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CHAPTER 1: Background & Problem Formulation 

1.1 Background 

1.1.1  Subset Sum Problem (SSP) 

SSP is an important problem in complexity theory and cryptography. SSP can simply be described as: 

given a set of positive integers S and a target sum t, is there a subset of S whose sum is t? For example, 

given the set {1, 2, 3, 4} and t=5, the answer is yes because the subsets {1, 4} and {2, 3} sum to 5. An 

instance of the SSP is a pair (S, t), where S = {x1, x2, ..., xn} is a set of positive integers and t (the target) 

is a positive integer. The decision problem asks for a subset of S whose sum is t [27]. 

 

In the optimization problem, finding the subset S’ of S whose sum is largest number but not larger than 

t. Given a set of n data items with positive weights and a capacity c, the decision version of SSP asks 

whether there exists a subset whose corresponding total weight is exactly the capacity c; the 

maximization version of SSP is to find a subset such that the corresponding total weight is maximized 

without exceeding the capacity c [24]. For example,  a truck that can ship no more than t pounds, and n 

different boxes to ship.  Suppose weight of ith box is xi pounds. Fill the truck with as many boxes as 

possible without exceeding its weight limit [17]. 

 

Problem has many applications; for example, a decision version of SSP with unique solutions represents 

a secret message in a SSP-based cryptosystem. It also appears in more complicated combinatorial 

problems [8], scheduling problems [2] [20], 0-1 integer programs [10] [1], and bin packing algorithms 

[22] [32]. The Subset-Sum Problem (SSP) is one the most fundamental NP-complete problems, and 

perhaps the simplest of its kind. The complexity of subset sum can be viewed as depending on two 

parameters: n, the number of values, and m, the precision of the problem (number of bits required to state 

the problem).  
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1.1.2 Complexity classes 

Computational complexity theory is a branch of the theory of computation in theoretical computer 

science and mathematics that focuses on classifying computational problems according to their inherent 

difficulty, and relating those classes to each other. A computational problem is understood to be a task 

that is in principle amenable to being solved by a computer, which is equivalent to stating that the 

problem may be solved by mechanical application of mathematical steps, such as an algorithm. 

 

The purposes of complexity theory are to ascertain the amount of computational resources required to 

solve important computational problems, and to classify problems according to their difficulty [6]. The 

complexity class is a set of problems of related resource-based complexity. The resource may be time or 

space. The complexity classes could also be defined in terms of decision problems whose output is a 

single boolean value: Yes or No.  

 

Typically, a complexity class is defined by a model of computation, a resource (or collection of resources) 

and a function known as the complexity bound for each resource. The models used to define complexity 

classes fall into two main categories: machine based models, and circuit-based models. Turing machines 

(TMs) and random-access machines (RAMs) are the two principal families of machine models. Circuits 

were originally studied to model hardware. The hardware of electronic digital computers is based on 

digital gates, connected into combinational and sequential networks. Also, circuits well capture the 

notion of non-branching, straight-line computation. 

 

The class of decision problems that are solvable in polynomial time is denoted by P [19]. The class P 

contains many familiar problems that can be solved efficiently, such as finding shortest paths in networks, 

parsing context-free grammars, sorting, matrix multiplication, and linear programming.  P contains all 

problems that can be solved by (deterministic) programs of reasonable worst-case time complexity [6].  

 

The class NP can also be defined by means other than nondeterministic Turing machines. NP equals the 

class of problems whose solutions can be verified quickly, by deterministic machines in polynomial time. 

Equivalently, NP comprises those languages whose membership proofs can be checked quickly. The set 

of decision problems where the verification by a Yes and a No answer quickly with a certificate is Class 

NP and Class co-NP respectively. For example, one language in NP is the set of composite numbers, 
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written in binary. A proof that a number z is composite can consist of two factors z1 ≥ 2 and z2 ≥ 2 whose 

product z1z2 equals z. This proof is quick to check if z1 and z2 are given, or guessed. Correspondingly, 

one can design a nondeterministic Turing machine N that on input z branches to write down “guesses” 

for z1 and z2, and then deterministically multiplies them to test whether z1.z2 = z. Then L(N), the 

language accepted by N, equals the set of composite numbers, since there exists an accepting computation 

path if and only if z really is composite. Note that N does not really solve the problem, it just checks the 

candidate solution proposed by each branch of the computation. [6] 

 

There exist a large number of practical problems in NP such that if any one of them were in  P then the 

whole of NP would be equal to P. The evidence that supports the conjecture P ≠ NP therefore also lends 

credence to the view that none of these problems can be solved by a polynomial-time algorithm in the 

worst case. Such problems are called NP-complete. To be NP-complete, a decision problem must belong 

to NP and it must be possible to polynomially reduce any other problem in NP to that problem [15]. The 

hardest problem in NP is contained in NP-complete (NPC) class. There is no fast solution for NPC. Also, 

the time required to solve the problem using any currently known algorithm increases very quickly as 

the size of the problem grows. These are the hardest problems in NP,  in the sense that if  there would be 

a solution to an NP-complete problem  then there would be a solution to any problem in NP [18]. 

 

NP-hard class problems are as hard as the hardest problems in NP, the problems do not have to be 

elements of NP, indeed, they may not even be decidable problems, for example the halting problem. No 

NP-hard problem can be solved in polynomial time in the worst case under the assumption that P ≠ NP 

[15].  

 

    

Figure1: Euler diagram for P, NP, NP-complete, and NP-hard set of problems 
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A numeric algorithm runs in pseudo-polynomial time if its running time is polynomial in the numeric 

value of the input, but is exponential in the length of the input – the number of bits required to represent 

it. 

   

Let’s consider the problem of checking whether a number N is prime or not. Suppose N is 3127. One 

way of solving this would be to check whether any number from 2 to 3127 divides N or not. Assuming 

that the divisor check in constant time O(1) can be performed, this would take at most 3127 steps. It can 

easily be seen that for a general number N, this would need O(N) steps. So is there any polynomial time 

algorithm for primality testing? Not really. This is because 3127 when given as input is not 3127 bits 

long. It is just 4 digits long (in base 10) or 12 binary bits long. This is real input and its length is not equal 

to N. It is of the order of log(N). And hence apparently polynomial time algorithm actually takes O(2log(N)) 

steps, that is, it is exponential in the input size. Algorithm that runs in time which is a polynomial in the 

input size, not the value the input represents. And hence the above algorithm isn't truly a polynomial time 

algorithm. Such algorithms are called pseudo-polynomial time algorithms. 

 

The term sub-exponential time is used to express that the running time of some algorithm may grow 

faster than any polynomial but is still significantly smaller than an exponential. Or, a sub-exponential-

time algorithm is one whose running time is a function of the size x of its input grows more slowly than 

bx for every base b > 1 [26]. The term 2O(√x) denotes the sub-exponential complexity. 

 

1.1.3 Approaches for solving SSPs 

1.1.3.1 Backtracking 

Backtracking is a general algorithm for finding all (or some) solutions to some computational problems, 

notably constraint satisfaction problems that incrementally builds candidates to the solutions, and 

abandons each partial candidate c ("backtracks") as soon as it determines that c cannot possibly be 

completed to a valid solution. It is a refinement of the brute force approach, which systematically searches 

for a solution to a problem among all available options. It is a general algorithmic technique that considers 

searching every possible combination in order to solve an optimization problem. It is also known as 

depth-first search or branch and bound. By inserting more knowledge of the problem, the search tree can 

be pruned to avoid considering cases that don't look promising. Representing it in a 
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binary state space tree as: 

 

1. Starting at Root, the options are A and B. 

Choose A. 

2. At A, options are C and D. Choose C. 

3. C is not a solution. Go back to A. 

4. At A, already tried C, and it failed. Try 

D. 

