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Abstract

In this work, we consider a mathematical model of slider bearings with parallel

and non-parallel plates based on 2D Navier Stokes equations with variable vis-

cosity without stresses and external forces. The model is simplified and reduced

to one dimensional viscous incompressible Couette flow and solved numerically

employing a second order finite difference scheme (Crank Nicolson). The consis-

tency, stability and convergence of the numerical scheme are also studied. The

numerical solution is compared with the exact solution and presented graphically.

Finally, numerical procedures for the original realistic 2D model are outlined.
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Chapter 1

Introduction

1.1 Preliminaries

The Navier-Stokes equations are mathematical model aimed at describing the mo-

tion of an incompressible viscous fluids like water, glycerine, oil and under certain

circumstances, air also. They were introduced in 1822 by the French engineer

Claude Louis Marie Henri Navier and successively re-obtained with different ar-

guments, by a number of authors including Augustin Louis Cauchy in 1823, Simeon

Denis Poisson in 1829, Adhemar Jean Claude Barre de Saint-Venant in 1837, and,

finally, George Gabriel Stokes in 1845.

The Navier-Stokes equations are now regarded as the universal basis of fluid

mechanics, no matter how complex and unpredictable the behavior of its solutions

may be. It is also known to be the only hydrodynamic equation that is compatible

with the isotropy and linearity of the stress-strain relation. Navier’s original

derivation was not influential and the equation was re-derived at least four times,

by Cauchy, by Poisson, by Saint-Venant, and by Stokes. Each new derivation

either ignored or denigrated his predecessor’s contribution. Each had his own way

to justify the equation. Each judged differently the kind of motion and the nature

of the system to which it was applied.

All five authors of the Navier-Stokes equations shared a molecular ontology,

1
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but they differed considerably over the extent to which their derivations involved

molecular assumptions. A wide spectrum of methodological attitudes existed at

the time. At one extreme was Poisson, who insisted on the necessity of discrete

sums over molecules. At the other extreme was Cauchy who combined infinitesi-

mal geometry and spatial symmetry arguments to define strains and stresses and

to derive equations of motion without referring to molecules. Yet the opposition

was not radical. Poisson used Cauchy’s concept and Cauchy eventually provided

his own molecular derivations. Others compromised between the molecular and

the molar approaches. Navier started with molecular forces but quickly jumped

to the macroscopic level by considering virtual works. Saint-Venant insisted that

a clear definition of the concept of stress could only be molecular but nevertheless

provided a purely macroscopic derivation of the Navier-Stokes equation. Stokes

obtained the general form of the stresses in a fluid by a Cauchy type of argu-

ment but he justified the linearity of the stresses with respect to deformations by

reasoning on molecules (Theory of Continua).

These methodological differences largely explain why Navier’s successors ig-

nored or criticized his derivation of the Navier-Stokes equations. His short-cuts

from the molecular to the macroscopic levels seemed arbitrary or even contradic-

tory. Cauchy and Poisson simply ignored Navier’s contribution to fluid dynamics.

Saint-Venant and Stokes both gave credit to Navier for the equation but believed

an alternative derivation to be necessary.

The many authors of the Navier-Stokes equations also differed in the types of

application they envisioned. Navier and Saint-Venant had pipe and channel flow

in mind. Cauchy and Poisson’s interests were more philosophical than practical.

Cauchy did not even intend the equation to be applied to real fluids. He derived

it for a perfectly inelastic solid and noted its identity with Fourier heat equation

in the limiting case of slow motion.



3

1.1.1 Scope

Even though for some time their applications in the real life was not fully recog-

nized, now they became the foundations of many branches of applied sciences in-

cluding Meteorology, Oceanography, Geology, Oil Industry, Aero-dynamics, Ship

and Car Industries, Flim Industries, Biology, Medicine and many more. In each of

the above areas, these equations have collected many undisputed successes which

definitely place them among the most accurate, simple and beautiful models of

mathematical physics.

Fluid mechanics is a very intricate and intriguing discipline of the applied

sciences. It is, therefore, not surprising that the mathematics involved in the

study of its properties can be extremely complex and difficult. Complexities and

difficulties may be more or less challenging depending on the mathematical model

chosen to describe the physical situation.

1.1.2 Challenges

Apart from these outstanding successes, up to the present time, a number of unre-

solved basic mathematical questions remain open mostly for 3D flows. The most

celebrated is, Whether global solution for 3D regular flow for data of arbitrary

size exists (global regularity problem).

Since the 20th century, this problem has challenged several mathematicians

who have not been able to furnish a definite answer. In fact, till today, 3D regular

flows are known to exist either for all times but for data of small size, or for the

data of arbitrary size but for a finite interval of time only. The global regularity

problem has become so intriguing that in the year 2000, it was decided to put as

one of the seven dollar 1 Millennium Prize Problems of the Clay Mathematical

Institute.

Moreover, the Navier-Stokes equations present other fundamental open ques-

tions. It is not known whether in the 3D case, the associated initial-boundary

value problem is (in an appropriate function space) well-posed in the sense of

Hadamard. In other word, in 3D whether the solutions to this problem exist
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for all times are unique and depend continuously upon the data without being

necessarily regular (uniqueness).

Further, other outstanding question for both 2D and 3D flow is describing

the steady-state flow, which states that for the multiply-connected flow region R,

does a solution exist under a given velocity distribution at the boundary of R
that can satisfy the physical requirement of conservation of mass (boundary value

problem).

Actually in the 2D case, the first two problems i.e. global regularity problem

and uniqueness have been solved, while the third one remains still open. Never-

theless, there is hope that proving or disproving the first two problems in 3D will

require completely fresh and profound ideas that will open new avenues to the

understanding of turbulence.

1.1.3 Limitation

Navier Stokes Equations are restricted to the case of Newtonian fluids only. Be-

sides, this study is limited to 2D incompressible Navier-Stokes equations for the

variable viscosity case.

1.1.4 Objectives

This paper aims to study the physicsl properties of the fluids, derivation of the

Navier-Stokes equations and exploration of the procedures for the numerical so-

lutions (Finite Difference Method) in variable viscosity case.

1.1.5 Basic Definitions

1. Fluid: The substance which flows with the application of a shear stress no

matter, how small it may be. Equivalently, it is a substance in which the

inter-molecular force of attraction is weak and extremely small. Liquids and

gases are together known as fluid.

2. Viscosity: The property of fluids by virtue of which they oppose the contin-

uous deformation under external shearing force is called viscosity.
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3. Steady-State Flow: Flow where flow parameters like density, velocity and

pressure fields are time-independent.

4. Unsteady Flow: Flow where one or more fluid parameters changes with time.

5. 3D-flow: Flow where velocity and pressure fields depend on three spatial

variables.

6. Planar or 2D flow: Flow where velocity and pressure fields depend only on

two spatial variables belonging to a portion of a plane, and the component

of the velocity orthogonal to that plane is identically zero.

7. Stream Line Flow: The curve path of the fluid element in steady motion

where the tangent at any point of it gives the direction of the resultant

velocity.

8. Local Solution: Solution where velocity and pressure fields exist only for a

finite interval of time.

9. Global Solution: Solution where velocity and pressure fields exist for all

positive times.

10. Regular Solution: Solution where velocity and pressure fields satisfy the

Navier-Stokes equations and the corresponding initial and boundary condi-

tions in the ordinary sense of differentiation and continuity.

11. Control Volume: Finite arbitrary volume of the fluid which flows and to

which the principles of conservation of mass, momentum and energy holds

true. It is denoted by Ω and its boundary surface by δΩ.

12. Compressible fluids: The fluid whose volume changes with pressure, eg. Air.

13. Incompressible fluids: Fluids whose volume does not change with the pres-

sure, eg. Water.

14. Newtonian Fluids: The fluid whose shear stress is non zero and is directly

proportional to the time rate of shear strain(velocity gradient). The constant

of proportionality is the coefficient of viscosity, eg. Mustard oil.
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Figure 1.1: Control Volume in rectangular parallelopiped form.

Figure 1.2: Control volume in oval shape

15. Non-Newtonian Fluids: The fluid whose viscosity depends on time rate of

shear strain and even on time, eg. Glass.

16. Conservation Form: The fluid flow equation which can be obtained directly

by applying the conservation principles to the fluid elements at a particular

point in its course of motion. It may also be defined as the divergence of

some fluid flow fluxes.

17. Non-Conservation/Convective Form: The fluid flow equation in differential

or in integral form obtained from the fluid elements at any time of its motion.
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18. Governing Equation: In general, a pair of partial differential equations whose

general solutions are not known analtically are known as governing equa-

tions.

1.1.6 Continuum Hypothesis

To study the fluid flow behaviour, certain assumptions are made.

1. The volume of the fluid is large enough as compared to that of a fluid

element. This enables that the density of fluid particle is independent of

volume. In other words, the mass of a fluid particle is a smooth function of

the volume.

2. The volume of a fluid particle is indefinitely smaller as compared to the

whole volume occupied by the fluid.

These assumptions form a basis of the continuum hypothesis. The continuum

hypothesis states that

1. The fluid particle is a material point, and

2. The density of fluid is continuous function of space and time.

Under the continuum hypothesis, we assume that the part of the fluid under

observation consists of infinitely many material points, and we expect that the

motion of this continuum is described by partial differential equations. Fluids

are made of molecules. The cohesive forces keep them attracted to each other.

However, the molecules are in constant motion. The distance a molecule travel

before hitting other is called Mean Free Path denoted by λ. Note that

λ ∝ T and λ ∝ 1

p
,

where, T is temperature and p is the pressure.

If we look at microscopic length scale, the fluid molecules are found to be

moving in the space bouncing off each other and the wall of the container. At

this length scale, fluids are discontinuous spatially. At a larger length scale, fluids

may appear in continuous phase. The length scale at which the fluid appears
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to be continuous is called characteristic length denoted by L. For instance, if we

observe a tiny liquid droplet of diameter 1mm, then the collection of such droplets

constitute a fluid which is taken as a continuous matter. This is the assumption

of continuum hypothesis. The characteristic length in this example is L = 1mm.

Further, we may think the continuity of fluid as the physical phenomenon where

a solute may be dissolved by a solvent. If the solute is dissolved by the solvent

without stiring it within a fixed interval of time, then the solvent is considered as

a continuous matter.

We note that

λ ∝ L.

i.e.

λ = KnL,

i.e.

Kn =
λ

L
,

where the constant of proportionality Kn is called Knudsen Number. The conti-

nuity of a fluid can be observed in terms of Knudsen Number as

• If Kn ≤ 0.001, fluid is considered as continuum.

• If 0.001 < Kn < 0.1, rarefaction effect starts influencing the fluid properties.

• If Kn = 0.1, continuum assumptions starts to breakdown.

• If Kn ≥ 10, continuum approach breaks completely.

1.1.7 Reynolds number

In the 1880, Osborne Reynolds carried out visualisation studies of flow in a pipe.

He noticed out that well ordered laminar flow degenerated into a chaotic motion

when the velocity in the pipe reached a certain value. It is due to a certain non-

dimensional parameter causing complexity of the flow, called Reynolds number

denoted by Re. Reynolds number represents the ratio between inertial forces and
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the viscous forces. Thus, for a flow in pipe, Reynolds number is given by

Re =
ρ~vD

µ
,

where D is the diameter of the pipe and ~v is average velocity of fluid in the pipe.

For small values of Re, the flow is found to be laminar. As the value of Re

increases, the flow becomes more complicated and finally turbulent. Thus, a flow

is turbulent if the inertial force in it is extremely large than the viscous force. This

shows that inertial force is responsible for the dynamic redistribution of the flow

structures. When it dominates the viscous force in a flow, i.e. when Re >> 1,

the flow becomes turbulent.

1.2 Properties of Fluids

In the study of fluid mechanics, certain physical properties of the fluids are in-

volved. Some of them are

• Density: It is defined as the mass of the material contained per unit of its

volume. It is represented by ρ and is given by

ρ =
m

V
.

In the limiting case, if δm and δV denote mass and volume of a fluid element

respectively, then

ρ = limδV→0

(
δm

δV

)
.

The density of liquids vary with the temperature and pressure. But there are

some fluids whose density is not change with the temperature and pressure.

Such fluids are termed as incompressible fluid. Similarly, the density of some

fluids change with the temperature and pressure. Such fluids are termed as

compressible fluids.

• Specific Gravity: The ratio of the density of a substance to the density of a

particular reference substance is termed as specific gravity of that substance.

It is a non-dimensional quantity.
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• Specific Weight: The weight of a substance per unit or its volume is termed

as specific weight. It is denoted by ω∗. Thus,

ω∗ = ρg,

where, ρ = density of the substance and g= acceleration due to gravity.

• Viscosity: The property of a fluid by virtue of which it opposes the continu-

ous deformation of the fluid under the action of an external force is termed

as viscosity.

