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ABSTRACT

A connection between measure theory and topology is established when a
σ−field F is defined in terms of topological properties. More precisely, we
defined F as the smallest σ−field containing all the open sets of a topologi-
cal space Ω, then there are interesting interrelation between measure theory
and topology. We study the interrelation between topological space, open
sets and continuous functions in one hand and measure space, measurable
set and measurable function on the other.
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Chapter 1

Introduction

In this chapter, we state some definitions and theorems which will be used
in later chapter of the thesis. we begin with the definition of increasing and
decreasing sequences.

Definition 1.1. Let A1, A2, ... be subsets of a set Ω. If A1 ⊂ A2 ⊂ ... and⋃∞
n=1An = A, we say that the An form an increasing sequence of sets with

limit A, or that the An increase to A; we write An ↑ A. If A1 ⊃ A2 ⊃ ... and⋂∞
n=1An = A, we say that the An form a decreasing sequence of sets with

limit A, or that the An decrease to A; we write An ↓ A.

The set of real numbers is denoted by <, and <n denotes n dimensional
Euclidean Space.
In < the interval (a, b] is defined as

(a, b] = {x ∈ < : a < x ≤ b}

and the interval (a,∞) is defined as

(a,∞) = {x ∈ < : x > a}

Other types of intervals are defined similarly.
If a = (a1, a2, ..., an), b = (b1, b2, ..., bn) ∈ <n, then a ≤ b will mean ai ≤ bi for
all i. The interval (a, b] in <n will be defined as

(a, b] = {x ∈ <n : ai < xi ≤ bi, i = 1, 2, ..., n}

and other types of intervals are defined similarly.
The set of extended real numbers is the two-point compactificatoin <∪{∞}∪
{−∞}, denoted by <. The set of n-tuples (x1, x2, ..., xn), with each xi ∈ <,

1



CHAPTER 1. INTRODUCTION 2

is denoted by <n. If f is a function from Ω to Ω′, written as f : Ω→ Ω′ and
B ⊂ Ω′,then the pre-image of B under f is defined as

f−1(B) = {ω ∈ Ω : f(ω) ∈ B}

If f : < → < is a function,then f is increasing iff

x < y ⇒ f(x) ≤ f(y),

and f is decreasing iff

x < y ⇒ f(x) ≥ f(y).

If fn : Ω→ <, n = 1, 2, ..., then the fn are said to form an increasing sequence
iff

fn(ω) ≤ fn+1(ω) for all n and ω

and fn are said to form a decreasing sequence iff

fn(ω) ≥ fn+1(ω) for all n and ω

If f1, f2, ... form an increasing sequence of functions with limit f , that is,
limn→∞ fn(ω) = f(ω) for all ω, then we write fn ↑ f . Similarly, we write
fn ↓ f for a decreasing sequence.
We abbreviate {f ≤ g} for a set {ω ∈ Ω : f(ω) ≤ g(ω)}, similarly the pre-
image {ω ∈ Ω : f(ω) ∈ B} is abbreviated as {f ∈ B}.
For a subset A of Ω, the indicator of A, denoted by IA is the function defined
by

IA(ω) =

{
1 for ω ∈ A
0 for ω /∈ A

If f : Ω → < is a function, then the positive and negative parts of f are
defined by

f+ = max(f, 0) and

f− = max(−f, 0)

We next define limit superior and limit inferior.

Definition 1.2. Let {xn} be a sequence of real numbers. Suppose there is a
real number b satisfying the following conditions:
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(a) For every ε > 0 there exists an integer N such that n > N implies

xn < b+ ε.

(b) Given ε > 0 and given m > 0, there exists an integer n > m such that

xn > b− ε.

then b is called the limit superior or upper limit of {xn} and write

b = lim
n→∞

supxn.

The limit inferior or lower limit of {xn} is defined as follows:

lim
n→∞

inf xn = − lim
n→∞

sup yn.

where yn = −xn, n = 1, 2, .
For the sequence of sets A1, A2, ... of subsets of Ω we define

lim
n

supAn =
∞⋂
n=1

∞⋃
k=n

Ak

and

lim
n

inf An =
∞⋃
n=1

∞⋂
k=n

Ak.

Thus, ω ∈ lim supnAn iff for every n, ω ∈ Ak for some k ≥ n and ω ∈
lim infnAn iff for some n, ω ∈ Ak for all k ≥ n.

The following is the useful theorem for our thesis.

Theorem 1.1. De Morgan’s Law Let A1, A2, ... be subsets of a set ω. Then(⋃
n

An

)c

=
⋂
n

Acn and

(⋂
n

An

)c

=
⋃
n

Acn.

Following is also the useful definition.

Definition 1.3. A norm on a vector space L is a function ‖‖ from L to the
nonnegative reals satisfying

‖ax‖ = |a| ‖x‖ for all c ∈ C, x ∈ L.

‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ L.

‖x‖ = 0 implies x = 0.



Chapter 2

Measure and Integration
Theory

In order to understand the interplay between the measure theory and topol-
ogy, we need to learn the measure theory in detail. Chapter 2 will be devoted
to measure theory. In this chapter, we state definitions and give examples
and state standard theorems with proofs of measure theory followed by inte-
gration theory. First we begin with the definition of field.

Definition 2.1. Let F be a collection of subsets of a set Ω. Then F is
called a field iff

(a) Ω ∈ F

(b) If A ∈ F , then Ac ∈ F

(c) If A1, A2, ..., An ∈ F , then
⋃n
i=1Ai ∈ F

It follows that F is closed under finite intersection because by De Morgan
Law if A1, A2, ..., An ∈ F , then

n⋂
i=1

Ai = (
n⋃
i=1

Aci)
c ∈ F .

If (c) is replaced by

If A1, A2, ... ∈ F , then
∞⋃
i=1

Ai ∈ F ,

then F is called a σ-field.

4
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We note that if F is a field, then a countable union of a set in F can be
expressed as the limits of an increasing sequence of sets in F , and conversely.
To see this if

⋃∞
i=1Ai = A, then by definition

⋃n
i=1Ai ↑ A and conversely

if An ↑ A, then A =
⋃∞
n=1 An a countable union of sets in F . This argu-

ment shows that a σ-field is a field that is closed under limits of increasing
sequences.

We next give some examples of field and σ−field.

(a) The largest σ-field of subsets of a fixed set Ω is the collection of all
subsets of Ω. The smallest σ-field consists of the two subsets φ and Ω.

(b) Let A be a non empty proper subset of Ω. Then F = {φ,Ω, A,Ac} is
the smallest σ-field containing A.

(c) Let Ω = <. Let F consist of all finite disjoint unions of right-semiclosed
intervals(for convention we also count (a,∞),−∞ ≤ a < ∞ as right-
semiclosed). Then F is a field but not a σ-field because if An =(
0, 1− 1

n

]
∈ F for n = 1, 2... and

⋃∞
n=1An =

⋃∞
n=1

(
0, 1− 1

n

]
= (0, 1) /∈

F .

Definition 2.2. Let S be a class of sets. Then the smallest σ-field contain-
ing the sets of S is denoted by σ(S ) and called the minimal σ-field over
S .

Definition 2.3. A measure on a σ-field F is a non-negative, extended real-
valued function µ on F such that whenever A1, A2, ... form a finite or count-
ably infinite collection of disjoint sets in F , we have

µ

(
∞⋃
n=1

An

)
=
∞∑
n=1

µ(An).

If µ(Ω) = 1, µ is called a probability measure.

Definition 2.4. A measure space is a triple (Ω,F , µ) where Ω is a set, F
is a σ−field of subsets of Ω, and µ is a measure on F . If µ is a probability
measure, then (Ω,F , µ) is called a probability measure space.

Some examples of measures are as follows:
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(a) Let Ω be any set and let F consists of all subsets of Ω. Define µ(A)
as the number of points in A. Then if A has n members, then µ(A) =
n, n = 1, 2, ... and if A is infinite set, then µ(A) =∞. The set function
µ is a measure on F , called a counting measure.

(b) Let Ω = {x1, x2, ...} be a finite or countably infinite set and let p1, p2, ...be
non-negative numbers. Let F be a collection of subsets of Ω and define

µ(A) =
∑
xi∈A

pi

Then the set function µ is a measure on F . If
∑
pi = 1 then µ is a

probability measure and if all pi = 1, then µ is a counting measure.

Definition 2.5. The class of Borel sets of < denoted by B(<), is defined as
the smallest σ-field of subsets of < containing all intervals (a, b], a, b ∈ <.

By definition, B(<) can be described as the intersection of all σ−fields con-
taining the intervals (a, b], a, b ∈ <. Since

(a, b] =
∞⋂
n=1

(
a, b+

1

n

)
and(a, b) =

∞⋃
n=1

(
a, b− 1

n

]
and by definition of σ−field, B(<) is the smallest σ−field containing all
open intervals. Similarly, B(<) can be described as the smallest σ−field
containing the class of all intervals of <. Moreover since an open set is a
countable union of open intervals, B(<) is the smallest σ−field containing
all open sets of <.

The following is the basic properties of the set functions:

Theorem 2.1. Let µ be a finitely additive set function on the field F .

(a) µ(φ) = 0.

(b) µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B) for all A,B ∈ F .

(c) If A,B ∈ F and B ⊂ A, then µ(A) = µ(B) + µ(A−B)
(hence µ(A−B) = µ(A)− µ(B) if µ(B) is finite, and µ(B) ≤ µ(A) if
µ(A−B) ≥ 0).

(d) If µ is nonnegative,

µ

(
n⋃
i=1

Ai

)
≤

n∑
i=1

µ(Ai) for all A1, ..., An ∈ F .
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If µ is a measure,

µ

(
∞⋃
n=1

An

)
≤

∞∑
n=1

µ(An) for all A1, A2... ∈ F such that
∞⋃
n=1

An ∈ F .

Proof. (a) Let A ∈ F such that µ(A) is finite. Then

µ(A) = µ(A ∪ φ)

= µ(A) + µ(φ.)

So µ(φ) = 0.

(b) We know

A = (A ∩B) ∪ (A−B)

and

B = (A ∩B) ∪ (B − A).

Thus by finite additivity of µ we have

µ(A) = µ(A ∩B) + µ(A−B)

and

µ(B) = µ(A ∩B) + µ(B − A).

By adding

µ(A) + µ(B) = µ(A ∩B) + µ(A ∩B) + µ(A−B) + µ(B − A)

= µ(A ∩B) + µ(A ∪B).

(c) We have

A = B ∪ (A−B)

So

µ(A) = µ(B) + µ(A−B)

If µ(B) is finite, then

µ(A)− µ(B) = µ(A−B)

Morever, if µ(A−B) ≥ 0, then

µ(A) ≥ µ(B).



CHAPTER 2. MEASURE AND INTEGRATION THEORY 8

(d) We know

n⋃
i=1

Ai = A1 ∪ (Ac1 ∩ A2) ∪ ... ∪ (Ac1 ∩ ... ∩ Acn−1 ∩ An)

and the sets on the right are disjoint. Also, since µ is nonnegative, by
(c)

µ(Ac1 ∩ ... ∩ Acn−1 ∩ An) ≤ µ(An).

Thus,

µ

(
n⋃
i=1

Ai

)
≤

n∑
i=1

µ(Ai).

Morever, since

∞⋃
n=1

An =
∞⋃
n=1

(Ac1 ∩ ... ∩ Acn−1 ∩ An),

same as the proof of first part of (d) we have

µ

(
∞⋃
n=1

An

)
≤

∞∑
n=1

µ(An)

if µ is a measure.

Definition 2.6. A set function µ defined on F is said to be finite iff µ(A)
is finite, that is, not +

−∞, for each A ∈ F . A nonnegative, finitely additive
set function µ on the field F is said to be σ-finite on F iff Ω can be written
as
⋃∞
n=1An where the An belong to F and µ(An) <∞ for all n.

Countably additive set functions have a basic continuity property, which
as follows:

Theorem 2.2. Let µ be a countably additive set function on the σ-field F .

(a) If A1, A2,, ... ∈ F and An ↑ A, then µ(An)→ µ(A) as n→∞.

(b) If A1, A2,, ... ∈ F , An ↓ A, and µ(A1) is finite, then µ(An)→ µ(A) as
n→∞.
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Proof. (a) If µ(An) =∞ for some n, then

µ(A) = µ(An) + µ(A− An) =∞.

Replacing A by Ak, we have µ(Ak) = ∞ for all k ≥ n. So in this case
the statement is trivial.
Similar case arises if µ(An) = −∞ for some n.
Thus we assume that µ(An) is finite for all n. Since An form an in-
creasing sequence, we can write

A = A1 ∪ (A2 − A1) ∪ ... ∪ (An − An−1) ∪ ...

Thus

µ(A) = µ(A1) + µ((A2)− µ(A1) + ...+ µ((An)− µ(An−1) + ...

= lim
n→∞

µ(An)

that is, µ(An)→ µ(A) as n→∞ as desired.

(b) If An ↓ A, then A1 − An ↑ A1 − A. So by (a), µ(A1 − An) ↑ (A1 − A).
Thus

µ(A1 − A) = µ(A1)− µ(A) (as µ(A1) is finite, so is µ(A))

µ(A) = µ(A1)− µ(A1 − A)

= µ(A1)− lim
n→∞

µ(A1 − An)

= lim
n→∞

µ(An) (by Th 2.1(c))

Hence µ(An)→ µ(A) as n→∞.

The following theorem ensures that finite additivity plus continuity im-
plies countable additivity.

Theorem 2.3. Let µ be a finitely additive set function on the field F .

(a) Assume that µ is continuous from below at each A ∈ F , that is,
A1, A2, .. ∈ F , A =

⋃∞
n=1An ∈ F and An ↑ A, then µ(An)→ µ(A). It

follows that µ is countably additive on F .

(b) Assume that µ is continuous from above at the empty set, that is, if
A1, A2, ... ∈ F and An ↓ φ, then µ(An) → 0. It follows that µ is
countably additive on F .
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Proof. (a) Let A1, A2, ... be disjoint sets in F such that A =
⋃∞
i=1Ai ∈ F .

Let Bn =
⋃n
i=1 Ai. Then Bn ↑ A. So by hypothisis µ(Bn)→ µ(A). By

finite addivity of µ

µ(Bn) =
n∑
i=1

µ(Ai).

So

µ(A) = lim
n→∞

n∑
i=1

µ(Ai)

as desired.

(b) Let A1, A2, ... be disjoint sets in F such that A =
⋃∞
i=1 Ai ∈ F . Let

Bn =
⋃n
i=1 Ai. So by Th 2.1

µ(A) = µ(Bn) + µ(A−Bn)

But A−Bn ↓ φ, so by hypothesis, µ(A−Bn)→ 0. Thus µ(Bn)→ µ(A).
So

µ(A) = lim
n→∞

µ(Bn)

= lim
n→∞

µ(
n⋃
i=1

Ai)

= lim
n→∞

n∑
i=1

µ(Ai). (by finite additivity of µ)

Definition 2.7. An outer measure on Ω is a nonnegative, extended real-
valued set function λ on the class of all subsets of Ω, satisfying

1. λ(φ) = 0.

2. A ⊂ B implies λ(A) ≤ λ(B) (monotonicity).

3. λ (
⋃∞
n=1 An) ≤

∑∞
n=1 λ(An) (countable subadditivity).