5. D is not a solution. Go back to A. 

6. At A, no options left to try. Go back to 

Root. 

7. At Root, already tried A. Try B. 

8. At B, options are E and F. Try E. 

9. E is a solution. Congratulations! 

 

 

Figure2: Backtracking 

 

1.1.3.2 Dynamic Programming 

Dynamic programming is a method for solving a complex problem by breaking it down into a collection 

of simpler sub-problems. It is applicable to problems exhibiting the properties of overlapping sub-

problems and optimal substructure. When applicable, the method takes far less time than other methods 

that don't take advantage of the sub-problem overlap. 

 

In order to solve a given problem, using a dynamic programming approach, solve different parts of the 

problem (sub-problems), and then combine the solutions of the sub-problems to reach an overall solution.  

The dynamic programming approach seeks to solve each sub-problem only once, thus reducing the 

number of computations: once the solution to a given sub-problem has been computed, it is stored or 

"memo-ized": the next time the same solution is needed, it is simply looked up. This approach is 

especially useful when the number of repeating sub-problems grows exponentially as a function of the 

size of the input. Let’s consider the set S = {2, 3, 4, 5} and let t = 8. The worked out DP can be tabulated 

as: 

Table1: Dynamic Programming 

 0 1 2 3 4 5 6 7 8 

2 T F T F F F F F F 

3 T F T T F T F F F 

4 T F T T T T T T F 

5 T F T T T T T T T 
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Since A[5, 8] = T rue , there exists a subset of S that sum up to t(8). [5]  

 

1.1.3.3 Dynamic Dynamic Programing (DDP) 

This algorithm is the extension of the dynamic programming with a dynamically allocated list of target 

sums. It splits the input array into two sub-arrays. Perform dynamic programming to produce a target 

map, and backtracking to enumerate the targets of subsets. The search terminates successfully when a 

subset T is discovered such that t − Σ(S) is in the target map. This hybrid approach has some of the 

advantages of each previous method, while quadratically reducing the space complexity. 

 

The list of target sums is initialized with the original target. For each yi in a set of positive integers S= 

{y1,y2,.....yn}, targets is added to the list by subtracting yi from the existing targets. The list grows with 

each of the early iterations, reaching a peak in iteration i when 2i first exceeds the maximum value on the 

current target list. From that point on, the list shrinks in size. The new targets added to the list are pruned 

from the list when the sum of the remaining numbers in the set is not sufficient to reach them, also 

suppress duplication of targets on the list. [3] 

 

1.2 Introduction 

SSP is an important problem in complexity theory and cryptography. SSP can simply be described as: 

given a set of positive integers S and a target sum t, is there a subset of S whose sum is t? For example, 

given the set {1, 2, 3, 4} and t=5, the answer is yes because the subsets {1, 4} and {2, 3} sum to 5. Thus, 

SSP is decision problem that seeks answer either yes or no. the optimization problem associated with this 

decision problem arises in many practical applications. In the optimization problem subset S’ of S whose 

sum is largest number but not larger than t it to be found. 

 

The complexity of subset sum can be viewed as depending on two parameters: n, the number of decision 

variables or number of values, and m, the precision of the problem (number of binary place values or bits 

that it takes to state the problem). The complexity of the best known algorithms is exponential in the 

smaller of the two parameters m and n. Thus, the problem is most difficult if n and m are of the same 

order. It only becomes easy if either n or m becomes very small. If n is small, then an exhaustive search 

for the solution is practical. If m is a small fixed number, then there are dynamic programming algorithms 
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that can solve it exactly [7]. There are two ways to count the solution space in the SSP. One is to count 

the number of ways the variables can be combined. There are 2n possible ways to combine the variables. 

However, with n = 10, there are only 1024 possible combinations to check. These can be counted easily 

with a branching search. The other way is to count all possible numerical values that the combinations 

can take. There are 2m possible numerical sums. However, with m = 5 there are only 32 possible 

numerical values that the combinations can take. These can be counted easily with a dynamic 

programming algorithm. 

 

SSP is interesting because, depending on what parameter is used to characterize the size of the problem 

instance, it can be shown to have polynomial, sub-exponential, or strongly exponential worst-case time 

complexity. It is known to be NP Complete [3] and hence difficult problem to solve generally. There are 

several ways to solve SSP in exponential and polynomial time. A naive algorithm with time complexity 

O(n.2n) solves SSP by iterating all the possible subsets and each for its subset comparing its sum with 

target t. A backtracking algorithm for SSP can be modeled as a binary tree where each node represents a 

single activation of the recursive code. Each activation processes one element of S, and it makes at most 

two recursive calls. So the total number of recursive calls cannot exceed the number of nodes in a full 

binary tree of depth n, and the worst-case time complexity is O(2n) when size of the input set (denoted 

n) is used as the complexity parameter [7]. When the maximum value in the set (denoted m) is used as 

the complexity parameter, dynamic programming can be used to solve the problem in O(m.n2) time, 

which is polynomial in n and m. If m = 2n, O(m.n2) is really O(n2. 2n), which is called pseudo-polynomial 

time complexity. This is actually worse than O(2n) – worse than backtracking. A variant of dynamic 

programming called Dynamic Dynamic programming (DDP) has been shown to have a worst-case sub-

exponential time complexity of 2O(√x) when the total bit length x of the input set is used as the complexity 

parameter [7]. 

 

Thomas E. O’Neil [7] showed that DDP has lower step counts than both of the other algorithms for 

medium-density to low-density problem instances. This dissertation work evaluates the performance of 

BT, DP and DDP algorithms empirically in terms of total bit length used to represent input sets. 

 

1.3 Problem Definition 

All the algorithms: Backtracking, Dynamic Programming, and Dynamic Dynamic Programming have 

strongly exponential time complexity when the complexity parameter is the number of integers in the 
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input set. At the same time, DDP is known to have sub-exponential worst-case time complexity when 

the complexity parameter is the total bit length of the input set [7]. Now the question is: What happens 

when total bit length of input set is used to evaluate performance of above mentioned algorithms for 

solving SSP? This dissertation work answers the question. 

 

1.4 Objective 

The main objective of this research work is to evaluate performance of the algorithms: BT, DP and DDP 

for solving SSPs in terms of total bit length used to represent the inputs.   

 

1.5 Motivation 

Subset Sum Problem is an important problem in cryptography, scheduling and many more. It is an NP 

Complete problem. The general algorithms for solving SSP have exponential complexity. The 

complexity of SSP could be studied depending on two parameters: n and m, where n is the input size and 

m is the total bit length. When n is considered as the complexity parameter, the algorithms: DDP, DP 

and BT have exponential complexity. And when m is considered as the complexity parameter, DDP has 

sub-exponential complexity, but the complexity of DP and BT was unknown. So, to explore their 

response through the empirical analysis is motivational. 

 

1.6 Report Organization 

The background part of this dissertation work focuses on Subset Sum Problems (SSP), the complexity 

classes and the algorithms: Dynamic Dyamic Programming (DDP), Dynamic Programming (DP) and 

Backtracking (BT), for solving SSP. Also, a briefly introduced the SSP in context of the complexities of 

the SSP solving algorithms when the parameters are  input-size and total bit-length.  

 

The problem formulation part states the main problem for which this dissertation work is going to have 

it as its goal. The goal is stated in its 'Objective'. And the motivation to this dissertation is described in 

'Motivation' section. 

 

Chapter 2 consists of literature review which verifies reviews the related topics. Literature review 

includes summary of definitions of SSP, algorithms: DDP, DP & BT for solving SSP and their 

complexities when the evaluating parameter is input size or total bit length of the input set. This chapter 

also contains the research methodology which shows the flow of this dissertation work. 
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Chapter 3 consists of 'Design & Implementation' section which lists the tools, programming language 

and data-structure used. It also describes the algorithms for solving SSP, their flow and trace each 

algorithm in detail. 

