

An Empirical Study of Schema Independent Homomorphic

Queriable XML Compression Techniques

 Dissertation

Submitted To:

Central Department of Computer Science & Information Technology

Tribhuvan University

Kirtipur, Kathmandu

 Nepal

In partial Fulfillment of the requirements for Master’s Degree in Computer

Science & Information Technology

Submitted by:

Dinesh Tuitui

December, 2015

An Empirical Study of Schema Independent Homomorphic

Queriable XML Compression Techniques

 Dissertation

Submitted To:

Central Department of Computer Science & Information Technology

Tribhuvan University

Kirtipur, Kathmandu

 Nepal

In partial Fulfillment of the requirements for Master’s Degree in Computer

Science & Information Technology

Submitted by:

Dinesh Tuitui

December, 2015

Supervisor

Prof. Shashidhar Ram Joshi (Ph.D.)

Co-supervisor

Mr. Jagdish Bhatta

 Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information

Technology

Supervisor’s Recommendation

I hereby recommend that the dissertation prepared under my supervision by Mr. Dinesh Tuitui

entitled “An Empirical Study of Schema Independent Homomorphic Queriable XML

Compression Techniques” be accepted as in fulfilling partial requirement for the completion

of Master’s Degree of Science in Computer Science & Information Technology.

Prof. Shashidhar Ram Joshi (Ph.D.)

Department of Electronics & Computer Engineering,

Institute of Engineering,

Pulchowk, Nepal

Date:

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information

Technology

LETTER OF APPROVAL

We certify that we have read this dissertation work and in our opinion it is appreciable for the

scope and quality as a dissertation in the partial fulfillment of the requirements of Master’s

Degree of Science in Computer Science & Information Technology.

Evaluation Committee

(External Examiner) (Internal Examiner)

Date:

Prof. Dr. Shashidhar Ram Joshi

(Supervisor)
Department of Electronics & Computer

Engineering,

Institute of Engineering,

Pulchowk, Nepal

Mr. Nawaraj Paudel

Head of Department

Central Department of Computer Science

& Information Technology

Tribhuvan University

Kirtipur

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information

Technology

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than the listed

here have been used in this work.

… … … … … … …

Dinesh Tuitui

Date:

i

ACKNOWLEDGEMENT

I would like to thanks all the people who help me directly and indirectly to complete this

dissertation.

First, my big thanks goes to my supervisor Prof. Shashidhar Ram Joshi (Ph.D.), Institute of

Engineering, Pulchowk Campus, for his continuous support and guidance. I thank him for his

supervision and time spent for this work. Also, the credit of the success of this dissertation

work goes to my co-supervisor Mr. Jagdish Bhatta. I appreciate for his supervision and

guidance.

Most importantly I would like to express my gratitude to the respected Head of Department of

Central Department of Computer Science and Information Technology, Mr. Nawaraj Paudel

for his kind support, help and constructive suggestions. I am very much grateful and thankful

to all the respected teachers Prof. Dr. Subarna Sakya, Mr. Dheeraj Kedar Pandey, Mr. Sarbin

Sayami, Mrs. Lalita Sthapit, Mr. Arjun Singh Saud, and Mr. Bikash Balami for providing me

such a broad knowledge and inspirations. I would also like to thanks all my classmates for the

wonderful friendship and support during the college period.

Special thanks to my family for their love, care and support without that I am not be able to

gain education up to this level.

I have done my best to complete this research work. Suggestions from the readers are always

welcome, which will improve this work.

ii

 ABSTRACT

With the rise of computer or digital world, data transfer also increase drastically. XML

document standard became the de-facto standard for data transfer since from its inception. To

minimize the amount of data volume many compressors came into existence. XML

Compressors are proposed to minimize the data size of the XML file. The verbose and

repetitive nature of XML is the major cause of large file size. But the structure of XML file is

very simple because of this, XML become so popular in data representation and data transfer

despite of its large size than any other data representation. Homomorphic XML compressor

hence save the structure of XML structure. This study compares three schema-independent

homomorphic queriable compressors: XGRIND, XPRESS and XQPoint. The behavior of these

three XML compressors are compared using four set of XML data. The study shows the

performance of the evaluated XML compressors with change in properties of XML document

like change in node count, element count and depth. Also, the memory consumption during

compression and decompression is evaluated. Finally, better XML compressor is proposed

among the evaluated compressors.

Keywords: Compression, XML, Homomorphic, Schema-independent, XGRIND, XPRESS,

XQPoint

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. i

ABSTRACT ... ii

TABLE OF CONTENTS .. iii

LIST OF FIGURES ... v

LIST OF TABLES .. vi

LIST OF ABBREVIATIONS .. vii

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Introduction ... 1

1.2 Problem definition ... 2

1.3 Objectives .. 3

1.4 Motivation ... 3

1.5 Thesis Organization... 4

CHAPTER 2 .. 5

LITERATURE REVIEW AND METHODOLOGY ... 5

2.1 Literature review ... 5

2.1.1 Non-queriable (archival) XML compressor ... 5

2.1.2 Queriable XML compressor .. 6

2.2 Studied Homomorphic Queriable Compression ... 7

2.2.1 XGRIND .. 7

2.2.2 XPRESS ... 9

2.2.3 XQPoint ... 14

2.3 Methodology ... 17

CHAPTER 3 .. 18

IMPLEMENTATION AND TESTING ENVIRONMENT .. 18

3.1 Implementation Tools ... 18

3.1.1 Visual Studio 2012 ... 18

3.1.2 C#.NET Programming Language .. 18

3.1.3 Microsoft Excel .. 18

3.2 Testing Environment ... 18

CHAPTER 4 .. 20

DATA PREPARATION AND RESULT ANALYSIS ... 20

iv

4.1 Data Preparation .. 20

4.1.1 Primary Dataset 1 ... 20

4.1.2 Primary Dataset 2 ... 20

4.1.3 Primary Dataset 3 ... 20

4.1.4 Secondary Dataset 1 ... 20

4.2 Evaluation Metrics .. 21

4.2.1 Compression ratio .. 21

4.2.2 Compression time .. 21

4.2.3 Decompression time... 21

4.2.4 Memory Consumption ... 22

4.3 Results and Analysis ... 22

4.3.1 Results .. 22

4.3.2 Result Analysis .. 26

CHAPTER 5 .. 41

CONCLUSION AND FUTURE WORKS .. 41

5.1 Conclusion ... 41

5.2 Future Works ... 41

REFERENCES .. 42

BIBLIOGRAPHY .. 44

APPENDIX .. 45

v

LIST OF FIGURES

Fig 2.1Architecture of XGRIND Compressor ... 9

Fig 2.2An algorithm of reverse arithmetic encoding ... 10

Fig 2.3The algorithm of the type inference engine .. 11

Fig 2.4 An algorithm of Statistics Collection .. 13

Fig 2.5An algorithm of XML Analyzer ... 13

Fig 2.6The System Architecture of XPRESS .. 14

Fig 2.7 Sample of XML document with the structural identifiers of its nodes 15

Fig 2.8The system architecture of XQPoint .. 17

Fig 4.1 Compression ratio comparison for dataset 1 ... 27

Fig 4.2 Compression ratio comparison for dataset 2 ... 28

Fig 4.3 Compression ratio comparison for dataset 3 ... 28

Fig 4.4 Compression ratio comparison for dataset 4 ... 29

Fig 4.5 Compression time comparison for dataset 1.. 30

Fig 4.6 Compression time comparison for dataset 2.. 31

Fig 4.7 Compression time comparison for dataset 3.. 31

Fig 4.8 Compression time comparison for dataset 4.. 32

Fig 4.9 Compression memory consumption for dataset 1 ... 33

Fig 4.10 Compression memory consumption for dataset 2 ... 34

Fig 4.11 Compression memory consumption for dataset 3 ... 34

Fig 4.12 Compression memory consumption for dataset 4 ... 35

Fig 4.13 Decompression time comparison for dataset1 ... 36

Fig 4.14 Decompression time comparison for dataset 2 .. 37

Fig 4.15 Decompression time comparison for dataset 3 .. 37

Fig 4.16 Decompression time comparison for dataset 4 .. 38

Fig 4.17 Decompression memory consumption for dataset 1 ... 39

Fig 4.18 Decompression memory consumption for dataset 2 ... 39

Fig 4.19 Decompression memory consumption for dataset 3 ... 40

Fig 4.20 Decompression memory consumption for dataset 4 ... 40

vi

LIST OF TABLES

Table 2.1 Data encoders ... 12

Table 4.1 Properties of XML files in secondary dataset 1 ... 21

Table 4.2 Output for dataset 1.. 23

Table 4.3 Output for dataset 2.. 24

Table 4.4 Output for dataset 3.. 25

Table 4.5 Output for dataset 4.. 26

vii

LIST OF ABBREVIATIONS

ARAE Approximated Reverse Arithmetic Encoding

CAS Content And Structure

CIT Compressed Internal Representation

CR Compression Ratio

DTD Document Type Definition

FPNRT Fixed-Point Number Representation

GPS Global Positioning System

HTML Hypertext Markup Language

IDE Integrated Development Environment

ISO International Organization for Standardization

KB Kilobyte

MB Megabyte

MSB Most Significant Bit

RAM Random Access Memory

Sec Second

SGML Standard Generalized Markup Language

XML Extended Markup Language

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Now-a-days, the extensive use of computer systems in real world is also increasing the

computer data and exchange information between the systems. One of the most challenging

tasks for the developers was to exchange the information between two incompatible systems.

The data exchange problem is more or less solved after XML document standard that is

maintained by the W3C, came into existence. Extended markup language (XML) is the de-

facto standard for data representation and exchange. XML is markup language just like HTML.