Figure 1.3: Flow in parallel plates

Let us consider a thin layer of fluid of thickness dy kept between two plates

as shown in the figure. The lower plate is kept stationary where as the

upper plate is moved parallel to the lower by the application of a tangential

shearing stress F applied in the direction parallel to the lower plate. If d~v

denotes the velocity of the upper plate relative to the lower in time dt and

dθ be the angular displacement of the upper plate,

Horizontal displacement of upper plate = dθdy = d~vdt. This implies

dθ

dt
=
d~v

dy
. (1.1)

If S be the area of the upper plate in contact with the fluid, then the applied

shear stress is

τ =
F

S
.
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For the Newtonian fluid, the external shear stress is proportional to the time

rate of shear strain, we have

τ ∝ dθ

dt
,

i.e.

τ = µ
dθ

dt
, (1.2)

where µ is the constant of proportionality called coefficient of dynamic vis-

cosity or Newtonian viscosity or simply coefficient of viscosity. From equa-

tions (1.1) and (1.2), we get

τ = µ
d~v

dy
.

This relation is true for Newtonian fluid s only.

• Kinematic Viscosity: It is the ratio of the dynamic viscosity to the density

of the fluid. It is denoted by ν. Thus,

ν =
µ

ρ
.

• Intensive and Extensive Quantities

1. Extensive quantity: The physical quantity whose value is proportional

to the size of the system. It is additive in nature. For example; mass,

momentum, kinetic energy, heat content, electrical charge etc.

2. Intensive quantity: The physical quantity whose value does not depend

on the size of the system. It is not additive in nature. For example;

temperature, pressure, electrical potential etc.

Extensive quantities can be modeled in a very general way by measures.

The content of an extensive quantity q in a set A ⊂ Ω ⊂ Rd is Q =

µ(A), for A measurable with µ as the measure of q. The main property

we are interested in here is additivity,

µ (∪Ai) =
∑

µ(Ai),
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for a countable family of disjoint measurable sets {Ai}. The measure

in this respect deals mainly with density, i.e.

µ(A) =

∫
A

f(x)dλ(x),

where f : Ω→ R is the density function and λ is the Lebesgue measure.

1.2.1 Kinematics of Fluid Flow

Kinematics is the study of the motion of a fluid, without considering the forces

which cause this motion, that is without considering the equations of motion. In

fluid dynamics, we need to convert the kinematics of a mass-point to the kine-

matics of a fluid particle. Generally, such problem of fluid motion is dealt with

two approaches (a) Lagrangian Approach and (b) Eulerian Approach.

In Lagrangian approach, any fluid particle is selected in space and its motion

is observed throughout its course. If a particle be at P (x0, y0, z0) at time t0, then

its position after time t is given by

x = x(x0, y0, z0, t), y = y(x0, y0, z0, t), z = z(x0, y0, z0, t).

The velocity components of the particles along co-ordinate axes are given by

u =
∂x

∂t
, v =

∂y

∂t
, z =

∂z

∂t
.

In Eulerian approach, any point in the space occupied by the fluid is selected

and the changes of hydrodynamical parameters occuring at that point during the

course of time is observed. Since a point is choosen in this approach, the velocity

components of a fluid element changes with time. So fluid motion is characterized

by the formation of velocity field. The velocity components along the axes will be

the function of spatial co-ordinates and time.

u = u(x, y, z, t), v = v(x, y, z, t), w = w(x, y, z, t).

Hence the velocity field at any point (x, y, z, t) is given by

~V = u~i+ v~j + w~k,

where u, v, w are the velocity components along axes.
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1.2.2 Reynold’s Transport Theorem:

The sum of the changes of some extensive property (say L) defined over a con-

trol volume Ω is equal to what is lost (or gained) through the boundaries ∂Ω of

the volume plus what is created/consumed by sources and sinks inside the control

volume. Mathematically,

d

dt

∫
Ω

LdV = −
∫
∂Ω

L~v.ndA−
∫

Ω

QdV

where,

~v =velocity of the fluid;

Q =amount of fluid in the sources and sinks.

1.2.3 Mass Conservation (Continuity Equation)

It states that

Rate of mass accumulation within Ω = Rate of mass flow into Ω

−Rate of mass flow out of Ω.

Let P (x, y, z) be a position of a fluid element. Consider a rectangular control

volume in space at this point with edges dx, dy, dz units respectively as shown in

the figure. Let u, v, w be the components of velocity and ρ be the fluid density at

the point P , then the mass of the fluid entering per unit time through the face

PQRS along X direction is

(ρu) dy dz.

The mass of fluid flowing out per unit time of the face ABCD along x direction

is [
ρu+

∂

∂x
(ρu)dx

]
dy dz.

Hence, the mass of the fluid left in the control volume per unit time due to the

flow in x direction is

− ∂

∂x
(ρu) dx dy dz.
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Figure 1.4: Fluid flow in rectangular parallelopiped

Similarly, the mass of the fluid left in the control volume per unit time due to the

flow in y and z directions are respectively

− ∂

∂y
(ρv) dx dy dz,

and

− ∂

∂z
(ρw) dx dy dz.

Hence, total mass of the fluid inside the control volume per unit time is

−
[
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z

]
dx dy dz.

Now, the original fluid mass inside the control volume is ρ dx dy dz and its increase

per unit time is
∂ρ

∂t
dx dy dz.
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By the priciple of mass conservation, we have

∂ρ

∂t
= −

[
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z

]
.

i.e.
∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0. (1.3)

This is the Equation of Continuity for 3D compressible unsteady flow.

For the steady-state motion, ∂ρ
∂t

= 0. So, the continuity equation for 3D steady

flow becomes
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0. (1.4)

For incompressible fluids, ρ = constant. The equation of continuity (1.4) for 3D

incompressible steady flow becomes,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (1.5)

The mass conservation equation (equation of continuity) for 2D unsteady com-

pressible flow is
∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
= 0.

And, mass conservation equation (equation of continuity) for 2D steady incom-

pressible flow is
∂(ρu)

∂x
+
∂(ρv)

∂y
= 0.

1.2.4 Conservation of Momentum

It states that:

Accumulation of momentum within Ω =Rate of momentum flow into Ω−

Rate of momentum flow out of Ω+

Forces acting on Ω faces+

Body forces within Ω.

Consider a fluid element as our flow model. Newton second law states that the

force vector acting on a control volume is equal to the rate of change of momentum.
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Consider a control mass system for which the mass doesn’t change with the time.

Hence the rate of change of momentum is mass times the acceleration experienced

by the fluid in the control volume. Thus, the x-component of the force (Fx) is

given by

Fx = max,

where m stands for mass and ax stands for x-component of the acceleration.

We note that two types of forces act on the control volume, one is body forces

that act on the control volume from a distance and don’t depend upon the ge-

ometry of the body such as gravitational and electromagnetic forces and other,

surface forces that act directly on the control surfaces of the fluid element. Since

the later one acts on the surface elements, the geometry is an important param-

eter in deciding the forces acting on it. The surface forces further be subdivided

into normal and shear forces. The normal forces are caused by the normals to

the body surface whereas the shear forces are caused by the shear stresses.

Let us consider a elementary fluid element OABCGHE having a corner at

origin and surfaces parallel to the axes with edges dx, dy, dz units respectively.

Let ~v = (u, v, w) be the velocity components of the moving fluid along the axes

and ρ be its local density.

Then,

Body force acting in x-direction = ρfx dx dy dz,

where fx is the acceleration in the x-direction. For the surface forces, if τij denotes

the stress tensor acting in j-direction on a plane whose normal vector is in the

i-direction,

Shear force acting on the face OABC in the x- increasing direction=τyx.

Shear force acting on the face EFGH in the x- increasing direction=τyx + ∂τyx
∂y
dy.

So, net force in x-increasing direction due to this pair of shear stresses on the

surfaces OABC and EFGH is

τyxdx dz −
(
τyx +

∂τyx
∂y

dy

)
dx dz,
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Figure 1.5: Small moving fluid element with forces in x-direction

i.e.

−∂τyx
∂y

dx dy dz.

Similarly, net force in x-increasing direction due to the stresses τxx and τxz are

−∂τxx
∂x

dx dy dz

and

−∂τzx
∂z

dx dy dz

respectively. So, total stress due to all three pairs of opposite faces in x-direction

is (
−∂ρ
∂t

+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

)
dx dy dz.
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This gives,

Fx = ρfxdx dy dz +

(
−∂ρ
∂t

+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

)
dx dy dz.

But from Fx = m.ax, we have

Fx = ρ
Du

Dt
dx dy dz,

where,
Du

Dt
=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
.

Therefore, we have

ρ
Du

Dt
= ρfx +

(
−∂ρ
∂t

+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

)
, (1.6)

where ρ dx dy dz is the mass of the fluid element flowing in the control volume.

This is the x-component of the momentum equation for a viscous flow. In the

same way, we can find the y and z-components of the momentum equations as

ρ
Dv

Dt
= ρfy +

(
−∂ρ
∂t

+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

)
, (1.7)

and,

ρ
Dw

Dt
= ρfz +

(
−∂ρ
∂t

+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

)
, (1.8)

The equations (1.6) to (1.8) are called momentum equations which can be written

in vector form as

ρ
D~v

Dt
= ρ~F −∇p+∇.∂jτji + ρ~F (1.9)

The vector form of the continuity equation is

Dρ

Dt
+ ρ∇.~v =

∂ρ

∂t
+∇.(ρ~v) = 0.

Using this form, we can write,

ρ
Du

Dt
=
∂(ρu)

∂t
+∇.(ρu~v).
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Then, the equation (1.6) can be expressed in conservative form as

∂(ρu)

∂t
+∇.(ρu~v) = −∂p

∂t
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρfx.

Similarly, we can write the other two components of momentum equations in con-

servative form. These equations are still not appropriate since the informations

about the stress system in the fluid is not known. Newton was the first person

who suggested that stress is proportional to the time rate of shear strain. Fur-

ther, the stress in some fluids is related to the velocity gradient. Such type of

fuctional relationship between the flow quantities is called constitutive relation.

The fluids which follow the above relation between stress and strain rates are

called Newtonian fluids. For Newtonian fluids, Stokes had proved that

τij = λδij
∂vk
∂xk

+ µ

(
∂vi
∂xj

+
∂vj
∂xi

)
− ρδij,

where p is the thermodynamic pressure or hydrostatic stress, µ is the molecular

viscosity and λ is the bulk coefficient of viscosity. If pm is the mechanical pressure,

then by definition

pm =
τij
3
.

Stoke was the first person who hypothesized a relationship between λ and µ as

3λ+ 2µ = 0,

which is obtained by equating the thermodynamic pressure with the mechanical

pressure. Using the constitutive relation, the final form of momentum equation

for compressible flow are

u-momentum equation:

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
= −∂p

∂x
+

∂

∂x

(
λ∇.~v + 2µ

∂u

∂x

)
+

∂

∂y

[
µ

(
∂v

∂x
+
∂u

∂y

)]
+

∂

∂z

[
µ

(
∂u

∂z
+
∂w

∂x

)]
+ ρfx.

(1.10)
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v-momentum equation:

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2)

∂y
+
∂(ρvw)

∂z
= −∂p

∂y
+

∂

∂y

(
λ∇.~v + 2µ

∂v

∂y

)
+

∂

∂x

[
µ

(
∂v

∂x
+
∂u

∂y

)]
+

∂

∂z

[
µ

(
∂v

∂z
+
∂w

∂y

)]
+ ρfy.

(1.11)

And, w-momentum equation:

∂(ρw)

∂t
+
∂(ρuw)

∂x
+
∂(ρvw)

∂y
+
∂(ρw2)

∂z
= −∂p

∂z
+

∂

∂z

(
λ∇.~v + 2µ

∂w

∂z

)
+

∂

∂x

[
µ

(
∂w

∂x
+
∂u

∂z

)]
+

∂

∂y

[
µ

(
∂v

∂z
+
∂w

∂y

)]
+ ρfz.

(1.12)

We can simplify these equations for incompressible flow i.e. ρ = constant. For the

incompressible flow, the continuity equation is given by

∇.(~v) = 0.

Using this relation, the momentum equations (1.10) to (1.12) in vector form for

incompressible flow reduce into,

∂~v

∂t
+ (~v.∇)~v = −∇p

ρ
+ ν∇2~v + ~F . (1.13)

The momentum equations in 2D flow can be obtained from the equations (1.10)

and (1.11) in usual form as:

• u-momentum equation in 2D flow:

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρvu)

∂y
= −∂P

∂x
− ∂τxx

∂x
− ∂τxy

∂y
+ ρfx,

• v-momentum equation in 2D flow:

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2)

∂y
= −∂P

∂y
− ∂τxy

∂x
− ∂τyy

∂y
+ ρfy,

where τxx, τyy and τxy are viscous stresses acting across the pairs of opposite faces

of the rectangular control volume. The term viscous stress is the rate at which a
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deforming fluid element is opposed by the fluid viscosity. In a simple shear flow,

Stoke’s law shows that the viscous shear stress τxy is

τxy = −µ∂v
∂y
,

where µ is the coefficient of viscosity, v is the velocity of the fluid in y direction.