 

Chapter 4 consists of 'Data collection & Analysis' section. The data collection part describes the number 

of data collected, the maximum number and which ranges they are limited to. The analysis part analyzes 

the different cases of N (input size) and M (total bit-length) by plotting the graph: M versus the step-

counts. 

 

Finally, Chapter 5 consists of 'Conclusion and Limitations' of this whole dissertation work. This section 

also shows the guidelines for future research. 

 

 

 

 

 

 

 

Chapter 2: Literature Review & Methodology 

2.1 Literature Review 

SSP is a well-known hard (NP-complete) problem that is generally solved by algorithms: BT, DP, and 

DDP. It is known to have a pseudo-polynomial-time solution [5]. Time complexity may be polynomial, 

sub-exponential, or exponential depending on the parameter chosen to characterize the size of the 

problem instance. Let n represent the size of the input set S, and let m be the maximum value in the set. 

A standard dynamic programming algorithm for the problem can be shown to have polynomial time 

complexity O(n2 m). On the other hand, there is an algorithmic model that includes both backtracking 

and dynamic programming in the research literature that is shown to have a strongly exponential lower 
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bound of 2Ω(n) on the closely related Knapsack problem when n alone is used as the complexity parameter. 

And finally, a variant of dynamic programming called Dynamic Dynamic Programming has been shown 

to have a worst-case sub-exponential time complexity of 2O(√x) when the total bit length x of the input set 

is used as the complexity parameter. [7] 

 

The SSP is a special case of the knapsack problem and in the cryptology literature is often referred to as 

the knapsack problem. The SSP is hard; its decision problem was shown to be NP-complete by Karp 

[25]. SSP is the general form of Partition problem. In Partition problem the Set is partitioned into two 

subsets that have the same sum where as in the SSP a subset of the Set has to meet a target integer [3]. It 

will be shown that the related search problem of actually finding a solution, even when a solution is 

known to exist, is at least as hard as any NP-complete problem [29]. 

 

The experiment in which the number of integers in the input set is considered as the complexity parameter, 

all three algorithms have strongly exponential time complexity. But DDP is known to have sub-

exponential worst-case time complexity when the complexity parameter is the total bit length of input 

set. This suggests that an additional experiment, one in which step counts are plotted as a function of 

total bit length of input, is needed to further corroborate published analytical results. [7] 

 

A slightly more efficient algorithm checks out all possible 2n subsets. One typical way to do this is to 

express all numbers from 0 to (2n – 1) in binary notation and form a subset of elements whose indexes 

are equal to the bit positions that correspond to 1. For example, if n is 4 and the current number, in 

decimal, is say 10 which in binary is 1010. Then check the subset that consists of 1st and 3rd elements of 

S. One advantage of this approach is that it uses constant space. In each iteration, examine a single 

number. But this approach will lead to a slower solution if |S' | is small. Consider the case where t = S[ n 

/2 ]. Examine around O(2n/ 2 ) different subsets to reach the solution.[5] 

 

An obvious exponential-time search BT algorithm successively generates all subsets and computes their 

sums. But DP is not so obviously exponential, it uses a Boolean array A[t] with index range from 0 to t 

(target) with A[0] initially true and the rest false. The problem is solved in n passes over the array, one 

pass for each x in the set. During the ith pass A[j+xi] is set to true for each j where Ai-1[j] is true. A subset 

with the target sum t is discovered if A[t] becomes true. The complexity depends on m (max number in 

the set). The complexity is generally polynomial. But the hard instances of the problem have m = O(2n). 
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In computational complexity theory, problems within the NP-complete class have no known algorithms 

that run in polynomial time. NP-complete problems can still be solved, but either the input data must be 

restricted to reasonably small sizes to accommodate super-polynomial time algorithms or accuracy must 

be compromised in implementing faster approximation algorithms, neither of which are amenable 

conditions. [30] 

 

The DP algorithm is considered to be pseudo-polynomial because it behaves as a polynomial time 

algorithm for large elements in S and relatively small T, but it is not actually polynomial time. However, 

it is reasonable to conclude that its runtime is O(n 2n) because this represents the worst-case conditions 

according to order of growth analysis, and one cannot ensure that T is indeed bounded by the sum of the 

elements in the set. Note that the complete search algorithm given earlier also runs in O(n 2n). Although 

the time complexities of both algorithms are identical, the dynamic programming one is generally faster 

due to its use of optimal substructure and overlapping sub-problems. In fact, this is the fastest known 

runtime of any classical algorithm for the SSP. [30] 

 

DDP is the algorithm that combines BT and DP. The input set is ordered and partitioned into a denser 

and sparser subset. BT is employed on the sparse subset, while DP is used for the dense subset. The 

results are combined to achieve time complexity 2O(√x), where x is the total length in bits of the input set. 

A simpler algorithm that achieves a similar time complexity is defined and it can be used for both SSP 

and Partition problem. [3] 

 

In order to apply DP, the SSP must exhibit optimal substructure and overlapping sub-problems. Optimal 

substructure appears when the solution to a problem relies on the solutions to smaller cases. In the SSP, 

suppose that one element xj of the solution subset is known. The original problem is now reduced to 

finding a subset of n - 1 elements that adds up to T - xj, so this sub-problem consists of fewer elements 

and a smaller sum. Thus, an algorithm for the SSP can utilize optimal substructure by iterating over all 

xi to create the sub-problems, iterating over xi recursively on those sub-problems until a base case is 

reached, and then conflating the solutions in order to solve the original problem, thereby reducing the 

number of time-consuming operations done.[25] 

 

The DP algorithm is considered to be pseudo-polynomial because it behaves as a polynomial time 

algorithm for large elements in S and relatively small T, but it is not actually polynomial time as 

previously shown. However, it is reasonable to conclude that its runtime is O(n 2n) because this represents 
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the worst-case conditions according to order of growth analysis, and one cannot ensure that T is indeed 

bounded by the sum of the elements in the set. Note that the complete search algorithm given earlier also 

runs in O(n 2n). Although the time complexities of both algorithms are identical, the dynamic 

programming one is generally faster due to its use of optimal substructure and overlapping sub-problems. 

In fact, this is the fastest known runtime of any classical algorithm for the SSP.[25]  

 

There is no mutual dependence between the number of objects in the set n and the maximum value m. 

The bit length of a problem instance is O(n·log m), and analysis based on this measure actually yields a 

result that is distinct from 2O(n/2) and O(m3). Stearns and Hunt [30 used input length x to demonstrate that 

an algorithm for the Partition problem (a special case of Subset Sum) exhibits sub-exponential time: 

2O(√x). The significance of this result was probably obscured by the claim in the same paper that the 

Clique problem is also sub-exponential, while its dual problem Independent Set remains strongly 

exponential. This apparent anomaly is a representation-dependent distinction, and it disappears when a 

symmetric representation for the problem instance is used [28]. Sub-exponential time for Partition, 

however, appears to have stronger credibility. This result was replicated explicitly for Subset Sum (using 

a different algorithm) in [3], and it seems unlikely that symmetric representation will make it disappear. 

