Micropropagation of *Vanda tessellata* (Roxb.) Hook. ex G. Don

A Dissertation submitted for the partial fulfillment of the requirements of Master's Degree in Botany

By Bijaya Bahadur Malla Plant Biotechnology Unit TU Regd. No. 5-1-48-2909-2004

Exam Roll No. 18235

Batch: 2068/70

Central Department of Botany
Tribhuvan University
Kirtipur, Kathmandu, Nepal
2016

RECOMMENDATION

Kirtipur, Ktm. Nepal 27thAug 2016

This is to certify that the dissertation entitled 'Micropropagation of Vanda tessellata (Roxb.)Hook.ex G. Don' submitted by Mr. Bijaya Bahadur Malla for the partial fulfillment of the requirement of Master's Degree in Botanyhas been carried out under my supervision and guidance. The result of this

work has not yet been submitted for any other degree.

Therefore, we recommend his work for approval and acceptance.

.....

Supervisor

Bijaya Pant, PhD

Professor

Central Department of Botany

Tribhuvan University, Nepal.

LETTER OF APPROVAL

The dissertation work submitted by Mr. Bijaya Bahadur Malla entitled "Micropropagation of *Vanda tessellata*(Roxb.) Hook.ex G. Don" has been accepted for the partial fulfillment of M.Sc. in Botany.

Expert Committee

Supervisor

Head of Department

Mohan Siwakoti, PhD

Professor

Central Department of Botany

Tribhuvan University, Nepal.

Tribhuvan University, Nepal

External Examiner Internal Examiner
Sanu Devi Joshi, PhD Ms. Shreeti Pradhan

Professor Assistant Professor

Academician, NAST Central department of Botany

Date of Examination: 27th August, 2016

ACKNOWLEDGEMENTS

It is my great pleasure to express my gratitude to my supervisor Prof. Dr. Bijaya Pant (Prof., C.D.B., T.U.) for her noble guidance, continuous encouragement, best propositions, convenient criticism and reliable solutions and inspirations during my research work. I am also thankful to Ms. Shreeti Pradhan (Asst. Prof. C.D.B., T.U.) for her valuable suggestions and guidance. I would also like to express my deep gratitude to Prof. Dr. Mohan Siwakoti (HoD, C.D.B.) for providing me administrative and laboratory facilities during my research work.

I'd like to express my sincere gratitude to Dr. ChitraBahadurBaniya for his valuable guidance and support during my research work. I am grateful to Mr. Shailendra Kumar Singh (lab officer) and Mr. SambhuBista for continuous support and help. Similarly I am thankful to all teaching staff and non teaching staffs of C.D.B., T.U. for their help.

I highly acknowledge my seniors Mukti Ram Poudel (Phd. Scholar) for helping me analyzing the data and Ashok Kumar Patel and MukeshBabu Chand for their kind help during my research work. I am also thankful to my besties Anil Joshi, PrakashGairhe, SashiKafle, Srijanasharma, Sabitri Sharma, SabitaDhungana, TilKumariChhetri and SamjhanaDahal for their continuous support and suggestions. I am also thankful to my juniorSubhadraPudasainifor her support during lab work.

I am indebted to my parents for their regular encouragement and patient. I'd like to express my gratitude to my sister BinitaMalla, Brother Bishal Malla and my beloved Susheela Devi Gurung for their valuable support and encouragement during my research work.

At last but not least I'd like to remember all my friends who have helped, supported and encouraged me directly or indirectly.

