DIVERSITY OF NATURALIZED PLANT SPECIES ACROSS DIFFERENT LAND USE TYPES IN KAILALI DISTRICT, WESTERN NEPAL

A Dissertation Submitted for Partial Fulfillment of the Requirements for the Master's of Science in Botany, Central Department of Botany, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal.

Submitted by

Ganesh Datt Joshi Exam Roll No.: Bot. 110/071 Batch: 2071/073 T.U. Reg. No.: 5-1-61-84-2007 Plant Systematics and Biodiversity Conservation Unit Central Department of Botany Institute of Science and Technology Tribhuvan University Kathmandu, Nepal

April, 2019

RECOMMENDATION

This is to certify that the dissertation work entitled "DIVERSITY OF NATURALIZED PLANT SPECIES ACROSS LAND USE TYPES IN KAILALI DISTRICT, WESTERN NEPAL" has been completed by Mr. Ganesh Datt Joshi under our supervision. This entire work was accomplished on the basis of candidate's original research work. To the best of our knowledge, the work has not been submitted to any other academic degree. It is here by recommended for acceptance of this dissertation as a partial fulfillment of the requirement of Master's Degree in Botany at the Institute of Science and Technology, Tribhuvan University, Nepal.

Mohan Siwakoti, Ph.D. Professor Central Deparment of Botany Tribhuvan University Kirtipur, Kathmandu, Nepal. Supervisor Bharat Babu Shrestha, Ph.D. Associate Professor Central Deparment of Botany

Tribhuvan University Kirtipur, Kathmandu, Nepal.

Date: April, 2019

LETTER OF APPROVAL

The M.Sc. dissertation entitled "DIVERSITY OF NATURALIZED PLANT SPECIES ACROSS LAND USE TYPES IN KAILALI DISTRICT, WESTERN, NEPAL" submitted at the Central Department of Botany, Tribhuvan University by Mr. Ganesh Datt Joshi has been accepted as partial fulfillment of the requirement of Masters of Science in Botany (Plant Systematics and Biodiversity Conservation).

EXAMINATION COMMITTEE

External Examiner Keshab Raj Rajbhandari, D.Sc. Senior Taxonomist Internal Examiner Sangeeta Rajbhandary, Ph.D. Professor Central Department of Botany Tribhuvan University, Kathmandu, Nepal.

Supervisor Mohan Siwakoti, Ph.D. Professor Central Deparment of Botany, Tribhuvan University, Kathmandu, Nepal. •••••

Supervisor Bharat Babu Shrestha, Ph.D. Associate Professor Central Deparment of Botany, Tribhuvan University, Kathmandu, Nepal.

Head of the Department

Ram Kailash Prashad Yadav, Ph.D.

Professor

Central Department of Botany,

Tribhuvan University, Kathmandu, Nepal.

Date:

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to both supervisors Prof. Dr. Mohan Siwakoti and Associate Prof. Dr. Bharat Babu Shrestha for their invaluable time, suggestions and guidance throughout my dissertation work. They are truly a source of inspiration that made me able to complete my research work smoothly.

I would like to express my sincere gratitude to the head of the department Prof. Dr. Ram Kailash Prasad Yadav for the administrative support. I am grateful to Dr. Bhaskar Adhikari, Prof. Dr. Sangeeta Rajbhandary, Dr. Suresh K. Ghimire, Dr. Lilanath Sharma, Dr. Keshab Raj Rajbhandari, Dr. Chitra Bdr. Baniya, Prof. Dr. Mohan Prasad Panthi, Prof. Dr. Lokesh Shakya, Prof. Dr. Bijaya Pant, Dr. Mandev Bhatt, Dr. Lal Bdr. Thapa, Dr. Naresh Pd. Joshi, Mr. Ganga Datt Bhatt, Mr. Dhanraj Kandel, Mr. Thaneshwor Tiwari, Mr. Anil Chaudhary and Mr. Deepak Raj Joshi for their guidance in different stages of this work. Also, I would like to express my sincere thanks to Yagya Raj Paneru, Yadunath Poudel, Mr. Prabin Bhandari, Mr. Gajendra Pd. Chataut, Ajay Nyaupane, Bikram Jnawali, Rashmi Paudel, Bhawani Nyaupane, Prativa Paneru, Dipesh Pathak, Puja Joshi, Dipak Bohara, Subash Nyaupane, Sabana Praveen, Anzana Kharbuja, Ashika Bhusal, Sushila Sharma, Sunita Bhatt, Sangram Karki, Mahesh Raj Bist, Basu Dev Paudel, Manju Baniya and Meena Joshi for their assistance in field work, lab work, data analysis and technical support.

I am thankful to "Science-based interventions reversing negative impacts of invasive plants in Nepal"- a Darwin Initiatives Project in Nepal (23-031) for the financial support for the present study. I acknowledge the authorities of National Herbarium and Plant Laboratories (KATH), Godawari, Tribhuvan University Central Herbarium (TUCH), Kirtipur and Central National Herbarium (CAL), Kolkata for giving permission to access the herbarium specimens and plant identification. Also, I am thankful to community forest members for the permission on vegetation sampling inside forest and assistance for fieldwork. I am sincerely grateful to my family, seniors, juniors, colleagues, faculties and administrative staffs of Central Department of Botany (T.U.) for their direct or indirect support, co-operation, and guidance for this work.

April, 2019

Ganesh Datt Joshi

TABLE OF CONTENTS

RECOMMENDATIONii
LETTER OF APPROVAL iii
ACKNOWLEDGMENTSiv
TABLE OF CONTENTSv
TABLES OF FIGURES viii
ABBREVIATIONS AND ACRONYMSix
ABSTRACTx
CHAPTER 1: INTRODUCTION
1.1 Background1
1.2 Justification
1.3 Hypothesis
1.4 Objectives
1.5 Limitations4
CHAPTER 2: LITERATURE REVIEW
2.1 Biological invasions as an environmental challenge
2.2 Dispersal pathways and control measures
2.3 Impact of land use modification on naturalized species diversity
2.4 Factors governing the biological invasions7
2.5 Naturalized plants diversity in Nepal7
2.6 Legislation for naturalized species in Nepal10
CHAPTER 3: MATERIALS AND METHODS11
3.1 Study area11
3.1.1 Location
3.1.2 Climate

3.2.1 Plant specimen collection and document	tation14
3.2.2 Checklist preparation	15
3.2.3 Vegetation sampling	16
3.3 Laboratory work: Soil analysis	
3.3.1 Soil pH	
3.3.2 Soil Organic Carbon	
3.3.3 Total Soil Nitrogen	
3.4 Numerical analysis	21
3.4.1 Frequency of invasive species	21
3.4.2 Canopy analysis	21
3.4.3 β -diversity across land use types	21
3.4.4 Statistical analysis	
CHAPTER 4: RESULTS	
4.1 Enumeration of vascular plant species	
4.2 Category of vascular plant species	
4.3 Life forms and native range of naturalized p	lant species25
4.4 Naturalized species diversity across land use	e types26
4.5 Species diversity across land use types	
4.6 Contribution of naturalized plant species acr	coss land use types30
4.7 Cover of invasive plant species	
4.8 Frequency of invasive species	
4.9 Influence of environmental factors on natura	alized plant species32
4.10 Relationship between naturalized species r	ichness and environmental factors38
CHAPTER 5: DISCUSSION	41
5.1 Floristic composition of vascular plant speci	ies41
5.2 Naturalized species diversity in the district	41
5.3 Native range and life forms of naturalized sp	pecies42

5.4 Cover and frequency of invasive plant species
5.5 Species diversity across land-use types43
5.6 Land use and naturalized plants diversity44
5.7 Naturalized plant species richness and governing factors
CHAPTER 6: CONCLUSION AND RECOMMENDATIONS
6.1 Conclusion
6.2 Recommendations
References
APPENDIX
Appendix 1. List of Pteridophytes families and belonging species from Kailali67
Appendix 2. List of monocot families and belonging species from Kailali67
Appendix 3. Dicot families with recorded species number
Appendix 4. List of native species based on present study and secondary sources. 69
Appendix 5. List of naturalized species with their life form and native range87
Appendix 6. List of Cryptogenic plant species and their families92
Appendix 7. Diversity of vascular plants across different land use types93
Appendix 8. Total vascular plant species recorded in 35 selected sample plots93
Appendix 9. Cover of invasive species from selected seven land use types94
Appendix 10. Frequency of invasive species in selected land use types95
Appendix 11. Regration statistics between different variables
Appendix 12. Field data sheet used for vegetation sampling in Kailali district98
Appendix 13. Photo plates

TABLES OF FIGURES

Figure 1. Study area map with sampling locations in two municipalities of Kailali
district
Figure 2. Temperature and precipitation records of Attaria station in Kailali district
for ten years (2008-2018)
10 ten years (2008-2018)
Figure 3. Outline of modified Whittaker nested vegetation sampling plot design
(Stolgren et al., 1995)17
Figure 4. Contribution of vascular plant species based on primary and secondary
sources
Figure 5 Top top vector plants families based on the number of species present 24
Figure 5. Top ten vascular plants families based on the number of species present24
Figure 6. (a) Vascular plant categorization (b) naturalized species in different
taxonomic groups24
Figure 7. Number of naturalized non-invasive and invasive species within family25
Figure 8. (a) Life forms and (b) Native range of naturalized species
Figure 6. (a) Life forms and (b) Pointer range of naturalized species.
F ' 0 Constitution of a time and the later interview of interview of the second interview of t
Figure 9. Species richness of native naturalized non-invasive and invasive species27
Figure 10. A. Native species richness, B. Naturalized species richness C. Invasive
plant species richness (per 0.1 ha.) across land use types
Figure 11. Average canopy cover of invasive species in selected land-use types31
Figure 12. Frequency of invasive species in selected land use types
Figure 13. CCA biplot for (A) sample plots and (B) environmental variables
Figure 14 DDA hiplot for any ironmontal variables and investive species 29
Figure 14. RDA biplot for environmental variables and invasive species
Figure 15. Relationship between naturalized species and with different variables40

ABBREVIATIONS AND ACRONYMS

ANOVA	Analysis of Variance		
APG	Angiosperm Phylogeny Group		
CBD	Convention on Biological Diversity		
CCA	Canonical Correspondance Analysis		
CDB	Central Department of Botany		
CFUG	Community Forest User Group		
GIS	Geographic Information System		
GLM	Generalized Linear Model		
GPS	Global Positioning System		
IAPS	Invasive Alien Plant Species		
IUCN	The World Conservation Union		
KATH	National Herbarium and Plant Laboratories		
Max. / Min.	Maximum / Minimum		
MoFE	Ministry of Forest and Environment		
MoFSC	Ministry of Forest and Soil Conservation		
RBGE	Royal Botanical Garden, Edinburgh		
RDA	Redundancy Analysis		
SOC	Soil Organic Carbon		
SPSS	Statistical Package for Social Sciences		
TUCH	Tribhuvan University Central Herbarium		

ABSTRACT

With the increasing movement of organisms directly and indirectly by human activities across natural biogeographic barriers, the number of naturalized plant species has been increasing both in disturbed and human-modified ecosystems. Due to variation in propagule pressure of naturalized plant species, available resources, disturbance regimes and species interactions, diversity of naturalized species may vary across vegetation and land use types. Naturalized plants species richness measured in different vegetation and land use types in Kailali district by using Modified-Whittaker nested vegetation sampling method (50 m \times 20 m) and five plots were sampled in each of the seven land use types so, total number of sampling plots were 35. We recorded 792 species including 22 pteridophytes, 1 gymnosperm and 769 angiosperms; among them 670 were native species, 87 naturalized species and remaining 35 species were cryptogenic. Species richness of native, naturalized and invasive species significantly (p<0.05) varied across land use types. Naturalized species richness was the highest in roadside grazing land (17.2 ± 1.35) , followed by agriculture land (11.4±2.11) and it was the lowest in Shorea-Terminalia forest (3.6 ± 1.43) . Among invasive species Ageratum houstonianum was the most frequent (41%), followed by Senna tora (33%). However, Senna tora had the highest cover (64%) followed by Ageratum houstonianum (30%). The naturalized species richness showed significant relation ($p \le 0.05$) with grazing, native species richness, distance from river, tree canopy cover, soil pH, distance from settlement area and distance from road. Also, invasive species richness was significantly correlated with naturalized non-invasive species richness, grazing, tree canopy cover, soil pH, native species richness. Present study revealed the naturalized species were more colonized in human-modified and disturbed land use types that provide propagules for further spread to other vegetation and land use types in the region so, land use modification and disturbance factors as major governing factors for the naturalized plant species diversity. Therefore, the more modified and disturbed landuse types should be regularly monitored for early detection and eradication as a part of management strategy for naturalized plant species.

Keywords: Alien species, species richness, vegetation sampling, modified land use, disturbance.

CHAPTER 1: INTRODUCTION

1.1 Background

The biological species introduced in an ecosystem other than its native range are nonnative, exotic or alien species (Colautti and MacIsaac, 2004). Alien species are native to one region that have been introduced and established into an area outside of their natural range either by accidentally or intentionally (Vitousek et al., 1997; Richardson et al., 2000; CBD, 2002). Those alien species having wide dispersal and selfestablishment are naturalized species and if these species become aggressive or spread beyond the manageable level in any ecosystems are considered Invasive Alien Species (IAS). The alien plant species with the self-sustainable population (naturalized species) becomes problematic if they spread widely and cause significant negative impact on the native ecosystem (Sharma et al., 2005). According to "rules of tens", almost 10% of dispersed species have chance to the establishment and out of which, 10% have chance to become naturalized and 10% of naturalized becomes invasive (Williamson, 1996). Therefore, naturalized species are probable invasive species of future and their proper inventory is of urgent need, and invasive species are of great concern because of their fast spreading capacity, high competitive power towards native species and ability to establish and colonize in new area within short period of time (McNeely et al. 2001; Sharma et al., 2005).

Biological invasions has been considered as an important component of global environmental changes and is one of the major threats to native biodiversity, ecosystem functioning and productivity (Vitousek *et al.*, 1997, Pimental *et al.*, 2005) and leads to change in the structure, composition of native communities (CBD, 2000; Kohli *et al.*, 2004). Biological invasions are impacting all components of the ecosystem including biodiversity (Vila *et al.*, 2011). Biological invasions have been increasing in all landscapes and ecosystems by the steady increase in human movements and global trade. The Invasive Alien Plant Species (IAPS) have strong vegetative growth rate, high seed production capacity, high seed germination rate, long seed viability, phenotypic plasticity, and adaptive capacity to cope with harsh environmental conditions (Grice, 2006). Therefore, invasive species have a negative

impact on local, regional as well as global scales, threatening biodiversity, food security and accelerating global environmental change (Mack *et al.*, 2000).

Land use, disturbance, and climate change are driving factors for alien plants invasions (Londsale, 1999; Lamsal et al., 2018). Disturbance leads to the destruction of resident biomass which results in the increase of resource availability and less competition for invaders from residents which facilitate the invasion process (Davis et al., 2000). Human activities like migration, roadways construction, transportation, tourism, and farming practices may favor the biological invasions (Vitousek et al., 1997; Liu et al., 2005). Roads being disturbed sites may facilitate the spread of invasive species by disturbing native ecosystem, changing physical habitats, and providing dispersal pathways for alien species. The dispersal pathways and sustainability of invasive species depend on the availability of resources and anthropogenic activities. The frequent availability of unused resources increase the vulnerability of habitat to biological invasions (Davis et al., 2000) while anthropogenic activities increases the dispersal pathways and propagule pressure of invasive species (Simberloff, 2009). From the anthropogenic landscape, some of the invasive species expand to natural landscape such as grassland, shrubland and forest where they not only compete with native species for resources but also degrade the habitats thereby making the ecosystem hostile to native species and increasing the rate of human-induced biodiversity loss. Therefore, in global scale, biological invasions have been considered the second most threat to biodiversity loss after habitat fragmentation (Glowka et al., 1994). The major factors responsible for the introduction of alien species are climate, land use, dispersal pathways and some species becomes invasive to overcome these barriers (Richardson et al., 2000). There are many recorded cases of alien species around the globe that have turned in to invasive species, and huge economic loss due to the invasion by invasive alien species has been recorded from developed countries (Pimental et al., 2005; Paini et al., 2016). There are various effects of naturalized species on the native biodiversity and it is common that their introduction, ability to become naturalized and impact upon native species is a major concern of these days. The naturalized species alters the native community composition, decrease species diversity, affect ecosystem processes and cause huge ecological imbalance and affect ecosystem processing. During each decade more species become invasive and; more ecosystems were irreversibly altered (Rejmanek, 1999). But, not all naturalized species have a negative effect on native biota; most of the naturalized species are inhabiting in the natural habitat harmoniously with the native biota and show no detectable impact upon native species at all (Simberloff, 1981; Lane, 1993).

Human land use promotes major changes in the species composition and abundance, yet native and alien species can exhibit different responses towards land use modifications (Jesse *et al.*, 2018). More modified ecosystems like agriculture fields are most affected by the impact of biological invasions (Paini *et al.*, 2016). The threat and challenge of naturalized species increasing due to globalization, land use modifications, and climate change issues may cause widespread of invasive species (Walther *et al.*, 2005). So, the problem of naturalized species is a crucial challenge for prevention and management due to uncertain prediction (McDougall *et al.*, 2011).

The biological invasions has been serious global environmental issues (Dhitam *et al.*, 2007) and it is considered second most threat to the biodiversity loss after habitat destructions (Sala *et al.*, 2000). The wide range of habitats and environmental conditions makes Nepal especially vulnerable to the establishment of invasive species of foreign origin (Kunwar, 2003). Nepal is ranked as a 3rd most vulnerable country to the threat of invasive species among the 124 countries of the world (Paini *et al.*, 2016). Therefore, In Nepal, biological invasions has been emerged as new environmental problem (Shrestha, 2016).

1.2 Justification

Almost every country is grappling with the problem caused by biological invasions and the Kailali district is no exception to this. Study on naturalized plant diversity across vegetation types in some locations of central Nepal has been already done (Banjade, 2017; Chataut, 2017; Dhakal, 2017 and Thapa, 2017) but not in Western, Nepal. The information about naturalized species diversity in this study area is still limited. Therefore, the present study has documented the diversity of naturalized plant species across land use and vegetation types in the study area. Also, identified and quantified the diversity of the naturalized plant species across land use modifications. Land use change and disturbance are major factors that govern biological invasions (Londsale, 1999; Jesse *et al.*, 2018). Thus, such type of research is of the urgent need to fulfill the existing knowledge gap on the status of naturalized plant species and underlying factors across different land use types in the study area. Results of this study can play an important role for prioritizing management options to control biological invasions. Those land use types which have high number of naturalized species including invasive species may serves as sources of propagules for further invasion. Such land use types should be monitored earlier as compared to those which have less number of such species. Hopefully, such types of research will be useful for the local level policymaking bodies regarding the management issues.

1.3 Hypothesis

Following research hypothesis was designed for this study;

 Human-modified land use types have a higher diversity of the naturalized plant species than non-modified land use types.

1.4 Objectives

The broad objective of this study was to analyze the diversity of naturalized plant species across different land-use types in Kailali district, Western, Nepal. The specific objectives included:

- 1. To prepare a checklist of naturalized plant species found in Kailali district.
- 2. To analyze the diversity of naturalized plant species across different land-use types.
- 3. To identify the underlying factors that affects the naturalized plant diversity.

1.5 Limitations

Followings are limitations of present research;

- 1. Sample site does not represent all vegetation types of Kailali district but the major types were represented.
- The checklist of vascular plants of the district was prepared based on previous works and plant collection in limited areas during the present study. Records of previous studies could not be cross-validated during this study.

CHAPTER 2: LITERATURE REVIEW

2.1 Biological invasions as an environmental challenge

Alien species grows fast, spread rapidly and pose threats to ecosystem services (Vitousek *et al.*, 1997; Everard *et al.*, 2018). Invasion by alien species is among the most important global scale problem for natural ecosystems. Alien plant species are recognized as one of the major threat to biodiversity and cause great economic loss. Introduction and establishment of such species lead to change in structure and composition of native communities (Rice and Emery, 2003). The impacts of invasive species are immense, insidious and usually irreversible and degrade the natural ecosystem, habitats, and productivity. The trait that makes a species easily invasive are wider geographic range, higher competitive ability, presence of allelopathic chemicals, dispersal by animals, presence of alternative mode of reproduction, smaller seed size, high seed productivity, and phenotypic plasticity (Sharma *et al.*, 2005). Therefore, biological invasions are a global issue for biodiversity conservation (Simberloff *et al.*, 2010).

