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Abstract

Irrationals numbers are complicated but dealing with them is most. Approximation

of irrational numbers by rational numbers is possible, because the rational numbers are

dense on real line. Continued fraction expansion of real numbers is one of the most im-

portant tool in Diophantine approximation. A study on advances of Hurwitz theorem
is a part of Diophantine approximation, approximation of irrationals by rationals. In

general, there is no closest rational approximaion. In fact, there are infinitely many and

that will depend upon the size of denominator. By increasing the size of denominator,

will find the better approximation. Hence how much we can pay for the denominator

deteremined the best approximation for that context. Continued fraction expansion is

an important tool to solve Pell’s Fermat equation x2 −Dy2 = ±1 and solution of Pell’s

Fermat equation are applicable to find the rational approximation of
√
D. Adolf Hur-

witz established the theorem in 1891 and claimed that, for any irrational real numbers

α there exist infinitely many rationals
p

q
such that

|α− p

q
| ≤ 1√

5q2

. He also proved that this bound cannot be improved, if we consider whole set of

irrationals. In the past, many work had done for the refinement of this bound by making

the restrictions on the set of Irrationals or number of rational approximation. In this

context, in 1948 A.V Prasad improved this bound for the finite number of rational

approximation in the place of infinitely many rational approximation. Adolf Hurwitz

1906 and Hailiza Kamarul Haili and Norhayati Rosli in 2005 made some contribution

in this direction. On the other hand R.T Worley in 1981 established the general result of

rational approximation. In this context Bernadin Imbrampasic gave an explicit version

for k=13 in 2013.
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Chapter 1

Introduction

This Chapter covers some motivations on Rational approximation with brief history

and some useful definitions of Rational approximation and Continued fraction.

1.1 Motivation

Every point on the real line corresponds to a real number. That is there is one to one

correspondence between the points on real line and the set of real numbers. For every

interval on the real line, no matter how small, there are points corresponding to rational

numbers. Mathematically, this situation is described by saying that the rational points

are dense on the real line. It follows that every real number α can be approximated by

a rational number to any degree of accuracy whatsoever[10].

Irrational numbers are complicated, hard to understand and hard to work with in

comparison with rational numbers. For this reason, number theorists have long worked

in the field of Diophantine approximation, the process of approximating irrational num-

bers with rational ones. What we are specifically concerned with here is determining

when a rational number is a best rational approximate of an irrational number[12].

Given a real number α, how closely can it be approximated by rational numbers, to

make this more precise, for any given positive ε is there a rational number
p

q
within ε of

α, so that the inequality |α− p
q
| < ε is satisfied ? The answer is yes because the rational

1



numbers are dense on real line[10].

In number theory, the field of Diophantine approximation, named after Diophantus

of Alexandria, deals with the approximation of real numbers by rational numbers. The

first problem was to know how well a real number can be approximated by rational

numbers. For this problem, a rational number
a

b
is a ”good” approximation of a real

number α if the absolute value of the difference between
a

b
and α may not decrease if

a

b
is replaced by another rational number with a smaller denominator[7].

Suppose we want to approximate the irrational number e = 2.71828.... Intuitively,

one might use the rational
2718

1000
, and observe |e− 2178

1000
| = .00028..... At a glance, this

appears to be a good approximation of e, but how do we know if it is a best approxima-

tion? How do we know we can’t do better? What about the (not so intuitive) rational

approximation,
1650

607
? One may compute |e− 1650

607
| = .0000048..., so in some sense,

this is a ”better” approximation. It brings us closer to the irrational we are approximat-

ing, and it is a simpler fraction, in that it uses lower numbers. Yet how do you come

up with the number
1650

607
, and once you have it, how do you determine if it really is

a best approximate? The first question was answered in the 18th century by means of

continued fraction, We focus our study on second problem.

Clearly, there is no closest rational approximations to any irrational number. You

can always keep increasing the denominator of the rational approximation, and in doing

so, keep getting closer and closer to the irrational number you are trying to approximate.

However, since the purpose of a rational approximate is to give us a number that is eas-

ier to work with, often we do not want our approximations to have extremely large

denominators. Also, although in theory denominators can be arbitrarily large, comput-

ers only have a finite amount of memory, and so even if only for this reason alone, it is

necessary to restrict the size of the denominator[12].

Knowing the ”best” approximations of a given number, the main problem of the

field is to find sharp upper and lower bounds of the above difference, expressed as a

function of the denominator. It appears that these bounds depend on the nature of the

real numbers to be approximated: the lower bound for the approximation of a ratio-

nal number by another rational number is larger than the lower bound for algebraic

2



numbers, which is itself larger than the lower bound for all real numbers. Thus a real

number that may be better approximated than the bound for algebraic numbers is cer-

tainly a transcendental number. This allowed Liouville, in 1844, to produce the first

explicit transcendental number. Later, the proofs that π and e are transcendental were

obtained with a similar method

1.2 History

1.2.1 Rational Approximation

The history of Diophantine approximation is quite old: it includes, for instance, early

estimates for π computations related to astronomical studies, the theory of continued

fraction expansion. There are positive results: any irrational number has good ratio-

nal approximations. One of the simplest tools to see this is Dirichlet’s box principle,

other methods are continued fraction expansions, Farey series, geometry of numbers

(Minkowski’s Theorem). There are negative results: no number has too good (and at

the same time too frequent) approximations. Some results are valid for all (irrational)

numbers, others only for restricted classes of numbers, like the class of algebraic num-

bers.

One main goal of the theory of Diophantine approximation is to compare, on the

one hand, the distance between a given real number α and a rational number
p

q
, on the

other hand, the denominator q of the approximant. An approximation is considered as

sharp if |α− p
q
| is small compared to q[15].

For example, Suppose we are trying to square the circle, that is, find a square whose

area equals the area of a given circle. The ratio of the side of the resulting square to the

diameter of the original circle will be an irrational number, so an approximation will

have to be used in computations.

In 1842, the German mathematician Dirichlet’s proved that for any irrational real

number α there exists infinitely many rationals
p

q
within

1

q2
. In 1904, French Mathe-

matician Fatou and in 1918, an American mathematician Grace Andrews described the

3



computational approach of rationals with the Dirichlets condition. In their results, the

rational approximations are obtained from the list of convergents and semi convergents

of the continued fraction expansion of the irrational number α.

In 1798, the French Mathematician Legender’s proved the result to give the criteria

to be the convergents of continued fraction expansion of given irrational real number for

which we are going to find the best rational approximation. In 1895, Austrian mathe-

matician Vahlen established the result for calculation of the best rational approximation

with Legendre’s condition. It was proved that from the two consecutive convergents of

continued fraction expansion of irrational number at least one satisfied the Legender’s

condition. In 1891, another German mathematician Hurwitz established the best ap-

proximation theorem for general irrational numbers with more refined approximation

then the approximations given by Legender’s condition.

In 1903, French mathematician Emile Borel described the computational approach

of best rational approximation within the Hurwitz condition. It was proved that among

the three consecutive convergents at least one satisfied the Hurwitz condition. which at

once implies the Hurwitz result[17].

In 1770, Lagranges proved that each convergents
p

q
lies within

1

2q2
of α and in 1878,

Serret a French mathematician proved that if two irrational real numbers are equivalent

then their continued fraction after certain stages onwards coincides. Malayasian Math-

ematicians Hailiza Kamarul Haili, and Norhayati Rosli in 2005 did some work for the

refinement of Hurwitz constant by taking specific set of irrationals[7].

For all irrational number α the inequality

|α− p

q
| < 1√

5q2

has infinitely many solutions. If α is equivalent with
√

5− 1

2
i.e a root of the quadratic

equation α2 + α − 1 = 0, the constant
1√
5

can not be improved. If not, there are

infinitely many solutions of

|α− p

q
| < 1

2
√

2q2
,

4



where the constant
1√
8

can not be improved if α is a equivalent to a root of α2+2α−1 =

0, otherwise, there are infinitely many solutions of

|α− p

q
| < 5√

221q2
,

where the constant
5√
221

can not be improved for α equivalent to root of 5α2 + 11α−
5 = 0,otherwise there are infinitely many solutions of

|α− p

q
| < 13√

1517q2
,

where the constant
13√
1517

can not be improved for α equivalent to a root of 13α2 +

29α−15 = 0 and so on indefinitely . The sequence of numbers 1√
5
,

1√
8
,

5√
221

,
13√
1517

.......

tends to
1

3
[10].

The sequence of quadratic irrationalities (θi) , i ≥ 1, such that for any i ≥ 1, if α

is not GL(2, Z) equivalent to any of θ1, ..., θi−1, then there is infinitely many rational

numbers that satisfy

|α− p

q
| < 1

Liq2

and this is best possible when α is GL(2,Z) equivalent to θi.

Denoting by

m1,m2, ... = 1, 2, 5, 13, 29, ...

the sequence of Markoff numbers, one has Li =
√

9− 4
m2

i
and

θi =
−3mi + 2ki ±

√
9m2

i − 4

2mi

,

where ki is an integer satisfying aiki ≡ bi(modmi) and (ai, bi,mi) is a solution of

Markoff’s equation with mi ≥ max(ai, bi). Here one assumes Markoff’s Conjecture to

get unicity of (ai, bi) [14][9].

Scott 1940 gave the idea of restricted rational approximations
p

q
having the property

of different cases such as both p and q are odd, p is even, q is odd and p is odd, q is

even.

5



In 1948 A.V Prasad initiated the study of finite Diophantine approximation. He

proved that, for any given irrationals if at least one rational approximation is asked

then the constant
1√
5

in Hurwitz theorem can be improved by
2

3 +
√

5
. Similary L.C

Eggan proved that for the restricted set of irrationals which are not equivalent with the

golden ratio, then the constant for at least one rational approximation can be improved

by
2

2
√

2 + 3
. A.V Prasad in 1948 also proved that for any irrational α, there are at least

m pairs of relatively prime integers p and q , q > 0 satisfying the conditions with the

constant

cm =

√
5 + 1

2
+
p2m−1
q2m−1

,

where
pn
qn

is the nth convergent of
√

5− 1
2

[13][19].

Further if α =

√
5− 1

2
, there are exactly m solutions. L.C Eggan gave the exten-

sion theorem on Prasad result and prove that, For any irrational number which are not

equivalent with
√

5− 1

2
and any positive integer m, there are at least m solutions in

relatively prime integers p,q and q > 0 with the constant

cm =
√

2 + 1 +
p2m−1
q2m−1

.

Moreover if the irrational is
√

2−1, there are exactly m solutions. These results are the

special case of the following theorem. If n be a positive integer and let

αn = [0;n, n, n, n...] =

√
n2 + 4− n

2
.

For any positive integer m, let

cm = αn + n+
p2m−1
q2m−1

,

where
pn
qn

are the jth convergent of αn. Then if α = [a0, a1, ...]is an irrational number

with aj ≥ n for infinitely many j, there are at least m solutions in relatively prime

integers[13][19][23].
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In 1995 Jingcheng Tong generalized the constant

cm =
√

5 +

√
5(

7 + 3
√

5

2

)m

− 1

by using the Fibonacci sequence. In particular c1 =
3 +
√

5

2
, c2 =

7 + 3
√

5

6
and c3 =

9 + 4
√

5

8
[22].

In 1981 R.T worley, Dujella 2004 established the generalized result of approxima-

tion by setting the approximating constant k for any positive real number and gave the

corresponding rational approximation for any irrational number. At the same time Wor-

ley gave the explicit version of his result for k=2. A. Dujella, Bernadin. Ibrahimpasic,

2008 extend the Worley’s work and gave the explicit version for k = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

In 2013 Bernadin Ibrahimpasi extend the work for k=13[5].

1.3 Geometric Interpretation of Irrational Numbers

Consider a real number
√

2 + 1. Start with a rectangle have side length 1 +
√

2 unit and

breadth 1 unit. Decompose it into two squares with sides 1 and a smaller rectangle of

sides of length 1 unit and breadth 1 +
√

2−2 =
√

2−1 unit. This second small rectangle

has side lengths in the proportion
1√

2− 1
= 1 +

√
2, which is the same as for the large

one. Hence the second small rectangle can be split into two squares and a third smaller

rectangle, the sides of which are again in the same proportion. This process does not

end. Hence 1 +
√

2 is an irrational number.

If we start with a rectangle having integer side lengths, then this process stops after

finite number of steps (the side lengths of the successive rectangles produces a decreas-

ing sequence of positive integers). Also, for a rectangle with side lengths in a rational

proportion, this process stops after finitely may steps.