For many common fluids we have,

τ ∝ ∂θx
∂t

.

For Newtonian fluids, the general stress-strain relations can be expressed as the

viscous stresses being linearly related to the strain rates, with the constant of

proportionality being the coefficient of viscosity µ. In 2D flow, we obtain the

viscous stresses as

τxx = −2µ
∂u

∂x
, τyy = −2µ

∂v

∂y
, τxy = −µ

(
∂u

∂y
+
∂v

∂x

)
.

With this expression, the u- momentum equation becomes:

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
= −∂P

∂x
+

∂

∂x

[
2µ
∂u

∂x

]
+

∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+ ρfx.

and, the v-momentum equation becomes,

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2)

∂y
= −∂P

∂y
+

∂

∂x

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂y

[
2µ

(
∂v

∂y

)]
+ ρfx.

1.2.5 The Navier-Stokes Equations

The above set of equations that describe a real fluid motion are collectively known

as the Navier-Stokes equations. In 2D, the compressible unsteady Navier Stokes

equations are,

1. Continuity equation:

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
= 0.



22

2. u-momentum equation:

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
= −∂P

∂x
+
∂

∂x

[
2µ
∂u

∂x

]
+
∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+ρfx.

3. v-momentum equation:

∂(ρv)

∂t
+
∂(ρuv)

∂y
+

(ρv2)

ρy
= −∂P

∂y
+
∂

∂x

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+
∂

∂y

[
2µ

(
∂v

∂y

)]
+ρfy.

In 3D flow, the compressible unsteady Navier Stokes equations are as follows.

1. Equation of Continuity :

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0.

2. u-Momentum Equation:

∂(ρu)

∂t
+
∂(ρuu)

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
= −∂P

∂x
+

∂

∂x

[
2µ
∂u

∂x

]
+
∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂z

[
µ

(
∂u

∂z
+
∂w

∂x

)]
+ ρfx.

3. v-Momentum Equation:

∂(ρv)

∂t
+
∂(ρuv)

∂x
+

(ρv2)

∂y
+
∂(ρvw)

∂z
= −∂P

∂y
+

∂

∂x

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂y

[
2µ

(
∂v

∂y

)]
+

∂

∂z

[
µ

(
∂v

∂z
+
∂w

∂y

)]
+ ρfy.

4. w-Momentum Equation:

∂(ρw)

∂t
+
∂(ρuw)

∂x
+

(ρvw)

∂y
+
∂(ρw2)

∂z
= −∂P

∂z
+

∂

∂x

[
µ

(
∂u

∂z
+
∂w

∂x

)]
+

∂

∂y

[
µ

(
∂v

∂z
+
∂w

∂y

)]
+

∂

∂z

[
2µ

(
∂w

∂z

)]
+ ρfz.

In vector notation, the Navior-Stokes Equations can be expressed as

• Momentum Equations:

ρ

(
∂~v

∂t
+ ~v.∇~v

)
= −∇P + µ∆~v + ρf,

• Continuity Equation:

div(~v) = 0.
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1.2.6 The Energy Equation

The energy equation is nothing but the first law of thermodynamics stated for

a control volume system. The first law of thermodynamics for a control system

states that

The rate of change of energy inside the control volume must be due to the heat

interaction associated with the control volume plus the work done reversibly due

to the boundary displacement by the body and the surface force.

Work done:

The rate of work done by the body forces for the control volume of mass ρ(dx dy dz)

is given by

ρ~F .~v(dx dy dz). (1.14)

The contribution of the surface forces acting on the element are due to the normal

and shear stresses. The rate of work done in a direction is the product of the forces

in the direction and component of the velocity in that direction.

In the figure, work done by the body surface on the face ABCD is given by

(τyx dx dz)u.

Similarly, work done due to the shear stress acting on the face EFGHis given by(
uτyx +

∂(uτyx)

∂y
dy

)
dx dz.

Since the two shear forces act in opposite direction, the net energy flux in the x-

direction due to the shear stresses in the x-direction on faces ABCD and EFGH

is
∂(uτyx)

∂y
dx dy dz.

SImilarly, the normal stresses acting on the faces ADHE and BCGF gives rise

to the work done term [
up−

(
up+

∂(up)

∂x
dx

)]
dy dz.
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That is,

−∂(up)

∂x
dx dy dz.

Now, considering all the forces as shown in the figure, the net energy flux for the

control volume due to these forces is given by(
−∂(up)

∂x
+
∂(uτxx)

∂x
+
∂(uτyx)

∂y
+
∂(uτzx)

∂z

)
dx dy dz. (1.15)

The expressions (1.14) and (1.15) are obtained by considering forces acting in the

x-direction only. Considering the surface forces in y and z directions, the total

contribution coming from the body and surface forces is given by(
−∇.(p~v) +

∂

∂xj
(uiτji)

)
dx dy dz + ρ~F .~v dx dy dz. (1.16)

Heat Transfer:

The net flux of heat is due to volumetric heating such as absorption or emission of
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radiation and heat transfer across the control surface due to thermal conduction.

If q denotes the rate of volumetric heat addition per unit mass, then the volumetric

heating of the element is given by

ρq dx dy dz. (1.17)

In the above figure, heat transferred due to conduction across the face ADHE is

given by

qx dy dz,

where qx is the heat flux in the x-direction per unit time per unit area by the

thermal conduction. SImilarly, the heat flux out of element across the face BCFG

is given by (
qx +

∂qx
∂x

dx

)
dy dz.

The net heat flux in the x-direction into the fluid element by thermal conduction

is

qx dy dz −
(
qx +

∂qx
∂x

dx

)
dy dz

That is ,

−∂qx
∂x

dx dy dz. (1.18)

Thus, the heating of the fluid element due to thermal conductivity by considering

all directional conduction is given by

−∂(qj)

∂xj
dv. (1.19)

By Newton’s law of conductive heat transfer, the directional heat transfer is related

with temperature gradient as

qj = −k ∂T
∂xj

,

where, k is the thermal conductivity. Hence, the total heat interaction term is

obtained by using Newton’s law as[
ρq +

∂

∂xj

(
k
∂T

∂xj

)]
dx dy dz. (1.20)
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Rate of change of energy

The total energy of a moving fluid per unit mass is the sum of its internal energy

per unit mass (e) and its kinetic energy per unit mass
(
V 2

2

)
, where V denote the

velocity of the fluid element. Since we are dealing a moving fluid element, the

time rate of change of energy per unit mass is given by the substantial derivative

ρ
D

Dt

(
e+

V 2

2

)
dx dy dz.

Final Form

The final form of the energy equation is obtained by equating the rate of change

of energy with the sum of the work done and heat transfer terms which is given

by

ρ
D

Dt

(
e+

V 2

2

)
=

[
ρq +

∂

∂xj

(
k
∂T

∂xj

)]
−
(
∇.(p~v) +

∂

∂xj
(uiτji)

)
+ ρ~F .~v. (1.21)

1.2.7 Energy Equation in Conservation Form

We note that

ρ
De

Dt
= ρ

∂e

∂t
+ ρ~v.∇e,

and,

∇.(ρe~v) = e∇.(ρ~v) + ρ~v.∇e.

Therefore, we have

ρ
De

Dt
=
∂(ρe)

∂t
− e

(
∂ρ

∂t
+∇.(ρ~v)

)
+∇.(ρe~v).

Since the quantity in bracket is zero by the continuity equation, we have

ρ
De

Dt
=
∂(ρe)

∂t
+∇.(ρe~v).
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Then the conservation form of the energy equation is

∂(ρe)

∂t
+∇.(ρe~v) =ρq +

∂

∂xj

(
k
∂T

∂xj

)
− p∇.~v + λ(∇.~v)2

+ µ

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+ 2

(
∂w

∂z

)2
]

+ µ

[(
∂u

∂y
+
∂v

∂x

)2

+ |
(
∂u

∂z
+
∂w

∂x

)2

+

(
∂v

∂z
+
∂w

∂y

)2
]
.



Chapter 2

Literature Review

Abstract

To reduce tear and wear of machinery lubrication is essential. Lubricants form a

layer between two surfaces preventing direct contact and reduce friction between

moving parts and hence reduce wear. The choice of lubricant is important for a

given application. In this model the lubrication of the Slider Bearing is studied. A

simple Slider Bearing has two plates of given profile separated by a gap between

the plates is filled with the lubricant. One of the plates is fixed and other is

moving horizontally. Due to the viscosity of the lubricant, motion of the plate’s

results in work done on the lubricant increasing the temperature. This study will

be helpful in finding the condition under which the safe operation of the bearing

is ensured. That is, in finding the condition under which the temperature of the

lubricant is lower than the ignition temperature. When the variable viscosity is

considered the case becomes complicated. Further investigations are necessary.

2.0.8 Introduction

The incompressible Navier Stokes equation for two dimensional flow is

∂~v

∂t
+ (~v.∇)~v +

∇p
ρ

= ν(∆~v) + ~f.

28
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together with the continuity equation

∂ρ

∂t
+∇.(ρ~v) = 0

where the symbol ~v = (u,w) represents the velocity vector, p the pressure and ρ

the density, ~f the body force and ν the kinematic viscosity.

Let us consider that the fluid is incompressible i.e.ρ = const with no external

force i.e.~f = 0, so that ∂ρ
∂t

= 0. Then these equations reduces into

∂~v

∂t
+ (~v.∇)~v +

∇p
ρ

= ν(∆~v) (2.1)

and

∇.(ρ~v) = 0. (2.2)

Let u(x, z, t) and w(x, z, t) be the components of velocity of the fluids in horizontal

and vertical directions respectively, then the equation (2.1) in expanded form is

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

1

ρ

∂p

∂x
= ν

(
∂2u

∂x2
+
∂2u

∂z2
,

)
(2.3)

and
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+

1

ρ

∂p

∂z
= ν

(
∂2u

∂x2
+
∂2w

∂z2

)
. (2.4)

And the equation (2.2) is,
∂u

∂x
+
∂w

∂z
= 0. (2.5)

We impose the following boundary conditions:

(u,w) =(0, 0) at z = 0;

(u,w) =(up, 0) at z = l.
(2.6)

2.0.9 Slider Bearing with Parallel Plates

Let up denote the uniform horizontal velocity of the top plate and l is the separa-

tion between the plates along z axis and L be the length of the plates. Suppose,
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Figure 2.1: Slider Bearing: Parallel Plates

the lower plate is kept constant. Let a typical set of parameters used for the

bearing plates be:

L = 5 cm, l = 5µm, up = 1m/sec, ρ = 1× 103 Kgm−3, µ = 1× 10−4m2/sec

To non dimensionalize the equations (2.3) and (2.4), suppose the parameters are

scaled as

x = xL, z = zl, u = uup, w = wεup, t =
tL

up
, p = pP.

From (2.3), we get

up
∂u

∂t

∂t

∂t
+uup

∂(uup)

∂x

∂x

∂x
+wεup

∂(uup)

∂z

∂z

∂z
+

1

ρ

∂(pP )

∂x

∂x

∂x
=

1

ρ

{
up
L2

∂2u

∂x2 +
up
L2

∂2(u)

∂z2

}
.

i.e.
u2
p

L

∂u

∂t
+
uu2

p

L

u

∂x
+
wεu2

p

l

∂u

∂z
+

1

ρ

P

L

∂p

∂x
= ν

(
up
L2

∂2u

∂x2 +
up
l2
∂2u

∂z2

)
(2.7)

And from (2.4),

εu2
p

L
.
∂w

∂t
+
uεu2

p

L
.
∂w

∂x
+
wε2u2

p

l

∂w

∂z
+

1

ρ

P

L

∂p

∂z
= ν

(
εup
L2

∂2w

∂x2 +
εup
l2
∂2w

∂z2

)
. (2.8)

Multiplying (2.7) by L
u2p

and setting ε = l
L

is typically 1 × 10−4, where P is

undecided scale factor for the pressure and eliminating the terms which have

small coefficients as compared to 1
ε
, we get

P

ρu2
p

∂p

∂x
=

νL

l2up

∂2u

∂z2 . (2.9)



31

Let us choose P such that
P

ρu2
p

=
νL

l2up

i.e.

P =
ρνupL

l2

i.e.

P =
µupL

l2
(2.10)

where µ = ρν. Then, with this choice of P , equation (2.9) becomes;

∂p

∂x
=
∂2u

∂z2 (2.11)

And, multiplying equation (2.8) by L
εu2p

and setting, ε = l
L

and eliminating the

terms with coefficients ≤ 1
ε

, we get

1

ρ

PL

εu2
p

∂p

∂z
= 0

i.e.
∂p

∂z
= 0 (2.12)

Thus p is independent of z.