Definition 2.8. Let λ be an outer measure on the set Ω. We say that the
set E is λ-measurable iff

λ(A) = λ(A ∩ E) + λ(A ∩ Ec)for all A ⊂ Ω.
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In the definition if M is the class of all λ−measurable sets then λ is a
measure on M .

Definition 2.9. A measure µ on a σ−field F is said to be complete iff
whenever A ∈ F and µ(A) = 0, we have B ∈ F for all B ⊂ A.
The completion of a measure space (Ω,F , µ) is defined as follows:
Let Fµ be the class of sets A ∪ N , where A ranges over F and N , over all
subsets of measure 0 in F . Then Fµ is a σ−field including F . Now we
extend µ to Fµ by setting µ(A ∪N) = µ(A). This definition is well defined
because if A1 ∪N1 = A2 ∪N2 ∈ Fµ, then

µ(A1) = µ(A1 ∩ A2) + µ(A1 − A2)

= µ(A1 ∩ A2) , (since A1 − A2 ⊂ N2 so that µ(A1 − A2) = 0)

Thus,

µ(A1) ≤ µ(A2)

Similarly

µ(A2) = µ(A2 ∩ A1) + µ(A2 − A1)

= µ(A2 ∩ A1) , (since A2 − A1 ⊂ N1 so that µ(A2 − A1) = 0)

Thus,

µ(A2) ≤ µ(A1)

So µ(A1) = µ(A2). So µ is well defined.
The measure space (Ω,Fµ, µ) is called the completion of (Ω,F , µ),Fµ the
completion of F relative to µ. We note that the completion is in fact com-
plete. For let M ⊂ A ∪ N ∈ Fµ where A ∈ F , µ(A) = 0, N ⊂ B ∈
F , µ(B) = 0, then M ⊂ A ∪B ∈ F , µ(A ∪B) = 0, hence M ∈ Fµ.

Definition 2.10. A class C of subsets of Ω is said to be monotone if C
satisfies the following condition:

if An ∈ C and An ↑ A or An ↓ A , then A ∈ C .

Theorem 2.4. Monotone class theorem.[6] Let F0 be a field of subsets of Ω,
and C a class of subsets of Ω that is monotone. If C ⊃ F0, then C ⊃ σ(F0),
the minimal σ−field over F0.

The following is the useful fundamental extension theorem.
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Theorem 2.5. Caratheodory extension theorem.[6] Let µ be a measure on
the field F0 of subsets of Ω, and assume that µ is σ−finite on F0, so that
Ω can be decomposed as

⋃∞
n=1An, where An ∈ F0 and µ(An) <∞ for all n.

Then µ has a unique extension to a measure on the minimal σ−field F over
F0.

Now we state Jordan-Hahn decomposion theorem which gives the defini-
tion of signed measure.

Theorem 2.6. Jordan-Hahn Decomposition Theorem.[6] Let λ be a count-
ably additive extended real-valued set function on the σ−field F . Define

λ+(A) = sup {λ(B) : B ∈ F , B ⊂ A}

λ−(A) = − inf {λ(B) : B ∈ F , B ⊂ A}

Then λ+ and λ− are measure on F and λ = λ+ − λ−.

Definition 2.11. In the Jordan-Hahn Decomposition Theorem we call λ+

the upper variation or positive part of λ, λ− the lower variation or negative
part, and |λ| = λ+ + λ− the total variation. The difference λ = λ+ − λ− is
sometimes called the signed measure.

Theorem 2.7. Borel-Cantelli Lemma.[6] If A1, A2, ... ∈ F and
∑∞

n=1 µ(An) <
∞, then µ(lim supnAn) = 0.

Before defining Lebesgue integral, we define Riemann integral.

Definition 2.12. Let f be a bounded real valued function defined on the
closed, bounded interval [a, b]. Let P : a = x0 < x1 < ... < xn = b is a
partition of [a, b]. Then we define the lower and upper Darboux sums for f
with respect to P , respectively, by

L(f, P ) =
n∑
i=1

mi(xi − xi−1)

U(f, P ) =
n∑
i=1

Mi(xi − xi−1)

where for 1 ≤ i ≤ n,

mi = inf {f(x) : xi−1 < x < xi} and
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Mi = sup {f(x) : xi−1 < x < xi} .

We define the lower and upper Riemann integrals of f over [a, b], respectively,
by ∫ b

a

f = sup {L(f, P ) : P a partition of [a, b]}

∫ b

a

f = inf {U(f, P ) : P a partition of [a, b]} .

By definition of lower and upper integrals, the upper integral is always at
least as large as the lower integral. If two integrals are equal, we say that f is
Reimann integrable over [a, b] and this common value is called the Reimann

integral of f over [a, b]. We denote it by
∫ b
a
f .

Next we define Lebesgue-Stieltjes measure on real line.

Definition 2.13. A Lebesgue-Stieltjes measure on < is a measure µ on B(<)
such that µ(I) <∞ for each bounded interval I. A distribution function on <
is a map F : < → < that is increasing and right continuous(limx→x+0

F (x) =

F (x0))

The following two theorems are the standard results related to Lebesgue-
Stieltjes measure.

Theorem 2.8. [6] Let µ be a Lebesgue-Stieltjes measure on <. Let F : < →
< be defined, up to an additive constant, by F (b) − F (a) = µ(a, b]. Then F
is a distribution function.

Theorem 2.9. [6] Let F be a distribution function on <, and let µ(a, b] =
F (b)− F (a), a < b. There is a unique extension of µ to a Lebesgue-Stieltjes
measure on <.

Here theorem 2.8 and theorem 2.9 show that the formula µ(a, b] = F (b)−
F (a), a < b sets up a one-to-one correspondence between Lebesgue-Stieltjes
measures and distribution functions, where two distribution functions that
differ by a constant are identified.

Let F be a distribution function and µ the corresponding Lebesgue-
Stieltjes measure. Then µ(a, b] = F (b) − F (a), a < b. Morever the measure
of any interval, right semi-closed or not, may be expressed in terms of F . For
if F (x−) = limy→x− F (y), then
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(1) µ(a, b] = F (b)− F (a)

(2) µ(a, b) = F (b−)− F (a)

(3) µ[a, b] = F (b)− F (a−)

(4) µ[a, b) = F (b−)− F (a−)

(5) F is continuous at x iff µ {x} = 0. Hence the magnitude of discontinuity
of F at x coincides with the measure of {x}

To establish (2), we have

µ(a, b) = lim
n→∞

µ(a, b− 1

n
]

= lim
n→∞

[F (b− 1

n
)− F (a)]

= F (b−)− F (a).

To establish (3), we have

µ[a, b] = lim
n→∞

µ(a− 1

n
, b]

= lim
n→∞

[F (b), F (a− 1

n
)]

= F (b)− F (a−).

Similarly (4) will follow because

µ[a, b) = lim
n→∞

µ(a− 1

n
, b− 1

n
]

= lim
n→∞

[F (b− 1

n
)− F (a− 1

n
)]

= F (b−)− F (a−).

(5) also holds because if a = b = x, then by the proof of expression (3), we
have µ {x} = µ[x, x−] = F (x)− F (x−).

If F is continuous at a and b, then all four expressions (1-4) are equal.

Now let f : < → <, f > 0, and f is Riemann integrable on any finite
interval. Then if we fix F (0) arbitrarily and define

F (x)− F (0) =

∫ x

0

f(t)dt, x > 0
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F (0)− F (x) =

∫ 0

x

f(t)dt, x < 0,

then F is a continuous distribution function and so there exist a Lebesgue-
Stieltjes measure, specifically,

µ(a, b] =

∫ b

a

f(x)dx,

In particular we may take f(x) = 1 for all x, and F (x) = x; then

µ(a, b] =

∫ b

a

1dx, = b− a.

Here the set function µ is called the Lebesgue measure on B(<). The com-
pletion of B(<) relative to Lebesgue measure is called the class of Lebesgue
measurable sets, written as B(<). Thus, Lebesgue measurable set is the
union of a Borel set and a subset of a Borel set of Lebesgue measure 0. The
extension of Lebesgue measure to B(<) is called Lebesgue measure also.

Now we define the measurable function.

Definition 2.14. Let h : Ω1 → Ω2 be a function. Then h is said to be
measurable relative to the σ−fields Fj of subsets of Ωj, j = 1, 2, iff h−1(A) ∈
F1 for each A ∈ F2.

It is sufficient to show that h−1(A) ∈ F1 for each A ∈ C where C is the
class of subsets of Ω2 such that the minimal σ−field over C is F2.
The notation h : (Ω1,F1) → (Ω2,F2) will mean that h : Ω1 → Ω2, measur-
able relative to F1 and F2.
If F is a σ−field of subsets of Ω, (Ω,F ) is sometimes called a measurable
space, and the sets in F are sometimes called measurable sets.

Definition 2.15. Let (Ω,F ) be a measurable space and h : Ω→ <n (or <n).
Then h is said to be Borel measurable on (Ω,F ) iff h is measurable relative
to the σ−fields F and B, the class of Borel sets. If Ω is a Borel subset

of <k(or <k) and we use the term Borel measurable, we always assume that
F = B.

Some of the consequences are in order:

(a) A continuous map h : <k → <n is Borel measurable. To prove this let
C be the class of open subsets of <n, then by definition of continuous
function h−1(A) is open, hence h1(A) ∈ B(<k), for each A ∈ C . Thus
h is Borel measurable.
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(b) If A is a subset of < that is not a Borel set and IA is the indicator of
A, then IA is not Borel measurable. For {ω : IA(ω) = 1} = A /∈ B(<).

(c) To show that a function h : Ω → < (or <) is Borel measurable, it is
sufficient to show that {ω : h(ω) > c} belongs to F for each real c. For
this let C be the class of sets {x : x > c}, c ∈ <. Then C consists all
types of intervals. So σ(C ) = B(<). Thus if

h−1 {x : x > c} = h−1(c,∞)

= {ω : h(ω) ∈ (c,∞)}
= {ω : h(ω) > c}

belongs to F , then h is Borel measurable as desired. Similarly {ω : h(ω) > c}
can be replaced by {ω : h(ω) ≥ c}, {ω : h(ω) < c}, or {ω : h(ω) ≤ c},
or equally well {ω : a ≤ h(ω) ≤ b} for all real a, and b and so on.

(d) If (Ω,F , µ) is a measure space, the terminology “h is measurable on
(Ω,F , µ)” will mean that h is Borel measurable on (Ω,F ) and µ is a
measure on F .

Definition 2.16. Let (Ω,F ) be a measurable space. Let h : Ω → < be a
function. Then h is said to be simple iff h is Borel measurable and takes only
finitely many distinct values. Equivalently, h is simple iff it can be written
as a finite sum

∑r
i=1 xiIAi, where the Ai are disjoint sets in F and IA is the

indicator of Ai; xi need not be distinct.

We note that sums, differences, products, and quotients of simple func-
tions are simple provided the operations are well defined.

Now we define Lebesgue integral.

Definition 2.17. Let (Ω,F ) be a measure space and µ be a measure on F .
Let h : Ω → < be Borel measurable. For a simple function h =

∑r
i=1 xiIAi,

where the Ai are disjoint sets in F , we define the Lebesgue integral of h with
respect to µ, written as

∫
Ω
hdµ or

∫
Ω
h(ω)dµ(ω), by∫

Ω

hdµ =
r∑
i=1

xiµ(Ai)

provided +∞ and −∞ do not both appear in the sum. If they do, we say that
the integral does not exist.
If h is nonnegative Borel measurable, we define∫

Ω

hdµ = sup

{∫
Ω

sdµ : s simple, 0 ≤ s ≤ h

}
.
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Finally if h is an arbitrary Borel measurable function, then we define∫
Ω

hdµ =

∫
Ω

h+dµ−
∫

Ω

h−dµ

provided the right hand side is not of the form +∞−∞ where h+=max(h, 0)
and h−=max(−h, 0).

Here the function h is said to be µ−integrable (or simply integrable if µ
is understood) iff

∫
Ω
hdµ is finite, that is, iff

∫
Ω
h+dµ and

∫
Ω
h−dµ are both

finite.
If A ∈ F , then we define ∫

A

hdµ =

∫
Ω

hIAdµ.

If h is a step function from < → < and µ Lebesgue measure,
∫

Ω
hdµ is

same as the Riemann integral. However, the integral of h with respect to
Lebesgue measure exists for many functions that are not Riemann integrable.
The following is an example of it.

Let the function f be defined on [0, 1] by

f(x) =

{
1 for x is irrational

0 for x is rational

Then f is integrable with respect to Lebesgue measure. But f is not Riemann
integrable. For let P be a partition on [a, b]. The by the density of the
rationals and the irrationals, we have L(P, f) = 0 and U(P, f) = 1. Thus∫ 1

0

f = 0 < 1 =

∫ 1

0

f.

Hence f is not Riemann integrable.

The following are some theorems related on Borel measurable function
and Lebesgue integration that are useful to establish the result on “the in-
terplay between measure theory and topology”.

Theorem 2.10. If h1, h2, .. are Borel measurable function from Ω to < and
hn(ω)→ h(ω) for all ω ∈ Ω, then h is Borel measurable
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Proof. To prove h is Borel measurable, we show that the set {ω : h(ω) > c}
is Borel measurable, that is, {ω : h(ω) > c} ∈ F for each real c. We have

{ω : h(ω) > c} =
{
ω : lim

n→∞
hn(ω) > c

}
=

{
ω : hn(ω) > c+

1

r
for some r = 1, 2, ...

}
=

∞⋃
r=1

{
ω : hn(ω) > c+

1

r
for all but finitely many n

}
=

∞⋃
r=1

lim inf
n

{
ω : hn(ω) > c+

1

r

}
(by definition of lower limit)

=
∞⋃
r=1

∞⋃
n=1

∞⋂
k=n

{
ω : hn(ω) > c+

1

r

}
(by definition of lower limit)

which belongs to F because F is a σ−field. Thus h is Borel measurable.

Theorem 2.11. (a) A nonnegative Borel measurable function h is the limit
of an increasing sequence of nonnegative, finite valued, simple functions
hn.

(b) An arbitrary Borel measurable function f is the limit of a sequence of
finite valued simple functions fn, with |fn| ≤ |f | for all n.

Proof. (a) Let us define hn by

hn(ω) =

{
k−1
2n

if k−1
2n
≤ h(ω) < k

2n
, k = 1, 2, ..., n2n

n if h(ω) ≥ n.

Then hn is increasing, finite-valued, nonnegative and simple. Next, if
hn(ω) <∞, then for some n,

0 ≤ h(ω)− h(ωn) ≤ 1

2n
.

So

lim(h(ω)− hn(ω)) = 0⇒ lim
n→∞

hn(ω) = h(ω).

So the theorem is proved for in this case.
If h(ω) = ∞, then hn(ω) = n for every n. Hence as n → ∞, we have
hn(ω)→ h(ω).
This completes the proof of the (a).
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(b) Let gn and hn be nonnegative, finite valued, simple functions with
gn ↑ f+ and hn ↑ f−. Let us define fn by fn = gn− hn. Then fn is also
nonnegative, finite valued and simple functions and fn ↑ f+ − f− = f .
Morever, |fn| ≤ f for all n since fn form an increasing sequence of
functions with limit f .

Theorem 2.12. [6] If h1, and h2 are Borel measurable functions from Ω to
<, so are h1 + h2, h1 − h2, h1h2, and h1/h2 assuming these are well defined.

