = {}

for each target in target_list {14, 4}

processing target is 14,

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (14 – 7 ==0 or 14 – 7 == 10)

results negative

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (14 – 7 > 0 and 14 – 7< 10)

results positive, so new_list += {t – num} => new_list = {14 – 7} => new_list = {7}

now, processing target is 4,

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (4 – 7 ==0 or 4 – 7 == 10)

results negative,

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (4 – 7 > 0 and 4 – 7 < 10)

results negative, so no update to new_list here

after merging new_list with target_list, target_list = {14, 4, 7}

Step3: Take number 5

sum_of_rest = 10 – 5 = 5

new_list = {}

for each target in target_list {14, 4, 7}

processing target is 14,

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (14 – 5 == 0 or 14 – 5 == 5)

results negative

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (14 – 5 > 0 and 14 – 5 < 5)

17

results negative, so no new_list is updated, ie new_list = {}

processing target is 4,

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (4 – 5 == 0 or 4 – 5 == 5)

results negative,

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (4 – 5 > 0 and 4 – 5 < 5)

results negative, again, no new_list is updated, ie new_list = {}

processing target is 7,

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (7 – 5 == 0 or 7 – 5 == 5)

results negative,

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (7 – 5 > 0 and 7 – 5 < 5)

results positive, so new_list = {7 – 5} => new_list = {2}

after merging new_list with target_list, target_list = {14, 4, 7, 2}

Step4: Take number 3

sum_of_rest = 5 – 3 = 2

new_list = {}

for each target in target_list {14, 4, 7, 2}

processing target is 14,

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (14 – 3 == 0 or 14 – 3 == 2)

results negative

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (14 – 3 > 0 and 14 – 3 < 2)

results negative, so no new_list is updated, ie new_list = {}

processing target is 4,

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (4 – 3 == 0 or 4 – 3 == 2)

results negative

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (4 – 3 > 0 and 4 – 3 < 2)

results positive, so new_list = {4 – 3} => new_list = {1}

18

processing target 7,

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (7 – 3 == 0 or 7 – 3 == 2)

results negative

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (7 – 3 > 0 and 7 – 3 < 2)

results negative, no new_list is updated, ie new_list = {1}

processing target is 2,

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (2 – 3 == 0 or 2 – 3 == 2)

results negative,

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (2 – 3 > 0 and 2 – 3 < 2)

results negative, no new_list is updated, ie new_list = {1}

after merging new_list with target_list, target_list = {14, 4, 7, 2, 1}

Step5: Take number 2

sum_of_rest = 2 – 2 = 0

new_list = {}

processing target is 14,

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (14 – 2 == 0 or 14 – 2 == 0)

results negative,

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (14 – 2 > 0 and 14 – 2 < 0)

results negative, so no new_list is updated, ie new_list = {}

processing target is 4,

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (4 – 2 == 0 or 4 – 2 == 0)

results negative,

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (4 – 2 > 0 and 4 – 2 < 0)

results negative, so no new_list is updated, ie new_list = {}

processing target is 7,

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (7 – 2 == 0 or 7 – 2 == 0)

results negative,

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (7 – 2 > 0 and 7 – 2 < 0)

19

results negative, so no new_list is updated, ie new_list = {}

processing target is 2,

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (2 – 2 == 0 or 2 – 2 == 0)

results positive, solution found.

3.2.3 Dynamic Programming (DP)

DP is an algorithm design method that can be used when the solution to a problem can be viewed as the

result of a sequence of decisions [11]. It is the technique related to divide-and-conquer, in the sense that

it breaks problems down into smaller problems that it solves recursively. It is applicable when the sub-

problems are not independent, that is, when sub-problems share sub-sub-problems. It solves every sub-

subproblems just once and then saves the answers in a table, thereby avoiding the work of re-computing

the answer every time the sub-subproblems are encountered [17].

Algorithm

procedure: Dynamic Programming

input: S-Set of numbers, target

output: true or false

1. if (target = 0 or target = Σ(S))

- solution found

2. else if (target > Σ(S))

- no solution found

3. else

- if (target > Σ(S)/2)

- target = Σ(S) − target

- if (target ∈ S)

- solution found

- else

- BitMap summap: summap[0] = 1

- for each num in S from high to low

- BitMap newmap = summap >> num

- summap = summap or newmap

20

- if (summap[target] = 1)

- solution found

- else

- solution not found

4. Terminate

The symmetry heuristic (target = Σ(S) − target if (target > Σ(S)/2)) can result in significant savings of

time and space, since the size of the sum map depends directly on the target t.