Again, from equation (2.5), we obtain

∂u

∂x
+
∂w

∂z
= 0 (2.13)

The boundary condition for u and for w are:

u = 0 at z = 0 and u = 1 at z = 1,

w = 0 at z = 0 and w = 0 at z = 1.

Now, integrating equation (2.12), we have

p = φ(x),

With the boundary conditions ; p = 0 at x = 0 and p = 0 at x = 1, we get;

φ(0) = φ(1) = 0. (2.14)
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Again, Integrating equation (2.11) w.r.t. z, we obtain,

∂u

∂z
=
∂p

∂x
z + c1

i.e.
∂u

∂z
=
∂φ(x)

∂x
z + c1

Again integrating, we get

u =
∂φ(x)

∂x
.
z2

2
+ c1z + c2 (2.15)

where c1 and c2 are constants of integration. With the boundary condition u =

0 at z = 0 and u = 1 at z = 1, we get, c2 = 0 and c1 = 1 − 1
2
∂φ
∂x

. Then the

expression for u from equation (2.14) becomes

u =

(
z2 − z

2

)
∂φ

∂x
+ z.

Again from equation (2.13),
∂w

∂z
= −∂u

∂x
;

i.e
∂w

∂z
= − ∂

∂x

[
z2 − z

2

∂φ

∂x
+ z

]
Integrating w.r.t z, we get

w = −
(
z3

6
− z2

4

)
∂2φ

∂x2 + c3

where c3 is constant of integration. With the boundary conditions; w = 0 at z =

0 and z = 1, we have c3 = 0 and c3 = − 1
12
∂2φ
∂x2
. Therefore,

∂2φ

∂x2 = 0.

Integrating we get,
∂φ

∂x
= c4,

and so,

φ = c4x+ c5.
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With the boundary conditions (2.14) we have φ = 0. So, we must have that

p = 0.

Thus, it is shown that the pressure is zero, the bearing with parallel plates can

support no load. Therefore, it is not helpful in physical problem. Therefore, we

consider the case of non-parallel plates.

2.0.10 Slider Bearing with non-parallel plates.

For the non-parallel plates, we assume that the bottom plate is flat and the top

plate is given by the linear function z = h(x) as in figure. Other parameters

remain the same as bearing with parallel plates.

Figure 2.2: Slider Bearing: Non Parallel Plates

We scale the above equations (2.7), (2.8) and (2.9) with x = xL, z = zl, u =

uup, w = wεup, h(x) = lh(x), t = tL
up
, p = pP, we obtain the non dimensional equa-

tions (2.11), (2.12) and (2.13). Imposing the boundary conditions u = 0 at z =

0 and u = 1 at z = h(x), in equation (2.15) we get,

∂φ

∂x
.0 + c1.0 + c2 = 0

∴ c2 = 0.

and
∂φ

∂x

h
2
(x)

2
+ c1h(x) = 1.
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∴ c1 =
1

h(x)
− 1

2

∂φ

∂x
h(x).

Thus, the equation (2.15) becomes

u =
∂φ

∂x

(
z2

2
− zh

2

)
+
z

h
.

Denoting ∂φ
∂x

by φ′(x), we get

u = φ′(x)

(
z2

2
− zh

2

)
+
z

h
(2.16)

Now from equation (2.13), we have

∂w

∂z
=− ∂u

∂x

=− ∂

∂x

{(
z2 − zh

2

)
φ′(x) +

z

h

}
=−

(
z2 − zh

2
φ
′′
(x)− z

2

dh

dx
φ′(x) +

h.0− z dh
dx

h
2

)

∴
∂w

∂z
=− z2 − zh

2
φ′′(x) +

z

2

dh

dx
φ′(x) +

z
(
dh
dx

)
h

2 .

Integrating w.r.t. z we get,

w = −
(
z3

6
− z2h

4

)
φ′′(x) +

z2

4

dh

dx
φ′(x) +

z2

2h
2

dh

dx
+ c3. (2.17)

By imposing the boundary conditions, w = 0 at z = 0, we get

c3 = 0,

and using the boundary condition w = 0 at z = h(x), we get

−

(
h

3
(x)

6
− h

2
(x)

4
h

)
φ
′′
(x) +

h
2
(x)

4

dh

dx
φ′(x) +

h
2
(x)

2h
2

dh

dx
= 0.

i.e.− h
3
(x)

12
φ′′(x) +

h
2
(x)

4

dh

dx
φ′(x)− 1

2

dh

dx
= 0.

∴
h

3
(x)

12
φ′′(x) +

h
2
(x)

4

dh

dx
φ′(x) +

1

2

dh

dx
= 0.

⇒ d

dh

(
z3(x)

12
φ′(x)

)
+

1

2

dh

dx
= 0.
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Assume a linear profile h(x) = x+ 1. With this assumption, we get

d

dx

(
(x+ 1)3

12
φ′(x)

)
+

1

2

d

dx
(x+ 1) = 0

Integrating, we get

(x+ 1)3

12
φ′(x) +

1

2
(x+ 1) = r1

φ′(x) =
(−1

2
(x+ 1) + r1)

(x+1)3

12

∴ φ′(x) =
−6

(x+ 1)2
+

12r1

(x+ 1)3
(2.18)

Integrating we get,

φ(x) =
6

x+ 1
− 6r1

(x+ 1)2
+ r2.

The constants of integration r1 and r2 are determined by boundary conditions on

φ i.e. φ = 0 at x = 0 and x = 1. Imposing the boundary conditions, we get

6r1 − r2 =6

3

2
r1 − r2 =3.

(2.19)

Soliving them, we get

r1 =
2

3
, r2 = −2.

Hence we have

φ(x) =
6

1 + x
− 4

(1 + x)2
− 2

=
6

1 + x
− 4

(1 + x)2
− 2

=
2x− 2x2

(1 + x)2

=
2x(1− x)

(1 + x)2

∴ p =
2x(1− x)

(1 + x)2
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which is positive for x ∈ (0, 1). Hence, pressure is developed inside the fluid and

the bearing supports a load given by the integral of pressure between the limits

x = 0 and x = 1. Hence,

load (φ) =

∫ 1

0

2x(1− x)

(1 + x)2
dx.

Thus,

load = 6 ln (2)− 4. (2.20)

Substituting the pressure φ in equation (2.16) and (2.17), we get the expression

of u and w respectively.

2.1 Viscuss Dissipation Caused by Motion

In this section we want to find a critical temperature Tc before the lubricant

catches the fire. Suppose that the plates are kept at a constant temperature T1 and

the lubricant catches fire at critical temperature Tc. We rescale the temperature

according as

T = T1 + θ(Tc − T1), (2.21)

where θ ∈ (0, 1) is a non-dimensional variable.

2.1.1 Constant Viscosity

Assume that the viscosity of the lubricant is constant with respect to temperature.

We have energy balance equation

ρCp
DT

Dt
=
∂Q

∂t
+

∂

∂xj

(
k
∂T

∂xj

)
+ φ

where,

φ = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
∂vi
∂xj

Where ρ and k are density and thermal conductivity. The external energy qi is

neglected because it is not present.
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Now, from energy Balance equation , we have

ρcp

(
∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z

)
=2µ

[
1

2

(
∂u

∂z
+
∂w

∂x

)2

+

(
∂u

∂x

)2

+

(
∂w

∂z

)2
]

+k

(
∂2T

∂x2
+
∂2T

∂z2

)
,

where cp is the specific heat of the fluid and k is its thermal conductivity. Suppose

that the plates are kept at a constant temperature T1 and lubricant catches fire at

critical temperature Tc. We proceed to non-dimensionalize this equation by using

the scaling (2.21) and neglecting the terms that are small as compared to 1
ε
, we

get the simplified energy equation given by

µ
u2
p

l2

(
∂u

∂z

)2

=− k

l2
∂2θ

∂z2 (Tc − T1).(
∂u

∂z

)2

=− k

µu2
p

∂2θ

∂z2 (Tc − T1).

∴

(
∂u

∂z

)2

=−B∂
2θ

∂z2 .

Where,

B =
k

µu2
p

(Tc − T1).

Substituting the value of u from the equation (2.15), we get

∂

∂z

[
(z2 − z)

2

dφ

dx
+
z

h

]2

= −B∂
2θ

∂z2

Integrating twice the equation, we get,

z4

12
φ′(x)2 +

[
1

h
− h

2
φ′(x)

]2
z2

2
+
z3

3
φ′(x)

[
1

h
− h

2
φ′(x)

]
+ c1z + c2 = −Bθ. (2.22)

The boundary conditions on θ are θ = 0 at z = 0 and z = h(x). Using the

boundary condition for θ in the equation(2.22), the expression for θ appears as

−Bθ =φ′(x)2 (z4 − h3
z)

12
+

[
1

h
− h

2
φ′(x)

]2(
z2 − zh

2

)
+φ′(x)

[
1

h
− h

2
φ′(x)

](
z3 − h2

z

3

)
.

(2.23)
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We note that θ satisfies the boundary conditions at z = 0 and z = h(x). So, for

the case of linear profile h(x) = x + 1 and using (2.18), the critical parameter

φ′(x) becomes

φ′(x) = − 6

(x+ 1)2
+

8

(x+ 1)3

So, from the equation (2.23), the non-dimensional parameter of the temperature

θ can be determined.

Here pressure is not zero and the bearing with non-parallel plates can support

load easily. Thus, the expression for temperature of a lubricant in slider bearing

is derived. For the case, when viscosity is constant, the expression is

B =
k

µu2
p

(Tc − T1).

This gives conditions on possible values of various parameters of the bearing.

However, when viscosity of the lubricant changes with temperature, due to nature

of PDE involved, an explicit solution could not be derived.

2.1.2 Variable Viscosity

In the previous works, viscosity was considered as constant. Here, variable vis-

cosity is considered. For the liquid, the viscosity decreases with the temperature.

From (3) and (4) we have

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

1

ρ

∂p

∂x
=

∂

∂x
(v
∂u

∂x
) +

∂

∂z
(v
∂u

∂x
) (2.24)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+

1

ρ

∂p

∂z
=

∂

∂x
(
∂w

∂x
) +

∂

∂z
(v
∂w

∂x
) (2.25)

Using dimensionless viscosity ν = ν0ν in

∂p

∂z
=

∂

∂z

(
ν
∂u

∂z

)
, (2.26)

we obtain,
∂p

∂z
= ν0

∂

∂z

(
ν
∂u

∂z

)
, (2.27)
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Similarly, the energy equation reduces to

ν

(
∂u

∂z

)2

= −B∂
2θ

∂z2 , (2.28)

where, B = k
µu2p

(Tc− T1). Now, we want to study the equations (2.24), (2.25) and

(2.28) seeking a solution profile with a convergent numerical scheme which is done

in chapter 6.



Chapter 3

Introduction to Finite Difference

Scheme

We begin our discussion of finite difference schemes by defining a grid of points in

the (t, x) plane. Let h and k be positive numbers; then the grid will be the points

(tn, xm) = (nk,mh) for arbitrary integers n and m. For a function v defined on

the grid point, we write vnm for the value of v at the grid point (tn, xm) where

n = 0, 1, 2, ..., N and m = 0, 1, 2, ....,M . We also use the notation unm for u(tn, xm)

when u is defined for continuously varying (t, x). The set of points (tn, xm) for a

fixed value of n is called grid level n. We are interested in grids with small values

of h and k. The basic idea of finite difference schemes is to replace derivatives

by finite differences. This can be done in many ways; for this let u(t, x) be a

solution to the differential equation ut + aux = 0, then we want to find vnm that

approximates u(tn, xm) i.e. u(nk,mh). That means we want to find vnm such that

vnm ≡ u(nk,mh). Now we replace the derivative of u(tn, xm) by finite difference

as,

ut(tn, xm) =
u(tn + k, xm)− u(tn, xm)

k
=
vn+1
m − vnn

k
.

It is defined on the basis of forward time. similarly on the basis of forward space,

we can write

ux =
u(tn, xm + h)− u(tn, xm)

h
=
vnm+1 − vnm

h
.

40
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These are valid approximations that can be seen from the formulas

ut(tn, xm) = limk→0
u(tn + k, xm)− u(tn, xm)

k

and

ut(tn, xm) = limk→0
u(tn + k, xm)− u(tn − k, xm)

2k
.

3.1 Finite Difference Schemes

Consider a differential equation,

ut + aux = 0 (3.1)

We obtain the following five finite difference schemes for equation (3.1).