Both XML and HTML contain markup symbols to describe the document contents. In XML,

the structure of data is embedded with the data. So, the XML document is self-describing.

Actually, XML is simple, flexible text format derived from Standard Generalized Markup

Language (SGML) (ISO 8879)1. XML is platform independent therefore it provides

interoperability between different applications. Use of XML is increasing because of the ability

of XML to represent different data types in one document with the solutions to interoperability

problem.

The basic building block of an XML document is an element, defined by tags. Elements can

be nested forming the tree like structure. All elements in an XML document are contained in

an outermost element known as the root element. Below is an example of XML structure:

XML’s power is its simplicity, readability and flexibility. It can take large chunks of

information and consolidate them into an XML document. The simplicity, readability and

flexibility are maintained at the cost of increased verbosity. The verbosity of the XML file is

1 http://www.w3.org/XML/

<Message>

<To> John</To>

<From> Harry</From>

<Heading>Reminder</Hedading>

<Body>You have a meeting at 11AM today. </Body>

</Message>

2

the major cause of large xml files. It is common for an XML representation of a data set to be

several times as large as alternative representation of same data set using other data encoding

formats.

Many systems that extensively use XML data formats for data storage and exchange have

limited resources. Mobile and GPS devices or many devices with embedded systems have

limited storage capacity and physical memory. Also networks limitation is another obstacle for

data exchange. Reducing the size of XML file can improve the performance and data transfer

between these resources constraint devices. Working with lower amount of data also decreases

the power consumption of handheld devices. Decreased data size is also beneficial for data

exchange over worldwide web and data streaming from many satellites.

Many data compression techniques are so far developed for minimizing the size for data

exchange and archiving [1]. Generic compressions take XML documents as regular text file.

Gzip, BZip2. Many XML specific compression techniques have been proposed so far to solve

the data inflation problem in XML file. XML conscious compression techniques take

advantage of knowledge of XML document structure to improve the compression of the

document. Schema dependent XML compressor requires schema information of the XML

document for the compression and decompression. Those compressors that does not require

schema information is schema independent XML compressor. Query support on the

compressed XML file classifies the compressor techniques into queriable or non-queriable

XML compressor. If the structure of the XML file is maintained in the compressed file, then

the tool is grouped in homomorphic XML compressor. Conserving the structure of the XML

in compressed document also adds the advantages of original XML document like indexing

and querying technique. Parser for the compressed document can be developed same way as

the existing XML parser.

1.2 Problem definition

Despite of being the de-facto standard for data encoding, XML standard suffers with some of

the drawbacks that are hindering it from gaining widespread use since its inception. Among

them large file size is the major drawback of XML. To overcome this, many XML compression

tools are proposed to reduce the size of XML document for better exchange of data and

reduction of archive size. Since homomorphic XML compression technique maintains the

structure of the document, many features developed for XML document so far can be

developed for the compressed document. Although, non-homomorphic compressor with better

3

compression performance are proposed, the loss of the XML structure in compressed document

prevents the use of existing technique of parsing and indexing.

Only compression ratio and compression time cannot determine which tool is better than other.

Change in compression performance with the change in structure and size of XML document

is also required. Resources consumption is other factor to be analyzed. Compression tools for

the resource limited devices like mobile and GPS devices should use resources like memory

wisely with better compression ratio and compression time as well. As high memory

consumption drains charges quickly, decrease in memory use will also reduce the use of battery

charge which is also limited in handheld device. Some techniques may be better for one type

of XML document while worst for other type. Some may operate better in low resource while

other may not. However, choosing best tool among the existing XML compressors for different

devices and different datasets is a challenging task.

1.3 Objectives

The objectives of this study are

1. To implement schema independent homomorphic queriable XML compression techniques.

2. To compare performance of the techniques on the basis of compression ratio, compression

time and memory consumption on the test datasets.

1.4 Motivation

Since its first introduction in 1998, the use of XML is constantly increasing mainly due to its

sustainability for the exchange on the World Wide Web. Decrease in the XML file size will

largely reduce the data exchange volume worldwide. To address this issues, different XML

compressor are proposed. Queriable XML compressor supports direct query on the compressed

document. Best for the resource limited devices, these type of compressor avoids full

decompression for the query evaluation. Only the part that is the result of the query is

decompressed and presented. Although, full query supporting XML compressor is not

proposed till date, it’s better to have some basic query support than non- queriable compression

where frequent query over the document is required.

Another aspect is the conservation of original XML structure in the compressed document.

Homomorphism has many advantages over non-homomorphism. Compressed document can

be verified over the compressed format of DTD of the original XML document. Indexing and

query parser can be built in similar fashion as in original document.

4

Hence, queriable homomorphic compression technique is an innovative technique which needs

to be researched more. Comparison if XML Compressor is done in the basis of compression

ratio, compression time and query response time. These metrics are tested with only with few

XML files of various size and data contents. Neither there is comparison on variation of these

metrics with the variation in node counts, depth of the XML structure, and distinct tag counts

nor their detail analysis of resource consumption of these compression techniques. The analysis

of the XML compressor in these aspects is to view the XML compression in different

perspective.

1.5 Thesis Organization

The organization of this document is as follows:

 Chapter 1 is the introductory part of the dissertation work. It focuses on the background

and introduction of XML document and its compression. It also briefs about the

problem definition and objective and motivation of this study.

 Chapter 2 deals with the literature review where works on XML compression are

discussed. Here, the examined XML compressors are also briefly described.

 Chapter 3 deals with the implementation part. Here, the tools and environment of

development is discussed.

 Chapter 4 deals with data preparation and result analysis. Here the output result of

execution of implemented application is analyzed for and compared.

 Chapter 5 consists of conclusion of this dissertation work and the future work which

provide guidelines for future studies and research.

5

CHAPTER 2

LITERATURE REVIEW AND METHODOLOGY

2.1 Literature review

Morse code, invented in 1838 for use in telegraphy, is an early example of data compression

based on using shorter code words for letters such as ‘e’ and ‘t’ that are more common in

English. Since then data compression has initiated. With the development of Information

theory in 1940s, modern work on data compression began [2]. Many compression techniques

are proposed since then.

Since XML uses are continuing to grow, a great demand for efficient XML compression tools

has been exist. XML data are stored as text files, the first logical approach for compressing

XML documents was to use the traditional general purpose text compression tools like BZip2,

GZip. These types of compressors are XML-Blind, i.e. they treat XML documents as usual

plain text documents. XML conscious compressors are designed to take the advantages of the

awareness of XML document structure in order to achieve better compression ratios over the

general text compressors. This group can be further classified based on the supporting direct

queries on compressed document:

2.1.1 Non-queriable (archival) XML compressor

Non-queriable XML compressor does not support any queries to be processed over the

compressed format. These compressors focus on achieving highest compression ratio. All

general XML compressors are by default non-queriable compressors. This section can be

further classified into two class:

2.1.1.1 Schema-independent compressors

This class of compression schemes does not require the availability of the schema information

for encoding and decoding processes. XMill [3] is the first implementation of an XML-

conscious compressor that introduced the novel idea of separating the structure of the XML

document from data and the grouping of the data values into containers based on their relative

paths in the tree and data types. Then the structure and the containers are compressed

separately. Both compression and decompression in XMill do not require schema information.

XMLPPM, SCMPPM, EXalt are some of the XML compressor in this category [1].

6

2.1.1.2 Schema-dependent compressors

This class of compressors requires the availability of the schema information of the original

XML document during their encoding and decoding processes. Millau [4] is the first XML

schema dependent compressor. Document Type Definition (DTD) can be used to build and

optimize the token dictionaries in advance. XAUST presented by Subramanian and Shankar

converts the schema information of the DTD into a set of Deterministic Finite Automata (DFA)

one for each element in the DTD [1]. RNGzip [5] is another schema-dependent compressor

which build a deterministic tree automation from the specified schema. Although schema

dependent compressors may be able to achieve slightly higher compression ratios, they are not

preferable or commonly used in practice because there is no guarantee that the schema

information of the XML documents is always available.

2.1.2 Queriable XML compressor

Queriable XML compressors are the compressors which allow queries to be processed over

their compressed formats. The compression ratio of this group is usually worse than that of the

archival XML compressors. The main focus of this group is to avoid full document

decompression during query execution. The ability to perform direct queries on compressed

XML formats is important for many applications that are hosted on resources-limited

computing devices, such as mobile devices and GPS systems. This can further classified by

how they encode the structural and data parts of the XML documents.

2.1.2.1 Homomorphic Queriable XML Compressor

Homomorphic compressors retain the original structure of the XML document, and you can

access and parse the compressed format in the same way as the original format. XGRIND was

the first homomorphic compressor proposed by Tolani and Haritsa in 2002 [6]. The compressed

file has the same structure as the original file. Many features like indexing and parsing can be

done similar to the original XML files. XPRESS [7], QXT [8] are other homomorphic

compression proposed in 2003 and 2007 respectively.

2.1.2.2 Non-Homomorphic Queriable XML Compressor

Non- homomorphic compressors separates the structural part from the data part while

encoding. Therefore the compressed format is different from the structure of the original XML

document. XSeq proposed by Lin et al. is a grammar-based queriable

7

 XML compression scheme. In XSeq, tokens of the input XML file are separated into a set of

containers each of which is then compressed using Sequitur, a grammar-based text strings

compression algorithm [1]. Another non-homomorphic compressor XCQ in proposed by

Wilfred Ng et al. in 2006 which exploit the information provided by document type definition

(DTD) associated with an XML document to achieve better compressions as well as generate

more usable compressed data to support querying.

2.2 Studied Homomorphic Queriable Compression

2.2.1 XGRIND

XGRIND [6] is the first queriable compressor proposed by Tolani and Haritsa in 2002.