Set t =
√

2+1 = 2.41421356... The continued fraction expansion of t is [2; 2, ...] =

[2̄]. Indeed, from
√

2− 1 =
1√

2 + 1
, we deduce t = 2 +

1

t
An interval of length t =

√
2 + 1 is decomposed into two intervals of length 1 and

one of length
1

t
. Again 1 =

2

t
+

1

t2
, further the interval of length 1 is decomposed into

7



two intervals of length
1

t
and one of length

1

t2
. At each step we get two large intervals

and a small one. The process does not stop[23][14].

Geometrical Meaning of irrational number

1.4 Structure of Thesis

In this work, our plan of study is about the rational approximations of irrational real

numbers. Continued fraction expansion of real irrationals and solutions of Pell’s Fermat

equation x2 −Dy2 = ±1 are important tool in rational approximation.

The Second chapter cover the basic results of continued fraction of real numbers.

The third chapter focus on the results of continued fraction expansion of
√
D, for

non square positive integer D to solve Pell’s Fermat equation, taking different types of

D.

In the Fourth chapter, we discuss about the basic results of rational approximation

by using Dirichlet Pigeonhole principle.It also covers the application of solution of

Pell’s Fermat equation in the rational approximation of
√
D.

In the fifth chapter, Development of Rational approximation of irrational numbers

by using continued fraction and focus on the study of Hurwitz’s theorem for irrationals.

8



The last chapter cover some more advanced results in Hurwitz’s theorem to dicuss

the two direction of approximation and elaborate the more recent results about the ex-

plicit version of L.T Worley’s work.

Chapter seven includes Conclusion and some open problems.
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Chapter 2

Some Preliminaries

In this chapter, we discuss about the basic results of continued fraction of real numbers

and related definitions. Some properties of continued fraction of rational and irrational

are throughly discussed from preliminary stage.

2.1 Some Definitions

Definition 2.1.1. A rational number is a number that can be expressed in the form of
p
q
, where p and q are integers with q > 0.

Definition 2.1.2. A real number is a rational number if and only if it can be expressed

as a terminating or repeating decimal, that is if a rationalnumber is not terminating

decimal form then it is in the form

α = m.d1d2...dkdk+1dk+2...dk+rdk+1dk+2...dk+r....

a block of decimal part is repeated infinitely,then

α = m.d1d2...dkdk+1dk+2...dk+r,

where m = [α] is the integral part

10



Definition 2.1.3. A number α is said to be algebraic if it is a root of a polynomial

f(x) = anx
n+ ...+a1x+a0, f(x) 6= 0 with rational coefficients. To prove that a given

number α is algebraic, we need to find a non-zero polynomial f(x) ∈ Q[x]such that

f(α) = 0

Definition 2.1.4. The finite continued fraction expansion for a real number α,

α = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an−1 +
1

an

is denoted by

α = [a0; a1, a2, a3, ..., an].

where, the ais are integer parts, clearly ai ∈ Z for all i and ai > 0 for all i ≥ 1. If

the terms of continued fraction goes infinite in number then it is called simple infinite

continued fraction of real number. It is denoted by

α = [a0; a1, a2, a3, ...].

Definition 2.1.5. The number

pn
qn

= [a0; a1, a2, a3, ..., an] =
anpn−1 + pn−2
anqn−1 + qn−2

is called the nth convergent of α, where p−2 = 0, p−1 = 1, q−2 = 1, q−1 = 0 gives

p0 = a0, q0 = 1. The integer an in the continued fraction expansion is called nthpartial

quotient and αn = [an, an+1, ...] is called the nth total quotient.

Definition 2.1.6. Two irrational numbers α and β are called GL (2,Z) equivalent if

there exists integers a, b, c, d with ad− bc = ±1 such that β =
aα + b

cα + d
. This relation is

an equivalence relation.

11



The irrational number φ =
1 +
√

5

2
= [1; 1, 1, ...] = [1̄] which is purely periodic(only

one integer repeated from begining and forever) and α =

√
5− 1

2
= [0; 1, 1, 1, ...] = [0; 1̄]

are equivalent.

Definition 2.1.7. An irrational number whose continued fraction expansion has from

stage onwards exclusively 1′s as its partial entries is called Noble number. The irra-

tional number

√
5 + 1

2
and all its equivalent irrational numbers are Noble numbers.

2.2 Results Related with Convergents and Partial Quo-

tients

In this section we discuss about the basic results of continued fraction connected with

convergents and partial quotient. We based on[17][23] for these results. Let α =

[a0; a1, ..., an] and α = [a0; a1, ...] are two finite and infinite continued fractions of real

number α according as α is rational or irrational respectively.

Lemma 2.2.1. For

n ≥ 2, pn = anpn−1 + pn−2, qn = anqn−1 + qn−2

Here for an irrational α = [a0; a1, a2, ...].
pn−2
qn−2

,
pn−1
qn−1

and
pn
qn

are the three consec-

utive convergents of the continued fraction expansion of α. Since p0 = a0, q0 = 1 then

C0 = a0. Similarly C1 =
p1
q1

= a0 +
1

a1
=
a1a0 + 1

a1
For n=2 we have

p2
q2

= a0 +
1

a1 +
1

a2

=
a2 (a1a0 + 1) + a0

a2a1 + 1

=
a2p1 + p0
a2q1 + q0

(2.1)

12



Now suppose that the theorem is true for n = 3, 4, ..., n − 1 we need to show that it is

true for n . Since it is true for n-1 then

pn−1
qn−1

=
an−1pn−2 + pn−3
an−1qn−2 + qn−3

Now

pn
qn

= [a0, a1, ..., an−2, an−1 +
1

an
=

(
an−1 + 1

an

)
pn−2 + pn−3(

an−1 + 1
an

)
qn−2 + qn−3

=
anpn−1 + pn−2
anqn−1 + qn−2

(2.2)

Lemma 2.2.2. For each k with 1 ≤ k ≤ n . Let

rk = [ak, ak+1, ..., an]

then

[a0; a1, ...ak, ..., an] = [a0, a1, ..., ak−1, [ak, ..., an]] =
rkpk−1 + pk−2
rkqk−1 + qk−2

Lemma 2.2.3. 1.

pn−1qn − pnqn−1 = (−1)n , forn ≥ −1

2.

rn−1 − rn =
(−1)n

qn−1qn

3.

pn−2qn − pnqn−2 = (−1)n−1 an, forn ≥ 0

4.

rn−2 − rn =
(−1)n−1 an
qnqn−2

The fraction
pi
qi

is reduced,that is

(pi, qi) = 1

13



Lemma 2.2.4. For n ≥ 1, we have
qn
qn−1

= [an, an−1, ..., a1]

Theorem 2.2.1. Suppose a0, a1, a2, ... are real numbers numbers with a1, a2, .. positive.

Then
p0
q0
<
p2
q2
<
p4
q4
< ...

p5
q5
<
p3
q3
<
p1
q1
.

In words These convergent’s for 0, 2, 4, .. form a monotonically increasing sequence

with α as a limit. Similarly, for the odd convergents 1,3,5.... form a monotonically

decreasing sequence tending to limit α.

Since we have
pn−2
qn−2

− pn
qn

=
(−1)n−1an
qn−2qn

.

For n ≥ 2, n even, we get
pn−2
qn−2

− pn
qn

< 0.

Hence even convergents are increasing. But for n ≥ 3, n odd, we get
pn−2
qn−2

− pn
qn

> 0.

Hence the odd convergents are decreasing. Now it remains to show that
pn
qn

<
pm
qm

if n is even and m is odd. Suppose say, n < m then
pn
qn

<
pm−1
qm−1

.

Now to prove the lemma it is sufficient to prove
pm−1
qm−1

<
pm
qm
.

From the lemma for m odd we have

qmpm−1 − pmqm−1 = (−1)m < 0.

Hence combining these results we have
pm−1
qm−1

<
pm
qm
.

Similarly the result is true for n > m.

14



2.3 Properties of Continued Fraction of Rational and

Irrational

Theorem 2.3.1. A real number is rational if and only if it’s continued fraction is finite.

Let n be a rational number then n =
p

q
for some integers p and q. Suppose that p

and q are in lowest terms . To prove the theorem , we use the Euclid’s algorithm. By

applying the algorithm we have

p = a1q + r1, 0 ≤ r1 < q

q = a2r1 + r2, 0 ≤ r2 < r1

r1 = a3r2 + r3, 0 ≤ r3 < r2

...

...

...

rn−3 = an−1rn−2 + rn−1, 0 ≤ rn−1 < rn−2

rn−2 = anrn−1

The sequence r1, r2, ...., rn−1 forms a strictly decreasing sequence of non negative in-

tegers that must converge to zero in finite number of steps so there are at most n ai’s.

15



The next step involves the rearranging the algorithm in the following manner.

p

q
= a1 +

1
q

r1
q

r1
= a2 +

1
r1
r2

r1
r2

= a3 +
1
r2
r3

...

...

...

rn−2
rn−1

= an +
1

rn−1
rn

rn−1
rn

= an+1

Now, substituting each equation into previous, we find

n =
p

q
= a1 +

1

a2 +
1

a3 +
1

a4 + ....+ an +
1

an+1

Conversely, we prove by induction that if a simple continued fraction has n terms, it

is rational. Let α represent the value of the continued fraction, we first check the base

case n = 1. Then α = a1, but then α = a1 is clearly a rational, since a1 is an integer.

We now prove the inductive case. Assume the theorem is true for all i, i ≤ n.

we show that the theorem also true for n + 1. Let α be a continued fraction that is

16



represented by n+ 1 terms. We wish to show that α is rational. So, we have

α =
p

q
= a1 +

1

a2 +
1

a3 +
1

a4 + ....+ an +
1

an+1

.

Here we can rewrite the expression

B = a2 +
1

a3 +
1

a4 + ....+ an +
1

an+1

But B is a continued fraction with n terms and by our induction hypothesis, it can

be written as a rational
p

q
. This implies that α = a1 +

1
p
q

. By applying same simple

algebra, we arrive at the following equality. α =
a1p+ q

p
. Since a1, as well as p and q

are integer, α must be a rational. Thus the theorem is true for n+1 and by induction, it

must hold for all integers[14].

Lemma 2.3.1. 1. Suppose that r is an integer. Then there are precisely two ex-

pansions of r into a simple continued fraction as above, namely r = [r] and

r = [r − 1, 1]

2. For rational but not integral, r has precisely two simple continued fraction ex-

pansions: one is of the form [a0; a1, a2, ..., an−1, an] with the last partial quotient

an ≥ 2 and the other is [a0; a1, a2, ..., an−1, an − 1, 1]

Theorem 2.3.2. The denominators qn of the convergents are an increasing sequence of

positive integers n > 0. Finally, with αn defined by

αn+1 =
1

αn − an
,

an = [αn]

we have [a0; a1, a2, ...] = [a0; a1, a2, ..., αn] and αn = [an, an+1, an+2, ...]

17



Theorem 2.3.3. The continued fraction expansion of real number is infinite if and only

if it is irrational. This theorem can be stated alternatively as follows. Continued frac-

tion [a0; a1, ...] represents an irrational number.

Conversely, given an irrational number α there is unique representation of α as an

infinite simple continued fraction α = [a0; a1, ...]

The continued fraction expansion of quadratic irrational is periodic. In particular
√

2 = [1, 2̄] and conversely if the continued fraction expansion of a real number is

periodic then we can write α = a+ 1
α

and leads to the equation of the form aα2 + bα+

c = 0. In general in 1770, Lagrange established the result.

Theorem 2.3.4. If α is a quadratic irrational number, then its continued fraction α =

[a0; a1, ..., an] is ultimately periodic.

The irrationals numbers
√

2 and
√

2 + 1 are equivalent and the continued fraction

of
√

2 = [1, 2̄ and
√

2 + 1 = [2̄]. In general in 1878, Serret proved the theorem.

Theorem 2.3.5. Let α and β be two irrational numbers with continued fractions α =

[a0; a1, ..., an, ...] and β = [b0; b1, ..., bm, ...] respectively. Then the two following prop-

erties are equivalent.

1. There exists a matrix of order 2×2 with with rational integer coefficients a, b, c, d

and determinant ±1 such that β =
aα + b

cα + d

2. There exists n0 ≥ 0 and m0 ≥ 0 such that an0+k = bm0+k for all k ≥ 0.

18



Chapter 3

Continued fraction and Pell’s Fermat
Equation

3.1 Introduction

Diophantine equation is the equation of the form x2 − Dy2 = N, where D is a given

positive square free integer, N is non zero integer and integer solutions are sought, is

called Pell’s Fermat equation. In Cartesian coordinates, the equation has the form of a

hyperbola, solutions occur whenever the curve passes through a point whose x and y

coordinates are both integers, such as the trivial solution with x = 1 and y = 0. Joseph

Louis Lagrange proved that, as long as D is not a perfect square, Pell’s Fermat equation

has infinitely many distinct integer solutions. These solutions may be used to accurately

approximate the square root of D by rational numbers of the form
x

y
.