1. Forward time forward space scheme:

vn+1
m − vnm

k
+ a

vnm+1 − vnm
h

= 0 (3.2)

2. forward time backward space scheme:

vn+1
m − vnm

k
+ a

vnm − vnm−1

h
= 0 (3.3)

3. Forward time central space scheme:

vn+1
m − vnm

k
+ a

vnm+1 − vnm−1

2h
= 0 (3.4)

4. Leapfrog or central time central space scheme:

vn+1
m − vn−1

m

2k
+ a

vnm+1 − vnm−1

2h
= 0 (3.5)

5. Lax Friedrich’s scheme:

vn+1
m − 1

2
(vnm+1 + vnm−1)

k
+ a

vnm+1 − vnm−1

2h
= 0 (3.6)
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We refer to scheme (3.2) as the forward-time forward-space scheme because

forward difference approximations are used for both the time and space deriva-

tives. Similarly, (3.3) and (3.4) are referred to as the forward-time backward-space

scheme and forward- time central-space scheme, respectively. The scheme (3.5)

is called the leapfrog scheme and (3.6) is called the Lax-Friedrichs scheme. It is

very easy to derive finite difference schemes for a partial differential equations.

However, the analysis of finite difference schemes to determine if they are useful

approximations to the differential equation requires some powerful mathematical

tools. Moreover, to develop very efficient and accurate schemes requires more

work than went into obtaining the schemes (3.2) − (3.6). Nonetheless, the finite

difference method is notable for the great variety of schemes that can be used to

approximate a given partial differential equation. Given this short list of schemes,

we are naturally led to the question of which of them are useful and which are not,

as indeed some are not. In fact, we first determine which schemes have solutions

that approximate solutions of the differential equation at all. Later, we determine

which schemes are more accurate than others and also investigate the efficiency of

the various schemes. Each of the schemes (3.2)− (3.6) can be written expressing

vn+1
m as a linear combination of values of v at levels n and n − 1. For example,

scheme (3.4) can be written as

vn+1
m = vnm −

aλ

2
(vnm+1 − vnm−1)

where λ = k
h
.

Those schemes that involve at only two levels, e.g.,n + 1 and n, are called

one-step schemes. Of the schemes (3.2) − (3.6), all except the leapfrog scheme

(3.6) are one-step schemes. Given the initial data v0
m, a one-step scheme can be

used to evaluate vnm for all positive values of n. The leapfrog scheme (3.5) is

an example of a multistep scheme. For a multistep scheme it is not sufficient to

specify the values of v0
m in order to determine vnm for all positive values of n. To

specify completely the way of computing a solution to a multistep scheme, either

we must specify v on enough time levels so that the scheme can be employed or a
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procedure for computing the values of v on these initial time levels should given.

3.1.1 Consistency:

A scheme is said to be useful in numerical analysis, if its solutions approximate

the solution of the corresponding partial differential equation and that the ap-

proximation improves as the grid spacings h and k tend to zero. One of such

characteristics is the consistency of the scheme.

Definition 1. A one-step finite difference scheme approximating a partial differ-

ential equation is a convergent scheme if for any solution to the partial differen-

tial equation u(t, x), and solutions to the finite difference scheme vnm, such that if

vn0 −→ u0(x) as mh→ x then vnm −→ u(t, x) as (nk,mh)→ (t, x) as (k, h)→ 0.

Definition 2. Given a partial differential equation, Pu = f , and a finite difference

scheme, Pk,hv
n
m, we say that the finite difference scheme is consistent with the

partial differential equation if for any smooth function φ(t, x), we have,

Pk,hφ(t, x) −→ Pφ

as h, k −→ 0, the convergence being pointwise convergence at each point (t, x).

A smooth function is a function which is sufficiently differentiable in the do-

main of the context. A difference operator Pk,h applied to a function of (t, x) in

not necessarily restricted to grid the points. In this resoect, a forward difference

in x applied at a point (t, x) is

φ(t, x+ h)− φ(t, x)

h
.

Example 1. The Forward-time Forward-space Scheme is consistent with the given

PDE (3.1).

For the one-way wave equation (3.1), the operator P is

P =
∂

∂t
+ a

∂

∂x

so that

Pφ = φt + aφx.
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For the forward-time forward-space scheme (i), the difference operator Pk,h is

given by

Pk,hφ =
φn+1
m − φnm

k
+ a

φnm+1 − φnm
h

where

φnm = φ(nk,mh).

We begin with the Taylor series of the function φ in t and x about (tn, xm). We

have the Taylor series expansion,

φn+1
m = φnm + kφt +

k2

2
φtt +O(k3).

φnm+1 = φnm + hφx +
h2

2
φxx +O(h).

where the derivatives on the right-hand side are all evaluated at (tn, xm), and so

Ph,kφ = φt + aφx +
k

2
φtt +

ah

2
φxx +O(k2) +O(h2)

Thus,

Ph,kφ = Pφ+
k

2
φtt +

ah

2
φxx +O(k2) +O(h2) −→ o

as (k, h) −→ 0. Therefore, this scheme is consistent.

When analyzing consistency, we need to use the ”big oh” and ”little oh” no-

tations . In general, if F and G are functions of some parameter a, we write

F = O(G) as a −→ 0 if ∣∣∣∣FK
∣∣∣∣ ≤ K

for some constant K and all sufficiently small a. Further, we write F = O(G) as

a −→ 0 if F
G
−→ 0 as a → 0. In particular, a quantity is O(hr) if it is bounded

by a constant multiple of hr for small h. A quantity is o(L) if it converges to zero

at an unspecified rate.

Example 2. The Lax-Friedrichs Scheme is consistent with the PDE (3.1).

For the PDE, (3.1), Lax-Friedrichs scheme is,

vn+1
m − 1

2
(vnm+1 + vnm−1)

k
+ a

vnm+1 − vnm−1

2h
= 0.
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The difference operator is given by,

Pk,hφ =
φn+1
m − 1

2
(φnm+1 + φnm−1)

k
+ a

φnm+1 − φnm−1

2h

We use the Taylor series

φnm±1 = φnm ± hφx +
h2

2
φxx ±

h3

6
φxxx +O(h4)

where the derivatives are evaluated at (tn, xm) and we have

1

2
(φnm+1 + φnm−1) = φnm +

1

2
h2φxx +O(h4)

and

φnm+1 − φnm−1 = φx +
1

6
h2φxxx +O(h4).

Substituting these expressions in the Lax Friedrichs scheme, we obtain,

Pk,hφ = φt + aφx +
k

2
φtt −

1

2

h2

k
φxx +

ah2

6
φXXX +O(h4 +

h4

k
+ k2).

So, Pk,hφ− Pφ −→ 0 as h, k −→ 0; as long as h2

t
−→ 0. Therefore, the scheme is

consistent.

Example 3. The forward-time central-space scheme is consistent with the PDE

(3.1).

The forward-time central-space scheme for the given PDE is

vn+1
m − vnm

k
+ a

vnm+1 − vnm−1

2h
= 0

The difference operator is given by

Pk,hφ =
φn+1
m − φnm

k
+ a

φnm+1 − φnm−1

2h
.

Now, using Taylors series expansion, we get;

φnm+1 − φnm−1 = φx +
1

6
h2φxxx +O(h4).

and;

φnm±1 = φnm ± hφx +
h2

2
φxx ±

h3

6
φxxx +O(h4)

Using these results in difference operator, we get;

Pk,hφ =
φn+1
m − φnm

k
+ aφnm+1 − φnm−12h
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3.1.2 Stability

If a scheme is convergent as vnm converges to u(t, x) then certainly vnm is bounded

in some sense. This is the essence of stability.

Definition 3. A stability region is any bounded non-empty region of the first

quadrant of R2 that has the origin as an accumulation point. That is, a stability

region must contain a sequence (kv, hv) that converges to the origin as u tends to

infinity. A common example is a region of the form {(k, h) : 0 < k < ch < C} for

some positive constants c and C.

Definition 4. A finite difference scheme Pk,hv
n
m = 0 for a first-order partial

differential equation is stable in a stability region A if there is an integer J such

that for any positive time T , there is a constant CT such that

h
∞∑

m=−∞

|vnm|2 ≤ CTh
J∑
j=0

∞∑
m=−∞

|vjm|2 for 0 < nk < T with (k, h) ∈ A.

Definition 5. The L2 norm of the grid function ω over the step size h is defined

as

‖ω‖h =

(
h
∞∑
−∞

|ωm|2
) 1

2

.

Definition 6. The L2 norm of the grid function ω i.e.‖ω‖2 is a measure of the

size of the solution. In terms of L2 norm, the stability condition can be written as

‖vn‖h ≤

(
CT

J∑
j=0

‖vj‖2
h

) 1
2

,

which is equivalent to

‖vn‖h ≤ C∗T

J∑
j=0

‖vj‖h for some constant CT ∗ . (3.7)

For one step scheme we may take J = 0 and J ≥ 1 for multi-step scheme.

Example 4. The sufficient condition for stability for the forward-time forward-

space scheme for the PDE ut + aux = 0 of the form vn+1
m = αvnm + βvnm+1 is

|a|+ |β| ≤ 0.
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Indeed,

∞∑
m=−∞

|vn+1
m |2 =

∞∑
m=−∞

|αvnm + βvnm+1|2.

≤
∞∑

m=−∞

|α|2|vnm|2 + 2|α||vnm||β||vnm+1|+ |β|2|vnm+1|2.

≤
∞∑

m=−∞

|α|2|vnm|2 + |α||β|
(
|vnm|2 + |vnm+1|2

)
+ |β|2|vnm+1|2.

=
∞∑

m=−∞

(
|α|2|vnm|2 + |α||β||vnm|2

)
+

∞∑
m=−∞

(
|α||β||vnm+1|2 + |β|2|vnm+1|2

)
.

=
∞∑

m=−∞

(
|α|2 + 2|α||β|+ |β|2

)
|vnm|2.

= (|α|+ |β|)2
∞∑

m=−∞

|vnm|2.

This shows that we have the relation

∞∑
m=−∞

|vn+1
m |2 ≤ (|α|+ |β|)2

∞∑
m=−∞

|vnm|2,

and since this applies for all n, we have that

∞∑
m=−∞

|vn+1
m |2 ≤ (|α|+ |β|)2

∞∑
m=−∞

|vnm|2

≤ (|α|+ |β|)2.2
∞∑

m=−∞

|vn−1
m |2

≤.....................................

≤ (|α|+ |β|)2n
∞∑

m=−∞

|v0
m|2.

If |α|+ |β| ≤ 1 in magnitude, then the scheme will be stable.

Definition 7. The initial value problem for the first-order partial differential equa-

tion Pu = 0 is well-posed if for any time T > 0, there is a constant CT such that
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any solution u(t, x) satisfies∫ ∞
−∞
|u(t, x)|2dx ≤ CT

∫ ∞
∞
|u(0, x)|2dx,

for 0 ≤ t ≤ T.

3.1.3 The Courant-Friedrichs-Lewy (CFL) Condition

Theorem 3.1.1. For an explicit scheme for the hyperbolic equation ut + aux = 0

of the form

vn+1
m = αvnm−1 + βvnm + γvnm+1,

with k
h

= λ (a constant), a necessary condition for stability is the Courant-

Friedrichs-Lewy (CFL) condition, |aλ| ≤ 1.

Theorem 3.1.2. There are no explicit, unconditionally stable, consistent finite

difference schemes for hyperbolic systems of partial differential equations.

Example 5. The backward-time backward-space scheme for the PDE ut+aux = 0

of the form vn+1
m −vnm

k
+ a

vnm−vnm−1

h
= 0 is stable when a > 0 and λ is any positive

number.

Indeed, we first write the given scheme as

(1 + aλ)vn+1
m = vnm + aλvn+1

m−1.

Squaring on both sides, we obtain

(1 + aλ)2 |vn+1
m |2 ≤|vnm|2 + 2aλ|vn+1

m−1|+ a2λ2|vn+1
m−1|2

≤(1 + aλ)|vnm|2 + aλ(1 + aλ)|vn+1
m−1|2

Taking the sum over all values of m, we obtain

(1 + aλ)2
∞∑

m=−∞

|vn+1
m |2 ≤(1 + aλ)

∞∑
m=−∞

|vnm|2 + aλ(1 + aλ)
∞∑

m=−∞

|vn+1
m−1|2

i.e.
∞∑

m=−∞

|vn+1
m |2 ≤

∞∑
m=−∞

|vnm|2

This inequality shows that the scheme is stable for every value of λ when a is

positive.
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3.1.4 Fourier Analysis and Stability

Foutier analysis is the tool used most extensively in the study of stability and

well-posedness of a scheme. Fourier analysis can be used on both the real line

R and on the grid of integers Z or hZ, defined by hZ = {hm : m ∈ Z}. For a

function u(x) defined on the real line R, its Fourier transform û(ω) is defined by

û(ω) =
1√
2π

∫ ∞
−∞

e−iωxu(x)dx.

The Fourier transform of u is a function of the real variable ω and is uniquely

defined by u. The function û is an alternative representation of the function u.

Information about certain properties of u can be inferred from the properties of

û. For example, the rate at which u decays for large values of ω is related to the

number of derivatives that u has. The Fourier inversion formula is given by

u(x) =
1√
2π

∫ ∞
−∞

eiωxû(ω)dω.