The implementation employs bitwise shift. The boolean array summap[], with index range from 0 to t, is

initially set as summap[0] true and the rest of the array false[7]. Each number x in the set is considered

and summap[x] is set true. Also, previously true index i of summap[i] plus x, ie summap[i + x], is also

set to true. The solution to the SSP is present if summap[t] is true. The tabular work out for DP would

be:

Table2: Tabular work out for Dynamic Programming

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 T F T F F F F F F F F F F F F

3 T F T T F T F F F F F F F F F

5 T F T T F T F T T F T F F F F

7 T F T T F T F T T T T F T F T

10

3.2.4 DP Example Trace

Lets trace DP for SSP in which S = {2, 3, 5, 7, 10}, and t = 14.

Here, ΣS = 27.

The above algorithm’s steps: 1 and 2 get false, and reach second 'else' part of step 3.

First, set summap array as summap[0] = 1

Then, for each number in S from high to low, ie {10, 7, 5, 3, 2}

Step1: Take number 10

new_map = sum_map[10] = 1

21

then, sum_map[0] = sum_map [10] = 1

as sum_map[14] == 1 is false,

Step2: Take number 7

new_map = sum_map[7] = 1

then, sum_map[0] = sum_map[7] = sum_map[10] = 1

the sum_map[17] would have value 1, but since sum_map array has max index = 14, sum_map[17] = 1

is rejected.

Step3: Take number 5

new_map = sum_map[5] = 1,

and, sum_map[0] = sum_map[5] = sum_map[7] = sum_map[12] = 1

Step4: Take number 3

new_map = sum_map[3] = 1,

sum_map[0] = sum_map[3] = sum_map[5] = sum_map[7] = sum_map[8] = sum_map[10] =

sum_map[12] = 1

again, the sum_map[15] would have value 1, but since sum_map array has max index = 14, sum_map[15]

= 1 is rejected.

Step5: Take number 2

new_map = sum_map[3] = 1,

sum_map[0] = sum_map[2] = sum_map[3] = sum_map[5] = sum_map[7] = sum_map[8] = sum_map[9]

= sum_map[10] = sum_map[12] = sum_map[14] = 1

Since, sum_map[t], that is , sum_map[14] = 1, there is solution to this subset-sum problem.

3.2.5 Backtracking (BT)

BT is a general algorithmic technique that considers searching every possible combination in order to

solve an optimization problem. It is a refinement of the brute force approach, which systematically

searches for a solution to a problem among all available options. In its basic form, backtracking resembles

a depth-first search in a directed graph [15]. By inserting more knowledge of the problem, the search tree

can be pruned to avoid considering cases that don't look promising. A node is said to be promising if

22

there is possibility of reaching to the solution from this node. A function that computes whether a node

is promising or not can be implemented as below:

wtSoFar = weight of node, i.e., sum of numbers included in partial solution node represents

possibleLeft = weight of the remaining items i+1 to n (for a node at depth i)

boolean promising (i)

{

return(wtSoFar + possibleLeft ≥ S)&&(wtSoFar == S || wtSoFar + w[i] ≤ S)

}

Algorithm

procedure: Backtracking

input: S-Set of numbers, target, sor- sum of rest

output: true or false

1. if (index < 0 ∨ target < 0 ∨ target > Σ(S))

 - no solution found

2. else

- if (target > setsum/2)

- target = Σ(S) - target

- current_num = S[index]

- increment index

- if (sor = target ∨ current_num = target ∨ target = 0)

-solution found

- else if current_num < target

- if promising

- include current_num and check for the remaining numbers

- sor = sor - current_num

- target = target - current_num

- Call BT recursively

- else

- exclude current_num and check for the remaining numbers

- sor = sor - current_num

23

- Call BT recursively

- else

- no solution found

3. Terminate

Check if (target > Σ(S)/2) to implement a symmetry-motivated heuristic that looks for the smaller of

targets t and Σ(S) − t. The rationale is that a smaller target should have a shallower depth of recursion,

but choosing a smaller target may also minimize the benefit bounding condition in line 1.

Backtracking has a simple recursive formulation, and with the proper bounding conditions. The logic is

simply to branch on the numbers in the set S. For any element y of S, if there is a subset S with sum t, it

either contains y or it doesn’t. The element y is checked through the promising function. If it seems

promising then put y in the subset to get by recursive call on S − {y} and t − y. Otherwise, skip y and

find S by recursive call on S − {y} and t.

3.2.6 BT Example Trace

Lets trace BT for SSP in which S = {2, 3, 5, 7, 10}, and t = 14.

Here, ΣS = 27.

The set S with its element in non-increasing order, S = {10, 7, 5, 3, 2}

The tracing can be shown by the following binary tree

24

Figure 3: Tracing Backtracking Algorithm

Step1:

Starting from the root node, the first processing element is 10, the promising condition is satisfied so 10

is included and proceed in left branch to 2nd level 10-node.

Step2:

The processing number is 7, since the promising condition is violated, the number 7 is excluded and no

branch could be extended. This pruned state is represented by X. The branch is right extended excluding

the number 7.

