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Abstract

The distribution of primes, mainly focusing on the Tchebycheff estimates of prime

counting function, Mertens Theorem which are most significant results for distribution

of primes have beeen studied in this thesis. Distribution of Twin Primes, Twin Prime

Conjecture and some developments towards the Twin Prime Conjecture is also studied.

The alternative approaches for the Twin Prime Conjecture has also been studied in this

thesis.
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List of Symbols

We will use the following notations throughout the thesis.
For functions f and g we write:
1.f(x) ∼ g(x) which we read as f is asymptotic to g as x→∞ which mean that

lim
x→∞

f(x)

g(x)
= 1

2. If g(x) > 0 for all x ≥ a, we write f(x) = O(g(x)) or f(x) � g(x) to be read
f is big-O of g which mean that there is a positive constant C such that for all x,
| f(x) |≤ C | g(x) | for all x ≥ a.
3. f(x) = o(g(x)) which we read as f(x) is small oh to g(x) as x → ∞ which mean

that lim
x→∞

f(x)

g(x)
= 0

For the most part, we use the standard notations for common number theoritic func-
tions. These are usually defined at their first apperence, but for convenience we also list
them here.

R : The set of Real Numbers.
C : The set of point in complex plane.
π(x) : Prime Counting Function: the number of Primes p ≤ x
π2(x) : Twin Prime Counting Function: the number of Primes p ≤ x; p+ 2 also be a prime
[x] : The integral part of the real number x.
{x} : The fractional part of the real number x.
log x : The natural logarithm of the real number x.
d(n) : The number of positive divisor of n.
φ(n) : Euler’s totient function: the number of reduced residue classes modulo n.
µ(n) : Mobious function
Λ(n) : von Mangoldrt’s function
ρ(x) : Correlation Coefficient
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Chapter 1

Introduction

1.1 Introduction and Motivation

The positive integers are undoubtedly man’s first mathematical creation. It is hard

to say about the antiquity of the natural numbers but historical record shows that as

early as 5700BC, the ancient Sumerian kept calender, so they must had some form of

arithmetic.

Numbers were used for keeping records and for commercial transactions for over 5000

years before anyone thought studying numbers themselves in a systematic way. The

first scientific approach to study of integers, that is, the true origin of the theory of

numbers, is generally attributed to Greeks. Around 600BC Pythagoras and his disciples

studied the integers and classified them as Even-Odd, Prime-composite [22].

A prime number is a natural number greater than 1 whose factors are 1 and itself.

The prime numbers derive their peculiar importance from the fundamental theorem of

arithmetic that every number can be constructed by multiplying together these numbers

so that’s why the primes are called building blocks of numbers. Despite of the simplic-

ity in arithmetic, prime numbers have remained one of the most mysterious elements
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known in mathematics for nearly two thousands years. According to the nature of dis-

tribution of primes, they are classified in many types but most important in the history

are, Fermat primes, Mersenne Primes, Sophie Germain Primes, Twin Primes, Cousin

primes etc[17].

The problems in number theory seems to be very simple as like, How many primes

are there?

How many primes are there less than certain number?

Is there exist certain natural number nwhich satisfies xn+yn = zn for positive integers

x, y, z?

Are there infinitely many twin primes?

Although these questions seem to be very simple but their mathematical evidence

are very complicated. Euclid (300BC) and many others mathematicians gave the an-

swer of the first question as ”There are infinitely many prime numbers”. But the second

question is known as the prime number theorem conjectured by Gauss and Legendre at

1792 as

π(x) = lim
x→∞

x

log x

and after 100 years J. Hadamard and C. J. de la Valle Poussion proved it. For the

fourth question we have the famous conjecture “There are infinitely many Twin primes”

known as Twin Prime Conjecture, mathematically

H1 = lim
n→∞

(pn+1 − pn) = 2

The Twin Prime Conjecture is possibly the most basic question one may ask, after they

are satisfied with the Prime Number Theorem. The Twin Prime Conjecture already

spawned a modern tool of combinatorial and analytic number theory the sieve theory

[19].

The sieve theory was established at the beginning of the 20th century as a simple

method to count prime numbers in intervals. Today it is a powerful tool to approach

problems related to the Twin Prime Conjecture, e.g., Goldbach Conjecture. It was
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already used to prove countless partial results supporting many conjectures and appar-

ently there is much more for sieves to do. Why is that so, that the Twin Prime Con-

jecture resists any attempts to prove it? There is a fundamental difference between the

question about the infinitude of prime numbers and the infinitude of twin prime pairs.

The latter one involves not only multiplicative properties of numbers, but also additive

properties. These two branches of number theory have numerous books dedicated to

each of them separately. The history shows that the most difficult problems are those,

which involve both domains.

It is a shame that the truth about such basic facts is hidden from us. Hopefully,

one day we will understand the primes or, as Paul Erdos once said “It will be another

million years, at least, before we understand the primes” [21].

Although, it has no proof yet, but remarkable progress in the study of distribution of

primes and twin prime conjecture has been made. There are probably no direct, prac-

tical conclusions that can be drawn from the Twin Prime Conjecture. But, just as was

in the case of Fermat’s Last Theorem, research toward the unproven conjecture usu-

ally yields some additional understanding and tools that can be used in other situations.

Like as, until very recently, the number theory was considered only as a pure branch of

mathematics with virtually no practical application in the real life. Hardy said in his A

mathematician’s Apology[21] “No one has yet discovered any war like purposed to be

served by the theory of numbers or relativity, and it seems unlikely that anyone will do

so for many years”. But due to unpredictability of prime numbers, they have become a

deterministic part of computer and data security. Now, everyday millions of people use

RSA encryption scheme and complicated ciphers without even knowing about it. In

this chapter we will discuss the some historical development of prime numbers, distri-

bution of primes and number Theorem, Twin Prime numbers its distribution and Twin

Prime Conjecture.
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1.2 Historical Background

1.2.1 Development of Prime Numbers and Prime Number Theo-
rem

Although the Pythagoras and his disciples classified the integers as prime and com-

posite around 600BC, the prime numbers and their properties were first studied ex-

tensively by ancient Greek mathematicians. Before Greeks, there are some evidences

of Babylonians and Egyptians having and under standing of prime integers through

their sexigesimal system of division. The most valued source available on the ancient

Greek’s expertise involving the prime integers is the ancient text elements. Elements

has remained one of the most influential works of mathematics ever produced. The

Elements by Euclid (300BC) has thirteen volumes among them Volume VII (Proposi-

tions 30,31,32) and volume IX (propositions 14 and 20) are related to the properties

of primes. The proposition 20 of volume IX is the first result dealing with distribu-

tion of primes which stated as Prime numbers are more than any assigned multitude

of prime numbers [23]. Later on many mathematicians ; T. J. Stiltjes, J. Brun, Euler,

L. Kroneker, J. J. Sylvesters etc prove the infinitude of the prime number in different

approaches.The propositions found in Elements are the groundwork of prime number

theory. Despite the sophisticated principles presented in Elements, Euclid left very lit-

tle instruction as to how one would go about finding the precise location of a prime

integer, or even how to know whether or not a given integer is prime.

Eratosthenes (around 200 BC)of studied a method to produce a list of prime num-

bers known as the sieve of Eratosthenes, which is a convenient way to produce list of

prime numbers below some bound. Extended tables of primes were constructed in the

17th century. In 1770 Johnn Henrich Lambert (1728-1777) had compiled a table of all

primes up to 102, 000. At the beginning of the 17th century Pierre de Fermat devised

a method to factor large numbers, known as the Fermat’s little theorem which is stated

as if p is prime, then for any integer a, ap = a(mod p).It would be nearly 100 years

later would Fermat’s Little theorem be proved by Euler. The theorem serves as a test
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to determine whether or not the input value is prime. The application of Fermat’s Little

Theorem is widely used today in mathematics and computer security [14].

Fermat tried to expand on Euclid’s theorem on the relationship between prime num-

bers and perfect numbers and ended up producing a theorem that tests for primality. All

of the innovations listed were stepping stones in widening our knowledge about the true

nature of prime integers.

In 1737 Leonard Euler [26] made a direct connection between the prime numbers

and tools of analyzing by proving that

1

1− 2−n
.

1

1− 3−n
.

1

1− 5−n
... =

∞∑
k=1

1

kn
= ζ(n)

which displays the connection between the zeta function on the right to the prime num-

ber to the left. Mathematicians have studied this function in order to prove the proper-

ties of the prime numbers ever since. Using this formula Euler proved that reciprocal

series of the prime number diverges which prove that prime numbers are infinitely

many.

At the last of 18th century, a new perspective of prime counting function was

emerged especially by a young mathematician Carl Fredric Gauss. At the fifteen, while

he was studying the logarithm tables, conjectured a new relationship between the prime

number and natural logarithm of the natural number which was denoted by Gauss in

the formula π(x) ∼ x

log x
where π(x) denotes the number of prime number from 1 to

x[19]. But this result in some how give the quite estimation of prime numbers on the

lower value of x, but goes farther and farther away away from the true value.

Six years later than Gauss, in 1798 French mathematician Legendre devised a sim-

ilar formula for computing the number of primes in a set of number from 1 to x and

conjectured that [2]

π(x) ∼ x

A log x−B
where A and B are constant. In his second paper in 1808 he made this approximation

more precise by proving the values A = 1 and B = 1.08366.
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Gauss first formula was not more accurate to count the prime numbers in certain

block. In 1849 he conjectured in a letter to the astronomer Johann Franz Encke(1791-

1865) [28] that

π(x) ∼ Li(x) =

∫ x

2

dt

log t

In this letter Gauss confessed that he was not aware of the Legendre’s work. By using

the calculus it can be shown that Li(x) ≈ x

log x
.