In a similar fashion, if v is a grid function defined for all integers m, its Fourier

transform is given by

v̂(ξ) =
1√
2π

∞∑
m=−∞

e−imξvξ,

for ξ ∈ [−π, π] and v̂(−π) = −v̂(π).

The Fourier inversion formula is given by

v(x) =
1√
2π

∫ π

−π
eimξv̂(ξ)dξ.

If the spacing between the grid points is h, we can change variables and define

the transform by

v̂(ξ) =
1√
2π

∞∑
−∞

e−imhξvmh,

for ξ ∈
[−π
h
, π
h

]
, and then the inversion formula is

vm =
1√
2π

∫ π
h

−π
h

eimhxv̂(ξ))dξ,
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We also note that L2 norm of u is

‖u‖2 =

(∫ ∞
−∞
|u(x)|2dx

) 1
2

,

which is the same as the L2 norm of û i.e., ‖û‖2 =
(∫∞
−∞ |û(ω)|2dω

) 1
2
. Thus,(∫ ∞

−∞
|u(x)|2dx

) 1
2

=

(∫ ∞
−∞
|û(ω)|2dω

) 1
2

(3.8)

Also, for the discrete transform we have equality for the L2 norm of v and the L2

norm of v̂ which are given by,

‖v̂‖2
h =

∫ π
h

−π
h

|v̂(ξ)|2dξ = h
∞∑
−∞

|vm|2 = ‖vm‖2
h (3.9)

Indeed,

‖v̂‖2
h =

∫ π
h

−π
h

|v̂(ξ)|2dξ.

=

∫ π
h

−π
h

v̂(ξ)v̂(ξ)dξ.

=

∫ π
h

−π
h

1√
2π
v̂(ξ)

(
1√
2π

∞∑
−∞

e−imhξvmh

)
dξ.

=
∞∑

m=−∞

(
1√
2π

∫ π
h

−π
h

e−imhξv̂(ξ)dξ

)
vmh.

=
∞∑

m=−∞

vmvmh

=h
∞∑

m=−∞

|vm|2

=‖vm‖2
m.

The relations (3.8) and (3.9) are called Parseval’s relations. It allows us to replace

the stability estimates (3.8)and (3.9) by the equivalent inequality

‖v̂n‖h ≤ C∗T

J∑
j=0

‖v̂j‖h,
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for the transform of the grid function.

Using Parseval’s relations, we can show that the Fourier transform is defined

for all functions in L2(R) and L2(hZ). Moreover, we can find the derivatives of the

Fourier transform of u(x) and that of its inversion. In fact, the Fourier transform

of u(x) is given by

û(ω) =
1√
2π

∫ ∞
−∞

e−iωxu(x)dx.

And its inversion transform is

u(x) =
1√
2π

∫ ∞
−∞

eiωxû(ω)dω.

Then the derivative of the inverse transform u(x) is

du(x)

dx
=

1√
2π

∫ ∞
−∞

iωeiωxû(ω)dω.

The Fourier transform of du(x)
dx

is

d̂u

dx
(ξ) =

1√
2π

∫ ∞
−∞

e−iξx
du(x)

dx
dx.

=
1√
2π

∫ ∞
−∞

e−iξx
(

1√
2π

∫ ∞
−∞

iωeiωxû(ω)dω

)
dx.

Therefore,
̂(du
dx

)
(ω) =iωû(ω).

3.1.5 Von Neumann Analysis for Stability

An important application of Fourier analysis is the von Neumann analysis of sta-

bility of finite difference schemes. With the use of Fourier analysis, the necessary

and sufficient conditions for the stability of finite difference schemes can be stated.

Example 6. Von Neumann Analysis for Forward time backward space scheme

The scheme for the PDE ut + aux = 0 is

vn+1
m − vnm

k
+ a

vnm − vnm−1

h
= 0
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which can be rewritten as

vn+1
m = (1− aλ)vnm + aλvnm−1,

where λ = k
h
. The Fourier inversion formula for vn is

vnm =
1√
2π

∫ π
h

−π
h

eiξxv̂ndξ.

Substituting this in the scheme for vn and vnm−1 we obtain

vn+1
m = (1− aλ)

(
1√
2π

∫ π
h

−π
h

eimhξv̂ndξ

)
+ aλ

(
1√
2π

∫ π
h

−π
h

ei(m−1)hξv̂ndξ

)
,

vn+1
m =

1√
2π

∫ π
h

−π
h

eimhξ
[
(1− aλ) + aλe−ihξ

]
v̂n(ξ)dξ.

But the inversion formula for vn+1
m is given by

vn+1
m =

1

sqrt2π

∫ π
h

−π
h

eimhξv̂n+1(ξ)d(ξ)

Comparing these two formulas for vn+1, and using the fact that the Fourier trans-

form is unique, we obtain that

v̂n+1(ξ) =
[
(1− aλ) + aλe−ihξ

]
v̂n(ξ)

=g(hξ)v̂n(ξ).

where g(hξ) =
[
(1− aλ) + aλe−ihξ

]
. The factor g(hξ) is called an amplification

factor. Now we can generalize this formula as

v̂n+1(ξ) = g(hξ)v̂n(ξ) = [g(hξ)]2 v̂n−1(ξ) = ...... = [g(hξ)]n v̂0(ξ).

By means of the Fourier transform every one-step scheme can be put in this form

and this provides a standard method for studying the wide variety of schemes.

All the information about a scheme is contained in its amplification factor. In

particular, the stability and accuracy of schemes is easy to determine from the

amplification factor.
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Example 7. The stability condition for forward time central space scheme by

using Von-Neumann analysis

The scheme for the equation ut = auxx is

vn+1
m − vnm

k
+ a

vnm − vnm−1

h
= 0.

By Parseval’s relation,

h

∞∑
−∞

|vnm|2 =

∫ π
h

−π
h

|v̂n(ξ)|2dξ.

=

∫ π
h

−π
h

| [g(hξ)]n v̂0(ξ)|2dξ.

=

∫ π
h

−π
h

|g(hξ)|2n|v̂0(ξ)|2dξ.

Thus we see that the stability inequality

h
∞∑

m=−∞

|vnm|2 ≤ CTh
J∑
j=0

∞∑
m=−∞

|vjm|2,

will hold, with J = 0, if |g(hξ)|2n is suitably bounded. We now evaluate |g(hξ)|.
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Setting θ = hξ;, we have

g(θ) =(1− aλ) + aλe−iθ

=1− aλ+ aλcosθ − iaλsinθ

=(1− aλ+ aλcosθ)− iaλsinθ

∴ |g(θ)|2 =(1− aλ+ aλcosθ)2 + (aλsinθ)2

=

[
1− aλ+ aλ

(
1− 2sin2

(
θ

2

))]2

+ 4a2λ2sin2

(
θ

2

)
cos2

(
θ

2

)
=

[
1− 2aλsin2

(
θ

2

)]2

+ 4a2λ2sin2

(
θ

2

)
cos2

(
θ

2

)
=1− 4aλsin2

(
θ

2

)
+ 4a2λ2sin4

(
θ

2

)
+ 4a2λ2sin2

(
θ

2

)
cos2

(
θ

2

)
=1− 4aλsin2

(
θ

2

)
+ 4a2λ2sin2

(
θ

2

)
=1− 4aλ(1− aλ)sin2

(
θ

2

)
We see from this last expression that |g(θ)| is bounded by 1 if 0 ≤ aλ ≤ 1; thus

by

v̂n+1(ξ) = [g(hξ)]n v̂0(ξ),

we obtain

h
∞∑
−∞

|vnm|2 ≤
∫ π

h

−π
h

|v̂0(ξ)|2dξ

and so, the scheme is stable by definition.

Theorem 3.1.3. A one-step finite difference scheme with constant coefficients is

stable in a stability region A if and only if there is a constant K (independent of

θ, k, and h) such that

g(θ, k, h) ≤ 1 +Kk (3.10)

with (k, h) ∈ A. If g(θ, k, h) is independent of h and k, the stability condition can

be replaced with the restricted stability condition |g(θ)| ≤ 1.
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This theorem shows that to determine the stability of a finite difference scheme,

we need to consider only the amplification factor g(θ). This observation is due to

Von Neumann because of which this analysis is called Von Neumann Analysis.

Example 8. Von-Neumann Analysis for forward-time forward-space scheme

The forward time and forward space scheme for the PDE ut + aux = 0 is

vn+1
m − vnm

k
+ a

vnm+1 − vnm
h

= 0.

This equation in general form becomes

vn+1
m = (1 + aλ)vnm − aλvnm+1.

where a is positive and λ = k
h

is constant. The Fourier inverse transform for vnm

is given by

vnm =
1√
2π

∫ π
h

π
h

eimhξv̂n(ξ)dξ.

Using the inversion formula for vnm and vnm+1, the scheme becomes

vn+1
m =(1 + aλ)

(
1√
2π

∫ π
h

π
h

eimhξv̂n(ξ)dξ

)
− aλ

(
1√
2π

∫ π
h

π
h

ei(m+1)hξv̂n(ξ)dξ

)

=
1√
2π

∫ π
h

π
h

[
1 + aλ− aλeihξ

]
eimhξv̂n(ξ)dξ.

But the Fourier inversion formula for vn+1
m is

vn+1
m =

1√
2π

∫ π
h

π
h

eimhξv̂n+1(ξ)dξ.

Since the Fourier transform is unique, equating the corresponding integrands, we

get

v̂n+1(ξ) =
[
1 + aλ− aλeihξ

]
v̂n(ξ)

i.e.

v̂n+1(ξ) = g(hξ)v̂n(ξ),
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where g(hξ) = 1 + aλ− aλeihξ. If we replace θ = hξ, then we have

g(θ) = 1 + aλ− aλ(cosθ + isinθ).

i.e.

g(θ) = (1 + aλ− aλcosθ)− iaλsinθ.

Then, we have

|g(θ)|2 =(1 + aλ− aλcosθ)2 + (aλsinθ)2.

=

(
1 + 2aλsin2

(
θ

2

))2

+ 4a2λ2sin2

(
θ

2

)
cos2

(
θ

2

)
.

=1 + 4aλsin2

(
θ

2

)
+ 4a2λ2sin4

(
θ

2

)
+ 4a2λ2sin2

(
θ

2

)
cos2

(
θ

2

)
=1 + 4aλsin2

(
θ

2

)
+ 4a2λ2sin2

(
θ

2

)
=1 + 4aλ(1 + aλ)sin2

(
θ

2

)
.

If λ is constant, then we see that |g(θ)| is greater than 1 for θ not equal to zero.

Therefore this scheme is unstable. Hence the scheme is not convergent.Further, if a

is negative, then the forward-time forward-space scheme is stable for −1 ≤ aλ ≤ 0.

Example 9. Von Neumann Analysis for forward-time central-space scheme

The forward time and central space scheme for the PDE ut + aux = 0 is

vn+1
m − vnm

k
− a

vnm+1 − vnm−1

2h
= 0.

Replacing vnm by gneimθ, the scheme reduces to

gneimθ(g − 1)

k
+a

gneimθ(eiθ − e−iθ)
2h

= 0

g − 1

k
+
a
(
eiθ − e−iθ

)
2h

= 0

(g − 1)+i2aλsinθ = 0

g = 1−i2aλsinθ

∴ |g|2 = 1 + 4a2λ2sin2θ ≤ 1 + 4a2λ2
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Since λ is constant, g is independent of h and k and Since |g(θ)| > 1 for θ 6=
0 nor 180 deg, then this scheme is unstable.

3.1.6 Convergence

The most basic property that a scheme must have in order to be useful is that

its solutions approximate the solution of the corresponding partial differential

equation and that the approximation improves as the grid spacings, h and k tend

to zero. We call such a scheme a convergent scheme.

Definition 8. A one-step finite difference scheme approximating a partial differ-

ential equation is a convergent scheme if for any solution to the partial differential

equation, u(t, x), and solutions to the finite difference scheme, vnm, such that v0
m

converges to u0(x) as mh converges to x, then vnm converges to u(t, x) as (nk,mh)

converges to (t, x) as h, k → 0.

Proving that a given scheme is convergent is not easy in general. However,

we say a scheme is convergent, if it is a consistent and stable scheme. Thus,

consistency and stability of a scheme determines its convergence.

3.1.7 Order of Accuracy

A scheme for the partial differential equation Pu = f can be written in general as

Pk,hv = Rk,hf in a natural way, where each expression Pk,hv and Rk,hf evaluated

at a grid point (tn, xm) involves only a finite sum of terms involving (vn
′

m′), or (fn
′

m′)

respectively.

Definition 9. A scheme Pk,hv = Rk,hf that is consistent with the differential

equation Pu = f is accurate of order p in time and order q in space if for any

smooth function φ(t, x), we have,

Pk,hφ−Rk,hPφ = O(kp) +O(hq).

We say that such a scheme is accurate of order (p, q).