This equation was first studied extensively in India, starting with Brahmagupta, who

developed the Chakravala method to solve the equation and other quadratic indeter-

minate equations in his Brahma Sphuta Siddhanta in 628, about a thousand years be-

fore Pell’s time. His Brahma Sphuta Siddhanta was translated into Arabic in 773 and

was subsequently translated into Latin in 1126. Bhaskara II in the 12th century and

Narayana Pandit in the 14th century both found general solutions to the equation and
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other quadratic indeterminate equations. Solutions to specific examples of the equa-

tion, such as the Pell’s numbers arising from the equation with D = 2, had been known

for much longer, since the time of Pythagoras in Greece and to a similar date in India.

The name of Pell’s Fermat equation arose from Leonhard Euler’s mistakenly attributing

Lord Brouncker’s solution of the equation to John Pell[14].

3.2 Some Useful Definitions

Definition 3.2.1. A real number x ∈ R is a quadratic irrational , if there exist a, b, c ∈
Z and a 6= 0 such that ax2 + bx+ c = 0 and D = b2 − 4ac > 0 and D is not a perfect

square . Consequently, the solutions of this equation are quadratic irrational numbers,

that can be expressed as: x =
−b±

√
b2 − 4ac

2a

From this definition quadratic irrationals have to satisfy two conditions: they must

be the solution of a quadratic equation and be irrational.

Definition 3.2.2. A quadratic irrational Q is said to be reduced if Q > 1 is the root of

a quadratic equation with integer coefficients whose conjugate root Q̄ lies between -1

and 0.

Definition 3.2.3. A continued fraction which is periodic from the first partial quotient

is called purely periodic. We denote as:

[a0; a1, a2, a3, ..., ak−1, ak, a0, a1, a2, a3, ..., ak−1, ak, ...] = [a0; a1, a2, a3, ..., ak−1, ak]

If the period starts with the second partial quotient, the continued fraction is called

simply periodic which is represented by:

[a0; a1, a2, a3, ..., ak−1, ak, a1, a2, a3, ..., ak−1, ak, ...] = [a0; a1, a2, a3, ..., ak−1, ak]

Then, a purely periodic is also simplify periodic but the reverse is not true.
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3.3 Continued Fraction of
√
D and Pell’s Fermat equa-

tion

Quadratic irrational are the irrational root α of a quadratic equation ax2 + bx + c =

0,where a, b, c are integers. The second root of the equation will be denoted α0 and

called the (algebraic) conjugate of α. In order to state the theorem describing con-

tinued fractions of quadratic irrationals, we need to recall that a continued fraction

[a0; ..., an, ...] is called even-tually periodic if

[a0; ..., an, ...] = [a0; ..., ak, ak+1, ..., al]

starts with a preperiod [a0; ..., ak] and then a period ak+1, ..., al] is repeated an infinite

number of times.

Theorem 3.3.1. (Lagrange) Let α is a real number. The continued fraction of α is

eventually periodic if and only if αis a quadratic irrational.

Theorem 3.3.2. (Galois) Let α be a quadratic irrational and α0 its conjugate. The

continued fraction of α is purely periodic if and only if α > 1 and α0 is in (−1, 0)

Example Let α =
1 +
√

5

2
i.e., the so-called Golden ratio, then it is the root of

x2 − x− 1 = 0 and α0 =
1−
√

5

2
is in (−1, 0). The continued fraction of α is indeed

purely periodic since α =
1 +
√

5

2
= 1̄. if we restrict our consideration to square roots

of natural numbers, we will make use of the following lemma.

Lemma 3.3.1. Let α be a quadratic irrational and α0 its conjugate. If α has a purely

periodic continued fraction [a0; a1, ..., an], then −1
α0

= [an, ..., a1, a0]

Theorem 3.3.3. Quadratic irrationals are the real numbers that can be exactly repre-

sented by periodic continued fractions.

Theorem 3.3.4. There is a one-to-one correspondence between a real number and a

con- tinued fraction, which is either finite or infinite.
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Theorem 3.3.5. The continued fraction which represents a quadratic irrational Q is

purely periodic if and only if Q is a reduced surd.

Lemma 3.3.2. For any positive integer D that is not a perfect square, the continued

fraction of
√
D is simply periodic and more precisely it has the form

√
D = [a0; a1, a2, ...an, 2a0]

Let a0 = Lower integral part of
√
D. Since D is a positive integer,

√
D + a0 > 1.

Because D is not a perfect square, we have 0 <
√
D − a0 < 1 and conjugate of

a0 +
√
D lies between -1 and 0, which means −1 < −

√
D + a0 < 0 then it is the

reduced irrationals and using above theorem it must be purely periodic.

√
D + a0 = [2a0; a1, a2, ..., an = 4a0]

which is equivalent to
√
D + a0 = [2a0; a1, a2, ..., an, 2a0]

Consequently, we have √
D = [a0; a1, a2, ...an, 2a0]

.

Theorem 3.3.6. There is a non trivial solution (x, y) in positive integers to the equation

x2 − Dy2 = ±1. Hence there are infinitely many solutions in positive integers and

there is a smallest one, the fundamental solution (x1, y1). For any integer n and every

choice of the sign±, a solution (x, y) in rational integers is given by
(
x1 + y1

√
D
)n

=

x+
√
Dy.

If the fundamental solution x21 − Dy21 = ±1 produces the positive sign, then the

equation x2 −Dy2 = −1 has no solution. If the fundamental solution x21 −Dy21 = ±1

produces the negative sign then the fundamental solution of the equation x2−Dy2 = 1

is (x2, y2) with (
x2 + y2

√
D
)

=
(
x1 +

√
Dy1

)2
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Hence x2 = x21 +Dy21 and y2 = 2x1y1. The solutions of x2−Dy2 = 1 are the (xn, yn)

with n is even. The solutions of x2 −Dy2 = −1 are obtained with n is odd.

If (x, y) is a solution, then the equation x2 −Dy2 = ±1 written as

x

y
−
√
D = ± 1

y
(
x+ y

√
D
)

shows that
x

y
is a good rational approximation to

√
D. All the problem now is to find

the fundamental solution. Let D be a positive integer which is not a square .

Then the continued fraction of the number
√
D is periodic. If k is the smallest period

of length (that means that the length of any period is a positive integer multiple of

k) this continued fraction can be written
√
D = [a0; a1, a2, ..., ak]with ak = 2a0 and

a0=lower integral part of
√
D. Further (a0; a1, ..., ak−1) is a palindrome aj = ak−j for

1 ≤ j < k − 1.

The rational number given by the continued fraction [a0; a1, ..., ak−1] is a good rational

approximation to
√
D If k is even, the fundamental solution of the equation x2−Dy2 =

1 is given by [a0; a1, ..., ak−1] = x1
y1

. In this case the equation x2 − Dy2 = −1 has no

solution.

If k is odd, the fundamental solution (x1, y1) of the equation x2−Dy2 = −1 is given by

the fraction and [a0; a1, ..., ak−1] =
x1
y1

and the fundamental solution
x2
y2

of the equation

x2 −Dy2 = 1 by the fraction [a0; a1, ..., ak−1, ak, a1, ..., ak−1] =
x2
y2

.

In both cases where k is either even or odd, we obtain the sequence (xn, yn)n≥1 of all

solutions by repeating n-1 times a1, a2, ..., ak followed by a1, a2, ..., ak−1
Here, we try to find the fundamental solutions and general solutions of some important

pell’s Fermat equations with some examples.

Example 3.3.1. 1. Find the fundamental solution of the pell’s equation x2 − 2y2 =

±1

Here D = 2 and
√
D =

√
2 = [1; 2̄]. Hence the continued fraction expansion is

periodic with period length 1 which is odd . Hence the fundamental solution of
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x2−2y2 = −1 is x1 = 1 and y1 = 1 and the fundamental solution of x2−2y2 = 1

is given by [1, 2] = 1 + 1
2

= 3
2

2. Solve the pell’s equation x2 − 3y2 = 1. Here D=3 and
√
D =

√
3 = [1; 1, 2].

The continued fraction expansion with period of length 2 which is even so the the

equation x2 − 3y2 = 1 has fundamental solution is [1, 1] = 1 + 1 = 2
1

= x1
y1

. In

this case the equation x2 − 3y2 = −1 has no solution.

3. Find the fundamental solution of Brahmagupta’s equation x2 − 92y2 = ±1.

The continued fraction expansion of
√

92 = [9; 1, 1, 2, 4, 2, 1, 1, 18].

Hence the continued fraction expansion is periodic with the length of period 8

which is even so the equation x2 − 92y2 = 1 has fundamental solution

x1
y1

= [9; 1, 1, 2, 4, 2, 1, 1] =
1151

120
.

Since the length is even so the equation x2 − 92y2 = −1 has no solution

4. Solve the Narayana’s Equation x2 − 92y2 = 1.

Here
√

103 = [10; 6, 1, 2, 11, 9, 1, 1, 2, 1, 6, 20],

with period of length 12 which is even and the fundamental solution of the equa-

tion x2 − 92y2 = 1 is given by

x1
y1

= [10; 6, 1, 2, 11, 9, 1, 1, 2, 1, 6] =
227528

22419

5. Solution of Bhaskara Equation x2 − 61y2 = ±1, here
√

61 = [7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14],

with period of length 11 which is odd and the fundamental solution of the equa-

tion x2 − 61y2 = −1 is given by

x1
y1

= [7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1] =
29718

3805
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and the fundamental solution to the equation x2 − 61y2 = 1 is

x1
y1

= [7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1] =
1766319049

226153980
[24][14]

.

3.3.1 Ramanujan, Real World Problem and its Solution Using Con-
tinued Fraction

The famous mathematician Ramanujan possessed a real world problem and its solution

by Pell’s fermat equation. The problem is Imagine there are a bunch of houses on a

street, the house numbers of which are 1, 2, 3.... Now, your friend lives in a house

where the sum of the house numbers to the left of his house and to the right of his

house is the same (his house is not included in either sum).

If there are fewer than 10 houses on the street, how many houses are there and what

is the house number of your friend? By simple arithmetic the house number of your

friend is 6 and there are 8 houses on the street. History reports that Ramanujan solved

this same problem with the boundaries between 50 and 500 houses on the street in a

matter of seconds. There must be a connection to continued fraction in his solution, so

observe how laboriously the common math mind would attempt this problem. Letting

m = the number of houses on the street and n = the particular house number, notice the

connecting equation:

1 + 2 + ...+ (n− 1) = (n+ 1) + (n+ 2) + ...+m

n(n− 1)

2
=
m(m+ 1)

2
− n(n+ 1)

2

The left-hand side reflects the number of house before the desired one multiplied by

the desired house number divided by 2 to get the sum of the house numbers up to but

not including the desired house number. The right-hand side reflects the sum of all

the house numbers combined minus the desired house number and the overlap to avoid
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double counting.
m(m+ 1)

2
=
n(n− 1) + n(n+ 1)

2

m(m+ 1)

2
= n2

Multiplying both sides of the equation by 8 then

8
m(m+ 1)

2
= 8n2

The above equation can be written as (2m+ 1)2 − 2 (2n)2 = 1 To put this equation

into simpler terms of x and y, write 2m+ 1 = x and 2n = y resulting in: x2 − 2y2 = 1

By Lagranges method using continued fractions, in order to solve an equation in the

format of x2 −Dy2 = 1, express
√
D as a periodic infinite continued fraction. Our D

= 2.
√

2 = [1; 2, 2, 2, 2, ....] Since the period is 1 so all convergents are solutions. Since an

infinite continued fraction is an expression that represents the sum of its integer part and

the reciprocal of another number, written as a sum of its integer and another reciprocal,

and so on, the convergents of the
√

2 continued fraction would represent the number of

houses on the street, the numerator and the house number, the denominator. The first

10 convergents of
√

2 are:

1 =
1

1
, 1 +

1

2
=

3

2
, [1; 2, 2] =

7

5
, [1; 2, 2, 2] =

17

12
, [1; 2, 2, 2, 2] =

41

29

[1; 2, 2, 2, 2, 2] =
99

70
, [1; 2, 2, 2, 2, 2, 2] =

239

169
, [1; 2, 2, 2, 2, 2, 2, 2] =

577

408
,

[1; 2, 2, 2, 2, 2, 2, 2, 2] =
1393

985
, [1; 2, 2, 2, 2, 2, 2, 2, 2, 2] =

3363

2378

Every other convergent has an even denominator. To show the solution pairs that solve

the problem posed to Ramanujan, notice for the convergents
x

y
with even denominators

there are m =
x− 1

2
houses and friend lives in the house numbern =

y

2
.
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Convergent- 2:m =
3− 1

2
= 1 andn =

2

2
= 1 so the solution (m,n) = (1, 1).The

convergent-4 the solution is (8, 6). Similarly from the successive convergents 6,8 and

10 respectively we can obtain the solutions (49, 35),(288, 204) and (1681, 1189)[11].