This sets the stage for the current study, in which empirical evidence that instances of Subset Sum where 

the input set is dense (n is Θ(m)) are very easy to solve. The ultimate goal, beyond the scope of this paper, 

is to develop an algorithm for Subset Sum that remains sub-exponential even under the test of symmetric 

representation for the input set. This would solidify the argument that Subset Sum is truly an easier hard 

problem. [21] 

Subset Sum is apparently has upper bound O( 2n/2) when size of the input set (denoted n) is used as the 

complexity parameter . When the maximum value in the set (denoted m) is used as the complexity 

parameter, DP can be used to solve the problem in O(m3) time. The SSP is known to be NP-Complete 

[12] and hence difficult problem to solve generally. Cook, Karp and others, defined such class of 

problems as NP Hard problem [16]. Some of the NP Hard problems include Travelling Salesman 

Problem (TSP), Boolean Satisfiability Problem, Knapsack Problem, Hamiltonian Path Problem, Post 

Correspondence Problem (PCP), and Vertex Cover Problem (VCP). There are several ways to solve SSP 

in exponential and polynomial time. A naive algorithm with time complexity O(n2n) solves SSP by 

iterating all the possible subsets and each for its subset comparing its sum with target X. A better 

algorithm proposed in 1974 using the Horowitz and Sahni decomposition scheme which achieves time 

O(n 2n/2). If the target T is relatively small then there exist dynamic programming algorithms that can 

run much faster. A classic Pseudo-Polynomial algorithm Bellman Recursion solves SSP in both time and 
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space O(nc). And there are many other algorithms, for example Ibam and Kim [13] developed a fully 

polynomial approximation scheme for the SSP in 1975. It was improved upon by Lawler [14] and Lam 

by Martello and Toth [31]. Martello and Toth reported very good results for several approximation 

schemes in their survey and experimental analysis [9]. [4] 

 

2.2 Methodology 

The research is totally experimental. It is a traced driven approach in which random numbers of input 

size (n) varying from 15 to 25 are generated for the input set, the maximum number (m) of the input set 

is set to the number of the parameterized bit length. That is, if the parameterized bit length is 10 then the 

maximum number in the set is set to 1024. For the better result, m is varied from 10 to 20.   The algorithms: 

BT, DP and DDP are implemented on those randomly generated sets on above bounding cases (n  = 15 

to 25 and m = 10 to 20)  and step counts are noted for each set instances. Average of 50 similar instances 

is calculated and a graph of the average step-count verses the total bit length is plotted. 

 

 

 

 

Chapter 3: Design & Implementation 

3.1 Tools & Language: The tools used during the dissertation work are 

listed as follows: 

1. Sublime Text 2: It’s the text editor in which the ruby code in .rb file extension is written. The 

text editor is very easy to use for multiple selections to rename variables quickly. 

2. iTerm: The written code are run through the terminal to display the output: step-counts. Its very 

easy for the repeating command and copy paste feature. 

3. LibreOffice Calc: This is the spreadsheet program for storing the step-counts for different set 

instances.  It is intuitive, easy to learn and has a comprehensive range of advanced functions. 

4. QtiPlot: It is a fully fledged plotting software. It can make two and three dimensional plots of 
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publication quality, both from datasets and functions. It can do non-linear fitting and multi-peak 

fitting. The tool has been used to plot the graph: step-count vs. total bit length. 

5. Ruby: The programming language used is “ruby 1.9.3p484”. It is an object oriented 

programming language. It can easily be formatted to fit  the needs and work as efficiently as 

possible. There are alots of built-in functions which can be used to make the task easy and 

efficient. Some of the used built-in functions are  to_a.sample, times, sort, reverse, length, 

include?, Math.log2  etc. The only array data-structure is enough for the implementation. 

 

3.2 Algorithms 

3.2.1 Dynamic Dynamic Programming (DDP) 

DDP is the extension of the dynamic programming. In dynamic programming the list of sum set is 

maintained. The length of the sum-set list is fixed. But in DDP the list of target is maintained which can 

grow and shrink in size. The search terminates successfully when the processing number is in the list of 

targets. The algorithm for the DDP can be stated as follows: 

 

Algorithm 

procedure: Dynamic Dynamic Programming 

input: S-Set of numbers, target 

output: true or false 

1. if (target = 0 or target = Σ(S)) 

- solution found 

2. else if (target > Σ(S)) 

- solution not found 

3. else 

 - if (target > Σ(S)/2)  

- target = Σ(S) − target 

  - if (target ∈  S) 

- solution found 

- else 

- List target_list = {target} 

- sum_of_ rest = Σ(S) 
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- for each num in S from high to low 

- sum_of_ rest = sum_of_ rest − num; 

- List newlist = {} 

- for each t in target_list 

- if (t − num = 0 or t − num = sum_of_ rest) 

- solution found 

- else if (t − num > 0 and t − num < sum_of_ rest) 

- newlist.append(t − num) 

- else 

- newlist.truncate(sum_of_ rest) 

- target_list.mergewith(newlist) 

4. Terminate 

 

At first, the list of targets is initialized with the original target. Then for each number in the given set is 

processed and subtracted from each target in the list of targets. The solution is found if the result from 

subtraction is found in the targets list. Otherwise, the result is appended in targets list if its positive and 

the result is less than the sum of the remaining numbers to be processed in the given set. The targets 

which are greater than the sum of numbers to be processed are removed. In this way, the appending 

increases the length of targets list and removal of targets decreases the length of the targets list. 

 

3.2.2  DDP Example Trace 

Lets trace DDP for SSP in which S = {2, 3, 5, 7, 10}, and t = 14. 

Here,  ΣS = 27.  

The steps: 1 and 2 do not get satisfied and second 'else' of the step 3 is reached assigning target_list = 

{14} and  sum_of_rest = 27. 

 

processing each number in S = {10, 7, 5, 3, 2}(descending order), 

 

Step1: Take number 10  

sum_of_rest = 27 – 10 = 17 

new_list = {} 

for each target in target_list ie {14} 
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processing target 14 

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (14 – 10 ==0 or 14 – 10 == 17) results 

negative 

 checking the condition (t − num > 0 and t − num < sum_of_ rest) => (14 – 10 > 0 and  14 – 10 < 17) 

results positive, so new_list += {t – num} => new_list = {14 – 10 } => new_list = {4} 

after merging new_list with target_list, target_list = {14, 4} 

 

Step2: Take number 7 

sum_of_rest = 17 – 7 = 10 

new_list = {} 

for each target in target_list {14, 4} 

processing target is 14, 

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (14 – 7 ==0 or 14 – 7 == 10) 

results negative 

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (14 – 7 > 0 and 14 – 7< 10) 

results positive, so new_list += {t – num} => new_list = {14 – 7} => new_list = {7} 

 

now, processing target is 4, 

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (4 – 7 ==0 or 4 – 7 == 10) 

results negative, 

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (4 – 7 > 0 and 4 – 7 < 10) 

results negative, so no update to new_list here 

 

after merging new_list with target_list, target_list = {14, 4, 7} 

 

Step3: Take number 5 

sum_of_rest = 10 – 5 = 5 

new_list = {} 

for each target in target_list {14, 4, 7} 

processing target is 14, 

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (14 – 5 == 0 or 14 – 5 == 5) 

results negative 

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (14 – 5 > 0 and 14  – 5 < 5) 
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results negative, so no new_list is updated, ie new_list = {} 

 

processing target is 4, 

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (4 – 5 == 0 or 4 – 5 == 5) 

results negative,  

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (4 – 5 > 0 and 4  – 5 < 5) 

results negative, again, no new_list is updated, ie new_list = {} 

 

processing target is 7, 

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (7 – 5 == 0 or 7 – 5 == 5) 

results negative, 

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (7 – 5 > 0 and 7 – 5 < 5) 

results positive, so new_list = {7 – 5} =>  new_list = {2} 

  

after merging new_list with target_list, target_list = {14, 4, 7, 2} 

 