Step3:

The processing number is 5, on 3rd level 10-node. The promising condition is again violated including 5,

so proceed to 4th level 10-node excluding number 5.

Step4:

The processing number is 3. The number is included as the promising condition is satisfied and reached

25

5th level 13-node.

Step5:

The processing number is 2, the 5th level 13-node cannot meet the target including or excluding the

number 2.

 So it back tracks to 4th level 10-node. The promising condition is not satisfied excluding the leveled

processing number 3. Again do backtrack to 3rd level 10-node and to 2nd level 10-node, and finally to the

root node.

Step6:

The tracing begins excluding the number 10, the branching starts from 2nd level 0-node. Here the

processing number is 7. As the promising condition gets satisfied, proceed to 3rd level 7-node.

Step7:

The processing number is 5. The promising condition is satisfied and proceed to 4th level 12-node. The

promising condition is not satisfied for the next processing number 3. So, it proceeds excluding 3 to reach

5th leveled 12-node.

Step8:

The processing number is 2 and the target is met including number 2 from 5th level 12-node. That is, 12

+ 2 = 14.

All the X-marked nodes are the pruned nodes. From these pruned nodes the target could not be met.

26

Chapter 4: Data Collection & Analysis

4.1 Test Case Design

For the test case, a set of 15 random numbers and the maximum number (m) in the set was set to 1024.

All the three algorithms were tested on that set and noted the step-counts for each algorithm. This is an

instance of the test case design. 50 similar instances were generated and tested. Finally, the average step-

count of those 50 instances is calculated and a graph of 'm' versus 'average step-count’ is plotted.

4.2 Data Collection

The required data for the experimental analysis is generated. The sets of size (n) from 15 to 25 and bit

length (m) from 10 to 20 are generated. For each size and bit length, 50 set instances have been generated.

The step-counts for 50 instances of the specific value of n and m are averaged.

For example, 50 instances of the set for n = 15 and m = 10 are generated as:

4.2.1 For the Dataset with n = 15 and m = 10

[1024, 327, 78, 360, 469, 666, 83, 717, 224, 189, 788, 671, 790, 269, 399],

[569, 177, 591, 146, 319, 702, 596, 780, 348, 247, 133, 259, 1024, 489, 335],

[562, 169, 247, 614, 193, 399, 397, 579, 790, 1024, 420, 91, 435, 535, 367],

[58, 656, 124, 324, 588, 1024, 278, 873, 493, 307, 969, 121, 740, 9, 55],

[655, 612, 74, 827, 80, 337, 1024, 713, 544, 367, 49, 13, 97, 395, 556],

[1024, 345, 783, 1, 111, 728, 360, 302, 569, 642, 920, 591, 431, 449, 222],

[1024, 677, 505, 741, 630, 424, 607, 288, 452, 264, 589, 701, 208, 765, 368],

[124, 888, 951, 1024, 841, 406, 444, 949, 930, 101, 721, 835, 926, 376, 188],

[350, 518, 197, 283, 640, 340, 514, 59, 326, 1024, 51, 311, 261, 554, 437],

[744, 645, 377, 820, 322, 414, 129, 406, 598, 1024, 790, 764, 753, 211, 539],

[349, 683, 771, 803, 628, 455, 552, 35, 413, 405, 712, 377, 423, 1024, 167],

[509, 207, 237, 154, 212, 320, 194, 770, 1024, 477, 93, 512, 395, 601, 912],

[768, 1024, 285, 621, 296, 669, 342, 376, 645, 951, 926, 340, 86, 289, 145],

[644, 113, 950, 14, 263, 216, 280, 471, 108, 1024, 554, 312, 642, 834, 529],

[230, 138, 137, 79, 1024, 858, 579, 642, 385, 673, 891, 664, 32, 200, 668],

[826, 887, 729, 342, 621, 612, 367, 902, 549, 201, 299, 326, 80, 586, 1024],

27

[360, 56, 521, 153, 933, 1024, 46, 52, 552, 723, 209, 692, 728, 362, 617],

[856, 611, 770, 509, 939, 321, 804, 577, 363, 525, 314, 701, 384, 1024, 383],

[97, 843, 445, 776, 745, 799, 421, 552, 999, 75, 945, 398, 268, 1024, 301],

[959, 633, 803, 1024, 880, 917, 13, 666, 867, 331, 232, 700, 981, 909, 765],

[618, 362, 66, 441, 1024, 913, 67, 661, 505, 546, 863, 70, 583, 473, 329],

[477, 939, 392, 1024, 630, 72, 102, 23, 346, 141, 622, 768, 607, 525, 938],

[246, 324, 319, 1024, 408, 360, 901, 78, 399, 118, 917, 542, 312, 845, 684],

[776, 826, 178, 540, 729, 792, 616, 248, 154, 836, 1024, 415, 853, 760, 576],

[1024, 663, 66, 460, 775, 152, 405, 79, 31, 543, 838, 794, 805, 669, 457],

[558, 726, 832, 61, 728, 696, 83, 441, 866, 836, 611, 392, 417, 1024, 173],

[390, 576, 117, 816, 852, 893, 866, 6, 377, 120, 176, 1024, 633, 157, 841],

[727, 502, 348, 230, 1024, 15, 641, 86, 902, 874, 685, 458, 943, 506, 811],

[945, 1024, 711, 591, 16, 677, 701, 535, 2, 807, 772, 416, 744, 723, 933],

[767, 644, 237, 974, 710, 997, 303, 1024, 621, 230, 232, 928, 560, 835, 48],

[237, 345, 167, 137, 454, 166, 930, 250, 899, 445, 924, 1024, 337, 529, 328],

[8, 317, 574, 88, 412, 105, 468, 209, 3, 459, 1024, 314, 755, 567, 216],

[169, 693, 170, 883, 471, 565, 635, 828, 345, 43, 736, 393, 1024, 144, 547],

[903, 945, 366, 229, 769, 805, 926, 95, 978, 373, 625, 1024, 323, 142, 583],

[295, 751, 923, 246, 1024, 967, 79, 284, 26, 758, 784, 977, 369, 875, 39],

[534, 43, 191, 560, 74, 856, 802, 1024, 503, 803, 50, 278, 185, 398, 5],

[924, 457, 262, 909, 872, 161, 163, 563, 146, 248, 1024, 331, 791, 122, 499],

[851, 796, 575, 703, 130, 459, 46, 1000, 670, 184, 974, 505, 515, 714, 1024],

[287, 326, 130, 166, 760, 303, 732, 1024, 331, 742, 675, 31, 106, 148, 273],

[9, 108, 433, 536, 20, 344, 844, 667, 328, 597, 791, 704, 1024, 44, 766],

[115, 640, 647, 242, 354, 887, 581, 953, 544, 87, 111, 1024, 947, 126, 347],

[373, 705, 656, 1024, 382, 410, 585, 70, 87, 239, 447, 483, 619, 223, 733],

[170, 228, 553, 376, 1024, 756, 698, 514, 517, 845, 247, 613, 32, 234, 308],

[147, 7, 1024, 883, 556, 746, 553, 418, 850, 605, 232, 109, 685, 72, 434],

[954, 386, 152, 667, 409, 319, 292, 736, 30, 469, 309, 1024, 212, 660, 226],

[781, 778, 207, 639, 269, 916, 475, 534, 666, 297, 677, 485, 1024, 433, 471],

[684, 853, 244, 1024, 859, 85, 182, 80, 505, 382, 275, 319, 812, 679, 493],

[7, 829, 173, 275, 358, 456, 270, 31, 1024, 219, 645, 716, 383, 877, 597],

[360, 616, 532, 316, 102, 483, 371, 192, 172, 294, 282, 1024, 677, 332, 536],

28

[691, 622, 1024, 508, 642, 525, 308, 669, 605, 592, 437, 95, 670, 480, 68]

50 individual set for each instance when m varies from 10 to 20 and n varies from 15 to 25 is generated.

Altogether, 11 x 11 x 50 = 6050 sets have been generated. The algorithms: BT, DP and DDP are

implemented for each instance set. The step-count as an output of implemented algorithm is collected in

a column of an excel file. The average of 50 step-counts with fixed value of n and m is calculated as

shown in below:

Table 3: Average step-count for n = 15, m = 10..11

N=15, M = 10 (210 = 1024) M = 11 (211 = 2048)