Thus one could find the number of houses and the house number of the friend for a

street that was infinitely long with the stated stipulations.

3.3.2 Pell’s Fermat Equation with Different values of D

Here,we considered some specific Pell’s Fermat equations and their integer solutions.

Further, we focus to find the fundamental and general solution of these Pell’s Fermat

equations with the continued fraction expansion of
√
D, for some specific values of D

namely D = k2 + 1, k2 − 1, k2 + 2, k2 − 2, k2 + k and k2 − k , where k is any positive

integer.

Theorem 3.3.7. 1. Let k ≥ 1 be any integer, and let D = k2 + 1. The continued

fraction expansion of
√
D is

√
D = [1; 2̄] if k = 1 and [k; 2̄k] . if k > 1 and

(x1, y1) = (2k2 + 1, 2k) is the fundamental solution.

2. Set (xn, yn), where
xn
yn

= [k; 2k, ..., 2k], 2k in 2n− 1 number of times for n ≥ 2.

Then (xn, yn) is a solution of x2 − (k2 + 1)y2 = 1.

3. The consecutive solutions (xn, yn) and (xn+1, yn+1) satisfy

xn+1 = (2k2 + 1)xn + (2k3 + 2k)yn

yn+1 = 2kxn + (2k2 + 1)yn

for n ≥ 1.

1. Let D = k2 + 1. If k = 1, then it is easily seen that
√

2 = [1; 2̄]. Let k > 1, then
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we easily get

√
k2 + 1 = k +

√
k2 + 1− k

= k +
1
1√

k2+1−k

= k +
1√

k2 + 1 + k

= k +
1

2k +
√
k2 + 1− k

(3.1)

So
√
D = [k; 2̄k]. Again let

√
D = [a0; a1, a2, ..., an] denote the continued

fraction expansion of period length l. Set p−2 = 0, p−1 = 1, q−2 = 1, q−1 = 0

and pn = anpn−1 + pn−2, qn = anqn−1 + qn−2 for non negative integer n. Then it

is given that Cn = pn
qn

is the nth convergent of
√
D, and the fundamental solution

of x2 − Dy2 = 1 is (x1, y1) = (pl−1, ql−1) if l is even and (p2l−1, q2l−1) if l is

odd. Moreover, if l is odd, then the fundamental solution of x2 − Dy2 = −1

is (x1, y1) = (pl−1, ql−1). we see as above that
√
D = [k; 2̄k]. p0 = k, p1 =

2k2 + 1, q0 = 1 and q1 = 2k.

Therefore

(x1, y1) = (p2l−1, q2l−1)

= (p1, q1)

= (2k2 + 1, 2k)

(3.2)

is the fundamental solution.

2. Indeed (2k2 + 1)2 − (k2 + 1)(2k)2 = 1.

Now we assume that (xn, yn)is a solution of x2 − (k2 + 1)y2 = 1. Thenx2n −
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(k2 + 1)y2n = 1 then we have from

xn+1

yn+1

= k +
1

2k +
1

2k +
1

2k +
1

2k +
1

2k +
1

. . . + 2k + 1
2k

= k +
1

2k +
1

k + k + 1

2k +
1

2k +
1

2k +
1

. . . + 2k + 1
2k

= k +
1

2k +
1

k +
xn
yn

=
(2k2 + 1)xn + (2k3 + 2k)yn

2kxn + (2k2 + 1)yn
(3.3)

is also a solution of the equation. For n + 1th solution, 2k’s are repeated in

2(n+ 1)− 1 = 2n+ 1 number of times but in n th solution it repeates for 2n− 1

number of times so in transition from n + 1th solution in to nth solution it loose

two terms of 2k.

Since

x2n+1−(k2+1)y2n+1 = [(2k2+1)xn+(2k3+2k)yn]2−(k2+1)[2kxn+(2k2+1)yn]2

= (2k2 + 1)2x2n + 2(2k2 + 1)(2k3 + 2k)ynxn

+[(2k3 + 2k)yn]2 − (k2 + 1)(4k2x2n + 4k(2k2 + 1)ynxn + (2k2 + 1)2y2n
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= (2k2+1)2x2n−4k2(k2+1)+ynxn(2(2k2+1)(2k3+2k)−4k(k2+1)(2k2+1))

+y2n((2k3 + 2k)2 − (k2 + 1)(2k2 + 1)2)

= x2n − (k2 + 1)y2n

= 1

3. The assertion is clear by 2 since xn+1 = (2k2 + 1)xn + (2k3 + 2k)yn and

yn+1 = 2kxn + (2k2 + 1)yn

Example 3.3.2. Let k = 4, then D = k2 + 1 = 17. Find the fundamental solution and

the other solutions.

Continued fraction expansion of
√

17 = [4, 8̄]. Further, the fundamental solution of

x2 − 17y2 = 1 is (x1, y1) = (33, 8) and since

2177

528
= [4; 8, 8, 8]

143649

34840
= [4; 8, 8, 8, 8, 8]

9478657

2298912
= [4; 8, 8, 8, 8, 8, 8, 8]

625447713

151693352
= [4; 8, 8, 8, 8, 8, 8, 8, 8, 8]

41270070401

10009462320
= [4; 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]

the other solutions are

(x2, y2) = (2177, 528), (x3, y3) = (143649, 34840)
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(x4, y4) = (9478657, 2298912), (x5, y5) = (625447713, 151693352)

(x6, y6) = (41270070401, 10009462320).

The fundamental solution of x2 − Dy2 = −1 for D = k2 + 1 also exist since the

continued fraction expansion of
√
D =

√
17 is periodic with odd period length 1. The

fundamental solution is
pl−1
ql−1

=
p0
q0

=
k

1
. Which shows that x = 4 and y = 1 is the

fundamental solution of the equation x2−17y2 = −1. The other solutions are obtained

from
p3
q3

= 4 +
1

8 +
1

8

=
268

65
,
p5
q5

and so on.

Theorem 3.3.8. Let k ≥ 2 be any integer, and let D = k2 − 1

1. The continued fraction expansion of
√
D is

√
D = [k − 1; 1, 2k − 2]

2. The fundamental solution, (x1, y1) = k − 1 + 1
1

= (k, 1).

3. Set (xn, yn) where xn
yn

= [k− 1; 1, 2k− 2, ..., 1, 2k− 2, 1, 2k− 1] n− 2 times, for

n ≥ 2.Then (xn, yn) is a solution of x2 − (k2 − 1)y2 = 1

4. The consecutive solutions (xn, yn) and (xn+1, yn+1)satisfy xn+1 = kxn + (k2 −
1)yn yn+1 = xn + kyn, n ≥ 1

Proof: Here
√
k2 − 1 = k − 1 +

√
k2 + 1− (k − 1)

= k − 1 +
1
1√

k2−1−(k−1)

= k − 1 +
1

√
k2−1+k−1
2k−2

= k − 1 +
1

1 + 1√
k2−1+k−1

= k − 1 +
1

1 + 1
2k−2+

√
k2−1−(k−1)

(3.4)
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√
D = [k − 1; 1, 2k − 2]. Since the period l = 2 which is even so the fundamental

solution,(pl−1, ql−1)= (x1, y1) = k − 1 + 1
1

= (k, 1)

xn+1

yn+1

= k − 1 +
1

1 +
1

2k − 2 +
1

1 +
1

2k − 2 +
1

1 +
1

. . . + 1 + 1
2k−1

= k − 1 +
1

1 +
1

k − 1 + k − 1 +
1

1 +
1

2k − 2 +
1

1 +
1

. . . + 1 + 1
2k−1

= k − 1 +
1

1 +
1

k − 1 +
xn
yn

=
(k2 − 1)yn + kxn

kyn + xn
(3.5)

In n+1 solutions the period repeat for n− 1 times and in nth solution it repeat for n− 2

times so in the transition from n+ 1 to n we have loose one value of 2k − 2.

Example 3.3.3. Taking k = 2 then D = k2 − 1 = 3, find the fundamental solution and

other solutions.
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√
3 = 1 +

√
3− 1

= 1 +
1
√
3+1
2

= 1 +
1

1 + 1
2+
√
3−1

= [1, 1, 2] (3.6)

The period of the continued fraction expansion is 2 which is even so the fundamental

solution is
pl−1
ql−1

=
p1
q1

= k − 1 +
1

1
=
k

1
=

2

1
.

The other solutions are

(x2, y2 = (22 − 1)y1 + 2x1, 2y1 + x1) = (3× 1 + 2× 2, 2× 1 + 2) = (7, 4)

and so on[4].
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Chapter 4

Different Approach of Rational
Approximation

This chapter covered the different approach of rational approximation. In this context,

the rational approximation by using the Dirichlet’s box principle, continued fraction

expansion of real number and solution of Pell’s Fermat equation are discussed.

4.1 Computational Approach of Rational Approxima-

tion using Continued Fraction

We have defined some basic terms of continued fraction in chapter two. To further our

exploration, we want to consider some infinite continued fractions and offer evidence

that continued fractions provide, in some sense, the best approximation for any given

real number. It is true that any real number can be expressed as a continued fraction.

If we start with an infinite continued fraction, a convergent is the sequence of values we

get if we truncate the infinite continued fraction to compute corresponding finite con-

tinued fractions, i.e. if our infinite continued fraction is [a0; a1, a2, ..], then in general,

the nth convergent or approximant is the value obtained by evaluating the finite contin-

ued fraction, [a0; a1, a2, ..., an]. These values will limit to the real number represented
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by the infinite continued fraction. Evaluating the convergent to n decimal places adds a

level of exactness. Consider the example
√

5 ≈ 2.236067977.

The corresponding continued fraction is
√

5 = 2 + 1

4 +
1

4 +
1

4 +
1

..

= [2; 4, 4, 4, ...].

Within the first four terms the convergents are

2 = 2,
9

4
= 2.25,

38

17
= 2.2352941176,

161

72
= 2.2361111.

we are rapidly approaching
√

5 ≈ 2.236067977. As is seen by this example, using the

convergents is one of the fastest ways to approximate irrational numbers. Consequently,

there are well-known constants that mathematicians have explored through continued

fractions, for example π, e, and φ. Each of those values and any other irrational num-

ber, have infinitely many rational approximations. We can think of the corresponding

finite continued fractions as the best rational estimates for the irrational number in the

sense that expressing the irrational number as a continued fraction finds a much better

approximation for the number with the same number of terms than the 11 to 13 digits a

calculator.

The continued fractions provide more accurate estimation depending upon which con-

vergent the value is computed. As you move from left to right in the continued fraction

the estimates get better. In the above example of
√

5,
161

72
is a better approximation

than
38

17
, which is a better approximation than

9

4
.

It is interesting to note that the convergents of a rational number alternate between being

larger and smaller values than the exact value of the irrational number. The convergent

will never equal the exact value of the irrational number but they do limit to the exact

value. Think of convergents as the behavior the finite continued fractions produce as

terms are added. We can see for the numbers π,e andφ see in[11].
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4.2 Basic Results of Approximation using Dirichlet’s Box

Principle

In this section we discuss the basic method of rational approximation by using Dirich-

let’s box principle.In this context we state some basic results of rational approximation.

Theorem 4.2.1. Given an irrational α there exist an integer p such that

|α− p| < 1

2
(4.1)

Let α is given irrational number and p is the nearest integer of α then

−1

2
< α− p < 1

2

Theorem 4.2.2. Let α be any irrational number and ′q′ be any positive integer. Then

there is a rational number with denominator q say
p

q
such that

−1

2q
< α− p

q
<

1

2q
(4.2)

Theorem 4.2.3. Given any irrational number α and any positive integer ′k′, there is a

rational number
p

q
whose denominator ′q′ does not exceed ′k,such that

−1

kq
< λ− p

q
<

1

qk
, q ≤ k (4.3)

Our objective is to try for better approximation of irrational numberα.