Step4: Take number 3 

sum_of_rest = 5 – 3 = 2 

new_list = {} 

 

for each target in target_list {14, 4, 7, 2} 

processing target is 14, 

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (14 – 3 == 0 or 14 – 3 == 2) 

results negative 

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (14 – 3 > 0 and 14  – 3 < 2) 

results negative, so no new_list is updated, ie new_list = {} 

 

processing target is 4, 

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (4 – 3 == 0 or 4 – 3 == 2) 

results negative 

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (4 – 3 > 0 and 4  – 3 < 2) 

results positive, so new_list = {4 – 3} =>  new_list = {1} 
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processing target 7,  

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (7 – 3 == 0 or 7 – 3 == 2) 

results negative 

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (7 – 3 > 0 and 7  – 3 < 2) 

results negative, no new_list is updated, ie new_list = {1} 

processing target is 2, 

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (2 – 3 == 0 or 2 – 3 == 2) 

results negative, 

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (2 – 3 > 0 and 2  – 3 < 2) 

results negative, no new_list is updated, ie new_list = {1} 

 

after merging new_list with target_list, target_list = {14, 4, 7, 2, 1} 

 

Step5: Take number 2 

sum_of_rest = 2 – 2 = 0 

new_list = {} 

 

processing target is 14, 

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (14 – 2 == 0 or 14 – 2 == 0) 

results negative, 

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (14 – 2 > 0 and 14  – 2 < 0) 

results negative, so no new_list is updated, ie new_list = {} 

 

processing target is 4, 

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (4 – 2 == 0 or 4 – 2 == 0) 

results negative, 

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (4 – 2 > 0 and 4  – 2 < 0) 

results negative, so no new_list is updated, ie new_list = {} 

 

processing target is 7, 

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (7 – 2 == 0 or 7 – 2 == 0) 

results negative, 

checking the condition (t − num > 0 and t − num < sum_of_ rest) => (7 – 2 > 0 and 7  – 2 < 0) 
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results negative, so no new_list is updated, ie new_list = {} 

 

processing target is 2, 

checking the condition (t − num = 0 or t − num = sum_of_ rest) => (2 – 2 == 0 or 2 – 2 == 0) 

results positive,  solution found. 

 

3.2.3 Dynamic Programming (DP) 

DP is an algorithm design method that can be used when the solution to a problem can be viewed as the 

result of a sequence of decisions [11]. It is the technique related to divide-and-conquer, in the sense that 

it breaks problems down into smaller problems that it solves recursively. It is applicable when the sub-

problems are not independent, that is, when sub-problems share sub-sub-problems. It solves every sub-

subproblems just once and then saves the answers in a table, thereby avoiding the work of re-computing 

the answer every time the sub-subproblems are encountered [17].  

 

Algorithm 

procedure: Dynamic Programming 

input: S-Set of numbers, target 

output: true or false 

1. if (target = 0 or target = Σ(S)) 

- solution found 

2. else if (target > Σ(S)) 

- no solution found 

3. else 

- if (target > Σ(S)/2) 

- target = Σ(S) − target  

- if (target ∈  S) 

- solution found 

- else 

- BitMap summap: summap[0] = 1 

- for each num in S from high to low 

- BitMap newmap = summap >> num 

- summap = summap or newmap 
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- if (summap[target] = 1) 

- solution found 

- else 

- solution not found 

4. Terminate 

 

The symmetry heuristic ( target = Σ(S) − target if (target > Σ(S)/2)) can result in significant savings of 

time and space, since the size of the sum map depends directly on the target t.  

 

The implementation employs bitwise shift. The boolean array summap[], with index range from 0 to t, is 

initially set as summap[0] true and the rest of the array false[7]. Each number x in the set is considered 

and summap[x] is set true. Also, previously true index i of summap[i]  plus x, ie summap[i + x ], is also 

set to true. The solution to the SSP is present if summap[t] is true. The tabular work out for DP would 

be: 

Table2: Tabular work out for Dynamic Programming  

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

2 T F T F F F F F F F F F F F F 

3 T F T T F T F F F F F F F F F 

5 T F T T F T F T T F T F F F F 

7 T F T T F T F T T T T F T F T 

10                

 

3.2.4 DP Example Trace 

Lets trace DP for SSP in which S = {2, 3, 5, 7, 10}, and t = 14. 

Here,  ΣS = 27.  

The above algorithm’s steps: 1 and 2  get false, and reach second 'else' part of step 3. 

First, set  summap array as summap[0] = 1 

Then, for each number in S from high to low, ie {10, 7, 5, 3, 2} 

 

Step1: Take number 10 

new_map = sum_map[10] = 1 
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then, sum_map[0] = sum_map [10] = 1  

as sum_map[14] == 1 is false, 

 

Step2: Take number 7 

new_map = sum_map[7] = 1 

then, sum_map[0] = sum_map[7] = sum_map[10] = 1 

the sum_map[17] would have value 1, but since sum_map array has max index = 14,  sum_map[17] = 1 

is rejected. 

 

Step3: Take number 5 

new_map = sum_map[5] = 1, 

and, sum_map[0] = sum_map[5] = sum_map[7] = sum_map[12] = 1 

 

Step4: Take number 3 

new_map = sum_map[3] = 1, 

sum_map[0] = sum_map[3] = sum_map[5] = sum_map[7] = sum_map[8] = sum_map[10] = 

sum_map[12] = 1 

again, the sum_map[15] would have value 1, but since sum_map array has max index = 14,  sum_map[15] 

= 1 is rejected. 

 

Step5: Take number 2 

new_map = sum_map[3] = 1, 

sum_map[0]  = sum_map[2]  = sum_map[3] = sum_map[5] = sum_map[7] = sum_map[8] = sum_map[9]  

= sum_map[10] = sum_map[12] = sum_map[14]  = 1  

Since, sum_map[t], that is ,  sum_map[14] = 1, there is solution to this subset-sum problem. 

  

3.2.5 Backtracking (BT) 

BT is a general algorithmic technique that considers searching every possible combination in order to 

solve an optimization problem. It is a refinement of the brute force approach, which systematically 

searches for a solution to a problem among all available options. In its basic form, backtracking resembles 

a depth-first search in a directed graph [15]. By inserting more knowledge of the problem, the search tree 

can be pruned to avoid considering cases that don't look promising. A node is said to be promising if 
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there is possibility of reaching to the solution from this node. A function that computes whether a node 

is promising or not can be implemented as below: 

 

wtSoFar = weight of node, i.e., sum of numbers included in partial solution node represents 

possibleLeft = weight of the remaining items i+1 to n (for a node at depth i) 

 

boolean promising ( i ) 

{ 

return(wtSoFar + possibleLeft ≥ S)&&( wtSoFar == S || wtSoFar + w[i] ≤ S)  

} 

 

Algorithm 

procedure: Backtracking 

input: S-Set of numbers, target, sor- sum of rest 

output: true or false 

1. if (index < 0 ∨  target < 0 ∨  target > Σ(S)) 

 - no solution found 

2. else 

- if (target > setsum/2)  

- target = Σ(S) - target 

- current_num = S[index] 

- increment index 

- if (sor = target ∨  current_num = target ∨  target = 0) 

-solution found 

- else if current_num < target 

- if promising 

- include current_num and check for the remaining numbers 

- sor = sor - current_num 

- target = target - current_num 

- Call BT recursively 

- else  

- exclude current_num and check for the remaining numbers 

- sor = sor - current_num 
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- Call BT recursively 

- else  

- no solution found 

3. Terminate 

 

Check if (target > Σ(S)/2) to implement a symmetry-motivated heuristic that looks for the smaller of 

targets t and Σ(S) − t. The rationale is that a smaller target should have a shallower depth of recursion, 

but choosing a smaller target may also minimize the benefit bounding condition in line 1. 

 

Backtracking has a simple recursive formulation, and with the proper bounding conditions. The logic is 

simply to branch on the numbers in the set S. For any element y of S, if there is a subset S with sum t, it 

either contains y or it doesn’t. The element y is checked through the promising function. If it seems 

promising then put y in the subset to get by recursive call on S − {y} and t − y. Otherwise, skip y and 

find S by recursive call on S − {y} and t. 