 BT DP DDP BT DP DDP

Instance 1 34114 23344 333 33441 24479 528

Instance 2 34727 23548 351 33623 26787 198

Instance 3 34783 23209 1472 33770 27721 114

Instance 4 33309 21663 714 35138 31935 726

Instance 5 33313 20843 283 n n n

Instance 6 33841 22127 199 34282 26422 614

Instance 7 35537 24624 69 33495 27069 652

Instance 8 34197 26336 1036 33550 26298 667

Instance 9 34118 21948 606 33617 33164 650

Instance 10 34904 23363 1096 35516 28998 134

Instance 11 34444 23667 409 34508 28973 122

Instance 12 34465 24331 348 33782 29294 639

Instance 13 34299 23391 848 34646 32540 1704

Instance 14 33726 20864 700 34371 26777 334

Instance 15 33674 21797 441 33900 27837 566

Instance 16 34550 24101 686 34330 27389 785

Instance 17 33583 21303 618 33976 28039 1006

Instance 18 36114 25780 428 34189 28726 833

Instance 19 34163 21729 893 34222 29785 69

Instance 20 34462 24122 238 34565 26299 722

Instance 21 33926 21395 384 33592 30551 423

Instance 22 33544 22216 717 35310 27041 360

Instance 23 34290 21974 576 34217 27250 911

29

Instance 24 34806 26259 40 33386 25949 1090

Instance 25 33591 23406 1515 34078 26196 1157

Instance 26 34017 21498 600 34047 24864 541

Instance 27 33546 22630 226 33193 31406 1190

Instance 28 33815 24895 706 35197 24448 445

Instance 29 33946 24892 999 34628 27057 674

Instance 30 n n n 33496 25894 331

Instance 31 34230 21873 727 33680 24688 200

Instance 32 34619 19425 268 34543 26942 739

Instance 33 33228 19982 857 33919 31858 1303

Instance 34 34018 23941 826 34550 27228 688

Instance 35 34252 22875 901 34005 28460 1430

Instance 36 33474 23749 486 35987 30578 1430

Instance 37 33222 21402 517 34203 26493 577

Instance 38 34351 23736 1093 34163 29277 433

Instance 39 34113 25124 252 34968 30053 433

Instance 40 33769 19225 467 33889 30007 611

Instance 41 33254 22550 114 33791 29629 1245

Instance 42 34280 21975 1278 34152 29986 1459

Instance 43 34207 24140 894 33736 28492 915

Instance 44 33465 20806 440 34342 23931 710

Instance 45 34100 22641 335 34096 25767 605

Instance 46 35520 25955 1882 33643 30166 717

Instance 47 34109 21111 790 33500 31887 657

Instance 48 33520 21842 292 33413 26942 657

Instance 49 34794 23368 1033 35460 27041 1806

Instance 50 34412 24327 1145 35184 28998 674

AVERAGE 34137.57 22883.71 655.6735 34189.57 28114.51 723.9592

Note: n denotes the solution for the instance is not found

4.3 Analysis

The integer value of average step-count is calculated and plotted the integer value of step-count versus

the bit-length (m).