XGRIND is homomorphic that means it retains the structure of the original XML document in

the compressed format also. Since it is also queriable, it supports direct query over compressed

document. Further, updates to the XML document can be directly executed on the compressed

version. Because of the homomorphic property, the compressed document can be checked for

validity against the compressed version of its DTD.

XGRIND is schema-independent but if DTD is available, it attempts to utilize the information

in the DTD to enhance the compression ratio. Enumerated type can be recognized from the

DTD and are encoded differently from the attribute values.

2.2.1.1 Compression technique

XGRIND uses different technique for compressing structure and data values of XML

documents. Those techniques are described below:

a. Meta-Data Compression

Structure of XML is compressed using the dictionary encoding. Each start-tag of an

element is encoded by a ‘T’ followed by a uniquely assigned element-ID. All end-tags

are encoded by ‘/’s. attribute names are similarly encoded by the character ‘A’ followed

by a uniquely assigned attribute-ID.

b. Enumerated-type Attribute Value Compression

District, country, department of college are the example of enumerated-type attribute

value. XGRIND identifies enumerated-type from the DTD if provided. Enumerated

data types are encoded using a simple log2K encoding scheme to represent an

enumerated domain of K values.

c. General Element/Attribute Value Compression

8

Since XGRIND’s goal is to support direct query over compressed document, a context-

free compression scheme is required. General element/attribute values are compressed

using non-adaptive Huffman encoding [9, p. 74]. In this compression scheme, the code

assigned to a string in the document is independent of its location in the document. To

support the non-adaptive feature, two passes have to be made over the XML document:

the first to collect the statistics and the second to do the actual encoding.

2.2.1.2 System Architecture

The architecture of XGRIND compressor is shown in the Fig 2.1. The XGRIND Kernel is the

heart of the compressor that controls other compressor. DTD parser parses the DTD if available

and initializes frequency tables for each element or non-enumerated attribute, and populates a

symbol table for attributes having enumerated-type values. XML Parser scan the XML

document twice. In first scan, the parser populates the frequency tables which stores the

frequencies of characters and dictionaries for elements and attributes tag. Second scan is done

to tokenize the document into tags, attributes or data values of the XML document. Then these

tokens are passed sequentially to the respective encoder. Dictionary encoder encode the tags,

attributes to the compressed code. Enum-Encoder encodes the enumerated-type attribute values

using the symbol table information. Huffman encoder encodes all non-enumerated data items.

This module implements the non-adaptive Huffman coding compression scheme.

The compressed output of the encoder and all the frequency and symbol tables is called the

Compressed Internal Representation (CIT) of the original XML document. CIT is then fed to

XML-Gen, which converts the CIR into a semi-structured compressed XML document.

9

Fig 2.1Architecture of XGRIND Compressor

2.2.2 XPRESS

XPRESS [7] is the queriable homomorphic compressor proposed by Min at al. in 2003. It is

the dictionary based XML compressor like XGRIND but claimed to perform better

compression and query than XGRIND. XPRESS use reverse arithmetic encoding to encode the

label paths of XML. The XPRESS also implements diverse encoding methods depending on

the types of data values. It has built-in type-inference engine to infer the types of data. The

semi-adaptive approach of compression scheme is applied which scan the XML document

twice: first to collect the statistics and second for actual compression.

2.2.2.1 Compression Techniques

The compression technique of XPRESS is homomorphic, hence it preserve the structure of the

XML document. The compressor uses different encoding for elements and data values.

XPRESS uses following techniques to compress and retrieve XML data efficiently.

10

a. Reverse Arithmetic Encoding

XPRESS incorporates the reverse arithmetic encoding method that encodes the label

path as a distinct interval in [0.0, 1.0). Since it encodes the label path of the XML

document, it can handle the path expression on compressed document than previously

available XML compressor which simply represent each tag by using a unique

identifier.

First, reverse arithmetic encoding partitions the entire interval [0.0, 1.0) into

subintervals one for each element. The size of interval of tag ‘T’ represented as IntervalT

is proportional to the frequency of tag T. then, the reverse arithmetic encoding encodes

the simple path P= P1, ……., Pn of an element ‘e’ into interval [mine, maxe) using the

algorithm in Fig 2.2.

Fig 2.2An algorithm of reverse arithmetic encoding

b. Automatic Type Inference

Many existing XML compressors blindly use predefined encoding methods or apply

some encoding methods manually. XPRESS applies different types of encoding for

different types of data values. For identifying the type of data, XPRESS have the type-

inference engine. At the preliminary scan, XPRESS infers the type of data values of

each distinct element. Algorithm for type-inference engine is show in Fig 2.3. The

algorithm in Fig 2.3, there only type inference for integer, string and enumeration for

simplicity. But it can be extended for floating point values and integer values can be

differentiate into different integer encoding like u8, u16, u32 and so on.

Function reverse_arithmetic_encoding(P= P1, ……., Pn)

begin

[mine, maxe) := Intervalpn

If (n=1) return [mine, maxe)

Length := maxe - mine

[qmin, qmax) := reverse_arithmeti_encoding(P1, ……., Pn-1)

mine := mine + length * qmin

maxe := maxe + length * qmax

retrun [mine, maxe)

end

11

Fig 2.3The algorithm of the type inference engine

c. Diverse Encoding Method

From the type-inference engine, data values are classified into different data types.

XPRESS implies diverse encoding scheme for diverse data types. This technique

ensures the high compression ratio and minimize the overhead of partial decompression

in the query processing phase. Shows the diverse encoders for different types of data

values inferred by type-inference engine.

Procedure Type Inferencing(Token, Pathstack, Elemhash)

begin

 Tag := Pathstack.top()

 eleminfo := Elemhash.hash(Tag)

 type := Infer Type(Token)

 switch(eleminfo.inferred type) {

 case undefined :

 case integer :

 if(type = integer){

 eleminfo.inferred type := integer

 intvalue := get IntValue(Token)

 eleminfo.min := MIN(eleminfo.min, intvalue)

 eleminfo.max := MAX(eleminfo.man, intvalue)

 eleminfo.symhash.insert(Token)

 eleminfo.accumulate chars frq(Token)

 }

 else { // string

 eleminfo.symhash.insert(Token)

 if(the number of entries in eleminfo.symhash < 128) {

 eleminfo.inferred type := enumeration

 }else eleminfo.inferred type := string

 eleminfo.accumlate chars frq(Token)

 }

 break

 case enumeration :

 eleminfo.symhash.insert(Token)

 if(the number of entries in eleminfo.symhash < 128) {

 eleminfo.inferred type := enumeration

 }else eleminfo.inferred type := string

 eleminfo.accumlate chars frq(Token)

 break

 case string :

 eleminfo.accumlate chars frq(Token)

 break

 }

end

12

Encoder Description

U8 encoder for integers where max-min<27

U16 encoder for integers where 27 +1< max-min<215

U32 encoder for integers where 215 +1< max-min<231

F32 Encoder for floating values

Dict8 Dictionary encoder for enumeration typed data

huff Huffman encoder of textual data

Table 2.1 Data encoders

d. Semi-adaptive approach

XPRESS scan the XML document twice, first scan for collecting statistics and second

for actual compression. This compression scheme is the semi-adaptive approach. So the

statistics do not change during the compression, so the encoding is independent to the

location of data. This context insensitive encoding scheme supports the direct querying

on compressed domain because we do not need to decompress from the beginning.

2.2.2.2 System Architecture

Fig 2.6 shows the architecture of XPRESS compression. The core module of XPRESS are

XML Analyzer and XML Encoder. The XML analyzer analyze the original XML to collect the

statistics and type infer the data values. XML encoder uses the statistics collected by XML

analyzer and encodes the XML into queriable compressed XML data.

a. XML Analyzer

Algorithm of XML Analyzer is shown in Fig 2.5 below. From the algorithm it is clear

that the frequency of each distinct element is calculated from procedure

Statistics_Collection and all data values token are passed for Type_inferencing

procedure. Fig 2.4 shows the procedure of statistics collection. The frequencies of the

elements are used by the XML encoder to calculate the interval for each path using

reverse arithmetic encoding. The algorithm for type_inferencing procedure is shown in

Fig 2.1 in section 2.2.2.1 where all the data values are categorized according to their

type inferred.

13

Fig 2.4 An algorithm of Statistics Collection

Fig 2.5An algorithm of XML Analyzer

b. XML Encoder

This is the second phase of XML compression where the actual compression is

performed. The XML parser parse the original XML document and pass token by token

to the XML encoder which treats the token according to their type and encodes to the

compressed domain. There are six encoder described in Table 2.1 that is used by

Procedure Statistics_Collection(Token, Pathstack, Elemhash)

Begin

 If(Token is START_TAG){

 Pathstack.push(Token)

 Eleminfo := Elemhash.hash(Token)

 If(taginfo := NULL){

 Eleminfo := new ELEMINFO(Token)

 Elemhash.insert(eleminfo)

 For each token t in Pathstack do {

 tempinfo := Elemhash.hash(t)

 tempinfo.adjusted_frequency += 1

 elemhash.total_frequency += 1

 }

 }

 }else //token is END_TAG

 Pathstack.pop()

end

Function XML_Analyzer()

Begin

Pathstack := new Stack()

Elemhash := new Hash()

do{

Token := XMLParser.get_Token()

If(Token is a tag)

Statistics_Collection(Token, Pathstack, Elemhash)

Else //token is data value

Type_Inferencing(Token, Pathstack, Elemhash)

}while(Token!= EOF)

Return Elemhash)

end

14

XPRESS to encode the data values. Each distinct element has its own encoder which is

one of the six encoder. All those encoding are designed to generate 0 as the most

significant bit (MSB). The tags are encoded using reverse arithmetic encoding which

encode each simple path into an interval between [0.0, 1.0). In the implementation we

use the approximated reverse arithmetic encoding (ARAE), to improve the compression

ratio and to parse the compressed XML data without ambiguity. This method generates

the code for the tag that have 1 as the MSB. In this way, it can be distinguished from

the data values which have 0 as the MSB in its code.