 

3.2.6 BT Example Trace 

Lets trace BT for SSP in which S = {2, 3, 5, 7, 10}, and t = 14. 

Here, ΣS = 27.  

The set S with its element in non-increasing order, S = {10, 7, 5, 3, 2} 

 

The tracing can be shown by the following binary tree 
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Figure 3: Tracing Backtracking Algorithm 

 

Step1:  

Starting from the root node, the first processing element is 10, the promising condition is satisfied so 10 

is included and proceed in left branch to 2nd level 10-node. 

 

Step2: 

The processing number is 7, since the promising condition is violated, the number 7 is excluded and no 

branch could be extended. This pruned state is represented by X. The branch is right extended excluding 

the number 7. 

 

Step3: 

The processing number is 5, on 3rd level 10-node. The promising condition is again violated including 5, 

so proceed to 4th level 10-node excluding number 5. 

 

Step4: 

The processing number is 3. The number is included as the promising condition is satisfied and reached 
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5th level 13-node. 

 

Step5: 

The processing number is 2, the 5th level 13-node cannot meet the target including  or excluding the 

number 2.  

 

 So it back tracks to 4th level 10-node. The promising condition is not satisfied excluding the leveled 

processing number 3. Again do backtrack to 3rd level 10-node and to 2nd level 10-node, and finally to the 

root node. 

 

Step6: 

The tracing begins excluding the number 10, the branching starts from 2nd level 0-node. Here the 

processing number is 7.  As the promising condition gets satisfied, proceed to 3rd level 7-node. 

 

Step7: 

The processing number is 5. The promising condition is satisfied and proceed to 4th level 12-node. The 

promising condition is not satisfied for the next processing number 3. So, it proceeds excluding 3 to reach 

5th leveled 12-node.  

 

Step8: 

The processing number is 2 and the target is met including number 2 from 5th level 12-node. That is, 12 

+ 2 = 14.  

 

All the X-marked nodes are the pruned nodes. From these pruned nodes the target could not be met. 
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Chapter 4: Data Collection & Analysis 

4.1 Test Case Design 

For the test case, a set of 15 random numbers and the maximum number (m) in the set was set to 1024. 

All the three algorithms were tested on that set and noted the step-counts for each algorithm. This is an 

instance of the test case design. 50 similar instances were generated and tested. Finally, the average step-

count of those 50 instances is calculated and a graph of 'm' versus 'average step-count’ is plotted.    

 

4.2 Data Collection 

The required data for the experimental analysis is generated. The sets of size (n) from 15 to 25 and bit 

length (m) from 10 to 20 are generated. For each size and bit length, 50 set instances have been generated. 

The step-counts for 50 instances of the specific value of n and m are averaged. 

For example, 50 instances of the set for n = 15 and m = 10 are generated as: 

 

4.2.1 For the Dataset with n = 15 and m = 10  

[1024, 327, 78, 360, 469, 666, 83, 717, 224, 189, 788, 671, 790, 269, 399], 

[569, 177, 591, 146, 319, 702, 596, 780, 348, 247, 133, 259, 1024, 489, 335], 

[562, 169, 247, 614, 193, 399, 397, 579, 790, 1024, 420, 91, 435, 535, 367], 

[58, 656, 124, 324, 588, 1024, 278, 873, 493, 307, 969, 121, 740, 9, 55], 

[655, 612, 74, 827, 80, 337, 1024, 713, 544, 367, 49, 13, 97, 395, 556], 

[1024, 345, 783, 1, 111, 728, 360, 302, 569, 642, 920, 591, 431, 449, 222], 

[1024, 677, 505, 741, 630, 424, 607, 288, 452, 264, 589, 701, 208, 765, 368], 

[124, 888, 951, 1024, 841, 406, 444, 949, 930, 101, 721, 835, 926, 376, 188], 

[350, 518, 197, 283, 640, 340, 514, 59, 326, 1024, 51, 311, 261, 554, 437], 

[744, 645, 377, 820, 322, 414, 129, 406, 598, 1024, 790, 764, 753, 211, 539], 

[349, 683, 771, 803, 628, 455, 552, 35, 413, 405, 712, 377, 423, 1024, 167], 

[509, 207, 237, 154, 212, 320, 194, 770, 1024, 477, 93, 512, 395, 601, 912], 

[768, 1024, 285, 621, 296, 669, 342, 376, 645, 951, 926, 340, 86, 289, 145], 

[644, 113, 950, 14, 263, 216, 280, 471, 108, 1024, 554, 312, 642, 834, 529], 

[230, 138, 137, 79, 1024, 858, 579, 642, 385, 673, 891, 664, 32, 200, 668], 

[826, 887, 729, 342, 621, 612, 367, 902, 549, 201, 299, 326, 80, 586, 1024], 
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[360, 56, 521, 153, 933, 1024, 46, 52, 552, 723, 209, 692, 728, 362, 617], 