2.2 Dispersal pathways and control measures

Alien species enter into the new geographical region by different dispersal pathways like transportation, tourism, wind, water, trade, etc. The rapidly increasing trade and tourism are responsible for the introduction of alien plant species from one geographical area to next. Seeds of many notorious plants are dispersed by animals, birds, human being and they have adaptive capacity to invade in new areas (Richardson *et al.*, 2000). Road networks are one of the dispersal pathways for alien species in the disturbed areas (Formen and Alexander, 1998; Thapa, 2017). Similarly, most of the invasive weeds are dispersed by the facility of transportation (Sabbir *et al.*, 2019). Invasive species can be managed by physical, biological and chemical methods in the early stage of establishment. In biological control approach, some of the herbivores or plant pathogens were applied to suppress the growth as one of the most relevant ways for invasive weeds management. The biological agents can be introduced to feed upon the particular species with proper study of their side impact and introduced biological species should be eco-friendly. Various pesticides and herbicides have been used for the control of invasive weeds as a chemical control

method. Manual uprooting of invasive weeds before the flowering period is one of the convenient ways for physical management method (Sabbir *et al.*, 2019).

2.3 Impact of land use modification on naturalized species diversity

Human land use changes the species diversity and fluctuate the terrestrial and aquatic ecosystems. The native species reached the highest abundance in forest areas then the modified and disturbed lands (Jesse *et al.*, 2018). Some of the species shows great challenge in the wetland ecosystem, agriculture land (Siwakoti, 2012; Paini *et al.*, 2016), and some are challenging to the roadside, grazing lands, fallow land, urban areas, forest areas (Tiwari *et al.*, 2005). Developing countries are much vulnerable to the impact of alien plant species because they rely heavily on resource-based livelihood such as aquaculture, agriculture, and forestry (Matthews and Brandt, 2004).

Based on previous works, disturbance factors and human-modified land use carry more number of naturalized plant species in Nepal. A research work on diversity of naturalized plant species across vegetation shows human-disturbed land use and edge forest areas in mid-hill region (central Nepal) carrying good number of naturalized plant species in comparison to less disturbed core forest as disturbed fallow land in Kaski district i.e., 24% of total vascular plant species and human-disturbed Pinus roxburghii forest at Tanahu district i.e., 20% of total but least in Shorea robusta forest (least disturbed site) at Dhading district i.e., 7% of total recorded vascular plants (Chataut, 2017). One of the research on naturalized diversity in Siwalik region (Hetauda, central Nepal) shows the highest number of naturalized species recorded from Dalbergia forest i.e., 26 species followed by grassland i.e., 23 species while least in Shorea forest i.e., 11 species (Dhakal, 2017). One of the research on Marsyangdi river valley (central Nepal) shows the highest number of naturalized species in Schima-Castenopsis forest i.e., 10 species followed by Bombax forest i.e., 8 species and than Shrub land i.e., 6 species (Thapa, 2017). Modi watershed of Annapurna conservation area (central Nepal) revealed the highest number of naturalized plant species in *Bombax-Schima* forest and sub-tropical mixed forest have the highest naturalized species i.e., 10 species followed by Pine forest i.e., 7 species while least in upper sub-alpine grassland i.e., 1 species (Banjade, 2017). The research on diversity and distribution of invasive species along the road networks in western Nepal and central Nepal shows more disturbed and modified land use such as

roadside, grassland, pasture land, waste land, fallow land and urban areas with high abundance (Paudel, 2015; Poudel 2016). These findings show the disturbance and land use modification are major governing factors as dispersal pathways for biological invasions and tropical low land (with higher disturbance) have higher abundance of alien plants than the higher elevations of Nepal.

2.4 Factors governing the biological invasions

There are various environmental factors that are responsible for governing the occurrence and distribution of naturalized plant species. The disturbance factors (fire, trampling, logging, grazing), elevation slope, aspect, moisture, temperature, soil properties are some of the important environmental factors that affecting naturalized plants diversity (Chataut, 2017; Dhakal, 2017). Tropical areas are more invaded by naturalized species than higher elevation (Stolgren et al., 2002). The alien plants require direct light for flourishing and growth (Fagan and Peard, 2004; Bhuju et al., 2013). In the forest, the tree canopy determines the amount of light available on the ground surface. High tree canopy means low availability of light on the ground which is less favorable for the naturalized species. Most of the alien plants are herbaceous and better suited on open canopy (D'Antonio et al., 1992). With the increasing tree canopy cover, species richness of naturalized species decreases (Bhuju *et al.*, 2013). Roadside grasslands and agriculture lands are more suited for naturalized plants as more disturbance, open canopy and grazing impacts (Parendes and Jones, 2000). Grazing impact is higher in such grasslands which is one of the major drivers for dispersal by animal's movements (Pouchard and Alaback, 2004). Besides grazing impact, fire is a major disturbance which alters the species composition and expands distribution and dominance of invasive plant species (Brooks and Lusk, 2008).

2.5 Naturalized plants diversity in Nepal

Nepal is ranked third most threatened country from biological invasions to agriculture sector (Paini *et al.*, 2016). The first documentation of naturalized plant species in Nepal started since 1958 (Tiwari *et al.*, 2005). There are different numbers of naturalized species reported by various researchers in a different time. There are 166 naturalized plant species in Nepal as assessed by Tiwari *et al.*, (2005). Latter, 219 species of naturalized plant species were reported by Siwakoti, (2012). Now, there are

at least 179 plant species were reported by Shrestha *et al.*, (2019) which contributes almost 3% of total angiosperm flora of Nepal.

A comprehensive study was conducted by IUCN Nepal in 2002-2003 and recorded 21 as problematic species based on their invasive characters (Tiwari et al., 2005; Siwakoti, 2012). In addition to them, four naturalized species Ageratum conyzoides, Erigeron karvinskianus, Galinsoga quadriradiata and Spermacoce alata are invasive plant species in Nepal (Shrestha, 2016). Later, one more additional species Spergula arvensis reported in agro-ecosystem from central Nepal. Therefore, total invasive species in Nepal are 26 and are found in the different ecosystem (Shrestha et al., 2017). The introduction and establishment of invasive species is both accidental and intentional by land connected border, through roads, weak plant quarantine monitoring and international trade (particularly from India) are the major cause for the introduction of alien plant species in Nepal (Tiwari et al., 2005; Shrestha, 2016). Among naturalized plant species of Nepal, Lantana camara, Pistia stratiotes, Eichhornia crassipes, Myriophyllum aquaticum and Ipomoea carnea subsp. fistulosa are introduced as an ornamental plant or as hedge plant for fencing and controlling landslides along roads but now problematic in the different parts of the country. Most of the alien species are introduced with human activities through horticulture, crop and seed import, aquaculture and tourism. In the context of Nepal, 3/4th of naturalized plants are of neo-tropical origin followed by Europe, North America (Bhattarai et al., 2014).

There is a high concentration of invasive species on the southern half part of the country including Tarai, Siwalik and Mid Hills having tropical to sub-tropical climate and these invasive species are recorded from different land use types such as forest, shrubland, grassland, agro-ecosystem, wetlands, and residential area. In Nepal, the number of invasive species and their ecological and economic impacts have been increasing over the time (Shrestha, 2016) and these facts are reflected by Nepal fifth report to Convention on Biological Diversity (MoFSC, 2014b) and Nepal National Biodiversity Strategy and Action Plan 2014-2020 (MoFSC, 2014a). In agro-ecosystem, farmers have experienced significant agricultural loss in terms of quantity and quality due to invasion by various alien species but the actual monetary loss is still remaining (Tiwari *et al.*, 2005). Alien species introduced in Nepal by land-linked

situation and weak quarantine monitoring and some of the naturalized species becoming invasive and many more species are leading towards their wide-spread with their impact.

The study about invasive species on Parsa Wildlife Reserve, central Nepal revealed 231 flowering plants among which 51 species were naturalized (Chaudhary, 2015). A study on naturalized plants diversity in Marsyangdi River Valley, central Nepal documented 797 vascular plant species and out of which 41 naturalized species (5%) with 6 invasive species (Thapa, 2017). A similar study on the diversity of naturalized plant species across forest types in Mid-hills of central Nepal documented 312 vascular plants out of which 34 naturalized species with 10 invasive species (Chataut, 2017). A study on the diversity of naturalized plant species across vegetation types in Tarai and Siwalik regions of central Nepal documented 339 vascular plant species with 55 naturalized species and 16 invasive species (Dhakal, 2017). A study on naturalized plant species in Modi watershed of Annapurna conservation area, central Nepal documented 537 vascular plant species having 35 naturalized species (Banjade, 2017). The presence of invasive species is higher in eastern and central Nepal than Western, Nepal (Tiwari et al., 2005; Shrestha, 2016). Among 26 invasive species of Nepal, four species are recorded as world's 100 worst species are Lantana camara, Eichhornia crassipes, Mikania micrantha and Chromolaena odorata. Invasive plant species such as Parthenium hysterophorus, Bidens pilosa, Ageratum houstonianum, Ageratum conyzoides, Oxalis latifolia, Xanthium strumarium are the major invasive species found in agro-ecosystem (Siwakoti and Shrestha, 2014) while Pistia stratiotes, Eichhornia crassipes and Leersia hexandra are found on wetland ecosystem (Shrestha, 2016). Native biodiversity of Nepal has been under pressure due to growing population demand, over-dependence on natural resources, unmanaged urbanization and land use practices (Singh and Sharma, 2014). In past 2-3 decades, many alien species have been rapidly colonizing in natural habitats and create a great threat to native ecosystems and economic loss (Rai and Scarborough, 2013). The number of invasive species is found high in the southern half of the country, where the warm and tropical climate is found (Shrestha, 2016).

2.6 Legislation for naturalized species in Nepal

The legislation for control, monitoring, and management of naturalized plant species is critical for conservation issues. The effective legislative framework is of the urgent need for control and management of invasive weeds. In Nepal, alien species introduced by trade, tourism, transport but the legal framework is not sufficient to control and management of invasive weeds. Nepal is a signatory to the Convention on Biological Diversity (CBD) and article 8 (h) of the convention calls "prevent the introduction, control, and eradication of those alien species which threaten ecosystems, habitats or species". The IUCN Guidelines for preventing biodiversity loss due to IAS has been designed to increase awareness and understanding of the impact of IAS and it provides guidelines for the prevention of introduction, control, and eradication of IAS (IUCN, 2000). A National Wetland Policy, 2003 also address the need to conserve and manage wetlands and promote their wise use in the country. The biological invasions have emerged as a new environmental problem for Nepal with direct implications to biodiversity conservation, ecosystem services, and economic development. Nepal's sixth national report to the Convention on Biological Diversity mentioned that, Nepal has initiated to develop distribution maps, conduct inventories, develops the strategy and improve the awareness under detail survey of the coverage and research in invasive in different parts of the country. This target has been implemented in a few selected wetlands only (MoFE, 2018). The invasive plant species management strategy named "Invasive Species Management Draft" has been prepared but not endorsed till the date (personal communication with Mohan Siwakoti; one of the members of that draft committee, 2019.3.26) so, there is progress towards management strategy of invasive species is an insufficient rate. Hopefully, it will be implemented soon and will be effective for the management and control of invasive species in Nepal. Therefore, an issue of biological invasions has not been addressed adequately in most of the national level legal instruments of Nepal (Siwakoti and Shrestha, 2014). However, limited studies have been conducted in different parts of the country and show a rapid expansion of naturalized species, habitat loss and impact on native biodiversity. Therefore, based on existing studies on naturalized species of Nepal shows the urgent need of exploration and research should be done in different parts of the country and should be focus on management and control for introduction and establishment of naturalized species.

CHAPTER 3: MATERIALS AND METHODS

3.1 Study area

3.1.1 Location

The present study was conducted in Kailali district, one of the Tarai districts in Farwestern Province. It is roughly rectangular in shape and spreads over latitude 28°22' N to 29°05' N and longitude from 80°30' E to 81°30' E covering an area of 3235 km². Elevation varies from 109 m. to 1950 m. above the sea level; Based on topography 59.7% and 40.3% of the area of the district lies in Tarai and Churia hill respectively. Where, the climate varies from tropical to sub-tropical with fertile land and one of the densely populated districts of the country. Based on land use pattern, forest and shrubland area covers 66.7%, agriculture land covers 27.8% and remaining 5.43% area covered by others. The total population of the district is 775709, population density 2.29, total households 142413, literacy rate 66.3%, percentage distribution of agriculture holding 2.91, irrigated land area 90.1% (CBS, 2011). Karnali, Mohana, Kandra, Rora, Donda, Shivaganga, Manahara, Godawari etc. are major rivers of the district. Ghodaghodi Lake area system (Ramsar site), Tikapur Park, Chisapani, Godawari, Debariya Botanical Garden etc. are major tourist destinations in the district. Dhangadhi is the provincial headquarter and commercial hub of Far-western Nepal. Total forest area occupies 215916 hectares in which 70396 hectacres occupied by Sal forest, 10746 hectares occupied by Acacia catechu forest and 52588 hectares by mixed forest (Rajbhandari et al., 2016). Present study sites for vegetation sampling lies in Ghodaghodi and Lamkichuha Municipalities and vascular plants documentation was carried throughout the Kailali district.

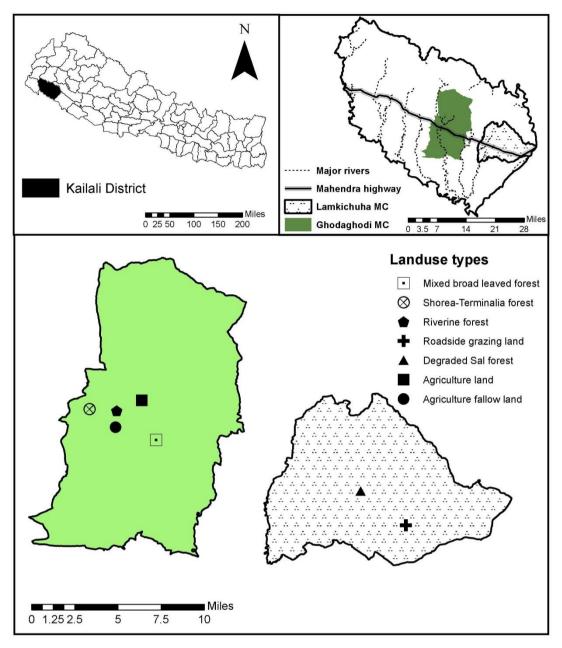
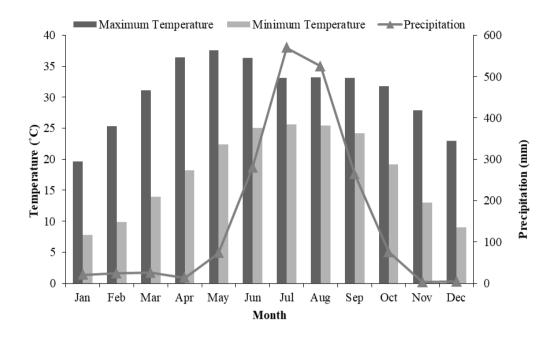



Figure 1. Study area map with sampling locations in two municipalities of Kailali district.

3.1.2 Climate

Nepal falls under Indian sub-continent with rainy summer and dry winter season. Temperature and precipitation data within ten years (2008-2018) of the nearest meteorological station i.e. Attaria station (28°48' N and 80°33' E) have been presented, where mean maximum temperature, mean minimum temperature and average annual precipitation were 30.71°C, 17.80°C and 1562 mm respectively (**Figure 2**).

Figure 2. Temperature and precipitation records of Attaria station in Kailali district for ten years (2008-2018). (Source: Department of Hydrology and Meteorology / Government of Nepal, Kathmandu; Data provided 08.01.2019).

3.1.3 Vegetation and land use

In the present study, seven land use types were selected for vegetation sampling and vascular plants were recorded, estimated, collected and simultaneously soil collected for laboratory estimation. The selection criteria for these land use type was based on accessibility, nearby area and representation of almost vegetation types present in the district. These land use types were located in two different municipalities (Ghodaghodi Municipality and Lamkichuwa Municipality) of Kailali district.

S.N.	Land use	Locality	Vegetation	Remarks
1.	Agriculture	Sitalpur,	Banana, Ground-nut, Sesame,	Nearby from road
	land	Ghodaghodi	Paddy field, Maize cultivation,	and settlement,
		MC*	Herbaceous plants found.	modified land use.
2.	Roadside	Chisapani,	Dominated by herb, shrub and	High coverage of
	grazing	Lamkichuha	few tree saplings, naturalized	invasive species,
	land	MC*	plant species.	higher disturbance.

Table 1. Over view of sampling land use and vegetation types in the study area

S.N.	Land use	Locality	Vegetation	Remarks
3.	Degraded	Lamki,	Shorea robusta, Adina	High grazing
	Sal forest	Lamkichuha	cordifolia, Terminalia alata,	impact, disturbed
		MC*	Mallotus philippensis etc.	land use.
4.	Agriculture	Phanibakal –	Saccharum spontaneum,	Leaving barren
	fallow land	Radhakrisna,	Imperata cylindrica, Digitaria	since last 5 years,
		Ghodaghodi	ciliaris, Paspalum distichum,	now grassland,
		MC*	Axonopus compressus etc.	frequent grazing.
5.	Riverine	Radhakrishna	Acacia catechu, Dalbergia	Flooded area,
	forest	CF* ,	sissoo, Bombax ceiba, M.	sandy river bank,
		Ghodaghodi	philippensis, Albizia procera,	almost barren
		MC*	Syzygium cumini etc.	underground herb.
6.	Mixed	Ghodaghodi	S. robusta, T. alata,	Adjoining to
	broad-	CF*,	T. chebula, T. bellerica, M.	Ghodaghodi lake,
	leaved	Ghodaghodi	philippensis, Lagerstroemia	harvesting impact,
	forest	MC*	parviflora etc.	religious place.
7.	Shorea-	Bhurkabhurki	S. robusta, T. alata, M.	Frequently
	Terminalia	CF*,	philippensis, L. parviflora, S.	harvesting inside
	forest	Ghodaghodi	cumini, A. cordifolia, T.	the forest area, less
		MC*	belerica, T. chebula etc.	disturbed land use.

MC* = Municipality; **CF***= Community Forest

3.2 Plant collection and vegetation sampling

This study was carried out in two different phages; first phase (preliminary field visit) included documentation of vascular plants of the district and the second phase included the estimation of naturalized plant species across different land use types and identify factors determining the diversity of naturalized plants in selected land use types. For the plant collection, areas from low land Tarai (140 m.asl.) to Churia hill (1508 m. asl.) were visited. During that visit, seven different land use types were also selected for vegetation sampling.

3.2.1 Plant specimen collection and documentation

Field visit for plant collection was done for 15 days in different locations of the district and vascular plant specimens including Pteridophytes, Gymnosperm, Monocots, and Dicots with duplicate copy were collected. Simultaneously,

appropriate field notes were written including plant taxonomic information's (plant tag/collection number, botanical name, collection date, locality, local name, habit, habitat, remarks/identification characters etc.). Photographs of plant specimens, flower and fruits were captured as far as possible. Then, collected plant specimens were sun-dried within the newspaper and bloating papers. The collected plant specimens were mounted on the herbarium sheet ($42 \text{ cm.} \times 29 \text{ cm.}$) with the label (15 cm.×10 cm.). The vascular plant species were identified with the help of standard literatures, databases and expert consultation and placed in the respective folder. Finally, identified specimens were presented as a checklist.

3.2.2 Checklist preparation

The vascular plant species were recorded based on the collection during the present study (primary source) and previously published literatures (secondary sources). Previous works that were reviewed for the preparation of checklist were Siwakoti, (2006); Lamsal et al., (2014); Bhattrai and Acharya, (2015); Rajbhandari et al., (2015); Rajbhandari et al., (2016); MoFSC, (2017); Rajbhandari et al., (2017); Rajbhandari and Rai, (2017). Then collected herbarium specimens were identified with the help of standard literatures such as the Flora of China (Wu *et al.*, 2011); Flora of Bhutan (Grierson and Long 1983, 1984, 1987, 1991, 1999, 2001); Annotated Checklist of Flowering Plants of Nepal (Press et al., 2000); Flora of Plains of Eastern Nepal (Siwakoti and Varma, 1999), Flora of Kathmandu Valley (Malla et al., 1986), Plant Resources of Kailali district (Rajbhandari et al., 2016), Hand Book of Flowering Plants of Nepal (Rajbhandari and Rai, 2017), Flowering Plants of Nepal-Vol. 1 (Rajbhandari et al., 2017) and herbarium studied (specimen comparison) from National Herbarium and Plant Laboratories, Godawari (KATH), Tribhuvan University Central Herbarium, Kirtipur (TUCH) and Central National Herbarium, Kolkata (CAL). Doubtful specimens were identified with expert consultation. Then, plants species based on primary and secondary sources were compiled for checklist. The identified specimens were classified up to the family level by Byng et al., (2016); http://www.plantsoftheworldonline.org and http://www.catalogueoflife.org (assessed in October, 2018).