From the approximation of α by
p

q
to within

1

2q
for any ’q’ in the previous theorem.

Now the approximation is within
1

q2

Theorem 4.2.4. Given any irrational number α, there are infinitely many rational num-

bers
p

q
in lowest terms such that

−1

q2
< α− p

q
<

1

q2
(4.4)
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First we observe that any rational number
p

q
satisfying the inequality of theorem

−1

kq
< α− p

q
<

1

kq

where q ≤ k satisfies the inequality of this theorem

−1

q2
< α− p

q
<

1

q2

since
1

k
≤ 1

q

implies
1

kq
<

1

q2

Hence any number which lies in between

−1

kq
,

1

kq

must certainly lies between the range between
−1

q2
,

1

q2
It is possible to prove the fol-

lowing stronger version of theorem [4.2.4]

Theorem 4.2.5. Given any irrational number α, there are infinitely many rational num-

bers p
q

in lowest terms such that

−1

q(q + 1)
< α− p

q
<

1

q(q + 1)

4.2.1 Limitations on Approximations

We proved in theorem [4.2.2] that, corresponding to any irrational number α, there are

infinitely many rational numbers
p

q
such that

−1

2q
< α− p

q
<

1

2q
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Then, in the theorem [4.2.4] we established that there are infinitely many
p

q
such that

−1

q2
< α− p

q
<

1

q2

Is it possible to prove that there are infinitely many p
q

such that

−1

2q2
< α− p

q
<

1

2q2

The answer is Yes, although we shall not prove it here,In fact, there is a famous theorem

which states that there are infinitely many
p

q
corresponding to any irrational number α

such that
−1√
5q2

< α− p

q
<

1√
5q2

and furthermore that
√

5 is the constant which yields the best possible approximation

of this kind. This means that if
√

5 is replaced by any larger constant, the statement

becomes false.

To give some idea as to how it is possible to prove that there is a limit on the size of

the constant, we establish the following result. There are not infinitely many rational

numbers
p

q
such that

−1

5q2
<
√

2− p

q
<

1

5q2
(4.5)

In fact we prove that this inequality is impossible for any integer ’q’ greater than 10.

Proof:

We assume that the inequality is impossible for any integer ’q’ greater than 10. We

assume that the inequality holds for some integers p and q, with q > 10. The inequality
−1
5q2

<
√

2− p
q

implies, for q > 10,that

p

q
<

1

5q2
+
√

2 <
√

2 +
1

500
< 2 (4.6)
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On the other hand, the inequality
√

2− p

q
<

1

5q2

implies, for q > 10
p

q
>
−1

5q2
+
√

2 >
√

2− 1

500
> 1 (4.7)

Now if we add p
q

to the members of the inequalities of this theorem, we get

p

q
− 1

5q2
<
√

2 <
p

q
+

1

5q2
(4.8)

From (4.7) we see that

p

q
− 1

5q2
> 1− 1

5q2
> 1− 1

500
> 0 (4.9)

(
p

q
− 1

5q2

)2

< 2 <

(
p

q
+

1

5q2

)
(4.10)

p2

q2
− 2p

5q3
+

1

25q4
< 2 <

p2

q2
+

2p

5q3
+

1

25q4

Multiplying by q2,we get

p2 − 2p

5q
+

1

25q2
< 2q2 < p2 +

2p

5q
+

1

25q2
(4.11)

Now by equation (4.6) we see that

p2 +
2p

5q
+

1

25q2
< p2 +

4

5
+

1

25q2
< p2 +

4

5
+

1

2500
< p2 + 1 (4.12)

On the other hand, by equation(4.6), we can write

p2 − 2p

5q
+

1

25q2
> p2 − 2p

5n
> p2 − 4

5
> p2 − 1 (4.13)

Applying equations (4.11) and (4.12) to (4.13) , we obtain

p2 − 1 < p2 − 2p

5q
+

1

25q2
< 2q2 < p2 +

2p

5q
+

1

25q2
< p2 + 1, (4.14)

Then p2−1 < 2q2 < p2+1. But 2q2 is an integer, so if it lies between the integers p2−1

and p2+1, it must equal to p2. Hence we conclude that2q2 = p2, 2 =
p2

q2
,
√

2 =
p

q
. This

is a contradiction, since
√

2 is irrational, while p and q were assumed to be integers[8].
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4.3 Application of solution of Pell’s Fermat Equation

for Rational Approximation of
√
D

In this section we state some results of Pell’s Fermat equation and their application for

rational approximation of quadratic irrationals. Given a positive integer D which is not

a square, there exists (x, y) ∈ Z2 with x and y both are positive such that x2−Dy2 = 1.

The first step of the proof is to show that there exists a non zero integer k such that the

Diophantine equation x2 − Dy2 = k has infinitely many solutions in Z2. The main

idea behind the proof. which will be made explicit the two lemmas and one corollary

below is to relate the integer solution of such a Diophantine equation with rational

approximation
x

y
of
√
D.

We deduce that there are infinitely many (x, y) in Z2 with y > 0 and hence x >

0 satisfying |
√
D − x

y
| < 1

y2
. For such a (x, y), we have 0 < x < y

√
D + 1 <

y
(√

D + 1
)
. Hence 0 < |x2−Dy2| = |x− y

√
D||x+ y

√
D| < 2

√
D+ 1.Since there

are only finitely integers k 6= 0 in the range −
(

2
√
D + 1

)
< k < 2

√
D + 1. At least

one of them is of the form x2 −Dy2 for infinitely many (x, y)

Lemma 4.3.1. LetD be a positive integer which is not a square. Let x and y be positive

rational integers . The following conditions are equivalent.

1.

x2 −Dy2 = 1

2.

0 <
x

y
−
√
D <

1

2y2
√
D

3.

0 <
x

y
−
√
D <

1

y2
√
D + 1

Let x2 −Dy2 = 1 is true, we need to show that(2) is true.

We claim that
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0 < x
y
−
√
D. Since x2 −Dy2 = 1,then

(
x+
√
Dy
)(

x− y
√
D
)

= 1.

Again, since
(
x+
√
Dy
)
> 0

⇒
(
x− y

√
D
)
> 0

⇒ 0 < x
y
−
√
D.

Here,

(
x− y

√
D
)

=
1(

x+
√
Dy
)

⇒

x

y
−
√
D =

1(
x+
√
Dy
)
y

=
1

xy + y2
√
D
<

1

2y2
√
D

(4.15)

Claim:

2y2
√
D < xy + y2

√
D

⇒ y2
√
D < xy

⇒ y
√
D < x

⇒
√
D < x

y

which is true.

Now let (2)is true. We need to show that (3) is also true.

Since we have, 0 <
x

y
−
√
D <

1

2y2
√
D

. ⇒ 0 <
x

y
−
√
D <

1

y2
√
D + 1

.

Claim:

y2
√
D + 1 < 2y2

√
D.

⇒ 1 < y2
√
D. Which is true

Now (3) implies (1)
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Since

0 <
x

y
−
√
D

⇒ 0 <
x2

y2
−D

⇒ 1 ≤ x2 −Dy2

(4.16)

Now

1 ≤ (x−
√
Dy)(x+

√
Dy) <

y(x+
√
Dy)

y2
√
D + 1

< 2

(4.17)

Claim:

xy +
√
Dy2 < 2y2

√
D + 2

⇒ xy < y2
√
D + 2

⇒ x < y
√
D +

2

y

⇒ x

y
−
√
D <

2

y2

(4.18)

is true since
x

y
−
√
D <

1

y2
√
D + 1

<
2

y2

Therefore 1 ≤ x2 −Dy2 < 2 and hence x2 −Dy2 = 1.

Lemma 4.3.2. Let D be a positive integer which is not a square, x and y be positive

rational integers then the following conditions are equivalent.

1. x2 −Dy2 = −1.

2. 0 < −x
y

+
√
D < 1

2y2
√
D−1 .
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3. 0 < −x
y

+
√
D < 1

y2
√
D
.

Corollary 4.3.1. Let D be a positive integer which is not a square. Let x and y be

positive rational integers. The following conditions are equivalent.

1. x2 −Dy2 = ±1.

2. |
√
D − x

y
| < 1

2y2
√
D−1 .

3. |
√
D − x

y
| < 1

y2
√
D+1

.

It is instructive to compare with Liouville’s inequality

Lemma 4.3.3. LetD be a positive integer which is not a square. Let x and y be positive

rational integers. Then |
√
D − x

y
| > 1

2y2
√
D + 1

[14].
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Chapter 5

Development of Rational
Approximation

In this chapter we discuss about application of continued fraction in rational approx-

imation. In this context we will discss about the Hurwitz’s theorem. Further it also

covered the advances of Hurwitz’s result for irrationals.

5.1 Basic Theorems of Rational Approximation

Definition 5.1.1. Two irrational numbers α and β are called GL (2,Z) equivalent if

there exists integers a, b, c, d with ad− bc = ±1 such that β =
aα + b

cα + d
. This relation is

an equivalence relation.

The irrational number φ =
1 +
√

5

2
= [1; 1, 1, ...] = [1̄] which is purely periodic and

α =

√
5− 1

2
= [0; 1, 1, 1, ...] = [0; 1̄] are equivalent.

Definition 5.1.2. An irrational number whose continued fraction expansion has from

stage onwards exclusively 1′s as its partial entries is called Noble number. The irra-

tional number

√
5 + 1

2
and all its equivalent irrational numbers are Noble numbers.
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Definition 5.1.3. An irrational number α is badly approximable if there is a constant

c = c(α) ≥ 0 such that

|α− p

q
| > c

q2
,

for every rational
p

q
, such a constant c must satisfy 0 < c ≤ 1√

5
[17].

A badly approximable numbers are precisely the numbers whose partial quotients

are bounded. A rational number α =
a

b
may be obviously and perfectly approximated

by
pi
qi

=
ia

ib

for every positive integer i. we have

p

q
6= α =

a

b
,

|a
b
− p

q
| = |aq − bp

bq
| ≥ 1

bq

because |aq − bp| is a positive integer and is thus not lower than 1. Thus the accuracy

of the approximation is bad relative to irrational numbers. In summary, a rational num-

ber is perfectly approximated by itself, but is badly approximated by any other rational

number. The Golden number and silver numbers are also badly approximable irra-

tionals numbers but golden number are more bad then the silver number. If the distance

between given irrational number α and a rational number
p

q
is less than

1

2q2
then the

rational number
p

q
is one of the convergents of the simple continued fraction expansion

of the irrational α In the continued fraction expansion of irrational real numbers, one of

the two successive convergents is the best rational approximate. Vahlen in 1895 proved

the result.

Theorem 5.1.1. Let
pn−1
qn−1

,
pn
qn

be consecutive convergents to α. Then at least one of

them satisfies

|α− p

q
| < 1

2q2
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Since the numbers

α− pn−1
qn−1

, α− pn
qn

are of opposite sign,hence we have

|α− pn−1
qn−1
|+ |α− pn

qn
| = |pn−1

qn−1
− pn
qn
| = 1

qnqn−1
≤ 1

2q2n
+

1

2q2n−1

Since ab <
a2 + b2

2
and a 6= b. Hence, either

|α− pn
qn
| < 1

2q2n

or

|α− pn−1
qn−1
| < 1

2q2n−1
.

This completes the proof of the theorem.

In the continued fraction expansion of irrational number at least one of the three succes-

sive convergents is the more refined best rational approximation then from the Vahelen

rational approximation. E.Borel in 1903 established the result.

Theorem 5.1.2. Let
pn−2
qn−2

,
pn−1
qn−1

,
pn
qn

be three consecutive convergents to α. Then at

least one of them satisfies

|α− p

q
| < 1√

5q2
.

Proof: Let α = [a0; a1, ...] and αi = [ai, ai+1, ...] and βi =
qi−2
qi−1

for i = n−1, n, n+

1,we have

α = [a0; a1, ..., an, αn+1]

so

αqn − pn =
(αn+1pn + pn−1) qn
αn+1qn + qn−1

− pn =
(−1)n

αn+1qn + qn−1
.

Thus

|α− pn
qn
| = 1

qn(αn+1qn + qn−1)
=

1

q2n(αn+1 + βn+1)

46



Now to prove the theorem, it suffices to show that there cannot be three integers i =

n− 1, n, n+ 1with[17].

αi + βi ≤
√

5 (5.1)

Supposee that inequality(5.1) were true for i = n, n− 1. Now

αn−1 = an−1 +
1

αn

and
1

βn
=
qn−1
qn−2

= an−1 +
qn−3
qn−2

= an−1 + βn−1

. Therefore
1

αn
+

1

βn
= αn−1 + βn−1 ≤

√
5.