30

Case1: For n = 15

Table 4: Step-count for n = 15, m = 10..20

M Step-counts BT Step-counts DP Step-counts DDP

10 34137 22883 655

11 34189 28114 723

12 34140 31998 1292

13 32945 34860 1226

14 33922 35206 1225

15 34149 36745 1282

16 34339 38105 1521

17 34103 37656 1327

18 33696 36815 792

19 34030 37468 1730

20 34994 40811 3098

Figure 4: Step-counts for n = 15, m = 10..20

Case2: For n = 16

31

Table 5: Step-counts for n = 16, m = 10..20

M Step-counts BT Step-counts DP Step-counts DDP

10 68186 36191 889

11 68366 46469 1292

12 67871 55474 1711

13 68194 63817 2448

14 68140 68721 2746

15 67809 71315 3224

16 67501 74238 3579

17 68736 79832 3875

18 68597 82638 4156

19 67158 85080 4364

20 67880 88028 4551

Figure 5: Step-counts for n = 16, m = 10..20

Case3: For n = 17

32

Table 6: Step-counts for n = 17, m = 10..20

m Step-counts BT Step-counts DP Step-counts DDP

10 135530 51893 953

11 135948 72117 1135

12 135698 91609 2064

13 135344 110537 3117

14 135907 125746 4162

15 132621 138349 6189

16 135100 140441 7384

17 135015 155551 7978

18 135823 147399 8266

19 135631 171309 8688

20 136790 151689 8830

Figure 6: Step-counts for n = 17, m = 10..20

Case4: For n = 18

33

Table 7: Step-counts for n = 18, m = 10..20

m Step-counts BT Step-counts DP Step-counts DDP

10 270000 74239 870

11 270827 106037 1658

12 270388 142246 2437

13 270917 185609 4576

14 271570 224010 6295

15 270437 247523 7153

16 270204 270017 9295

17 271295 284253 13008

18 273189 299123 14040

19 270008 310605 14938

20 277357 312974 14859

Figure 7: Step-counts for n = 18, m = 10..20

Case5: For n = 19

34

Table 8: Step-counts for n = 19, m = 10..20

m Step-counts BT Step-counts DP Step-counts DDP

10 540354 107493 1318

11 539243 151401 2027

12 539836 212913 3773

13 540370 284038 6116

14 540289 366225 8341

15 538544 433597 11570

16 531016 502671 12624

17 541319 541084 13862

18 537815 549261 14140

19 535592 557941 17510

20 533607 562729 18905

Figure 8: Step-counts for n = 19, m = 10..20

Case6: For n = 20

35

Table 9: Step-counts for n = 20, m = 10..20

m Step-counts BT Step-counts DP Step-counts DDP

10 1077975 139991 1502

11 1076292 203791 2158

12 1078141 305599 3812

13 1079323 425135 5730

14 1077242 570356 8813

15 1102725 749590 16893

16 1077795 875468 24387

17 1077487 988457 28311

18 1075648 1058718 29947

19 1077022 1101863 31737

20 1073837 1126061 33037

Figure 9: Step-counts for n = 20, m = 10..20

Case7: For n = 21

36

Table 10: Step-counts for n = 21, m = 10..20

m Step-counts BT Step-counts DP Step-counts DDP

10 2154987 180800 1297

11 2146534 282771 2977

12 2159079 416478 3887

13 2153435 604629 7241

14 2151755 846146 12361

15 2158925 1144460 20567

16 2154908 1469388 25624

17 2153033 1741033 37716

18 2149218 1973957 47433

19 2206845 2171567 57991

20 2147656 2232050 65733

Figure 10: Step-counts for n = 21, m = 10..20

Case8: For n = 22

37

Table 11: Step-counts for n = 22, m = 10..20

m Step-counts BT Step-counts DP Step-counts DDP

10 4287897 230208 1650

11 4306153 360472 2565

12 4291283 566394 4979

13 4300560 846314 9110

14 4298776 1216764 11402

15 4291727 1696116 21751

16 4295210 2268459 35044

17 4316306 2342682 55482

18 4301736 3523562 70042

19 4290882 3858119 77930

20 4286604 4181512 81249

Figure 11: Step-counts for n = 22, m = 10..20

Case9: For n = 23

38

Table 12: Step-counts for n = 23, m = 10..20

m Step-counts BT Step-counts DP Step-counts DDP

10 8606483 292304 2093

11 8584878 468073 3599

12 8602117 732351 6747

13 8578296 1111385 9722

14 8553415 1677176 14574

15 8575921 2410639 34151

16 8583548 3422278 50751

17 8561775 4532963 62927

18 8570257 5754037 71609

19 8573390 6239741 83186

20 8610575 8573390 102355

Figure 12: Step-counts for n = 23, m = 10..20

Case10: For n = 24

39

Table 13: Step-counts for n = 24, m = 10..20

m Step-counts BT Step-counts DP Step-counts DDP

10 17159120 357947 2738

11 17158788 579034 3732

12 17149302 938669 5204

13 17110091 1449497 11909

14 17106312 2241199 16907

15 17158586 3376867 27108

16 17184825 4982786 54467

17 17159312 6943242 64501

18 17146444 9279666 79906

19 17091372 11470264 91597

20 17126665 13887013 112573

Figure 13: Step-counts for n = 24, m = 10..20

Case11: For n = 25

40

Table 14: Step-counts for n = 25, m = 10..20

m Step-counts BT Step-counts DP Step-counts DDP

10 34222042 440450 2780

11 34185432 707408 4443

12 34320384 1167212 7554

13 34215419 1882590 13221

14 34094609 2950559 21428

15 34285386 4576428 36509

16 34219673 6782869 56570

17 34337625 9973402 78239

18 34367879 13983540 92775

19 34164170 18356114 106693

20 34139709 22964581 123384

Figure 14: Step-counts for n = 25, m = 10..20

The above tabulations and graph plots show that the algorithms: DP and DDP have sub-exponential

41

complexity when the complexity parameter is the total bit-length m. The average sub-exponential growth

rate in each case for DP and DDP can be tabulated as:

Table 15: DDP and DP growth rate when complexity parameter is m

Case Sub-exponential growth rate(DP) Sub-exponential growth rate(DDP)

1 1.13 1.28

2 1.13 1.23

3 1.22 1.31

4 1.21 1.45

5 1.26 1.4

6 1.3 1.45

7 1.36 1.48

8 1.42 1.56

9 1.49 1.49

10 1.53 1.35

11 1.57 1.56

BT seems steady or does not possess sub-exponential complexity when complexity parameter is total bit-

length (m). That is, the response is invariant for m parameter. But, it has the exponential complexity

when the decision parameter is the input size (n).

Analysis of BT in terms of number of elements, n

Table 16: BT analysis in terms of n

n\m 10 11 12 13 14 15 16 17 18 19 20

10 1087 1095 1089 1100 1048 1123 N N N N N

11 2149 2182 2174 N N 2164 2159 N N N N

12 4177 4314 4361 4328 4271 4226 N N N 4301 N

13 8638 8495 8528 8527 8659 8615 N 8345 N N N

14 17192 17122 17084 17082 17130 17102 17255 16769 N N N

15 34137 34189 34140 32945 33922 34149 34339 34103 33696 34030 34994

42

16 68186 68366 67871 68194 68140 67809 67501 68736 68597 67158 67880

17 135530 135948 135698 135344 135907 132621 135100 135015 135823 135631 136790

18 270000 270827 270388 270917 271570 270437 270204 271295 273189 270008 277357

19 540354 539243 539836 540370 540289 538544 531016 541319 537815 535592 533607

20 1077975 1076292 1078141 1079323 1077242 1102725 1077795 1077487 1075648 1077022 1073837

21 2154987 2146534 2159079 2153435 2151755 2158925 2154908 2153033 2149218 2206845 2147656

22 4287897 4306153 4291283 4300560 4298776 4291727 4295210 4316306 4301736 4290882 4286604

23 8606483 8584878 8602117 8578296 8553415 8575921 8583548 8561775 8570257 8573390 8610575

24 17159120 17158788 17149302 17110091 17106312 17158586 17184825 17159312 17146444 17091372 17126665

25 34222042 34185432 34320384 34215419 34094609 34285386 34219673 34337625 34367879 34164170 34139709

Note: N denotes the solution for the instance is not found

Figure 15: BT analysis in terms of n

This graph clearly shows that BT is not sensitive to the total bit length, m, but its step count grow

exponentially when input parameter is the input size, n.