Theorem 2.13. A composition of measurable function is measurable.

Proof. Let g : (Ω1,F1) → (Ω2,F2) and h : (Ω2,F2) → (Ω3,F3). Then we
have to show that hog is measurable. For, let B ∈ F. Then

(hog)−1(B) = g−1(h−1(B))

which belongs to F (because h−1(B) belongs to F and hence g−1(h−1(B))
belongs to F as g and h are measurable.)

Theorem 2.14. [6]

(a) If
∫

Ω
hdµ exists and c ∈ <, then

∫
Ω
chdµ exists and∫

Ω

chdµ = c

∫
Ω

hdµ.

(b) If g(ω) ≥ h(ω) for all ω, then∫
Ω

gdµ ≥
∫

Ω

hdµ.

(c) If
∫

Ω
hdµ exists, then ∣∣∣∣∫

Ω

hdµ

∣∣∣∣ ≤ ∫
Ω

|h| dµ.

(d) If h ≥ 0 and B ∈ F , then∫
B

hdµ = sup

{∫
B

sdµ : 0 ≤ s ≤ h, s simple

}
(e) If

∫
Ω
hdµ exists, so does

∫
A
hdµ for each A ∈ F ; if

∫
Ω
hdµ is finite,

then
∫
A
hdµ is also finite for each A ∈ F .
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Theorem 2.15. Monotone Convergence Theorem. [2] Let h1, h2, ... form
an increasing sequence of nonnegative Borel measurable functions, and let
h(ω) = limn→∞ hn(ω), ω ∈ Ω, then

∫
Ω
hndµ→

∫
Ω
hdµ.

Theorem 2.16. Additivity Theorem. [2] Let f and g be Borel measurable,
and assume that f + g is well defined. If

∫
Ω
fdµ and

∫
Ω
gdµ exists and∫

Ω
fdµ+

∫
Ω
gdµ is well defined, then∫

Ω

(f + g)dµ =

∫
Ω

fdµ+

∫
Ω

gdµ.

In particular, if f and g are integrable, so is f + g.

Corollary 2.1. [2]

(a) If h1, h2, ... are nonnegative Borel measurable,∫
Ω

(
∞∑
n=1

hn

)
dµ =

∞∑
n=1

∫
Ω

hndµ.

(b) If h is Borel measurable, then h is integrable iff |h| is integrable.

(c) If g and h are Borel measurable with |g| ≤ h, h is integrable, then g is
integrable.

Definition 2.18. A condition is said to hold almost everywhere with respect
to the measure µ (written a.e. [µ]) iff there is a set B ∈ F of µ−measure 0
such that the condition holds outside of B.

In the integration theory, the functions that differ only on a set of measure
0 can be identified. This is established by the following theorem.

Theorem 2.17. [6] Let f, g, and h be Borel measurable functions.

(a) If f = 0 a.e. [µ], then
∫

Ω
fdµ = 0.

(b) If g = h a.e. [µ] and
∫

Ω
gdµ exists, then so does

∫
Ω
hdµ and

∫
Ω
gdµ =∫

Ω
hdµ.

Theorem 2.18. [6] Let h be Borel measurable.

(a) If h is integrable, then h is finite a.e. [µ].

(b) If h ≥ 0 and
∫

Ω
hdµ = 0, then h = 0 a.e. [µ].
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The following theorem asserts that under appropriate conditions, the limit
of the integral of sequence of functions is the integral of the limit functions.

Theorem 2.19. Extended monotone convergence theorem. [2] Let g1, g2, ..., g, h
be Borel measurable.

(a) If gn ≥ h, for all n, where
∫

Ω
hdµ > −∞, and gn ↑ g, then∫

Ω

gndµ ↑
∫

Ω

gdµ.

(b) If gn ≥ h, for all n, where
∫

Ω
hdµ <∞, and gn ↓ g, then∫

Ω

gndµ ↓
∫

Ω

gdµ.

Definition 2.19. If f1, f2, ... are functions from Ω to <, we define lim infn→∞ fn
and lim supn→∞ fn by(

lim inf
n→∞

fn

)
(ω) = sup

n
inf
k≥n

fk(ω).

(
lim sup

n→∞
fn

)
(ω) = inf

n
sup
k≥n

fk(ω).

Theorem 2.20. Fatou’s Lemma. [2] Let f1, f2, ..., f be Borel measurable.

(a) If fn ≥ f for all n, where
∫

Ω
fdµ > −∞, then

lim inf
n→∞

∫
Ω

fndµ ≥
∫

Ω

(
lim inf

n→∞
fn

)
dµ.

(b) If fn ≤ f for all n, where
∫

Ω
fdµ <∞, then

lim sup
n→∞

∫
Ω

fndµ ≤
∫

Ω

(
lim sup

n→∞
fn

)
dµ.

Theorem 2.21. Dominated Convergence Theorem. [2] If f1, f2, ...f, g are
Borel measurable functions, |fn| ≤ gfor all n where g is µ−integrable and
fn → f a.e. [µ], then f is µ−integrable and

∫
Ω
fndµ→

∫
Ω
fdµ.



Chapter 3

Topology

In this chapter, we focus our attention on the basics about the topology which
will be helpful to study the interplay between measure theory and topology.
For, first we define topology.

Definition 3.1. A collection τ of subsets of a set Ω is said to be a topology
in Ω if τ has the following three properties:

(a) φ,Ω ∈ τ .

(b) If Vi ∈ τ for i = 1, 2, ..., n, then
⋂n
i=1 Vi ∈ τ .

(c) If Vα is an arbitrary collection of members of τ , then
⋃
α Vα ∈ τ .

If τ is a topology in Ω, Ω is called a topological space, and the members of τ
are called the open sets of Ω. A subset A of a topological space Ω is said to
be closed if the set Ω− A is open.

If Ω1 and Ω2 are topological spaces and f is a mapping of Ω1 into Ω2,
then f is said to be continuous provided that f−1(V ) is an open set in Ω1 for
every open set V in Ω2.

Definition 3.2. Let Ω1,Ω2 be topological spaces. A map f : Ω1 → Ω2 is said
to be an open map if for every open set U of Ω1, the set f(U) is open in Ω2.

Definition 3.3. A neighborhood of a point ω ∈ Ω is an open set containing
ω; an over neighborhood of ω is an overset of a neighborhood of ω.

Definition 3.4. Let Ω be a set. A basis for a topology on Ω is a collection
K of subsets of Ω (called basis element) such that

(a) For each ω ∈ Ω, there is at least one basis element K containing ω.

22
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(b) If ω belongs to the intersection of two basis element K1 and K2, then
there is a basis element K3 containing ω such that K3 ⊂ K1 ∩K2.

Definition 3.5. A metric space is a set Ω with a function d (called a metric)
from Ω × Ω to the nonnegative reals, satisfying d(x, y) ≥ 0, d(x, y) = 0 iff
x = y, d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z)

Definition 3.6. Let ε > 0 be given. Consider the set

Bd(x, ε) = {y : d(x, y) < ε}

of all points y whose distance from x is less than ε. Then the set Bd(x, ε) is
called the ε−ball centered at x.

Definition 3.7. Let Ω be a metric space with metric d. A subset A of Ω
is said to be bounded if there is some number M such that d(x, y) ≤ M for
every pair of points x, y of A.

Definition 3.8. A directed set is a set D on which there is defined a pre-
ordering (a reflexive and transitive relation), denoted by ≤, with the property
that whenever a, b ∈ D, there is a c ∈ D with a ≤ c and b ≤ c. A net in
a topological space Ω is a function from a directed set D into Ω. A net is
denoted by {xn, n ∈ D} or simply by {xn}. The net {xn} is said to converge
to the point x iff for every neighborhood U of x, there is an n0 ∈ D such that
xn ∈ U for all n ∈ D such that n ≥ n0.

Definition 3.9. Let Ω be a topological space. Then Ω is said to have a
countable basis at ω if there is a countable collection C of neighborhoods of
ω such that each neighborhood of ω contains at least one of the elements of
C . A space that has a countable basis at each of its points is said to satisfy
first countability axiom or to be first countable.

Definition 3.10. If a topological space Ω has a countable basis for its topol-
ogy, then Ω is said to satisfy the second countability axiom or to be second
countable.

Definition 3.11. Let Ωi, i ∈ I be an arbitrary collection of topological spaces.
Then the Cartesian product of Ωi, i ∈ I, denoted by

∏
i∈I Ωi = Ω(say), is

defined as the collection of all families (xi, i ∈ I), that is, all functions on I
such that xi ∈ Ωi for each i. The product topology (also called the topology
of point wise convergence) on Ω =

∏
i∈I Ωi has as a base all sets of the form

{x ∈ Ω : xik ∈ Uik , k = 1, 2, ..., n}

where Uik are open in Ωik and n is an arbitrary positive integer.
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Definition 3.12. Let pi :
∏

i∈I Ωi → Ωjbe the function assigning to each
element of the product topological space its jth coordinate,

pi(x) = xj.

Then pi is called the projection mapping associated with the index j.

Definition 3.13. A collection C of subsets of a topological space Ω is said
to cover Ω, or to be a covering of Ω, if the union of elements of C is equal
to Ω. It is called an open covering of Ω if its elements are open subsets of Ω.
A topological space Ω is said to be compact iff every open covering of Ω has
a finite subcovering.

Definition 3.14. A topological space Ω is said to be Hausdorff if for each
pair x, y of distinct points of Ω, there exist disjoint open sets containing x
and y, respectively. A Hausdorff space is said to be locally compact iff each
x ∈ Ω has a neighborhood whose closure is compact.

Definition 3.15. Let Ω be a topological space. Assume that one point sets
are closed in Ω. The space Ω is said to be normal if for each pair A,B of
disjoint closed sets of Ω, there exists disjoint open sets containing A and B,
respectively.

The following are useful theorems for our main part “The interplay be-
tween measure theory and topology”.

Theorem 3.1. Urysohn Lemma. [1] Let Ω be a Hausdorff space. Then Ω is
normal iff for each pair of disjoint closed sets A and B, there is a continuous
function f : Ω→ (0, 1) with f = 0 on A and f = 1 on B.

Theorem 3.2. Tietze Extension Theorem. [1] Let Ω be a Hausdorff space.
Then Ω is normal iff for every closed set A ⊂ Ω and every continuous real-
valued function f defined on A, f has an extension to a continuous real valued
function F on Ω.Furthermore, if |f | < c on A, then F can be taken less than
c on Ω.

Theorem 3.3. [1] Let A be a closed subset of the normal space Ω. There is
a continuous function f : ω → (0, 1) such that A = f−1(0) iff A is a Gδ, that
is, a countable intersection of open sets.

Theorem 3.4. Every metric space is normal.

Proof. Let Ω be a metric space with metric d. Let A and B be disjoint closed
subset of Ω. For each a ∈ A, choose εa > 0 so that the ball B(a, εa) does not
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intersect B. Similarily, for each b ∈ B, choose εb > 0 so that the ball B(b, εb)
does not intersect A. Define

U =
⋃
a∈A

B
(
a,
εa
2

)
, V =

⋃
b∈B

B
(
b,
εb
2

)
.

Then U and V are open containing A and B, respectively. Now we asserts
that U ∩ V = φ.

For, if possible let us suppose U ∩V 6= φ. Then there exist a point z such
that z ∈ U ∩ V . Then

z ∈ B
(
a,
εa
2

)
∩B

(
b,
εb
2

)
for some a ∈ A and some b ∈ B. So by triangle inequality

d(a, b) ≤ d(a, z) + d(z, b) <
εa
2

+
εb
2
.

If εa ≤ εb, then d(a, b) < εb so that a ∈ B(b, εb), a contradiction.
If εb ≤ εa, then d(a, b) < εa so that b ∈ B(a, εa), again a contradiction.
Hence U ∩ V = φ.
So Ω is normal.

Theorem 3.5. [1] Every compact Hausdorff space is normal.

Definition 3.16. Let Ω be topological space. The function f : Ω → < is
said to be lower semicontinuous (LSC) on Ω iff {x ∈ Ω : f(x) > a} is open
in Ω for each a ∈ <. Similarly the function f : Ω → < is said to be upper
semicontinuous (USC) on Ω iff {x ∈ Ω : f(x) < a} is open in Ω for each
a ∈ <. Thus f is LSC iff −f is USC. The function f : Ω→ < is continuous
iff it is both LSC and USC.

The following is the criterion for a function to be semicontinuious.

Theorem 3.6. The function f is LSC on a topological space Ω iff, for each
net {xn} converging to a point x ∈ Ω, we have lim infn f(xn) ≥ f(x). Sim-
ilarly, f is USC iff lim supn ≤ f(x), whenever xn → x.(In first countable
space ’net’ may be replaced by ’sequence.’)

Proof. Let f be LSC on Ω. Let xn → x and b < f(x). Then by definition
of LSC x ∈ f−1(b,∞], an open subset of Ω. Hence xn ∈ f−1(b,∞] for all
but finitely many n, that is, f(xn) > b for all but finitely many n. Thus,
lim infn f(xn) ≥ f(x).
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Conversely, Let xn → x implies lim infn f(xn) ≥ f(x). Then we have to show
that f is LSC on Ω. For this it is sufficient to show that V = {f(x) > a}
is open in Ω for any a ∈ <. For, let xn → x, where f(x) > a. Then
lim infn f(xn) > a, hence f(xn) > a for all but finitely many n. Thus xn ∈ V
for all but finitely many n. So V is open.

Following are some properties of semicontinuous functions.

Theorem 3.7. Let f be a LSC on the compact space Ω. Then f attains its
infimum.(Hence if f is USC on the compact space Ω, f attains its supremum.)

Proof. Let b = inf f . Then there is a sequence of points xn ∈ Ω such that
f(xn)→ b. But since Ω is compact, we have a subnet xnk converging to some
x ∈ Ω. Since f is LSC, lim infk f(xnk) ≥ f(x). (by preceeding theorem) But
as f(xnk)→ b, we must have f(x) ≤ b. Since b is infimum of such functions,
we must have b = f(x) as required.

Theorem 3.8. If fi is LSC on Ω for each i ∈ I, then supi fi is LSC; if I
is finite, then mini fi is LSC.(Hence if fi is USC for each i, then infi fi is
USC; and if I is finite, then maxi fi is USC.)

Theorem 3.9. [6] Let f : Ω → <,Ω any topological space, f arbitrary.
Define

f(x) = lim inf
y→x

f(y), x ∈ Ω;

that is,

f(x) = sup
V

inf
y∈V

f(y),

where V ranges over all neighborhoods of x. Then f is LSC on Ω and f ≤ f ;
furthermore if g is LSC on Ω and g ≤ f, then g ≤ f .

Similarly, if f(x) = lim supy→x f(y) = infV supy∈V f(y), then f , is USC and

f ≥ f ; in fact f is is the inf of all USC functions that are less than or equal
to f .

Definition 3.17. In the above theorem, f , the sup of all LSC functions that

are less than or equal to f is called the lower envelope of f and f , the inf
of all USC functions that are greater than or equal to f is called the upper
envelope of f .

Theorem 3.10. [6] Let Ω be a metric space, f a LSC function on Ω. There is
a sequence of continuous functions fn : Ω→ < such that fn ↑ f . (Thus, if f
is USC, there is a sequence of continuous functions fn ↓ f.) If |f | ≤M <∞,
the fn may chosen so that |fn| ≤M for all n.