In 1851 Pafunty Lvovich Chebyshev (1821-18194) made a significant step in the

direction of the prime number theorem by giving the precise order of magnetuide of

π(x) by proving [23]

C1
x

log x
≤ π(x) ≤ C2

x

log x

for sufficiently large x. He also proved that if lim
x→∞

π(x)
x

log x

exists, it is necessarily equal

to 1. In fact Chebyshev proved with C1 = 0.92129 and C2 = 1.1056. This enabled him

to proved the Bertrand’s Postulate, namely that for all x ≥ 1 there exist prime p such

that x ≤ p ≤ 2x.

A few years after the appearance of Chebychev’s paper, a path to the proof of PNT

was laid out by Riemann in his only published paper at 1859 in number theory. Riemann

observed that ζ(x) is holomorphic in the half plane Re(s) > 1 and that it can be

continued analytically to a meromorphic function whose only singularity is a simple

pole at s = 1. Riemann was interested in ζ(x) because the Euler identity provide a

connection between the analyticity properties of ζ(x) and PNT. He conjectured several

properties of these zeros, all but one of which were proved around the end of the 19th

century by Hadamard and H. Van Mangoldt. The one conjecture that remains to this

day which has been selected by the Clay mathematics institute as one of the seven

millenium problems so-called Riemann Hypothesis stated as “All zeros of ζ(x) with

0 ≤ Re(s) ≤ 1 lies on the real line Re(s) = 1
2
”. A proof of these conjectures was

achieved independently in 1896 by Hadamard and de la Vallaee Poussin [7] and is now

known as the Prime Number Theorem.

In fact, we can state stronger forms of the Prime Number Theorem, giving error
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estimates for the above asymptotic relationship. We find the best error estimates when

we assume the Riemann Hypothesis (RH). Assuming RH, Koch showed in 1901 that[5]

π(x) = Li(x) +O(
√
xlogx)

The best known unconditional bound is

π(x) = Li(x) +O(x exp(
−A(log x)

3
5

(log log x)
1
5

))

Although the Prime Number Theorem is a very satisfying result, its proof naturally

did not end the study of the distribution of primes. One outstanding question (to which

we shall later return) concerns bounds on the difference Another question concerns twin

primes, to which we next turn our attention.

1.2.2 Development of the Twin Prime Conjecture

The existence of the Twin Primes would have been easily understood by ancient Greeks

but there is no evident that they were considered by them,or indeed by any mathemati-

cians until the nineteen century. The term Twin Prime was coined by Paul Stackel in

the late nineteen century[19]. de Poligance’s was the person who stated the general

conjecture about twin prime in 1849 as “Every even number is the difference of two

consecutive primes in infinitely many ways”. Taking the even number in the conjecture

to be 2 immediately gives what we now call the Twin Prime Conjecture [5].

About 30 years after de Poligance, Glaisher inaugurated a project which continues

to the present day by enumerating the twin primes up to 105. Glaisher used published

tables of primes to show that π2(105) = 1224 [16].

In 1919, Brun adapted and improved earlier work of Merlin [5] on the sieve of

Eratosthenes to find the first non-trivial result concerning twin primes. Brun showed

that

π2(x) = O(
x(log log x)2

log2 x
) (1.1)

7



Brun obtained an effective version of this bound. In particular, he showed that for some

x0 all x > x0

π2(x) < 7200
x

log2 x
(log log x)2 +

x

log6 x
+ x

3
4 (1.2)

Brun immediately followed this work with the announcement of a stronger bound, in

which he showed that

π2(x) = O(
x

log2 x
) (1.3)

and once again, he found an effective version of his bound with

π2(x) <
100x

log2 x
(1.4)

for some x > x0 where x0 is an effective computable constant. Brun’s these works

are important because from (1), it can be concluded that the reciprocal series of the

twin primes is convergent in contrast with the prime numbers. The convergent value is

known as the Brun’s constant ‘B’. But Brun did not find an explicit value of B. First

by Selmer in 1942 and later on by Froberg [1961], Bowman [1973], Shank’s,wrener

[1974], Brent [1974], Nicely [1996, 2004, 2007], Sebah [2002], Klyve [2007] gave the

bounds for B [5].

In 1923 Hardy and Littlewood (1923) made a more precise conjecture on the distri-

bution of twin primes in the interval [1, x] which gives the first asymtotic formula for

the Twin Counting Function[8].

Yaminov(1986) formulated a new conjecture of distribution of Twin Primes as the

twin primes are distributed among the primes in the same way as the primes among

the natural numbers. On the basis of Tchebycheff’s theorem and on the asymptotic

distribution law of prime numbers, he constructed lower and upper estimates of the

numbers of twin primes. He considered their empirical distribution function, having

a high degree of accuracy. Under the assumption of the validity of the introduced

conjecture, he gave a simple proof of the fact that the number of pairs of twin primes

is infinite on the distribution law of twin primes, based on the superposition of the

function π(x) with itself [3].
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The most significance result about the Twin Prime Conjecture announced on April

17, 2013, by Yitang Zhang. He proved that for some integer N that is less than 70 mil-

lion, there are infinitely many pairs of primes that differ by N [29]. Terence Tao subse-

quently proposed a Polymath Project collaborative effort to optimize Zhang’s bound .

As of April 14, 2014, one year after Zhang’s announcement, according to the Polymath

project wiki, the bound has been reduced to 246. Further, assuming the Elliotte Hal-

berstam conjecture and its generalized form, the Polymath project wiki states that the

bound has been reduced to 12 and 6, respectively [13]. These improved bounds were

discovered using a different approach that was simpler than Zhang’s and was discovered

independently by James Maynard and Terence Tao.

1.3 The goal and structure of Thesis

The main goal of this work is to discuss about the elementary results on distribution

of primes and Twin Prime Conjecture. Here we discuss some elementary results on

distribution of primes focussing on Chebychev’s bounds for prime counting function

and Merten’s theorems. We also try to give a brief account of the development of Twin

Prime Conjecture and its alternative approaches.

In the chapter 2, we state some fundamental definitions and theorems they will be

used throughout this work.

The chaptpter 3 will be for the some arithmetical functions and their important

results which are useful for the study of the distribution of primes.

In the chapter 4, we will discuss about the distribution of primes and some theorem

about it. The martens theorem and Tschebycheff estimates for prime counting function

will be discuss in this chapter.

The chapter 5 will be for the Twin prime numbers, their distribution and about the

Twin prime conjecture and its altenative approaches.

In chapter 6, we will summarise our entire work and way for future research.
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Chapter 2

Some Preliminaries

In this chapter, we will discuss some basic concepts and results on Number Theory

which are fundamentals for the study of prime numbers and their distribution. We

based on [27][22] [11] [10] for this chapter.

2.1 Some Definitions

Definition 2.1.1. If an integer m, not zero, divides the difference a − b, we say that a

is congurent to b modulo m and write a ≡ b(mod m). If a− b is not divisible by m, we

say that a is not congurent to b modulo m, and in this case we write a 6≡ b(mod m).

Definition 2.1.2. We say d divides n and we write d|n whenever n = cd, for some c.

We also say that n is a multiple of d, that d is a divisor of n, or that d is a factor of n. If

d does not divide n we write d - n.

Definition 2.1.3. For given integers a and b, we say d is the greatest common divi-

sor(gcd) of a and b and denoted by (a, b) = d if

(a) d ≥ 0 (d is non negative )

(b) d | a and d | b (d is a common divisor of a and b)

(c) e | a and e | b implies e|d (ever common divisor divides d)

10



Definition 2.1.4. If gcd of a and b is 1 i.e (a, b) = 1 then the integers a and b are said

to be relatively prime.

Definition 2.1.5. If x ≡ y(mod m) then y is called a residue of x modulo m. A set

x1, x2, , ..., xm is called a complete residue system modulom if for every integer y there

is one and only one xj such that y = xj(mod m).

2.2 Some Theorems

Theorem 2.2.1. Every integer n > 1 is either a prime number or a product of prime

numbers.

Proof. We use induction on n. The theorem is clearly true for n = 2. Assume it is true

for every integer < n. Then if n is not prime it has a positive divisor d 6= 1, d 6= n.

Hence n = cd,where c 6= n. But both c and d are < n and > 1 so each of c, d is a

product of prime numbers, hence so is n.

Theorem 2.2.2. Euclid There are infinitely many prime numbers.

Proof. Euclid’s Proof:

Suppose there are only a finite number, say p1, p2, ..., pn. Let N = 1 + p1, p2, ..., pn.

Now N > 1 so either N is prime or N is a product of primes. Of course N is not

prime since it exceeds each pi. Moreover, no pi divides N (if pi|N then pi divides the

difference N − p1.p2...pn = 1). This contradicts Theorem 2.2.1.

Theorem 2.2.3. (Fundamental theorem of arithmetic)

Every integer n > 1 can be represented as a product of prime factors in only one way,

apart from the order of the factors.

Theorem 2.2.4. ( The division algorithm):

Given integers a and b with b > 0, there exists a unique pair of integers q and r such

that a = bq + r, with 0 ≤ r < b.

Moreover, r = 0 if, and only if, b|a.

11



Note: We say that q is the quotient and r the remainder obtained when b is divided

into a.

Theorem 2.2.5. There are arbitrarily large gaps in the series of primes. Stated other-

wise, given any positive integer k there exist k consecutive composite integers.

Proof. Consider the integers

(k + 1)! + 2, (k + 1)! + 3, ..., (k + 1)! + k, (k + 1)! + k + 1

Every one of these is composite because j divides (k+ 1)! + j if 2 ≤ j ≤ (k+ 1)

Now we turn our concern to a slight difference view of divisibility known as con-

gruences. A congruence is nothing more than a statement about divisibility. However,

it is more than just a convenient notation. The theory of congruence was introduced by

Carl Friedrich Gauss (1777-1855). In his book Disquisitiones Arithmeticae, written at

age 24, Gauss introduced the theory of congruences, which gained ready acceptance as

a fundamental tool for the study of number theory.

