PHENOTYPIC AND MOLECULAR CHARACTERIZATION OF METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA) ISOLATES

A THESIS SUBMITTED TO THE

CENTRAL DEPARTMENT OF MICROBIOLOGY INSTITUTE OF SCIENCE AND TECHNOLOGY TRIBHUVAN UNIVERSITY NEPAL

FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN MICROBIOLOGY

BY

DHARM RAJ BHATTA

May 2018

DECLARATION

Thesis entitled **"Phenotypic and molecular characterization of methicillin-resistant** *Staphylococcus aureus* (MRSA) isolates" which is being submitted to the Central Department of Microbiology, Institute of Science and Technology (IOST), Tribhuvan University, Nepal for the award of degree of Doctor of Philosophy (Ph D) is a research work carried out by me under direct supervision of Prof. Dr. Dwij Raj Bhatta, Central Department of Microbiology, Tribhuvan University and co supervised by Dr. Lina M Cavaco.

This research is original and has not been submitted earlier in part or full in this or any other form to any university or institute, here or elsewhere, for the award of any degree.

Dharm Raj Bhatta May 2018

RECOMMENDATION

This is to recommend that Mr. Dharm Raj Bhatta has carried out research entitled "Phenotypic and molecular characterization of methicillin-resistant *Staphylococcus aureus* (MRSA) isolates" for the award of Doctor of Philosophy (Ph D) in Microbiology under our supervision. To our knowledge, this work has not been submitted for any other degree.

He has fulfilled all the requirements laid down by Institute of Science and Technology (IOST), Tribhuvan University, Kirtipur, for the submission of the thesis for the award of Ph D degree.

Dr. Dwij Raj Bhatta Supervisor Professor Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.

Lice Nor G. Carea

Dr. Lina M. Cavaco Co-Supervisor Research group for Genomic epidemiology, National Food Institute, Technical University of Denmark, Denmark.

May 2018

LETTER OF APPROVAL

On the recommendation of Prof. Dr. Dwij Raj Bhatta, this Ph D thesis submitted by Dharm Raj Bhatta, entitled "Phenotypic and molecular characterization of methicillin resistant *Staphylococcus aureus* (MRSA) isolates" is forwarded by Central Department Research Committee (CDRC) to the Dean, IOST, Tribhuvan University.

Dr. Megha Raj Banjara, Ph D Head Central Department of Microbiology, Tribhuvan University Kirtipur, Kathmandu, Nepal.

ACKNOWLEDGEMENTS

I would like to express my gratitude to respected supervisors Professor **Dr. Dwij Raj Bhatta**, Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal and **Dr. Lina M. Cavaco**, Research group for Genomic epidemiology, National Food Institute, Technical University of Denmark, for their regular support, advice and guidance to complete the research work.

I am thankful to **Dr. Shishir Gokhale**, Professor and Head, Department of Microbiology, Manipal College of Medical Sciences (MCOMS), Pokhara, Nepal for his invaluable inspiration, encouragement and support. I am grateful to **Dr. Niranjan Nayak**, Professor, Department of Microbiology, Manipal College of Medical Sciences (MCOMS), Pokhara, Nepal for his expert advice and technical support. I would like to acknowledge all the faculty members, staff and Post graduate students of Microbiology department, Manipal Teaching Hospital, Pokhara for their help and support.

It is my pleasure to extend deep gratitude to **Dr. Gopal Nath**, Professor and Head, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, India for his guidance in molecular work. I am thankful to Mr. Kush Kumar, for his help in molecular work.

I express my deep gratitude to my family members for continuous inspiration and support. I am also thankful to **Dr. Anjana Singh, Dr. Megha Raj Banjara** and **Mr. Binod Lekhak**, Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal, for their help and support. I would like to thank all my friends and colleagues for their direct and indirect help. I am grateful to **University Grant Comission (UGC)**, Nepal for financial support. Last but not the least; I would like to thank all the patients of Manipal Teaching Hospital for their participation.

Dharm Raj Bhatta May 2018

ABSTRACT

Methicillin-resistant *Staphylococcus aureus* (MRSA) is one of the major causes of hospital and community acquired infections. Drug resistance among Staphylococci is global burden which is associated with significant morbidity and mortality around the world. This study was conducted to determine the prevalence of MRSA, antibiotic resistance pattern of the isolates and prevalence of Panton Valentine leukocidin (*PVL*) genes among MRSA isolates. This study was conducted for a period of three years (2012-2015) at the Manipal Teaching Hospital, Pokhara, Nepal.

A total of 400 isolates were collected from various clinical specimens including hospital units (Operation theaters and Intensive Care Units). Antibiotic susceptibility testing was performed by Kirby-Bauer disc diffusion method. Primary screening for MRSA was performed by disc diffusion test with cefoxitin (30 μ g) and oxacillin (1 μ g) discs, further confirmed by cefoxitin MIC test and detection of *mecA* gene by Polymerase Chain Reaction (PCR). Inducible clindamycin resistance was detected by D test. Multiplex PCR was used for the detection of *PVL* genes. Biofilm was detected by microtitre plate method.

