STUDIES ON THE BEHAVIOUR OF ANIONIC SURFACTANT IN ABSENCE AND PRESENCE OF MONOVALENT SALTS IN METHANOL-WATER MIXED SOLVENT MEDIA

A THESIS SUBMITTED TO THE CENTRAL DEPARTMENT OF CHEMISTRY INSTITUTE OF SCIENCE AND TECHNOLOGY TRIBHUVAN UNIVERSITY NEPAL

FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN CHEMISTRY

BY TULASI PRASAD NIRAULA FEBRUARY 2017

i

DECLARATION

Thesis entitled "Studies on the behavior of anionic surfactant in absence and presence of monovalent salts in methanol-water mixed solvent media" which is being submitted to the Central Department of Chemistry, Institute of Science and Technology(IOST), Tribhuvan University, Nepal for the award of the degree of Doctor of Philosophy (Ph.D.), is a research work carried out by me under the supervision of Prof. Dr. Sujeet Kumar Chatterjeeand Dr. Ajaya Bhattarai, Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar, Nepal.

This research is original and has not been submitted earlier in part or full in this or any other form of any university or institute, here or elsewhere, for the award of any degree.

February 2017

Tulasi Prasad Niraula Department of Chemistry Mahendra Morang Adarsh Multiple Campus, Tribhuvan University Biratnagar, Nepal.

RECOMMENDATION

This is to recommend that **Mr.Tulasi Prasad Niraula**has carried out research entitled "**Studies on the behavior of anionic surfactant in absence and presence of monovalent salts in methanol-water mixed solvent media**" for the award of Doctor of Philosophy (Ph.D.) in **Chemistry** under our supervision. To our knowledge, this work has not been submitted for any other degree. He has fulfilled all the requirements laid down by the Institute of Science and Technology (IOST), Tribhuvan University, Kirtipur, Kathmandu for the submission of the thesis for the award of Ph.D. degree.

Dr. Sujeet Kumar Chatterjee (Supervisor) Professor Department of Chemistry Mahendra Morang Adarsh Multiple Campus, Tribhuvan University Biratnagar,Nepal.

Ajaya Bhattarai

Dr. Ajaya Bhattarai (Co-Supervisor) Assistant Professor Department of Chemistry Mahendra Morang AdarshMultiple Campus, Tribhuvan University Biratnagar, Nepal.

February 2017 February 2017

LETTER OF APPROVAL

On the recommendation of **Prof. Dr. Sujeet Kumar Chatterjee** and **Dr. Ajaya Bhattarai**, this Ph. D. thesis submitted by **Mr.Tulasi Prasad Niraula**, entitled "**Studies on the behavior of anionic surfactant in absence and presence of monovalent salts in methanol-water mixed solvent media**" is forwarded by Central Department Research Committee (CDRC) to the Dean, IOST, Tribhuvan University,for the further processing.

Dr. Megh Raj Pokhrel (Professor and Head) Central Department of Chemistry Tribhuvan University Kirtipur, Kathmandu Nepal.

[Date: 30/04 /2017]

ACKNOWLEDGEMENTS

The Present work embodies the results of the research carried out by me at the Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Nepal, during 2011-2017.

I express my deepest gratitude to **Professor Dr. Sujeet Kumar Chatterjee** (Supervisor) and **Dr. Ajaya Bhattarai** (Co-Supervisor) for guiding me passionately in my work on surface chemistry. I would like to thank them for encouragement, effective guidance and stimulating discussions on different fields of research in these years.

I sincerely thank Chairman, Professors and Staffs of Central Department of Chemistry, Kirtipur, Kathmandu as well as Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Biratnagar who co-operate me for the research by providing technical support as well as dynamic and positive atmosphere.

I warmly thank my father Kula Prasad Niraula, my mother BalKumari Niraula and my spouse Mana Maya Rijal (Niraula) for patience, understanding, and active support shown by them for my research study.

Lastly I would like to give my special thanks to the senior researcher of our laboratory Dr. Sujit Kumar Shah, Campus Chief and Assistant Campus Chief of Mahendra Morang Adarsh Multiple Campus (Tribhuvan University), Biratnagar, Nepal for their active support and inspiration for the research study.

February 2017

Tulasi Prasad Niraula Department of Chemistry Mahendra Morang Adarsh Multiple Campus Tribhuvan University Biratnagar, Nepal.