Theorem 2.2.6. Let (a,m) = 1. Let r1, r2, ..., rn be a complete or reduced residue

system modulo m. Then ar1, ar2, ..., arn is complete, or a reduced, residue system,

respectively, modulo m.

Theorem 2.2.7. (Fermat’s Theorem) Let p denotes a prime. If p - a then ap−1 ≡
1(mod p). For every integer a, ap ≡ a(mod p).

We will prove this theorem as a corollary of the following theorem.

Theorem 2.2.8. (Euler’s generalization of Fermat’s Theorem) If (a,m) = 1, then

aφ(m) ≡ 1(modm)

Proof. Let r1, r2, ..., rφ(m) be a reduced residue system modulo m. Then by theorem

(2.2.6),

12



ar1, ar2, ..., arφ(m) is also a reduced residue system modulo m. Hence correspond-

ing to each ri there is one and only one ari such that ri ≡ arj(mod m). Further

more, different ri will have different corresponding arj . This means that the numbers

ar1, ar2, ..., arφ(m) are just residues modulo m of r1, r2, ..., rφ(m), but not necessarily

using in the same order. Multiplying and using the properties of congruence, we obtain

φ(m)∏
j=1

(arj) ≡
φ(m)∏
i=1

ri(mod m)

and hence

aφ(m)

φ(m)∏
j=1

rj ≡
φ(m)∏
j=1

rj(mod m)

Now (rj,m) = 1. Hence cancel the ri and we obtained aφ(m) ≡ 1(mod m

proof of Fermat’s Theorem.

If p - a, then (a, p) = 1 and aφ(m) ≡ 1(mod p). Then we have φ(p) = p− 1, Then the

first part of the Fermat’s Theorem follows and the second part is obvious.

Theorem 2.2.9. If (a,m) = 1 then there is an x such that ax ≡ (mod m). any two

such x are congruent (modm). If (a,m) > 1 then there is no such x.

Theorem 2.2.10. Wilson’s Theorem

If p is a prime, then (p− 1)! ≡ −1(mod p).

13



Chapter 3

Arithmetical Functions and Some
Basic Results

In this chapter we will discuss some arithmetical functions and preliminary results of

them. These functions play vital role in the study of the distribution of prime numbers.

We based on [27][22] [11] [10] for this chapter.

Definition 3.0.1. A real or complex-valued function defined on the positive integers is

called an arithmetical function or number-theoretic function.

An arithmetical function f is said to be multiplicative function if f is not identically

zero and if

f(mn) = f(m)f(n),whenever (m,n) = 1

A multiplicative function f is called completely multiplicative if we also have

f(mn) = f(m)f(n), for all m,n

Example: Let fα(n) = nα, where α is a fixed real or complex number. This is a

completely multiplicative arithmetic function.

Theorem 3.0.11. Suppose that the function f : N → C is multiplicative. Then the

14



function g : N→ C , defined by

g(n) =
∑
m | n

f(m)

for every n ∈ N, is multiplicative.

Definition 3.0.2. A divisor function d : N→ C is defined as

d(n) =
∑
m | n

1 (3.1)

for every n ∈ N, here the sum is taken over all positive divisor m of n. In other word

the value of d(n) denotes the number of positive divisors of the natural number n. On

the other hand we define the function σ : N→ C by writing

σ(n) =
∑
m | n

m (3.2)

for every n ∈ N. Clearly the value of σ(n) denotes the sum of the all the positive

divisors of the natural number n.

Theorem 3.0.12. Suppose that n ∈ N and that n = pu11 ...p
ur
r is the canonical decom-

position of n. Then,

d(n) = (1 + u1)...(1 + ur) and σ(n) =
pu1+1

1 − 1

p1 − 1
...
pur+1
r − 1

pr − 1

Proof. Every positive divisor m is of the form m = pv11 ...p
vr
r , where for every j =

1, ..., r, the integer vj satisfies 0 ≤ vj ≤ uj . It follows from (3.1) that d(n) is the

number of choices for the r-tuple (v1, ..., vr). Hence

d(n) =

u1∑
v1

...
ur∑
vr

1 = (1 + u1)...(1 + ur)

. On the other hand, it follows from (3.2) that

σ(n) =

u1∑
v1=0

...

ur∑
vr=0

pv11 ...p
vr
r = (

u1∑
v1=0

pv11 )...(
ur∑
vr=0

pv11 (
ur∑
vr=0

pvrr )

15



Note now that for every j = 1, ..., r, we have

uj∑
vj=0

p
vj
j = 1 + pj + p2

j + ...+ p
uj
j

The second assertion follows.

The result below is the simple deduction of the above result.

Theorem 3.0.13. The arithmetic functions d : N → C and σ : N → C are both

multiplicative.

Theorem 3.0.14. As x→∞, we have∑
n≤x

d(n) = x log x+ (2γ − 1)x+O(x
1
2 )

Here γ is Euler’s constant and is defined by

γ = lim
x→∞

(
∑
n≤x

1

n
− log x) = 0.5772156649.....

The proof depends on the following results.

Theorem 3.0.15. As x→∞, we have∑
n≤x

1

n
= log x+ γ +O(

1

x
)

Proof. As x→∞, we have

16



∑
n≤x

1

n
=
∑
n≤x

(
1

x
+

x∫
n

1

u2
du) =

[x]

x
+
∑
n≤x

x∫
n

1

u2
du =

[x]

x
+

x∫
1

1

u2
(
∑
n≤u

1)du

=
[x]

x
+

x∫
1

[u]

u2
du =

[x]

x
+

x∫
1

1

u
du−

x∫
1

u− [u]

u2
du

= log x+ 1 +O(
1

x
)−

∞∫
1

u− [u]

u2
du+

∞∫
x

u− [u]

u2
du

= log x+ (1−
∞∫

1

u− [u]

u2
du) +O(

1

x
)

Letting x→∞ we find that

γ = lim
x→∞

(
∑
n≤x

1

n
− log x) = 1−

∞∫
1

u− [u]

u2
du

This completes the theorem.

Proof of Theorem 3.0.14:

As x→∞ , we have

∑
n≤x

d(n) =
∑
y;z
yz≤x

1 =
∑
y≤x

1
2

∑
z≤x

y

1 +
∑
z≤x

1
2

∑
y≤x

z

1−
∑
y≤x

1
2

∑
z≤x 1

2

1

= 2
∑
y≤x

1
2

[
x

y
]− [x

1
2 ]2 = 2

∑
y≤x

1
2

x

y
+O(

1

x
1
2

)− (x
1
2 +O(1))2

= 2x(log x
1
2 + γ +O(

1

x
1
2

)) +O(x
1
2 )− x

= x log x+ (2γ − 1)x+O(x
1
2 )

This completes the theorem.
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Every number n ∈ N has divisor 1 and n, so we must have σ(1) = 1 and σ(n) > 1.

The next theorem shows the behavior of σ(n) an n→∞ .

Theorem 3.0.16. we have σ(n)� n log n as n→∞

As in the nature of d(n), the magnitude of σ(n) fluctuates a great deal as n → ∞.

So it is fruitful to study its average. The following result deals the average behavior of

σ(n)

Theorem 3.0.17. As x→∞ , we have∑
n≤x

σ(n) =
π2

12
x2 +O(x log x)

Proof. As x→∞ , we have∑
n≤x

σ(n) =
∑
n≤x

∑
m|n

n

m
=
∑
m≤x

∑
n≤x
m|n

n

m

=
∑
m≤x

∑
r≤ x

m

r =
∑
m≤x

1

2
[
x

m
](1 + [

x

m
])

=
1

2

∑
m≤x

(
x

m
+O(1))2 =

x2

2

∑
m≤x

1

m2
+O(x

∑
m≤x

1

m
) +O(

∑
m≤x

1)

=
x2

2

∞∑
m=1

1

m2
+O(x2

∑
m>x

1

m2
) +O(x log x)

=
π2

12
x2 +O(x log x)

This completes the proof.

Definition 3.0.3. The Mobious function µ : N→ C is defined by

µ(n) =


1 if n = 1

(−1)r if n = p1...pr a product of distinct primes,

0 otherwise

18



Remark: A natural number which is not divisible by square of any prime number is

known as square free number. Thus by definition of Mobious function n ∈ N is square

free iff µ(n) = ±1. By definition, it is not difficult task task to show that the Mobious

function is multiplicative. Although the Moubious function does not fluctuate to n ∈ N
as n→∞, its average is more stable which is shown in the following theorem.

Theorem 3.0.18. Suppose that n ∈ N. Then

∑
m/n

µ(n) =

1 if n = 1

0 if n > 1

Proof. Consider the function f : N→ C defined by writing

f(n) =
∑
m | n

µ(n)

for every n ∈ N.Since µ is multiplicative and by theorem 2.1 f is multiplicative. For

n = 1 the result is trivial. To complete the theorem it is suffices to show that f(pk) = 0

for every prime p and k ∈ N. For

f(pk) =
∑
m | pk

µ(m) = µ(1) +µ(p) +µ(p2) + ...+µ(pk) = 1− 1 + 0 + 0 + ...+ 0 = 0

This completes the proof.

This theorem is useful to prove the following two theorems.

Theorem 3.0.19. Mobious Inversion Formula
For any function f : N→ C,if the function g : N→ C is defined by writing

g(n) =
∑
m | n

f(m)

for every n ∈ N,we have

f(n) =
∑
m | n

µ(m)g(
n

m
) =

∑
m | n

µ(
n

m
)g(m).

19



Proof. The second equality is obvious. Also

∑
m | n

µ(m)g(
n

m
) =

∑
m | n

µ(m)

∑
k | n

m

f(k)

 =
∑
k,m
km | n

µ(m)f(k) =
∑
k | n

f(k)

∑
m | n

k

/mu(m)

 = f(n)

This completes the proof.