The data obtained from primary collection and secondary sources were analyzed to calculate the total number of plant species within categories of native, naturalized

non-invasive and invasive alien plant species. The native range of the overall vascular plant species were obtained from the open access data-bases such as http://www.plantsoftheworldonline.org; www.eol.com; https://www.gbif.org; http://griis.org; http://tropical.theferns.info (assessed in October, 2018). Identified species were further categorized as native, naturalized (which was further divided into non-invasive and invasive), and cryptogenic. The native species are 'those species, which have originated in a particular area without human involvement or that has arrived there without intentional or unintentional intervention of humans from an area in which they are native' (Pysek et al., 2004). And, alien or exotic plant species are 'those species in a given area, whose presence is due to intentional or unintentional human involvement or which have arrived there without the help of people from an area' (Pysek et al., 2004). Those alien plants which reproduce and sustain their populations without direct intervention by humans, often producing plentiful offspring, mainly close to parent plants and do not necessarily invade natural and semi natural vegetation are termed as 'naturalized' species (Richardson et al., 2000). Similarly, those aliens which produce reproductive offspring in areas distant from sites of introduction and spread rapidly are termed as 'Invasive' (Richardson et al., 2000). And, further naturalized species were categorized in to naturalized noninvasive and invasive by following Shrestha et al., (2019). Those species having doubtful / unclear native range are considered as cryptogenic species (Essl et al., 2018).

3.2.3 Vegetation sampling

Vegetation sampling was carried out in September 2017. Five plots were sampled in each of the seven selected land use types; altogether 35 plots were sampled. A detailed analysis of vegetation was made by Modified Whittaker Nested Vegetation Sampling Plot Design (Stolgren *et al.*, 1995). In this plot design, each $20m \times 50m$ plot was sub-divided in to ten subplots of $0.5m \times 2m$ along the plot boundary, two plots of $2m \times 5m$ at two opposite corners of the plots, and a single $5m \times 20m$ plot at the center. Therefore, a plot had 13 subplots of varying size. Finally, whole plot ($20m \times 50m$) was considered a single plot for the vegetation analysis across land use types.

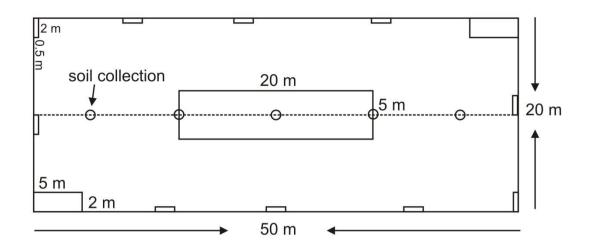


Figure 3. Outline of modified Whittaker nested vegetation sampling plot design (Stolgren *et al.*, 1995).

This sampling design is applied for assessing the plant communities in multi-scale with more than 95% accuracy (Stolgren *et al.*, 1995). This sampling design considered better for vegetation sampling in multi-scale and was used by many researchers for accessing species richness (Telwala *et al.*, 2013; Abella and Fornwalt, 2015) and for alien species (Stolgren *et al.*, 1995; Banjade, 2017; Chataut, 2017; Dhakal, 2017; Thapa, 2017). Trend analysis from monitoring a series of strategically-placed long term Modified Whittaker sampling plots may be an effective and valuable tool for quantifying and detecting species richness (Stolgren *et al.*, 1995). This sampling plot design is used as experimental design in the different sampling sites to estimates the total vascular plant species richness more accurately (>95%) within vegetation types but it was used previously by Banjade, (2017); Chataut, (2017); Dhakal, (2017); Thapa, (2017) in Siwalik region, mid-hill region and sub-alpine regions of central Nepal but not in west Tarai region till the day. This plot design was also used in vegetation sampling of exotic species in Colorado Rockies, USA (Stolgren *et al.*, 1999).

In the present study, site location includes latitude, longitude, elevation, and locality. The tree canopy estimation from 5 different points along middle line of sampling plots was taken by visual estimation. The disturbance factors such as fire, grazing, logging, species richness (native, naturalized and invasive) inside plots were recorded. Soil organic carbon (SOC), total soil nitrogen and soil pH were estimated by following Gupta, (2000). Distance from the nearest road (Mahendra highway and

primary roads), distance from the river (Karnali River, Kandra River), distance from settlement area (Pahalmanpur, Sitalpur and Lamki) were estimated by using geographic coordinates (latitude/longitude) from point to point with the help of ruler in Google Earth (Pro. version of Google Earth 6.0; scale in meter). The cover of each species was noted according to Daubenmire cover class (Daubenmire, 1959). The cover class for canopy cover as; 1 (0-5% cover), 2 (5-25%), 3 (25-50%), 4 (50-75%), 5 (75-95%), 6 (95-100%) and then mid-value for each sub-plot were used for calculation. Disturbance regime like fire mark, grazing and tree canopy was measured by visual estimation. Fire was recognized by the presence of fire marks on the tree trunk, ground surface, or burned logs inside plots; if not seen such mark it was recorded no fire (0). The grazing marks were recognized based on dungs, grazing remains or cattle's inside sampling site. The geographical locations (Latitude/Longitude/Elevation) were measured by using Global Positioning System (model Garmin eTrex 10).

Overall native, naturalized and invasive species richness were enumerated from *Shorea-Terminalia* forest, riverine forest, agriculture land, agriculture fallow land, mixed broad leaved forest, roadside grazing land and degraded Sal forest. Among studied land-use types, agriculture land was more modified land use types (human modified ecosystem) than other selected land use types. Road side grazing land was most disturbed in terms of grazing, trampling, close distance from road, close distance from settlement area, close distance from river, transportation facility, logging, fire, tree canopy etc.

3.3 Laboratory work: Soil analysis

Soil samples were collected from five locations along the central line of each sample plot at depth of 15 cm using a soil digger. These sub samples were mixed thoroughly, homogenized and divided four equal parts and one of them was taken in a zipper polythene bag. The soil samples were dried in shade for 5-7 days and stored in air tight plastic bags until laboratory analysis. There were 5 soil samples from each land use types so altogether 35 samples were collected for laboratory estimation. Soil samples were analyzed at the ecology laboratory in the Central Department of Botany, Tribhuvan University, Nepal. Soil pH, soil organic carbon (SOC), soil nitrogen (N) was estimated by using methods described by Gupta (2000).

3.3.1 Soil pH

Soil pH was determined by using pocket-sized digital pH meter (PH009) in 1:2 ratio of soil water mixture. Before measurement, pH meter was calibrated using buffer solutions of pH 7. While measuring, 50 mL of distilled water was poured in to 25 g of soil sample. The mixture was stirred at least 20 minutes and allowed to settle down for five minutes. Then, the electrode of pH meter was dipped in to the mixture and reading was noted.

3.3.2 Soil Organic Carbon

Soil organic carbon (SOC) content was estimated by Walkley and Black's rapid titration method (1994) adopted from Gupta (2000). Soil sample (0.25) passed through a fine sieve (0.5mm) was taken in a 500 mL conical flask and added 5 mL of $1N K_2Cr_2O_7$ and 10 mL of conc. H_2SO_4 with gentle swirling. The digestion reaction is exothermic; the flask was left for about 30 minutes for cooling in room temperature. To that mixture 100 mL of distilled water, 5 mL orthophosphoric acid and 1 mL of diphenyl indicator solution were added and shaken for a few minutes. Ferrous Ammonium Sulphate solution (0.5 N) was run from the burette, with constant stirring until the colour changed from violet to bright green through blue. The volume of Ferrous Ammonium Sulphate (FAS) solution used for titration was noted. A blank titration (without soil) was carried out at every lot of 10 samples in similar way.

Amount of FAS consumed = (Final reading - initial reading) of FAS

The standardized blank without soil was also run in the same way as control. Finally, the organic carbon (OC) in the soil was calculated by using formula:

Soil Organic Carbon (%) = N
$$\left(\frac{B-C}{weight \ of \ soil \ (g)}\right) \times 0.003 \times 100$$

Where, N = Normality of Ferrous Ammonium Sulphate

- B = Blank reading
- C = Titration reading

3.3.3 Total Soil Nitrogen

Total soil nitrogen estimated by micro-Kjeldahl method (Karla, 1998) that involves the conversion of organic nitrogen into ammonia by boiling with conc. H_2SO_4 ; the ammonia was subsequently liberated from its sulphate by distillation in presence of an alkali, which is titrated against HCl. It proceeds in three steps: Digestion, Distillation and Titration.

Digestion: One gram of dry and sieved soil, 0.4 g CuSO₄ and 3.5 g K₂SO₄ were taken in the digestion flask and than 6 mL Conc. H_2SO_4 was added to the soil mixture with gentle shaking. The mixture was heated on the preheated mantle at low heat until bubbles disappeared from the black mixture and heated until mixture change to greygreenish colour for complete digestion. The digested mixture was cooled to room temperature and about 50 mL distilled water was added to the mixture with gentle shaking.

Distillation: The Kjeldahl distillation flask with digested materials was assembled on distillation chamber and warmed up for 15 minutes adjusting the heating mantle's adjuster at 30. In the Kjeldahl distillation flask, 30 mL NaOH (40%) was added through the funnel connected to the tube of distillation flask and the cork was set. In clean and dry beaker 10 mL of Boric acid was pipetted and placed below the nozzle of the condenser in such a way that the ends of nozzle dip into the indicator. The heating mantle's temperature adjuster was set at 60-70. When the distillate began to condense, the colour of boric acid indicator changed from pink to light green. Distillation was continued until the volume of distillate in the beaker reached about 50 mL.

Titration: Beaker containing about 50 mL distillate was removed and titrate it with 0.1 N HCl in burette. The volume of HCl consumed by distillate to change the green colour into pink was recorded. Finally, the following formula was used to calculate soil nitrogen;

Soil N (%) = $\frac{14 \times N \times (S-B) \times 100}{M}$

Where, N = Normality of HCl

S = volume of HCl consumed with sample (mL)

B = volume of HCl consumed with blank (mL), M = mass of soil taken (mg).

3.4 Numerical analysis

3.4.1 Frequency of invasive species

Frequency of individual invasive species in sample plots was examined based on presence / absence (1/0) data from sampling plots. Overall invasive species frequency of particular invasive species in the study area was presented based on their proportion (%). The frequency of invasive species in each land use types are calculated according to Zobel *et al.* (1987) by the following formula;

 $\label{eq:Frequency} Frequency (F) = \ \frac{\textit{Number of sampling plots in which species occurred}}{\textit{Total number of sampling plots examined}} \times 100\%$

3.4.2 Canopy analysis

Tree canopy cover estimated by visual estimation as well as aerial photographs taken from the different five central locations on the ground surface. We have considered cover values 1/2/3/4/5/6 for Daubenmire cover class 0-5%, 5-25%, 25-50%, 50-75%, 75-95%, 95-100% respectively and then taking mid-values for each cover class and finally mean value was taken. Tree's were absent in Agriculture land, Agriculture fallow land, and Roadside grazing land, therefore tree canopy for these plots were considered zero. Average canopy for invasive species from different land use types were analyzed from mid-values. Cover percentage of invasive species was evaluated by visual estimation method, considering each plot is 100 percent and then put in the suitable cover class. All together canopy cover of 12 invasive species was analyzed for comparative analysis as follows;

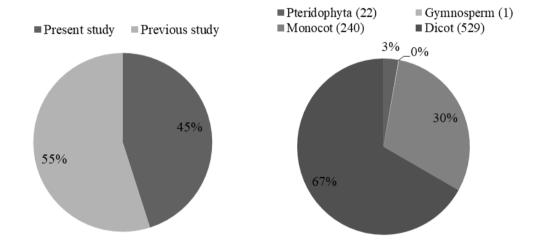
Canopy cover of IAPS (%) = $\frac{Average \ midvalue \ of \ cover \ class \ for \ particular \ species}{Total \ number \ of \ sampling \ plots \ observed} \times 100$

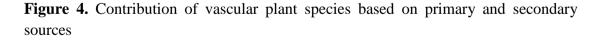
3.4.3 β-diversity across land use types

The total number of species encountered within a sampling plot (1000 m²) was considered as total species richness. The β -diversity measurement of each land use types was calculated by adopting Whittaker (1960).

$$\beta \mathbf{w} = \frac{s}{\alpha}$$

Where, S = total number of species recorded in the land use type and α = the mean of species richness of the five plots in each land use types.


3.4.4 Statistical analysis


The statistical analyses were performed using Microsoft Excel 2010, Statistical Package for Social Sciences (SPSS), RStudio and CANOCO. The normality and homogeneity of variance were tested by using SPSS version 20. The Kolmogorov-Smirnov significant value was used to test the normality of the data (p>0.05; significant) and presented data were normal. To compare the mean naturalized species richness among land-use types (Shorea-Terminalia forest, Riverine forest, Agriculture land, Agriculture fallow land, mixed broad leaved forest, Roadside grazing land and Degraded Sal forest) one-way analysis of variance was conducted followed by Tukey test. Multivariate analysis were used to understand the pattern and relationship between naturalized plant species and environmental variables and were presented by using CANOCO for windows 4.5. A preliminary analysis of presence/absence species data (0/1) and environmental variables were taken as environmental variables, combining all 35 plots in seven land use types through Detrended Correspondence Analysis (DCA, an indirect gradient analysis), revealed a gradient length 4.447 in terms of SD units. Therefore, Canonical Correspondence Analysis (CCA, direct gradient analysis) were appropriate for the analysis of naturalized species with environmental variables by CANOCO software. Therefore, the CCA ordination technique was applied to access the species-environmental relationship and analyzed the effect of different environmental variables with species richness. Monte Carlo permutation test was subsequently used within CCA to determine the significance of the relation between naturalized species distribution along the environmental gradients. Based on the DCA first axis gradient length (<2.5); invasive species richness with environmental variables relationship were presented by RDA biplot. The relation of naturalized species richness with different environmental variables like distance from road, distance from settlement, distance from river, grazing, native richness, soil organic carbon, total soil nitrogen, soil pH, tree canopy, logging, grazing were assessed by Generalized Linear Model (GLM) regression analysis which were performed separately by using RStudio version 0.99.1172 (R Core Team 2015).

CHAPTER 4: RESULTS

4.1 Enumeration of vascular plant species

Altogether 792 vascular plant species under 130 families were recorded based on primary and secondary sources from Kailali district, Western Nepal (**Appendix 1-3**). Total 357 species were recorded from present study / primary sources and additional 435 species were obtained from different secondary sources (**Figure 4**). Out of total vascular plant families; 11 Pteridophytes families, 1 Gymnosperm family, 21 monocot families and 97 dicot families were documented. Altogether 312 species of vascular plants were collected during the preliminary field visit and additional 45 species were collected during vegetation sampling. Total 279 species were collected from sampling plots with 234 species becomes repeated with the preliminary collection. Altogether 22 species of Pteridophytes, 1 species of Gymnosperms (*Pinus roxburghii* Sarg.), 240 species of Monocots and 529 species of Dicots were recorded and presented as a checklist (**Appendix 4-6**).

Based on total recorded vascular plant species from the district, top ten vascular plant families and species number were enumerated where Poaceae were dominant family followed by Fabaceae, Orchidaceae, Cyperaceae, Lamiaceae, Asteraceae, Malvaceae, Acanthaceae and Apocynaceae (**Figure 5**).

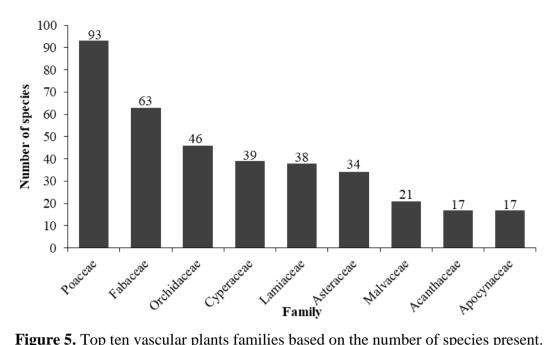


Figure 5. Top ten vascular plants families based on the number of species present.

4.2 Category of vascular plant species

Out of total vascular plant species; 670 were native species, 87 species naturalized and 35 species cryptogenic (native range not clear yet; August 2018). The naturalized species belong to 29 families, 70 genera and 87 naturalized species (Figure 6) and out of naturalized species, 66 species were naturalized non-invasive species and 21 species (24% of total naturalized species) were invasive which belong to 19 genera and 11families (Figure 6b).

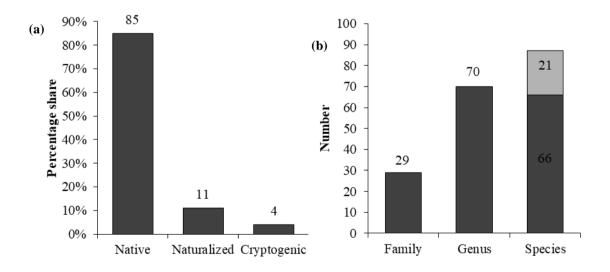
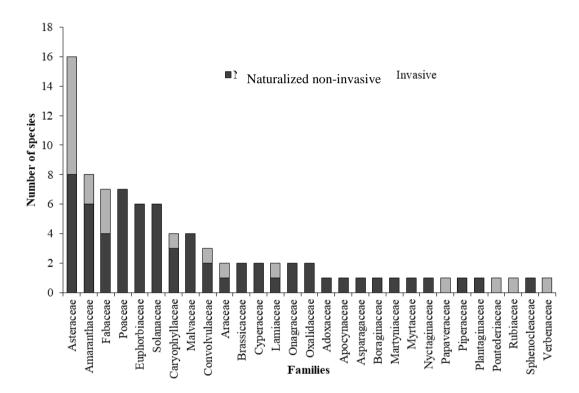
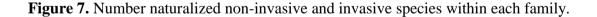




Figure 6. (a) Vascular plant categorization (b) naturalized species in different taxonomic groups.

The total number of naturalized plant species and invasive species within families were presented. Where, Asteraceae (16 species) was the biggest family of naturalized plant species followed by Amaranthaceae, Fabaceae, Poaceae, Euphorbiaceae, Solanaceae. Similarly, Asteraceae was the biggest family of invasive plant species followed by Fabaceae and Amaranthaceae (**Figure 7**). While there were absence of invasive species in families like Poaceae, Euphorbiaceae, Solanaceae, Malvaceae, Brassicaceae, Cyperaceae, Onagraceae, Oxalidaceae, Adoxaceae, Apocynaceae, Asperagaceae, Boraginaceae, Martyniaceae, Myrtaceae, Nyctaginaceae, Piperaceae, Rubiaceae and Sphenocleaceae but families like Papaveraceae, Pontederiaceae, Rubiaceae and Verbenaceae had invasive plant species only.

4.3 Life forms and native range of naturalized plant species

The life form of all 87 naturalized plants species was categorized into herb, shrub, trees and climber species. Naturalized herbaceous species were found dominant (83%) followed by shrub, tree, and climber (**Figure 8a**). Among total naturalized plant species, most of species (79%) were native to tropical America followed by Africa, Europe and Australia (**Figure 8b, Appendix 5**).