Out of 400 *S. aureus* isolates, 139 (34.7%) were MRSA. Among the MRSA isolates, 74 (53.2%) were from inpatients, 58 (41.7%) isolates were from outpatients and 7 (5%) isolates were from hospital units (OT and ICUs). More than 65% of the MRSA isolates were resistant to ciprofloxacin, erythromycin and cotrimoxazole while less than 15% were resistant to amikacin, clindamycin and tetracycline. None of the isolate was resistant to vancomycin. Inducible clindamycin resistance was found in 54 (25.4%) isolates. A total of 148 isolates of *S. aureus* were tested for biofilm assay, 94 (63.5%) were MRSA and 54 (36.5%) were MSSA. Biofilm was detected in 32.4% (48/148) of the isolates. Out of the total of 94 MRSA isolates tested, 39 (41.5%) were biofilm producers. Panton Valentine leukocidin (*PVL*) genes were detected in 79 (56.8%) of the 139 MRSA isolates. Majority (75.5%) of *PVL* positive strains were isolated from pus samples. High prevalence (90.4%) of *PVL* among community acquired MRSA was found and only 7.1% hospital acquired MRSA were positive for *PVL* genes. No *PVL* genes were detected

among the hospital environmental isolates. Thus, PVL can be used as marker for community acquired MRSA. Antibiotic resistance in PVL negative MRSA isolates was higher as compared to PVL positive MRSA. Out of 112 hospital staff tested, only 8 (7.1%) were found positive for MRSA nasal carrier.

This study showed a high prevalence of MRSA in our hospital. There is need for regular surveillance of antibiotic resistance, standardization of laboratory methods for detecting methicillin resistance and performing antibiotic susceptibility testing in developing countries like Nepal. Screening of erythromycin resistant isolates would minimize clinical failures associated with clindamycin therapy. Association of *PVL* genes among community acquired MRSA may increase their virulence and is a matter of concern. Biofilm formation by MRSA isolates is challenging for clinicians as majority of biofilm producing MRSA isolates were found multidrug resistant.

Key words: Antibiotic resistance, Methicillin-resistant *Staphylococcus aureus* (MRSA), *mecA*, *PVL*, Biofilm, Clinical specimens.

LIST OF ACRONYMS AND ABBREVIATIONS

AIDS Acquired immunodeficiency syndrome AST Antibiotic susceptibility testing ATCC American type culture collection CDC Centers for disease control and prevention Community acquired methicillin resistant Staphylococcus aureus CA-MRSA CLSI Clinical and laboratory standards institute CNS Coagulase negative Staphylococci HA-MRSA Hospital acquired methicillin resistant *Staphylococcus aureus* HCW Health care worker ICU Intensive care unit MDR Multidrug resistant MIC Minimal inhibitory concentration MRSA Methicillin resistant Staphylococcus aureus MSSA Methicillin sensitive Staphylococcus aureus NCCLS National committee for clinical laboratory standards **NNIS** National nosocomial infections surveillance OPD Outpatient department OT Operation theater Penicillin binding protein PBP

PCR PC	olymerase Chain Reaction
--------	--------------------------

- *PVL* Panton Valentine leukocidin
- RRS Regional resistance surveillance
- SCC Staphylococcal cassette chromosome
- SSSS Staphylococcal scalded skin syndrome
- SSTI Skin and soft tissue infections
- TSS Toxic shock syndrome
- UTI Urinary tract infection
- VAP Ventilator associated pneumonia
- VISA Vancomycin intermediate *Staphylococcus aureus*
- VRSA Vancomycin resistant *Staphylococcus aureus*

LIST OF TABLES

Page	N	0.
------	---	----

Table 1: Frequency of S. aureus and MRSA in various specimens57
Table 2: Clinical conditions associated with MRSA infections
Table 3: Department/unit wise distribution of MRSA isolates59
Table 4: Distribution of <i>S. aureus</i> and MRSA among hospital staff60
Table 5: Antibiotic resistance pattern of MSSA and MRSA isolates61
Table 6: Antibiotic resistance pattern of MRSA and its distribution
in OPD & ward62
Table 7: Cefoxitin MIC values and <i>mecA</i> positivity among MRSA isolates62
Table 8: Distribution of <i>PVL</i> genes among MRSA isolates from
different specimen65
Table 9: Antibiotic resistance pattern of <i>PVL</i> positive and <i>PVL</i>
negative MRSA isolates66
Table 10: Biofilm production among MRSA and MSSA isolates69
Table 11: Multidrug resistance amongst biofilm producing & non
biofilm producing S. aureus69
Table 12: Biofilm producers and biofilm non producers S. aureus from
various clinical specimens69

LIST OF FIGURES

Page No.
Figure 1: Distribution of sources of MRSA isolates59
Figure 2: Antibiotic resistance pattern of <i>S. aureus</i> 61
Figure 3: Distribution of MDR MRSA and Non MDR MRSA 63
Figure 4: Distribution of hospital and community acquired MRSA63
Figure 5: MRSA distribution: male, female & hospital environmental isolates64
Figure 6: D-test positive MRSA and MSSA isolates64
Figure 7: Distribution of PVL positive MRSA isolates among male
patients, female patients & hospital environmental isolates66
Figure 8: Distribution of <i>PVL</i> genes among CA-MRSA & HA-MRSA67
Figure 9: Comparison of PVL positive MDR MRSA & PVL negative
MDR MRSA67

TABLE OF CONTENTS

Page No.

