PREPARATION AND CHARACTERIZATION OF ACTIVATED CARBON FROM Areca catechu NUTS AS AN ADSORBENT FOR THE REMOVAL OF OPTILAN RED AND GLIMEPIRIDE

A Dissertation

Submitted for the Fulfillment of Requirement for the

Master of Science in Chemistry

By

Santwana Pathak Symbol No./Year :21211/2070 T.U. Reg. No.: 5-2-33-469-2008

Central Department of Chemistry Institute of Science and Technology Tribhuvan University Kirtipur, Kathmandu Nepal July, 2016 (2073 B.S)

RECOMMENDATION LETTER

This is to certify that the dissertation work entitled "**Preparation and characterization of activated carbon from** *Areca catechu* **nuts as an adsorbent for the removal of optilan red and glimepiride**" has been carried out by **Santwana Pathak** as a partial fulfillment for the requirement of M.Sc. Degree in Chemistry under my supervision. To the best of my knowledge, this work has not been submitted to any other degree in this institute.

Supervisor

Assoc. Prof. Dr. Susan Joshi Central Department of Chemistry Tribhuvan University, Kirtipur Kathmandu, Nepal

Date:

BOARD OF EXAMINER AND CERTIFICATE OF APPROVAL

This dissertation entitled "**Preparation and characterization of activated carbon from** *Areca catechu* **nuts as an adsorbent for the removal of optilan red and glimepiride**", by Santwana Pathak, under the supervision of Assoc. Prof. Dr. Susan Joshi, Central Department of Chemistry, Tribhuvan University, Nepal, is hereby submitted for the partial fulfillment of the Master of Science (M.Sc.) in Chemistry.

Supervisor Assoc. Prof. Dr. Susan Joshi Central Department of Chemistry

Internal Examiner Supervisor Prof. Dr. Jagadeesh Bhattarai **External Examiner Supervisor** Prof. Dr. Rejina Maskey

Head of the Department

Prof. Dr. Megh Raj Pokhrel Central Department of Chemistry Tribhuvan University, Kirtipur, Kathmandu, Nepal

DECLARATION

I, "Santwana Pathak", hereby declare that the work presented herein is genuine work done originally by me and has not been published or submitted elsewhere for the requirement of a degree program. Any literature, data or works done by others and cited in this dissertation has been given due acknowledgement and listed in reference section.

Santwana Pathak

Date:

DEDICATION

Dedicated to my father, "Late Durga Pd. Pathak"

ACKNOWLEDGEMENTS

I am grateful to my supervisor, Associate Prof. Dr. Susan Joshi, whose expertise, understanding, generous guidance and support made it possible for me to work on a topic that was of great interest to me. I will always be indebted to her for all the knowledge that she has bestowed upon me. My supervisor was much more than an advisor to me who always helped me in all the technical and non- technical issues during my period of lab work and thesis writing.

I would like to extend my sincere gratitude to Prof. Dr. Megh Raj Pokhrel, Head, Central Department of Chemistry, T.U Kirtipur, for allowing me to use all the available facilities in the department and awarding me with the Dr. Basant Bikram Gyanu Shah Research Fund Award as the partial financial support for my research work. I am also very much thankful to all the faculty members, technical and administrative staffs of the Central Department of Chemistry, T.U., Kirtipur, for their support during the lab work.

My thanks also goes to the Central Department of Environment Science, T.U Kirtipur, for providing me technical support (Spectrophotometer) by letting me work in the friendly environment of the laboratory.

I also would like to thank Department of Plant Resource, Thapathali, Nepal Academy of Science and Technology, Khumaltar and Dr. Bijaya Singh, Korea, for helping me to take the FT-IR, XRD and SEM, respectively.

Finally, I am very much indebted to my entire family and friends for their unconditional love, inspiration and support throughout my study as well as research period.

ABSTRACT

A series of activated carbons have been prepared from Areca catechu nuts of 425 µm by chemical activation with ortho-phosphoric acid (in the ratio of 0.4:1,0.7:1,1:1,1.5:1 and 2:1), potassium hydroxide (in the ratio 1:1) and zinc chloride (in the ratio 1:1) at 400°C in an inert atmosphere of nitrogen using tube furnace. The methylene blue number and iodine number obtained for the activated carbons were in the range of 108 to 405 mg/gm and 690 to 1080 mg/gm respectively, activated carbon impregnated with ortho-phosphoric acid in the ratio 1:1 (AC-1C) having the highest methylene blue number of 405.243 mg/gm and iodine number of 1080.122 mg/gm. The FT-IR comfirmed the presence of functional groups such as OH. C=O, C-O-C, C=C. The SEM images confirmed the porous structure of the activated carbons. The amorphous structure of the activated carbons was ascertained by XRD patterns. The q_m values of AC-1C for the adsorption of methylene blue, optilan red and glimepiride were found to be 434.782, 909,090 and 140.845 mg/gm respectively from Langmuir adsorption isotherm. The adsorption kinetics of optilan red and glimepiride on activated carbons were found to follow pseudo-second order kinetics with k_2 value of 2.245×10⁻³ and 3.21×10⁻⁴ gm/mg.min. These experimental results indicated that the Areca catechu nuts can be used as precursor materials for the preparation of high surface area nanoporous activated carbon as an adsorbent.