Fig 2.6The System Architecture of XPRESS

2.2.3 XQPoint

XQPoint [10] is yet another homomorphic queriable XML compressor proposed by Al-

Hamadini at al. in 2009. In XQPoint, the XML elements and attributes name are compressed

by Fixed Point dictionary based technique. XML data parts are classified according to the path

from the root attributes and are compressed using Fixed Point technique. The compressed

document preserves the structure of original XML document and also supports direct query

over the compressed domain.

2.2.3.1 Compression Techniques

As already mentioned above, XQPoint maintain the structure of the original XML document.

To obtain this homomorphic compression the XQPoint compressor treats the structure of an

XML document in different manner than treating the data part of the document. XQPoint scans

15

the XML document twice: first scan for analyzing the XML document and second scan is done

for actual compression.

In the analysis phase, each element and attribute names of the document is given a unique pair

of numbers (IDpre, IDpost). This pairs are called structural identifiers, where IDpre represents the

preorder traversing of the nodes in the tree while IDpost represents the post order traversing of

the nodes in the tree. Fig 2.7 shows a sample documents with the nodes structural identifiers.

The pairs of identifiers is then encoded into binary. For each pair requires 2* log2 (N) and hence

total bits required for N elements is N* 2* log2(N) bits.

Fig 2.7 Sample of XML document with the structural identifiers of its nodes

Data parts of the XML document is compressed using different encoding technique. For this,

XQPoint separated these data into different parts according to their position path from the root.

a. Integer data types:

XQPoint uses variable-byte coding to encode integer numbers. In this encoding scheme,

integer values are stored as a sequence of variable bytes where first seven bits of each

byte stores the part of integers and the last bit stores if that byte is last byte of the

representation of the integer value.

b. Floating-point data types:

16

Floating-point data types are compressed using predictive floating point compression.

This technique splits the floating-point value into sign, exponent, and mantissa and then

encodes using context based arithmetic coder [11].

c. Enumerated data and text data types:

Text and enumerated data types are encoded using Fixed-Point Number Representation

Technique (FPNRT). XQPoint compute the numeric value of the word (f) using the

following formula:

𝑓 = ∑(𝐴𝑆𝐶 − 65) ∗ 26𝑖

𝑛−1

𝑖=0

Where n represents a word length, ASC is the ASCII code of any letter, i is the letter’s

position in the word.

2.2.3.2 System Architecture

The system architecture of the XQPoint is shown in Fig 2.8. The XML Analyzer component

of the architecture is to analyze the XML document to create the dictionary for all elements

and attributes with their structural identifiers as described in previous section. Also data types

of all data values are also identified. All these information is passed to the XML Encoder

section.

The XML Encoder section encodes the element and attributes using binary coding described

in previous section. Also, data values are also encoded by the Encoder according to the types

of data values. Finally, the encoded data are written into compressed file maintaining the

structure of the original XML document. Query manipulator is the module for direct query

support where the query are parsed and the required information is extracted from the

compressed domain. XQPoint claims to support Content-and-Structure (CAS) queries, where

content represent the data itself of the XML document and the structure represent tags and

attributes.

17

Fig 2.8The system architecture of XQPoint

2.3 Methodology

The methodology applied in this dissertation work is totally empirical approach where the

conclusion is drawn based on the observation and analysis of the result from the study. The

approach is based on tracing the outcomes of the XML compression over various types of

randomly generated XML files. The main focus of this dissertation is to compare three

homomorphic XML compressor stated above in section 2.2. The compressors are tested with

the datasets and the output is collected for further analysis. The output is analyzed in

quantitative approach from various perspective of data compression. And finally, conclusion

is drawn based on the result of the analysis.

18

CHAPTER 3

IMPLEMENTATION AND TESTING ENVIRONMENT

3.1 Implementation Tools

All the implementation is done in C#.Net programming language using visual studio 2012.

3.1.1 Visual Studio 2012

Visual studio is the integrated development environment developed by Microsoft. This IDE

can be used to develop windows applications, windows mobile applications, websites, and web

services. Visual studio includes a code editor with intellisense as well as code refactoring. It

also have the integrated debugger for debugging the .Net codes. Visual studio supports different

programming languages. Built-in languages include visual C++.NET, VB.NET, Visual

C#.NET, F#.NET. Also, other language services can be installed for support in visual studio.

3.1.2 C#.NET Programming Language

C#.NET is the Microsoft implementation of the C# language integrated in .NET framework.

C# programming language is more like Java programming language. C# is an object oriented

programming language. C# language is power full language that is used to build small to

enterprise level application.

XmlReader within System.Xml namespace from .NET framework is used for parsing the XML

document. Also XmlWriter within System. Xml namespace is used for writing the XML file.

3.1.3 Microsoft Excel

Microsoft excel is the spreadsheet program developed by Microsoft that is used to store the

result of the XML compression testing. This is the powerful tool for data manipulation. All the

tables and charts are generated from the result data in excel.

3.2 Testing Environment

The implemented XML compressors are executed in the machine with following configuration.

Machine type: Laptop

Model: Lenovo G510

Processor: Intel® Core™ i5-4200M CPU @ 2.5GHZ

19

Installed memory (RAM): 4GB

Operating System: Windows 8.1 Enterprise

System type: 64bit OS, X64 based processor

Hard disk: WD5000LPCX 500GB, 5400 rpm

20

CHAPTER 4

DATA PREPARATION AND RESULT ANALYSIS

4.1 Data Preparation

There is no universally accepted XML text file corpus available for XML compression. The

analysis of XML compressor is done based on the primary datasets of random XML file

generated from the XML generator application. The required XML file generator is developed.

Primary data sets are generated from the developed XML generator. The generated XML file

have random nodes and some scattered data of varies data types.

4.1.1 Primary Dataset 1

This dataset is collection of XML files generated from the XML generator application with

different ranges of node counts with fixed distinct tag counts and fixed depth. This data set

contains 10 file with node count range from 10000 to 100000 with difference of 10000. The

element count and the depth is set fixed with 100 and 20 respectively. The size of file range

from 4MB to 365MB.

4.1.2 Primary Dataset 2

This dataset is collection of XML files generated from the XML generator application with

fixed node count with varying distinct element counts fixed depth. This dataset contains 10

files with element count from 100 to 1000 with difference of 100. The node count and the depth

is set fixed with 50000 and 20 respectively. The size of file range from 92MB to 93MB.

4.1.3 Primary Dataset 3

This dataset is collection of XML files generated from the XML generator application with

fixed distinct tag and node counts with varying depth. This data set contains 10 files with depth

varying from 10 to 100 with difference of 10. The node count and the element count is set fixed

with 50000 and 500 respectively. The size range from 26MB to 122MB.

4.1.4 Secondary Dataset 1

This dataset is not the generated XML files but the real data collected from various source.

This dataset contains XML file with different natures used for XML compression tools

benchmarking [12]. This same XML corpus is used in [1]. From this corpus only 10 files are

selected for simplicity. The details of the XML files is shown in the table

21

Document Name
Size
(MB) Tags

No. of
Nodes Depth Data Ratio

BaseBall.xml 0.65 46 57812 6 0.11

DBLP.xml 130.72 32 4718588 5 0.58

DCSD-Small.xml 10.6 50 6190628 8 0.45

EXI-Array.xml 22.18 47 1168115 10 0.68

EXI-Invoice.xml 0.93 52 78377 7 0.57

EXI-Telecomp.xml 0.65 39 651398 7 0.48

SwissProt.xml 112.13 85 13917441 5 0.6

TCSD-Small.xml 10.95 24 831393 8 0.78

XMark1.xml (Small) 11.4 74 520546 12 0.74

XMark2.xml (Medium) 113.8 74 5167121 12 0.74

Table 4.1 Properties of XML files in secondary dataset 1

4.2 Evaluation Metrics

The performance of XML compression tools is evaluated on the basis of following matrices:

4.2.1 Compression ratio

It is the ratio between the size of compressed and uncompressed XML documents. It is the

ratio of space occupied by compressed document over original document. Subtracting the

ratio from 1 gives the ratio of space earned after compression. The compression ratio for an

XML document can be calculated as:

𝐶𝑅 = 1 −
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

4.2.2 Compression time

It is the elapsed time during compression process of XML file i.e. the period of time between

the start of compression program execution on a document until all the data are written to disk.

Compression time for all primary and secondary dataset is compared between different

compression techniques.

4.2.3 Decompression time

It is the elapsed time during decompression of the compressed file i.e. the period of time

between the start of decompression program execution on a compressed document until

original XML document is delivered. Decompression time for all primary and secondary

dataset is compared between different compression techniques.

22

4.2.4 Memory Consumption

It is the memory consumption by the compression application during the compression process

of XML file. Changes in memory consumption in different dataset is compared. Memory

consumed by the application is obtained using built-in function from .NET framework.

4.3 Results and Analysis

All implemented XML compression tools are executed for all the datasets and the result is

imported to the excel file separately for each dataset.

4.3.1 Results

The test is executed 10 times for each dataset and the result is taken as average of all the output.

The average result for each datasets is shown in the tables shown from Table 4.2to Table 4.5.