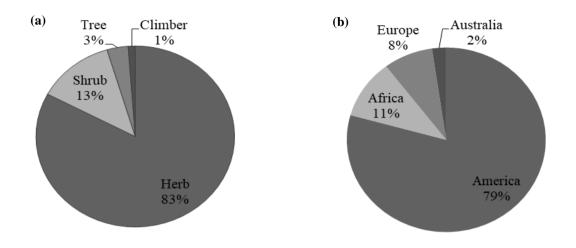
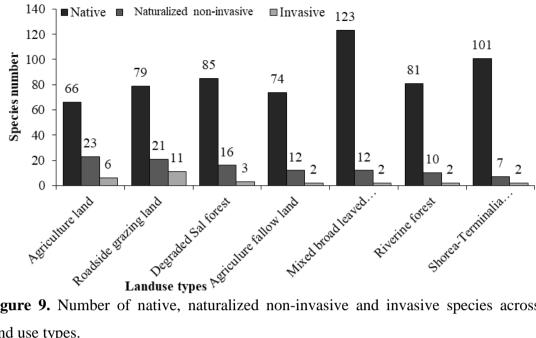
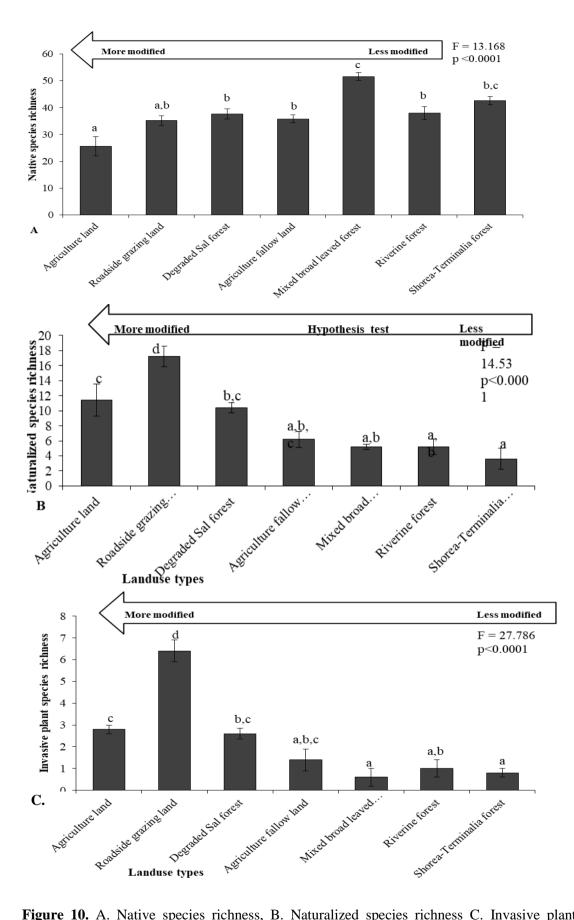


Figure 8. (a) Life forms of naturalized species (b) Native range of naturalized species.

4.4 Naturalized species diversity across land use types

Altogether 279 species of vascular plant species recorded from seven land use types having 201 native species, 43 naturalized (including 31 naturalized non-invasive and 12 invasive) species, 31 species were remains cryptogenic (**Appendix 6**). Among studied land-use types, roadside grazing land had the highest number of naturalized species followed by agriculture land, degraded Sal forest, agriculture fallow land, mixed forest, riverine forest and least in *Shorea-Terminalia* forest (comparatively least disturbed land use). The roadside grazing land, agriculture land, degraded Sal forest had higher disturbance than other forests (mixed forest, riverine forest and *Shorea-Terminalia* forest, riverine forest and system of naturalized plant species. So, more human-modified and disturbed land use types had the higher richness of naturalized plant species as well as invasive species in comparison to the least disturbed land use types in the sample plots (**Appendix 7**).




Figure 9. Number of native, naturalized non-invasive and invasive species across land use types.

The analysis of variance (ANOVA) across land use types with mean native species richness, mean naturalized species richness, mean invasive richness across sampling plots showed significance level (>0.05) for the test of normality. The descriptive statistics of land use types with mean native species richness mean naturalized species richness and mean invasive species richness with significance value and standard error were presented (Table 2, Figure 10). Mean total vascular plant species richness was highest in mixed broad leaved forest followed by roadside grazing land, degraded Sal forest, Shorea-Terminalia forest, agriculture field, agriculture fallow land, and riverine forest. Mean native richness was found the highest in the mixed broad leaved forest followed by Shorea-Terminalia forest, riverine forest, degraded Sal forest, agriculture fallow land, roadside grazing land, and agriculture land. Similarly, mean naturalized species richness was the highest in roadside grazing land, agriculture land, degraded Sal forest, agriculture fallow land, mixed forest, riverine forest and Shorea-Terminalia forest while mean invasive richness was highest in roadside grazing land followed by agriculture land degraded Sal forest, agriculture fallow land, riverine forest, Shorea-Terminalia forest and least in the mixed broad leaved forest.

Land use types	Native richness	Naturalized richness	Invasive richness
Agriculture land	25.6±3.62	11.4±2.11	2.8±0.2
Roadside grazing land	35.2 ± 1.8	17.2±1.35	6.4±0.5
Degraded sal forest	37.6±1.93	10.4 ± 0.67	2.6±0.24
Agriculture fallow land	35.8±1.46	6.2±1.06	1.4±0.5
Mixed broad leaved forest	51.6±1.5	5.2±0.37	0.6±0.4
Riverine forest	38±2.46	5.2±1.01	1±0.4
Shorea-Terminalia forest	42.6±1.54	3.6±1.43	0.8 ± 0.2

Table 2. Mean species richness of native, naturalized and invasive species richness

 values showed mean and standard error across different land use types.

Figure 10. A. Native species richness, B. Naturalized species richness C. Invasive plant species richness (per 0.1 ha.) across land use types.

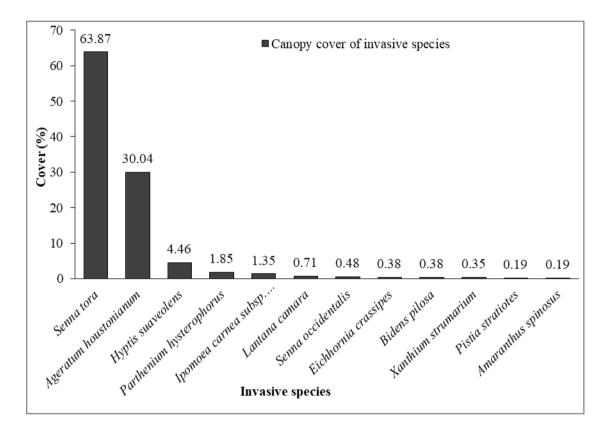
4.5 Species diversity across land use types

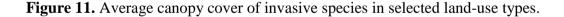
Among the sampled land use type (**Table 3**) in Kailali district, highest beta diversity ($\beta = 2.51$) was obtained in agriculture land (i.e. highest species turn over rate) which was followed by mixed broad leaved forest, road side grazing land and *Shorea-Terminalia* forest, riverine forest, degraded Sal forest and least in the agriculture fallow land.

SN	Land-use types	Species	Species richness	β-diversity
1	Agriculture land	119	47.4	2.51
2	Roadside grazing land	127	127 56.8	
3	Degraded Sal forest	114	114 53.2	
4	Agriculture fallow land	97	46.6	2.08
5	Mixed broad leaved forest	150	60.4	2.48
6	Riverine forest	100	45.8	2.18
7	Shorea-Terminalia forest	111	49.6	2.24

Table 3. A comparative account of β -diversity of overall vascular plants species.

4.6 Contribution of naturalized plant species across land use types


The percentage sharing of naturalized plant species were found higher in more disturbed and more modified land use types such as Roadside grazing land and agriculture land than in less disturbed and less modified land use types such as mixed broad leaved forest and *Shorea-Terminalia* forest (**Table 4**).


Table 4. The percentage share of naturalized species across land use types.

S	Land use types	Total number	No. of naturalized	Naturalized sp.
Ν		of species	species	share (%)
1	Roadside grazing land	127	32	25.2
2	Agriculture land	119	29	24.4
3	Degraded Sal forest	114	19	16.7
4	Agriculture fallow land	97	14	14.4
5	Mixed broad leaved forest	150	14	9.3
6	Riverine forest	100	12	12
7	Shorea-Terminalia forest	111	9	8.1

4.7 Cover of invasive plant species

Overall canopy cover for invasive species from sampling plots was analyzed. Among 12 invasive species recorded from all sampling land use types, *Senna tora* had the highest canopy cover (63.87%) followed by *Ageratum houstonianum, Hyptis suaveolens, Parthenium hysterophorus* (Figure 11). Among all sampling land use types, *S. tora* was found the most dominant species in terms of cover (Figure 11) and had the highest cover in the roadside grazing land (Appendix 9).

4.8 Frequency of invasive species

Among total recorded invasive species, *Ageratum houstonianum* had the highest frequency (41.34%) followed by *Senna tora*, *Parthenium hysterophorus* (Figure 12). Among all sampling land use types, *S. tora* was most frequent (95.5%) in roadside grazing land and followed by *A. houstonianum* in the degraded Sal forest (70.8%) and Agriculture land (69.2%) (Appendix 10).

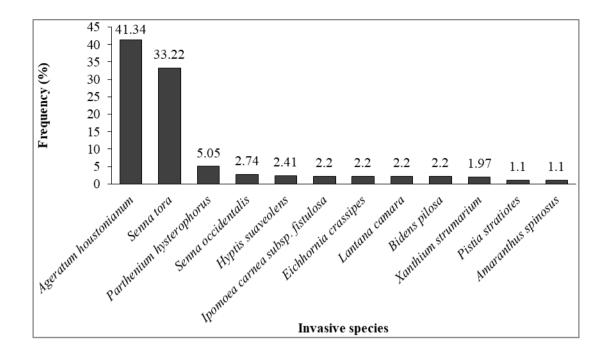


Figure 12. Frequency of invasive species in selected land use types.

4.9 Influence of environmental factors on naturalized plant species

Multivariate analysis for species richness of naturalized species and invasive species relationship with environmental variable such as disturbance factors (logging, fire, grazing), average tree canopy, distance from primary road, distance from river, distance from settlement, native richness, soil pH, SOC, total soil nitrogen were presented by ordination analysis. Detrended Correspondence Analysis (DCA) ordination showed the relationship between species richness, sampling plots and environmental variables with the Eigen values 0.385 and 0.333 on axes I and II respectively (**Table 5**). Similarly, lengths of the gradient were found 4.447 on axes I and 3.349 on axes II. Therefore, length of gradient in DCA axes-I was found >2.5 (SD units). Therefore, Canonical Correspondence Analysis (CCA) was performed for naturalized species richness (**Table 6**).

The CCA ordination explained the relationship of naturalized plant species with sample plots and environmental variables (Figure 13A and 13B). Relative importance of environmental variables and their impact on naturalized species composition was derived from the Monte Carlo Permutation test and it was observed that naturalized species was governed ($p\leq0.05$) by grazing, native species richness, distance from river, total soil nitrogen, average tree canopy, Soil pH, distance from

settlement, distance from road (**Table 7**), These were the significant variables that affect the diversity of naturalized species in different land use and vegetation types. However, other environmental variables such as fire, elevation, logging, and SOC had less significance over the distribution of naturalized species in the present study.

Table 5. Detrended Correspondence Analysis (DCA) ordination summary for naturalized plant species and different environmental variables.

Axes	1	2	3	4	Total inertia
Eigen values	0.38	0.33	0.22	0.15	3.593
Length of gradient	4.44	3.34	2.74	2.07	
Species-environment correlations	0.75	0.75	0.612	0.903	
Cumulative % tage varience of species data	10.7	20.0	26.1	30.5	
Cumulative % tage varience of spenv. relations	12.8	22.4	0	0	
Sum of all eigen values					3.593
Sum of all canonical values					1.544

Table 6. Canonical Correspondance Analysis (CCA) ordination summary for naturalized species and different environmental variables.

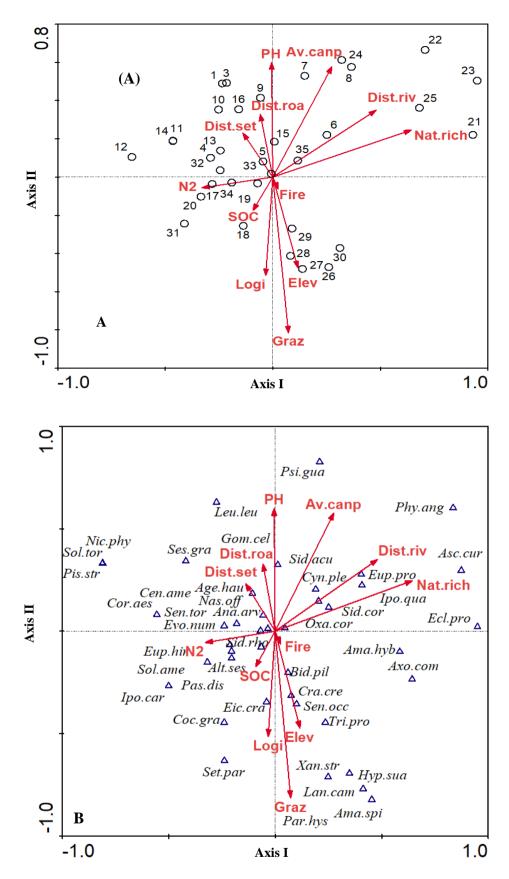

Axes	1	2	3	4	Total inertia
Eigen values	0.27	0.23	0.19	0.18	3.593
Species-environment correlation	0.91	0.94	0.90	0.86	
Cumulative percentage varience of species	7.6	14.0	19.4	24.6	
Cumulative % tage varience of spenv. relations	17.7	32.6	45.2	57.2	
Sum of all eigen values					3.593
Sum of al canonical eigen values					1.544

Table 7. Relative importance of environmental variable and their impact on naturalized species composition as derived by Monte Carlo permutation test (with 9999 replicates) of Canonical Correspondance Analysis ordination.

SN	Environmental variable	Abbreviation	F-value	p-value
1	Grazing	Graz	1.803	0.0005
2	Native species richness	Nat.rich	1.783	0.0026
3	Distance from river	Dist.riv	1.723	0.0045
4	Average tree canopy	Av.canp	1.69	0.0014
5	Total soil nitrogen	N2	1.658	0.0086
6	Soil pH	PH	1.523	0.0212
7	Distance from settlement	Dist.set	1.457	0.040
8	Distance from road	Dist.roa	1.45	0.046
9	Elevation	Elev	1.395	0.089
10	Soil organic carbon	SOC	1.23	0.19
11	Logging	Logi	1.076	0.328
12	Fire	Fire	1.057	0.37

*Bold letter represents statistically significant values.

The multivariate analysis showed the environmental variables like grazing, native species richness, distance from river, tree canopy, total soil nitrogen, soil pH, distance from settlement area, distance from road were showed significant relation ($p \le 0.05$) with naturalized species richness than elevation, soil organic carbon, logging, and fire impact in the study area (**Table 7**). The naturalized plant species were associated with disturbance as, *Parthenium hysterophorus, Amaranthus spinosus, Lantana camara* were associated with grazing. Similarly, naturalized species such as *Ageratum houstonianum, Senna tora, Gomphrena celosoides* were associated with road side and settlement areas (**Figure 13B**).

Figure 13. CCA biplot for (A) sample plots and environmental variables (B) environmental variables and naturalized species. Environmental variables abbreviation given in the table 7, while in species naming first three letters indicates generic name and last three with species epithet (**Appendix 5**).

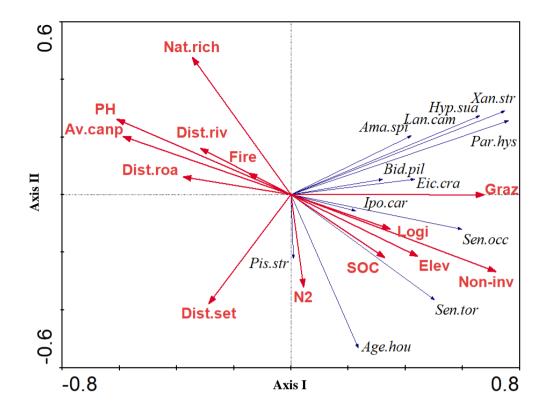
From the above diagram (**Figure 13A**), there was no distinct clustering of sampling plots because of almost similar kind of species composition in almost sampling sites, it might be due to sample plots were located in the low land (Tarai) and sampling sites were close to each other. Similarly, no distinct groupings of vascular plant species were recorded. Based on CCA ordination, disturbance factors were highly correlated with the naturalized species distribution. Depending upon the length of gradient of first axis value for DCA ordination (**Table 8**), the different environmental variables, and invasive plant species relationship were presented by RDA ordination). Relative importance of environmental variables and their impact on invasive species composition was derived from the Monte Carlo Permutation test (with 9999 replicates) and it was observed that invasive species was governed ($p \le 0.05$) by naturalized non-invasive richness, grazing, average tree canopy, soil pH, native species richness, and elevation (**Table 10**).

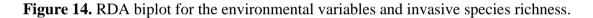
Table 8. DCA	ordination	summary	for	invasive	plant	species	and	environmental
variables.								

					Total
Axes	1	2	3	4	inertia
Eigen values	0.471	0.252	0.094	0.027	1.897
Length of gradient	2.113	1.587	1.507	1.233	
Species - environment correlations	0.964	0.757	0.593	0.760	
Cummulative %tage variance of sp. data	24.8	38.1	43.1	44.5	
Cummulative %tage variance of sp env relation	37.3	48.8	0	0	
Sum of all eigen values					1.897
Sum of all canonical eigen values					1.075

Table 9. RDA ordination summary for invasive species and environmental variables.

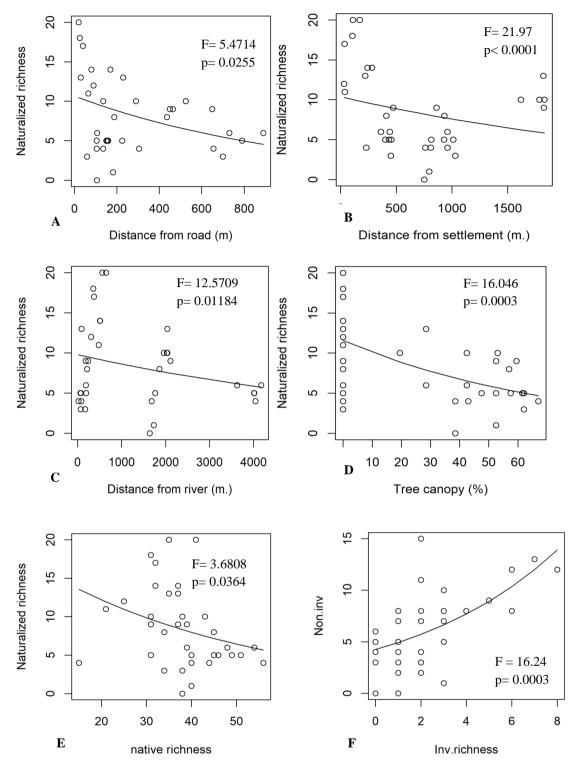
Axes	1	2	3	4	Total inertia
Eigen values	0.293	0.104	0.059	0.044	1.00
Sp env. correlations	0.895	0.737	0.698	0.718	
Cummulative percentage variance of sp. data	29.3	39.8	45.8	50.1	
Cum. %tage variance of spenv. relation	55.2	74.9	86.0	94.3	
Sum of all eigen values					1.00
Sum of all canonical eigen values					0.531

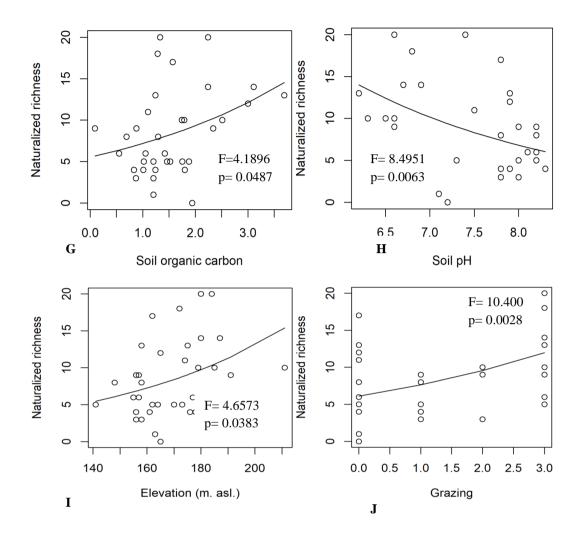

SN	Environmental variable	Abbreviation	F-value	p-value
1	Naturalized non-invasive richness	Non-inv	6.376	0.002
2	Grazing	Graz	5.6	0.002
3	Soil pH	PH	4.673	0.002
4	Average tree canopy	Av.canp	4.711	0.004
5	Native species richness	Nat.rich	3.074	0.014
6	Elevation	Elev	2.665	0.036
7	Distance from settlement	Dist.set	2.138	0.072
8	Distance from road	Dist.roa	1.811	0.106
9	Soil organic carbon	SOC	1.735	0.108
10	Distance from river	Dist.riv	1.569	0.15
11	Logging	Logi	1.444	0.168
12	Total soil nitrogen	N2	0.66	0.704
13	Fire	Fire	0.233	1.00


Table 10. Relative importance of environmental variable and their impact on invasive

 species composition as derived by Monte Carlo permutation test of RDA ordination.