Theorem 3.0.20. For any function g : N→ C, if the function f : N→ C is defined by

writing

f(n) =
∑
m | n

µ(
n

m
)g(m)

for every n ∈ N,we have

g(n) =
∑
m | n

f(m) =
∑
m | n

f(
n

m
)

Definition 3.0.4. If n ≥ 1, the Euler (some times called Euler totient function) is

defined to be the number of positive integers not exceeding nwhich are relatively prime

to n; thus,

φ(n) =
n∑
k=1

1

Theorem 3.0.21. For every number n ∈ N, we have∑
m | n

φ(m) = n

Applying the Mobious inversion formula to the above theorem (3.0.21), we get the

following result.

Theorem 3.0.22. For every n ∈ N, we have

φ(n) =
∑
m | n

µ(m)
n

m
= n

∑
m | n

µ(m)

m

Theorem 3.0.23. The Euler function φ : N→ C is multiplicative.
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Theorem 3.0.24. For every n ∈ N, we have

1

2
<
σ(n)φ(n)

n2
≤ 1

Theorem 3.0.25 (MERTENS). As x→∞, we have∑
n≤x

φ(n) =
3

π2
x2 +O(x log x)

Proof. As x→∞, we have, by Theorem (3.0.22), that∑
n≤x

φ(n) =
∑
n≤x

∑
m | n

µ(m)
n

m
=
∑
m≤x

µ(m)
∑
n≤x
m | n

n

m
=
∑
m≤x

µ(m)
∑
r≤ x

m

r

=
∑
m≤x

µ(m)
1

2

[ x
m

]
(1 +

[ x
m

]
) =

1

2

∑
m≤x

µ(m)(
x

m
+O(1))2

=
x2

2

∑
m≤x

µ(m)

m2
+O(x2

∑
m≤x

1

m
) +O(

∑
m≤x

1)

=
x2

2

∞∑
m=1

µ(m)

m2
+O(x2

∑
m>x

1

m2
) +O(x log x)

=
x2

2

∞∑
m=1

µ(m)

m2
+O(x log x)

But
∞∑
m=1

µ(m)

m2
=

6

π2
. Hence the result follows.

Definition 3.0.5. Given arithmetic functions f, g ∈ A, we define the function f, g :

N→ C by writing

(f ∗ g)(n) =
∑
m | n

f(m)g(
n

m
)

for every n ∈ N. This function is called the Dirichlet Convolution(Dirichlet multipli-

cation) of f and g.

The next theorem describes the algebraic properties of Dirichlet multiplication.
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Theorem 3.0.26. Dirichlet multiplication is commutative and associative. That is for

any arithmetical functions f, g, k we have

f ∗ g = g ∗ f (Commutative Law)

(f ∗ g) ∗ k = f ∗ (g ∗ k) (Associativity)

Definition 3.0.6. : For every integer n ≥ 1 we define Mangoldt Function as

Λ(n) =

log p if n = pm for some prime p and some m ≥ 1

0 otherwise

Here is a short Table of values of Λ(n) :

n : 1 2 3 4 5 6 7 8 9 10
Λ(n) : 0 log 2 log 3 log 2 log 5 0 log 7 log 2 log 3 0

Theorem 3.0.27. If n ≥ 1 we have

log n =
∑
d | n

Λ(d)

Proof. The theorem is true if n = 1 since both numbers are 0. Therefore, assume that

n > 1 and write

n =
r∏

k=1

pk
ak

Taking logarithms we have

log n =
r∑

k=1

ak log pk

Now consider the sum on the right side of the equality in theorem. The only non zero

terms in the sum come from those divisors d of the form pk
m for m = 1, 2, 3, ..., ak and

k = 1, 2, 3, ...., r. Hence∑
d | n

Λ(d) =
r∑

k=1

ak∑
m=1

Λ(pk
m) =

r∑
k=1

ak∑
m=1

log pk =
r∑

k=1

ak log pk = log n

This completes the proof.
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Chapter 4

Distribution of Prime Numbers

In this chapter we will discuss some asymptotic results about the distribution of prime

numbers.

4.1 Approximation of Primes

The prime numbers are distributed randomly over the set of positive integers. So it is

not still possible to predict the number of primes in certain interval, we called this as

prime counting function, which is formally defined as

π(x) = ]{p : p is a prime ≤ x}

However, the behavior of π(x) as a function of x has been the object of intense study

by many celebrated mathematicians ever since the eighteenth century, there have been

attempts to search their patterns, actually the explicit formula to describe their distribu-

tion. We have a famous theorem “Prime number theorem ”

lim
x→∞

π(x) log x

x
= 1
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posed on around 1792 and after around 100 years its first proof came to the world

of mathematics. But the proof is analytical use of complex analysis of Riemann Zeta

function, further its elementary proof was came at 1949. But these both proof are not

easy and simple, takes several arguments and followed by sub results. The proof of this

“crowing achievement” of analytical number theory is beyond the scope of this thesis.

By the Prime number theorem posed by Legendre and Gauss independently, we have

two approximations of prime numbers as

π(x) ∼ x

log x
≈ Li(x)

Where

Li(x) =

∫ x

2

dt

log t

The following table shows the approximation of prime numbers .

x π(x) Li(x) Li(x)
π(x)

x
logx

π(x)
x/log(x)

10 4 5.1204 1.28 4.3429 0.9210
102 25 29.0809 1.1632 21.7147 1.1552
103 168 176.56 1.0509 144.7682 1.1319
104 1229 1245.092 1.012 1085.7362 1.1043
105 9592 9628.25 1.0038 8685.8896 1.0844
106 78498 78626.56 1.0016 72382.4136 1.0711
107 664579 664917.359 1.005091 620420.6884 1.0612
108 5761455 5762208.330 1.00013 5428681.0237 1.0572
109 50847534 50849233.91 1.0000033 48254942.43 1.0477

Table 4.1: Approximation of Primes
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Here is a graph of x vs π(x), Li(x),
x

logx

Figure 4.1: Graph of distribution of primes

Thus by observing the table and the graph shown in above we can conclude that Li(x)

is better approximation than
x

log x
.

4.2 Some Analytical Results About Distribution on Primes

In many cases the value of a partial sum can be obtained by comparing it with an

integral. Euler summation formula gives an exact expression for the error made in such

approximation.

Theorem 4.2.1. (Euler Summation Formula)[22]

If f has continuous derivative f
′

on the interval [y, x], where 0 < y < x, then

∑
y<n≤x

f(n) =

x∫
y

f(t)dt+

x∫
y

(t− [t])f
′
(t)dt+ f(x)([x]− x)− f(y)([y]− y)
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The next theorem gives a number of asymptotic formulation which are the conse-

quences of Euler summation formula. Here we use the Riemann Zeta function ζ(s)

defined by the equation

ζ(s) =
∑ 1

ns
if s > 1

and by equation

ζ(s) = lim
n→∞

(∑
n≤x

1

ns
− x1−s

1− s

)
if 0 < s < 1

Theorem 4.2.2. [22] If x ≥ 1, we have

(a)
∑
n≤x

1

n
= log x+ C +O(

1

x
)

(b)
∑
n≤x

1

ns
=

x1−s

1− s
+ ζ(s) +O(x−s) if s > 0, s 6= 0

(c)
∑
n>x

1

ns
= O(x1−s) if s > 1

(d)
∑
n≤x

nα =
xα+1

α + 1

Proof. For (a) we take f(t) =
1

t
in Euler Summation Formula to obtain

∑
n≤x

1

n
=

x∫
1

dt

t
−

x∫
1

t− [t]

t2
dt+ 1− x− [x]

x

= log x−
x∫

1

t− [t]

t2
dt+ 1 +O(

1

x
)

= log x+ 1−
∞∫

1

t− [t]

t2
dt+

∞∫
x

t− [t]

t2
dt+O(

1

x
)

The improper integral

∞∫
1

(t− [t])t−2dt exists, since it is dominated by
∞∫
1

t−2dt. Also

0 ≥
∫ ∞
x

t− [t]

t2
dt ≥

∞∫
x

1

t2
dt =

1

x
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so the last equation becomes

∑
n≤x

1

n
= log x+ 1−

∞∫
1

t− [t]

t2
dt+O(

1

x
)

This proves (a) with 1−
∞∫

1

t− [t]

t2
dt

Letting x→∞ in (a) we find that

lim
x→∞

(∑
n≤x

1

n
− log x

)
= 1−

∞∫
1

t− [t]

t2
dt

For the proof of remaining see [22].

Now we obtain some elementary identities involving µ(n) and Λ(n) which will be

used to studying the distribution of primes. These will be derived from the following

partial sum of a Dirichlet Product f ∗ g.

Theorem 4.2.3. [27] If h = f ∗ g, let

H(x) =
∑
n≤x

h(n), F (x) =
∑
n≤x

f(n), and G(x) =
∑
n≤x

g(n)

then we have

H(x) =
∑
n≤x

f(n)G(
x

n
) =

∑
n≤x

g(n)F (
x

n
)

If g(n) = 1 for all n then G(x) = [x], and the above theorem gives us the following

corollary:

Theorem 4.2.4. If F (x) =
∑
n≤x

f(n) we have

∑
n≤x

∑
d/n

f(d) =
∑
n≤x

f(n)[
x

n
] =

∑
n≤x

F (
x

n
)
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Now we take f(n) = µ(n) and Λ(n) in theorem(4.2.4) to obtain the following

identities which will be used in later in studying the distribution of primes.

Theorem 4.2.5. [27] For x ≥ 1 we have∑
n≤x

µ(n)
[x
n

]
= 1

and ∑
n≤x

Λ(n)
[x
n

]
= log[x]!

Proof. From theorem(3.0.18), we have∑
n≤x

µ(n)
[x
n

]
=
∑
n≤x

∑
d/n

µ(d) =
∑
n≤x

[
1

n

]
= 1

and ∑
n≤x

Λ(n)
[x
n

]
=
∑
n≤x

∑
d/n

Λ(n) = log[x]!

Next we use Euler’s summation formula to determine an asymptotic formula for

log[x]!.