XGRIND

Input file
original

size (KB)

compresse

d size (KB)

compressio

n time (sec)

compression

Memory(MB

)

decompressio

n time (sec)

decompressio

n memory

(MB)

10000-100-20.xml 4155 397 1.2187841 42 0.2031435 63

20000-100-20.xml 15488 1241 1.5937351 44 0.3750031 66

30000-100-20.xml 33432 2661 1.984364 48 0.6718821 67

40000-100-20.xml 59227 4673 3.8437799 47 1.1250277 68

50000-100-20.xml 93004 6804 4.4687578 48 1.875015 68

60000-100-20.xml 131731 9288 5.2188072 48 2.0469521 67

70000-100-20.xml 179242 10814 5.0000332 49 3.5781823 68

80000-100-20.xml 234602 13935 7.3594101 63 4.031293 69

90000-100-20.xml 297356 17368 13.5938788 60 7.2656911 71

100000-100-20.xml 364312 21239 21.7033209 62 9.0313378 72

XPRESS

Input file
original

size (KB)

compresse

d size (KB)

compressio

n time (sec)

compression

Memory(MB

)

decompressio

n time (sec)

decompressio

n memory

(MB)

10000-100-20.xml 4155 356 0.1406568 43 0.4375067 48

20000-100-20.xml 15488 1149 0.7031329 45 0.7968799 48

30000-100-20.xml 33432 2328 0.9219112 46 0.7343803 48

40000-100-20.xml 59227 4082 1.4687394 44 1.2812783 48

50000-100-20.xml 93004 5875 2.250037 47 1.5781372 48

60000-100-20.xml 131731 7972 2.8125393 46 2.0408875 47

70000-100-20.xml 179242 9022 3.7344071 45 2.8125442 47

80000-100-20.xml 234602 11590 4.750039 48 3.4688318 43

90000-100-20.xml 297356 11422 11.312612 52 4.4688112 48

100000-100-20.xml 364312 13954 18.9064308 47 5.1122541 48

XQPOINT

Input file
original

size (KB)

compresse

d size (KB)

compressio

n time (sec)

compression

Memory(MB

)

decompressio

n time (sec)

decompressio

n memory

(MB)

10000-100-20.xml 4155 315 0.1250014 43 0.2812381 44

20000-100-20.xml 15488 994 0.4062707 44 0.6718329 45

23

30000-100-20.xml 33432 1659 0.8593995 46 0.7031296 45

40000-100-20.xml 59227 2897 0.8593645 45 1.1875272 45

50000-100-20.xml 93004 5875 1.2656357 48 1.609372 46

60000-100-20.xml 131731 6655 1.7344066 46 2.1094323 46

70000-100-20.xml 179242 7230 2.2812688 45 2.7344321 46

80000-100-20.xml 234602 9244 2.9531493 48 3.3281417 43

90000-100-20.xml 297356 5475 10.040463 45 3.556825 46

100000-100-20.xml 364312 10311 17.0314458 47 5.124862 48

Table 4.2 Output for dataset 1

XGRIND

Input file origina

l size

(KB)

compressed

size (KB)

compression

time (sec)

compression

Memory (MB)

decompression

time (sec)

decompression

memory (MB)

50000-100-20.xml
93282 4361 4.5468897 51 2.7500049 49

50000-200-20.xml
92918 5281 4.4219125 50 2.5000242 49

50000-300-20.xml
93012 5269 4.4531332 51 2.5156369 50

50000-400-20.xml
92311 6226 4.515646 52 2.5937544 50

50000-500-20.xml
93348 6280 5.0156442 53 2.6094409 51

50000-600-20.xml
92494 7160 5.0000148 53 2.4843845 51

50000-700-20.xml
92906 7176 5.0000341 53 2.4844034 50

50000-800-20.xml
92528 8085 5.9375161 54 3.562525 52

50000-900-20.xml
92237 8068 6.5062657 54 3.5468975 53

50000-1000-20.xml
92458 8079 6.5062674 55 3.5000066 53

XPRESS

Input file origina

l size

(KB)

compressed

size (KB)

compression

time (sec)

compression

Memory (MB)

decompression

time (sec)

decompression

memory (MB)

50000-100-20.xml
93282 4361 3.2812799 47 1.6093863 46

50000-200-20.xml
92918 3423 3.4687583 51 2.9375798 47

50000-300-20.xml
93012 5269 3.6875227 47 1.7500079 49

50000-400-20.xml
92311 5303 4.1718945 46 1.7031386 50

50000-500-20.xml
93348 4413 4.1719051 51 1.8029341 50

50000-600-20.xml
92494 7160 4.4687866 47 2.421915 50

50000-700-20.xml
92906 6247 4.4843787 46 1.7969061 51

50000-800-20.xml
92528 7159 4.5156459 51 2.5624662 51

50000-900-20.xml
92237 7146 4.5469497 47 1.6562822 50

50000-1000-20.xml
92458 6230 4.6719523 47 2.3750043 51

XQPOINT

Input file origina

l size

(KB)

compressed

size (KB)

compression

time (sec)

compression

Memory (MB)

decompression

time (sec)

decompression

memory (MB)

50000-100-20.xml
93282 2495 1.3906527 46 2.1250572 42

50000-200-20.xml
92918 1565 1.8593912 50 1.6719067 43

50000-300-20.xml
93012 4339 1.8906223 47 1.7031399 43

24

50000-400-20.xml
92311 4589 2.0937827 51 1.6875313 45

50000-500-20.xml
93348 5347 2.5625106 47 1.765896 47

50000-600-20.xml
92494 5310 2.5937622 50 1.6562653 48

50000-700-20.xml
92906 6247 2.6250134 47 1.6875317 47

50000-800-20.xml
92528 4384 2.7500144 47 1.7031354 49

50000-900-20.xml
92237 6224 2.7656389 51 1.5781471 49

50000-1000-20.xml
92458 5305 3.6249973 47 1.5781565 50

Table 4.3 Output for dataset 2

XGRIND

Input file origina

l size

(KB)

compressed

size (KB)

compression

time (sec)

compression

Memory (MB)

decompression

time (sec)

decompression

memory (MB)

50000-500-10.xml
121622 6998 1.9843705 48 3.2500361 53

50000-500-20.xml
92394 5316 1.8437823 49 2.6875149 53

50000-500-30.xml
62997 3624 1.7968991 51 2.3281544 54

50000-500-40.xml
49091 3315 1.6093966 50 2.1094032 53

50000-500-50.xml
40711 3156 1.2969045 50 1.9687402 47

50000-500-60.xml
35504 3108 1.2656349 50 1.8906539 48

50000-500-70.xml
31942 3115 1.2500127 50 1.8125024 48

50000-500-80.xml
29594 3182 1.1875091 50 1.7656077 49

50000-500-90.xml
27835 3271 1.125008 50 1.7031231 47

50000-500-100.xml
26454 3373 1.0156468 50 0.8718812 44

XPRESS

Input file origina

l size

(KB)

compressed

size (KB)

compression

time (sec)

compression

Memory (MB)

decompression

time (sec)

decompression

memory (MB)

50000-500-10.xml
121622 4713 1.9218879 49 3.037847 48

50000-500-20.xml
92394 4504 1.3594426 48 2.618768 50

50000-500-30.xml
62997 3701 1.2812586 51 2.23849 51

50000-500-40.xml
49091 3375 1.2344017 47 2.21623 48

50000-500-50.xml
40711 3206 1.1406518 49 2.003125 50

50000-500-60.xml
35504 2796 1.0968585 46 1.0859381 52

50000-500-70.xml
31942 2834 1.0312651 49 1.0781273 46

50000-500-80.xml
29594 2922 1.00998 49 1.0552623 47

50000-500-90.xml
27835 2748 0.9687751 51 1.0423654 49

50000-500-100.xml
26454 2612 0.8593978 46 1.041 50

XQPOINT

Input file origina

l size

(KB)

compressed

size (KB)

compression

time (sec)

compression

Memory (MB)

decompression

time (sec)

decompression

memory (MB)

50000-500-10.xml
121622 3092 1.4843738 50 2.0000718 54

50000-500-20.xml
92394 4504 1.1406215 55 1.5012791 56

50000-500-30.xml
62997 3071 1.0156517 48 1.42358 55

25

50000-500-40.xml
49091 2393 0.9219006 51 1.0468832 50

50000-500-50.xml
40711 1984 0.8750081 54 0.9531505 52

50000-500-60.xml
35504 2086 0.8593814 50 0.8437728 53

50000-500-70.xml
31942 1876 0.8281405 52 0.7968868 55

50000-500-80.xml
29594 2034 0.8281297 55 0.796863 56

50000-500-90.xml
27835 1913 0.67188 58 0.7500066 48

50000-500-100.xml
26454 1818 0.5781273 52 0.718757 49

Table 4.4 Output for dataset 3

XGRIND

Input file origina

l size

(KB)

compressed

size (KB)

compression

time (sec)

compression

Memory (MB)

decompression

time (sec)

decompression

memory (MB)

BaseBall.xml
656 272 1.4531746 44 0.578153 44

EXI-Invoice.xml
956 325 1.2344142 82 0.3125011 64

EXI-Telecomp.xml
10326 3969 4.1562621 83 4.3437942 84

XBench-DCSD-

Small.xml 10831 4649 5.1875363 256 4.817320889 95

XBench-TCSD-

Small.xml 11319 5972 7.9063016 355 7.597677445 256

XMark1.xml
11596 3059 8.9531673 395 8.319724594 284

EXI-Array.xml
22591 6468 4.8750401 110 7.2494098 105

SwissProt.xml
115467 62442 41.0662233 455 39.79246544 350

XMark2.xml
115774 30696 41.8531202 259 38.74865026 224

DBLP.xml
134243 75188 49.9485798 449 41.95618452 375

XPRESS

Input file origina

l size

(KB)

compressed

size (KB)

compression

time (sec)

compression

Memory (MB)

decompression

time (sec)

decompression

memory (MB)