ABSTRACT

Surfactants are surface active compounds and play important role in different fields like detergency, corrosion inhibition, fertilizers, etc. They form aggregates at a suitable concentration known as micelles and concentration is called critical micelle concentration (cmc). The solvent composition, the temperature and the additives mainly determine physicochemical properties of micelles. Most of the short chain alcohols have the effect of co-solvent and works as water structure breaker. Methanolis the lowest member of alcohol and has the highest relative permittivity. It is completely soluble in water.

The main target of the work was to find the solution properties of sodiumdodecyl sulfate (SDS) in different conditions. The study includes the measurement of the density, the conductivity, the surface tension and the viscosity of SDS solution in pure water and different volume fractions of methanol at different temperature in presence and absence of additives. It also included determination of cmcs and the calculation of different thermodynamic properties.

The density of the solution of pure SDS as well as in the presence of CTAB decreased with increase in temperature and increased in the amount of methanol in water. The partial molar volume was directly proportional to the temperature. With the increase in the concentration of surfactant in a solvent at the fixed temperature, the density increased.

The specific conductivity of SDS in pure water and four volume fractions of methanol in the presence and absence of salts at four different temperatures were measured and the cmcs were calculated. The conductance increased with increase in the concentration of surfactant, increase in temperature and addition of salts. The cmc increased with increase in temperature and volume fraction of methanol but decreased in the presence of additives. The order of cmc in the presence of studied salts was NaCl>NaBr> KCl >KBr. With the help of cmc, different thermodynamic parameterswere determined. Compensation temperature (T_c), and solute-solute interaction (σ) are also calculated. Different solvent parameters namely Relative permittivity, Reichardt's parameter, Hildebrand parameter and Gordon parameter were correlated withGibbs free of micellisation(ΔG_{m}°).The correlation of ΔG_{m}° with solvophobic parameter S_{p} is calculated. The S_{p} values of the hydrocarbon in methanol-water mixture affect the ionization degree of SDS in the presence and the absence of salts.

The surface tension of solution of SDS was measured and cmc as well as some surface properties were also calculated, in pure water, and different volume fractions of methanol at four different temperature.

The viscosities of surfactant solutions were measured and values of the cmcsas well as the viscosity coefficient B values were calculated.

Key words: SDS, Methanol, cmc

LIST OF ABBREVIATIONS

ABS	Alkyl benzene sulphonate
AMT	Amitriptyline hydrochloride
СМС	Critical micelle concentration
CPC	Cetylpyrimidium chloride
DLS	Dynamic light scattering
DTAB	Dodecyltrimethyl ammonium bromide
CTAB	Cetyltrimethylammonium bromide
EM	Erythromycine
FCC	Face centre cubic
IFT	Interfacial tension
ITC	Internal titration calorimetry
LABS	Linearalkylbenzenesulphonates
NMR	Nuclear magnetic resonance
ОТ	Aerosol
PDN	Pendant drop number
SANS	Small angle neutron scattering
SDS	Sodium dodecyl sulphate
SLS	Sodiumlaurylsulphate
SDT	Sexually transmitted diseases
TTA	Tetradecyltrimethylammoniumbromide
VFT	Viscous flow time

LIST OF SYMBOLS

α	Micelle ionization fraction
$\Delta G^{\circ}_{\mathrm{m}}$	Standard free energy of micellization
$\Delta H_{\mathrm{m}}^{\circ}$	Standard enthalpy of micellization
$\Delta S_{\mathrm{m}}^{\circ}$	Standard entropy of micellization
$\Gamma_{\rm max}$	Maximum surface excess concentration
γ	Surface tension
R	Universal gas constant
Т	Absolute temperature
$\pi_{\rm cmc}$	Surface pressure
С	Surfactant concentration
A _{min}	Area occupied per surfactant molecule
Р	Packing parameters
γ_0	Surface tension of water
γcmc	Surface tension of surfactant solution at the cmc
ΔG_{ads}°	Standard free energy of adsorption
$\Delta G_{\mathrm{trans}}^{\circ}$	Standard free energy of transfer
β	Counter-ion binding parameter
κ	Conductivity (Specific conductivity)
λ_{m}	Molar conductivity
$V_{\rm B}$	Apparent molar volume
$T_{\rm c}$	Compensation temperature
σ	Solute-solute interaction parameter
$\Delta_{\rm m} C_{\rm p}^{\circ}$	Heat capacity of micellisation
S _p	Solvophobic parameter
$E_T(30)$	Reichardt's parameter
δ	Hildebrand parameter
G	Gordon Parameter
D	Relative Permittivity