TABLE OF CONTENTS

	Page No.
BOARD OF EXAMINER AND CERTIFICATE OF APPROVA	L i
RECOMMENDATION LETTER	ii
DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENT	V
ABSTRACT	vi
ABBREVIATIONS	vii
TABLE OF CONTENTS	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
CHAPTER 1	
1. Introduction	1
1.1 Background	1
1.2 Statement of Problems	3
1.3 Precursor for Activated Carbon	4
1.4 Preparation and Activation of Precursor	7
1.5 Characterization of Activated Carbon	8
1.5.1 Moisture and Ash Content of Precursor	8
1.5.2 Methylene Blue Number	9
1.5.3 Iodine Number	9
1.5.4 Surface Area	9
1.5.5 Surface Functional Group	10

1.6.1 Spectrophotometric Method for the Determination of

1.5.6 Fourier Transform Infrared Spectroscopy

1.5.7 Scanning Electron Microscopy

Adsorption of Dyes and Medicines

1.5.8 X-Ray diffraction

1.6.2 Adsorption Isotherm

1.6 Adsorption Study

11

11

12

12

12

13

1.6.2.1 Langmuir Adsorption Isotherm	14
1.6.2.2 Freundlich Adsorption Isotherm	15
1.6.3 Kinetics of Adsorption	15
1.6.3.1 The Pseudo-First Order Equation	16
1.6.3.2 The Pseudo-Second Order Equation	16

CHAPTER 2

2.1 Literature Review	18
2.2 Objectives	21

CHAPTER 3

EXPERIMENTAL METHODS

3.1 P	3.1 Preparation and Activation of Precursor	
	3.1.1 Preparation of Powdered Precursor from	
	Areca catechu Nuts	23
	3.1.2 Activation of Precursor	23
3.2 C	Characterization of Precursor	24
	3.2.1 Moisture and Ash content of Precursor	24
3.3 C	Characterization of Activated Carbon	25
	3.3.1 Methylene Blue Number	25
	3.3.2 Iodine Number	25
	3.3.3 Surface Area	25
	3.3.4 Surface Functional Group	25
	3.3.5 Fourier Transform-Infrared Spectroscopy	26
	3.3.6 Scanning Electron Microscopy	26
	3.3.7 X-Ray Diffraction	26
3.4	Adsorption Study	26
	3.4.1 Determination of λ_{max} and Calibration Curve	26
	3.4.2 Adsorption Isotherm	27
	3.4.3 Effect of pH	28
	3.4.4 Effect of Initial Concentration	28
	3.4.5 Effect of Contact Time	28

28

CHAPTER 4	
RESULTS AND DISCUSSION	30
4.1 Characterization of Precursor	30
4.1.1 Moisture and Ash content of Precursor	30
4.1.2 FT-IR of Precursor	30
4.2 Characterization of Activated Carbon	31
4.2.1 Methylene Blue Number	31
4.2.2 Iodine Number	32
4.2.3 Comparision of Methylene Blue Number and Iodine	
Number	33
4.2.4 Surface Area Determination	33
4.2.5 Surface Functional Group Determination: Boehm's	
Titration	33
4.2.6 FTIR Spectra of Precursor	36
4.2.7 Scanning Electron Microscopic Study	38
4.2.8 X-ray Diffraction	39
4.3 Adsorption Isotherm for Methylene Blue,	
Optilan Red and Glimepiride	40
4.4 Effect of pH	45
4.5 Effect of Initial Concentration	46
4.6 Effect of Contact Time	47
4.7 Kinetics of Adsorption for Optilan Red and Glimepiride	48
4.7.1 Kinetic Study of Optilan Red	48
4.7.2 Kinetic Study of Glimepiride	49
CONCLUSIONS	51
REFERENCES	53