BaseBall.xml
656 217 0.3593794 44 0.3593807 41

EXI-Invoice.xml
956 286 0.2187527 49 0.468748 42

EXI-Telecomp.xml
10326 3812 2.6719018 50 8.2188363 42

XBench-DCSD-

Small.xml 10831 4421 2.4375229 65 3.398412 45

XBench-TCSD-

Small.xml 11319 5910 3.9687922 74 6.478256 49

XMark1.xml
11596 2804 3.9375423 61 5.256897 52

EXI-Array.xml
22591 6514 3.9844009 50 9.0782195 49

SwissProt.xml
115467 58236 31.3284475 57 34.1245741 52

XMark2.xml
115774 28036 35.8285079 52 34.658741 48

DBLP.xml
134243 72025 38.3285346 63 38.12475482 53

XQPOINT

Input file origina

l size

(KB)

compressed

size (KB)

compression

time (sec)

compression

Memory (MB)

decompression

time (sec)

decompression

memory (MB)

BaseBall.xml
656 205 0.1003796 44 0.234376 41

EXI-Invoice.xml
956 253 0.2112679 49 0.4375012 41

26

EXI-Telecomp.xml
10326 3459 1.5625264 50 8.2813537 41

XBench-DCSD-

Small.xml 10831 4327 1.0375122 50 3.105896 43

XBench-TCSD-

Small.xml 11319 6907 3.1688083 43 5.9235765 46

XMark1.xml
11596 2654 3.2156726 43 4.7584325 42

EXI-Array.xml
22591 6085 3.405059 50 9.2032134 41

SwissProt.xml
115467 53214 25.7815848 45 30.45879 48

XMark2.xml
115774 26045 31.2034836 43 29.4587935 47

DBLP.xml
134243 70892 33.8285251 40 32.78952 49

Table 4.5 Output for dataset 4

4.3.2 Result Analysis

4.3.2.1 Compression Ratio

Compression ratio is calculated for all four datasets with all the implemented compressors. The

results are shown in charts from Fig 4.1 to Fig 4.4.

Fig 4.1 shows the compression ratio of dataset 1 where the files have same number of element

count and same depth but with increasing node count. The result shows that increased in node

count slightly increases the compression ratio in all three XML compressors. This result is as

assumed, because with increase in node count with constant element count, the repetition of

the element is increased. Thus the compressor takes the advantage of this repetition to increase

the compression ratio.

Fig 4.2 shows the compression ratio for dataset 2 where the files have same number of node

count and same depth but with increasing element count. The result is reverse of the result from

dataset 1. The compression ratio is slightly decreased with increase in element count. The

reason behind this is also the reverse of dataset 1. With increase in element count with constant

node count, the repetition is decreased which is the reason for decreased compression ratio.

Also, saving the dictionary of elements and its code also increases with element count.

27

Fig 4.1 Compression ratio comparison for dataset 1

Fig 4.3 shows the compression ratio for dataset 3 where the XML files have constant number

of nodes and constant number of element count but increasing depth of the XML tags. The

result shows that with increase in depth, the compression ratio is decreased. The XML files

with lesser depth contains more data part than the file with higher depth because in XML files

with lesser depth most of the nodes are child nodes that contains data. That means increase in

depth decreases the data ratio. So, files with same node count and same element count the

compression is same to all. But for XML with higher data ratio, compression for data also

counts in compression. Thus, this increased the compression ratio in less depth.

Fig 4.4 shows the compression ratio for dataset 4 where XML files are real world data collected

from various sources. The files in this data set have different nodes count, element count and

depth. Also, they have different ranges of data ratio. There are some errors while compression

of these files. This may be due to invalid structure of those XML document since all

implemented compressors are schema-aware XML compressors. And also, sometimes the

XML generator used found the invalid tag values during compression and decompression

which causes error. The files selected in this dataset is among the successful compression. So,

error is not shown in the result.

86

88

90

92

94

96

98

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 average

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Node Count

XGRIND

XPRESS

XQPOINT

28

Fig 4.2 Compression ratio comparison for dataset 2

Fig 4.3 Compression ratio comparison for dataset 3

86

88

90

92

94

96

98

100

100 200 300 400 500 600 700 800 900 1000 Average

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Element Count

XGRIND

XPRESS

XQPOINT

82

84

86

88

90

92

94

96

98

100

10 20 30 40 50 60 70 80 90 100 Average

C
p

m
p

re
ss

io
n

 r
at

io
 (

%
)

Depth

XGRIND

XPRESS

XQPOINT

29

Fig 4.4 Compression ratio comparison for dataset 4

Also, significant portion of the compression ratio in shown for dataset 1, 2 and 3 is because of

the whitespace used for indenting the XML tags which is eliminated in compressed document.

In dataset 4, there is very less or no indenting in XML files hence have less compression ratio

that other three dataset. In all four charts, the last column is the average compression ratio for

each XML compressor within the datasets. In all for charts the clear winner is XQPoint with

higher compression ratio. XGRIND have the less compression ratio among all three.

4.3.2.2 Compression Time

Compression time is calculated for all four dataset and compared with all the implemented

compressors. The result is shown in Fig 4.5 to Fig 4.8.

Fig 4.5 shows the compression time result for dataset1. From the chart it is clear that the

compression time increased with increase in node count. The increase in compression time is

because of time consumption for encoding more nodes and the increased file size.

0

10

20

30

40

50

60

70

80

90

100
C

o
m

p
re

ss
io

n
 R

at
io

 (
%

)

Document Name

XGRIND

XPRESS

XQPOINT

30

Fig 4.5 Compression time comparison for dataset 1

Fig 4.6 shows the compression time for dataset 2. There is slight increase in compression time

with the increase in element count. The increased time is because of the time consumption for

the encoding of elements.

Fig 4.7 shows the compression time for dataset 3. The compression time is decreased with the

increase in depth. The size of XML file is indirectly proportional to the depth of the XML

nodes for constant node count. This cause the decrease in compression time with increase in

depth.

Fig 4.8 shows the compression time for dataset 4. Compression time for different files is also

different. Larger file require more time for compression.

In all for chart the last column shows the average compression time for three XML

compressors. The average compression time for XQPOINT is lowest in all the cases and

XGRIND is worst of all with high compression time.

0

5

10

15

20

25

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 Average

C
o

m
p

re
ss

io
n

 T
im

e
(S

ec
)

Node Count

XGRIND

XPRESS

XQPOINT

31

Fig 4.6 Compression time comparison for dataset 2

Fig 4.7 Compression time comparison for dataset 3

0

1

2

3

4

5

6

7

100 200 300 400 500 600 700 800 900 1000 Average

C
o

m
p

rs
si

o
n

 T
im

e
(S

ec
)

Element Count

XGRIND

XPRESS

XQPOINT

0

0.5

1

1.5

2

2.5

10 20 30 40 50 60 70 80 90 100 Average

C
o

m
p

re
ss

io
n

 T
im

e
(S

ec
)

Depth

XGRIND

XPRESS

XQPOINT

32

Fig 4.8 Compression time comparison for dataset 4

4.3.2.3 Compression Memory Consumption

Memory consumption is the memory occupied by the application during the compression of

XML file. The memory includes the application itself and other information stored during the

execution of the application. The memory consumed by the application is obtained by the

method from the .NET framework for the current process. The result of memory consumption

for all datasets are shown in Fig 4.9 to Fig 4.12.

Fig 4.9 shows the memory consumption for dataset 1. The chart shows that the memory is

negligible increasing with increasing with node count. This shows that with increase in node

count there is very less effect in memory consumption.

Fig 4.10 shows the memory consumption for dataset2. The chart shows that the memory

consumption is proportional to the number of element in the document. Increase in element

count, increased the dictionary size storing the code for the element thus, causing the increase

in memory.

Fig 4.11 shows the memory consumption for dataset 3. With the increase in depth, the memory

consumption is slightly increased.

0

10

20

30

40

50

60
C

o
m

p
re

ss
io

n
 T

im
e

(S
ec

)

XML Document

XGRIND

XPRESS

XQPOINT

33

Fig 4.9 Compression memory consumption for dataset 1

Fig 4.12 shows the memory consumption for dataset 4. The memory consumption is low in

some files and high in other. The memory consumption is largely dependent with the data

volume and data types in the document. XGRIND uses Huffman coding for data encoding

which consume more memory to store frequency table and Huffman tree. This causes excessive

memory consumption than XPRESS and XQPOINT.

In all the chart, the last column shows the average value for each dataset. The memory

consumption for XGRIND is comparatively higher than other two compressors. XQPoint is

less in memory consumption in all for set of data.

0

10

20

30

40

50

60

70

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 Average

C
o

m
p

re
ss

io
n

 M
em

o
ry

 C
o

n
su

m
p

ti
o

n
 (

M
B

)

Node Count

XGRIND

XPRESS

XQPOINT

34

Fig 4.10 Compression memory consumption for dataset 2

Fig 4.11 Compression memory consumption for dataset 3

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000 Average

C
o

m
p

re
ss

io
n

 M
em

o
ry

 C
o

n
su

m
p

ti
o

n
 (

M
B

)

Element Count

XGRIND

XPRESS

XQPOINT

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 Average

C
o

m
p

re
ss

io
n

 M
em

eo
ry

 C
o

n
su

m
p

ti
o

n
 (

M
B

)

Depth

XGRIND

XPRESS

XQPOINT

35

Fig 4.12 Compression memory consumption for dataset 4

4.3.2.4 Decompression Time

Decompression time is time taken by the decompressor for decoding the compressed file to the

original XML document. Fig 4.13to Fig 4.16 shows chart representation of the decompression

time taken for each datasets.

Fig 4.13 shows the time taken for decompression for the files in dataset 1. The chart shows the

changes in time consumption with respect to node count in XML document. From the chart, it

is clear that the time consumption increases with the increase in node count. This is obvious

because with the increase in nodes in XML document the file size also increase and takes more

time to decompress.