[856, 611, 770, 509, 939, 321, 804, 577, 363, 525, 314, 701, 384, 1024, 383], 

[97, 843, 445, 776, 745, 799, 421, 552, 999, 75, 945, 398, 268, 1024, 301], 

[959, 633, 803, 1024, 880, 917, 13, 666, 867, 331, 232, 700, 981, 909, 765], 

[618, 362, 66, 441, 1024, 913, 67, 661, 505, 546, 863, 70, 583, 473, 329], 

[477, 939, 392, 1024, 630, 72, 102, 23, 346, 141, 622, 768, 607, 525, 938], 

[246, 324, 319, 1024, 408, 360, 901, 78, 399, 118, 917, 542, 312, 845, 684], 

[776, 826, 178, 540, 729, 792, 616, 248, 154, 836, 1024, 415, 853, 760, 576], 

[1024, 663, 66, 460, 775, 152, 405, 79, 31, 543, 838, 794, 805, 669, 457], 

[558, 726, 832, 61, 728, 696, 83, 441, 866, 836, 611, 392, 417, 1024, 173], 

[390, 576, 117, 816, 852, 893, 866, 6, 377, 120, 176, 1024, 633, 157, 841], 

[727, 502, 348, 230, 1024, 15, 641, 86, 902, 874, 685, 458, 943, 506, 811], 

[945, 1024, 711, 591, 16, 677, 701, 535, 2, 807, 772, 416, 744, 723, 933], 

[767, 644, 237, 974, 710, 997, 303, 1024, 621, 230, 232, 928, 560, 835, 48], 

[237, 345, 167, 137, 454, 166, 930, 250, 899, 445, 924, 1024, 337, 529, 328], 

[8, 317, 574, 88, 412, 105, 468, 209, 3, 459, 1024, 314, 755, 567, 216], 

[169, 693, 170, 883, 471, 565, 635, 828, 345, 43, 736, 393, 1024, 144, 547], 

[903, 945, 366, 229, 769, 805, 926, 95, 978, 373, 625, 1024, 323, 142, 583], 

[295, 751, 923, 246, 1024, 967, 79, 284, 26, 758, 784, 977, 369, 875, 39], 

[534, 43, 191, 560, 74, 856, 802, 1024, 503, 803, 50, 278, 185, 398, 5], 

[924, 457, 262, 909, 872, 161, 163, 563, 146, 248, 1024, 331, 791, 122, 499], 

[851, 796, 575, 703, 130, 459, 46, 1000, 670, 184, 974, 505, 515, 714, 1024], 

[287, 326, 130, 166, 760, 303, 732, 1024, 331, 742, 675, 31, 106, 148, 273], 

[9, 108, 433, 536, 20, 344, 844, 667, 328, 597, 791, 704, 1024, 44, 766], 

[115, 640, 647, 242, 354, 887, 581, 953, 544, 87, 111, 1024, 947, 126, 347], 

[373, 705, 656, 1024, 382, 410, 585, 70, 87, 239, 447, 483, 619, 223, 733], 

[170, 228, 553, 376, 1024, 756, 698, 514, 517, 845, 247, 613, 32, 234, 308], 

[147, 7, 1024, 883, 556, 746, 553, 418, 850, 605, 232, 109, 685, 72, 434], 

[954, 386, 152, 667, 409, 319, 292, 736, 30, 469, 309, 1024, 212, 660, 226], 

[781, 778, 207, 639, 269, 916, 475, 534, 666, 297, 677, 485, 1024, 433, 471], 

[684, 853, 244, 1024, 859, 85, 182, 80, 505, 382, 275, 319, 812, 679, 493], 

[7, 829, 173, 275, 358, 456, 270, 31, 1024, 219, 645, 716, 383, 877, 597], 

[360, 616, 532, 316, 102, 483, 371, 192, 172, 294, 282, 1024, 677, 332, 536], 
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[691, 622, 1024, 508, 642, 525, 308, 669, 605, 592, 437, 95, 670, 480, 68] 

 

50 individual set for each instance when m varies from 10 to 20 and n varies from 15 to 25 is generated. 

Altogether, 11 x 11 x 50 = 6050 sets have been generated. The algorithms: BT, DP and DDP are 

implemented for each instance set. The step-count as an output of implemented algorithm is collected in 

a column of an excel file. The average of 50 step-counts with fixed value of n and m is calculated as 

shown in below: 

 

Table 3: Average step-count for n = 15, m = 10..11 

 

N=15, M = 10 (210 = 1024) M = 11 (211 = 2048) 

  BT DP DDP BT DP DDP 

Instance 1 34114 23344 333 33441 24479 528 

Instance 2 34727 23548 351 33623 26787 198 

Instance 3 34783 23209 1472 33770 27721 114 

Instance 4 33309 21663 714 35138 31935 726 

Instance 5 33313 20843 283 n n n 

Instance 6 33841 22127 199 34282 26422 614 

Instance 7 35537 24624 69 33495 27069 652 

Instance 8 34197 26336 1036 33550 26298 667 

Instance 9 34118 21948 606 33617 33164 650 

Instance 10 34904 23363 1096 35516 28998 134 

Instance 11 34444 23667 409 34508 28973 122 

Instance 12 34465 24331 348 33782 29294 639 

Instance 13 34299 23391 848 34646 32540 1704 

Instance 14 33726 20864 700 34371 26777 334 

Instance 15 33674 21797 441 33900 27837 566 

Instance 16 34550 24101 686 34330 27389 785 

Instance 17 33583 21303 618 33976 28039 1006 

Instance 18 36114 25780 428 34189 28726 833 

Instance 19 34163 21729 893 34222 29785 69 

Instance 20 34462 24122 238 34565 26299 722 

Instance 21 33926 21395 384 33592 30551 423 

Instance 22 33544 22216 717 35310 27041 360 

Instance 23 34290 21974 576 34217 27250 911 
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Instance 24 34806 26259 40 33386 25949 1090 

Instance 25 33591 23406 1515 34078 26196 1157 

Instance 26 34017 21498 600 34047 24864 541 

Instance 27 33546 22630 226 33193 31406 1190 

Instance 28 33815 24895 706 35197 24448 445 

Instance 29 33946 24892 999 34628 27057 674 

Instance 30 n n n 33496 25894 331 

Instance 31 34230 21873 727 33680 24688 200 

Instance 32 34619 19425 268 34543 26942 739 

Instance 33 33228 19982 857 33919 31858 1303 

Instance 34 34018 23941 826 34550 27228 688 

Instance 35 34252 22875 901 34005 28460 1430 

Instance 36 33474 23749 486 35987 30578 1430 

Instance 37 33222 21402 517 34203 26493 577 

Instance 38 34351 23736 1093 34163 29277 433 

Instance 39 34113 25124 252 34968 30053 433 

Instance 40 33769 19225 467 33889 30007 611 

Instance 41 33254 22550 114 33791 29629 1245 

Instance 42 34280 21975 1278 34152 29986 1459 

Instance 43 34207 24140 894 33736 28492 915 

Instance 44 33465 20806 440 34342 23931 710 

Instance 45 34100 22641 335 34096 25767 605 

Instance 46 35520 25955 1882 33643 30166 717 

Instance 47 34109 21111 790 33500 31887 657 

Instance 48 33520 21842 292 33413 26942 657 

Instance 49 34794 23368 1033 35460 27041 1806 

Instance 50 34412 24327 1145 35184 28998 674 

AVERAGE 34137.57 22883.71 655.6735 34189.57 28114.51 723.9592 

Note: n denotes the solution for the instance is not found 

 

4.3 Analysis 

The integer value of average step-count is calculated and plotted the integer value of step-count versus 

the bit-length (m).  
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Case1: For n = 15 

Table 4: Step-count for n = 15, m = 10..20 

M Step-counts BT Step-counts DP Step-counts DDP 

10 34137 22883 655 

11 34189 28114 723 

12 34140 31998 1292 

13 32945 34860 1226 

14 33922 35206 1225 

15        34149   36745 1282 

16 34339  38105 1521 

17 34103  37656 1327 

18 33696  36815 792 

19 34030  37468 1730 

20 34994  40811 3098 

 

 

 

Figure 4: Step-counts for n = 15, m = 10..20 

 

Case2: For n = 16    
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Table 5: Step-counts for n = 16, m = 10..20 

M Step-counts BT Step-counts DP Step-counts DDP 

10 68186 36191 889 

11 68366 46469 1292 

12 67871 55474 1711 

13 68194 63817 2448 

14 68140 68721 2746 

15 67809 71315 3224 

16 67501 74238 3579 

17 68736 79832 3875 

18 68597 82638 4156 

19 67158 85080 4364 

20 67880 88028 4551 

 

 

 

Figure 5: Step-counts for n = 16, m = 10..20 

 

 

Case3: For n = 17 
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Table 6: Step-counts for n = 17, m = 10..20 

m Step-counts BT Step-counts DP Step-counts DDP 

10 135530 51893 953 

11 135948 72117 1135 

12 135698 91609 2064 

13 135344 110537 3117 

14 135907 125746 4162 

15 132621 138349 6189 

16 135100 140441 7384 

17 135015 155551 7978 

18 135823 147399 8266 

19 135631 171309 8688 

20 136790 151689 8830 

 

 

Figure 6: Step-counts for n = 17, m = 10..20 

 

 

 

Case4: For n = 18 
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Table 7: Step-counts for n = 18, m = 10..20 

m Step-counts BT Step-counts DP Step-counts DDP 

10 270000 74239 870 

11 270827 106037 1658 

12 270388 142246 2437 

13 270917 185609 4576 

14 271570 224010 6295 

15 270437 247523 7153 

16 270204 270017 9295 

17 271295 284253 13008 

18 273189 299123 14040 

19 270008 310605 14938 

20 277357 312974 14859 

 

 

 

Figure 7: Step-counts for n = 18, m = 10..20 

 

 

Case5: For n = 19 



34 

 

Table 8: Step-counts for n = 19, m = 10..20  

m Step-counts BT Step-counts DP Step-counts DDP 

10 540354 107493 1318 

11 539243 151401 2027 

12 539836 212913 3773 

13 540370 284038 6116 

14 540289 366225 8341 

15 538544 433597 11570 

16 531016 502671 12624 

17 541319 541084 13862 

18 537815 549261 14140 

19 535592 557941 17510 

20 533607 562729 18905 

 

 

Figure 8: Step-counts for n = 19, m = 10..20 

 