Theorem 4.2.6.
log[x]! = x log x− x+O(log x),

and hence

∑
n≤x

Λ(n)
[x
n

]
= x log x− x+O(log x),

Proof. Taking f(t) = log t in Euler’s Summation Formula, we obtain∑
n≤x

log n =

x∫
1

log tdt+

x∫
1

t− [t]

t
dt− (x− [x]) log x

= x log x− x+ 1 +

x∫
1

t− [t]

t
dt+O(log x)
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Since,
x∫

1

t− [t]

t
dt = O

 x∫
1

1

t
dt

 = O(log x)

This proves the first part of the theorem. The second part of the theorem follows from

the second part of the previous theorem.

Theorem 4.2.7. [27] For x ≥ 2, we have∑
p≤x

[
x

p

]
log p = x log x+O(x)

Having the sum is extended over all primes ≤ x

Proof. Since Λ(n) = 0 unless n is a prime power, so we have∑
p≤x

[x
n

]
Λ(n) =

∑
p

∑
m=1∞
pm≤x

[
x

pm

]
Λ(pm)

Now, pm ≤ x implies p ≤ x. Also [
x

pm
] = 0 if p > 0 , so we can write the last sum

as ∑
p≤x

∞∑
m=1

[
x

pm

]
log p =

∑
p≤x

[
x

pm

]
log p+

∑
p≤x

∞∑
m=2

[
x

pm

]
log p

Next we prove the last sum is O(x), We have∑
p≤x

log p
∞∑
m=2

[
x

pm

]
≤
∑
p≤x

∞∑
m=2

x

pm
log p = x

∑
p≤x

log p
∞∑
m=2

(
1

p
)m

= x
∑
p≤x

log p
1

p2

1

1− 1
p

= x
∑
p≤x

log p

p(p− 1)

≤
∞∑
m=2

log n

n(n− 1)
= O(x)

Hence we have shown that∑
p≤x

[x
n

]
Λ(n) =

∑
p≤x

[
x

p

]
log p+O(x)
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Hence by using above theorem we get∑
p≤x

[
x

p

]
log p = x log x+O(x)

This completes the proof.

Shapiro’s Tauberian Theorem[22]

Theorems relating different weighted averages of the same function are called Taube-

rian theorems. We discuss next a Tauberian theorem proved in 1950 by H. N. Shapiro.

It relates sums of the form
∑
n≤x

a(n) with those of the form
∑
n≤x

a(n)[x/n] for non nega-

tive a(n).

Theorem 4.2.8. Let {a(n)} be a non negative sequence such that∑
n≤x

a(n)[
x

n
] = x log x+O(x) for all x ≥ 1.

Then

(a) For x ≥ 1 we have ∑
n≤x

a(n) = log x+O(1)

(b) There is a constant B > 0 such that

∑
n≤x

a(n) ≤ Bx for allx ≥ 1

(c) There is a constant A > 0 and an x0 > 0 such that∑
n≤x

a(n) ≥ Ax for all x ≥ x0

Now we apply the Shapiro’s Theorem to prove the following Mertens’s Theorem.

Theorem 4.2.9. As x→∞ we have

(a)
∑
m≤x

Λ(m)

m
= log x+O(x)
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(b)
∑
p≤x

log p

p
= log x+O(1)

(c)
∑
p≤x

1

p
= log log x+O(1)

Proof. (a)

We have from Theorem(4.2.6)∑
n≤x

Λ(n)
[x
n

]
= x log x− x+O(log x)

This can be written as ∑
n≤x

Λ(n)
[x
n

]
= x log x+O(x)

Since Λ(n) ≥ 0 we can apply the Shapiro’s Theorem with a(n) = Λ(n), we get the

required result.

(b)

We have from Theorem (0) For x ≥ 2∑
p≤x

[
x

p

]
log p = x log x+O(x)

This can be written as ∑
n≤x

Λ1(n)
[x
n

]
= x log x+O(x)

Where Λ1 is a function defined as follows:

Λ1(n) =

log p if n is a prime p

0 if otherwise

Since Λ1(n) ≥ 0, so we can use the Shapiro’s Theorem with a(n) = Λ1(n), we get

the required result.

(c)
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Finally for every real number x ≥ 2,let

T (x) =
∑
p≤x

log p

p

Then it follows from (b) that there exists a positive absolute constant c such that |T (x)−
log x| < c whenever x ≥ 2. On the other hand,

∑
p≤x

1

p
=
∑
p≤x

log p

p

 1

log x
+

x∫
p

dy

y log2 y

 =
T (x)

log x
+

x∫
2

T (y)dy

y log2 y

=
T (x)− log x

log x
+

x∫
2

T (y)− log y

y log2 y
+ 1 +

x∫
2

dy

y log y

It follows that as x→∞ , we have∣∣∣∣∣∑
p≤x

1

p
− log log x

∣∣∣∣∣ < c6

log x
+

x∫
2

c6dy

y log2 y
+ 1− log log 2 = O(1)

This inequality follows the (c) This completes the proof

4.2.1 Chebychev’s type estimates

Getting upper and lower bounds for the prime counting function π(x) is surprisingly

difficult. Euclid’s result that there are infinitely many primes shows that π(x) tends to

infinity, but the standard proofs of the infinitude of prime are indirect and do not give an

explicit lower bound for π(x), or give only a very weak bound. For example, Euclid’s

argument shows that the nth prime pn satisfies the bound pn ≤ p1.p2....pn+1 + 1. By

induction, this implies that pn ≤ ee
n−1 for all n, from which one can deduce the bound

π(x) ≥ log log x for sufficiently large x. This bound is far from the true order of π(x),

but it is essentially the best one can derive from Euclid’s argument.

Euler’s proof of the infinitude of primes proceeds by showing that
∑
n≤x

1

p
≤ log log x− c

for some constant c and sufficiently large x. Although this gives the correct order for
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the partials sum of the reciprocals of primes (as we will see below, the estimate is ac-

curate to within an error O(1), one cannot deduce from this a lower bound for π(x)

of comparable quality. In fact, one can show that the most one can deduce from the

above bound for
∑
n≤x

1

p
is a lower bound of the form π(x)� log x. While this is better

than the bound obtained from Euclid’s argument, it is still far from the true order of

magnitude [23].

In the other direction, getting non-trivial upper bounds for π(x) is not easy either.

in the middle of the 19th century, the Russian mathematician P. L. Chebychev was able

to determine the precise order of magnitude of the prime counting function π(x), by

showing that there exist positive constants C1 and C2 such that

C1
x

log x
≤ π(x) ≤ C2

x

log x

for all sufficiently large x. In fact, Chebychev proved such an inequality with constants

C1 = 0.92..., and C2 = 1.10.... This enabled him to conclude that, for sufficiently large

x (and, in fact, for all x ≥ 1) there exists a prime p with x < p ≤ 2x, an assertion

known as Bertrand’s postulate[1] .

Here we show the Chebychev’s Theorem from [10]. For this, first we establish a useful

result for Chebychev theorem and then we state and prove the Chebychev theorem.

Theorem 4.2.10. There exist positive absolute constants c3 and c4 such that∑
m≤x

Λ(m) ≥ 1

2
x log 2 if x ≥ c3

and ∑
x
2
<m≤x

Λ(m) ≤ c4x if x ≥ 0

Proof. If m ∈ N satisfies
x

2
< m ≤ x, then clearly [

x

2m
] = 0. It follows from this and

2nd part of Theorem 4.2.6, that as x→∞, we have
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∑
m≤x

Λ(m)
(

[
x

m
]− 2[

x

2m
]
)

=
∑
m≤x

Λ(m)[
x

m
]− 2

∑
m≤x/2

Λ(m)[
x

2m
]

= (x log x− x+O(log x))− 2
(x

2
log(

x

2
)− x

2
+O(log x)

)
= x log 2 +O(log x)

Now, we consider a function [α]− 2[
α

2
]. Clearly [α]− 2[

α

2
] < α− 2(

α

2
− 1) = 2.

Note that the left hand side is an integer, so we most have [α]− 2[
α

2
] ≥ 1. It follows

for all sufficiently large x,we have

1

2
x log 2 <

∑
m≤x

Λ(m)

Which proves the first part of the theorem.

On the other hand, if
x

2
< m ≤ x, then [

x

m
] = 1 and [

x

2m
] = 0, so that for all suffi-

ciently large x, we have

∑
x
2
<m≤x

2

Λ(m) ≤ c5x

Hence the 2nd part of the theorem follows.

Now we state and prove the Chebychev Theorem.

Theorem 4.2.11. (Chebychev) There exist a positive absolute constants c1 and c2 such

that for every real number x ≥ 2 we have

C1
x

log x
≤ π(x) ≤ C2

x

log x

Proof. To prove the lower bound, note that∑
m≤x

Λ(m) =
∑
p,n
pn≤x

log p =
∑
p≤x

(log p)
∑

1≤n≤[ log x
log p

x]

1 =
∑

p≤x(log p)[ log x
log p ]

≤ π(x) log x
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Then first part of the theorem 4.2.10, we have

π(x) ≥ x log 2

2 log x
if x ≥ c3

Since π2(x) = 1, we get the lower bound for a suitable choice of c1

To prove the upper bound note that in view of the second part of the Theorem ( )

and the definition of the von Mangoldt function, the inequality

∑
x

2j+1<p<
x

2j

log p ≤ c4
x

2j

holds for every integer j ≥ 0 and every real number x ≥ 0. Suppose that x ≥ 2. Let

the integer k ≥ 0 be defined such that 2k < x
1
2 ≤ 2k+1. Then

∑
x
1
2<p≤x

log p ≤
∞∑
j=0

∑
x

2j+1<p<
x

2j

log p ≤ c4x
k∑
j=0

2−j < 2c4x

so that ∑
x
1
2<p≤x

1 ≤
∑

x
1
2<p≤x

log p

log x
1
2

<
4c4x

log x

whence

π(x) ≤ x
1
2 +

4c4x

log x
<

C2x

log x

for suitable C2
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Chapter 5

Twin Prime Numbers

5.1 Introduction:

One charm of the study of the integers is that they can be easily stated, which often

sound simple, are often very difficult and some times even hopeless given the state

of our knowledge. In 1912, at the lecture on International Mathematical congress,

Edmund Landaur mentioned mentioned four old conjectures that are appeared hopeless

at that time.