Fig 4.14 shows the decompression time for dataset 2. The chart shows that the decompression

time is almost constant with increase in element count of the XML document. Sudden increase

in time in some column may be due to the changes in data in the document. But the change is

not so prominent.

Fig 4.15 shows the decompression time for dataset 3. With the increase in depth of XML

document the decompression time is decreased. As the document have same number of nodes,

the change in time consumption is because of data contained in the documents. XML document

0

50

100

150

200

250

300

350

400

450

500
C

o
m

p
re

ss
io

n
 M

em
o

ry
 C

o
n

su
m

p
ti

o
n

 (
M

B
)

XML Document

XGRIND

XPRESS

XQPOINT

36

with less depth have more data values than with higher depth document for same node count.

This change in data causes the change in decompression time.

Fig 4.16 shows the decompression time for dataset 4. Time consumption is different for

different types of XML document. Document is arranged in order of size that shows that

decompression increase with the size of the document.

In all four charts the last column is the average decompression time for three compressors.

XQPoint is the clear winner in decompression time consumption. XGRIND is worst of the

three.

Fig 4.13 Decompression time comparison for dataset1

0

1

2

3

4

5

6

7

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 Average

D
ec

o
m

p
re

ss
io

n
 T

im
e

(S
ec

)

Node Count

XGRIND

XPRESS

XQPOINT

37

Fig 4.14 Decompression time comparison for dataset 2

Fig 4.15 Decompression time comparison for dataset 3

0

0.5

1

1.5

2

2.5

3

100 200 300 400 500 600 700 800 900 1000 Average

D
ec

o
m

p
re

ss
io

n
 T

im
e

(S
ec

)

Element Count

XGRIND

XPRESS

XQPOINT

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80 90 100 Average

D
ec

o
m

p
re

ss
io

n
 T

im
e

(S
ec

)

Depth

XGRIND

XPRESS

XQPOINT

38

Fig 4.16 Decompression time comparison for dataset 4

4.3.2.5 Decompression Memory Consumption

Fig 4.17 to Fig 4.20 shows the memory consumption by the XML compressor during the

decompression of compressed XML document.

Fig 4.17 shows the memory consumption for dataset 1. The memory consumption is slightly

inclining. The increase is due to the increase in data and nodes in the file. But the change is not

so prominent.

In Fig 4.18, with increase in element count, the memory increases slightly. Increase in the

dictionary size with the element count causes the memory changes.

Fig 4.19 shows the memory consumption during decompression for dataset 3. The consumption

of memory is decreasing with the increase in depth of the XML document. The change is due

to decrease in data values with the increase in depth.

Fig 4.20 shows the memory consumption of dataset 4. There is variations in memory

consumption because of different verities of document. Also the node count is very large in

some of the files that cause the large memory consumption. XPRESS and XQPOINT much

less memory than XGRIND.

0

5

10

15

20

25

30

35

40

45
D

ec
o

m
p

re
ss

io
n

 T
im

e
(S

ec
)

XML Document

XGRIND

XPRESS

XQPOINT

39

From all four chart the overall memory consumption of XQPoint is lower than XGRIND and

XPRESS.

Fig 4.17 Decompression memory consumption for dataset 1

Fig 4.18 Decompression memory consumption for dataset 2

0

10

20

30

40

50

60

70

80

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 AverageD
ec

o
m

p
re

ss
io

n
 M

em
o

ry
 C

o
n

su
m

p
ti

o
n

 (
M

B
)

Node Count

XGRIND

XPRESS

XQPOINT

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000 AverageD
ec

o
m

p
re

ss
io

n
 M

em
o

ry
 C

o
n

su
m

p
ti

o
n

 (
M

B
)

Element Count

XGRIND

XPRESS

XQPOINT

40

Fig 4.19 Decompression memory consumption for dataset 3

Fig 4.20 Decompression memory consumption for dataset 4

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 AverageD
ec

o
m

p
re

ss
io

n
 M

em
o

ry
 C

o
n

su
m

p
ti

o
n

 (
M

B
)

Depth

XGRIND

XPRESS

XQPOINT

0

50

100

150

200

250

300

350

400

D
ec

o
m

p
re

ss
io

n
 M

em
o

ry
 C

o
n

su
m

p
ti

o
n

 (
Se

c)

XML Document

XGRIND

XPRESS

XQPOINT

41

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

In this study, the three homomorphic XML compressor are tested on different metrics.

Compression ratio, compression time, compression memory consumption, decompression

time, and decompression memory consumption are the metrics evaluated with different

perspective that determines the better XML compressor. Extensive comparison between the

XML compressors are carried out. The result shows that XQPOINT has better performance

among three in all metrics. It shows better performance in all the metrics that is analyzed in the

study. XPRESS follows XQPoint with very small scale. Hence, we can clearly conclude that

XQPOINT is better compressor than other two compressors from the outcomes.

5.2 Future Works

In this study, only three homomorphic XML compressors are studied. There are other XML

compressors proposed in this category. These can be included in the analysis. Also, similar

analysis can be done with homomorphic and non-homomorphic in combine. Here, query parser

are not included in the study. Query support is also another metrics that can be compared.

Query evaluation time can be compared for the XML compressor with different types of query

combining with same perspective as in the study i.e. change in node count, element count and

depth.

42

REFERENCES

[1] S. Sakr, "An Experimental Investigation of XML Compression Tools," CoRR, vol.

abs/0806.0075, Sydney, Australia, 2008.

[2] P. Demitrov, "The History of Data Compression (Infographic)," 19 november 2014.

[Online]. Available: http://techmeup.net/history-data-compression-infographic/.

[3] H. Liefke, D. Suciu, "XMill: An Efficient Compressor for XML Data," Proc. of ACM

SIGMOD, May 2000.

[4] M. Girardot, N. Sundaresan, "Millau: An encoding format for efficient representation

and exchange of XML over the Web," 2000.

[5] Christopher League, Kenjone Eng, "Schema-Based Compression of XML Data with

Relax NG," JOURNAL OF COMPUTERS, vol. Vol 2 No 10, 2007.

[6] Pankaj M. Tolani, Jayant R. Haritsa, "XGRIND: A Query-friendly XML

Compressor," in Proccedings of 18th International Conference on Database

Engineering, 2002.

[7] Jun-Ki Min, Myung-Jae Park, Chin-Wan Chung, "XPRESS: A Queriable

Compression for XML Data," 2003.

[8] Przemyslaw Skibinski, Jakub Swacha, "Combining effieient XML Compression

With Query Processing," ADBIS 2007, LNCS 4690, pp. 330-342, 2007.

[9] D. Salomon, Data Compression: The Complete Reference, 2004.

[10] Baydaa T. Al-Hamadani,Raad F. Alwan,Joan Lu, "XQPoint: A Queriable

Homomorphic XML Compressor," in 6th International Conference on Innovations

in Information Technology, 2009.

[11] Martin Isenburg, Peter Lindstrom, Jack Snoeyink, "Lossless Compression of

Predicted Floating-Point Geometry," Elsevier Science, 2004.

43

[12] "Benchmark of XML Compression Tools," [Online]. Available:

http://xmlcompbench.sourceforge.net/.

44

BIBLIOGRAPHY

[1] J. Cheney, "An Empirical Evaluation of Simple DTD-Conscious Compression

Techniques," 2005.

[2] J. Glen G. Langdon, "An Introduction to Arithmetic Coding," vol. 28, pp. 135-149,

March 1984.

[3] Ian H. Witten, Radford M. Neal, John G. Cleary, "Arithmetic Coding For Data

Compression," vol. 30, pp. 520-540, 1987.

[4] "Introduction to Fixed Point Number Representation," 2006. [Online]. Available:

http://www-inst.eecs.berkeley.edu/~cs61c/sp06/handout/fixedpt.html.

[5] Gregory Leighton, Denilson Barbosa, "Optimizing XML Compression".

[6] S. S. Nair, "XML Compression Techniques: A survey".

[7] Christopher D. Manning, Prabhakar Raghavan, Hinrich Schutze, An Introduction to

Information Retrival, Cambridge: Cambridge University Press, 2009.

[8] "Extensible Markup Language (XML)," [Online]. Available:

http://www.w3.org/XML/.