Bijaya Bahadur Malla

ABSTRACT

Vanda tessellata (Roxb.)Hook.ex G. Don is a monopodial orchid and epiphytic in habitat with leafy stem of medium size plant body. It is renowned for its horticultural and high medicinal value as well. The aim of its study was to develop an efficient protocol for micropropagation of Vanda tessellata Roxb. In the present study the protocorms were first tried in full MS, half MS and quarter MS medium without addition of any plant hormones and other organic additives. Ouarter strength of MS medium was found to be effective medium for the earlier development of shoots and shootbuds from protocorm. Therefore further experiment was carried out in this medium. Shoot multiplication was carried out in different concentrations and combinations of GA₃, CW, BAP, BAP plus 6% sucrose and NAA. Among them, quarter strength MS medium supplemented with 0.5 mgl⁻¹ BAP was found to be effective for shoot multiplication, MS medium supplemented with 1.5 mgl⁻¹BAP plus 6% sucrose was found to be effective for shoot bud development and quarter strength of MS medium supplemented with 0.5 mgl⁻¹ NAA favored the root formation. Higher number of leaves was found in quarter strength of MS medium supplemented 1.5mgl⁻¹ GA₃and longest leaf length was found in quarter strength MS medium supplemented with 0.5 mgl⁻¹ GA₃. This present study reveals that this species favors BAP for shoot multiplication as compared to other hormones and organic additives used. This protocol might be useful for in vitro shoot bud formation and multiplication from protocorms for mass propagation and ex situ conservation of this valuable plant that is used as medicinal and horticultural aspects.

TABLE OF CONTENTS

RECOMMENDATION	I
LETTER OF APPROVAL	II
ACKNOWLEDGEMENT	III
ABSTRACT	IV
ABBREVIATIONS AND ACRONYMS	V
TABLE OF CONTENTS	VI
LIST OF FUGURES	VII
CHAPTER I	1-6
INTRODUCTION	1
1.1 Background	1-2
1.1.1 Tissue Culture Practice in Orchids	2-3
1.1.2 Taxonomic Description of Plant	3
1.1.3 Medicinal and other uses	3-4
1.2 Hypothesis	5
1.3 Objectives	5
1.3.1 General objective	5
1.3.2 Specific objectives	5
1.4 Rationale	5-6
CHAPTER II	7
LITERATURE REVIEW	7-10
CHAPTER III	11-17
MATERIALS AND METHOD	11
3.1 Plant materials	11
3.2 Methodology	11
3.2.1 Preparation of stock solutions	11
3.2.1.1 Preparation of stock solutions for MS medium	11-13
3.2.2 Hormones used for the experiments	13-14
3.2.3 Preparation of Hormones stock solution	14
3.2.4 Preparation of nutrient medium	14-15
3.2.5 Method of sterilization	15

3.2.5.1 Sterilization of glass wares and metallic instruments	15
3.2.5.2 Sterilization of inoculation chamber	15
3.2.5.3 Sterilization of media and distilled water	15
3.2.6.3 Inoculation of protocorm	16
3.2.7 Inoculation of protocorms for shooting	16
3.2.8 Rooting of shoots	16
3.2.9Data recording	16
3.2.10 Statistical Analysis	16-17
CHAPTER IV	18-31
RESULTS	18
4.1 Shoot multiplication	18-19
4.1.1 Shoot multiplication in different concentration of GA ₃	20
4.1.2 Shoot multiplication in different concentration of coconut water	21
4.1.3 Shoot multiplication in different concentration of BAP + 6% sucros	e 22
4.1.4 Shoot multiplication in different concentration of NAA	23
4.1.5 Shoot multiplication in different concentration of BAP	24
4.1.6 Shoot multiplication in different concentration of NAA plus 0.5 BA	.P 25
4.2 Rooting of Shoots	26
4.2.1 Root formation in IAA	26
4.2.2 Root formation in IBA	27
4.2.3 Root formation in NAA	28
CHAPTER V	32-34
DISCUSSION	32
5.1 Protocorm formation in different strength of MS medium	32
5.2 Shoot Multiplication	32-33
5.3 Rooting of Shoots	33-34
CHAPTER VI	35
CONCLUSION	35
CHAPTER VII	36
RECOMMENDATIONS	36
REFERENCES	37-45
ANNEXES	46-52