*Bold letter represents statistically significant values.


The relationship between different invasive plant species and environmental variables were analyzed by RDA ordination (**Table 9**, **Figure 14**). Therefore, invasive species diversity and distribution was significantly governed by different environmental variables like naturalized non-invasive richness, grazing, soil pH, average tree canopy, native species richness, elevation while other environmental variables like distance from settlement area, distance from road, soil organic carbon, distance from river, logging, total soil nitrogen and fire impact were less significant in the study area.



4.10 Relation of naturalized species richness with environmental factors

The naturalized plant species diversity was governed by different observed environmental variables (**Figure 15**). Naturalized species richness and its relationship with closer distance from highway/primary road, distance from settlement area, distance from river, average tree canopy, soil pH, SOC, total soil nitrogen, native species richness, grazing, elevation, logging were analyzed by Generalized Linear Model (GLM) regression and naturalized species richness showed significant (<0.05) relationship with distance from road, river distance, average tree canopy, soil pH, SOC, native species richness and grazing effect. The regression statistics between different variables were analyzed up to 2^{nd} order unimodal analysis (**Appendix 11**).

Figure 15. Relationship between naturalized species and with different variables (A) naturalized species richness with distance from road (B) naturalized species richness with distance from settlement (C) naturalized species richness with distance from river (D) naturalized species richness with average tree canopy (E) naturalized species richness with native species richness (F) naturalized non-invasive species richness with invasive species richness.

Figure 15. Relationship between naturalized species and with different variables (G) naturalized species richness with soil organic carbon (H) naturalized species richness with soil pH (I) naturalized species richness with elevation (J) naturalized species richness with grazing.

GLM regression analysis showed that naturalized species richness decreased with increasing distance from road networks, settlement area, and river distance. Similarly naturalized species richness increased with the declining tree canopy. High grazing impact and logging also affect the naturalized species richness significantly. The naturalized species richness also increased with increasing elevation. Naturalized species richness was dicreased with increasing native species richness in overall.

CHAPTER 5: DISCUSSION

5.1 Floristic composition of vascular plant species

The present study area is bestowed with the wide range of floral diversity in Kailali district, Western, Nepal. There are limited researches carried for the documentation of vascular plant species focusing on higher plants and ethno-medicinal plants used by tribal peoples but naturalized plants have not been explored. The documentation of vascular plant species based on primary source (present study) and secondary sources (Lamsal *et al.*, 2014; Bhattarai and Acharya, 2015; Rajbhandari *et al.*, 2015; Rajbhandari *et al.*, 2016; Rajbhandari *et al.*, 2017; Rajbhandari and Rai, 2017) revealed the documentation of vascular plant species. Poaceae is the dominant family, followed by Fabaceae and Orchidaceae as top three dominant families (**Figure 5**) and also, according to Rajbhandari *et al.*, (2016) these three families are dominant families.

5.2 Naturalized species diversity in the district

Out of 792 species reported in the present study, 87 species were aliens that were naturalized. Among these naturalized species, 24 % (21 species) were invasive. According to the "rule of tens", 10% of introduced species have chance to turn into naturalized and 10% among naturalized have chance to turn into invasive and the range to turn in to invasive is 5-20 % (Williamson 1996; Jaric and Cvijanovic, 2012). In this study 24% of naturalized were turn in to invasive, this was slightly more than the predicted range of tens rule. While in case of national data of Nepal 26 species were turn in to invasive out of 179 naturalized species (Shrestha et al. 2017; Shrestha et al. 2019). That means 15 % of naturalized species were turn in to invasive, which is consistent with the range predicted by tens rule. In Kailali district, the largest number of naturalized plant species belongs to family Asteraceae. This family has been also reported as the largest for naturalized plant species in the different parts of Nepal by Tiwari et al., (2005); Siwakoti, (2012); Chataut, (2017); Dhakal, (2017); Thapa, (2017); Bhattrai, (2018). The dominance of family Asteraceae may be attributed to its massive seed production and efficient seed dispersal mechanism (Arianoutsou et al., 2013). The comparative research on Mediterranean biomes also revealed the Asteraceae is the dominant family among 1627 naturalized plant species (Arianoutsou

et al., 2013). Out of 26 invasive plant species of the country, 21 species were recorded from Kailali district during the present study. Therefore, based on the present study we can say that, only five invasive plant species of Nepal were absent in the Kailali district. Although, *Chromolaena odorata, Oxalis latifolia* were reported from adjoining districts of Kailali such as Bardia district (Poudel, 2016). Therefore, there is a probability of introduction of these species to Kailali district in the future. Hence, this district is much vulnerable with the challenge of these species, as these species are common in Tarai area of Nepal (Siwakoti, 2012).

5.3 Native range and life forms of naturalized species

In Nepal, there are 179 naturalized plant species (Shrestha *et al.*, 2019) and 26 invasive plant species (Shrestha *et al.*, 2017) and the majority are native to tropical America (Bhattarai *et al.*, 2014). Our result also indicates that 79% naturalized species are native to tropical America. Therefore, present finding resembles 3/4th of naturalized plant species are neo-tropical origin by Bhattarai *et al.*, 2014. Based on life forms, the annual herbs were dominant life forms (83%) of naturalized species followed by shrubs (13%), Tree (3%) and climber (1%) which is similar to the findings of Pettit *et al.*, (1995) and Thapa, (2017). The alien species are considered as ruderal species which is found in highly disturbed land use and they are best to exploit the gap created by perennial species (Pitti *et al.*, 1995).

5.4 Cover and frequency of invasive plant species

In terms of coverage and frequency, *Senna tora* was the most dominant species along the roadside grazing land followed by *Ageratum houstonianum* in the degraded Sal forest and agriculture land. Therefore, *A. houstonianum* is most dominant weed and recorded from almost all sampled land use types and this species recorded as one of the top-ranked worst invasive species in agro-ecosystem of Chitwan-Annapurna Landscape, central Nepal (Shrestha *et al.*, 2019). *A. houstonianum* was also recorded as the second most frequent invasive species in the Tarai and Siwalik regions of central Nepal (Dhakal, 2017). The *S. tora* has been spreading in roadside agro-ecosystem and third most dominant invasive species along roadside in central Nepal (Paudel, 2015; Poudel, 2016). A similar pattern has been also observed in the

present study area. *P. hysterophorus* is initially invaded in the roadside grazing land and then spread towards agro-ecosystem and forest areas by mean of vehicle movement and transportation of agricultural products are the main mean to spread seeds to another land area (Shrestha *et al.*, 2015).

Out of total recorded invasive species, *Lantana camara* and *Eichhornia crassipes* were among the 100 of the world's worst invasive species (Lowe *et al.*, 2000). But, *Lantana camara* and *Eichhornia crassipes* are already common in the different locations of the district. *Eichhornia crassipes* is reported from almost all Ramsar sites in Nepal (Siwakoti, 2012, Lamsal *et al.*, 2014) but it was absent in Ghodaghodi lake area system (personal observation, 2018). However, the areas that surround Ghodaghodi Lake, *E. crassipes* could be found. *E. crassipes* is the most troublesome invasive species in the aquatic ecosystem of Tarai, Siwalik, and Mid Hills and threatening the Ramsar sites and negatively affect the wetland biodiversity of Nepal (Siwakoti, 2006; MoFSC, 2017). Therefore, regular monitoring of this invasive weed in such aquatic ecosystem is of urgent need. The impact of invasive species includes economic losses due to the loss of agricultural productivity, increased labor cost to remove these weeds from agriculture field as well as from aquatic ecosystem and cause health hazards to human and livestock (Shrestha *et al.* 2015).

5.5 Species diversity across land-use types

Total species richness was found highest in the mixed broad leaved forest followed by roadside grazing land, agriculture land, degraded Sal forest, *Shorea-Terminalia* forest, riverine forest, and agriculture fallow land. Mixed broad leaved forest was moderately disturbed interms of loging, grazing, local level tourist destination (adjoining to Ghodaghodi lake system) and close distance from Mahendra highway; it supports the theory of intermediate disturbance as moderate disturbance supports more heterogeneous communities (Dial and Roughgarden, 1998). We obtain statistically significant (P<0.05) difference in native richness, naturalized richness and invasive richness across different land use types. The present study found significant (p<0.0001) relation with mean native species richness, naturalized richness and invasive richness across different land use. The α -diversity and β -diversity was found the highest in agriculture land (2.51) because of the highly modified ecosystem, high

disturbance, species heterogeneity and followed by mixed broad leaved forest (2.48) while least in agriculture fallow land (2.08). Since, species turnover or beta diversity is the number of species eliminated and replaced per unit time, local richness gradient has major impact on estimation of beta diversity and greater turnover is obtained in localities with low species richness (Magurran, 2004) but, present result differs with this, while it partly resembled with the findings of Chataut (2017) and Dhakal (2017).

5.6 Land use and naturalized plants diversity

The species composition depends upon the degree of invasion, disturbance like grazing intensity, environmental gradients and soil nutrients (carbon, nitrogen). Livestock grazing could have a profound effect on the structure of vegetation (Illius and O'Conner, 1999). Land use the determining factors for the distribution of alien (naturalized, invasive) plant species and considered as one the factors for plant invasion; similarly, vegetation types are one of the determining factors for the plant invasion (Lonsdale, 1999). Our results showed a significant relation ($p\leq 0.05$) of the naturalized plant species across different land use types in the study area (Table 2). Invasive species such as Ageratum houstonianum, Parthenium hysterophorus, Hyptis suaveolens, Amaranthus spinosus, Xanthium strumarium, Bidens pilosa, Lantana camara, Eichhornia crassipes, Senna occidentalis, Ipomoea carnea subsp. fistulosa, Senna tora are found in roadside grazing land which is similar to the result of Paudel (2015) and Poudel (2016). Invasive species like A. houstonianum, S. tora, P. stratiotes, E.crassipes, B. pilosa, I. carnea subsp. fistulosa found in agriculture field, A. houstonianum, S. tora, S. occidentalis found in degraded Sal forest, A. houstonianum and S. tora recorded from agriculture fallow land while A. houstonianum and S. tora are common in mixed broad leaved forest, riverine forest and Shorea-Terminalia forest such type of land use for invasive species is partly supported by Tiwari et al., (2005); Siwakoti, (2012); Shrestha, (2016). Highest number of naturalized species found in more modified and more disturbed land use types such as roadside grazing land with 32 species (25.2% to total floristic composition of that vegetation), this study site is very close to Mahendra highway and more disturbed land in terms of grazing, open canopy (deforestration effect), logging, vehicle movements, transportation facility, anthropogenic activities etc. And, then naturalized species richness followed by agriculture land (29 species; 24.4%),

degraded Sal forest (19 species; 17.7%), agriculture fallow land (14 species; 14.4%), mixed broad leaved forest (14 species; 9.3%), riverine forest (12 species; 12%) and least in *Shorea-Terminalia* forest (9 species; 8.1%). Again, degraded forests and roadside may have the higher number of alien species (Pauchard and Alaback, 2004) which may be due to frequent grazing and also, transportation facilities which act as a carrier of propagule up to higher elevation where road networks already connected. But, now invasion is directed towards the less disturbed environment due to increasing propagule pressure, natural and anthropogenic disturbance and resistance of the established communities (Pauchard *et al.*, 2009). This increasing impact of alien plant species in more disturbed and more modified land use types support the present research hypothesis. Therefore, present results are consistent with the fact that human activities have an important influence on the dispersal and establishment of alien plants (Sax and Brown 2000; Liu *et al.*, 2005).

5.7 Naturalized plant species richness and governing factors

Our results demonstrate the distribution of naturalized species across seven land use types and analyze the factors affecting naturalized plants diversity. Land use modification is one of the major determining factors for the plant invasion (Lansdale, 1999) and therefore, more modified land use supports more number of naturalized species. Invasive species also show the same pattern as more modified and more disturbed land use types having higher invasive richness. Therefore, increased light exposure, water runoff, road networks facilitate that the seed dispersal mechanism (Forman and Alexander, 1998). Agriculture land and roadside grazing land suffered from anthropogenic activities and disturbances such as near area from road, settlement, local pathways, grazing, logging, trampling, open canopy, high rate of litter decomposition (soil nitrogen, SOC, soil pH), which is suitable for the colonization of naturalized species (Deutschewitz et al., 2004) while, in Shorea-Terminalia forest, mixed broad leaved forest and riverine forest having less number of naturalized species due to low disturbance. Major disturbance such as fire, grazing, high tree canopy and far distance from road, trail, pathways (anthropogenic activities) and community settlement area determine the populations of naturalized plant species and it is supported by Seipel et al., (2012) which mentioned the distance from trail, and community settlement determine the population of naturalized plant species.

The increasing volume of global trade and land use changes enhance the opportunity for global spreading of alien species and are likely to become challenging in future. The problem of invasive species is the global issue; it continues to grow in socioeconomy, health, gross agricultural productivity and ecology around the globe. Alien species exacerbates poverty and threaten the development through their impact in agriculture, forestry and peoples livelihoods in the developing countries (Mattews and Brandt, 2004). The land use types which are more modified that have greater chances of invasion by exotic species than the pristine lands similarly islands are more easily invaded than the mainlands (Simberloff and Holle, 1999).

In the present study, naturalized plant species richness show a significant relation (p<0.05) with road distance from sample plots. Therefore, naturalized plant species richness significantly increases with decrease in distance from road (**Figure 15A**). Roadside grazing land, agriculture land and degraded Sal forest which is affected (p<0.05) by grazing that favoring the naturalized species richness and invasive species richness; it is similar to findings of Anderson *et al.*, (2015); Paneru, (2018). This may be due to the availability of enough resources like light, nutrients with open canopy, which is similar to Thapa (2017).

The naturalized species richness increases with decreasing distance from settlement area (**Figure 15B**) i.e., closer the settlement area higher the abundance of naturalized and invasive species (Seipel *et al.*, 2012). It depends on the intensity of disturbance on land use so; settlement area is more disturbed and more suited for the establishment and spread of species in surrounding areas. This view was supported by Kirpluk and Bomanowska (2015). The major anthropogenic activities human movement, farming, transportation, business, cattle grazing, logging, garbage waste that help in arrival and distribution of invasive species propagules in different areas where they can colonize and affect the native community (Colautti *et al.*, 2006). Similarly, distance from the river shows a significant relationship with naturalized species richness. Therefore, naturalized species richness increase with decrease in distance from the river (**Figure 15C**). River or running water bodies serves as dispersal pathways for the translocations of diospores from one location to the adjacent, so nearby sampling area from river having the higher number of naturalized species.

Naturalized plant species richness shows significant relation with tree canopy cover (Figure 15D). The naturalized plant species richness increases with decrease in tree canopy cover i.e., open tree canopy more favors the naturalized plant species (Fagan and Peart, 2004; Bhuju et al., 2013). The highest number of naturalized plants richness observed in the open tree canopy (i.e., roadside grazing lands, agriculture land, degraded Sal forest, agriculture fallow land) and naturalized species absent in more than 70% tree canopy cover. The relationship between the tree canopy cover and naturalized species richness shows negative relationship i.e., with increasing tree canopy there is a decrease in naturalized plants richness (Chaudhary, 2015; Chataut, 2017). Most of the invasive plants are herbaceous and better suited on open canopy (D'Antonio et al., 1992). Those vegetation types having the higher tree canopy cover, that less supports naturalized species richness. It might be due to naturalized species are the light demanding, so in roadside grass land, agriculture land, degraded Sal forest with sparse tree canopy that supports the more naturalized plant species. Naturalized plant species richness also significantly governed by native species richness. With the increase in naturalized plants richness, there is significant decrease in the native flora of that sample plot (Figure 15E). It has been proposed that biotic resistant hypothesis offered by the native enemy, competitors and disease organisms play a significant role to resist invasion (Hunt and Yamada, 2003). In the present study, there is a significant relationship with native species richness and naturalized species richness, as with increasing native species richness there is a significant decrease in naturalized species richness, therefore, biotic resistance hypothesis is accepted (Peng et al., 2019). At 0.1 hector scales, with increasing the native species richness there is decrease in naturalized species richness so; GLM regression strongly supported this theory of biotic resistance hypothesis across 0.1 hectors scales sample.

Fire impact is not clearly illustrated here (**Figure 13B**) because, it is frequently present (i.e., low fire evidence) but, fire is considered one of the major factors for biological invasions (Brooks and Lusk, 2008; Abella and Fornwalt, 2015). Fire evidence was found only in two sampling plots so, fire impact is not significant in the present study. According to Thapa (2017), it was the most governing factor for the distribution of naturalized plant species in the high elevation of central Nepal. It was also observed that fire may facilitate the invasion mechanism in grass prairie in USA (Stolgren *et al.*, 1995). It may be due to the high intensity fire consume plant biomass,

reduces the consumption of soil nutrients that increases the potentiality of invasive species.

Naturalized diversity becomes decreases along the elevation range (Thapa, 2017) but, present study shows that with increasing elevation, overall naturalized species richness also increasing. It is because of the small range of elevation in sampling study area (i.e., 130 - 220 m. asl.) but most of the studies on elevation distribution of any species shows unimodal patterns (Bhattarai and Vetaas, 2003; Baniya, *et al*, 2009). The unimodal relation has been also reported for naturalized plant species along an elevation gradient in Nepal shows the maximum richness of naturalized plant species was found at 1100 m. elevation (Bhattarai *et al.*, 2014). Also, different vegetation types are invaded by naturalized species and areas with more precipitation at lower elevation have greater number of naturalized species (Larson *et al.*, 2001).

Grazing is another responsible factor that governed the diversity of naturalized plant species (**Figure 13B and Figure 15J**). High intensity of grazing impact may facilitate the naturalized species (Banjade, 2017; Chataut, 2017; Dhakal, 2017; Thapa, 2017; Bhattrai, 2018), which is similar to present findings. Grazing impact is higher in grasslands which is one of the major drivers for dispersal by animal's movements (Pouchard and Alaback, 2004). Therefore, animal grazing serves as dispersal pathways for naturalized species. Also, grazing affects the soil physio-chemical properties i.e., increasing soil pH and decreasing soil organic carbon (Paneru, 2018). Soil organic carbon and nitrogen play vital role in the growth and development of plants and continuous use of organic and inorganic fertilizers influences soil physical and chemical properties (Dhillon *et al.*, 2018). Therefore, soil nutrition plays a vital role for the naturalized species establishment.

More disturbed land use and open canopy areas like grassland, roadside, fallow land are best reservoirs for the alien plant's propagules dispersal. The present study also indicated that, the modified and disturbed land-use types (roadside grazing land and agriculture land, fallow land, degraded forest) are much abundant with naturalized species; this finding is similar with Tyser and Worley, (1992). Therefore, there is a high chance of having naturalized plant species in such land use and this may be due to the availability of enough resources like nutrients (soil organic carbon, soil nitrogen) for plant invasions. Species composition depends upon the degree of invasion, disturbance, water sources, climatic conditions, environmental gradient and soil nutrients (Davis *et al.*, 2000). The impact of invasive species includes economic losses due to the loss of agricultural productivity, increased labor cost to remove these weeds in the agriculture field, health hazards to human and livestock (Shrestha *et al.*, 2015; Paini *et al.*, 2016).

The distributions of invasive species are spreading rapidly and somewhere just started their invasion in Kailali district. According to Poudel (2016), Mikania micrantha was absent in Western, Nepal and in the present study also. Lantana camara, Ipomoea carnea subsp. fistulosa was planted as a hedge plant but, now spreading rapidly in the roadside and agro-ecosystems. Similarly, Ageratum houstonianum emerged out problematic weed of the district and present all most all land use and vegetation (Poudel, 2016; Shrestha et al., 2019.) Despite many other factors like human activities, propagule pressure, biological trait and habitat properties of invading species might be responsible for variation in species richness pattern along with land use types. Habitat disturbance, an inevitable consequence of modern land use change makes the ecosystem more vulnerable to invasive species that are transported either intentionally or accidentally by anthropogenic activities. Land use changes may facilitate plant invasion by causing fluctuations in levels of resources i.e., soil nutrients, water availability, light, etc. (Davis et al., 2000). The invasive species richness showed statistically significance (P<0.0001) difference across different land use types (Figure 10C). Such land use wise variation might be due to the difference in availability of unexploited resources by resident species, allelopathic interactions and effect of enemies, disturbance regimes and competitive ability of invasive species (Grime, 1973; Davis et al., 2000). Disturbance through land use modification causes changes in the availability of resources. The reason for the higher invasive species richness in roadside grazing land followed by agriculture land may be due to disturbance and opportunistic behavior of invasive species. They can utilize the available resources efficiently when they get the chance to colonize in disturbed or exposed habitats through rapid growth and dispersal. Most of the roadside grazing lands in western Tarai region with solid waste dumping site, high impact of grazing, vehicle moments, vehicle parking, play grounds, highly populated areas and high human movements with higher abundance of invasive species (Poudel, 2016). Based on present results, such habitats exhibit the higher number of naturalized and invasive plant species in comparison to other less disturbed land use types. Similarly, most of the lands adjoining to road networks left barren for purpose of housing, infrastructure development and business purpose such factors contributed for the spread and establishment of many invasive species across the land use and vegetation. Climate change also impacts the dynamics of plant invasions (Lamsal *et al.*, 2018).