43

Chapter 5: Conclusion and Future Work

5.1 Conclusion

The SSP is a well-known NP-Complete problem. The algorithms for solving SSP: DDP, DP, and BT

have been proven to have exponential complexity when the decision parameter is the total number

elements in the set, n. At the same time DDP have sub-exponential time complexity when it is evaluated

in terms of total bit length, m. But Statistics of DP and BT was unknown in this regard. This dissertation

has answered this question.

This dissertation work shows that time complexity of DP increases by 1.13 to 1.57 times when bit length,

m, is increased by 1. This is clearly sub-exponential increment. At the same time BT is not sensitive to

m and its time complexity increases by 1.98 to 2.01 times when number of inputs, n, is increased by 1.

From this observation, we can conclude the DP also have sub-exponential time complexity when input

parameter is bit length, and it has no effect in BT algorithm for solving Subset Sum Problem (SSP).

5.2 Limitations and Future Work

The experiments were conducted on the limited set of numbers; the number of set (n) was varied from

15 to 25, total bit-length required to represent the set (m) was varied from 10 to 20, and the target was

set only to half of the total-sum of the numbers in the set, t = ΣS/2. Further, a lot more experiments could

be done by expanding the ranges of n, m and t.

44

References:

[1] L. Escudero, S. Martello, and P. Toth, A framework for tightening 0-1 programs based on

extensions of pure 0-1 KP and SS problems. Lecture Notes in Computer Science, 920:110–123,

1995.

[2] C. Gu ́eret and C. Prins. A new lower bound for the open-shop problem. Annals of

Operations Research, 92:165–183, 1999.

[3] Thomas. E. O’Neil and Scott Kerlin, A Simple 2 O(x) Algorithm for Partition and Subset Sum,

Proceedings of the 2010 International Conference on Foundations of Computer Science, 2010.

[4] Adarsh Kumar Verma, ‘Ads’ Algorithm for SSP, Student,Galgotias College Of Engineering and

Technology,Greater Noida, G. B. Nagar, India 2013.

[5] Prof. Dr. Gautam Das, Lecturer. Saravanan, Advanced Computational Models and Algorithms,

 Lecture Notes For Subset Sum. Jan 28, 2010.

[6] Eric Allender, Michael C. Loui, Kenneth W. Regan, Complexity Classes, Algorithms and Theory

of Computation, Rutgers University, University of Illinois at Urbana-Champaign, State

University of New York at Buffalo, 1999.

[7] Thomas E. O'Neil, An Empirical Study of Algorithms for the Subset Sum Problem, Computer

 Science Department, University of North Dakota, 2013.

[8] D. Pisinger. An exact algorithm for large multiple knapsack problems. European Journal

of Operational Research, 114:528–541, 1999.

[9] S. Martello and P. Toth, Approximation schemes for the subset-sum problem: Survey and

experimental analysis, European Journal of Operational Research, 22,56-69, 1985.

[10] B. Dietrich and L. Escudero. Coefficient reduction for knapsack constraints in 0-1 programs with

VUBs. Operations Research Letters, 9:9–14, 1990.

 [11] Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, Computer Algorithms/C++, Second

Edition, Universities Press, 2007.

45

[12] M. R. Garey& D. S. Johnson, Computers and Intractibility: A Guide to the theory of NP

Completeness, W. H. Freeman and Company, New York, 1979.

[13] O. H. Ibarra and C. E. Kim, Fast approximation algorithms for knapsack and sum of subset

problem, journal of the ACM, 1975.

[14] E. L. Lawler, Fast approximation algorithms for Knapsack problems, Mathematics of operation

research, 4,339-356, 1979

[15] Gilles Brassard, Paul Bratley, Fundamentals of Algorithms, #p 306, Prentice Hall Englewood

Cliffs, New Jersey 07632, 1996.

[16] Harsh Bhasin and NehaSingla, “Harnessing Cellular Automata and Genetic Algorithms to solve

Travelling Salesman Problem”, Conference: ICICT, New Delhi, 2012.

[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to

 Algorithms, #p 910, Second Edition, The MIT Press, Cambridge , Massachusetts London,

England McGraw-Hill Book Company, 2001.