Chapter 4

The Interplay Between
Measure Theory And Topology

4.1 Introduction

In this chapter, we will focus on the interplay between measure theory and
topology. More precisely, we will establish the natural relation between mea-
sure theoritic and topological questions. We will investigate these natural
relation in details. We begin with the situation in which there is connection
between measure theory and topology.

We already defined σ−field in previous chapter. Let us define a σ−field
F as the smallest σ−field containing all open sets of a topological space
Ω. Doing this we can connect the measure theory and topology and further
connections can be established. For example, if µ is a measure on F and
A ∈ F , then we wish to know whether A can be approximated by compact
subsets by using measure µ. In other words, we wish to know the relation :

µ(A) = sup {µ(K) : K is a compact subset of A}

Another example, we will focus on the question that whether a function in
the space LP (Ω,F , µ) can be approximated by a continuous function or not.
In Other words, whether the set of continuous functions are dense in the
space LP (Ω,F , µ).

The results in the first two sections are not topological but they serve as
basic tools in the later development.

Definition 4.1. Let D be a class of subsets of a set Ω. Then D is said to
be a Dynkin system (D-system for short) iff the following conditions hold:

27
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(a) Ω ∈ D .

(b) If A,B ∈ D , B ⊂ A, then A − B ∈ D . Thus D is closed under the
proper differences.

(c) If A1, A2, ... ∈ D and An ↑ A, then A ∈ D .

In definition, by (a) and (b), D is closed under complementation; hence
by (c) D is a monotone class. Thus if D is closed under finite union (or
closed under finite intersection), then D is a field, and hence a σ−field.

Theorem 4.1. Dynkin System Theorem. Let S be a class of subsets of Ω
and assume that S is closed under finite intersection. If D is Dynkin system
and D ⊃ S , Then D includes the minimal σ−field F = σ(S ).

Proof. Let F0 be the smallest D−system including S . Then we asserts that
D0 = F . Since D0 ⊂ D , the result will follow.
Now, since F itself is a D−system containing S , we have D0 ⊂ F . so it
sufficient to show that F ⊂ D0. For this let us define

C = {A ∈ D0 : A ∩B ∈ D0 for all B ∈ S } .

Then S ⊂ C since S is closed under finite intersection. Also since D0

is a D−system, C is also a D−system. Thus D0 ⊂ C . Hence D0 = C .
Now let C ′ = {C ∈ D0 : C ∩D ∈ D0 and D ∈ D0}. Since C = D0, same
as above S ⊂ C ′ and since C ′ is a D−system, we have D0 ⊂ C ′. Hence
D0 = C ′. This follows that D0 is closed under finite intersection. Hence D0

is a field; so that F ⊂ D0 as desired.

Corollary 4.1. Let S be a class of subsets of Ω and let µ1 and µ2 be finite
measure on σ(S ). Assume Ω ∈ S and S is closed under finite intersection.
If µ1 = µ2 on S , then µ1 = µ2 on σ(S ).

Proof. Let D be a class of sets A ∈ σ(S ) such that µ1(A) = µ2(A). Then
S ⊂ D . Now we asserts that D is a D−system. For Ω ∈ D because Ω ∈ S .
Let A,B ∈ D with B ⊂ A. Then A−B ∈ σ(S ) and

µ1(A−B) = µ1(A)− µ1(B) = µ2(A)− µ2(B) = µ2(A−B)

Thus A−B ∈ D .
further, let A1, A2, ... ∈ D and An ↑ A. Then µ1(An)→ µ1(A) and µ2(An)→
µ2(A) as n→∞. But for all n,An ∈ D . So µ1(An) = µ2(An) for all n; hence
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µ1(A) = µ2(A). This implies that A ∈ D .
Thus D is a D−system.
Hence D is a D−system including S . So by above theorem, σ(S ) ⊂ D .
But D ⊂ σ(S ). Thus D = σ(S ).
This proves the corollary.

Corollary 4.2. Let S be a class of subsets of Ω; assume that Ω ∈ S and
S is closed under finite intersection. Let H be a vector space of real-valued
functions on Ω such that IA ∈ H for each A ∈ S . Suppose that whenever
f1, f2, ... are nonnegative functions in H, |fn| ≤M <∞ for all n, and fn ↑ f ,
the limit function f belongs to H. Then IA ∈ H for all A ∈ σ(S ).

Proof. Let us define D by

D = {A ⊂ Ω : IA ∈ H} .

Then by hypothesis S ⊂ D and hence Ω ∈ D . First we show that D is a
D−system. For this let A,B ∈ D . Then IA−B = IA − IB ∈ H (because H is
a vector space). So, A− B ∈ D . Also if An be a sequence of sets in D such
that An ↑ A, then IAn ↑ IA. Hence by hypothesis IA ∈ H. So A ∈ D . Thus
D is a D−system including S . So by above Theorem, D ⊃ σ(S ) which
proves the corollary.

4.2 The Daniel Integral

We know that one of the properties of integration is linearity; if f and g are
µ−integrable and a, b are real or complex, then∫

Ω

(af + bg)dµ = a

∫
Ω

fdµ+ b

∫
Ω

gdµ.

Thus, the integral can be regarded as a linear functional on the vector space
of integrable functions. We use this idea to define integration theory. We
begin with a linear functional E on a vector space and extend E to a larger
space. We finally show that there is a measure µ such that E is infact the
integral with respect to µ.

Some notations are in order as follows:
Throughout this section, a vector space of real-valued functions on a set

Ω will be denoted by L. We also assume that L is closed under the lattice
operations, that is, if f, g ∈ L, then f ∨g = max(f, g), f ∧g = min(f, g) ∈ L.
We can find several examples of such spaces. For example, if L is the class
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of continuous real-valued functions, then L is closed under lattice operations.

E will denote the positive linear functional on L. This implies that E is
monotone, that is, f ≤ g implies that E(f) ≤ E(g).

If H is any class of functions from Ω to < (or <), then H+ denotes
{f ∈ H : f ≥ 0}. The collection of functions f : Ω → < of the form limn fn
where fn form an increasing sequence of functions in L+, is denoted by L′.
If fn form an increasing net in L+, then the resulting class is denoted by L′′.
If H is defined as above, then σ(H) is defined as the smallest σ−field making
every function in H Borel measurable.

Throughout this section the following hypothesis will be assumed.

Hypothesis A: If fn ↓ 0 in L, then E(fn) ↓ 0. Equivalently, if fn ∈ L and
fn ↑ f in L, then E(fn) ↑ E(f).

Hypothesis B: if the function fn form a net in L decreasing to 0, then
E(fn) decrease to 0. Equivalently, if the nets fn ∈ F and increase to a net
f ∈ L, then E(fn) ↑ E(f).

The main purpose for this section is to establish Daniel representation
theorem which is important for our next section “The interplay between
measure theory and topology.” To establish Daniel representation theorem
we need following some Lemmas.

Lemma 4.1. Let {fm} and {f ′n} be sequences in L increasing to f and f ′

,respectively, with f ≤ f ′( f and f ′ need not belong to L). Then

lim
m
E(fm) ≤ lim

n
E(f ′n).

Hence E may be extended to L′ by defining E(limn fn) = limnE(fn).(Under
hypothesis B and with ‘sequence’ replaced by ’net’ in the above statement, E
may be extended to L′′ in the same fashion.)

Proof. As n→∞, we have fm ∧ f ′n ↑ fm ∧ f ′. But both {fm} and {f ′n} are
increasing sequences in L increasing to f and f ′, respectively, with f ≤ f ′.
So fm ∧ f ′n ↑ fm ∧ f ′ = fm. Hence

lim
n
E(f ′n) ≥ lim

n
E(fm ∧ f ′n) ≥ E(fm ∧ f ′) = E(fm).

This inequality holds for all m. So as m→∞, we have

lim
m
E(fm) ≤ lim

n
E(f ′n)
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as desired.

Lemma 4.2. The extension of E to L′ has the following properties:

(a) 0 ≤ E(f) ≤ ∞ for all f ∈ L′.

(b) If f, g ∈ L′, f ≤ g, then E(f) ≤ E(g).

(c) If f ∈ L′ and 0 ≤ c <∞, then cf ∈ L′ and E(cf) = cE(f).

(d) If f, g ∈ L′, then f + g, f ∨ g, f ∧ g ∈ L′ and

E(f + g) = E(f ∨ g) + E(f ∧ g) = E(f) + E(g).

(e) If {fn} is a sequence in L′ increasing to f , then f ∈ L′ and E(fn)
increase to E(f).

(Under the hypothesis B, the extension of E to L′′ has exactly the same
properties; ‘sequence’ is replaced by ‘net’ in (e).)

Proof. (a) Let f ∈ L′. Then there is a sequence of functions {fn} in L+

such that limn fn = f . But by lemma4.1, we have

0 ≤ lim
n
E(fn) = E(lim

n
fn) = E(f)

Thus o ≤ E(f) ≤ ∞ for all f ∈ L′.

(b) Here f, g ∈ L′ with f ≤ g. So there are sequence of functions {fn} and
{gn} in L+ such that fn ↑ f and gn ↑ g. So by lemma4.1

lim
n
E(fn) ≤ lim

n
E(gn).

It follows that E(f) ≤ E(g).

(c) Here f ∈ L′ and 0 ≤ c < ∞. So cf ≥ 0. Thus by the definition of L′,
there is a sequence of functions fn ∈ L+ such that limn cfn = cf . But
it follows that there is a sequence of functions {cfn} in L+ such that
cfn ↑ cf . So cf ∈ L′.
Also by lemma4.1

E(lim
n
cfn) = lim

n
E(cfn)

= lim
n
cE(fn)

= c lim
n
E(fn).

Hence E(cf) = cE(f) as required.
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(d) Here f, g ∈ L′, so there are sequence of functions {fn},{gn} in L+ such
that fn ↑ f and gn ↑ g. Then

E(fn ∨ gn) + E(fn ∧ gn) = E((fn ∨ gn) + (fn ∧ gn)) (Since E is linear)

= E(fn + gn)

= E(fn) + E(gn)

Now as n→∞, then

E(f ∨ g) + E(f ∧ g) = E(f) + E(g) = E(f + g)

as desired.

(e) Let {fnm} be a sequence in L+ such that fnm ↑ fn as m→∞. Let us
define gm by

gm = f1m ∨ f2m ∨ ... ∨ fmm.

Then {gm} form an increasing sequence in L+, and satisfy

fnm ≤ gm ≤ fm for n ≤ m. (4.1)

So by (b)

E(fnm) ≤ E(gm) ≤ E(fm) for n ≤ m. (4.2)

Now, let m→∞ in 4.1, we get

lim
m
fnm ≤ lim

m
gm ≤ lim

m
fm

This implies that

fn ≤ lim
m
gm ≤ f

Now as n→∞, then

lim
n
fn ≤ lim

n

(
lim
m
gm

)
≤ f.

So

f ≤ lim
m
gm ≤ f.
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Thus limm gm = f , that is, gm ↑ f . Hence by hypothesis B, E(gm) ↑
E(f).
Next let m→∞ in 4.2, then

lim
m
E(fnm) ≤ lim

m
E(gm) ≤ lim

m
E(fm).

So

E(fn) ≤ E(f) ≤ lim
m
E(fm).

Now as n→∞

lim
n
E(fn) ≤ E(f) ≤ lim

n
E(fn).

Thus

lim
n
E(fn) = E(f)

Hence E(fn) ↑ E(f).

Lemma 4.3. Let G = {G ⊂ Ω : IG ∈ L′} and define µ(G) = E(IG), G ∈ G .
Then G satisfies the following conditions:

(a) φ,Ω ∈ G , µ(φ) = 0, µ(Ω) = 1, 0 ≤ µ(A) ≤ 1 for all A ∈ G

(b) If G1, G2 ∈ G , then G1 ∪G2, G1 ∩G2 ∈ G , and

µ(G1 ∪G2) + µ(G1 ∩G2) = µ(G1) + µ(G2).

(c) If G1, G2 ∈ G and G1 ⊂ G2, then µ(G1) ≤ µ(G2).

(d) If Gn ∈ G , n = 1, 2, ... and Gn ↑ G, then G ∈ G and µ(Gn) ↑ µ(G).

Thus µ∗(A) = inf {µ(G) : G ∈ G , G ⊃ A} is a probability measure on the
σ−field

H = {H ∈ Ω : µ∗(H) + µ∗(Hc) = 1}

and µ∗ = µ on G .(Under hypothesis B, we take G = {G ∈ Ω : IG ∈ L+}
and replace sequences by nets in (d). The class G then has exactly the same
properties.)
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Proof. (a) We have Iφ = 0, IΩ = 1. So Iφ and IΩ are constant functions
and hence belong to L+(and so L′.) Thus φ,Ω ∈ G . Also

µ(φ) = E(Iφ) = E(0) = 0.

µ(Ω) = E(IΩ) = E(1) = 1.

If A ∈ G , then A ⊂ Ω implies that Iφ ≤ IA ≤ IΩ. So by 4.2(b),
E(Iφ) ≤ E(IA) ≤ E(IΩ). Hence, 0 = µ(φ) ≤ µ(A) ≤ µ(Ω) = 1 for all
A ∈ G .

(b) Here G1, G ∈ G , so IG1 , IG2 ∈ L′. So by lemma4.2(d) IG1 ∨ IG2 , Ig1 ∧
IG2 ∈ L′. But we have

IG1∪G2 = IG1 ∨ IG2 and IG1∩G2 = IG1 ∧ IG2 .

Thus IG1∪G2 , IG1∩G2 ∈ L′. Hence G1 ∪G2, G1 ∩G2 ∈ G . Moreover,

µ(G1 ∪G2) + µ(G1 ∩G2) = E(IG1∪G2) + E(IG1∩G2)

= E(IG1 ∨ IG2) + E(IG1 ∧ IG2)

= E(IG1) + E(IG2)

= µ(G1) + µ(G2).

(c) If G1, G2 and G1 ⊂ G2, then IG1 , IG2 ∈ L′ and IG1 ≤ IG2 . So by the
monotonicity of E,E(IG1) ≤ E(IG2). Hence µ(G1) ≤ µ(G2).

(d) If Gn ∈ G, n = 1, 2, ... Gn ↑ G, then IGn ∈ L′ for n = 1, 2, ... and {IGn}
is an increasing sequence in L′ such that IGn ↑ IG. So by lemma4.2(e),
IG ∈ L′ and µ(Gn) ↑ µ(G).

Lemma 4.4. If f ∈ L′ and a ∈ <, then {ω : f(ω) > a} ∈ G . Hence

f : (Ω, σ(G ))→ (<,B(<)).

(The same result holds for f ∈ L+ under hypothesis B)

Proof. Here f ∈ L′, so there are sequence of functions {fn} in L+ such that
fn ↑ f .Thus the sequence (fn − a)+ = (fn − a) ∨ 0 ∈ L+ ⊂ L′. Hence
(fn − a)+ ↑ (f − a)+. Thus by definition of L′, we have (f − a)+ ∈ L′

and by lemma4.2(e), k(f − a)+ ∈ L′ for k ≥ 0. But as k → ∞, we have
1 ∧ k(f − a)+ ↑ I{f>a}. So by lemma4.2(e), we have I{f>a} ∈ L′. Thus by
definition of G , we have {f > a} ∈ L′ as desired.
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Lemma 4.5. The σ−fields σ(L), σ(L′), and σ(G ) are identical. (Under the
hypothesis B, we only have σ(L′′) = σ(G ) and σ(L) ⊂ σ(L′′).)