1. Goldbach’s Conjecture: Every positive even integer is a sum of two primes.

2. Twin Prime Conjecture: 2 can be written as a difference of two primes in infinitely

many ways.

3. Legendre’s Conjecture: There is always a prime between n2 and (n+ 1)2.

4. There are infinitely many primes of the form n2 + 1.

During the past 90 years, much intensive research has been conducted on all of these

conjectures and due to of which , now we have many results concerning to these con-

jectures, but unfortunately, the current methods still cannot prove the above conjectures

and these conjectures can still be called hopeless [19].

The first three of above conjectures are related, they concern the primes in some
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intervals. Here we will concentrate on the second one i.e

Conjecture 5.1.1. Twin Prime Conjecture:. There are infinitely many twin primes,

i.e., numbers p and p+ 2, such that both of them are primes.

The first pairs of twin primes are: (3, 5), (5, 7), (11, 13), (17, 19), ... with 5 being

the only prime being in two pairs. Let’s define the Twin Prime Counting Function as

π2(x) a number of primes p, not bigger than x such that p+ 2 is also a prime, i.e.

π2(x) = ]{p : p, p+ 2 both are prime and p ≤ x}

We therefore have:

π2(10) = 2

π2(11) = 3

π2(17) = 4

.........

5.2 Heuristic Approach to Twin Prime Numbers

To estimate the number of twin primes up to a natural number x one can use the dis-

tribution of the prime numbers and the prime number theory. This states that a number

smaller than x has at least probability
1

log x
of being a prime number. This means if we

pick two numbers smaller than x the probability of both of them being a prime numbers

is at least
1

(log x)2
but only when the event of “p is prime” is independent of the event

“p + 2 is prime”. This isn’t true if p ≡ 1 (mod 3) and prime then p + 2 ≡ 0( mod 3)

thus p+ 2 isn’t prime.

One needs to correct for this dependence by some correction factor. The probability

for an arbitrary number to be divisible by a number q is
1

q
. So the probability for two

arbitrary numbers not to be divisible by a number q is (1− 1

q
)2. For two numbers p and
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p + 2 this is different because we p 6≡ 0( mod q) and p 6≡ −2(mod q) which is in
2

q
of

the cases. The ratio between these factors is the correction factor. Thus the correction

factor for any number q > 2 becomes:

1− 2
q

(1− 1
q
)2

For q = 2 one has 1 modulo class which is restricted for p. This correction factor

becomes:
1− 1

2

(1− 1
2
)2

= 2

Being divisible by a small prime number is independent of the other small primes. Thus

one may multiply the correction factors of the small prime numbers. In fact one may

multiply over all prime numbers because when q is large the correction factor converges

to 1. This suggests a definition of a twin prime constant of:

C2 = 2
∏

q is a prime
q≥3

1− 2
q

(1− 1
q
)2
≈ 1.3203236316

This is the total correction factor over all primes q. One may guess the estimate of the

number of twin prime pairs smaller than an integer x is:

C2
x

log2 x

This would mean by a heuristic approach there would be infinitely many pairs of

primes which differ 2. Because the formula for the estimate of the number of pairs

under x goes to infinity when x goes to infinity.

Where as there is no proof that there are infinitely many twin primes,the empirical

data on the function π2 strongly suggests that this is indeed true. By the heuristic

approach, Hardy and Littlewood (1923) conjectured that [8]

π2(x) ∼ 2
∞∏
p>2

(1− 1

(1− p)2
)

x

log2 x
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This fact would imply the infinitude of twin primes and also a simple asymptotic

formula for π2(x), namely

The asymptotic representations by Hardy and Littlewood of the function π2(x), hav-

ing great theoretical importance, do not possess sufficient simplicity for their practical

use.

In 1986 Yaminov [3] formulated a new conjecture on the distribution law of twin

primes, based on the superposition of the function π(x) with itself. On the basis of

Chebyshev’s theorem on the asymptotic distribution law of prime numbers, he con-

structed lower and upper estimates of the numbers of twin primes, Under the assump-

tion of the validity of the introduced conjecture, he also gave a simple proof of the fact

that the number of pairs of twin primes is infinite (the problem of twin primes).

Conjecture 5.2.1. (Yaminov Conjecture:)
The number of pairs af twin primes in the interval [2, x] is approximately equal to the

number of prime indices i in the set of prime numbers pi ∈ [2, x] , i.e. the function

π2(x) has the form

π2(x) ≈ π(π(x))

In other words, the twin primes are distributed among the primes in the same way as

the primes among the natural numbers.

The following table shows the approximation of Twin Prime counting function .

x π2(x) LW π(π(x)) π2(x)
LW

π2(x)
π(π(x))

10 2 2.5786 2 0.7755 1
102 8 6.2371 9 1.2826 0.8888
103 35 27.6733 39 1.2647 0.8974
104 205 155.6443 201 1.31710 1.0337
105 1224 996.1147 1148 1.22877 1.0606
106 8169 6917.7582 7702 1.18092 1.0940

Table 5.1: Approximation of Twin Primes
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Here is a graph of x vs. π2(x), LW(x) (i.e.Hardy Littlewood Approximation),

Y A(x) (i.e. Yaminov’s Approximation)

Figure 5.1: Graph of distribution of Twin primes

In the same paper [3],Yaminov constructed another empirical distribution function

π∗2(x) for the Twin Primes lying in the interval [2, x] as follows

π∗2(x) =
hcπ

2(x)

x

Where hc = 1.325067.... is the ratio between the ηpp =
π2(x)

π(x)
and ηp(x) =

π(x)

x
for

x ≤ 106. The right hand side of the equality is rounded off to integers.

The following table give the data regarding the function π∗2(x) and the degree of

accuracy for x ∈ [50, 1, 000, 000].However it can be applied also for x > 1, 000, 000.

For example for x = 37× 106 ,there are 183, 728 twin primes. According to the above

formula π∗2(x) = 183, 463, giving a relative error of δ = 0.0014.
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x h π2(x) π∗2(x) |∆| ∆
π2(x)

50 1.333333 6 6 0 0
150 1.346938 11 11 0 0
500 1.329639 24 24 0 0
1500 1.3286742 49 50 1 0.0204
2000 1.307061 60 61 1 0.0167
3000 1.314223 81 82 1 0.0123
4000 1.348760 102 100 2 0.0196
5000 1.374114 123 119 4 0.0325
10000 1.330737 201 200 1 0.0050
15000 1.306672 268 274 4 0.0149
20000 1.321178 338 339 1 0.0030
25000 1.320680 403 404 1 0.0025
30000 1.316236 462 465 3 0.0065
40000 1.324637 585 585 0 0
50000 1.322696 697 698 1 0.0014
100000 1.330341 1224 1219 5 0.0041
200000 1.335088 2159 2143 16 0.0074
500000 1.302302 4494 4573 79 0.0176
1000000 1.342908 8164 8165 1 0.0001

Table 5.2: Approximation of Twin Primes by empirical distribution function π∗2

Thus by this table it is shown that the function π∗2(x) counts the Twin Primes more

accurately than other functions discussed above.

5.3 Results towards the twin prime conjecture

Theorem 5.3.1. Euclid(300 BC):There are infinitely many primes.[11]

Theorem 5.3.2 ( Polignac’s Conjecture(1849):). [15] Let k be any positive even integer

and let pn be the nth prime number. Then, for infinitely many n ∈ N , we have pn+1 −
pn = k.

Any k which satisfies Polignac’s conjecture is called a Polignac number and the

41



twin prime conjecture simply states that 2 is a Polignac number.

Theorem 5.3.3 (Burn (1916)). [25]

∑
p,p+2prime

1

p
<∞

By contrast, the sum of the reciprocals of the primes diverges and so this result

shows that if there are infinitely many Twin Primes they have very large gaps

till around 1920 when Viggo Brun showed the following theorems [21]

Theorem 5.3.4. Every sufficiently large even integer can be represented as a sum of

two numbers each of which has at most nine prime factors.

Theorem 5.3.5. If n is large enough, then the interval (n, n+
√
n) contains a number

with at most eleven prime factors.

Theorem 5.3.6. There are infinitely many pairs of numbers of difference 2, such that

both of them have at most nine prime factors.

He also showed

Theorem 5.3.7. For sufficiently large x, the number of prime twins not exceeding x,

denoted π2(x), is

π2(x) ≤ 100x

log2 x

Quite unjustly, Brun’s methods were not recognized immediately. It seems that

mathematicians did not believe that such elementary methods (Brun’s sieve is basically

a combinatorial tool) could be used to approach such difficult conjectures like those

given above. There is an anecdote that E. Landau did not read Brun’s paper for a

decade because of this superstition. This skepticism was partially overcome when in

1933 L. G. Shnirelman proved his weak statement of Goldbach’s conjecture [21]:

Theorem 5.3.8. There exists a positive integer s, such that every sufficiently large in-

teger is the sum of at most s primes.
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Another major milestone was set in 1947 by A. Selberg. Selberg’s sieve method is

simpler to understand and quite often leads to better results. This again is the example

of the upper bound sieve. The methods of Brun and his successors work with numbers

smaller than N , which are then sieved using primes not exceeding a certain threshold

N c . If we could set c = 1
2
, then the remaining numbers would be primes, of course,

and we could estimate and bound precisely the number of primes in this range. But this

is in general beyond the reach. One can see that all theorems of Brun above refer to

numbers with a bounded number of prime factors. Some work was done to overcome

this limitation. For example P. Kuhn in 1941 realized that one can obtain better bounds

for the number of prime factors by ”‘weighting” the sieve in a certain way, relaxing the

restriction. These ideas were used by J. R. Chen who in 1975 established

Theorem 5.3.9. [12]

(Chen’s Theorem I). If n is large enough, then the interval (n, n +
√
n contains an

integer with at most two prime factors.