Therefore

1 = αn
1

αn
≤ (
√

5− βn)(
√

5− 1

βn
),

which is equivalent to

β2
n −
√

5βn + 1 ≤ 0,

it follows that βn ≥
√

5− 1

2
, since βn is rational so βn >

√
5− 1

2
. If the inequality

also were true for i = n, n+ 1, then βn+1 >

√
5− 1

2
and therefore

1 ≤ an =
qn
qn−1

− qn−2
qn−1

=
1

βn+1

− βn <
2√

5− 1
−
√

5− 1

2
= 1,

a contradiction. This implies that for at least one i, αi + βi >
√

5. This completes the

proof.

Theorem 5.1.3 (Legendre). Suppose p,q are relatively prime integers with q > 0 and

if the rational
p

q
satisfies

|α− p

q
| ≤ 1

2q2
,

then
p

q
is a convergent of α.
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If we assume that α 6= p

q
, else the theorem is trivially true. Then we may write

α− p

q
=
εθ

q2
,

where 0 < θ < 1
2

and ε = ±1. Since there is an expansion of
p

q
= [b0, b1, ..., bn−1],

where n is so chosen that (−1)n−1 = ε. Now define w by

α =
wpn−1 + pn−2
wqn−1 + qn−2

so that α = [b0, b1, ..., bn−1, w]. Note that the definition of w is equivalent to

(αqn−1 − pn−1)w = pn−2 − αqn−2.

We may assume that αqn−1 − pn−1 6= 0, else

α =
pn−1
qn−1

=
p

q

then
εθ

q2
= α− p

q
=
αqn−1 − pn−1

qn−1
=

(−1)n−1

(wqn−1 + qn−2)qn−1
[17]

and therefore

θ =
qn−1

wqn−1 + qn−2
.

Solving this for w, we obtain

w =
qn−1 − θqn−2

θqn−1
=

1

θ
− qn−2
qn−1

,

it follows that w > 2 − 1 = 1. Now expand w into finite or infinite continued fraction

w = [bn, bn+1, ...]. Since w > 1, each of these integers bj, j = n, n+ 1... is positive and

therefore

α = [b0, b1, ..., bn−1, [bn, bn+1, ...]] = [b0, b1, ..., bn−1, bn, bn+1, ...].

By lemma (2.2.2) passing to the limit if necessary. This is a simple continued fraction

for α, and
p

q
=
pn−1
qn−1

= [b0, b1, ..., bn−1]

is a convergent to α, so the theorem is proved.
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5.2 Hurwitz Theorems for Irrationals

Theorem 5.2.1 (Hurwitz, 1891 ). The nth convergent of
1

α
is the reciprocal of the

(n− 1)st convergent of α if α is any real number bigger than 1.

Lemma 5.2.1. if α is real, α > 1, and α +
1

α
<
√

5, then α <

√
5 + 1

2
and

1

α
>

√
5− 1

2

Adolf Hurwitz was born Born: 26 March 1859 in Hildesheim, Lower Saxony, Ger-

many into a Jewish family. His father, Salomon Hurwitz, was in the manufacturing

business but was not particularly well off. Salomon had three sons, Max, Julius and

Adolf, but their daughter Jenny died at the age of one. Sadly, Adolf’s mother Elise

Wertheimer died when he was only three years old. Salomon Hurwitz offered his sons

a good education, encouraging them to engage in music, gymnastics, Jewish traditions

and smoking, ”as he could scarcely imagine a proper gentleman without a cigar or even

better a pipe. The three brothers all had a particular talent for mathematics. He Died,

18 November 1919 in Zrich, Switzerland

Theorem 5.2.2 (Hurwitz). Given any irrational numberα,there exist infinitely many

rational numbers
p

q
such that

|α− p

q
| < 1√

5q2
(5.2)

To prove the theorem it is sufficient to prove that for any three consecutive con-

vergents of simple continued fraction expansion of α at least one of them satisfies the

inequality of the theorem. Let βn =
qn
qn−1

we first claim that

βn +
1

βn
<
√

5 (5.3)

If (5.2) is false for both convergents
pn−1
qn−1

and
pn
qn
. Suppose that (5.2) is false for these

two values of
p

q
. We have

|α− pn−1
qn−1
|+ |α− pn

qn
| ≥ 1√

5q2n−1
+

1√
5q2n
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But α lies between
pn−1
qn−1

and
pn
qn

and hence we have

|α− pn−1
qn−1
|+ |α− pn

qn
| = |pn−1

qn−1
− pn
qn
| = 1

qn−1qn

Combining these results we get

1

qn−1qn
≥ 1√

5q2n−1
+

1√
5q2n

and it reduced in
qn
qn−1

+
qn−1
qn
≤
√

5.

Since the left hand side is rational we actually have a strict inequality,and we claim

(5.3). Now if (5.2) is false for
p

q
=
pj
qj
, j = n− 1, n, n+ 1 we then have (5.3) for both

j = n and j = n + 1 then by lemma we see that
1

βn
>

√
5− 1

2
and βn+1 <

√
5 + 1

2
.

Since we have βn+1 = an+1 +
1

βn
.

This gives that
√

5 + 1

2
> βn+1 = an+1 +

1

βn
> an+1 +

√
5− 1

2
≥ 1 +

√
5− 1

2
=

√
5 + 1

2
.

Which is a contradiction. This completes the proof of the theorem[25][17][3][23].

5.2.1 Error Analysis for Best Approximation

If E <
1

2q2
be the error and M =

1√
5q2

is the Hurwitz’s bound. then the rational

approximation with
E

M
< 1.118 is a best approximation of the given irrationals.

This table suggest that π admits much better rational approximations than
√

2. In

fact no rational approximates to
√

2 ever gets an
E

M
ratio as small as 0.13, let alone

0.007, and
√

2 is really harder to approximate with rationals than π. In this precise

sense
√

2 is a more irrational number than π[3]
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5.3 Advances of Hurwitz Theorem

Theorem 5.3.1. Suppose α has a continued fraction expansion of type

α = [a0; a1, ..., aN , 1, 1, 1, .....],

then

lim
n→∞

qn2|α− pn
qn
| = 1√

5

We have

|α− pn
qn
| = 1

q2n (αn+1 + βn+1)

Here if n is sufficiently large,

αn+1 = [1, 1, 1, ...] =

√
5 + 1

2

and
1

βn+1

=
qn
qn−1

= [an, an−1, ..., aN , ..., a1, a0] = [1, 1, 1..., 1, aN , ..., a1, a0]. Since [1, 1, 1..., 1, 1]with

n − N − 1 terms and [1, 1, ..., 1] with n-N terms are consecutive convergents to
1

βn+1

,

the number
1

βn+1

lies in between these convergents, and therefore
1

βn+1

approaches to

[1, 1, ..., 1] =
√
5+1
2

as n tends to infinity. Hence βn+1 tends to
√
5−1
2

and αn+1 + βn+1

approach to
√

5. This completes the proof of theorem.

Theorem 5.3.2 (Hurwitz Theorem). For the rational α =

√
5 + 1

2
= [1; 1, 1, ...]. The

inequality

|α− pn
qn
| < 1

Cq2n
(5.4)

is satisfied for at most finitely many reduced
pn
qn

if and only if C >
√

5

Let α =

√
5− 1

2
= [0; 1, 1, 1, ...] and fix C >

√
5 and suppose that

|α− p

q
| < 1

Cq2
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has infinitely many solutions. Here q may be as large as we wish. In other words

α =
p

q
+

δ

q2

has infinitely many solutions. p
q

is rational and δ is in R,|δ| < 1
C
. Rewrite this as

δ

q
− q
√

5

2
= −q

2
− p.

After simplification we have

δ2

q2
− δ
√

5 = p2 + pq − q2

For sufficiently big q the left hand side is absolute value less than 1 and hence p2 +pq−
q2 = 0 has integer solution. which gives rise (2p+ q)2 = 5q2 leads in to

√
5 = 1 + 2p

q

is rational. Again this is a contradiction.

Theorem 5.3.3 (Hurwitz Theorem, 1891). Suppose α = [a0; a1, a2, ...]with an ≥ 2 for

infinitely many q. Then there are infinitely many distinct rationals
p

q
with

|α− p

q
| < 1√

8q2

Corollary 5.3.1. The inequality

|α− p

q
| < 1√

8q2

has infinitely many rational solutions
p

q
whenever α is not equivalent to

√
5+1
2

Let β =
√

2− 1 = [0; 2, 2, 2......] and fix A >
√

8 and suppose that

|β − p

q
| < 1

Aq2

Here q may be as large as we wish. In other words

β =
p

q
+

δ

q2
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has infinitely many solutions.
p

q
is rational and δ is in R, |δ| < 1

A

Rewrite this as
δ

q
= βq − p =

√
2q − q − p

Then δ
q
−
√

2q = −p− q After simplification we have

δ2

q2
− δ2
√

2 = p2 + 2pq − q2

For sufficiently big q the left hand side is absolute value less than 1 and hence p2+2pq−
q2 = 0 has integer solution. which gives rise (p + q)2 = 2q2 leads in to

√
2 = 1 + p

q
is

rational. Again this is a contradiction[12].

Let β =
√
13−3
2

= [0; 3, 3, 3, ...] and fix A >
√

13 and suppose that

|β − p

q
| < 1

Aq2

Here q may be as large as we wish. In other words

β =
p

q
+

δ

q2

has infinitely many solutions.
p

q
is rational and δ is in R ,|δ| < 1

A
.

Rewrite this as
δ

q
− q
√

5

2
= −q

2
− p

. After simplification we have

δ2

q2
− δ
√

13 = p2 + 3pq − q2

For sufficiently big q the left hand side is absolute value less than 1 and hence p2+3pq−
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q2 = 0 has integer solution. which gives rise (p+ 3q
2

)2 = 13q2

4
leads in to

√
13 = 3 + 2p

q

is rational. Again this is a contradiction[12]

In general if we take β =

√
n2 + 4− n

2
the best possible constant isK =

√
n2 + 4.

For the constant A > K the equation

|β − p

q
| < 1

Aq2

has only finitely many solutions.

Definition 5.3.1.
ν(α) = lim

q→∞
q|qα− p|

Remark:ν(α) = 0 whenever α is rational. It is clear that ν(α) > 0 if and only if

α is badly approximable. It is clear that from Hurwitz’s theorem ν(α) ≤ 1√
5

for every

real number. There are numbers α with ν(α) =
1√
5

for α =

√
5 + 1

2
and ν(α) ≤ 1√

8

whenever α is not equivalent to α =

√
5 + 1

2
.

Theorem 5.3.4 (Markoff,1879, Hurwitz, 1906). There exists numbers µ1 =
1√
5
> µ2 =

1√
8
> µ3 > µ4...

with limit 1
3

such that for every µi there are finitely many equivalence classes of num-

bers such that ν(α) = µi, precisely if α lies in such a class. Furtheremore, if µ > 1
3

and µ 6= µi, i = 1, 2, 3, ...., there is no α with ν(α) = µ

Theorem 5.3.5. Let k ≥ 1 and α be a real irrational number and not equivalent to the

element in F (k − 1). Then there exists infinitely many rational numbers
p

q
such that

|α− p

q
| < 1√

k2 + 4q2

The constant
1√

k2 + 4
is the best possible.
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For k=1,this theorem gives Hurwit’z theorem. For k=2 the constant is 1√
8
,k=3 the

constant is
1√
13

. Similarly for k=4, the largest constant is
1√
20

and so on.

Facts for θ =

√
k2 + 4− k

2
= [0; k, k, k.......] the largest constant is

1√
k2 + 4

for k=1

the irrational number is equivalent to
√
5−1
2

the best possible constant is 1√
5
. Now for

k=2, the rational numbers are equivalent with
√

2− 1 = [0; 2, 2, 2, ......] or not equiva-

lent with
√

5− 1

2
the best possible constant is

1√
8

Similarly for k=3, the irrationals which are equivalent with
√

13− 3

2
= [0; 3, 3, 3, ....]

or not equivalent with
√

2−1 the best possible constant is
1√
13

Again for k=4, the irra-

tionals
√

5− 2 = [0; 4, 4, 4.....] that are not equivalent with
√

13− 3

2
the best possible

constant is
1√
20

[7]

Theorem 5.3.6. For any n ≥ 0,

|α− hn
kn
| < 1

knkn+1

and

|αkn − hn| <
1

k + 1

Theorem 5.3.7 (Lagrange). The sequence

|qnα− pn|

for n ≥ 0 is strictly decreasing and for n ≥ 1 and 1 ≤ q ≤ qn and if (p, q) 6= (pn, qn)

and (p, q) 6= (pn−1, qn−1), then

|αq − p| > |αqn−1 − pn−1|.