More modified land and more disturbed land use having higher chances of occurrence of invasive species (Rastogi et al., 2015). Therefore, roadside grazing land and agriculture land (highly modified ecosystem) act as a reservoir of invasive plant species and may be spread rapidly to adjoining land use types in upcoming days in the Kailali district. Naturalized species are commonly present in more disturbed sites, grassland, fallow land all over the country and spreading in other adjacent disturbed land use types (Tiwari et al., 2005), as roadside grazing land and agriculture land have higher amount of resource available (light, water, nutrients, etc.) compared to other land use types and such situation may facilitates to invasion process (Davis et al., 2000). Those land use having the higher number of naturalized species that less supports the native species as, agriculture land having 29 naturalized species (66 native species), road side grazing land 32 species (79 native species), degraded Sal forest 19 naturalized species (85 native species), agriculture fallow land 14 naturalized species (74 native species), mixed broad leaved forest 14 naturalized species (123 native species), riverine forest 12 naturalized species (81 native species) and Shorea-Terminalia forest 9 naturalized species (101 native species). It supports for the "Biotic resistant hypothesis" that species-rich communities are more successful at resisting the biological invasions by alien species then the poor species communities. It has been argued that the native-alien species relationship is negative at small spatial scales but positive at larger scales, but the fact for the role of spatial scales on native-alien species relationship has been contradictory (Peng et al., 2019).

Invasive species are one of the major causes of crop loss and adversely affect the food security (Cook *et al.*, 2011). Invasive alien species in the USA cause major environmental damages and losses up to almost US\$120 billion per year similarly, crop and forest products losses have been estimated almost US\$40 billion per year (Pimental *et al.*, 2005). Therefore, the present study also shows the higher number of invasive species from agriculture land and agro-ecosystems. The biggest agricultural

producers China, USA, India, and Brazil experienced the greatest cost loss from invasive species invasions. Therefore, invasive species cause significant threats to the global agriculture production (Paini *et al.*, 2016). In Nepal, alien plant species may increase in upcoming days because of the open border, weak quarantine monitoring and increasing trade from India and China (two neighboring countries) as already facing the great challenge from biological invasions.

Therefore, different environmental variables are responsible for governing the occurrence and distribution of alien plants across vegetation. Disturbance factors are some of the important environmental variables responsible for biological invasions. Roadside grassland and agriculture lands are more suited for alien plants as a more modified ecosystem (Parendes and Jones, 2000). Therefore, Nepal National Biodiversity Strategy and Action Plan (2014-2020) also suggesting the disturbance factors like uncontrolled fire, overgrazing, logging, developmental activities, expansion of agricultural cultivation, land use modifications and habitat degradation are major threat to biodiversity loss and promoting the introduction of alien species in some extent (MoFSC, 2014a) and it is quite relevant in the present study.

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

Out of total documented vascular plants species, naturalized plant species contributes $1/10^{\text{th}}$ of total vascular plant species and invasive species contributes $1/4^{\text{th}}$ of recorded naturalized species; which contributes nearly $4/5^{\text{th}}$ invasive flora of Nepal. Therefore, naturalized species contributes the greater proportion of total naturalized plants of Nepal and almost from tropical American origin. The present study documented the Ageratum houstonianum as the most frequent and Senna tora with the highest coverage indicating the most problematic weed across land use types in the study area. Human land use modifications cause major changes in the naturalized species abundance and their composition in different land use types. Present study reflects the linear increase of naturalized plant species along the more modified and more disturbed land use types and the decreasing order of naturalized species richness in different sampling land use types presented as; roadside grazing land > agriculture land > degraded Sal forest > agriculture fallow land > mixed broad leaved forest = riverine forest > Shorea-Terminalia forest and invasive species richness also correlated with disturbance and land use modifications as roadside grazing land > agriculture land > degraded Sal forest > agriculture fallow land > riverine forest > Shorea-Terminalia forest > mixed broad leaved forest. Thus, roadside grazing lands and agriculture land were highly invaded by naturalized plant species which supports the hypothesis that the more modified land use had the higher naturalized species richness. Therefore, this study concluded that more modified and disturbed land use type should be kept in priority for management of naturalized species including invasive species.

6.2 Recommendations

Although floral composition from low land to Churia hill of the district is limited studied and the naturalized species diversity is also least concerned. The preventive measures should be taken by local people and concerned authorities against alien plants to protect native species and ecosystem on time. If essential steps or management practices not adopted against invasive species, the native species and local ecosystem might be in risk in the near future. Science-based assessment and public awareness should be carried out for proper documentation, management, and control of naturalized species and important to know their exact status. Local level and national level policy makers and stakeholders are suggested to make plan and policies that focus on conservation of native species and periodical monitoring of naturalized species for controlling the spreade of invasive species in different land use types of the lowland. So, more specified recommendations of this study as follows;

More modified land-use types are more prone to the establishment of naturalized species that's why regular monitoring should be focused on modified and disturbed land use such as roadside grazing lands and agricultural land which are highly vulnerable to biological invasions. These land uses types can serve as a propagule source for the invasion in new habitats by naturalized species as well as invasive species.

References

- Abella, S.R. and Fornwalt, P.J. (2015). Ten years of vegetation assembly after a North American mega fire. *Global Change Biology*, **21**:789-802.
- Anderson, L.G., Rocliffe, S., Haddaway, N.R., and Dunn, A.M. (2015). The role of tourism and recreation in the spread of non-native species: a systematic review and meta-analysis. *PLOS ONE*, **10**:1-8.
- Arianoutsous, M., Dilipetrou, P., Vila, M., Dimitrakopoulos, PG., Celesti-Grapow, L.,
 Wardell-Jahnson, G., Hinderson, L., Fuentes, N., Uqartes-Mendes, E. and
 Rundel, P.W. (2013). Comparative Patterns of Plant Invasions in the
 Mediterranean Biome. *PLOS ONE*, **11**, DOI: 10.1371/journal.pone.0079174.
- Baniya, C.B., Solhoy, T. and Vetaas, O.R. (2009). Temporal changes in species diversity and composition in abandoned fields in a trans-Himalayan landscape, Nepal. *Plant Ecology*, 2:383-299.
- Banjade, S. (2017). Naturalized plant species in Modi watershed of Annapurna conservation area, central Nepal (M.Sc. Thesis), Central Department of Botany, Tribhuvan University, Kathmandu, Nepal.
- Becker, T., Dietz, H., Billeter, R., Buschmann, H. and Edwards, P.J. (2005). Altitudinal distribution of alien plant species in Swiss Alps. In: Perspectives in Plant Ecology, Evolution and Systematics, 3:173-183.
- Bhattrai, K.R. and Vetaas, O.R. (2003). Variation in plant species richness of different life forms along subtropical elevation gradient in the Himalayas, east Nepal. *Global Ecology and Biogeography*, **4**:327-340.
- Bhattarai, K.R., Maren, I.E. and Subedhi, S.C. (2014). Biodiversity and invasibility: distribution patterns of invasive plants species in Himalayas, Nepal. *Journal of Mountain Science* 3:688-678.
- Bhattrai and Acharya (2015). Documentation of Enthnobotanical knowledge of Tharu people on the utilization of plant resources in Dabariya and Phulwari VDCs of Kailali district, Western, Nepal. *Journal of Plant Resources and Environment*, 37:41-50.

- Bhattrai, D. (2018). Native, Naturalized plants: Diversity and biomass production in grass lands of Siwalik region, Nepal (M.Sc. Thesis), Central Department of Botany, Tribhuvan University, Kathmandu, Nepal.
- Bhuju, D.R., Shrestha, B.B. and Niraula, R.B. (2013). Study on Invasive Alien Species as Driver to Deforestation and Degradation of Forests in Different Physiographic Regions of Nepal. A report submitted to REDD Cell, Ministry of Forest and Conservation, Kathmandu, Nepal.
- Brooks, M.L. and Lusk, M. (2008). *Fire Management and Invasive Plants: A Handbook*. United States fist and wild life Services, Arlington Virginia, Pp.27.
- Byng, J.W., Chase, M.W., Christenhusz, J.M., Fay, M.F., Judd, W.S., Mabberley, D.J., Sennikov, A.N., Soltis, D.E., Soltis, P.S. and Stevens, P.F. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Botanical Journal of the Linnaean Society*, 181:1–20
- CBD (2002). Sixth Conference of the parties, The Hugue, Netherlands, 7-9 April 2002: Decision Vi 23: Alien species that threaten ecosystems, habitats or species to which is annexed guiding principles for the prevention, introduction and mitigation of impacts of alien species that threaten ecosystems, habitats or species (available at <u>http://www.cbd.int/doc/decission/cop-06-dec-23-en;</u> accessed in 22 Dec.2018).
- CBS (2011). Population Atlas of Nepal, Central Bureau of Statics (GIS Section), National Population and Housing Census, Kathmandu, Nepal, Pp. 210-385.
- Chataut, G. (2017). Diversity of naturalized plant species across forest types in midhills of central Nepal (M.Sc. Thesis), Central Department of Botany, Kathmandu, Nepal.
- Chaudhary, R.N. (2015). Status and Impacts of Invasive Alien Plants Species in the Parsa Wildlife Reserve, Central Nepal (M.Sc. Thesis), Central Department of Botany, Tribhuvan University, Kathmandu, Nepal.
- Colautti, R. and Maclsaac, H.J. (2004). A neutral terminology to define invasive species. *Diversity and Distributions*, **10**:135-141.

- Colautti, R.I., Grigorovich, I.A. and MacIsaac, H.J. (2006). Propagule pressure: a null model for biological invasions. *Biological Invasions*, **5**:1023-1037.
- Cook, D.C., Fraser, R.W., Paini, D.R., Warden, A.C., Lonsdale, W.M., Barro, P.J. (2011). Biosecurity and yield improvement technologies are strategic complements in the fight against food insecurity. *PLOS ONE*, **10**, DOI:10.137/journal.pone.0026086.
- D'Antonio, C.M. and Vitousek, P.M. (1992). Biological invasions by exotic grasses, the grass/fire cycle, and global change. *Annual Review of Ecology and Systematics*, **23**:63-87.
- Daubenmire, R. (1959). A canopy coverage method for vegetation analysis. *Northwest Science*, **33**:43-64.
- Davis, M.A., Grime, J.P. and Thompson, K. (2000). Fluctuating resources in plant communities: a general theory of invisibility. *Journal of Ecology*, **88**:528-534.
- Deutschewitz, K., Lausch, A., Kuhn, I. and Klotz, S. (2004). Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. *Global Ecology and Biogeography*, **4**:299-311.
- Dhakal, S. (2017). Diversity of naturalized plant species across vegetation types in Tarai and Siwalik regions of central Nepal (M.Sc. Thesis), Central Department of Botany, Tribhuvan University, Kathmandu, Nepal.
- Dhillon, J., Corso, M.R., Figueiredo, B., Nambi, E. and Raun, W. (2018). Soil organic carbon, total nitrogen and soil pH in long term continuous winter wheat experiment. *Communications in Soil Science and Plant Analysis*, **7**:803-813.
- Dial, R. and Roughgarden, J. (1998). Theories of marine communities: The intermediate disturbance hypothesis. *Ecology*, **79**:1412-1424.
- Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. and Ewers, R. M. (2007). Interactive effects of habitat modification and species invasion on native species decline. *Trends in Ecology and Evolution*, 22: 489-496.
 - Essl, F., Bacher, S., Genovesi, P., Humle, P.E., Jeschke, J.M., Katsanevakis, S., Kowarik, I., Kuhn, I., Pysek, P., Rabitsch, W., Schindler, S., Kleunen, M.V.,

Vila, M., Wilson, J.R.U., and Richardson, D.M. (2018). Which taxa are alien? Criteria, applications and uncertainties. *Biological Science*, **7**:496-509.

- Everard, M., Gupta, N., Chapagain, P., Shrestha, B.B., Preston, G. and Tiwari, P. (2018). Can control of invasive vegetation improve water and rural livelihood security in Nepal. *Ecosystem Services*, **32**:125-133.
- Fagan, M.E. and Peart, D.R. (2004). Impact of invasive shrub glossy buckthorn (*Rhamnus fragula* L.) on juvenile recruitment by canopy trees. *Forest Ecology* and Management, **197**:95-107.
- Flora of Nepal (2011). Magnoliaceae-Rosaceae, Volume-3 (Eds. M.F. Watson, S. Akiyama, H. Ikeda, C.A. Pendry, K.R. Rajbhandari and K.K. Shrestha), Pp.1-390.
- Forman, R.T. and Alexander, L.E. (1998). Roads and their major ecological effects. Annual Review of Ecology and Systematics, **29**: 207-231.
- Glowka, L., Burhenne-Guilmin, F. and Synge, H. (1994). A Guide to the Convention on Biological Diversity. IUCN, Gland, Switzerland.
- Grice, A.C. (2006). The impacts of invasive plant species on the biodiversity of Australian rangelands. *The Rangland Journal*, **28**:1-27.
- Grierson, A.J.C. and Long, D.G. (1983-2001). Flora of Bhutan. Vol.1, Part 1-3; Vol.2, Part 1-2. Royal Botanical Garden, Edinburgh and Royal Government of Bhutan.

Grime, J.P. (1973). Competitive exclusion in herbaceous vegetation. *Nature*, **242**:344-347.

- Gupta, P.K. (2000). *Methods in Environmental Analysis: Water, Soil and Air.* Agrobios, Jodhpur, India. Pp.409
- Hara, H., Stearn, W.T. and Williams, H.J. (1978). *An Enumeration of the Flowering Plants of Nepal, I.* British Museum Natural History, London, UK.
- Hara, H. and Williams, H.J. (1979). An Enumeration of the Flowering Plants of Nepal, II. British Museum Natural History, London, UK.

- Hara, H., Chater, A.O. and Williams, H.J. (1978). An Enumeration of the Flowering Plants of Nepal, III. British Museum Natural History, London, UK.
- Hunt, C.E. and Yamada, S.B. (2003). Biotic resistant experienced by an invasive crustacean in temperate estuary. *Biological Invasions*, **5**:33-43.
- Illius, A. and O'Conner, T.G. (1999). On the relevance of non-equilibrium concepts of arid and semi-arid grazing system. *Journal of Applied Mycology*, **9**:798-1391.
- IUCN (2000). The International Union for Nature Conservation (IUCN) Guidelines for the Prevention of Biodiversity Loss due to Biological Invasion. Gland, Switzeland. Pp.1-25.
- Jaric, I. and Cvijanovic, G. (2012). The tens rule in invasion biology: measure of a true impact or our lack of knowledge and understanding?. *Environmental Management*, 50:979-981.
- Jesse, W.M., Behm, J.E., Helmus, M.R. and Ellers, J. (2018). Human land use promotes the abundance and diversity of exotic species on Caribbean islands. *Global Change Biology*, 2018:1-13.
- Kalra, Y.P. (1998). Reference methods for plant analysis. Taylor and Francis Group, Bocaraton, Washington DC. Pp. 76-80.
- Kirpluck, I. and Bomanowska, A. (2015). The occurrence of alien species in the settlement areas of the Kampinos National Park and its vicinity, central Poland. *Biodiversity Research and Conservation*, **39**:79-90.
- Kohli, R.K., Dogra, K.S., Batish, D.R. and Sing, H.P. (2004). Impact of invasive plants on the structure and composition of natural vegetation of Northwestern Indian Himalayas. *Weed Technology*, **18**:1296-1300.
- Kunwar, R.M. (2003). Invasive alien plants and Eupatorium: Biodiversity and livelihood. *Himalayan Journal of Sciences*, 1: 129-133.
- Lamsal, P., Pant, K.P., Kumar, L and Atreya, K. (2014). Diversity, Uses and Threats in the Ghodaghodi Lake Complex, Ramsar Sites in Western Lowland Nepal. *International Scholarly Research Notices Biodiversity*, **2014**:1-12.

- Lamsal, P., Kumar, L., Aryal, A. and Atreya, K. (2018). Invasive alien plant species dynamics in the Himalayan region under climate change. *Journal of the Human Environment*, 6:697-710.
- Lane, J. (1993). Over wintering monarch butterflies in California: past and present. Journal of Natural History Museum of Los Angeles County, 38:335-344.
- Larson, D.L., Anderson, P.J., and Newton, W. (2001). Alien plant invasion in mixed grass prairie: effect of vegetation type and anthropogenic disturbance. *Ecological Applications*, **11**: 128-141.
- Leps, J. and Smilauer, P. (2003). Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge. Pp. 1-10.
- Liu, J., Liang, S.C., Liu, F.H., Wang, R.Q. and Dong, M. (2005). Invasive alien plant species in China: regional distribution patterns. *Diversity and Distributions*, 4:341-347.
- Londsale, W.M. (1999). Global patterns of plant invasions and the concept of invisibility. *Ecology*, **79**:2694-2705.
- Lowe, S., Brone, M., Boudjelas, S. and DePooerter, M. (2000). 100 of the World's Worst Invasive Alien Species: A selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG), a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), New Zealand.
- Mack, R.N., Simberloff, D., Lonsdal, W.M., Evans, H.,Clout, M. and Bazzar, F.A. (2000). Biotic invasions: Causes, epidemiology, global consequences and control. *Ecological Applications*, **10**:689-710.
- Magurran, A.E. (2004). *Measuring Biological Diversity*. Blackwell, Maldan, Massachusetts. Pp. 264.
- Malla, S.B., Rajbhandari, S.B., Shrestha, T.B., Adhikari, P.M., Adhikari, S.R. and Shakya, P.R. (1986). *Flora of Kathmandu Valley*. Bulletin of Department of Medicinal Plants, Thapathali, Kathmandu, Nepal.

- Matthews, S. and Brand, K. (2004). *Global invasive species programme*. Africa invaded: the growing danger of invasive alien species. Pp.79.
- McDougall, K.L., Khuroo, A.A., Loope, L.L., Parks, C.G., Pauchard, A, Reshi, Z.A. and Kueffer, C. (2011). Plant invasion in mountains, global lesson for better management. *Mountain Research and Development*, **31**:380-387.
- McNeely, J.A., Mooney, A.H., Scheip, E.L. and Waage, K.J. (2001). A Global strategy on Invasive Alien Species, *IUCN* Gland, Switzerland and Cambridge, UK in collaboration with GISP. Pp.50.
- MoFE (2018). Nepal's sixth national report to the convention on biological diversity. Government of Nepal, Ministry of Forest and Environment, Singh Durbar, Kathmandu, Nepal. Pp.1-137.
- MoFSC (2014a). *Nepal National Biodiversity Strategy and Action Plan 2014-2020*. Ministry of Forest and Soil Conservation (MoFSC), Kathmandu, Nepal.
- MoFSC (2014b). *Nepal fifth National Report to Convention on Biological Diversity*. Ministry of Forest and Soil Conservation (MoFSC), Kathmandu, Nepal.
- MoFSC (2017). Wetlands of western Nepal, A brief profile of selected Lakes. Government of Nepal, Ministry of Forests and Soil Conservation, Department of Forests, Babarmahal, Kathmandu Nepal. Pp. 1-281.
- Paini, D.R., Sheppard, A.W., Cook, D.C., Barro, P.J., Worner, S.P. and Thomas, M.B. (2016). Global threat to agriculture from invasive species. *Ecology*, **113**:7575-7579.
- Paneru, P. (2018). Effect of grazing exclusion on soil properties and vegetation characteristics in *Parthenium hysterophorus* L. invaded grassland of Hetauda, central Nepal (M.Sc. Thesis), Central Department of Botany, Tribhuvan University, Kathmandu, Nepal.
- Parendes, L.A. and Jones, J.A. (2000). Roles of light availability and dispersal in exotic plant invasion along roads and streams in the HJ Andrew Experimental Forest, Oregon. *Conservation Biology*, 14:64-75.