Proof. Under our hypothesis σ(L′) is the smallest σ−field of subsets of Ω
making every function in L′ Borel measurable. But by lemma4.4, we haveσ(G )makes
every function in L′ Borel measurable Thus σ(L′) ⊂ σ(G ). To prove con-
verse inclusion, let G ∈ G . Thus IG ∈ L′. Hence G = {IG = 1} ∈ σ(L′).
Therefore, σ(G ) ⊂ σ(L′). Thus σ(G ) = σ(L′).
Now we assert that σ(L′) = σ(L). For let f ∈ L. Then f = f+ − f−

where f+, f− ∈ L+ ⊂ L′.Since f+ and f− are σ(L′)−measurable, f is also
σ(L′)−measurable. Thus σ(L′) makes every function in L Borel measur-
able. So σ(L) ⊂ σ(L′). Next let f ∈ L′. Then there is a sequence {fn}
in L+ ⊂ L such that f is a limit of the sequence {fn}. But since {fn} are
σ(L)−measurable, we have f is also σ(L)−measurable. Thus σ(L′) ⊂ σ(L).
Hence σ(L′) = σ(L).
Thus we have σ(G ) = σ(L′) = σ(L).

Lemma 4.6. For any A ⊂ Ω, µ∗(A) = inf {E(f) : f ∈ L′, f ≥ IA} . The
result is the same under hypothesis B, with L′ is replaced by L′′.

Proof. Let A ∈ Ω. Then by the definition of µ∗

µ∗(A) = inf {µ(G) : G ∈ G , G ⊃ A}
= inf {E(IG) : G ∈ G , G ⊃ A}
= inf {E(f) : f = IG ∈ L′, f ≥ IA}
≥ inf {E(F ) : f ∈ L′, f ≥ IA} .

Next let f ∈ L′, f ≥ IA. Then for 0 ≤ a ≤ 1, we have A ⊂ {f > a}.
But by lemma4.4, {f > a} ∈ G . Thus µ∗(A) ≤ µ∗ {f > a} = µ {f > a} =
E(I{f>a}). But since f ≥ 0, we have f ≥ aI{f>a}. Hence aE(I{f>a}) ≤ E(f),

that is E(I{f>a}) ≤ E(f)
a

.
Now as a→ 1

E(I{f>a}) ≤ E(f)

that is,

µ∗(A) ≤ E(I{f>a}) ≤ E(f)

Now taking inf over all f ∈ L′, we get

µ∗(A) ≤ inf {E(f) : f ∈ L′, f ≥ IA} .

This completes the proof of the lemma.
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Lemma 4.7. If H = {H ⊂ Ω : µ∗(H) + µ∗(Hc) = 1}, then G ⊂ H , hence
σ(G ) ⊂H . (The result is the same under the hypothesis B)

Proof. If G ∈ G , then IG ∈ L′. So by definition of L′, there is a sequence
{fn} of functions in L+ such that fn ↑ IG. Thus

µ∗(G) = µ(G) = E(IG) = limE(fn) by lemma4.2(e)

But since G ∈ G , Gc ∈ G . So by lemma4.6

µ∗(Gc) ≤ inf {E(f) : f ∈ L′, f ≥ IGc} .

But since fn ≤ IG and IG + IGc = 1, we have 1 − fn ≥ IGc . Also since
1− fn ≥ 0, we have 1− fn ∈ L+ ⊂ L′.
Hence

µ∗(Gc) ≤ inf E(1− fn) = inf
n

(E(1)− E(fn))

= E(1)− infnE(fn)

= 1− lim
n
E(fn)

= 1− E(IG)

= 1− µ∗(G)

Thus µ∗(Gc) + µ∗(G) ≤ 1. But since µ∗(Gc) + µ∗(G) is always at least 1, we
have

µ∗(Gc) + µ∗(G) = 1.

Hence G ∈H . Thus G ⊂H and hence σ(G ) ∈H .

Now we prove the Daniel Representation theorem.

Theorem 4.2. Let L be a vector space of real-valued functions on the set
Ω; assume that L contains the constant functions and is closed under lattice
operations. Let E be a Daniel Integral on L, that is, a positive linear func-
tional on L such that E(fn) ↓ 0 for each sequence of functions fn ∈ L with
fn ↓ 0; assume that E(1) = 1.
Then there is a unique probability measure P on σ(L)(= σ(L′) = σ(G )) such
that each f ∈ L is P−integrable and E(f) =

∫
Ω
fdP .

Proof. Let P be the restriction of µ∗ to σ(L). Then P is a probability measure
on σ(L)(= σ(L′) = σ(G )). If G ∈ G , then

E(IG) = µ(G) = µ∗(G) = P (G) =

∫
ω

IGdP (4.3)
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Now first let f ∈ L′. let us define hn by

hn =
n2n∑
k=1

k − 1

2n
I{ k−1

2n
<f≤ k

2n} + nI{f>n}

Then hn form a sequence of nonnegative simple functions increasing to f .
Also since I{a<f<b} = I{f>a} − I{f>b} for a < b, and {f > a} , {f > b} ∈ G ,
we have I{ k−1

2n
<f≤ k

2n}, I{f>n} ∈ G . Hence

E(hn) = E(
n2n∑
k=1

k − 1

2n
I{ k−1

2n
<f≤ k

2n} + nI{f>n})

=
n2n∑
k=1

k − 1

2n
E(I{ k−1

2n
<f≤ k

2n}) + nE(I{f>n})

=
n2n∑
k=1

k − 1

2n

∫
Ω

I{ k−1
2n

<f≤ k
2n}dP + n

∫
Ω

I{f>n}dP

=

∫
Ω

(
n2n∑
k=1

k − 1

2n
I{ k−1

2n
<f≤ k

2n} + nI{f>n}

)
dP

=

∫
Ω

hndP.

Thus by monotone convergence theorem

E(f) =

∫
Ω

fdP.

Now let f ∈ L. Then f = f+ − f−, so that f+, f− ∈ L+ ⊂ L′. Then

E(f) = E(f+)− E(f−)

=

∫
Ω

f+dP −
∫

Ω

f−dP

=

∫
Ω

(f+ − f−)dP

=

∫
Ω

fdP.

Thus for all f ∈ L, we have E(f) =
∫

Ω
fdP.

Now since f+, f− ∈ L, we have the integrals are finite. So each f ∈ L is
P−integrable.
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This establish the existence of desire probability measure P .
Now we show that P is unique. For, let P ′ be another such measure. Then∫

Ω

fdP =

∫
Ω

fdP ′ for all f ∈ L

But by monotone convergence theorem∫
Ω

fdP =

∫
Ω

fdP ′ for all f ∈ L′

Setting f = IG for G ∈ G , then we have∫
Ω

IGdP =

∫
Ω

IGdP
′

So P (G) = P ′(G); hence P = P ′ on G . But by lemma 4.3(b), G is closed
under finite intersection. So by corollary 1, we have P = P ′ on σ() = σ(L) =
σ(L′). Thus P is unique.

Following is also the Daniel Representation Theorem under the hypothesis
B.

Theorem 4.3. Let L be a vector space of real valued functions on the set
Ω; assume that L contains the constant functions and is closed under Lattice
operations. Let E be a positive linear functional on L such that E(fn) ↓ 0
for each net of functions fn ∈ L with fn ↓ 0; assume that E(1) = 1.
Then there is a unique probability measure P on σ(L′′)(= σ(G )) such that:

(a) Each f ∈ L is P−integrable and E(f) =
∫

Ω
fdP .

(b) If {Gn} is a net of sets in G and Gn ↑ G, then G ∈ G and Pn(G) ↑
P (G).

Proof. Let P be the restriction of µ∗ to σ(L′′). Then same as the proof of the
Daniel Representation Theorem P satisfies (a) with L′ is replaced by L′′ and
sequence is replaced by net. Then P satisfies (b) as well by lemma 4.3(d).
Now it remains to show that P is unique(Actually we can not use the method
of proving uniqueness part of Daniel representation Theorem for this theorem
because the monotone convergence theorem fails in general for nets.) To
prove uniqueness of P, let P ′ be another probability measure satisfying (a)
and (b).
Let f ∈ L′′. Then there is a net of functions fα ∈ L+such that fα ↑ f . Let
us define hnα by

hnα =
1

2n

n2n∑
j=1

I{fα>j2−1}, n = 1, 2, ... (4.4)
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Then if k−1
2n

< fα(ω) ≤ k
2n
, k = 1, 2, ..., n2n, then hnα = k−1

2n
, and if fα(ω) > n,

then hnα(ω) = n. Then hnα, n = 1, 2, ... are the sequence of nonnegative
simple functions increasing to fα.
Similarly, if

hn =
1

2n

n2n∑
j=1

I{f>j2−1}, n = 1, 2, ... (4.5)

then hn are nonnegative simple functions increasing to f .
Now∫

Ω

hndP
′ =

∫
Ω

1

2n

n2n∑
j=1

I{f>j2−1}dP
′ (using 4.5)

=
1

2n

n2n∑
j=1

∫
Ω

I{f>j2−1}dP
′

=
1

2n

n2n∑
j=1

P ′(
{
f > j2−1

}
)

=
1

2n

n2n∑
j=1

lim
α
P ′(
{
fα > j2−1

}
) (Using (b))

= lim
α

1

2n

n2n∑
j=1

P ′(
{
fα > j2−1

}
) (Since the sum on j is finite)

So ∫
Ω

hndP
′ = lim

α

∫
Ω

hnαdP
′ Using 4.4. (4.6)
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But∫
Ω

fdP ′ = lim
n

∫
Ω

hndP
′ (By the monotone convergence theorem)

= lim
n

lim
α

∫
Ω

hnαdP
′ (Using 4.6)

= lim
α

lim
n

∫
Ω

hnαdP
′ (since hnα is monotone in each variable)

= lim
α

∫
Ω

fαdP
′ (By the monotone convergence theorem)

= lim
α
E(fα) (By hypothesis since P ′ satisfies (a))

= lim
α

∫
Ω

fαdP (Using (a))

=

∫
Ω

fdP (Same as above if we replace P ′ by P ).

So ∫
Ω

fdP ′ =

∫
Ω

fdP.

Again setting f = IG, G ∈ G , then same as proof in Daniel Representation
Theorem, we have P = P ′ in σ(G ) = σ(L′′) proving the uniqueness of P .

The following approximation theorem will be useful to establish some
results in the next section.

Theorem 4.4. Assume the hypothesis of the Daniel Representation The-
orem, and in addition assume that L is closed under limits of uniformly
convergent sequences. Let

G ′ =
{
G ⊂ Ω : G = {f > 0} for some f ∈ L+

}
Then

(a) G ′ = G .

(b) If A ∈ σ(L), then P (A) = inf {P (G) : G ∈ G ′, G ⊃ A}.

(c) If G ∈ G , then P (G) = sup {E(f) : f ∈ L+, f ≤ IG}.
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Proof. (a) By Lemma 4.4, if f ∈ L′ and a ∈ <, then {f > a} ∈ G . Then
G ′ ⊂ G . For converse, suppose that G ∈ G and let fn ∈ L+ with
fn ↑ IG(∈ L′). Let us define f by

f =
∞∑
n=1

2−nfn.

Since 0 ≤ fn ≤ 1, we have 0 ≤ 2−nfn < 1. Thus the series is uniformly
convergent. Hence by hypothesis f ∈ L+. But

{f > 0} =
∞⋃
n=1

{fn > 0}

= {IG = 1} (since fn ↑ IG)

= G

So by definition of G ′, we have G ∈ G ′. Hence G ⊂ G ′.
Therefore, G = G ′.

(b) Let G ∈ G ′, G ⊃ A. Then P (G) ≥ P (A). So P (A) is lower bound for
P (G), G ∈ G ′ = G Also let A ∈ σ(L) with G ∈ G , G ⊃ A. Then

P (A) = µ∗(A) (since P = µ∗ on σ(L))

= inf {µ(G) : G ∈ G , G ⊃ A} (By Lemma 4.3)

= inf {µ(G) : G ∈ G ′, G ⊃ A}

as desired.

(c) Let f ∈ L+, f ≤ IG. Then

E(f) ≤ E(IG) = P (G) (4.7)

Next, let G ∈ G with fn ∈ L+, fn ↑ IG. Then

P (G) = E(IG) = lim
n
E(fn) = sup

n
E(fn)

Hence

P (G) ≤ sup
{
E(f) : f ∈ L+, f ≤ IG

}
.

But by 4.7, P (G) is upper bound for E(f), f ∈ L+, f ≤ IG. Hence for
G ∈ G , we have

P (G) = sup
{
E(f) : f ∈ L+, f ≤ IG

}
.
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4.3 Measures on topological spaces

First we define the Baire σ−field which is as follows:

Definition 4.2. Let Ω be a topological space. The Baire σ−field, which we
denote by A (Ω) or simply by A is defined as the smallest σ−field of subsets
of Ω for which the functions in C(Ω) are Borel measurable. In other words
A is the minimal σ−field containing all sets f−1(B) where B ranges over
B(<) and f ranges over the class C(Ω) of continuous maps from Ω to <.
Every sets in A (Ω) are called Baire sets.

Some consequences are:

(a) The class of Baire sets A is the minimal σ−field making all bounded
continuous functions Borel measurable. For let F be a σ−field that
makes all bounded continuous functions measurable. If f ∈ C(Ω), then
f+ ∧ n is a bounded continuous function and f+ ∧ n ↑ f+ as n → ∞.
Thus f+ is measurable. Similarly f− is also is measurable. Hence
f = f+ − f− is F−measurable. Thus A ⊂ F . But we have F ⊂ A .
Hence F = A as required.

(b) If V is an open subset of Ω and f ∈ C(Ω), then by definition of contin-
uous function f−1(V ) is open in Ω. Hence f−1(V ) ∈ B(Ω), the class
of Borel sets. Since any set containing the sets f−1(V ) for all open set
V must contain the sets f−1(B) for all Borel set B, we have the sets
f−1(V ) generate A (Ω). Thus we must have A (Ω) ⊂ B(Ω).

(c) An Fσ set in Ω is a countable union of closed sets and a Gδ set in Ω is
a countable intersection of closed sets.

We now establish the precise result on the interplay between measure
theory and topology.

Theorem 4.5. Let Ω be a normal topological space. Then A (Ω) is the
minimal σ−field containing the open Fσ sets (or equally well, the minimal
σ−field containing the closed Gδ sets.)

Proof. Let H be the minimal σ−field over the Fσ sets in Ω. Then we have
to show that A (Ω) = H . For this let f ∈ C(Ω). Then

{f > a} =
∞⋃
n=1

{
f ≥ a+

1

n

}
.

Since f ∈ C(Ω), we have {f > a} is open in Ω. Similarly,
{
f ≥ a+ 1

n

}
is

closed in Ω for all n, n = 1, 2, ... So {f > a} is an open Fσ set. But the sets
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{f > a} , f ∈ C(Ω), a ∈ < are Borel measurable sets; and hence generate the
class of Baire sets A (Ω). Thus A (Ω) ⊂H .
For converse, let H =

⋃∞
n=1 Fn, Fn closed, be an open Fσ set. Then Hc is

closed and disjoint from Fn for each n. Since Ω is the normal topological
space, we have by Urysohn’s lemma, there are continuous functions fn : Ω→
[0, 1] such that

fn = 0 on Hc and

fn = 1 on Fn.