Example 10. Order of accuracy of Lax-Wendroff scheme
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The Lax-Wendroff scheme for the PDE ut + aux = f is

vn+1
m − vnm

k
+ a

vnm+1 − vnm−1

2h
−a

2k

2

(
vnm+1 − 2vnm + vnm−1

h2

)
=

1

2

(
fn+1
m + fnm

)
− ak

4h

(
fnm+1 − fnm−1

)
.

Taking

Pk,hφ =
φn+1
m − φnm

k
+ a

φnm+1 − φnm−1

2h
− a2k

2

(
φnm+1 − 2φnm + φnm−1

h2

)
and

Rk,hf =
1

2

(
fn+1
m + fnm

)
− ak

4h

(
fnm+1 − fnm−1

)
.

By Taylor’s expansion, we get

Pk,hφ = φt +
k

2
φtt + aφx −

a2k

2
φxx +O(h2) +O(k2)

and, for Pφ = φt + aφx = f we have,

Rk,hf = f +
k

2
ft −

ak

2
fx +O(h2) +O(k2).

Rk,hPφ = φt + aφx +
k

2
(φtt + aφtx)−

ak

2
(φtx + aφxx) +O(h2) +O(k2).

Rk,hPφ = φt + aφx +
k

2
φtt +

a2k

2
φxx +O(h2) +O(k2).

Then we have,

Pk,hφ−Rk,hPφ = O(h2) +O(k2)

Hence the Lax-Wendroff scheme is accurate of order (2, 2).

Example 11. Order of accuracy of Crank Nicolson Scheme

The Crank Nicolson scheme for the PDE ut + aux = f is

vn+1
m − vnm

k
+ a

vn+1
m+1 − vn+1

m−1 + vnm+1 − vnm−1

4h
=
fn+1
m + fnm

2
.

Taking

Pk,hφ =
φn+1
m − φnm

k
+ a

φn+1
m+1 − φn+1

m−1 + φnm+1 − φnm−1

4h
,
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and

Rk,hf =
fn+1
m + fnm

2
.

By Taylor’s expansion, we have

Pk,hφ =
φn+1
m − φnm

k
+ a

φn+1
m+1 − φn+1

m−1 + φnm+1 − φnm−1

4h

=φt +
k

2
φtt +

k2

6
φttt + aφx +

ak

2
φtx +

ak2

4
φttx +O(h2) +O(k3)

And

Rk,hf = fnm +
k

2
ft +

k2

4
ftt +O(k3).

If Pφ = φt + aφx = f , then

Rk,hPφ = φt + aφx +
k

2
(φtt + aφtx) +

k2

4
(φttt + aφttx) +O(k3).

Then, Pk,hφ and Rk,hPφ differ only in the terms containing k2 and h2. So,

Pk,hφ−Rk,hPφ = O(h2) +O(k2).

Hence Crank Nikolson scheme is also accurate of order (2, 2).

3.2 Finite Difference Schemes for Second-Order

Equations

The definitions of convergence, consistency, and order of accuracy for finite differ-

ence schemes hold without modification for second-order equations. The stability

definition, however, must be altered slightly.

Definition 10. A finite difference scheme Pk,hv
n
m = 0 for a second order in t is

stable in a stability region A if there is an integer J and for any positive time T

there is a constant CT such that

h

∞∑
m=−∞

|vnm|2 ≤ (1 + n2)CTh
J∑
j=0

∞∑
m=−∞

|vjm|2

for all solutions vnm and for 0 < nk < T with (k, h) ∈ A.
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The extra factor of (l + n2) is the only change required by the second order

equation and reflects the linear growth in t allowed by these equations. In the Von-

Neumann analysis of schemes for second-order equations, this definition requires

that the amplification factors gv satisfy

|gv| ≤ 1 +Kk

and permits two such amplification factors to coalesce near the unit circle. If

there are no lower order terms, then the stability condition is |gv| ≤ 1 with double

roots on the unit circle permitted. The integer J in the definition must always

be at most 1, since data must always be given at two time levels for second-order

equations.

Theorem 3.2.1. If the amplification polynomial φ(g, θ) for a second-order time

dependent equation is explicitly independent of h and k, then the necessary and

sufficient condition for the finite difference scheme to be stable is that all roots,

gv(θ), satisfy the conditions:

1. |gv(θ)| ≤ 1, and

2. If |gv(θ)| = 1, then gv(θ) must be at most a double root.



Chapter 4

Analytical and Numerical

Solutions: A Comparative Study

In this section, we construct a roadway to our destination of solving two dimen-

sional Navier Stokes equation for variable viscosity case. For this, we first analyse

the numerical solutions of the one dimensional unsteady, incompressible Couette

flow problem, compare them with the exact solutions using Matlab implimentation

and then we march forward to our destination.

4.1 Analytical Study of Couette Flow

4.1.1 Introduction

Couette flow is a viscous flow between two parallel plates seperated by some

vertical distance. The upper plate is moved with velocity ue and the lower plate

is kept stationary i.e. its velocity u = 0. The flow is two dimensional in xy

palne. The flow field between the two plates is to be driven exclusively by the

shear stress exerted on the fluid by the moving upper plate so that the velocity

profile is formed across the flow.
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4.1.2 Derivation

The governing equation for this flow is the x-momentum equation in 2D given by

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρvu)

∂y
= −∂p

∂x
− ∂τxx

∂x
− ∂τxy

∂y
+ ρfx.

This equation in variable viscosity case is

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

1

ρ

∂p

∂x
=

∂

∂x
(v
∂u

∂x
) +

∂

∂z
(v
∂u

∂x
). (4.1)

The model for Couette flow extends from −∞ to +∞ in x-direction. Since there

is no begining or end of this flow, the flow field variables must be independent

of x; that is ∂
∂x

= 0 for all quantities. Moreover, the equation of continuity for

steady state flow is
∂(ρu)

∂x
+
∂ρv

∂y
= 0. (4.2)

Since ∂(ρu)
∂x

= 0 for Couette flow, equation (4.2) reduces to

∂(ρv)

∂y
= 0.

i.e.

ρ
∂v

∂y
+ v

∂ρ

∂y
= 0. (4.3)

At the lower wall, v = 0 at y = 0. So, the equation (4.3) reduces to(
∂v

∂y

)
y=0

= 0 (4.4)

Expanding v in Taylor’s series about the point y = 0, we get

v(y) = v(0) +

(
∂v

∂y

)
y=0

y +

(
∂2v

∂x2

)
y=0

y2

2
+ ... (4.5)

At the upper wall, we have

v(D) = v(0) +

(
∂v

∂y

)
y=0

D +

(
∂2v

∂x2

)
y=0

D2

2
+ ... (4.6)
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Since both v(D) = 0 and v(0) = 0 as well as
(
∂v
∂y

)
y=0

= 0, the only result from

equation (4.6) that makes sense is(
∂nv

∂xn

)
y=0

= 0, ∀n.

This implies that

v = 0 (4.7)

everywhere. Thus, there is no vertical velocity in Couette flow and it is a major

physical characteristics of the flow. Therefore, the streamlines for the Couette

flow are straight lines which runs parallel to each other. Also the y-momentum

equation is

ρ
Dv

Dt
= −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+ ρfx.

For the Couette flow with no body forces,

−∂p
∂y

+
∂τyy
∂y

= 0. (4.8)

But, we have

τyy = λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂v

∂y
= 0.

With this equation in hand, eqution (4.8) becomes,

∂p

∂y
= 0. (4.9)

Thus, there are no pressure gradient terms in both x and y directions. Therefore,

for steady two dimensional flow with no body force, we have the x-momentum

equation

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

(4.10)

But for the Couette flow, we have

τxx = λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂u

∂x
= 0,

and

τyx = λ

(
∂v

∂x
+
∂u

∂y

)
= µ

∂u

∂y
.
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Substituting these values in (4.10), we get

∂

∂y

(
µ
∂u

∂y

)
= 0.

If the flow is incompressible with constant temperature, this equation reduces to

∂2u

∂y2
= 0. (4.11)

Similarly, the x-momentum equation for unsteady, incompressible Couette flow is

ρ
∂u

∂t
= µ

∂2U

∂y2
.

It is s parabolic PDE.

4.1.3 Analytic Solution

The governing equation for unsteady incompressible viscous Couette flow is

ρ
∂u

∂t
= µ

∂2U

∂y2
. (4.12)

The equation in non-dimensional form is

ρ
∂
(
u
ue

)
∂
(

t
(D/ue)

) (u2
e

D

)
= µ

∂2
(
u
ue

)
∂
(
y
D

)2

( ue
D2

)
,

i.e.
∂u
′

∂t′
=

µ

ρueD

∂2u
′

∂y′2
(4.13)

Since
µ

ρueD
≡ 1

ReD
,

where ReD is the Reynolds number based on the height D between the two plates.

Thus, equation (4.13) becomes

∂u
′

∂t′
=

1

ReD

∂2u
′

∂y′2
. (4.14)
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Equation (4.14) is the PDE for which we require exact and numerical solutions.

First, we write the equation (4.14) in the form

∂u

∂t
=

1

ReD

∂2u

∂y2
, (4.15)

where u, t and y are identical with that of dashes in equation (4.14). To solve the

equation (4.15) analytically, let us consider it in the form,

ut = κuxx, 0 < x < l, t > 0, (4.16)

where κ = 1
ReD

. It is one dimensional heat equation. Suppose the solution u(x, t)

representing the temperature distribution in a homogeneous rod of length l, sat-

isfies the boundary and initial conditions

u(0, t) =0 = u(l, t), t ≥ 0

u(x, 0) =f(x), (0 ≤ x ≤ l).
(4.17)

We assume a separable solution of (4.16) in the form

u(x, t) = X(x)T (t) 6= 0. (4.18)

Substituting (4.18) in (4.16) gives

1

X

d2X

dx2
=

1

κT

dT

dt
. (4.19)

Since the left-hand side depends only on x and the right-hand side is a function

of time t only, result (4.19) can be true only if both sides are equal to the same

constant λ. Thus, we obtain two ordinary differential equations

d2X

dx2
= λX,

dT

dt
= λκT.

(4.20)

For λ > 0, the only solution of the equations (4.20) consistent with the given

boundary conditions is u(x, t) = 0. Hence for negative λ = −α2,

d2X

dx2
+ α2X = 0,

dT

dt
+ κα2kT = 0,

(4.21)
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which admit solutions as

X(x) = A Cos(αx) +B Sin(αx) (4.22)

and

T (t) = Cexp(κα2t), (4.23)

where A,B, and C are constants of integration. The boundary conditions for

X(x) are

X(0) = 0 = X(l). (4.24)

Using them in (4.22), it turns out that A = 0 and B 6= 0. Hence,

Sin(αl) = 0, (4.25)

which gives the eigenvalues

α = αn =
nπ

l
, n = 1, 2, 3, .... (4.26)

The value n = 0 is excluded because it leads to a trivial solution. Thus, the

eigenfunctions are given by

Xn(x) = BnSin
(nπx

l

)
, (4.27)

where Bn are non-zero constants. With α = αn = nπ
l
, we combine (4.23) with

(4.27) to obtain the solution for un(x, t) as

un(x, t) = anexp

[(nπ
l

)2

κt

]
sin

nπx

l
, (4.28)

where an = BnCn is a new constant. Thus, (4.23) and (4.27) constitute an infinite

set of eigenvalues and eigenfunctions, and the most general solution is obtained

by the principle of superposition in the form

u(x, t) =
∞∑
n=1

an exp

[(nπ
l

)2

κt

]
sin
(nπx

l

)
. (4.29)
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Now, the initial condition implies that

f(x) =
∞∑
n=1

ansin
(nπx

l

)
(4.30)

which determines an as

an =
2

l

∫ l

0

f(x)sin
(nπx

l

)
dx. (4.31)

Thus, the final form of the solution is given by

u(x, t) =
∞∑
n=1

[
2

l

∫ l

0

f(x′) sin

(
nπx′

l

)
dx′
]

exp

[(nπ
l

)2

κt

]
sin
(nπx

l

)
. (4.32)

It follows that the series solution (4.29) satisfies the given boundary and initial

conditions. It also satisfies the equation (4.16) because the series is convergent for

all x (0 ≤ x ≤ l) and t ≥ 0 and can be differentiated term by term. Physically, the

temperature distribution decays exponentially with time t. This shows a striking

contrast to the wave equation, whose solution oscillates in time t. The time scale

of decay for the nth mode is

Td ≡
1

κ

(
l

nπ

)2

,

which is directly proportional to l2 and inversely proportional to the thermal

diffusivity κ.