45

APPENDIX

1. Sample XML Data- Random generated data
Note: Sample data with 50 node, 10 element and depth of 5 level

<?xml version="1.0" encoding="Windows-1252"?>

<root>

 <TRKC>4.54223087479314E+307</TRKC>

 <GHRO QFXA="QPKPRVBIEATZPUBAVRMEOSU">1.06049455815009E+308</GHRO>

 <DE B="MNBYJM">1349319886</DE>

 <N>1640223644</N>

 <QGV>

 <DE>

 <RDCZ>

 <GHRO>

 <C>ZRLAHBOFXRKOXEHODUCC</C>

 </GHRO>

 </RDCZ>

 </DE>

 <RDCZ>UFHYCFAMSSQSMAMPDOEZISYQGWSCVREM</RDCZ>

 <N>139112099</N>

 <TRKC>1.23858955179076E+308</TRKC>

 <QGV>

 <FYQK>

 <DE MZ="JIICHRSFNYQBOEJRUKVNKMJKVTCSVOUIRMD">1045166096</DE>

 <FYQK>1941553840</FYQK>

 <C HVQ="EJJXRLHWZYGNPZKZDHJC">EQQSQLIQCADRNLFWRG</C>

 <FYQK

O="HNXOEOZMOJVETHZUWOIVFJXMZTGQCYUIQSIESXDCDOOIS">1019607202</FYQK>

 <QGV>5.43470315178352E+307</QGV>

 <TRKC>

 <TRKC>

 <N>625639220</N>

 <N PMO="YU">2043899039</N>

 <N RUO="SHRXRQCQXALNHISUTEYTGRLRXJJGLAACCRWDQM">15822504</N>

 </TRKC>

 </TRKC>

 </FYQK>

 <GHRO>

 <C>QTLZMWUNBVZAHHVFXAILPMOEHMYGKBLEPOSNABNG</C>

 <RDCZ IQLK="RPTZEWEDEHRAXOCZJVKSOHFVMCDLRGNVBFOUH">T</RDCZ>

 <N>1581709457</N>

 <N>1572499370</N>

 <DE>

 <B EKK="NBSTMYTWZSZHSXVQJZYMMZUKKWISUJADKKZYAQCKANNP">

 <TRKC Z="IFMYLNHIIQQABPSVXHYW">

 <TRKC>8.27114246639615E+307</TRKC>

 </TRKC>

 </DE>

 <C>RTHTJAURLZLQSILUZLYXXVVCCUQIZMMBC</C>

 <QGV>

 <RDCZ PXE="INFXKLSMMNHUWXFQPKLRYMJ">

 <DE>

 <GHRO>

 <N>773000713</N>

 </GHRO>

 </DE>

 </RDCZ>

46

 <GHRO>

 <B HAZO="WTZCRCELNNVDRVRWGTTEHBNJQTTEOKYMVSFYOJBQE">

 <FYQK>

 <N O="AHG">1154730687</N>

 <B MXJ="XCPIIZPTHWRCATWQRFOSQMJRFLEKRZXDHEPCHJCFKVTEPEJUY">

 <C RJ="SXCXVFBIZNUVETJHDIHVS">BBK</C>

 <GHRO

R="PVEJJGFKFTLFBJOPEGQDBKNSNWBVKSZHHTFZZK">6.69252046093975E+306</GHRO>

 <C>HZZR</C>

 <GHRO>1.49423855790974E+308</GHRO>

 <N>438711425</N>

 </FYQK>

 <RDCZ>

 <GHRO AN="EXHEOQUFPFDJLLNWJHQKEWTAZRMNOVOXNICCRN" />

 </RDCZ>

 </GHRO>

 </QGV>

 </GHRO>

 </QGV>

 </QGV>

</root>

2. Sample data : from dataset 4
Note : it is part of file Baseball.xml

<SEASON>

 <YEAR>1998</YEAR>

 <LEAGUE>

 <LEAGUE_NAME>National</LEAGUE_NAME>

 <DIVISION>

 <DIVISION_NAME>East</DIVISION_NAME>

<TEAM><TEAM_CITY>Atlanta</TEAM_CITY><TEAM_NAME>Braves</TEAM_NAME>

<PLAYER><NUMBER>1274</NUMBER><SURNAME>Malloy</SURNAME><GIVEN_NAME>Marty

</GIVEN_NAME><POSITION>Second

Base</POSITION><GAMES>11</GAMES><GAMES_STARTED>8</GAMES_STARTED><AT_BATS>28

</AT_BATS><RUNS>3</RUNS><HITS>5</HITS><DOUBLES>1</DOUBLES><TRIPLES>0</TRIPLES>

<HOME_RUNS>1</HOME_RUNS><RBI>1</RBI><STEALS>0</STEALS><CAUGHT_STEALING>0</C

AUGHT_STEALING><SACRIFICE_HITS>0</SACRIFICE_HITS><SACRIFICE_FLIES>0</SACRIFICE_F

LIES><ERRORS>0</ERRORS><PB>0</PB><WALKS>2</WALKS><STRUCK_OUT>2</STRUCK_OUT

><HIT_BY_PITCH>0</HIT_BY_PITCH></PLAYER>

<PLAYER><NUMBER>2359</NUMBER><SURNAME>Lockhart</SURNAME><GIVEN_NAME>Keith

</GIVEN_NAME><POSITION>Second

Base</POSITION><GAMES>109</GAMES><GAMES_STARTED>89</GAMES_STARTED><AT_BATS>

366</AT_BATS><RUNS>50</RUNS><HITS>94</HITS><DOUBLES>21</DOUBLES><TRIPLES>0</TRI

PLES><HOME_RUNS>9</HOME_RUNS><RBI>37</RBI><STEALS>2</STEALS><CAUGHT_STEALIN

G>2</CAUGHT_STEALING><SACRIFICE_HITS>2</SACRIFICE_HITS><SACRIFICE_FLIES>3</SACR

IFICE_FLIES><ERRORS>6</ERRORS><PB>0</PB><WALKS>29</WALKS><STRUCK_OUT>37</STR

UCK_OUT><HIT_BY_PITCH>1</HIT_BY_PITCH></PLAYER>

47

<PLAYER><NUMBER>2844</NUMBER><SURNAME> Springer</SURNAME><GIVEN_NAME>Russ

</GIVEN_NAME><THROWS>Right</THROWS><POSITION>Relief

Pitcher</POSITION><WINS>5</WINS><LOSSES>4</LOSSES><SAVES>0</SAVES><GAMES>48</GA

MES><GAMES_STARTED>0</GAMES_STARTED><COMPLETE_GAMES>0</COMPLETE_GAMES><

SHUT_OUTS>0</SHUT_OUTS><ERA>4.1</ERA><INNINGS>52.2</INNINGS><HOME_RUNS>51</HO

ME_RUNS><RUNS>4</RUNS><EARNED_RUNS>26</EARNED_RUNS><HIT_BATTER>24</HIT_BAT

TER><WILD_PITCHES>1</WILD_PITCHES><BALK>5</BALK><WALKED_BATTER>0</WALKED_B

ATTER><STRUCK_OUT_BATTER>30</STRUCK_OUT_BATTER></PLAYER>

<PLAYER><NUMBER>2898</NUMBER><SURNAME>Guillen</SURNAME><GIVEN_NAME>Ozzie

</GIVEN_NAME><POSITION>Shortstop</POSITION><GAMES>83</GAMES><GAMES_STARTED>59

</GAMES_STARTED><AT_BATS>264</AT_BATS><RUNS>35</RUNS><HITS>73</HITS><DOUBLES

>15</DOUBLES><TRIPLES>1</TRIPLES><HOME_RUNS>1</HOME_RUNS><RBI>22</RBI><STEALS

>1</STEALS><CAUGHT_STEALING>4</CAUGHT_STEALING><SACRIFICE_HITS>4</SACRIFICE_H

ITS><SACRIFICE_FLIES>2</SACRIFICE_FLIES><ERRORS>6</ERRORS><PB>0</PB><WALKS>24</

WALKS><STRUCK_OUT>25</STRUCK_OUT><HIT_BY_PITCH>1</HIT_BY_PITCH></PLAYER>

<PLAYER><NUMBER>2954</NUMBER><SURNAME>Bautista</SURNAME><GIVEN_NAME>Danny

</GIVEN_NAME><POSITION>Outfield</POSITION><GAMES>82</GAMES><GAMES_STARTED>27</

GAMES_STARTED><AT_BATS>144</AT_BATS><RUNS>17</RUNS><HITS>36</HITS><DOUBLES>1

1</DOUBLES><TRIPLES>0</TRIPLES><HOME_RUNS>3</HOME_RUNS><RBI>17</RBI><STEALS>1

</STEALS><CAUGHT_STEALING>0</CAUGHT_STEALING><SACRIFICE_HITS>3</SACRIFICE_HIT

S><SACRIFICE_FLIES>2</SACRIFICE_FLIES><ERRORS>2</ERRORS><PB>0</PB><WALKS>7</WA

LKS><STRUCK_OUT>21</STRUCK_OUT><HIT_BY_PITCH>0</HIT_BY_PITCH></PLAYER>

<PLAYER><NUMBER>2989</NUMBER><SURNAME> Martinez</SURNAME><GIVEN_NAME>Dennis

</GIVEN_NAME><THROWS></THROWS><POSITION>Relief

Pitcher</POSITION><WINS>4</WINS><LOSSES>6</LOSSES><SAVES>2</SAVES><GAMES>53</GA

MES><GAMES_STARTED>5</GAMES_STARTED><COMPLETE_GAMES>1</COMPLETE_GAMES><

SHUT_OUTS>1</SHUT_OUTS><ERA>4.45</ERA><INNINGS>91</INNINGS><HOME_RUNS>109</HO

ME_RUNS><RUNS>8</RUNS><EARNED_RUNS>53</EARNED_RUNS><HIT_BATTER>45</HIT_BAT

TER><WILD_PITCHES>3</WILD_PITCHES><BALK>2</BALK><WALKED_BATTER>0</WALKED_B

ATTER><STRUCK_OUT_BATTER>19</STRUCK_OUT_BATTER></PLAYER>

<PLAYER><NUMBER>3143</NUMBER><SURNAME>Williams</SURNAME><GIVEN_NAME>Gerald

</GIVEN_NAME><POSITION>Outfield</POSITION><GAMES>129</GAMES><GAMES_STARTED>51

</GAMES_STARTED><AT_BATS>266</AT_BATS><RUNS>46</RUNS><HITS>81</HITS><DOUBLES

>18</DOUBLES><TRIPLES>3</TRIPLES><HOME_RUNS>10</HOME_RUNS><RBI>44</RBI><STEAL

S>11</STEALS><CAUGHT_STEALING>5</CAUGHT_STEALING><SACRIFICE_HITS>2</SACRIFICE

_HITS><SACRIFICE_FLIES>1</SACRIFICE_FLIES><ERRORS>5</ERRORS><PB>0</PB><WALKS>17

</WALKS><STRUCK_OUT>48</STRUCK_OUT><HIT_BY_PITCH>3</HIT_BY_PITCH></PLAYER>