Now let us define f by

f =
∞∑
n=1

2−nfn

Then f ∈ C(Ω) with 0 ≤ f ≤ 1, and

{f > 0} =
∞⋃
n=1

{fn > 0} = H

Thus, since f ∈ C(Ω), {f > 0} ∈ A . Hence H ∈ A . Therefore, H ⊂ A .
This completes the proof of the theorem.

Corollary 4.3. If Ω is a normal topological space, then open Fσ sets are
precisely the sets {f > 0} where f ∈ Cb(Ω), the class of bounded real valued
function of Ω, f ≥ 0.

Proof. If f ∈ Cb(Ω) and f ≥ 0, then by the proof of the theorem 4.5, we
have

{f > 0} =
∞⋃
n=1

{
fn ≥

1

n

}
is an open Fσ set.
Conversely, if H =

⋃∞
n=1 Fn, Fn closed, be an open Fσ set. Then again by

the proof of the theorem 4.5, there is a bounded continuous function f with
o ≤ f ≤ 1 such that H = {f > 0}.
This completes the proof of the corollary.

The following corallary ensures that in a metric space the class of Borel
sets and the class of Baire sets are same.
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Corollary 4.4. If Ω is a metric space, then A (Ω) = B(Ω).

Proof. We know that every metric space is normal and A (Ω) ⊂ B(Ω). So
it suffices to show that B(Ω) ⊂ A (Ω).
For this, let F be a closed subset of Ω. Since Ω is a metric space, we have

F =
∞⋃
n=1

{
ω : dist(ω, F ) <

1

n

}
.

Thus F is a closed Gδ set. So by theorem 4.5,A (Ω) contains F . Since F
was arbitrary, A contains all closed sets of Ω. So B(Ω) ⊂ A (Ω). Therefore,
B(Ω) = A (Ω).

Corollary 4.4 proved that in a metric space, the Baire and Borel sets
coincide.

Lemma 4.8. Let A be an open Fσ set in the normal space Ω. Then IA is
the limit of an increasing sequence of continuous functions.

Proof. Since A is an open Fσ set, by corollary 4.3

A = {f > 0} =
∞⋃
n=1

{
f ≥ 1

n

}
.

Since the set A = {f > 0} is open, Ac = {f = 0} is the closed set and
disjoint from

{
f ≥ 1

n

}
for each n. So by Urysohn’s lemma, there are functions

fn ∈ C(Ω) with 0 ≤ fn ≤ 1, such that

fn = 0 on {f = 0} ,

fn = 1 on

{
f ≥ 1

n

}
.

Define gn by

gn = max {f1, f2, ..., fn}

Then gn is an increasing sequence of continuous functions such that gn ↑
I{f>0} where A = {f > 0} as required.

Now by using Daniel Representation Theorem we prove the following
approximation theorem.
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Theorem 4.6. Let P be any probability measure on A (Ω), where Ω is a
normal topological space.If A ∈ A , then

(a) P (A) = inf {P (V ) : V ⊃ A, V an open Fσ set}.

(b) P (A) = sup {P (C) : C ⊂ A,C a closed Gδ set}.

Proof. Let L = Cb(Ω) and let us define E(f) =
∫

Ω
fdP, f ∈ L. Here we note

that σ(L) = A , so that each f ∈ L is A−measurable. Furthermore, since
f is bounded, the integral

∫
Ω
fdP is finite. So E is well defined. Also E is

a positive linear functional on L. hence by dominated convergence theorem,
E is a Daniel integral. Thus this satisfies all the conditions for theorem 4.4.
Thus by theorem 4.4(b),

P (A) = inf {P (G) : G ∈ G ′, G ⊃ A}

where

G ′ =
{
G ⊂ Ω : G = {f > 0} for some f ∈ L+

}
But by corollary 4.3, G ′ is the class of open Fσ sets. Thus

P (A) = inf {P (V ) : V ⊃ A, V an open Fσset}

This proves (a).
Next, we know that, the complement of open set is closed and that of closed
set is open. Thus the complement of open Fσ set is a closed Gδ set. We also
know that for any set A and B, if A ⊃ B, then Ac ⊂ Bc. Thus by (a), we
have

P (A) = sup {P (C) : C ⊂ A,C a closed Gδset} .

Corollary 4.5. If Ω is a metric space and P is a probability measure on
B(Ω), then for each A ∈ B(Ω),

(a) P (A) = inf {P (V ) : V ⊃ A, V open}.

(b) P (A) = sup {P (C) : C ⊂ A,C closed}.

Proof. If G is a closed subset of Ω, then

G =
∞⋂
n=1

{
ω : dist(ω,G) <

1

n

}
.
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So G is a Gδ set.
If F is an open subset of Ω, then F c is closed and hence is a Gδ set. Since
complement of a Gδ set is an Fσ, we have F is also an Fσ.
Thus in a metric space, every closed set is a Gδ and every open set is an Fσ.
Also by corollary 4.4, in a metric space we have A (Ω) = B(Ω). Thus by
theorem 4.6, we have for each A ∈ B(Ω),

P (A) = inf {P (V ) : V ⊃ A, V open} .

P (A) = sup {P (C) : C ⊂ A,C closed} .

By corollary 4.5, we conclude that in metric space every Borel set can be
approximate by an open set (as well as a closed set).

Definition 4.3. A metric space Ω with metric d, is said to be complete iff
each Cauchy sequence converges to a point in the space Ω.

Definition 4.4. A subset A of a topological space Ω is said to be dense in Ω
if A = Ω, where A is the closure of A in Ω. A topological space Ω is said to
be separable if there is a countable dense subset of Ω.

If Ω is a complete separable metric space, then the following theorem tells
us that each Borel set can be approximate by a compact subset of Ω.

Theorem 4.7. Let Ω be a complete separable metric space. If P is a proba-
bility measure on B(Ω), then for each A ∈ B(Ω),

P (A) = sup {P (K) : K compact subset of A} .

Proof. To prove the theorem we show that if ε > 0, there is a compact set
Kε such that P (Kε) ≥ 1 − ε. This implies the theorem. For if C is closed
subset of Ω, then C ∩Kε is compact and

P (C) = P (C ∩Kε) + P (C − (C ∩Kε))

= P (C ∩Kε) + P (C ∩Kε).

So

P (C)− P (C ∩Kε) = P (C −Kε)

≤ P (Ω−Kε)

= P (Ω)− P (Kε)

= 1− P (Kε)

≤ ε.
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So P (C)− P (C ∩Kε) ≤ ε for any ε > 0.
This implies that C can be approximate by Kε. But by theorem 4.5, A
can be approximate by C for each Borel set A ∈ B(Ω). Hence A can be
approximate by compact subset Kε of Ω.
Since Ω is separable, there is a countable dense set {ω1, ω2, ...}. Let B(ωn, r)
(respectively, B(ωn, r)) be open (respectively, closed) ball with center at ωn
and radius r. Then since Ω is separable, for every r > 0,

Ω =
∞⋃
n=1

B(ωn, r)

so that
⋃m
k=1B(ωk, r) ↑ Ω as m→∞ (n fixed).

Thus, for given ε > 0 and a positive integer n, there is a positive integer
m(n) such that

P (
m⋃
k=1

B(ωk,
1

n
)) ≥ 1− ε2−n for all m ≥ m(n).

Let Kε =
⋂∞
n=1

⋃m(n)
k=1 B(ωk,

1
n
). Then Kε is closed(being countable intersec-

tion of closed sets) and

P (Kc
ε ) ≤

∞∑
n=1

P

m(n)⋃
k=1

B(ωk,
1

n
)

c

≤
∞∑
n=1

ε2−n

= ε

(
since

∞∑
n=1

2−n = 1

)

Therefore

P (Kε) + P (Kc
ε ) = P (ω)

P (Kε) = 1− P (Kc
ε ) ≥ 1− ε.

Now it remains to show that Kε is compact. For this,let {x1, x2, ...} be a
sequence in Kε. Then we show that there is a subsequence of {xp} in Kε that
is Cauchy.
For we have xp ∈ Kε =

⋂∞
n=1

⋃m(n)
k=1 B(ωk,

1
n
) for all p. Hence xp ∈

⋃m(1)
k=1 B(ωk, 1)
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for all p. Thus we conclude that for some integer k1, xp ∈ B(ωk1 , 1) for in-
finitely many p, say, for p ∈ T1 an infinite set of positive integers.
Also xp ∈

⋃m(2)
k=1 B

(
ωk1 ,

1
2

)
for all p, in particular for all p ∈ T1. hence for

some k2

xp ∈ B(ωk, 1) ∩B
(
ωk2 ,

1

2

)
for infinitely many p ∈ T1, say, for p ∈ T2 ⊂ T1.
Continue inductively to obtain integers k1, k2, ... and infinite sets T1, T2, ...
such that

xp ∈
i⋂

j=1

B

(
ωkj ,

1

j

)
for all p ∈ Ti.

Pick pi ∈ Ti, i = 1, 2, ... with p1 < p2 < ... Then for j < i, we have

xpi , xpj ∈ B
(
ωkj ,

1

j

)
.

So d(xpi , xpj) ≤ 2
j
→ 0 as j →∞.

Thus {xpi} is a Cauchy sequence, hence converges to a point in Kε since Kε

is closed and Ω is complete. Thus {xp} has a subsequence converging to a
point of Kε. So Kε is compact.

The following is the representation theorem of positive linear functional
in a topological context.

Theorem 4.8. Let Ω be a compact Hausdorff space, and let E be a posi-
tive linear functional on C(Ω), with E(1) = 1.There is a unique probability
measure P on A (Ω) such that

E(f) =

∫
Ω

fdP for all f ∈ C(Ω).

Proof. Let L = C(Ω). Then first we show that for fn ∈ L with fn ↓ 0,
then fn → 0 uniformly.. For this, let δ > 0 be given. Then we have Ω =⋃∞
n=1 {fn < δ}.

But since Ω is compact, there is a natural number N such that

Ω =
N⋃
n=1

{fn < δ} .
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But since Ω is compact , there is a natural number N such that

Ω =
N⋃
n=1

{fn < δ}

= {fN < δ} .

for some integer N . Thus n ≥ N implies that 0 ≤ fn(ω) ≤ fN(ω) < δ for all
ω. Since δ > 0 was arbitrary, we conclude that fn → 0 uniformly.
Thus if for f ∈ L, fn ↓ 0 and δ > 0 is given, then 0 ≤ fn < δ. So by
monotonicity of E, we have 0 ≤ E(fn) ≤ E(δ) = δ. Therefore, E(fn) ↓ 0.
So E is a Daniel integral. Thus, by Daniel Representation Theorem, there is
a unique probability measure P on A (Ω) = σ(L) such that E(f) =

∫
Ω
fdP

for all f ∈ L = C(Ω).

If we use the Daniel Theory with hypothesis B, then the following some-
what different result is obtained.

Theorem 4.9. Let Ω be a compact Hausdorff space, and let E be a positive
linear functional on C(Ω), with E(1) = 1. There is a unique probability
measure P on B(Ω) such that

(a) E(f) =
∫

Ω
fdP for all f ∈ C(Ω), and

(b) for all A ∈ B(Ω),

P (A) = inf {P (V ) : V ⊃ A, V open} .

Or equivalently,

P (A) = sup {P (K) : K ⊂ A,K compact} .

(Compact may be replaced by closed since Ω is compact Hausdorff.)

Proof. Let L = C(Ω). Let {fn, n ∈ D} is a net in L and assume that fn ↓ 0.
Then for any δ > 0, we have Ω =

⋃
n∈D {fn < δ}. But since ω is compact,

we have

Ω =
⋃
j∈F

{fj < δ}

for some finite set F ⊂ D.
If N ∈ D and N ≥ j for all j ∈ F , then by the monotonicity of the net,
we have Ω = {fN < δ}. Thus n ≥ N implies that 0 ≤ fn ≤ fN < δ. Since
δ > 0 was arbitrary, we have fn → 0 uniformly. So if δ > 0 is given, then
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0 ≤ fn < δ so that 0 ≤ E(fn) < E(δ) = δ. Therefore, E(fn ↓ 0).
Therefore, these all meets the criteria for the theorem 4.3. Hence there is
a probability measure P on σ(L′′) = σ(G ) such that E(f) =

∫
Ω
fdP for all

f ∈ L.
Now we prove σ(G ) = B(Ω), which proves part (a) of our theorem. For let
f ∈ L′′. Then there is a net of continuous functions fn such that fn ↑ f .
Hence for each real a,

{f > a} =
⋃
n

{fn > a}

is an open set.
Thus if G ∈ G , then IG ∈ L′′; so that G = {IG > 0} is open. Thus σ(G ) ⊂
B(Ω). Conversely, if G is open and ω ∈ G , then by Urysohn Lemma, there
is a continuous function fω : Ω → [0, 1] such that fω(ω) = 1 and fω = 0 on
Gc. Thus IG = supω fω, so that if for each finite set F ⊂ G we define gF =
max {fω : ω ∈ F}, and the sets by inclusion, Then we obtain the monotone
net of nonnegative continuous functions increasing to IG. Therefore, IG ∈ L′′,
so that G ∈ G . Hence we have B(Ω) ⊂ σ(G ). This proves that σ(G ) =
B(Ω).
Thus we have established the existence of a probability measure P on B(Ω)
satisfying (a).
For part (b), we know P = µ∗ on σ(G ) and by above discussion, G is the
class of open sets. So by lemma 4.3, we have for each A ∈ G ,

P (A) = inf {P (V ) : V ⊃ A, V open} .

If we replace A by the complement of A, then we get

P (A) = sup {P (C) : C ⊂ A,C closed}

and in a Hausdorff space every compact subset is closed, so we have

P (A) = sup {P (K) : K ⊂ A,K compact} .

Now it remains to show that P is unique. For let P ′ is another probability
measure satisfying (a) and (b) of the theorem. Now we show that P ′ satisfies
all the requirement for the theorem 4.3(b). Then uniqueness part of the
theorem 4.3(b) follows that P = P ′. Thus, let {Gn} be a net of open sets
with Gn ↑ G. Since G =

⋃
nGn, we have G is open. Then by part (b) of

the theorem, there is a compact set K ⊂ G such that P ′(G) ≤ P ′(K) + δ.
Thus Gn ∪Kc ↑ G ∪Kc = Ω. Hence by compactness and the monotonicity
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of {Gn} , Gm ∪Kc = Ω for some m, so that K ⊂ Gm. Consequently

P ′(G) ≤ P ′(K) + δ

≤ P ′(Gm) + δ

≤ lim
n
P ′(Gn) + δ.

This implies that P ′(Gn) ↑ P ′(G).
Thus by using uniqueness part of the theorem 4.3(b) we conclude that P =
P ′.

Definition 4.5. If µ is a measure on B(Ω), where Ω is normal topological
space, µ is said to be regular iff for each A ∈ B(Ω)

µ(A) = inf {µ(V ) : V ⊃ A, V open}

and

µ(A) = sup {µ(C) : C ⊂ A,C closed} .

If µ is finite, then either of one condition implies other. Moreover, the
probability measure P is regular in theorem 4.9.
If µ = µ+ − µ− is a finite signed measure on B(Ω),Ω normal, we say that µ
is regular iff µ+ and µ− are regular(equivalently, iff the total variation |µ| is
regular).