LIST OF TABLES

Table 1.1	Properties of Salts	18
Table 1.2	The values of cmc obtained by conductivity measurement and	
	potential measurement	19
Table 3.1	Preparation of mixed solvent	50
Table 4.1	Properties of methanol-water mixtures containing 0.10, 0.20, 0.30	
	and 0.40 volume fraction of methanol at (298.15, 308.15, 318.15,	
	and 323.15) K	55
Table 4.2 .	Concentration, density and partial molar volume of SDS in pure	
	water and methanol - watermixed solvent media at (298.15, 308.15,	
	318.15, and 323.15) K	56
Table 4.3	Critical micelle concentration, degree of micelle ionization, standard	
	free energy of micellization, standard enthalpy of micellization,	
	standard entropy of micellization and standard free energy transfer of	f
	SDS in water, 0.10, 0.20, 0.30 and 0.40 volume fractions of methano	1-
	water mixturemeasured at298.15, 308.15, 318.15 and 323.15K.	82
Table 4.4	Critical micelle concentration, degree of micelle ionization, standard	
	free energy of micellization, standard enthalpy of micellization,	
	standard entropy of micellization and standard free energy transfer	
	of SDS with NaCl in water, 0.10, 0.20, 0.30 and 0.40 volume fraction	S
	of methanol-water mixture measured at 298.15, 308.15, 318.15 and	
	323.15 K.	83
Table 4.5	Critical micelle concentration, degree of micelle ionization, standard	
	free energy of micellization, standard enthalpy of micellization,	
	standard entropy of micellization and standard free energy transfer	
	of SDS with NaBr in water, 0.10, 0.20, 0.30 and 0.40 volume fraction	S
	of methanol-water mixture measured at 298.15, 308.15, 318.15 and	
	323.15 K.	84
Table 4.6	Critical micelle concentration, degree of micelle ionization, standard	
	free energy of micellization, standard enthalpy of micellization,	
	standard entropy of micellization and standard free energy transfer	
	of SDS with KCl in water, 0.10, 0.20, 0.30 and 0.40 volume fractions	

Х

of methanol-water mixture measured at 298.15, 308.15, 318.15 and	
323.15 K.	85
Table 4.7 Critical migalla concentration degrees of migalla ionization standard	

Table 4.7 Critical micelle concentration, degree of micelle ionization, standard	
free energy of the micellization, standard enthalpy of micellization,	
standard entropy of micellization and standard free energy transfer	
of SDS with KBr in water, 0.10, 0.20, 0.30 and 0.40 volume fractions	
of methanol-water mixture measured at 298.15, 308.15, 318.15 and	
323.15K.	86
Table 4.8 Values of Tc, σ and $\Delta_m C_p^{\circ}$ for SDS in water and methanol-water of	
NaCl, NaBr, KCl and KBr using conductivity measurement.	89
Table 4.9 CMC values of SDS by surface tension measurements in water,	
0.10, 0.20, 0.30 and 0.40 volume fractions of methanol at 298.15,	
308.15, 318.15 and 323.15 K	102
Table 4.10 Surface properties of SDS in water as well as in 0.10, 0.20, 0.30 and	
0.40 volume fractions of methanol at 298.15, 308.15, 318.15 and	
323.15 K.	103
Table 4.11 CMC values of SDS by viscosity measurements in water, 0.10, 0.20,	

0.30 and 0.40 volume fractions of methanol at 298.15, 308.15, 318.15 and 323.15 K 107

LIST OF FIGURES

Figure 1.1:	General structure of a surfactant molecule, showing hydrophilic	
	and hydrophobic groups	4
Figure 1.2:	Structure of sulphonate	8
Figure 1.3:	Structure and molecular formula of SDS	9
Figure 1.4:	Schematic representation of surfactant molecules at surface and	
	surfactant micelle in bulk liquid	22
Figure 1.5:	Scheme of surfactant molecules aligning on water/air interface	22
Figure 1.6:	Dynamic equilibrium between monomers and micelle	24
Figure 1.7:	Water molecules showing surface and bulk molecules	30
Figure 1.8:	Water molecules showing bulk molecule	30
Figure 1.9:	Water molecules showing surface molecules	30
Figure 3.1:	Mansingh Survismeter	53
Figure 4.1:	Concentration dependence of density for SDS at 298.15 K	59
Figure 4.2:	Concentration dependence of density for SDS at 308.15K	59
Figure 4.3:	Concentration dependence of density for SDS at 318.15 K.	60
Figure 4.4:	Concentration dependence of density for SDS at 323.15 K	60
Figure 4.5:	Concentration dependence of density for SDS at different	
	temperatures in pure water.	61
Figure 4.6:	Concentration dependence of density for SDS at different	
	temperatures in 0.10 volume fraction of methanol	61
Figure 4.7:	Concentration dependence of density for SDS at different	
	temperatures in 0.20 volume fraction of methanol	62
Figure 4.8:	Concentration dependence of density for SDS at different	
	temperatures in 0.30volume fraction of methanol	62
Figure 4.9:	Concentration dependence of density for SDS at different	
	temperatures in 0.40volume fraction of methanol	63