He also showed

Theorem 5.3.10. (Chen’s Theorem II). Every sufficiently large even number can be

written as the sum of either two primes, or a prime and an integer that is a product of

at most 2 primes,

and

Theorem 5.3.11. (Chen’s Theorem III). There are infinitely many pairs of numbers of

difference 2, such that the smaller number in the pair is a prime and the larger is a

product of at most two primes.

These results are proven using basically the same approach, it seems that all these

problems are deeply connected.

On the basis of Chebyshev’s theorem on the asymptotic distribution law of prime num-

bers, Yaminov constructed lower and upper estimates of the numbers of twin primes,for

this he first proved the following theorem.
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Theorem 5.3.12. [3] If x ≥ 2y, y ≥ 1, then we have the following inequality.

π(
x

y
) ≥ π(x)

y
(5.1)

Proof. We have that

π(x1 + x2 + ...+ xk) ≤ π(x1) + π(x2) + ...π(xk)

if x1 = x2 = .... = xk = x i.e.

π(kx) ≤ kπ(x), k ∈ N (5.2)

We show the inequality (5.2) holds ∀ k ≥ 1. We consider the function of the continu-

ous argument k : z(k) = kπ(x)
π(kx)

∼ Li(x)
Li(kx)

. .it is increasing ,since

dz

dk
=

Li(x)

Li2(kx)

(
(Li(kx)− kx

logx

)
> 0

and since z(1) = 1, then z(k) ≥ 1 ∀k ≥ 1, i.e., (6) holds.

Now we have for y ≥ 1

π(x) = π(y
x

y
) ≤ yπ(

x

y
)

from where the inequality (5.1) holds. The equality sign in (5) holds for y = 1. The

theorem is proved.

An estimate of the function π2(x) is given by the following theorem.

Theorem 5.3.13. [3] For the values x ≥ 1000 one has the inequalities

C1x

log x(log x− log log x)
< π2(x) <

1.159C2x

log x(log x− log log x)

Where C1, C2(C1 ≤ 1 ≤ C2) are Chebyshev’s coefficient.

Proof. There exist a constant number α, 0 < α < 1, such that one has inequality

π(x)

1 + α
<

x

log x
< π(x)
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, whence

π(
π(x)

1 + α
) ≤ π(

x

log x
) ≤ π(π(x))

. On the basis of Theorem (5.3.12) (inequality (5.1)) we have

π2(x)

1 + α
≤ π(

x

log x
) ≤ π2(x) (5.3)

By Chebyshev’s theorem,

C1
x

log x
< π(x) < C2

x

log x

Replacing here x by x
log x

, we obtain

C1x

log x(log x− log log x)
< π(

x

log x
) <

C2x

log x(log x− log log x)
(5.4)

From the left hand inequality in (5.3), taking into account the right-hand inequality in

(5.4), we find
π2(x)

1 + α
≤ π(

x

log x
<

C2x

log x(log x− log log x)

whence

π2(x) <
(1 + α)C2x

log x(log x− log log x)

From the right hand equality in (5.3), taking account the left hand inequality in

(5.4). we have
C1x

log x(log x− log log x)
< π(

x

log x
) < π2(x)

i.e.

C1x

log x(log x− log log x)
) < π(

x

log x
) < π2(x) <

(1 + α)C2x

log x(log x− log log x)
(5.5)

For x ≥ 1000 we have [9] π(x)/
x

log x
< 1.159 or

π(x)

1.159
<

x

log x
, i.e. α = 0.159, and

from the inequalities (5.5) there follows the assertion of the theorem.
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Yaminov also proof the following results in

Theorem 5.3.14. Almost all the primes are not Twin primes i.e

π2(x) = o(π(x))

Corollary: Since π(x) = o(x), from above theorem, we can have π2(x) = o(x)

Indeed we have

lim
x→∞

π2(x)/x = lim
x→∞

π2(x)/π(x) lim
x→∞

π(x)/x = 0

Theorem 5.3.15. if y ≥ 2, x ≥ 4, x ≥ y, then we have the inequality

π(x/y) ≥ π(x)− π(y) (5.6)

With the validity of conjecture (Yaminov) and with the help of inequality (5.6)

Yaminov Proved the infinitude of Twin prime in the following theorem.

Theorem 5.3.16. For π(x) ≥ 3(x ≥ 5), in the interval (π(x), 2π(x)) one has at least

one pair of Twin primes ,i.e.

π(2π(x))− π(π(x)) ≥ 1

Proof. Since, on the basis of conjecture (5.2.1), the twin primes are distributed in the

set of primes in the same way as the primes in the set N we can use Theorem 5.3.15

(inequality (5.6)). If we set v = π(x), u = 2π(x), then v > 3 > 2, u > 6 > 4, u > v

and

π(
u

v
) ≤ π(u)− π(v)

or

π(2π(x))− π(π(x)) ≥ π(
2π(x)

π(x)
) = π(2) = 1
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Remark: In the same manner as the assumptions of Theorem (5.3.15) hold; there-

fore,

π(3π(x))− π(π(x)) ≥ π(
3π(x)

π(x))
= π(3) = 2

Similarly,

π(5π(x))− π(π(x)) ≥ 3

i.e., between the numbers π(x) and 5π(x) one has at least three pairs of twin primes

etc. In general, if π(m) = k, then in the interval (π(x);mπ(x)) one has at least k pairs

of twin primes,

π(mπ(x))− π(π(x)) ≥ π(
mπ(x)

π(x))
= π(m) = k

We consider now the problem of twin primes. We divide the set of real numbers into

intervals, whose lengths are unboundedly doubling:

(2n−1π(x), 2nπ(x)), n = 1, 2, ... (5.7)

Each pair of twin primes lies in exactly one interval. By Theorem 5.3.15, in each

interval of the form (5.7) one has at least one pair of twin primes. Since the intervals

(5.7) form an infinite set, it follows that the number of pairs of twin primes is infinite.

Theorem 5.3.17 ( k-Tuples Conjecture:). [21]

LetH = {h1, h2, ..........hk} an admissible set or an admissible k-Tuples,then there

are infinitely many integers n, such that all of n+ h1, n+ h2, . . . , n+ hk are primes.

We know that {0, 2} is admissible set,so with the twin prime conjecture is stated as

There are infinitely many primes p with p+ 2 be prime.

If one wants to prove the Twin Prime Conjecture the Prime k-Tuples conjecture has

to be proven for k = 2

The proof of the Twin Prime Conjecture cannot go ahead without the study of the

primes gaps.There are many famous results about the primes gap.
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For each natural m ,let Hm denote by the quantity

Hm := lim
n→∞

inf(pn+m − pn)

Where m ≥ 1 be a fix natural number and pn denotes the nth prime. In othere words

Hm is the least quantity such that there are infinitely many intervals of length Hm that

contains the m+ 1 or more primes. Thus for instant the twin prime conjecture is equiv-

alent to the assertion that H1 = 2

Theorem 5.3.18 (Pintz and Yildirim(2009)). [4] If Elliot-Halberstam conjecture is true

then

H1 ≤ 16

Theorem 5.3.19 (Zhang (2013):). [29]

Suppose that H is admissible with k ≥ 3.5 × 106 then there are infinitely many

positive integers n such that the set {n+ h1, n+ h2, . . . , n+ hk} contains at least two

primes. Consequently ,

H1 = lim
n→∞

inf(pn+1 − pn) < 7× 107

In other words pn+1 − pn is bounded by 7× 107 for infinitely many n.

As well his paper states that this result is not optimal.....,to replace this upper bound

by a value as small as possible is an open problem. By the weak partial version of

Elliot-Halberstan conjecture Zhang obtained this result i.e H1 < 7× 107 Zhang proved

this result for a fairly large value of k, that is k > 3500000 which has been reduced to

k > 632 by the polymath8 team.

5.3.1 Polymath8 project and Refinement of Zhang’s result

Polymath project is a massively collaborative mathematical project. This is a blog to

sharing the new and challenging mathematical problem. From all over the world ev-

ery mathematician can post their results about the project. The first polymath project
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was started in 2009 and polymath11 is open now.The main objectives of the polymath8

project initiated by Terry Tao is about the the refinement of the Zhang’s result.There

are two projects polymath8a and polymath8b.Polymath8a, ”Bounded gaps between

primes”, was a project to improve the bound H1 on the least gap between consecu-

tive primes that was attained infinitely often, by developing the techniques of Zhang.

This project concluded with a bound of 4, 680 of H1.Polymath8b, ”Bounded intervals

with many primes”,is project to improve the value ofH1 further, as well asHm(the least

gap between primes with m− 1 primes between them that is attained infinitely often),

by combining the Polymath8a results with the techniques of Maynard. This project

concluded with a bound of H1 is 246, as well as additional bounds on Hm. The fol-

lowing table summaries the current refinements on Zhang’s results on assuming Elliott-

Halberstam Conjecture(EH), Generalized Elliott- Halberstam Conjecture (GEH) and

Deligne Theorem [24].

m Conjectural Assuming EH Without EH Without EH or Deligne
1 2 6 (on GEH) and 12 (on EH only) 246 246
2 6 252(on GEH) and 270(on EH only) 395106 474266
3 8 52116 24462654 32285928
4 12 474266 1404556152 2031558336
5 16 4137854 78602310160 124840189042
m (1 + o(1)mlogm) O(me2m) O(exp(3.815)) O(mexp(4− 4

43
)m)

Table 5.3: Refinement of Zhang’s Theorem

In October 2013, a postdoctoral assistant at Montreal, J. Maynard, made a second

breakthrough by proving the bound

Theorem 5.3.20 (Maynard’s Theorem(2013):). [13] Unconditionally ,

H1 ≤ 600, Hm ≤ Cm3e4m

for an absolute constant C and m ≥ 1

if one assumes the Elliot-Halberstan conjecture,we have the following boundsH1 ≤ 12,

H2 ≤ 600, Hm ≤ Cm3e2m for absolute constant C and m ≥ 1.