Remark: It follows from the theorem that if 1 ≤ q ≤ qn, (p, q) 6= (pn, qn),then

|αq − p| > |αqn − pn|
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which is sometimes is called the law of best approximation.

|qnα− pn| =
1

αn+1qn + qn−1
<

1

qn + qn−1

and

|αqn−1 − pn−1| =
1

αnqn−1 + qn−2
>

1

(an + 1)qn−1 + qn−2
=

1

qn + qn−1

which proves the first part.

Now define a and b by the equations

apn + bpn−1 = p, aqn + bqn−1 = q.

The matrix determined by these two equations has determinant ±1 hence a, b are in-

tegers if b=0 then (p, q) = a(pn, qn), but this is impossible since 0 ≤ q ≤ qn and

(p, q) 6= (pn, qn). if a=0, then (p, q) = b(pn−1, qn−1). But since (p, q) 6= (pn−1, qn−1),

we have b ≥ 2,and therefore

|αq − p| ≥ 2(|αqn−1 − pn−1|) > αqn−1 − pn−1.

If both a 6= 0 and b 6= 0 then since 1 ≤ q ≤ qn , a and b are of opposite sign. Hence

a(αqn − pn) and b(αqn−1 − pn−1) are of the same sign, and therefore

|αq − p| = |a(αqn − pn)|+ |b(αqn−1 − pn−1)|.

Then

|αq − p| > |αqn−1 − pn−1|.

Since ab 6= 0 and the result is established.

Theorem 5.3.8. If
p

q
is a rational number with positive denominator such that

|α− p

q
| < |α− pn

qn
|

for somen ≥ 1, then q > qn. In fact if

|αq − p| < |αqn − pn|

for some n ≥ 0, then q ≥ qn+1[17].
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Chapter 6

Two Directions of Hurwitz’s Theorem

In this chapter we discuss about the two directions of Hurwitz’s theorem. Hurwitz’s

theorem gives the idea of general approximation of irrationals by rationals. If we want

to discuss this result then, specifically there are two different directions. The first ap-

proach is by increasing the size of denominator so that the distance between the given

irrational and rational approximations goes to arbitrarily small. This approach was dis-

cussed in chapter five. On the other hand by increasing the size of numerator so that

the rational approximations are the linear combinations of numerator and denominator

of convergents of the continued fraction with some conditions.

6.1 Finite Diophantine Approximation

Now in case only one rational approximation, and not infinitely many, is asked for, the

bound
1√
5

and
1√
8

of Hurwitz’s theorem can be improved. A.V Prasad in 1948 proved

that to every irrational α there is at least one rational approximation with the bound
3 +
√

5

2
.L.C Eggan gave the extension of the theorem of Prasad. He proved that if α is

not equivalent with golden ratio and only one rational approximation is required then

the bound can be improved with
3
2

+
√

2

2
.
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Theorem 6.1.1 (A.V Prasad 1948). For any irrational α there are at least m pairs of

relatively prime integers p, q with q > 0 satisfying

|α− p

q
| ≤ 1

cmq2
(6.1)

where cm =

√
5 + 1

2
+
h2m−1
k2m−1

where
hj
kj

is the jth convergent to

√
5− 1

2
. Further if

α =

√
5− 1

2
, then there are exactly m solutions.

A.V Prasad showed that the constant in (6.2) cannot be improved. In case α =

√
5− 1

2

In fact it is not hard to see that many irrational numbers, all equivalent to
√

5− 1

2
also

require this constant.

What about those irrationals not equivalent to
√

5− 1

2
? Can the constant be improved

for these irrationals? The affirmative answer is a consequence of the following theorem.

Theorem 6.1.2 (Extension theorem of Prasad, L.C Eggan). Let α2 =
√

2 − 1 and
pj
qj

denote the jth convergent to α2. Then for any irrationals α which are not equivalent to√
5− 1

2
and any positive integer m, there are at least ’m’ solutions in relatively prime

integers p, q with q > 0 to the inequality

|α− p

q
| ≤ 1

kmq2
(6.2)

Where

km =
√

2 + 1 +
p2m−1
q2m−1

.

Moreover if α = α2 there are exactly ’m’ solutions. Both this result and Prasad’s

theorem are special cases of the next theorem.

Theorem 6.1.3. Let ’n’ be a positive integer and let αn = [0;n, n, n....] =

√
n2 + 4− n

2
.

For positive integer m, let

cm = αn + n+
p2m−1
q2m−1
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where
pj
qj

is the jth convergent to αn.

Then if α = [a0; a1, a2, ...] is irrational and if aj ≥ n for finitely many values of j, there

are at least m solutions in relatively prime integers p, q with q > 0, to the inequality

|α− p

q
| ≤ 1

cmq2
(6.3)

Moreover the constant cm cannot be improved since α = αn there are exactly ’m’

solutions and equality attained.

Corollary 6.1.1. If α is not equivalent to

√
5− 1

2
, then there is at least one pair of

relatively prime integers p, q with q > 0 satisfying

|α− p

q
| ≤ 1(√

2 + 3
2

)
q2

(6.4)

Moreover α =
√

2− 1 there is precisely one pair.

Corollary 6.1.2 (Perron). For positive integer n,if α = [0;n, n, n.... Then there are

infinitely many pairs of relatively prime integers p, q and q > 0.satisfying

|α− p

q
| < 1(√

n2 + 4
)
q2,

(6.5)

Moreover the constant can not be improved for this α

Corollary 6.1.3. For any positive integer n, if α is as in theorem (6.1.3) but not equiv-

alent to αn, then there are infinitely many pairs of relatively prime integers p, q with

q > 0 satisfying

|α− p

q
| < 1(√

n2+4+n
2

+ 1
n

)
q2

(6.6)

[13]

6.2 One Approximation in Some Other Setting

As we noted in the preceding section, A.V Prasad considered the question of one ap-

proximation corresponding to the Hurwitz’s theorem. There are other theorem stating
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the existence of infinitely many approximations about which the question of one ap-

proximation may be asked. In this section we consider three such theorems. Let

|α− p

q
| < k

q2
.

Scott[26] showed that if we restrict the fractions p
q

to be any one of the three classes

(i) p,q both odd (ii)p odd and q even or (iii) p even and q odd, then there are infinitely

many such
p

q
satisfying the inequality. Other proofs of this result have been given by

Robinson[20], Oppenheim, kuipers and Meulenbeld. Robinson also showed that if any

pair of these classes were used, there would be infinitely many satisfying k = 1
2
. Here

there are two results about which we can ask if we can improve the constants 1 and 1
2

if

we wish only one solution to the inequality. The answer is contained in the following

theorem.

Theorem 6.2.1. Let α be an irrational number and consider the three types of fractions
p

q
, where (i) both p and q are odd(ii) p odd and q even and (iii) p even and q odd,

1. If any one of three types of chosen, then there is at least one fraction p
q

of the

chosen type satisfying

|α− p

q
| < 1

q2
.

Moreover the constant 1 cannot be diminished.

2. If any two of the three types are chosen, then there is at least one fraction of

chosen type satisfying

|α− p

q
| < 1

2q2
.

Moreover the constant 2 can not be increased.

The first statement in each of (1) and (2) follows trivially from the Scott[26] and

Robinson[20]. The last statement follow the following theorems

Theorem 6.2.2. For any σ > 0 and for any choice of one of the three types, there is an

irrational number α so that no fraction of the chosen types satisfy

|α− p

q
| ≤ 1− σ

q2
.
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Theorem 6.2.3. For any σ > 0 and for any choice of two of three types, there is an

irrational number α so that no fraction of the chosen types satisfies

|α− p

q
| ≤ 1

(2 + σ)q2
.

In 1945, Serge[6] proved the following theorem.

Theorem 6.2.4. Every irrational α has infinitely many rational approximations
p

q
such

that
−γ

(
√

1 + 4γ)q2
< α− p

q
<

1

(
√

1 + 4γ)q2
,

where γ ≥ 0 is arbitrary.

Note that any even convergent satisfies the result for γ = 0. While γ = 1 the result

is the classical theorem of Hurwitz. Since that time a number of people, including

olds, Negoescu, Robinson, Levegue and Tornheim, we have considered this problem

of symmetric approximation. Robinson showed further that for any σ > 0 and any

irrational α, the inequality

−1

(
√

5− σ)q2
<
p

q
− α < 1

(
√

5 + 1)q2
,

has infinitely many solutions. Thus on side of Hurwitz’s theorem can be strengthened

without essentially weakening the other are there inequalities of above form when only

one solution is desired? In particular, is it possible to strengthened one side of Prasad’s

theorem without esentially weakening the other? The answer to these questions in the

negative is contained in the following theorem.

Theorem 6.2.5. Any statement of the form ” For any irrational α, there is at least one

pair of integers p, q so that
−c
q2
≤ p

q
− α < d

q2
”.

For some d, 0 ≤ d < 3−
√
5

2
is false unless c > 1√

5

citeram46
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6.3 Worley’s Results of Diophantine Approximation

The classical Legendre’s theorem in Diophantine approximations states that if a real

number α and a rational number
p

q
we will always assume that q ≥ 1 and satisfy the

inequality

|α− p

q
| < 1

2q2,
(6.7)

then
p

q
is a convergent of the continued fraction expansion of α = [a0; a1, ...]. This

result has been extended by Fatou in[18], who showed that if

|α− p

q
| < 1

q2
.

Then
p

q
=
pm
qm

or
pm+1 ± pm
qm+1 ± qm

, where
pm
qm

denote the mth convergent ofα

In 1981, Worley [21] generalized these results to the inequality

|α− p

q
| < k

q2
,

where k is an arbitrary positive real number, Worley’s result was slightly improved by

Dujella in 2004[?]

Theorem 6.3.1 (Worley [21], Dujella[2]). Letα be a real number and let p and q be

coprime nonzero integers, satisfying

|α− p

q
| < k

q2,
(6.8)

where k is a positive real number. Then (p, q) = (rpm+1 ± spm, rqm+1 ± sqm) for some

m ≥ −1 and non negative integers r and s such that rs < 2k

Theorem 6.3.2 (Worley [21], Theorem 2). If α is an irrational number, k ≥ 1
2

and
p

q
is a rational approximation to α (in reduced form) for which the inequality (6.8) holds,

then either
p

q
is a convergent

pm
qm

to α or
p

q
has one of the following forms.

1.
p

q
=
rpm+1 + spm
rqm+1 + sqm

, r > s and rs < 2k, or r ≤ s and rs < k +
r2

am+2
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2.
a

b
=
spm+1 − tpm
sqm+1 − tqm

, t > s and ts < 2k, or t ≤ s and ts(1− t

2s
) < k

where r, s, t are positive integers.

Since the fraction
p

q
is in reduced form, it is clear that in the statements of Theorems

(6.2.1) and (6.2.2) we may assume that gcd (r, s) = 1 and gcd (s, t) = 1. Worley [[21],

Corollary, p.206] also gave the explicit version of his result for k = 2: |α − p
q
| < 2

q2

implies
p

q
=
pm
qm
,
pm+1 ± pm
qm+1 ± qm

,

2pm+1 ± pm
2qm+1 ± qm

,
3pm+1 + pm
3qm+1 + qm

,

pm+1 ± 2pm
qm+1 ± 2qm

,
pm+1 − 3pm
qm+1 − 3qm

,

6.3.1 Explicit versions of Worley’s theorem

We start by few details from the proof of Theorem (6.2.1), which will be useful in our

future arguments. In particular, we will explain how the integer m appearing in the

statement of Theorem (6.2.2) can be found. We assume that α <
p

q
, since the other

case is completely analogous. Let m be the largest odd integer satisfying α <
p

q
<
pm
qm
.

If
p

q
>
p1
q1
, we take m = −1, following the convention that p1 = 1, q1 = 0. Since

|pm+1qm − pmqm+1| = 1, the numbers r and s defined by p = rpm+1 + spm, q =

rqm+1 + sqm are integers, and since pm+1

qm+1
< p

q
< pm

qm
. we have that r ≥ 0 and s > 0.