- Pauchard, A. and Alaback, P.B. (2004). Influence of elevation, land use and land scape context on patterns of alien plant invasions along road sides in protected areas of South-Central Chile. *Conservation Biology*, 18:238-248.
- Pauchard, A., Kueffer, C., Dietz, H., Daehler, C.C., Alexander, J., Edwards, P.J., Arevalo, J.R., Cavieres, L.A., Guisan, A., Haider, S., Jakobos, G., McDougall, K.,Miller, C.I., Naylor, B.J., Parks, C.G., Rew, L.J. and Seipal, T. (2009). No mountain high enough: plant invasions reaching new elevations. *Frontiers in Ecology and Environment*, 7:479-486.
- Paudel, N. (2015). Diversity and distribution of invasive plant species along road networks in central Nepal (M.Sc. Thesis), Central Department of Botany, Tribhuvan University, Kathmandu, Nepal.
- Peng, S., Kindock, N.L., Gurevitch, J. and Peng, S. (2019). Correlations of native and exotic species richness: a global meta-analysis finds no invasion paradox across scales. *Ecology*, **100**:1-10.
- Pettit, N.E., Froend, R.H. and Ladd, P.G. (1995). Grazing in remnant woodland vegetation: changes in species composition and life form groups. *Journal of Vegetation Science*, 6:121-130.
- Pimentel, D., Zuniga, R. and Morrison, D. (2005). Update on the environmental and economic cost associated with alien – invasive species in the United Sates. *Ecological Economics*, **52**:273-287.
- Poudel, S. (2016). Diversity and distribution of invasive alien plant species along the road network in western Nepal (M.Sc. Thesis), Central Department of Botany, Tribhuvan University, Kathmandu, Nepal.
- Press, J.R., Shrestha, K.K. and Sutton, D.A. (2000). Annotated Checklist of the Flowering Plants of Nepal. The Natural History Museum, London.
- Pysek, P., Richardson, D.M., Rejmanek, M., Webster, G.L., Williamson, M. and Kirschner, J. (2004). Alien plants in checklists and floras: towards better communication between taxonomist and ecologists. *Taxon*, **53**:131-143.

- Rai, R.K. and Scarborough, H. (2013). Economic value of mitigation of plant invaders in subsistence economy: Incorporating labor as a mode of payment. *Environment and Development Economics*, 18:225-244.
- Rajbhandari, K.R., Bhatt, G.D., Chhetri, R. and Rai, S.K. (2015). Catalogue of Nepalese Flowering Plants, Supplements 1, Government of Nepal, Ministry of Forests and Soil Conservation, Department of Plant Resources, National Herbarium and Plant Laboratories, Godawari, Lalitpur, Nepal. Pp. 1-304.
- Rajbhandari, K.R., Thapa Magar, M.S., Kandel, D.R. and Khanal, C. (2016). Plant Resources of Kailali, Western, Nepal. District Plant Resources Office, Kailali, Nepal, Pp. 1-118.
- Rajbhandari, K.R. and Rai, S.K. (2017). A Handbook of the Flowering plants of Nepal (Vol.1). Government of Nepal, Ministry of Forest and Soil Conservation, Department of Plant Resources. Pp. 1-655.
- Rajbhandari, K.R., Rai, S.K., Bhatt, G.D., Chhetri, R. and Khatri, S. (2017). *Flowering Plants of Nepal: An Introduction*. Government of Nepal, Ministry of Forests and Soil Conservation, Department of Plant Resources. Pp. 1-431.
- Rajmanek, M. (1999). Invasive plant species and invasible ecosystems. *Invasive Species and Biodiversity Management* (Eds. O.T. Sandlund, P.J. Schei and Viken, A.), Kluwer Academic Publisher, Dordrecht. Pp. 79-102.
- Rastogi, J., Rawat, D.S. and Chandra, S. (2015). Diversity of invasive alien plant species in Pantanagar flora. *Tropical Plant Research*, **3**:282-287.
- Rice, K.J. and Emery, N.C. (2003). Managing micro-evolution: restoration in the face of global change. *Frontiers in Ecology and the Environment*, **9**:460-478.
- Richardson, D.M., Pysek, P., Rejmanek, M., Barbour, M.G., Panetta, F.D., and West, C.J. (2000). Naturalization and invasion of alien plants; concept and definitions. *Diversity and Distributions*, 6:93-107.
- RStudio Team (2015). *RStudio: Integrated Development for* R.RStudio, Boston, USA. URL:http://www.rstudio.com.

- Sabbir, A., Shrestha, B.B., Ali, M.H. and Adkins, S.W. (2019). Parthenium weed: Biology, Ecology and Management in Southern Asia. (Eds.: S. Adkins, A. Sabbir and K. Dhillepan). Pp. 231-248.
- Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M. and Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. *Science*, 287: 1770-1774.
- Sax, D.F. and Brown, J.H. (2000). The paradox of invasion. *Global Ecology and Biogeography*, **9**:363-372.
- Seipel, T., Kueffer, C., Rew, L.J., Daehler, C.C., Pauchard, A., Naylor, B.J., Alexander, J.M., Edwards, P.J., Parks, C.G., Arevalo, J.R., Cavieres, L.A., Dietz, H., Jakobs, G., McDougall, K. Otto, R. and Walsh, N. (2012). Process at multiple scales affect richness and similarity of non-native plant species in mountains around the world. *Global Ecology and Biogeography*, 21:236-246.
- Sharma G.P., Singh J.S. and Raghuvanshi A.S. (2005). Plant invasions: Emerging trends and future implications. *Current Sci*ence, **88**:726–734
- Shrestha, B.B., Shabbir, A. and Adkins, S.W. (2015). Parthenium hysterophorus L. in Nepal: a review of its weed status and possibilities for management. Weed Research, 55:132-144.
- Shrestha B.B. (2016). Invasive Alien Plant Species in Nepal. In: Jha, P.K., Siwakoti, M. and Rajbhandari, S.R. (Eds.) *Frontiers of Botany*. Central Department of Botany, Tribhuvan University, Kathmandu, Nepal. Pp. 269-284.
- Shrestha, B.B., Siwakoti, M. and Ranjit, J.D. (2017). Status of Invasive Alien Plant species in Nepal. In: Joshi, B.K., KC, H.B. and Acharya, A.K. (Eds.), Conservation and Utilization of Agricultural Plant genetic resources in Nepal. Pp. 446-452.
- Shrestha, B.B., Shrestha, U.B., Sharma, K.P., Thapa-Parajuli, R.B., Devkota, A. and Siwakoti, M. (2019). Community perception and prioritization of invasive

alien plants in Chitwan-Annapurna landscape, Nepal. *Journal of Environmental Management*, **229**:38-49.

- Shrestha, B.B., Budha, P.B., Wong, L.J. and Pagad, S. (2019). Global Register of Introduced and Invasive Species- Nepal. Version 2.4. Invasive Species Specialist Group ISSG. Checklist dataset <u>https://doi.org/10.15468/4r0kkr</u> <u>accessed via GBIF.org</u> on 2019-03-12.
- Simberloff, D. (1981). Community effects of introduced species. Biotic crises in ecological and evolutionary time. Pp. 53-81.
- Simberloff, D. and Holle, B. (1999). Positive interaction of non-indigenous species: invasional meltdown ?, *Biological Invasions*, **1**:21-32.
- Simberloff, D. (2009). The role of propagule pressure in biological invasion. *Annual Review of Ecology, Evolution and Systematics*, **40**:81-102.
- Simberloff, D., Nunez, M.A., Ledgard, N.J., Pauchard, A., Richardson, D.M., Sarasola, M., Van Wilgen, B.W., Zalba, S.M., Zenny, R.D., Bustamante, R. and Pena, E. (2010). Spread and impact of introduced conifer in South America: lessons from other southern hemisphere regions. *Austral Ecology*, 35:489-504.
- Singh, A.G. and Sharma, A. (2014). Documentation of Invasive Alien Plant Species in Rupandehi District, western Nepal. *International Journal of Applied Sciences and Biotechnology*, 2:168-175.
- Siwakoti, M. and Varma, S.K. (1999). *Plant Diversity of Eastern Nepal, Flora of Plains of Eastern Nepal*. Bishen Singh Mahendra Pal Singh, Dehradun, India.
- Siwakoti, M. (2006). An overview of floral diversity in wetlands of Terai region of Nepal. *Our Nature*, **4:**83-90.
- Siwakoti, M. (2012). Threats and opportunities of invasive alien plant species in wetland conservation of Nepal. In: *Proceedings of International Wetland Symposium*. Ministry of Forest and Soil Conservation / Sustainable Use of Wetlands in Nepal. November 7-9, 2012, Pokhara, Nepal. Pp.66-72.

- Siwakoti, M. and Shrestha, B.B. (2014). An overview of legal instruments to manage invasive alien species in Nepal. In: *Proceedings of the international conference on Invasive Alien Species Management*, March 25-27, 2014, Chitwan, Nepal. (Eds. Thapa, G.J., Subedhi, N., Pandey, M.R., Thapa, S.K., Chapagain, N.R. and Rana, A. National Trust for Nature Conservation, Kathmandu, Nepal, Pp.101-111.
- Stohlgren, T.J., Falkner, M.B. and Schell, L.D. (1995). A modified-Whittaker nested vegetation sampling method. *Plant Ecology*, **117**:113-121.
- Stohlgren, T.J., Binkley, D., Chong, G.W., Kalkhan, M.A., Schell, L.D., Bull, K.A., Otsuki, Y., Newman, G., Bashkin, M. and Son, Y. (1999). Exotic plant species invades hot spots of native plant diversity. *Ecological Monographs*, 69:25-46.
- Stohlgren, T.J., Chong, G.W., Schell, L.D., Rimar, K.A., Otsuki, Y., Lee, M. and Villa, C.A. (2002). Assessing vulnerability to invasion by non-native plant species at multi spatial scales. *Environmental Management*, 29:566-577.
- Telwala, Y. Brook, B.W., Manish, K. and Pandit, M.K. (2013). Climate-induced elevational shifts and increase in plant species richness in Himalayan biodiversity epicenter. *PLOSONE*, 8:1-8.
- Thapa, S. (2017). Naturalized plant species in Marsyangdi river valley, central Nepal (M.Sc. Thesis), Central Department of Botany, Tribhuvan university, Kathmandu, Nepal.
- Tiwari, S., Adhikari, B., Siwakoti, M. and Subedhi, K. (2005). An inventory and Assessment of Invasive Alien Plant Species of Nepal. IUCN- The World Conservation Union, Nepal. Pp.1-114.
- Tyser, R.W. and Worley, C.A. (1992). Alien flora in grasslands adjacent to road and trail corridors in Glacier national park, Montana, USA. *Conservation Biology*, 6:253-262.
- Vila, M., Espinar, J.L., Hejda, M., Hulme, P.E., Jarosik, V., Maron, J.L., and Pysek,P. (2011). Ecological impacts of invasive alien plants: a meta-analysis of their

effects on species, communities and ecosystems. *Ecology Letters*, 14:702-708.

- Vitousek, P.M., D'Antonio, C.M., Loope, L.L., Rejmanek, M. and Westbrooks, R. (1997). Introduced species: a significant component of human caused global change. *New Zealand Journal of Ecology*, **21**:1-16.
- Walther, G.R., Beibner, S. and Burga, C.A. (2005). Trends in the upward shift of alpine plants. *Journal of Vegetation Science*, **16**:541-548.
- Whittaker, R.H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. *Ecological Monographs*, **30**, 279-338.
- Williamson, M. (1996). The varying success of invaders. Ecology, 77:1661-1666.
- Wu, Z., Raven, P.H. and Hong, D.Y. (2011). *Flora of China*. Vol.20-21 (Asteraceae).Science Press (Beijing) and Missouri Botanical Garden (St. Louis). Pp. 1-898.
- Zobel, D.B., Jha, P.K., Behan, M.J., and Yadav, U.K.R. (1987). A Practical Manual for Ecology. Ratna Pustak Distributor, Kathmandu, Nepal. Pp.149.

APPENDIX

Appendix 1. List of Pteridophytes families and belonging species from Kailali

SN	Family	Species	SN	Family	Species
1	Thylypteridaceae	5	2	Pteridaceae	4
3	Lygodiaceae	2	4	Ophioglossaceae	2
5	Polypodiaceae	2	6	Selaginellaceae	2
7	Athyriaceae	1	8	Dryopteridaceae	1
9	Hypodematiaceae	1	10	Marsileaceae	1
11	Salviniaceae	1		Total	22

Appendix 2. List of monocot families and belonging species from Kailali

SN	Family	Species	SN	Family	Species
1	Poaceae	93	2	Orchidaceae	46
3	Cyperaceae	39	4	Araceae	14
5	Commelinaceae	8	6	Asparagaceae	6
7	Dioscoraceae	5	8	Zingiberaceae	5
9	Arecaceae	4	10	Hydrocharitaceae	3
11	Pontederiaceae	3	12	Smilacaceae	3
13	Colchicaceae	2	14	Hypoxidaceae	2
15	Acoraceae	1	16	Alismataceae	1
17	Aponogetonaceae	1	18	Costaceae	1
19	Eriocaulaceae	1	20	Potamogetonaceae	1
21	Typhaceae	1		Total	240

SN	Family	Species	SN	Family	Species	SN	Family	Species	SN	Family	Species
1	Fabaceae	63	2	Lamiaceae	38	3	Asteraceae	34	4	Malvaceae	21
5	Acanthaceae	17	6	Apocynaceae	17	7	Rubiaceae	16	8	Moraceae	15
9	Euphorbiaceae	14	10	Polygonaceae	13	11	Amaranthaceae	12	12	Convolvulaceae	10
13	Phyllanthaceae	10	14	Urticaceae	9	15	Vitaceae	9	16	Lythraceae	8
17	Plantaginaceae	8	18	Rosaceae	8	19	Gesneriaceae	7	20	Rutaceae	7
21	Solanaceae	7	22	Araliaceae	6	23	Boraginaceae	6	24	Gentianaceae	6
25	Oleaceae	6	26	Onagraceae	6	27	Ranunculaceae	6	28	Anacardiaceae	5
29	Campanulaceae	5	30	Combretaceae	5	31	Cucurbitaceae	5	32	Fagaceae	5
33	Lauraceae	5	34	Linderniaceae	5	35	Myrtaceae	5	36	Caryophyllaceae	4
37	Celastraceae	4	38	Cornaceae	4	39	Polygalaceae	4	40	Apiaceae	3
41	Brassicaceae	3	42	Menispermaceae	3	43	Meliaceae	3	44	Orobanchaceae	3
45	Oxalidaceae	3	46	Papaveraceae	3	47	Piperaceae	3	48	Primulaceae	3
49	Salicaceae	3	50	Adoxaceae	2	51	Dilleniaceae	2	52	Ericaceae	2
53	Lentibulariaceae	2	54	Malpighiaceae	2	55	Melastomataceae	2	56	Menyanthaceae	2
57	Nyctaginaceae	2	58	Pentaphyllaceae	2	59	Phrymaceae	2	60	Rhamnaceae	2
61	Sabiaceae	2	62	Sapotaceae	2	63	Saxifragaceae	2	64	Scrophulariaceae	2
65	Verbenaceae	2	66	Violaceae	2	67	Actinidiaceae	1	68	Balsaminaceae	1
69	Berberidaceae	1	70	Betulaceae	1	71	Bignoniaceae	1	72	Bigoniaceae	1
73	Bixaceae	1	74	Burseraceae	1	75	Cannabaceae	1	76	Capparaceae	1
77	Caprifoliaceae	1	78	Cleomaceae	1	79	Coriariaceae	1	80	Dipterocarpaceae	1
81	Ebenaceae	1	82	Geraniaceae	1	83	Hydroleaceae	1	84	Hypericaceae	1
85	Juglandaceae	1	86	Lecythidaceae	1	87	Linaceae	1	88	Loranthaceae	1
89	Martyniaceae	1	90	Myricaceae	1	91	Nelumbonaceae	1	92	Nymphaeaceae	1
93	Sapindaceae	1	94	Sphenocleaceae	1	95	Symplocaceae	1	96	Thymelaeaceae	1

Appendix 3. Dicot families with recorded species number

SN	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
1	Barleria cristata L.	Acanthaceae	D23	2	Dicliptera bupleuroides Nees	Acanthaceae	Raj.2016
3	Eranthemum pulchellum Andrews	Acanthaceae	Raj.2016	4	<i>Eranthemum purpurascens</i> Wight ex Nees.	Acanthaceae	Raj.2016
5	Hemigraphis hirta (Vahl) T. Anderson	Acanthaceae	D517	6	Justicia adhatoda L.	Acanthaceae	Raj.2016
7	Justicia diffusa Willd.	Acanthaceae	D568	8	Rostellularia procumbens (L.)Nees.	Acanthaceae	Raj.2016
9	Nelsonia canescens (Lam) Spreng.	Acanthaceae	Raj.2016	10	Ruellia beddomei C. B. Clarke.	Acanthaceae	D239
11	Rungia pectinata (L.) Nees	Acanthaceae	Raj.2016	12	Strobilanthes pentstemonoides (Nees.) T. Anderson.	Acanthaceae	D174
13	<i>Strobilanthes urticifolia</i> Wall.ex Kuntze.	Acanthaceae	D127	14	Thunbergia coccinea Wall. ex. D. Don.	Acanthaceae	D284
15	<i>Thunbergia grandiflora</i> (Roxb. ex Rottl.) Roxb.	Acanthaceae	Raj.2016	16	Andrographis paniculata (Burm.f.) Nees.	Acanthaceae	D242
17	<i>Strobilanthes angustifrons</i> C. B. Clarke	Acanthaceae	Raj.2016	18	Saurauia napaulensis DC.	Actinidiaceae	Raj.2016
19	<i>Viburnum cylindricum</i> Buch Ham. ex D. Don	Adoxaceae	Raj.2016	20	Caldesia parnassifolia (Bassi.) Parl.	Alismataceae	Raj.2016
21	Achyranthes aspera L.	Amaranthaceae	D11	22	Achyranthes bidentata Blume	Amaranthaceae	Raj.2016
23	Aerva lanata (L.) Juss.	Amaranthaceae	D236	24	Cyathula prostrata (L) Blume	Amaranthaceae	Raj.2016
25	<i>Toxicodendron wallichii</i> (Hook.f.) Kuntze.	Anacardaceae	Raj.2016	26	Buchanania cochinchinensis (Lour.) M.R. Almeida	Anacardiaceae	Raj.2016
27	Lannea coromandelica (Houtt.) Merr.	Anacardiaceae	Lam.2014	28	Semecarpus anacardium L.f.	Anacardiaceae	Raj.2016
29	Spondias pinnata (L.) Kurz.	Anacardiaceae	D424	30	Centella asiatica (L.) Urb.	Apiaceae	D477
31	Oenanthe javanica (Blume) DC	Apiaceae	Raj.2016	32	Torilis japonica (Houtt.) DC	Apiaceae	Raj.2016
33	Alstonia scholaris (L.) R. Br.	Apocynaceae	D256	34	Beaumontia grandiflora Wall.	Apocynaceae	Raj.2016
35	Calotropis gigantea (L.) W.T.Aiton	Apocynaceae	Raj.2016	36	Calotropis procera (Aiton) W.T.Aiton.	Apocynaceae	Raj.2016

Appendix 4. List of native species recorded based on present study and secondary sources.