This striking bound was obtained by a significantly simpler method; this is this

method which we are going to expose in this course. Maynard’s method allows for
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much stronger results non accessible to previous techniques: the existence of infinitely

many k-tuples of primes clustered in intervals of bounded length.Maynard joined the

Polymath8 project and these bounds were further to improved (April 2014).

Theorem 5.3.21 (Maynard’s Theorem(2014):). [13]

H1 ≤ 246

and Hm = O(m exp((4− 4
43

)m))

5.4 An Arithmetical Approach to Twin Prime Conjec-

ture:

In [6] E. Benedetto gave an arithmetical approach to the Twin Prime Conjecture. His

approach is based on the Eratoshenes Sieve. Eratosthenes was an ancient Greek mathe-

matician and he is remembered for his prime number sieve, the ”Sieve of Eratosthenes”

which, in modified form, is still an important tool in number theory research. The an-

cient sieve of Eratosthenes is a simple algorithm for finding all prime numbers up to

a given limit, by making a list of all integers and repeatedly striking out multiples of

already found primes.

5.4.1 Sieving primes

Since 2 is the only even prime number, prime numbers are necessarily odd numbers.

Therefore we know that the possible prime numbers are of the form

2k + 1

For example

3; k = 1

5; k = 2
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7; k = 3

9; k = 4

...

...

...

Obviously, not all the odd numbers are prime numbers. For example for k = 4 we

obtain 9 and this odd number is not prime. We now look for an arithmetical relationship

that tells us what the odd numbers are to discard. The numbers to be discarded,are

the product of two odd numbers and therefore are of the form (2k1 + 1)(2k2 + 1).By

multiplying the previous relation we get

4k1k2 + 2k1 + 2k2 + 1

This sieving function gives us all the odd numbers that are not primes. For example

k1 k2 4k1k2 + 2k1 + 2k2 + 1
1 1 9
1 2 15
2 2 25
... ... ...

We can write 4k1k2 + 2k1 + 2k2 + 1 = 2(2k1k2 + k1 + k2) + 1 and therefore, by

considering the following set

A = {2k + 1, k 6= 2xy + x+ y;x, y ∈ N}

the set of prime numbers is the following

P = {2} ∪ {A}
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5.4.2 Sieving Twin primes:

First of all let us write the following partition of natural numbers.

6k − 4 6k − 3 6k − 2 6k − 1 6k 6k + 1

2 3 4 5 6 7
8 9 10 11 12 13

14 15 16 17 18 19
20 21 22 23 24 25
26 27 28 29 30 31
32 33 34 35 36 37
38 39 40 41 42 43
44 45 46 47 48 49
50 51 52 53 54 55
... ... ... ... ... ...
... ... ... ... ... ...

Table 5.4: Partition of Natural Numbers

We haveN = 1∪6k − 4∪6k − 3∪6k − 2∪6k − 1∪6k∪6k + 1 and it is clear that

all the primes, except 2 and 3, are of the form 6k ± 1. Obviously the numbers 6k ± 1

contain also the multiples of 5, 7 and so on. Since

(6k1 + 1)(6k2 + 1) = 6(6k1k2 + k1 + k2) + 1 ∈ 6k + 1

(6k1 − 1)(6k2 − 1) = 6(6k1k2 − k1 − k2) + 1 ∈ 6k + 1

(6k1 − 1)(6k2 + 1) = 6(6k1k2 + k1 − k2)− 1 ∈ 6k − 1

we consider the following sets

B = {6k − 1, k 6= 6xy + x− y : x, y ∈ N}

C = {6k + 1, k 6= 6xy + x+ y, k 6= 6xy − x− y : x, y ∈ N}

Then the set of prime numbers is the following

P = {2} ∪ {3} ∪ {B} ∪ {C}
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We can write the following sieving rules

f1 = 6xy + x+ y

f2 = 6xy − x− y

f3 = 6xy + x− y

These relations give us all the values of k for which correspond composite numbers.

The first two relations are the sieving rules for 6k + 1, the third is the sieving rule

for 6k − 1. From how much we have said above, the integer numbers k that don’t

belong to none of the three sieving rules, correspond to couples of twins. For exam-

ple Therefore, if we succeed in knowing how many are the not selected numbers

k 6k − 1 6k + 1
1 5 7
2 11 13
3 17 19
5 29 31
7 41 43

10 59 61
12 71 73
17 101 103
. . . . . . . . .

k, we know how many are the couples of twins.We can observe that the numbers of the

sieving rules make constant jumps and precisely jumps of 5, 7, 11, 13 and so on. In fact

we have 5k ± 1, 7k ± 1, 11k ± 2, 13k ± 2 and so on. Therefore we can write the three

sieving rules in an only symmetric matrix.
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5k ± 1 7k ± 1 11k ± 2 13k ± 2 17k ± 3 19k ± 3 23k ± 4 25k ± 4 29k ± 5 ...
4 6 9 11 14 16 19 21 24 . . .
6 8 13 15 20 22 27 29 34 . . .
9 13 20 24 31 35 42 46 53 . . .

11 15 24 28 37 41 50 54 63 . . .
14 20 31 37 48 54 65 71 82 . . .
16 22 35 41 54 60 73 79 92 . . .
19 27 42 50 65 73 88 96 111 . . .
21 29 46 54 71 79 96 104 121 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can write the previous matrix as a triangle

4

6 6

9 8 9

11 13 13 11

14 15 20 15 14

16 20 24 24 20 16

19 22 31 28 31 22 19

21 27 35 37 37 35 27 21

... ... ... ... ... ... ...

Finally we can say that the sieve sequence is deterministic and it has infinitely holes.

Therefore there are infinitely many twin primes.
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5.5 A statistical Argument for the Twin Primes Conjec-

ture

Bruckman [18] gave a simple statistical argument of the Twin Prime Conjecture(He

mentioned Weak Twin Prime Conjecture) by using the correlation analysis and the

Prime Number Theorem.

Let

π∗(n) =
n∑
k=1

δ(k) = π(n)− 1, (n ≥ 3)

and

π2(x) =
n∑
k=1

δ(k)δ(k + 1)

where δ is the characteristic function for prime i.e, ∀n ∈ N

δ(n) =

1 if n is odd prime

0 otherwise

Let xk = δ(k), yk = δ(k + 2). Then we have the pair of values (0, 0), (1, 0), (0, 1)

and (1, 1). So by taking these values. it is worthwhile to compute correlation coef-

ficient. So, the mean of their x̄ ,ȳ are taken in account. Also,it can be observed that

π∗2(n+ 2) = π∗2(n) + θn where θn = 1 or 0.

Also,

x =
π∗(n)

n
, y =

π∗(n+ 2)

n
and xy =

π2(n)

n

Thus now we are able to assert that the following

lim
n→∞

x

y
= 1 (5.8)

Also we have the following statistical formulae

ρ = ρxy =
xy − x y
σxσy
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is called the correlation coefficient between the variables x and y, Where x̄ =

n∑
1

xk

n
, mean of x;

ȳ =

n∑
1

yk

n
, mean of y; x̄y =

x1y1 + x2y2 + ...+ xnyn
n

, mean of xy;

σ2(x) =

n∑
1

(x− xk)2

n
and σ2(y) =

n∑
1

(y − yk)2

n
with σ(x) =

√
σ2(x) and

σ(y) =
√
σ2(x) called the standard deviation of the sample.

From the definition of ρ in this case, we see that the numerator of ρ is equal to

π2(n)/n − π∗(n)π∗(n + 2)/n2. Our argument, essentially, reduces to the conjecture

that lim
n→∞

ρ = +1 in light of (5.8). In turn, this implies that the sign of ρ will be non-

negative from some point on. In other words, we argue that for all sufficiently large

n,

π2(n) ≥ π∗(n)π∗(n+ 2)/n. (5.9)

In [20], it was shown, using the prime number theorem, that for all n ≥ 11,

π(n) > n/ log n (5.10)

from (5.9) and (5.10) for all sufficiently large n,

π2(n) > n/(log n)2 (5.11)

Since the expression n/(log n)2 is unbounded,(5.11) would establish TPC.
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Chapter 6

Summary

In this thesis we presented the distribution of primes and Twin prime conjecture. We

discussed some theorems about the distribution of primes. We presented the Merten’s

theorems in details which gives some basic concepts about the distribution of primes.

We also discussed the Tschebycheff’s estimates which gives the bounds for prime

counting function. We also observed the estimation of primes by natural logarithm

function and integral logarithm function numerically and graphically. In which we saw

that integral logarithm function gives the better approximation for the prime numbers.

About the Twin prime, we briefly described heuristic approaches of the distribution

of Twin primes with the work of Hardy, Littlewood and Yaminov. We presented both

numerically and graphically estimates of Twin primes by the formulae given by them

and observed that yaminov’s approximation is better than that of Hardy and Littlewood.

We discussed about another empirical function given by Yaminov and observed that this

is more accurate than the privious one, and also discussed some theorems by Yaminov.

Lastly we presented two alternative approaches of Twin prime conjecture; arithmetical

approach by E. Benedetto and statistical approach by Bruckman

Although there are series of researches about the Twin prime conjecture, but it re-

mains unproven till the date. The work by Zhang is the great breakthrough in this field.

In this thesis, we presented chronologically the developments towards the Twin prime
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conjecture.

There has been lot of successful researches about the distribution of Twin primes

and Twin prime conjecture but the mystery of Twin prime is still hidden with the great

open problem

”There are infinitely many Twin primes”.

In future, I am interested to research in this field.
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