Declaration	i
Recommendation	ii
Letter of Approval	iii
Acknowledgements	iv
Abstract	v
List of Acronyms and Abbreviations	vii
List of Tables	ix
List of Figures	x

CHAPTER 11-4	-8
--------------	----

1. INTRODUCTION

1.1 Staphylococcus aureus	1
1.1.1 Panton Valentine leukocidin	
1.1.2 Biofilm	5
1.2 Rationale	7
1.3 Objectives.	8

CHAPTER	R 2	

2. LITERATURE REVIEW

2.1 Staphylococci	9
2.1.1 Taxonomy	9
2.1.2 Historical review of Staphylococci	10
2.2 Staphylococcus aureus	10
2.3 Biochemical characteristics	11
2.4 Resistance to physical & chemical agents	11
2.5 Extracellular products	11
2.5.1 Capsular polysaccharide	12
2.5.2 Protein A	12
2.5.3 Toxins and enzymes	12
2.5.4 Exotoxins	13
2.5.4.1 Alpha hemolysin	13
2.5.4.2 Beta toxin	13
2.5.4.3 Delta toxin	13
2.5.4.4 Gamma toxin	14
2.5.5 Leukocidin	14
2.5.6 Exofoliative toxins	15
2.5.7 Superantigens	15
2.5.7.1 Enterotoxin	15
2.5.7.2 Toxic Shock Syndrome Toxin	16
2.5.8 Other extracellular proteins	16
2.5.8.1 Coagulase	16
2.5.8.2 Staphylokinase	17
2.5.8.3 Other enzymes	17
2.5.9 Biofilm	17
2.6 Epidemiology	20
2.7 Coagulase negative Staphylococci	27
2.8 MRSA colonization among health care workers	
2.9 Staphylococcal diseases	30
2.9.1 Skin and soft tissue infections	

2.9.1.1 Cellulitis	
2.9.1.2 Impetigo	31
2.9.1.3 Folliculitis	
2.9.1.4 Furuncle	32
2.9.1.5 Wound infections	32
2.9.1.6 Decubitus ulcers	
2.9.2 Respiratory infections	32
2.9.3 Urinary tract infections	33
2.9.4 Systemic infections.	34
2.9.5 Bone and joint infections	
2.10 Antibiotic resistance.	
2.11 MRSA testing methods	
2.11.1 Disc diffusion methods	
2.11.2 Epsilometer test.	
2.11.3 Agar screening method	
2.11.4 Chromogenic agar	
2.11.5 Latex agglutination	
2.11.6 Automated methods	40
2.11.7 Quenching fluorescence method	40
2.11.8 Molecular methods	40
2.12 Classification of MRSA	41
2.12.1 Hospital acquired MRSA	41
2.12.2 Community acquired MRSA	42

44-56	
44	
44	
44	
44	
44	

3.6 Sample collection, processing & identification of S. aureus	
3.6.1 Specimen collection	44
3.6.1.1 Collection of nasal swab from hospital staff	45
3.6.1.2 Sampling from hospital environment	45
3.6.2 Processing of specimen	45
3.6.3 Identification of <i>S. aureus</i>	
3.6.3.1 Colony morphology	46
3.6.3.2 Gram's stain	46
3.6.3.3 Catalase test	47
3.6.3.4 Coagulase test	47
3.6.3.4.1 Slide coagulase test	47
3.6.3.4.2 Tube coagulase test	48
3.6.3.5 DNase test	49
3.6.3.6 Mannitol fermentation test	49
3.7 Phenotypic characterization of <i>S. aureus</i>	50
3.7.1 Antibiotic susceptibility testing	50
3.7.2 Screening tests for MRSA	51
3.7.3 Detection of MIC	
3.7.4 Detection of inducible clindamycin resistance	52
3.8 Genotypic characterization of MRSA isolates	53
3.8.1 DNA extraction	53
3.8.2 Detection of <i>mecA</i> gene	54
3.8.3 Detection of <i>mecA</i> and <i>PVL</i> genes by PCR	54
3.9 Detection of biofilm	55
3.10 Data analysis	56
3.11 Ethical clearance	56

4. RESULTS AND DISCUSSION

4.1 Clinical and microbiological profile of Staphylococcus aureus	
(MRSA & MSSA)	

4.2 Distribution of Panton Valentine leukocidin (PVL) genes among MRSA	65
4.3 Biofilm assay among MRSA and MSSA	68
4.4 Discussion	70
4.4.1 Drug resistance among <i>S. aureus</i> and MRSA	70
4.4.2 MRSA and <i>PVL</i> genes	75
4.4.3 MRSA and Biofilm	78

CHAPTER 5	81-82
5. CONCLUSIONS AND RECOMMENDATIONS	
5.1 Conclusions	
5.2 Recommendations	
CHAPTER 6 6. SUMMARY	83-85
REFERENCES	

APPENDIX