The following theorem connects the theorem 4.8 and theorem 4.9.

Theorem 4.10. If P is a probability measure on A (Ω),Ω compact Haus-
dorff, then P has a unique extension to a regular probability measure on
B(Ω).

Proof. Define E by

E(f) =

∫
Ω

fdP, f ∈ L = C(Ω).

Then E is a positive linear functional on L. Thus if {fn} is a net in L
decreasing to 0, then E(fn) ↓ 0. But since f ∈ L = C(Ω), by theorem
4.9, there is a unique regular probability measure P ′ on B(Ω) such that
E(f) =

∫
Ω
fdP ′. So we have∫

Ω

fdP =

∫
Ω

fdP ′ for all f ∈ L.

But by definition of A (Ω), each f ∈ L is measurable:(Ω,A (Ω))→ (<,B(<)).
Hence

∫
Ω
fdP ′ is determined by the values of P ′ on Baire sets. Thus the con-

dition that
∫

Ω
fdP =

∫
Ω
fdP ′ for all f ∈ L is equivalent to P = P ′ on A (Ω),

by the uniqueness part of the theorem 4.8.
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Definition 4.6. Let p > 0. Then we define the space Lp = Lp(Ω,F , µ)
as the collection of all complex-valued Borel measurable function f such that∫

Ω
|f |pdµ <∞.

We define ‖f‖p

‖f‖p =

(∫
Ω

|f |pdµ
) 1

p

, f ∈ Lp.

Following is the result on the approximation of Borel measurable functions
by continuous functions.

Theorem 4.11. [6] Consider the measure space (Ω,F , µ), where Ω is a
normal topological space, F = B(Ω), and µ is a regular measure on F . If
0 < p <∞, ε > 0, and f ∈ Lp(Ω,F , µ), there is a continuous complex valued
function g ∈ Lp(Ω,F , µ) such that ‖f − g‖p < ε ; furthermore, g can be
chosen so that sup |g| ≤ sup |f |. Thus the continuous functions are dense in
Lp.

Theorem 4.12. Let µ be a regular finite measure on B(Ω),Ω normal. If f
is a complex valued Borel measurable function on Ω and δ > 0, there is a
continuous complex valued function g on Ω such that

µ {ω : f(ω) 6= g(ω)} < δ.

Furthermore it is possible to choose g so that sup |g| ≤ sup |f |.

Proof. Let us define hn by

hn(ω) =
k − 1

2n
if
k − 1

2n
≤ f(ω) ≤ k

2n
, k = 1, 2, ..., n2n

and

hn(ω) = n if f(ω) ≥ n.

Then hn are nonnegative simple functions increasing to f . Let fn = hn −
hn−1, n = 1, 2, ... with h0 = 0. Then

f =
∞∑
n=1

fn.

We note that fn has only two possible values 0 and 2−n. If An = {fn 6= 0}, let
Cn be a closed subset of An and Vn an open Overset of An such that µ(Vn −
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Cn) < δ2−n. Since Ω is normal, by Urysohn lemma, there is a continuous
function gn : Ω→ [0, 1] such that

gn = 1 on Cn

gn = 0 off Vn.

If g =
∑∞

n=1 2−ngn, then by Weierstrass M-test, g is continuous map of Ω
onto [0, 1]. We claim that if ω /∈

⋃∞
n=1(Vn − Cn), a set of measure less than

δ, then f(ω) = g(ω). To see this we observe that for each n, ω ∈ Cn or
ω /∈ Vn. If ω ∈ Cn ⊂ An then 2−ngn(ω) = 2−n = fn(ω) and if ω /∈ Vn, then
2−ngn(ω) = 0 = fn(ω) since ω /∈ An.
This proves the existence of g when 0 ≤ f < 1.
The extension to a complex valued bounded f is immediate.
If f is unbounded , we write

f = fI{|f |<n} + fI{|f |≥n} = f1 + f2

where f1 is bounded and µ {f2 = 0} = µ {|f | ≥ n}, which can be made less
than δ

2
for sufficiently large n. Thus if g is continuous and and µ {f1 6= g} < δ

2

then µ {f 6= g} < δ.
Finally, if |f | ≥M <∞, and g approximates f as above, we define

g1(ω) = g(ω) if |g(ω)| ≤M and

g1(ω) =
Mg(ω)

|g(ω)|
if |g(ω)| > M

Then g1 is continuous, |g1| ≤ M , and f(ω) = g(ω) implies that |g(ω)| ≤ M .
Hence g1(ω) = g(ω) = f(ω).
Therefore, µ {f 6= g1} ≤ µ {f 6= g} < δ.
This completes the proof of the theorem.

Corollary 4.6. Assume the hypothesis of the theorem 4.11.

(a) There is a sequence of continuous complex valued functions fn on Ω
converging to f a.e.[µ], with |fn| ≤ sup |f | for all n.

(b) Given ε > 0, there is a closed set C ⊂ Ω and a continuous complex
valued function g on Ω such that µ(C) ≥ µ(Ω) − ε and f = g on C,
hence the restriction of f to C is continuous. If µ has the additional
property that µ(A) = sup {µ(K) : K ⊂ A,K compact} for each A ∈
B(Ω), then C may be taken as compact.
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Proof. (a) By theorem 4.12, there is a continuous function fn such that
|fn| ≤ M = sup |f | and µ {fn = f} < 2n. If An = {fn 6= f} and
A = lim supnAn, then by Borel-Cantelli lemma

µ(A) = µ(lim sup
n
An) = 0

But if ω ∈ A, then fn(ω) = f(ω) for sufficiently large m. This means
that limn fn = f a.e.[µ] as desired.

(b) For given ε > 0, by theorem 4.11, there is a continuous function g such
that

µ {f 6= g} < ε

2
.

But by the regularity of µ, there is a closed set C ⊂ {f = g} with
µ(C) ≥ µ {f = g} − ε

2
(Here {f = g} is a Borel measurable set, so it

can be approximate by a closed subset of Ω).
Thus

µ(C) ≥ µ {f = g} − ε

2

But

µ {f = g}+ µ {f 6= g} = µ(Ω).

So,

µ {f = g} = µ(Ω)− µ {f 6= g}
= µ(Ω)− ε

2

Thus

µ(C) ≥ µ(Ω)− ε and f = g on C

as desired.
If µ(A) = sup {µ(K) : K ⊂ A,K compact}, for each A ∈ B(Ω), then
since every closed set is Borel set, the closed set discussed as above can
be approximate by K. This means that for given ε1 > 0, there is a
compact set K such that

µ(K) ≥ µ(C)− ε1
≥ µ(Ω)− ε− ε1
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So

µ(K) ≥ µ(ω)− ε′ where ε′ = ε+ ε1.

and f = g on K as desired.

Corollary (b) is also called Lusins theorem. This corollary shows that the
Borel measurable function can be approximate by a continuous function.

4.4 Measures on Uncountably Infinite Prod-

uct Spaces

In this section we consider probability measure on countably infinite product
spaces and extend them to uncountable products under certain topological
assumptions about the individual factor spaces. For this first we define some
basics.

Definition 4.7. Let Fj be a σ−field of subsets of Ωj, j = 1, 2, ..., n, and
let Ω = Ω1 × Ω2 × ... × Ωn. A measurable rectangle in Ω is a set A =
A1 × A2 × ... × An, where Aj ∈ Fj for each j = 1, 2, ..., n. The smallest
σ−field containing the measurable rectangles is called the product σ−field,
written F1 ×F2 × ... ×Fn. If all Fj coincide with a fixed σ−field F , the
product σ−field is denoted by F n. Note that the notation F1×F2× ...×Fn

is not the Cartesian product of the Fj. The product σ−field is the minimal
σfield over the measurable rectangles. Note also that the collection of finite
disjoint unions of measurable rectangles forms a field.

Definition 4.8. For each j = 1, 2, ..., let (Ωj,Fj) be a measurable space.
Let Ω =

∏∞
j=1 Ωj, the set of all sequences (ω1, ω2, ...) such that ωj ∈ Ωj, j =

1, 2, ... If Bn ⊂
∏∞

j=1 Ωj, we define

Bn = {ω ∈ Ω : (ω1, ..., ωn) ∈ Bn} .

The set Bn is called the cylinder with base Bn. The cylinder is said to be
measurable if Bn ∈

∏n
j=1 Fj. If Bn = A1 × ...×An, where Ai ⊂ Ωi for each

i, Bn is called a rectangle, a measurable rectangle if Ai ∈ Fi for each i.

Remarks: A cylinder with an n−dimensional base may always be regarded
as having a higher dimensional base. For example

B =
{
ω ∈ Ω : (ω1, ω2, ω3) ∈ B3

}
,
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then

B =
{
ω ∈ Ω : (ω1, ω2, ω3) ∈ B3, ω4 ∈ Ω4

}
=

{
ω ∈ Ω : (ω1, ω2, ω3, ω4) ∈ B3 × Ω4

}
.

It follows that the measurable cylinders form a field. It is also true that finite
disjoint union of measurable rectangles form a field.

Definition 4.9. The minimal σ−field over the measurable cylinders is called
the product of σfields Fj, written

∏∞
j=1 Fj;

∏∞
j=1 Fj is also called the minimal

σ−field over the measurable rectangles. If all Fj coincide with a fixed σ−field
F , then

∏∞
j=1 Fj is denoted by F∞, and if all Ωj coincide with a fixed set

S,
∏∞

j=1 Ωj is denoted by S∞.

Now we defined the product of uncountably many σ−fields

Definition 4.10. For t in the arbitrary index set T , let (Ωt,Ft) be a mea-
surable space. Let

∏
t∈T Ωt be the set of all functions ω = (ω(t), t ∈ T ) on T

such that ω(t) ∈ Ωt for each t ∈ T . If t1, ...tn ∈ T and Bn ⊂
∏n

i=1 Ωti , we
define the set Bn(t1, ..., tn) as{

ω ∈
∏
t∈T

Ωt : (ω(t1), ..., ω(tn) ∈ Bn)

}
.

We call Bn(t1, ..., tn) the cylinder with base Bn at (t1, ..., tn); the cylinder is
said to be measurable iff Bn ∈

∏n
i=1 Fti. If Bn = B1 × ... × Bn, then the

cylinder is called a rectangle, a measurable rectangle iff Bi ∈ Fti , i = 1, ..., n.
If all Ωt = Ω, then we write

∏
t∈T Ωt = ΩT .

Example:
Let T = [0, 1],Ωt = < for all t ∈ T,B2 = {(u, v) : u > 3, 1 < v < 2}. Then

B2

(
1

2
,
3

4

)
=

{
x ∈ <T : x

(
1

2

)
> 3, 1 < x

(
3

4

)
< 2

}
.

Note:The measurable cylinders form a field, as do the finite disjoint unions
of measurable rectangles.

Definition 4.11. The minimal σ−field over the measurable cylinders is de-
noted by

∏
t∈T Ft, and called the product of the σ−fields Ft. If Ωt = S and

Ft = S for all t,
∏

t∈T Ft is denoted by S T .
∏

t∈T Ft is also the minimal
σ−field over the measurable rectangles.
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Definition 4.12. If v = {t1, ..., tn} , t1 < ... < tn, the space (
∏n

i=1 Ωti ,
∏n

i=1 Fti)
is denoted by (Ωv,Fv). If u = {ti1, ..., tik} is a non empty subset of v and
y = (y(t1), ..., y(tn)) ∈ Ωv, the k−tuple (y(t1), ..., y(tk)) is denoted by yu.
Similarly, if ω = (ω(t), t ∈ T ) belongs to

∏
t∈T Ωt, the notation ωv will be

used for (ω(t1), ..., ω(tn)).

Definition 4.13. If Pv is a probability measure on Fv, the projection of Pv
on Fu is the probability measure πu(Pv) on Fu defined by

[πu(Pv)](B) = Pv {y ∈ Ωv : yu ∈ B} , B ∈ Fu.

Similarly, if Q is a probability measure on
∏

t∈T Ft, the projection of Q on
Fv is defined by

[πv(Q)](B) = Q

{
ω ∈

∏
t∈T

Ωt : ωv ∈ B

}
= Q(B(v)) B ∈ Fv.

To prove main result of this section we first prove preliminary result.

Theorem 4.13. For each n = 1, 2, ..., suppose that Fn is the class of Borel
sets of a separable metric space Ωn. Let Ω =

∏
n Ωn, with the product topology

and let F = B(Ω). Then F is the product σ−field
∏

n Fn.

Proof. We note that the separability and second countability are equivalent
in metric spaces. So the sets {ω ∈ Ω : ω1 ∈ A1, ..., ωn ∈ An} , n = 1, 2, ...,
where Ai ranges over the countable base for Ωi, form a countable base for Ω.
Since the sets {ω ∈ Ω : ω1 ∈ A1, ..., ωn ∈ An} , n = 1, 2, ..., defined as above
are measurable rectangles and since every open subset of Ω is the countable
union of such sets, every open subset of Ω belongs to

∏
n Fn. Hence F ⊂∏

n Fn. On the other hand, for a fixed positive integer i, let

C = {B ∈ B(Ωi) : {ω ∈ Ω : ωi ∈ B} ∈ F} .

Then C is a σ−field containing the open sets of Ωi, hence C = B(Ωi). Thus
every measurable rectangle with one-dimensional base belong to F . Since an
arbitrary measurable rectangle is a finite intersection of such sets, it follows
that

∏
n Fn ⊂ F .

We now establish the main result of this section.

Theorem 4.14. Kolmogorov Extension Theorem. For each t in the arbitrary
index set T , let Ωt be a complete, separable metric space, and Ft the class of
Borel sets of Ωt. Assume that for each finite nonempty subset v of T , we are
given a probability measure Pv on Fv. Assume that Pv are consistent, that
is, πu(Pv) = Pu for each nonempty u ⊂ v.
Then there is a unique probability measure P of F =

∏
t∈T Ft such that

πv(P ) = Pv for all v.
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Proof. We define the set function P on measurable cylinders by

P (Bn(v)) = Pv(B
n), Bn ∈ Fv.

Now we prove this set function P satisfies our requirements.
First we show that P is well defined because a given measurable cylinder
can be represented in several ways. For this it is sufficient to consider dual
representation of the same measurable cylinder in the form Bn(v) = Bk(u)
where k < n and u ⊂ v. Then

Pu(B
k) = [πu(Pv)](B

k) by the consistency hypothesis

= Pv
{
y ∈ Ωv : yu ∈ Bk

}
. by the definition of projection

But the assumption Bn(v) = Bk(u) implies that if y ∈ Ωv, then y ∈ Bn iff
yu ∈ Bk, hence Pu(B

k) = Pv(B
n). Thus P is well defined on the measur-

able cylinders. Since the class F0 of measurable cylinders form a field and
σ(F0) = F , P is well defined on F =

∏
t∈T Ft.