From the maximality of m, we find that

sam+2 − r
qqm+2

= | pm+2

qm+2 − a
b

| < |α− p

q
| < k

q2
(6.9)

From (6.9) we immediately have

am+2 >
r

s
(6.10)
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and we can derive the inequality

r2 − sram+2 + kam+2 > 0 (6.11)

Let us define a positive integer t by t = sam+2 − r. Then we have p = rpm+1 + spm =

spm+2 − tpm+1

q = rqm+1 + sqm = sqm+2 − tqm+1, and s and t satisfy analogs of (6.11) and (6.12)

am+2 >
t

s
(6.12)

t2 − stam+2 + kam+2 > 0 (6.13)

If r > t, i.e. rs > st, then we will represent p and q in terms of s and t Worley 1981

gave the explicit version of his result for k = 2. He showed, if a real number α and a

rational number p
q

satisfy the inequality

|α− p

q
| < 2

q2
,

then
p

q
=
rpm+1 + spm
rqm+1 + sqm

,

where

(r, s) ∈ R2 = {(0, 1), (1, 1), (1, 2), (2, 1), (3, 1)} ,

or

p

q =

p

q
=
spm+2 − tpm+1

sqm+2 − tqm+1

,

where

(s, t) ∈ T2 = {(1, 1), (1, 2), (1, 3), (2, 1)}

(for an integer m ≥ −1).

In 2008, Andrej Dujella, Bernadin Ibrahimpasic[1] extended the Worley’s work

and gave the explicit and sharp versions of Theorems (6.2.1) and (6.2.2) for k =
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3, 4, 5, ..., 12. Where, the list the pairs (r, s) which appear in the expression of solu-

tions of (6.8) in the form

(p, q) = (rpm+1 ± spm, rqm+1 ± sqm) .

In 2013 bernadin Ibrahimpasic[5] extend the worley’s work(and also the work of Du-

jella and Ibrahimpasic)and gave explicit and sharp version of theorem (6.2.1) and (6.2.2)

for k=13. In their work the list of the pairs (r,s) which appear in the expression of the

solution of inequality (6.8) in the form

(p, q) = (rpm+1 ± spm, rqm+1 ± sqm),

and showed by explicit examples that all pairs from the list are indeed necessary. They

proved some pattern in pairs(r, s) and (s, t) which appear in representation

(p, q) = (rpm+1 + spm, rqm+1 + sqm)

and

(p, q) = (spm+2 − tpm+1, sqm+2 − tqm+1)

of solutions of the inequality (6.8)

6.4 Explicit Version of Worley’s work in Diophantine

Approximation

Theorem 6.4.1. Let k ≥ 3 be a integer. There exist a real number α and rational

numbers
p1
q1

and
p2
q2

such that

|α− p1
q1
| < k

q21

and

|α− p2
q2
| < k

q22
,
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where
p1
q1

= (rpm+1 + 2pm, rqm+1 + 2qm)

and
p2
q2

= (2pm+2 − tpm+1, 2qm+2 − tqm+1),

for some m ≥ −1 and integers r and t such that 1 ≤ r, t ≤ k − 1.

Dujella and Ibrahimpasic [1] gave the following result.

Proposition

Let

k ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 12} .

If a real number α and a rational number
p

q
satisfy the inequality (6.8),

p

q
=
rpm+1 + spm
rqm+1 + sqm

,

where

(r, s) ∈ Rk = Rk−1 ∪ Ŕk,

or
p

q
=
spm+2 − tpm+1

sqm+2 − tqm+1

,

where

(s, t) ∈ Tk = Tk−1 ∪ T́k

(for an integer m > −1), where the sets Ŕk and T́k are given in the following table.

More- over, if any of the elements in sets Rk or Tk is omitted, the statement will no

longer valid.
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k Ŕk

4 (1, 4), (3, 2), (6, 1), (7, 1)

5 (1, 5), (2, 3), (8, 1), (9, 1)

6 (1, 6), (5, 2), (10, 1), (11, 1)

7 (1, 7), (2, 5), (4, 3), (12, 1) (13, 1)

8 (1, 8), (3, 4), (7, 2), (14, 1), (15, 1)

9 (1, 9), (5, 3), (16, 1), (17, 1)

10 (1, 10), (9, 2), (18, 1), (19, 1)

11 (1, 11), (2, 7), (3, 5), (20, 1), (21, 1)

12 (1, 12), (5, 4), (7, 3) (11, 2), (22, 1), (23, 1)

k T́k

4 (4, 1), (2, 3), (1, 6), (1, 7)

5 (5, 1), (3, 2), (1, 8), (1, 9)

6 (6, 1), (2, 5), (1, 10), (1, 11)

7 (7, 1), (5, 2), (3, 4), (1, 12), (1, 13)

8 (8, 1), (4, 3), (2, 7), (1, 14), (1, 15)

9 (9, 1), (3, 5), (1, 16), (1, 17)

10 (10, 1), (2, 9), (1, 18), (1, 19)

11 (11, 1), (7, 2), (5, 3), (1, 20), (1, 21)

12 (12, 1), (4, 5), (3, 7) (2, 11), (1, 22), (1, 23)

By Theorem (6.2.1), we have to consider only pairs of non negative integers (r, s) and

(s, t) satisfying rs < 2k, st < 2k, gcd(r, s) = 1 and gcd(s, t) = 1. Furthermore, as in

the case k = 3, it follows directly from the inequalities (6.11) and (6.13) for r = 1, resp.

t = 1, that the pairs (r, s) = (1, s) and (s, t) = (s, 1) with s > k + 1 can be omitted.

Similarly, for r = 2 or 3, resp. t = 2 or 3, we can exclude the pairs (r, s) = (2, s) and (s,

t) = (s, 2) with s ≥ k
2

+ 2, and the pairs (r, s) = (3, s) and (s, t) = (s, 3) with s ≥ k
3

+ 3

Proposition
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If a real number α and a rational number
p

q
satisfy the inequality (6.8)

|α− p

q
| < 13

q2

then
p

q
=
rpm+1 + spm
rqm+1 + sqm

,

where

(r, s) ∈ R13

= R12

⋃
{(1, 13), (3, 7), (4, 5), (24, 1), (25, 1)}or

a

b
=
spm+2 − tpm+1

sqm+2 − tqm+1

,

where

(s, t) ∈ T13 = T12
⋃
{(13, 1), (7, 3), (5, 4)(1, 24)(1, 25)}

(for an integer m ≥ −1). From the proof of the Theorem (6.2.1) in [1] (see also [5])

where m is the largest integer satisfying α <
a

b
≤ pm
qm

By Theorem (6.2.1), we have to consider only pairs of non negative integers (r, s)

and (s, t) satisfying rs < 2k, st < 2k, gcd(r, s) = 1 and gcd(s, t) = 1. The inequalities

(6.11) and (6.13) for r = 1, resp. t = 1, imply that the pairs (r, s) = (1, s) and (s, t) = (s, 1)

with s > k + 1 = 14can be excluded. Similarly, for r = 2or3, respectively t = 2

or 3, we can exclude the pairs (r, s) = (2, s) and (s, t) = (s, 2) with s ≥ 13
2

+ 2,

and the pairs (r, s) = (3, s) and (s, t) = (s, 3) with s ≥ 13
3

+ 3. In particular, the

pairs (r, s) = (2, 9), (2, 11), (3, 8), and the pairs (s, t) = (9, 2), (11, 2), (8, 3) can be

excluded.

Now we show that the pairs (r, s) = (8, 3) and (s, t) = (3, 8) can be replaced with

other pairs with smaller products rs, respectively, st. For (r, s) = (8, 3) and k = 13,

from (6.11) and (6.13) we obtain

8

3
< am+2 <

64

11

, and therefore we have three possibilities: am+2 = 3, 4or5. If am+2 = 3, then from

(6.13) we obtain t = 3×3−8 = 1, and we can replace (r, s) = (8, 3) by (s, t) = (3, 1).
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If am+2 = 4, we can replace it by (s, t) = (3, 4) and if am+2 = 5, we can replace it by

(s, t) = (3, 7).

The proof for pairs (s, t) = (3, 8) is completely analogous. We use the inequalities

(6.12) and (6.13), instead of (6.10) and (6.11). We obtain

8

3
< am+2 <

64

11
,

and therefore we have, again, three possibilities: am+2 = 3, 4 or 5. If am+2 = 3,

we can replace (s, t) = (3, 8) by (r, s) = (1, 3), if am+2 = 4, we can replace it by

(r, s) = (4, 3) and if am+2 = 5, we can replace it by (r, s) = (7, 3).

Our next aim is to show that if we exclude any of the pairs (r, s)or(s, t) appearing

in second Proposition, the statement of the proposition will no longer be valid. More

precisely, if we exclude a pair (r′, s′) ∈ R13, then there exist a real number α and a

rational number p
q

satisfying (6.8), but such that p
q

cannot be represented in the form

p

q
=
rpm+1 + spm
rqm+1 + sqm

nor
p

q
=
spm+2 − tpm+1

sqm+2 − tqm+1

,

where m > −1. (r, s) ∈ R13 − ({(r′, s′)}), (s, t) ∈ T13 (and similarly for an excluded

pair (s′, t′) ∈ T13). In the next table, we give explicit examples for each pair. There are

many such examples of different form, but we give some numbers α of the form
√
d,

where d is a non-square positive integer.
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k = 13
√
α a b m r s t
√

5328 11533 158 1 1 13 12
√

168 1063 82 1 3 7 4
√

56 943 126 1 4 5 6
√

626 30049 1201 0 24 1 26
√

677 33851 1301 0 25 1 27
√

5328 127957 1753 1 12 13 1
√

168 1387 107 1 4 7 3
√

56 1377 184 1 6 5 4
√

626 32551 1301 0 26 1 24
√

677 36557 1405 0 27 1 25

Let us consider α =
√

56 = [7; ¯2, 14.] The some convergents of
√

56 are

7

1
,
15

2
,
217

29
,
449

60
,
6503

869
, ...

Its rational approximation 943
126

(the third row of the table) satisfies

|
√

56− 943

126
| ≈ 0 : 0008123 <

13

1262
.

We have that the only representation of the fraction 943
126

in the form

rpm+1 + spm
rqm+1 + sqm

, (r, s) ∈ R13or
spm+2 − tpm+1

sqm+2 − tqm+1

, (s, t) ∈ T13

is
943

126
=

4× 217 + 5× 15

4× 29 + 5
=

4×
√

2 + 5×
√

1

4× q2 + 5× q1
,

which implies that the pair (4, 5) cannot be excluded from the set R13.
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Chapter 7

Conclusion with open problems

In this Dissertation, we have presented about the rational approximation of an irrational

numbers with special focus on Hurwitz result of general rational approximation and its

advances specifically in two different directions. We have studied about the advances

of Hurwitz theorem by restriction of certain set of irrationals so that the approximation

can be better than that of Hurwitz approximation. In this context we have studied [7]

the paper of Hailiza Kamarul Haili,and Norhayati Rosli in 2005. similarly we have

studied about the refinement of best approximations of irrationals in [10] and studied

about the finite Diophantine approximation originated by A.V Prasad 1958 in [13]. On

the other hand we have discussed about the rational approximation of irrationals by

increasing the size of numerator. In this context we have studied the paper of Wor-

ley [21], Dujella[2], Bernadin Ibrahimpasic[1] in 2008 for k=2,3,...,12 and In 2013

bernadin Ibrahimpasic[5] for k=13. We have studied about the Pell’s Fermat equation

x2 − Dy2 = ±1 with the help of continued fraction for different types of D, rational

approximation by using Dirichlet’s box principle and by using solution of Pell’s Fer-

mat equation. Now, i am interested to proceed my research in anyone of the following

directions.

1. Conjecture-1(McMullen) In any real quadratic field, there is a infinite periodic

continued fractions formed only of the integers 1 and 2.
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2. Some work towards conjecture-1 For example,Q[
√

10] contains the infinite se-

quence of continued fractions.

[1, 1, 2, 1, 1, 2] Rule[2, 2, 0]

Counting the Number of 1’s before each 2. For the last 2 taking both the number

of 1’s before and after . [1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1] Rule[2, 1, 3, 0, 2]

[1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1] Rule[2, 1, 2, 3, 0, 2, 2]. General period

length is 6n and pattern rule is

[2, 1, (n− 2) times 2, 3, 0, (n− 1) times 2] for n ≥ 2.

3. (conjecture-2) There exists an integer m such that any real quadratic field
√
d

contains an infinite number of periodic continued fractions uniformly bounded

by m.

4. (Zaremba conjecture-3) There is a constant m such that for any integer q ≥ 1,

there is a first integer p to q such that we have p
q

= [a0, a1, a2, ...] where ai are

integers between 1 and m.

5. Is there a constant m such that in any real quadratic field,there is a periodic con-

tinued fraction of the form [a0, a1, a2, ..., a2, a1] uniformly bounded by m?[16]
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