4.1.4 Numerical Analysis

The x-momentum equation for unsteady, incompressible Couette flow is

ρ
∂u

∂t
= µ

∂2u

∂y2
(4.33)

The finite difference method for the Crank Nicolson scheme for the equation (4.16)

is

vn+1
j − vnj

∆t
=

1

ReD

1
2

((
vn+1
j+1 + vnj+1

)
+ 1

2

(
−2vn+1

j − 2vnj
)

+ 1
2

(
vn+1
j−1 + unj−1

))
(∆y)2
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i.e.

vn+1
j = vnj +

∆t

2(∆y)2ReD

(
vn+1
j+1 + vnj+1 − 2vn+1

j − 2vnj + vn+1
j−1 + vnj−1

)
.

i.e. [
− ∆t

2(∆y)2ReD

]
vn+1
j−1 +

[
1 +

∆t

(∆y)2ReD

]
vn+1
j +

[
− ∆t

2(∆y)2ReD

]
vn+1
j+1

=

[
1− ∆t

(∆y)2ReD

]
vnj +

∆t

2(∆y)2ReD

(
unj+1 + vnj−1

)
.

This is in the form

Avn+1
j−1 +Bvn+1

j + Avn+1
j+1 = Kj, (4.34)

where,

A = − ∆t

2(∆y)2ReD
(4.35)

B = 1 +
∆t

(∆y)2ReD
(4.36)

and,

Kj =

[
1− ∆t

(∆y)2ReD

]
vnj +

∆t

2(∆y)2ReD

(
unj+1 + vnj−1

)
. (4.37)

Now, we solve equation (4.34) on a grid such that the vertical distance D between

the plates is divided into N equal parts by administrating (N+1) grid points over

the vertical height D, i.e.

∆y =
D

N
(4.38)

We impose the boundary conditions non-dimensional velocity u as

u1 = 0 (4.39)

and

uN+1 = 1 (4.40)

As equation (4.34) represents a system of (N − 1) equations in (N − 1) unknowns

namely, v2, v3, ....., vN−1, the first equation of the system is

Avn+1
1 +Bvn+1

2 + Avn=1
3 = K2 (4.41)
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But u1 = 0, we have

Bvn+1
2 + Avn=1

3 = K2 (4.42)

The last equation of the system (4.34) is

Avn+1
N−1 +Bvn+1

N + Avn=1
N+1 = KN (4.43)

But, vN+1 = 1, we have

Avn+1
N−1 +Bvn+1

N = KN − Ave (4.44)

With the equation (4.42) and (4.44), the system of equations (4.34) can be ex-

pressed as

B A 0 0 .... 0 0 0

A B A 0 .... 0 0 0

0 A B A .... 0 0 0

....... ... .... .... ... ...

....... ... .... .... ... ...

....... ... .... .... ... ...

0 0 0 0 .... A B A

0 0 0 0 .... 0 A B





vn+1
2

vn+1
3

vn+1
4

.

.

.

vn+1
N−1

vn+1
N


=



K2

K3

K4

.

.

.

KN−1

KN − Ave


. (4.45)

It is a tridiagonal matrix and can be solved by using Thomas algorithm. By

the algorithm, we find the solution for vn+1
2 , vn+1

3 , ..., vn+1
N−1, the velocities at the

(n + 1)th time level. Then, the whole process is repeated for a number of time

step until the velocity profile converges to a steady state.

The Setup

For the specific solution, We choose N + 1 grid points along vertical, so that the

space size is

∆y =
1

N
.

We choose the initial conditions

vi = 0 for i = 1, 2, ...., N
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at t = 0. Next, we choose the time step size (∆t) so as to satisfy the CFL

condition,

∆t ≤ 1

2
ReD(∆y)2.

Since the Crank Nicolson scheme is unconditionally stable, we are free to choose

time step size ∆t.

Example 12. Consider a PDE

ut = auxx

with boundary and initial conditions

u(0, t = u(1, t) = 0

and

u(x, 0) = f(x).

The exact solution of the PDE is

u(x, t) =
∞∑
n=1

Ane
−an2π2tsin(nπx).

Taking f(x) = 2sin(2πx). By the Matlab implimentation, for ReD = 10 i.e. a =
1
10

, we obtain the following graphical solutions.

Figure 4.1: Initial conditions

We can observe the various solutions by changing time step size (t), space step

size (x) and the Reynolds numbers ReD. But, we have a restriction in schemes that

in every change of the step sizes, the CFL condition should be satisfied. Otherwise,

the scheme will be unstable and so, matlab output will not be appropriate.
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Figure 4.2: velocity profile (Numerical Solution)

Figure 4.3: Exact solution



Chapter 5

Numerical Solutions of 2D

Incompressible Navier Stokes

Equations in Variable Viscosity

Case

In this section, the procedures of solving the two dimensional incompressible

Navier Stokes Equations in variable viscosity case by a finite difference scheme

is explained.

5.1 The Governing Flow Equations

The Navier Stokes equations neglecting body forces with variable viscosity are

Continuity:
∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (5.1)

x-Momentum:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

1

ρ

∂p

∂x
=

∂

∂x
(ν
∂u

∂x
) +

∂

∂y
(ν
∂u

∂x
).

i.e.
∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) +

∂

∂y
(ρuv) = 0. (5.2)
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y-Momentum

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

1

ρ

∂p

∂z
=

∂

∂x
(ν
∂v

∂x
) +

∂

∂y
(ν
∂v

∂x
).

i.e.
∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(ρv2 + p) = 0. (5.3)

The system consist of three equations with four four unknowns ρ, u, v, and p. To

close the system, one equation is needed. Let us assume a perfect gas. Then, the

equation of state is

p = ρRT, (5.4)

where R is the specific gas constant. This provides a forth equation, but it also

introduces a fifth variable namely, temperature T . So, a fifth equation is required

to close the entire system. It must be a thermodynamic relation between the state

variables for calorically perfect gas, called Caloric Equation of State which would

be

e = cvT, (5.5)

where e is internal energy of air and cv is the specific heat at constant volume.

The entire system of governing equations can be expressed in conservation form

(i.e. divergence of fluxes of some physical quantity) as

∂U

∂t
+
∂E

∂x
+
∂F

∂y
= 0, (5.6)

where U,E and F , the flux terms are column vectors given by

U =


ρ

ρu

ρv

 (5.7)

E =


ρu

ρu2 + p

ρuv

 (5.8)
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F =


ρv

ρuv

ρv2 + p

 (5.9)

let us consider a computational domain, a rectangular structured grid with two

spatial variables and a time variable. Let vni,j denotes the value of the discrete

variable v at ith node along x-direction, jth node along y-directin and nth node

along t-direction. Further, let us take a plate having length large enough to the

mean free path of the oncoming air molecules and sufficient to capture the desired

physics. We want low Reynolds number in order to keep computational running

times considerably short for the grid we proposed.

5.1.1 The Finite Difference Equation

Here, we need to march in time to a steady state solution together with the flow

properties at every (i, j) spatial location. So we need a three dimensional grid.

We apply MacCormack’s time marching technique in two spatial directions. The

key steps of the technique are described below.

Let U t
i,j denote a discrete flow field variable corresponding to the variable U

at the node (i, j) and time level t of a grid.

• The governing equation (5.6) is re-written as

∂U

∂t
= −∂E

∂x
− ∂F

∂y
. (5.10)

• The flow field variables are advanced at each grid point (i, j) in steps of time

by the help of Taylor’s series expansion as

Uy+∆t
i,j = U t

i,j +

(
∂U

∂t

)
av

∆t, (5.11)

where ∆t is the time step size. We note that U t
i,j is the discrete flow field

variable which is known at time level t. Indeed, it is known at time level
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t either from initial conditions or from the iteration in time t, and the

derivative
(
∂U
∂t

)
av

is obtained as(
∂U

∂t

)
av

=
1

2

[(
∂U

∂t

)t
i,j

+

(
∂U

∂t

)t+∆t

i,j

]
. (5.12)

To obtain a value of ∂U
∂t

t+∆t

i,j
so that the solution can be advanced, the following

steps are taken.

1. The value of
(
∂U
∂t

)t
i,j

is calculated using forward spatial differences on the

right side of the governing equation (5.10) from the known flow field at time

level t.

2. The predicted values of the flow-field variables U
t

i,j can be obtained at time

level (t+ ∆t) as

U
t+∆t

i,j = U t
i,j +

(
∂U

∂t

)t
i,j

∆t. (5.13)

Then, the predicted values are obtained by combining steps 1 and 2 as

U
t+∆t

i,j = U t
i,j −

∆t

∆x

(
Et
i+1,j − Et

i,j

)
− ∆t

∆y

(
F t
i+1,j − F t

i,j

)
(5.14)

3. Using backward spatial differences, the predicted values obtained from step

2 are inserted into the governing equations such that a predicted time deriva-

tive
(
∂U
∂t

)t+∆t

i,j
can be obtained.

4. Finally, substituting
(
∂U
∂t

)t+∆t

i,j
from step 3 into the equation (5.10) to obtain

corrected second order accurate values of U at time level (t + ∆t). As in

equation (5.14), steps 3 and 4 are combined as follows.

U t+∆t
i,j =

1

2

[
U t
i,j + U

t+∆t

i,j − ∆t

∆x

(
E
t

i+1,j − E
t

i,j

)
− ∆t

∆x

(
F
t

i+1,j − F
t

i,j

)]
(5.15)

Steps 1 to 4 are repeated until the flow field variables approach a steady state

value; this is the desired steady state solution.
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5.1.2 Calculation of Step size in Time and Space

Taking a computational domain of sizes,

IMIN = inflow in x− direction.

IMAX = outflow in x− direction.

The step size in x-direction is

∆x =
Lx

IMAX − 1
, (5.16)

Likewise, the grid normal to the plate’s surface are

JMIN = inflow in y − direction.

JMAX = outflow in y − direction.

The step size in the y-direction is

∆y =
Ly

JMAX − 1
, (5.17)

where Lx and Ly denote the horizontal and vertical heights of the computational

domain. The correctness of the grid size is ensured by the Cell Reynolds Numbers

in x and y-directions, which are defined as

Rex =
ρi,jui,j∆x

µi,j
, (5.18)

and,

Rey =
ρi,jvi,j∆y

µi,j
. (5.19)

Since we need stronger velocity gradient to capture the flow field, the step size

in y-direction should be less than that in x-direction. For the time step size, the

time step is subject to a stability criterion. To determine the size of the time step,

the following form of the Courant-Friedrichs-Lewy (CFL) criterion is used.

(∆tCFL)i,j =

[
|ui,j|
∆x

+
|vi,j|
∆y

+ ai,j

√
1

∆x2
+

1

∆y2
+ 2v

′

i,j

(
1

∆x2
+

1

∆y2

)]−1
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where,

v
′

i,j =max

 4
3
µi,j

(
γµi,j
Pr

)
ρi,j


∆t =min

[
K (∆tCFL)i,j

]
,

K =Courant number that lies between 0.5 to 0.8.

ai,j =Local speed of sound in m/sec.

Pr =
µcp
k

= 0.71 for calorically perfect air (Called Prandtl number)

5.1.3 Initial and Boundary Conditions

The governing equation is first order in time and second order in space. There-

fore, initial and boundary conditions are necessary. For it, we specify the flow

properties at each (i, j) location at time t = 0.0, at the surface (JMIN=1) and

the temperature. Further, the boundary condition profile i.e. U, T andP should

be provided at the following positions of the computational domain.

Case 1. At the leading edge (IMIN, JMIN),

Case 2. At the left hand side (except the leading edge) and upper boundaries of

the domain,

Case 3. At the surface of the plate,

Case 4. Finally, all properties at the right hand side domain (not including

JMIN=1 and JMAX=70) are calculated based on the extrapolation from the two

interior points at the same j location. For example, u is determined as

u(IMAX,j) = 2u(IMAX−1,j) − u(IMAX−2,j) (5.20)

From these known values, the balance of the flow properties at the boundaries can

be calculated.



Chapter 6

Conclusion and Discussion

6.1 Conclusion

From this study, we oberved that inspite of complex nature of the Navier-Stokes

equations, finite difference scheme is found to be a better tool to study the be-

haviour of the solutions (velocity profile) of the two dimensional Navier-Stokes

equations in variable viscosity case. Though it gives only the numerical solutions,

it can approximate the exact solutions with desire error. Only the case is that, we

need to choose an appropriate (convergent) scheme for the best approximations,

otherwise the solutions diverge. Because of such successes of the method, it is

proved to be a good and applicable mathematical tool to deal this problem.

6.1.1 Discussion

Mathematics is an elegant and precise subject. However, when numerical answers

are required we sometimes need to rely on approximate methods to predict an-

swers. There are many problems which simply do not have analytical solutions,

or may be beyond our current state of knowledge. There are also many problems

which are too long (or tedious) to solve by hand. When such problems arise, we

can use numerical analysis to reduce the problem to one involving a finite number

of unknowns and use a computer to solve the resulting equations.
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6.1.2 Further Studies

1. Matlab implimentation of this scheme.

2. Numerical solutions witn matlab implementation of 3D Navier Stokes equa-

tions.
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