ANNEX

LIST OF TABLES

Table 1.	Preparation conditions of activated carbon	24
Table 2.	Moisture and ash contents of A. catechu nuts powder	30
Table 3.	Methylene blue number of activated carbon	31
Table 4.	Iodine number of activated carbon	32
Table 5.	Surface area of different activated and non-activated carbon	33
Table 6.	Results of Boehm titration	34
Table 7.	Results of Boehm titration	35
Table 8.	Langmuir adsorption isotherm constants for methylene blue	41
Table 9.	Langmuir adsorption isotherm constants for optilan red	43
Table 10.	Langmuir adsorption isotherm constants for glimepiride	43
Table 11.	Freundlich adsorption isotherm constants for optilan red	44
Table 12.	Freundlich adsorption isotherm constants for glimepiride	45
Table 13.	Kinetics parameters for optilan red adsorption	49
Table 14.	Kinetics parameter for glimepiride adsorption	50

LIST OF FIGURES

Figure 1:	Different pore sizes in activated carbon	1
Figure 2:	Cellulose	5
Figure 3:	Hemicellulose	5
Figure 4:	Lignin	5
Figure 5:	Areca catchu nuts hanging from the palm	6
Figure 6:	A ripe Areca catechu nut	6
Figure 7:	Dried Areca catechu nuts	7
Figure 8:	Structures of some surface oxides: (a) carboxylic acid	
	(b) Phenolic hydroxyl (c) quinone- type carbonyl group	
	(d) normal lactone (e) fluorescein-type lactones	
	(f) carboxylic acid anhydrides (g) cyclic peroxides	7
Figure 9:	Absorbance vs. concentration plot	13
Figure 10:	FT-IR spectra of R-1	31
Figure 11:	Bar Diagram for methylene blue and iodine number	33
Figure 12:	Illustration of the calculations used in Boehm titration	34
Figure 13:	FT-IR spectra of AC-1C	36
Figure 14:	FT-IR spectra of AC-2	37
Figure 15:	FT-IR spectra of AC-3	37
Figure 16:	SEM images of different ACs (a) R-1, (b) AC-1C,	
	(c) AC-1D, (d) AC-2, (e) AC-3	38
Figure 17:	XRD- patterns of AC-1C	40
Figure 18:	XRD patterns of AC-1D	40
Figure 19:	Linearized Langmuir isotherm for methylene blue adsorption	n41
Figure 20:	Linearized Langmuir isotherm for optilan red adsorption	42
Figure 21:	Linearized Langmuir isotherm for optilan red adsorption	42
Figure 22:	Linearized Langmuir isotherm for glimepiride adsorption	43
Figure 23:	Linearized Freundlich isotherm for optilan red adsorption	44
Figure 24:	Linearized Freundlich isotherm for glimepiride adsorption	45
Figure 25:	Effect of pH on the adsorption of glimepiride	46
Figure 26:	Effect of initial concentration on the adsorption of	
	glimepiride	47

igure 27. Effect of contact time on the adsorption of grintepinde	
Figure 28: Pseudo first order kinetics for optilan red adsorption	48
Figure 29: Pseudo second –order kinetics for optilan red adsorption	48
Figure 30: Pseudo first order kinetics of glimepiride adsorption	49

Figure 31:Pseudo second order kinetics for glimepiride adsorption50

ABBREVIATIONS

a _{MB}	Occupied surface area by one molecule of methylene blue
А	Absorbance or optical density
AC	Activated carbon
b	Langmuir's constant (K _L)
BET	Brunauer, Emmett and Teller
C _e	Equilibrium concentration
Co	Initial concentration
Ct	Concentration at time 't'
FT-IR	Fourier Transform Infrared Spectroscopy
gm	Gram
K ₁	Pseudo-first order rate constant
K ₂	Pseudo-second rate constant
K _F	Freundlich's constant
L	Litre
L/mg	Litre per miligram
L/min	Litre per minute
Meq	Miliequivalent
mm	Milimeter
m ² /gm	Meter square per gram
mg/gm	Miligram per gram
mg/g min	Miligram per gram minute
mg/L	Milligram per litre
ml	Millilitre
n	Adsorption intensity
nm	Nanaometer
Na	Avogadro's number
pН	Negative logarithm of hydrogen ion concentration
ppm	Parts per million
q _e	Amount adsorbed at equilibrium time
q_{m}	Maximum adsorption capacity
q_t	Amount adsorbed at time 't'
R-1	Raw precursor

Rem %	Removal percentage
\mathbf{R}^2	Regression coefficient
S	Specific surface area of adsorbent
SEM	Scanning Electron Microscopy
V	Volume
W	Weight