Figure 4.10:	Concentration independence of partial molar volume for SDS at 298.15 K	63
Figure 4.11:	Concentration independence of partial molar volume for SDS at 308.15 K	64
Figure 4.12:	Concentration independence of partial molar volume for SDS at 318.15 K	64
Figure 4.13:	Concentration independence of partial molar volume for SDS at 323.15 K	65
Figure 4.14:	Concentration independence of partial molar volume for SDS at different temperature in pure water	65
Figure 4.15:	Concentration independence of partial molar volume for SDS at different temperature in 0.10 volume fraction of methanol	66
Figure 4.16:	Concentration independence of partial molar volume for SDS at different temperature in 0.20 volume fraction of methanol	66
Figure 4.17:	Concentration independence of partial molar volume for SDS at different temperature in 0.30 volume fraction of methanol	67
Figure 4.18:	Concentration independence of partial molar volume for SDS at different temperature in 0.40 volume fraction of methanol	67
Figure 4.19:	Concentration dependence of density for SDS in presence of CTAB at 298.15 K	68
Figure 4.20:	Concentration dependence of density for SDS in presence of CTAB at 308.15 K	69
Figure 4.21:	Concentration dependence of density for SDS in presence of CTAB at 318.15 K	69
Figure 4.22:	Concentration dependence of density for SDS in presence of CTAB at 323.15 K	70
Figure 4.23:	Concentration independence of apparent molar volume for SDS in presence of CTAB at 308.15 K.	71

Figure 4.24:	Plot of specific conductivity versus concentration of SDS	
	solution at 298.15 K, in pure water	73
Figure 4.25:	Plot of specific conductivity versus concentration of SDS	
	solution at 308.15 K, in pure water, indicating cmc	74
Figure 4.26:	Specific conductance of SDS versus concentration in pure water at	
	308.15 K: The breaking points indicating critical micelle	
	concentration	80
Figure 4.27:	Plot of variation of lnX_{cmc} with temperature for SDS	81
Figure 4.28:	ΔS_{m}° versus ΔH_{m}° for SDS with NaCl system in pure water and	
	four different volume fractions of methanol at 298.15 K	88
Figure 4.29:	ΔH_m° versus T(K) for SDS with NaCl in pure water and four	
	different volume fractions of methanol at 298.15 K	90
Figure 4.30:	T_c versus SDS in the absence and presence of NaCl, NaBr, KCl	
	and KBr system in water and 0.1, 0.2, 0.3 and 0.4 volume fraction	
	of methanol in methanol-water mixed solvent media	91
Figure 4.31:	σ versus SDS in the absence and presence of NaCl, NaBr, KCl	
	and KBr system in water and 0.1, 0.2, 0.3 and 0.4 volume fraction	
	of methanol in methanol-water mixed solvent media	92
Figure. 4.32:	$\Delta G_{\rm m}^{\circ}$ versus $E_{\rm T}(30)$ for SDS in absence and presence of salts	93
Figure. 4.33:	$\Delta G_{\rm m}^{\circ}$ versus 1/D for SDS in absence and presence of salts	93
Figure. 4.34:	$\Delta G_{\rm m}^{\circ}$ versus G for SDS in absence and presence of salts	94
Figure. 4.35:	$\Delta G_{\rm m}^{\circ}$ versus δ for SDS in absence and presence of salts	94
Figure. 4.36:	α versus S_p for SDS in absence and presence of salts	95
Figure. 4.37:	$\Delta G_{\rm m}^{\circ}$ versus $S_{\rm p}$ for SDS in absence and presence of salts	95
Figure 4.38:	Plot of surface tension against concentration of SDS solution at	
	298.15 K, in pure water and in 0.10, 0.20, 0.30 and 0.40 volume	
	fractions of methanol-water mixture	97