Next we asserts that P is countably additive. For let A1, ..., Am be disjoint
sets in F0. Then we may write Ai = Bn

i (v), i = 1, ...,m, where v = {t1, ..., tn}
is fixed and the Bn

i , i = 1, ...,m are disjoint sets in Fv. Thus

P

(
m⋃
i=1

Ai

)
= P

(
m⋃
i=1

Bn
i (v)

)

= Pv

(
m⋃
i=1

Bn
i

)
(by definition of P )

=
m∑
i=1

Pv(B
n
i ) ( since Pv is a measure)

=
m∑
i=1

P (Ai). (by definition of P )

Therefore P is finitely additive on F0. To show that P is countably additive
on F0, it is sufficient to show that P is continuous from above at φ.
Let Ak, k = 1, 2, ... be a sequence of measurable cylinders decreasing to φ.
For contrary let us suppose P (Ak) does not approach to 0. Then for some
ε > 0, P (Ak) ≥ ε > 0 for all k. Suppose Ak = Bnk(vk). By taking on extra
factors, we may assume that the numbers nk and the sets vk increase with
k. But by theorem 4.13, each Ωvk is a complete, separable metric space and
Fvk = B(Ωvk). So by theorem 4.7 there exist a compact set Cnk ⊂ Bnk such
that Pvk(B

nk − Cnk) < ε
2k+1 . Define A′k = Cnk(vk) ⊂ Ak. Then

P (Ak − A′k) = Pvk(B
nk − Cnk) <

ε

2k+1
.
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In this way we can approximate the given cylinders by cylinders with compact
bases. Now take

Dk = A′1 ∩ ... ∩ A′k ⊂ A1 ∩ ... ∩ Ak = Ak.

Then

P (Ak −Dk) = P

(
Ak ∩

k⋃
i=1

A
′c
i

)
(De Morgans law)

≤
k∑
i=1

P (Ak ∩ A
′c
i )

≤
k∑
i=1

P (Ai − A′i)

≤
k∑
i=1

ε

2i+1

<
ε

2
.

Also, since Dk ⊂ A′k, we have P (Ak −Dk) = P (Ak)− P (Dk). Consequently,
P (Ak) − P (Dk) = P (Ak − Dk) <

ε
2
. So P (Dk) > P (Ak) − ε

2
. Thus, in

particular Dk is nonempty.
Now pick xk ∈ Dk, k = 1, ..., say, A′i = Cn1(t11, t21..., tn1) = Cn1(v1). Con-
sider the sequence

(x1
t1
, ..., t1n1

), (x2
t1
, ..., t2n1

), (x3
t1
, ..., t3n1

), ...

that is,

x1
v1
, x2

v1
, x3

v1
, ...,

Since xnv1 belongs to Cn1 , a compact subset of Ωv1 , we have a convergent
subsequence xr1nv1 approaching some xv1 ∈ Cn1 . If A′2 = Cn1(v2) (so that Dk ⊂
A′2), consider the sequence xri1v2 , x

ri2
v2
, xri3v2 , ... ∈ Cn2 and extract a convergent

subsequence xr2nv2 → xv2 ∈ Cn2 .
We note that (xr2nv2 )v1 = xr2nv1 . Also as n → ∞, the left side approaches
(xv1)v1 , and since {r2n} is a subsequence of {r1n}, the right side approaches
xv1 . Hence (xv2)v1 = xv1 .
Continue in this fashion, at step i we have a subsequence

xrinvi → xvi ∈ Cni and (xvi)vj = xvj for j < i
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Since (xvi)vj = xvj , j < i, we can choose ω ∈
∏

t∈T Ωt such that ωvj = xvj for
all j = 1, 2, ... Hence

ω ∈
∞⋂
j=1

A′j ⊂
∞⋂
j=1

Aj = φ,

a contradiction.
Thus, P (Ak) → 0. So by theorem 1.3(b) P is countably additive. Also
by Caratheodory extension theorem P may be extends to F . Hence by
construction of P

πv(P ) = Pv for all v.

Now it remains to show that P is unique. For let P and Q be two probability
measure on F such that πv(P ) = πv(Q) for all finite v ⊂ T . Then for any
Bn ∈ Fv,

P (Bn(v)) = [πv(P )](Bn)

= [πv(Q)](Bn)

= Q(Bn(v)).

Thus P and Q are equal on the measurable cylinders. Hence again by the
uniqueness part of Caratheodory extension theorem P = Q on F .
This completes the proof of the theorem.

4.5 Weak Convergence

By theorem 4.8 and theorem 4.9(also called representation theorem), a con-
tinuous linear functional on C(Ω), where Ω is a compact Housdorff space
can be identified with a regular finite measure on B(Ω). Thus, if {µn} is a
sequence of such measures, weak convergence of the sequence to the measure
µ means that

∫
Ω
fdµn →

∫
Ω
fdµ for all f ∈ C(Ω).

In this section, we establish such type of convergence in different con-
text. For this, we start with the following theorem which gives us somewhat
different definition of weak convergence.

Theorem 4.15. Let µ, µ1, µ2, ... be finite measures on the Borel sets of metric
space Ω. The following conditions are equivalent:

(a)
∫

Ω
fdµn →

∫
Ω
fdµ for all bounded continuous f : Ω→ <.
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(b) lim infn→∞
∫

Ω
fdµn ≥

∫
Ω
fdµ for all bounded lower semi continuous

f : Ω→ <.

(b’) lim supn→∞
∫

Ω
fdµn ≤

∫
Ω
fdµ for all bounded upper semi continuous

f : Ω→ <.

(c)
∫

Ω
fdµn →

∫
Ω
fdµ for all bounded f : (Ω,B(Ω)) → (<,B(<)) such

that f is continuous a.e. [µ]

(d) lim infn→∞ µn(A) ≥ µ(A) for every open set A ⊂ Ω, and µn(Ω) →
µ(Ω).

(d’) lim supn→∞ µn(A) ≤ µ(A) for every closed set A ⊂ Ω, and µn(Ω) →
µ(Ω).

(e) µn(A) → µ(A) for every A ∈ B(Ω) such that µ(∂A) = 0(∂A denotes
the boundary of A).

Proof. (a) ⇒ (b)
Let f : Ω→ < be a lower semi continuous (LSC). If g is bounded continuous
with g ≤ f , then

lim inf
n→∞

∫
Ω

fdµn ≥ lim inf
n→∞

∫
Ω

gdµn

=

∫
Ω

gdµ. (by hypothesis since g is bounded continuous)

But since f is LSC, by theorem 3.10 f is a limit of a sequence of continuous
functions. Also since f is bounded, |f | ≤M <∞. So again by theorem 3.10
all functions in the sequence may be chosen so that all less than or equal to
M in absolute value.Thus taking sup over g in the above equations we get

lim inf
n→∞

∫
Ω

fdµn ≥ sup

∫
Ω

gdµ =

∫
Ω

fdµ.

as desired.
(b)⇔ (b’)
We know that a function f is LSC iff −f is USC. Thus (b) holds iff (c) holds.
(b) ⇒ (c)

Let f be the lower envelope of f(the sup of all LSC functions g such that

g ≤ f) and f the upper envelope of f(the inf of all USC functions such that
g ≥ f). Then by the definition of f and f , we have

f = lim inf
y→x

f(y) and f = lim sup
y→x

f(y)
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But since f is continuous at x we have

f(x) = f(x) = f(x).

Also by theorem 3.8, f and f are LSC and USC, respectively. Thus if f is
bounded and continuous a.e. [µ],∫

Ω

fdµ =

∫
Ω

fdµ ≤ lim inf
n→∞

∫
Ω

fdµn (by hypothesis)

≤ lim inf
n→∞

∫
Ω

fdµn (since f ≤ f)

≤ lim sup
n→∞

∫
Ω

fdµn

≤ lim sup
n→∞

∫
Ω

fdµn

≤
∫

Ω

fdµ

=

∫
Ω

fdµ

This proves (c).
(c) ⇒ (d)
Suppose (c) holds. Then (a) also holds, consequently (b) also holds. Now let
A be open subset of Ω. Then IA is LSC, so by (b) lim supn→∞

∫
Ω
IAdµn ≥∫

Ω
IAdµ, that is, lim supn→∞ µn(A) ≥ µ(A). Since A ⊂ Ω is arbitrary, we

have shown that lim supn→∞ µn(A) ≥ µ(A) for all open subset A of Ω.
Next, we know that IΩ ≡ 1, so that IΩ is bounded and measurable:(Ω,B(Ω))→
(<,B(<)). Thus by (c) ∫

Ω

IΩdµn →
∫

Ω

IΩdµ

⇒ µn(Ω)→ µ(Ω).

(d) ⇔ (d’)
We know that a set A ⊂ Ω is open iff Ac(where Ac denote complement of A)
is closed in Ω.Thus (d) holds iff (d’) holds.
(d) ⇒ (e)
Let A ∈ B(<). Let A0 be the interior of A and A be the closure of A. Then
by definition, A0 is open and A is closed. So

lim sup
n→∞

µn(A) ≤ lim sup
n→∞

µn(A) (since A ⊂ A)

≤ µ(A) (by (d’))

= µ(A). (since µ(∂A) = 0)
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Also

lim inf
n→∞

µn(A) ≥ lim inf
n→∞

µn(A0) (since A0 ⊂ A)

≥ µ(A0) (by (e))

= µ(A). (since µ(∂A) = 0)

So

µ(A) ≤ lim inf
n→∞

µn(A) ≤ lim sup
n→∞

µn(A) ≤ µ(A).

Hence

µn(A)→ µ(A).

(e) ⇒ (a)
Let f be a bounded continuous functions on Ω. Suppose that |f | < M for
some 0 < M <∞. Let us define a set A by

A =
{
c ∈ < : µ(f−1 {c}) 6= 0

}
.

Then A is countable since the sets f−1 {c} are disjoint and µ is finite. Let us
construct a partition of [−M,M ], say, −M = t0 < t1 < ... < tj = M , with
ti /∈ A, i = 0, 1, ..., j(M may be increased if necessary). Such a partition is
exist since A is countable. Let

Bi = {x : ti ≤ f(x) < ti+1} i = 1, ..., j.

Since f−1(ti, ti+1) is open, we have ∂f−1[ti, ti+1) ⊂ f−1 {ti, ti+1} = 0(since
ti, ti+1 /∈ A). Thus from (e), we have

j−1∑
i=1

tiµn(Bi)→
j−1∑
i=1

tiµ(Bi).

Now∣∣∣∣∫
Ω

fdµn −
∫

Ω

fdµ

∣∣∣∣ ≤
∣∣∣∣∣
∫

Ω

fdµn −
j−1∑
i=1

tiµn(Bi)

∣∣∣∣∣+

∣∣∣∣∣
j−1∑
i=1

tiµn(Bi)−
j−1∑
i=1

tiµ(Bi)

∣∣∣∣∣+

∣∣∣∣∣
j−1∑
i=1

tiµ(Bi)−
∫

Ω

fdµ

∣∣∣∣∣ .
The first term on the right can be written as∣∣∣∣∣

j−1∑
i=0

∫
Bi

(f(x)− ti)dµn(x)

∣∣∣∣∣
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which is bounded by maxi(ti+1 − ti)µn(Ω), which can be made arbitrarily
small by choice of the partition since µn(Ω)→ µ(Ω) <∞.
The second term on the right approaches 0 as n→∞.
The third term on the right is bounded by maxi(ti+1− ti)µ(Ω) which can be
made arbitrarily small by the choice of the partition since µn(Ω) → µ(Ω) <
∞.
Thus for given ε > 0, we have∣∣∣∣∫

Ω

fdµn −
∫

Ω

fdµ

∣∣∣∣ < ε

⇒
∫

Ω

fdµn →
∫

Ω

fdµ

proving (a).
This completes the poof of the theorem.

Definition 4.14. The convergence described in theorem 4.15 is sometimes
called weak or vague convergence of measures and we write µn

w→ µ.

Definition 4.15. A continuity point of a distribution function F on < is a
point x ∈ < such that F is continuous at x, or ±∞(thus by convention, ∞
and −∞ are continuity points.)

If the measures µn and µ are defined on B(<), then there exist corre-
sponding distribution functions Fn and F on <. The following theorem relate
the convergence of measure to convergence of distribution functions.

Theorem 4.16. Let µ, µ1, µ2, ... be finite measures on B(<) with correspond-
ing distribution functions F, F1, F2, .... Then the following are equivalent:

(a) µn
w→ µ.

(b) Fn(a, b] → F (a, b] for all continuity points a, b of F , where F (a, b] =
F (b)− F (a), F (∞) = limx→∞ F (x), F (−∞) = limx→−∞ F (x).

If all distributions are 0 at −∞, conditions (b) equivalent to the statement
Fn(x) → F (x) at all points x ∈ < at which F is continuous, and Fn(∞) →
F (∞).

Proof. (a)⇒(b)
Suppose (a) holds. Let a, b ∈ < be continuity points of F . Then (a, b] is a
Borel set with µ(∂(a, b]) = 0, where ∂(a, b] denotes the boundary of (a, b]. So
by theorem 4.15 (g), µn(a, b]→ µ(a, b], that is, Fn(a, b]→ F (a, b].
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If a = −∞, then same as above (−∞, b] is a Borel set whose boundary
has µ measure 0. So by theorem 4.15 (e),µn(−∞, b] → µ(−∞, b], that is,
Fn(−∞, b]→ F (−∞, b].
If b = ∞ then (a,∞) is also a Borel set whose boundary has µ−measure 0,
and so Fn(a,∞)→ F (a,∞) same as above.
(b) ⇒ (a)
Suppose (b) holds. Let A be an open subset of <. Then we can express A
as the disjoint union of open intervals, I1, I2... Then

lim inf
n→∞

µn(Ak) = lim inf
n→∞

µn

(
∞⋃
n=1

Ik

)

= lim inf
n→∞

∞∑
n=1

µn(Ik) (countable additivity)

≥
∞∑
k=1

lim inf
n→∞

µn(Ik). (by Fatou’sLemma)

Let ε > 0 be given. For each k, let I ′k be a right semi closed subinterval of Ik
such that the end points of I ′k are continuity points of F , and µ(I ′k) ≥ µ(Ik)−
ε2−k. Here I ′k can be choose since F has only countably many discontinuities.
So

lim inf
n→∞

µn(Ik) ≥ lim inf
n→∞

µn(I ′k).

Thus

lim inf
n→∞

µn(A) ≥
∑
k

µ(I ′k)

≥
∑
k

µ(Ik)− ε

= µ(A)− ε.

Since ε is arbitrary, we have

lim inf
n→∞

µn(A) ≥ µ(A)

for every open set A ⊂ Ω. Thus by theorem 4.15(d), we have µn
w→ µ.

Definition 4.16. Condition (b) of theorem 4.16 is called weak convergence
of the sequence {Fn} to F , and written Fn

w→ F.



Chapter 5

Conclusion

The class of Borel measurable functions plays a fundamental role in inte-
gration theory. It has some basic properties in common with another most
important class, the class of continuous functions. More precisely, there are
interrelation between the concepts topological space, open set, and continu-
ous function, on the one hand, and measurable space, measurable set, and
measurable function, on the other. After discussing “The interplay between
measure theory and topology ” we arrive at the following conclusions.

• In a metric space, Borel sets and Baire sets are same.

• In complete separable metric space Ω and for a finite measure µ, a
Borel set can be approximated by an open set (or by a closed set and
hence by a compact set) in Ω.

• In a compact Hausdorff space, a positive linear functional in C(Ω) can
be represented in terms of Lebesgue integration.

• The continuous functions are dense in Lp.

• In a normal space, a complex valued Borel measurable function can be
approximated by a complex valued continuous functions.

• Probability measure on countably infinite product spaces can be ex-
tended to uncountable products under some topological assumptions.

• In the class of Borel sets in real numbers, the weak convergence of finite
measures and weak convergence of corresponding distribution functions
are equivalent.
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