LIST OF TABLES

Table 1. Composition of Murashige and Skoog (1962) medium	11-13
Table 2: Effect of different MS medium on in vitro growth of protocol	corm of Vanda
tessellata(Roxb.)Hook.ex G. Don (Observation taken in weeks)	18
LIST OF FIGURES	
Figure 1: Image of Vanda tessellata	3
Figure 2: Effect of different strength of MS media on initiation of PLBs	, shoot and leaf
proliferation observed in weeks	19
Figure 3: Average number of shoot, shoot bud number, shoot length, leaf it	number and leaf
length produced per responsive protocorm culture in 1/4 MS medium sup	plemented GA ₃
in different concentrations.	20
	111£
Figure 4: Average number of shoot, shoot bud number, shoot length, leaf i	
length produced per responsive protocorm culture in ¼ MS medium su	
and 10% coconut water.	21
Figure 5: Average number of shoot, shoot bud number, shoot length, leaf r	number and
leaf length produced per responsive protocorm culture in 1/4 MS medium	supplemented
BAP and 6% sucrose in different combinations.	22
Figure 6: Average number of shoot, shoot bud number, shoot length, leaf r	number and
leaf length produced per responsive protocorm culture in 1/4 MS medium	supplemented
NAA with different concentrations.	23
Figure 7: Average number of shoot, shoot bud number, shoot length, leaf i	number and leaf
length produced per responsive protocorm culture in ¼ MS medium supp	plemented BAP
with different concentrations.	24

Figure 8: Average number of shoot, shoot bud number, shoot length, leaf number and	d leaf
length produced per responsive protocorm culture in 1/4 MS medium supplemented	NAA
and BAP with different combinations.	25
Figure 9: Average number of shoot, shoot bud number, shoot length, leaf number	· leaf
length, root number and root length produced per responsive protocorm culture in ¹ / ₂	
medium supplemented IAA with different concentrations.	26
Figure 10: Average number of shoot, shoot bud number, shoot length, leaf number	; leaf
length, root number and root length produced per responsive protocorm culture in ¹ / ₂	⁄4 MS
medium supplemented IBA with different concentrations.	27
Figure 11: Average number of shoot, shoot bud number, shoot length, leaf number	; leaf
length, root number and root length produced per responsive protocorm culture in 1/2	4 MS
medium supplemented NAA with different concentrations.	28
Figure 12: Photoplates of Vanda tessellata: Growth of protocorm in MS, ½ MS a	ınd ¼
MS and shoot multiplication.	29
Figure 13: Photoplates of <i>Vanda tessellata</i> : Shoot multiplication	30
Figure 14: Photoplates of <i>Vanda tessellata</i> : Root formation	31

ABBREVIATIONS AND ACRONYMS

°C : degree centrigrade

μM : micromolar

2,4-D : 2,4- Dichlorophenoxyacetic acid

a.s.l. : above sea levelBA : Benzyl Adenine

BAP : 6-Benzylaminopurine

CITES : Convention on International Trade in Endangered Species of Wild

Floraand Fauna

cm : centimeter

df : Degrees of freedom

EDTA : Ethylene Diamine Tetra Acetate

et al. : and others

etc etcetera

eg as an example

Fig. : Figure g : gram

GA₃ : Gibberellic acid

HCl : Hydrochloric acid

IAA : Indole-3-acetic acid

IBA : Indole-3-butyric acid

KN : Kinetin

Kn C : Knudson C (1946)

l liter

Lindl. : John Lindley

mg : milligram
ml : milliliter

MS : Murashige and Skoog (1962)

N Normality

NAA : α-Naphthalene acetic acid

NaOCl : Sodium hypochloride

NaOH : Sodium hydroxide

NP : New Phalaenopsis

PLBs : Protocorm-like bodies

PM : Phytamax

ppm : parts per million

psi : pound per square inch

Sig. : Significance level

SPSS : Statistical Package for Social Sciences

T.U. : Tribhuvan University

viz : namely