Figure 4.39:	Plot of surface tension versus concentration of SDS solution at	
	308.15 K, in pure water and in 0.10, 0.20, 0.30 and 0.40 volume	
	fractions of methanol	97
Figure 4.40: P	Plot of surface tension versus concentration of SDS solution at	
	318.15 K in pure water and in 0.10, 0.20, 0.30 and 0.40 volume	
	fractions of methanol	98
Figure 4.41: P	Plot of surface tension versus concentration of SDS solution at	
	323.15 K, in pure water and 0.10, 0.20, 0.30 and 0.40 volume	
	fractions of methanol	98
Figure 4.42: \	Variation of slope $\left(\frac{d\gamma}{dlogC}\right)$ with volume fractions of methanol for	
	SDS solutions	101
Figure 4.43: P	Plot of viscosity versus concentration of SDS solution at	
	298.15 K	105
Figure 4.44: P	Plot of viscosity versus concentration of SDS in distilled water at	
	four different temperatures	106
Figure 4.45: P	Plot of $\left(\frac{n_{r-1}}{\sqrt{c}}\right)$ vs \sqrt{C} for SDS solution at 298.15 K	106
Figure 4.46: \	Variation of viscosity ß coefficients of SDS solutions with volume	
	fraction of methanol	107

TABLE OF CONTENTS

Title page	i
Declaration	ii
Recommendation	iii
Certificate of Approval	iv
Acknowledgements	V
Abstract	vi
List of Abbreviations	viii
List of Symbols	ix
List of Tables	Х
List of Figures	xii
Table of Contents	xvi
CHAPTER 1	1 -35
1. INTRODUCTION	1
1.1. Introduction	1
1.1.1. Anionic Surfactants	6
1.1.2 Caionic surfactants	9
1.1.3. Density	10
1.1.4 Partial molar volume	10
1.1.5. Study of density and apparent molar volume of	
Sodiumdodecylsulphate- Cetyltrimethylammonium bromide	11
1.1.6. Conductance and thermodynamic properties	13
1.1.7. Salts effect	17
1.1.8. Effect of alcohol	18
1.1.9 Micelle	20

1.1.10. Micellisation	25
1.1.11. Thermodynamic properties	26
1.1.12. Correlation of ΔG_m^o with solvent parameters	27
1.1.13. Correlation of ΔG_m^o with solvophobic parameter (S _p)	28
1.1.14. Surface tension	29
1.1.15. Viscosity	33
1.2. Rationales of the Study	34
1.3. Objectives	34
1.3.1. General Objectives	34
1.3.2. Specific Objectives	34
CHAPTER 2	36-49
2. LITERATURE REVIEW	36
CHAPTER 3	50 - 53
3. MATERIALS AND METHODS	50
3.1 Preparation of solvent	50
3.1.1 Preparation of mixed solvent at different temperatures	50
3.1.2 Preparation of 0.1M solution of SDS at 298.15, 308.15, 318.15 and 323.15 K	50
3.1.3. Preparation of 0.1M solution of monovalent salts NaCl, NaBr, KCl and KBr at 298.15, 308.15, 318.15 and 232.15 K	51
3.1.4. Preparation of solution of sodiumdodecysulphate- cetyltrimethylammonium bromide	51
3.2 Measurement of density of a solution at 298.15, 308.15, 318.15 and323.15 K.	51
3.3. Measurement of conductance of a solution at 298.15, 308.15, 318.15 ar	nd
323.15 K.	52

3.4.	Measurement of surface tension of a solution at 298.15, 308.15, 318.15	5
	and 323.15 K.	53
3.5.	Measurement of viscosity of a solution at 298.15, 308.15, 318.15 and 323.15 K 53	
CHAI	PTER 4	54- 107
4. RES	SULTS AND DISCUSSION	54
4.1	Properties of methanol-water mixed solvent media	54
4.2	Study of density and partial molar volume of SDS	54
4.3	Study of density and apparent molar volume of SDS-CTAB	68
4.4	Study of conductivity and related thermodynamic properties of SDS in	the a
	bsence and presence of NaCl, NaBr, KCl and KBr	72
	4.4.1 Thermodynamics of micellization	77
	4.4.2 Correlation of $\Delta G_{\rm m}^{\circ}$ with solvent parameters	92
	4.4.3 Correlation of $\Delta G_{\rm m}^{\circ}$ with solvophobic parameter (S_p)	94
4.5.	Study of surface tension and related surface properties of SDS	96
	4.5.1. Surface Properties	99
4.6.	Study of viscosity and related properties of SDS in methanol-water	103
CHAF	PTER 5	108-110
5 CON	NCLUSIONS AND RECOMMENDATIONS	108
5.1. C	ONCLUSIONS	108
5.2. R	ECOMMENDATIONS	110
CHAF	PTER 6	111-112
6. SUI	MMARY	111
REFE	CRENCES	113-135
APPE	NDIX	136-140