 

 

Case6: For n = 20 
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Table 9: Step-counts for n = 20, m = 10..20  

m Step-counts BT Step-counts DP Step-counts DDP 

10 1077975 139991 1502 

11 1076292 203791 2158 

12 1078141 305599 3812 

13 1079323 425135 5730 

14 1077242 570356 8813 

15 1102725 749590 16893 

16 1077795 875468 24387 

17 1077487 988457 28311 

18 1075648 1058718 29947 

19 1077022 1101863 31737 

20 1073837 1126061 33037 

 

 

Figure 9: Step-counts for n = 20, m = 10..20 

 

 

 

Case7: For n = 21 
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Table 10: Step-counts for n = 21, m = 10..20  

m Step-counts BT Step-counts DP Step-counts DDP 

10 2154987 180800 1297 

11 2146534 282771 2977 

12 2159079 416478 3887 

13 2153435 604629 7241 

14 2151755 846146 12361 

15 2158925 1144460 20567 

16 2154908 1469388 25624 

17 2153033 1741033 37716 

18 2149218 1973957 47433 

19 2206845 2171567 57991 

20 2147656 2232050 65733 

 

 

 

Figure 10: Step-counts for n = 21, m = 10..20 

 

 

Case8: For n = 22 
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Table 11: Step-counts for n = 22, m = 10..20  

m Step-counts BT Step-counts DP Step-counts DDP 

10 4287897 230208 1650 

11 4306153 360472 2565 

12 4291283 566394 4979 

13 4300560 846314 9110 

14 4298776 1216764 11402 

15 4291727 1696116 21751 

16 4295210 2268459 35044 

17 4316306 2342682 55482 

18 4301736 3523562 70042 

19 4290882 3858119 77930 

20 4286604 4181512 81249 

 

 

Figure 11: Step-counts for n = 22, m = 10..20 

 

 

 

Case9: For n = 23 
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Table 12: Step-counts for n = 23, m = 10..20  

m Step-counts BT Step-counts DP Step-counts DDP 

10 8606483 292304 2093 

11 8584878 468073 3599 

12 8602117 732351 6747 

13 8578296 1111385 9722 

14 8553415 1677176 14574 

15 8575921 2410639 34151 

16 8583548 3422278 50751 

17 8561775 4532963 62927 

18 8570257 5754037 71609 

19 8573390 6239741 83186 

20 8610575 8573390 102355 

 

 

Figure 12: Step-counts for n = 23, m = 10..20 

 

 

 

Case10: For n = 24 
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Table 13: Step-counts for n = 24, m = 10..20  

m Step-counts BT Step-counts DP Step-counts DDP 

10 17159120 357947 2738 

11 17158788 579034 3732 

12 17149302 938669 5204 

13 17110091 1449497 11909 

14 17106312 2241199 16907 

15 17158586 3376867 27108 

16 17184825 4982786 54467 

17 17159312 6943242 64501 

18 17146444 9279666 79906 

19 17091372 11470264 91597 

20 17126665 13887013 112573 

 

 

Figure 13: Step-counts for n = 24, m = 10..20 

 

 

 

Case11: For n = 25 
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Table 14: Step-counts for n = 25, m = 10..20  

m Step-counts BT Step-counts DP Step-counts DDP 

10 34222042 440450 2780 

11 34185432 707408 4443 

12 34320384 1167212 7554 

13 34215419 1882590 13221 

14 34094609 2950559 21428 

15 34285386 4576428 36509 

16 34219673 6782869 56570 

17 34337625 9973402 78239 

18 34367879 13983540 92775 

19 34164170 18356114 106693 

20 34139709 22964581 123384 

 

 

 

Figure 14: Step-counts for n = 25, m = 10..20 

 

The above tabulations and graph plots show that the algorithms: DP and DDP have sub-exponential 
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complexity when the complexity parameter is the total bit-length m. The average sub-exponential growth 

rate in each case for DP and DDP can be tabulated as: 

 

Table 15: DDP and DP growth rate when complexity parameter is m 

Case Sub-exponential growth rate(DP) Sub-exponential growth rate(DDP) 

1 1.13 1.28 

2 1.13 1.23 

3 1.22 1.31 

4 1.21 1.45 

5 1.26 1.4 

6 1.3 1.45 

7 1.36 1.48 

8 1.42 1.56 

9 1.49 1.49 

10 1.53 1.35 

11 1.57 1.56 

 

BT seems steady or does not possess sub-exponential complexity when complexity parameter is total bit-

length (m). That is, the response is invariant for m parameter. But, it has the exponential complexity 

when the decision parameter is the input size (n).  

 

Analysis of BT in terms of number of elements, n 

Table 16: BT analysis in terms of n 

n\m 10 11 12 13 14 15 16 17 18 19 20 

10 1087 1095 1089 1100 1048 1123 N N N N N 

11 2149 2182 2174 N N 2164 2159 N N N N 

12 4177 4314 4361 4328 4271 4226 N N N 4301 N 

13 8638 8495 8528 8527 8659 8615 N 8345 N N N 

14 17192 17122 17084 17082 17130 17102 17255 16769 N N N 

15 34137 34189 34140 32945 33922 34149 34339 34103 33696 34030 34994 
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16 68186 68366 67871 68194 68140 67809 67501 68736 68597 67158 67880 

17 135530 135948 135698 135344 135907 132621 135100 135015 135823 135631 136790 

18 270000 270827 270388 270917 271570 270437 270204 271295 273189 270008 277357 

19 540354 539243 539836 540370 540289 538544 531016 541319 537815 535592 533607 

20 1077975 1076292 1078141 1079323 1077242 1102725 1077795 1077487 1075648 1077022 1073837 

21 2154987 2146534 2159079 2153435 2151755 2158925 2154908 2153033 2149218 2206845 2147656 

22 4287897 4306153 4291283 4300560 4298776 4291727 4295210 4316306 4301736 4290882 4286604 

23 8606483 8584878 8602117 8578296 8553415 8575921 8583548 8561775 8570257 8573390 8610575 

24 17159120 17158788 17149302 17110091 17106312 17158586 17184825 17159312 17146444 17091372 17126665 

25 34222042 34185432 34320384 34215419 34094609 34285386 34219673 34337625 34367879 34164170 34139709 

Note: N denotes the solution for the instance is not found 

 

Figure 15: BT analysis in terms of n 

 

This graph clearly shows that BT is not sensitive to the total bit length, m, but its step count grow 

exponentially when input parameter is the input size, n. 
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Chapter 5: Conclusion and Future Work  

5.1 Conclusion 

The SSP is a well-known NP-Complete problem. The algorithms for solving SSP:  DDP, DP, and BT 

have been proven to have exponential complexity when the decision parameter is the total number 

elements in the set, n. At the same time DDP have sub-exponential time complexity when it is evaluated 

in terms of total bit length, m. But Statistics of DP and BT was unknown in this regard. This dissertation 

has answered this question.  

 

This dissertation work shows that time complexity of DP increases by 1.13 to 1.57 times when bit length, 

m, is increased by 1. This is clearly sub-exponential increment. At the same time BT is not sensitive to 

m and its time complexity increases by 1.98 to 2.01 times when number of inputs, n, is increased by 1.  

 

From this observation, we can conclude the DP also have sub-exponential time complexity when input 

parameter is bit length, and it has no effect in BT algorithm for solving Subset Sum Problem (SSP). 

5.2 Limitations and Future Work 

The experiments were conducted on the limited set of numbers; the number of set (n) was varied from 

15 to 25, total bit-length required to represent the set (m) was varied from 10 to 20, and the target was 

set only to half of the total-sum of the numbers in the set, t = ΣS/2.  Further, a lot more experiments could 

be done by expanding the ranges of n, m and t. 
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