[18] Oded Goldreich, Introduction to Complexity Theory - Lecture Notes, Department of Computer

 Science and Applied Mathematics, Weizmann Institute of Science, ISRAEL, July 31, 1999.

[19] Luca Trevisan, Lecture Notes on Computational Complexity, Computer Science Division, U.C.

 Berkeley. Fall 2002, Revised May 2004.

[20] J. Hoogeveen, H. Oosterhout, and S. van de Velde. New lower and upper bounds for

scheduling around a small common due date. Operations Research, 42:102–110, 1994.

 [21] Thomas E. O'Neil, On Clustering in the Subset Sum Problem, University of North Dakota, Grand

Forks, ND 58202-9015.

[22] A. Caprara and U. Pferschy. Packing bins with minimal slack. Technical report, University of

Graz, 2002.

[23] R. Stearns and H. Hunt, “Power Indices and Easier Hard Problems”, Mathematical

Systems Theory 23, pp. 209-225, 1990.

46

[24] Yuli Yem, Priority Algorithms for the Subset-Sum Problem, Graduate Department of Computer

Science, University of Toronto, 2006.

 [25] Richard M. Karp, "Reducibility among combinatorial problems," in Complexity of Computer

 Computations, Raymond E. Miller & James W. Thatcher (eds.), Plenum Press, NY, 1972.

[26] Subexponential Time, http://link.springer.com/referenceworkentry/10.1007%2F978-1-4419-

 5906-5_436, March 8th, 2015.

[27] Soumendra Nanda, Subset Sum Problem, CS 105: Algorithms (Grad), March 2, 2005

[28] T. E. O'Neil, “The Importance of Symmetric Representation,” Proceedings of the

2009 International Conference on Foundations of Computer Science (FCS 2009), pp.

115-119, 2009.

[29] Sean A. Irvine, John G. Cleary, Ingrid Rinsma-Melchert, The Subset Sum Problem and

 Arithmetic Coding, Department of Computer Science, The University of Waikato, Hamilton New

Zealand, Working Paper 95/7, March 1995.

[30] Jing Wang : The Subset Sum Problem: Reducing Time Complexity of NP-Completeness with

Quantum Search, Bo Moon , University of South Florida 2012.

[31] S. Martello and P. Toth, Worst case analysis of greedy algorithms for the subset sum problem,

Mathematical Programming, 28,198-205, 1984.

[32] A. Caprara and U. Pferschy. Worst-case analysis of the subset sum algorithm for bin

packing. Operations Research Letters, 32:159–166, 2004.2006.

http://link.springer.com/referenceworkentry/10.1007%2F978-1-

47

Bibliography:

 Marco ALmeida Rogerio Reis, Efficient Representation of Integer Sets, Faculdade De Ciencias

Universidade Do Porto, 2006

 Mark Cieliebak, Institute of Theoretical Computer Science, On the complexity of variations of

equal sum subsets, ETH Zurich, Switzerland, 2008

 Jun Kogure, Noboru Kunihiro, PAPER On the Hardness of Subset Sum Problem from Different

intervals, Ieice Trans. Fundamentals, Vol. E95-A, 2012

 Jahanzeb Maqbool Hashmi, Solving Subset-Sum Problem by using Genetic Algorithm Approach,

Department of Computer Engineering, Ajou University, 2012

 Claus Peter Schnorr and Taras.Shevchenko, Solving Subset Sum Problems of Density close to 1

by "randomized" BKZ-reduction, Fachbereich Informatik and Mathematik, Goethe-Universitat

Frankfurt, Germany, 2012

	CHAPTER 1: Background & Problem Formulation
	1.1 Background
	1.1.1 Subset Sum Problem (SSP)
	1.1.2 Complexity classes
	1.1.3 Approaches for solving SSPs
	1.1.3.1 Backtracking
	1.1.3.2 Dynamic Programming
	1.1.3.3 Dynamic Dynamic Programing (DDP)

	1.2 Introduction
	1.3 Problem Definition
	1.4 Objective
	1.5 Motivation
	1.6 Report Organization

	Chapter 2: Literature Review & Methodology
	2.1 Literature Review
	2.2 Methodology

	Chapter 3: Design & Implementation
	3.1 Tools & Language: The tools used during the dissertation work are listed as follows:
	3.2 Algorithms
	3.2.1 Dynamic Dynamic Programming (DDP)
	3.2.2 DDP Example Trace
	3.2.3 Dynamic Programming (DP)
	3.2.4 DP Example Trace
	3.2.5 Backtracking (BT)
	3.2.6 BT Example Trace

	Chapter 4: Data Collection & Analysis
	4.1 Test Case Design
	4.2 Data Collection
	4.2.1 For the Dataset with n = 15 and m = 10

	4.3 Analysis

	Chapter 5: Conclusion and Future Work
	5.1 Conclusion