SN	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
37	Carissa carandas L.	Apocynaceae	Bha.2015	38	<i>Cryptolepis dubia</i> (Burm.f.) M.R. Almeida	Apocynaceae	Raj.2016
39	Holarrhena pubescens Wall.ex G.Don.	Apocynaceae	D781	40	Ichnocarpus frutescens (L.) W.T. Aiton.	Apocynaceae	Raj.2016
41	Oxystelma esculentum (L.f) Sm.	Apocynaceae	D830	42	Pentasacme pulcherrima A.J.C. Grierson & D.G. Long.	Apocynaceae	D493
43	Pentasachme wallichii Wight.	Apocynaceae	Raj.2016	44	Pergularia daemia (Forssk.) Chiov.	Apocynaceae	Raj.2016
45	<i>Rauvolfia serpentina</i> (L.) Benth.ex Kurz.	Apocynaceae	D241	46	<i>Trachelospermum lucidum</i> (D. Don) K. Schum.	Apocynaceae	Raj.2016
47	Vallaris solanacea (Roth) Kuntze	Apocynaceae	Raj.2016	48	<i>Vincetoxicum belostemma</i> (Benth.) Kuntze.	Apocynaceae	Raj.2016
49	Aponogeton undulatus Roxb.	Aponogetonaceae	D302	50	Amorphophallus napalensis (Wall.) Bogner. & Mayo.	Araceae	Raj.2016
51	Arisaema concinnum Schott	Araceae	Raj.2016	52	Arisaema griffithii Schott.	Araceae	D249
53	Arisaema tortuosum (Wall.) Schott	Araceae	Raj.2016	54	Colocasia esculenta (L.) Schott.	Araceae	D822
55	Colocasia fallax Schott.	Araceae	D413	56	Pothos chinensis (Raf.) Merr.	Araceae	Raj.2016
57	Rhaphidophora glauca (Wall.) Schott.	Araceae	D196	58	Scindapsus officinalis (Roxb.) Schott.	Araceae	D419
59	Typhonium trilobatum (L.) Schott.	Araceae	Raj.2016	60	Wolffia globosa (Roxb.) Hartog & Plas	Araceae	Lam.2014
61	<i>Brassaiopsis glomerulata</i> (Blume) Regel	Araliaceae	Raj.2016	62	<i>Brassaiopsis hainla</i> (BuchHam.) Seem.	Araliaceae	Raj.2016
63	Heteropanax fragrans (Roxb.) Seem	Araliaceae	Raj.2016	64	Hydrocotyle himalaica P.K. Mukh.	Araliaceae	Raj.2016
65	Hydrocotyle javanica Thunb.	Araliaceae	Raj.2016	66	Hydrocotyle sibthorpioides am.	Araliaceae	Raj.2016
67	Calamus tenuis Roxb.	Arecaceae	Raj.2016	68	Phoenix loureiroi Kunth.	Arecaceae	D458
69	Phoenix sylvestris (L.) Roxb.	Arecaceae	D458	70	Wallichia oblongifolia Griff.	Arecaceae	Raj.2016
71	Asparagus filicinus BuchHam. ex D. Don	Asparagaceae	Raj.2016	72	Asparagus racemosus Willd.	Asparagaceae	D751
73	Chlorophytum arundinaceum Baker.	Asparagaceae	D496	74	Chlorophytum nepalense (Lindl.) Baker	Asparagaceae	Raj.2016

SN	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
75	Chlorophytum tuberosum (Roxb.) Baker.	Asparagaceae	D796	76	Acmella calva (DC.) R.K. Jansen	Asteraceae	Raj.2016
77	Anaphalis contorta (D. Don) Hook.f.	Asteraceae	Raj.2016	78	Anaphalis royleana DC.	Asteraceae	D130
79	Artemisia indica Willd.	Asteraceae	Raj.2016	80	Caesulia axillaris Roxb.	Asteraceae	D34
81	Carpesium abrotanoides L.	Asteraceae	Raj.2016	82	<i>Centipeda minima</i> (L.) A. Braun & Asch.	Asteraceae	Raj.2016
83	Elephantopus scaber L.	Asteraceae	D25	84	<i>Eschenbachia japonica</i> (Thunb.) J.Kost.	Asteraceae	Raj.2016
85	<i>Melanoseris macrorhiza</i> (Royle.) N. Killian	Asteraceae	Raj.2016	86	Sigesbeckia orientalis L.	Asteraceae	Raj.2016
87	Aster peduncularis Wall.ex Nees.	Asteraceae	D166	88	<i>Duhaldea cappa</i> (BuchHam. ex D.Don) Pruski & Anderb.	Asteraceae	D118
89	Sonchus wightianus DC.	Asteraceae	Raj.2016	90	Taraxacum parvulum DC.	Asteraceae	Raj.2016
91	Diplazium esculentum (Retz.) Sw.	Athyriaceae	Raj.2016	92	Impatiens scabrida DC.	Balsaminaceae	Raj.2016
93	Berberis asiatica Roxb.ex DC.	Berberidaceae	Raj.2016	94	Alnus nepalensis D. Don.	Betulaceae	Raj.2016
95	Oroxylum indicum (L.) Kurz.	Bignoniaceae	Raj.2016	96	Begonia picta Sm.	Bigoniaceae	D288
97	<i>Cochlospermum religiosum</i> (L.) Alston	Bixaceae	D725	98	<i>Bothriospermum zeylanicum</i> (J.Jacquin) Druce.	Boraginaceae	Raj.2016
99	<i>Cynoglossum zeylanicum</i> (Vahl.) Brand.	Boraginaceae	D303	100	Ehretia laevis Roxb.	Boraginaceae	Raj.2016
101	<i>Euploca strigosa</i> (Willd.) Diance & Hilger.	Boraginaceae	Raj.2016	102	Trichodesma indicum (L.) Sm.	Boraginaceae	Raj.2016
103	Rorippa indica (L.) Hiern	Brassicaceae	Raj.2016	104	Garuga pinnata Roxb.	Burseraceae	Raj.2016
105	Campanula dimorphantha Schweinf.	Campanulaceae	Raj.2016	106	Campanula pallida Wall.	Campanulaceae	Raj.2016
107	Campanula sylvatica Wall.	Campanulaceae	Raj.2016	108	Codonopsis viridis Wall.	Campanulaceae	Raj.2016
109	Lobelia heyneana Schult.	Campanulaceae	Raj.2016	110	Celtis timorensis Span.	Cannabaceae	D570
111	Capparis spinosa L.	Capparaceae	Raj.2016	112	Dipsacus inermis Wall.	Caprifoliaceae	D151
113	Celastrus paniculatus Willd.	Celastraceae	Raj.2016	114	Euonymus hamiltonianus Wall.	Celastraceae	Raj.2016

SN	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
115	Gymnosporia rufa (Wall.) Hook.f.	Celastraceae	Raj.2016	116	Reissantia arborea (Roxb.) H.Hara	Celastraceae	Raj.2016
117	Cleome viscosa L.	Cleomaceae	D789	118	Gloriosa superba L.	Colchicaceae	D2102
119	Iphigenia indica (L.) A Gray ex Kunth	Colchicaceae	Raj.2016	120	Combretum roxburghii Spreng.	Combretaceae	D433
121	<i>Terminalia anogeissiana</i> Gere & Boatur.	Combretaceae	Raj.2016	122	Terminalia bellirica (Gaertn.) Roxb.	Combretaceae	D483
123	Terminalia chebula Retz.	Combretaceae	D550	124	Commelina benghalensis L.	Commelinaceae	D404
125	Commelina diffusa Burm.f.	Commelinaceae	Raj.2016	126	Commelina paludosa Blume.	Commelinaceae	Raj.2016
127	<i>Cyanotis axillaris</i> (L.) D.Don. ex Sweet.	Commelinaceae	Raj.2016	128	Cyanotis cristata (L.) D.Don	Commelinaceae	Raj.2016
129	Cyanotis vaga (Lour.) Schult. & Schult. f.	Commelinaceae	Raj.2016	130	Murdannia edulis (Stoke) Faden.	Commelinaceae	D103
131	Murdannia nudiflora (L.) Brenan.	Commelinaceae	Raj.2016	132	Argyreia hookeri C.B. Clarke.	Convolvulaceae	D723
133	Cuscuta reflexa Roxb.	Convolvulaceae	Raj.2016	134	Dinetus racemosus (Roxb.) Sweet.	Convolvulaceae	Raj.2016
135	Evolvulus alsinoides (L.) L.	Convolvulaceae	Raj.2016	136	Ipomoea aquatica Forssk.	Convolvulaceae	Raj.2016
137	Merremia hederacea (Burm.) Halliera.	Convolvulaceae	D90	138	Poranopsis paniculata (Roxb.) Roberty	Convolvulaceae	D206
139	Coriaria nepalensis Wall.	Coriariaceae	Raj.2016	140	Alangium chinense (Lour.) Harms.	Cornaceae	D748
141	Alangium salviifolium (L.f.) Wangerin	Cornaceae	Raj.2016	142	Cornus macrophylla Wall.	Cornaceae	Raj.2016
143	Cornus oblonga Wall.	Cornaceae	Raj.2016	144	Hellenia speciosa (J.Koenig.) S.R. Dutta	Costaceae	Raj.2016
145	Diplocyclos palmatus (L.) C. Jeffrey	Cucurbitaceae	Raj.2016	146	Momordica dioica Roxb.ex Willd.	Cucurbitaceae	Raj.2016
147	Solena heterophylla Lour.	Cucurbitaceae	Raj.2016	148	Trichosanthes cordata Roxb.	Cucurbitaceae	D473
149	Trichosanthes cucumerina L.	Cucurbitaceae	D240	150	<i>Bolbostylis barbata</i> (Rottb.) C.B.Clarke.	Cyperaceae	D140
151	Bulbostylis densa (Wall.) HandMazz.	Cyperaceae	Raj.2016	152	Carex cruciata Wahlenb.	Cyperaceae	D290

SN	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
153	Cyperus compactus Retz.	Cyperaceae	Raj.2016	154	Cyperus difformis L.	Cyperaceae	D414
155	Cyperus flavidus Retz.	Cyperaceae	Raj.2016	156	Cyperus iria L.	Cyperaceae	D599
157	Cyperus niveus Retz.	Cyperaceae	Raj.2016	158	Cyperus pangorei Rottb.	Cyperaceae	D590
159	Cyperus rotundus L.	Cyperaceae	D18	160	Cyperus sanguinolentus Vahl.	Cyperaceae	Raj.2016
161	Cyperus tenuiculmis Boeckeler	Cyperaceae	Raj.2016	162	Eleocharis congesta D. Don	Cyperaceae	Raj.2016
163	<i>Eleocharis dulcis</i> (Burm.f.) Trin.ex Hensch	Cyperaceae	Raj.2016	164	Erioscirpus comosus (Wall.) Palla.	Cyperaceae	D123
165	Fimbristylis aestivalis (Retz.)Vahl.	Cyperaceae	Raj.2016	166	<i>Fimbristylis bisumbellata</i> (Forssk.) Bubani	Cyperaceae	Raj.2016
167	Fimbristylis littoralis Gaudich.	Cyperaceae	D21	168	Fimbristylis schoenoides (Retz.) Vahl	Cyperaceae	Raj.2016
169	Fimbristylis squarrosa Vahl	Cyperaceae	Raj.2016	170	Isolepis setacea (L.) R. Br.	Cyperaceae	Raj.2016
171	<i>Schoenoplectiella juncoides</i> (Roxb.) Lye.	Cyperaceae	Raj.2016	172	<i>Schoenoplectiella mucronata</i> (L.) J. Jung. & H.K. Choi	Cyperaceae	Raj.2016
173	Scleria biflora Roxb.	Cyperaceae	Raj.2016	174	Scleria levis Retz.	Cyperaceae	D516
175	Cyperus mindorensis (Steud.) Huygh	Cyperaceae	Raj.2016	176	Dillenia indica L.	Dilleniaceae	Raj.2016
177	Dillenia pentagyna Roxb.	Dilleniaceae	Raj.2016	178	<i>Dioscorea belophylla</i> (Prain) Voigt ex Haines	Dioscoreaceae	Raj.2016
179	Dioscorea bulbifera L.	Dioscoreaceae	D408	180	Dioscorea deltoidea Wall.ex Grieseb.	Dioscoreaceae	D813
181	Dioscorea pentaphylla L.	Dioscoreaceae	D773	182	Dioscorea pubera Blume.	Dioscoreaceae	D745
183	Shorea robusta Roxb. ex. Gaertn.f.	Dipterocarpaceae	Lam.2014	184	Dryopteris cochleata (BuchHam.ex D.Don.) C.Chr.	Dryopteridaceae	Raj.2016
185	Diospyros montana Roxb.	Ebenaceae	Raj.2016	186	Lyonia ovalifolia (Wall.) Drude	Ericaceae	Raj.2016
187	Rhododendron arboreum Sm.	Ericaceae	D167	188	Eriocaulon exsertum Satake.	Eriocaulaceae	D802
189	Acalypha indica L.	Euphorbiaceae	Raj.2016	190	Balakata baccata (Roxb.) Esser	Euphorbiaceae	Raj.2016
191	Falconeria insignis Royle	Euphorbiaceae	Raj.2016	192	<i>Macaranga denticulata</i> (Blume) Muel. Arg	Euphorbiaceae	Raj.2016
193	Mallotus nudiflorus (L.) Kulju & Welzen.	Euphorbiaceae	Raj.2016	194	<i>Mallotus philippensis</i> (Lam.) Mull. Arg.	Euphorbiaceae	D88

SN	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
195	Mallotus repandus (Rottler) Mull. Arg.	Euphorbiaceae	Raj.2016	196	Aeschynomene aspera L.	Fabaceae	Raj.2016
197	Albizia lebbeck (L.) Benth.	Fabaceae	D486	198	Albizia odoratissima (L. f.) Benth.	Fabaceae	Raj.2016
199	Alysicarpus glumaceus (Vahl.) DC.	Fabaceae	Raj.2016	200	Alysicarpus rugosus (Willd.) DC.	Fabaceae	D59
201	Alysicarpus vaginalis (L.) DC	Fabaceae	Raj.2016	202	Bauhinia purpurea L.	Fabaceae	D300
203	Bauhinia vahlii Wight & Arn.	Fabaceae	Raj.2016	204	Bauhinia variegata L.	Fabaceae	Raj.2016
205	Butea buteiformis (Voigt.) Gierson.	Fabaceae	Raj.2016	206	Butea monosperma (Lam.) Taub.	Fabaceae	Raj.2016
207	Cassia fistula L.	Fabaceae	Bha.2015	208	Chamaecrista mimosoides (L.) Greene	Fabaceae	Raj.2016
209	<i>Crotalaria alata</i> BuchHam. ex D.Don	Fabaceae	Raj.2016	210	Crotalaria juncea L.	Fabaceae	Raj.2016
211	Crotalaria sessiliflora L.	Fabaceae	D257	212	Crotalaria spectabilis Roth.	Fabaceae	Raj.2016
213	Dalbergia latifolia Roxb.	Fabaceae	D30	214	Dalbergia sericea G. Don	Fabaceae	Raj.2016
215	Dalbergia sissoo Roxb.ex DC.	Fabaceae	D476	216	Desmodium concinnum DC.	Fabaceae	Raj.2016
217	Desmodium elegans DC.	Fabaceae	D763	218	Desmodium gangeticum (L.) DC.	Fabaceae	D31
219	Desmodium laxiflorum DC.	Fabaceae	D111	220	<i>Desmodium microphyllum</i> (Thunb.) DC.	Fabaceae	D56
221	<i>Desmodium oojeinense</i> (Roxb.) H. Ohashi.	Fabaceae	D191	222	Desmodium triflorum (L.) DC.	Fabaceae	Raj.2016
223	Dumasia villosa DC.	Fabaceae	D671	224	Flemingia chappar Benth.	Fabaceae	Raj.2016
225	Flemingia macrophylla (Willd.) Merr.	Fabaceae	Raj.2016	226	Flemingia strobilifera (L.) W.T. Aiton.	Fabaceae	D750
227	Hylodesmum podocarpum (DC) H. Ohasi & R.R. Mill.	Fabaceae	Raj.2016	228	Indigofera heterantha Wall.ex Brandis.	Fabaceae	D267
229	Indigofera linifolia (L.f.) Retz.	Fabaceae	D666	230	Lathyrus sphaericus Retz.	Fabaceae	Raj.2016
231	Butea buteiformis (Voigt.) Grierson.	Fabaceae	Raj.2016	232	Millettia extensa (Benth.) Baker.	Fabaceae	Raj.2016
	Millettia pachycarpa Benth.	Fabaceae	Raj.2016	234	Mimosa himalayana Gamble	Fabaceae	Raj.2016

SN	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
235	Mimosa rubicaulis Lam.	Fabaceae	Raj.2016	236	Parochetus communis BuchHam.ex D.Don.	Fabaceae	Raj.2016
237	Phyllodium pulchellum (L.) Desv.	Fabaceae	Raj.2016	238	Pterocarpus marsupium Roxb.	Fabaceae	Raj.2016
239	<i>Senegalia catechu</i> (L.f.) P.T.H. Hurter & Mabb.	Fabaceae	D213	240	<i>Senegalia rugata</i> (Lam.) Britton & Rose	Fabaceae	Raj.2016
241	Smithia sensitiva Aiton	Fabaceae	Raj.2016	242	Spatholobus parviflorus (Roxb.ex G.Don) Kuntze.	Fabaceae	Lam.2014
243	Tephrosia candida (Roxb.) DC.	Fabaceae	Raj.2016	244	Tephrosia purpurea (L.) Pers.	Fabaceae	Raj.2016
245	Trigonella emodi Benth.	Fabaceae	Raj.2016	246	Uraria lagopodoides (L.) DC.	Fabaceae	Raj.2016
247	Uraria picta (Jacq.) Desv.ex DC.	Fabaceae	Raj.2016	248	Vicia tetrasperma (L.) Schreb.	Fabaceae	Raj.2016
249	Zornia gibbosa Span.	Fabaceae	Raj.2016	250	Lathyrus aphaca L.	Fabaceae	Raj.2016
251	<i>Castanopsis indica</i> (Roxb.ex Lindl.) A. DC.	Fagaceae	D190	252	Castanopsis tribuloides (Sm.) A. DC.	Fagaceae	D156
253	Quercus glauca Thunb.	Fagaceae	D197	254	Quercus lanata Sm.	Fagaceae	Raj.2016
255	Quercus oblongata D. Don.	Fagaceae	Raj.2016	256	Canscora alata (Roth.) Wall.	Gentianaceae	Raj.2016
257	<i>Canscora diffusa</i> (Vahl) R. Br. ex Roem. & Schult	Gentianaceae	Raj.2016	258	Exacum tetragonum Roxb.	Gentianaceae	Raj.2016
259	<i>Swertia angustifolia</i> BuchHam. ex. D.Don.	Gentianaceae	Raj.2016	260	<i>Swertia chirayita</i> (Roxb.) BuchHam. ex C.B.Clarke	Gentianaceae	Raj.2016
261	Centaurium pulchellum (Sw.) Druce.	Gentianaceae	D119	262	Geranium nepalense Sweet.	Geraniaceae	Raj.2016
263	Aeschynanthus hookeri C.B. Clarke.	Gesneriaceae	D252	264	Aeschynanthus parviflorus D.Don. Spreng.	Gesneriaceae	Raj.2016
265	<i>Corallodiscus lanuginosus</i> (Wall.ex R. Br.) B. L. Burtt	Gesneriaceae	Raj.2016	266	Didymocarpus aromatica D.Don.	Gesneriaceae	Raj.2016
267	Didymocarpus pedicellatus .Br.	Gesneriaceae	D188	268	Henckelia bifolia (D.Don) A. Dietr.	Gesneriaceae	Raj.2016
269	Rhynchoglossum obliquum Blume	Gesneriaceae	Raj.2016	270	Hydrilla verticillata (L. f.) Royle.	Hydrocharitaceae	Raj.2016
271	Najas graminea Delile	Hydrocharitaceae	Raj.2016	272	Ottelia alismoides (L.) Pers.	Hydrocharitaceae	Raj.2016

ne of species	Family	Remarks	SN	Name of species	Family	Remarks
rolea zeylanica (L.) Vahl.	Hydroleaceae	D64	274	Hypericum japonicum Thunb.	Hypericaceae	Raj.2016
<i>costegia truncata</i> (D.Don.) Fraser- c.	Hypodematiaceae	D308	276	Curculigo orchioides Gaertn.	Hypoxidaceae	Raj.2016
oxis aurea Lour.	Hypoxidaceae	Raj.2016	278	Engelhardtia spicata Lesch ex Blume	Juglandaceae	D759
ga macrosperma Wall.ex Benth.	Lamiaceae	D809	280	Anisomeles indica (L.) Kuntze.	Lamiaceae	D24
<i>licarpa arborea</i> Roxb.	Lamiaceae	D209	282	Callicarpa macrophylla Vahl.	Lamiaceae	D73
rodendrum indicum (L.) Kuntze	Lamiaceae	Raj.2016	284	Clerodendrum infortunatum L.	Lamiaceae	Raj.2016
nopodium umbrosum (M.Bieb.) Loch.	Lamiaceae	Raj.2016	286	Colebrookea oppositifolia Sm.	Lamiaceae	D92
quhounia coccinea Wall	Lamiaceae	Raj.2016	288	Craniotome furcata (Link) Kuntze	Lamiaceae	Raj.2016
aoltzia blanda Benth.	Lamiaceae	D792	290	Holmskioldia sanguinea Retz.	Lamiaceae	Raj.2016
lon coetsa (BuchHam.ex D.Don) lo.	Lamiaceae	D131	292	<i>Isodon lophanthoides</i> (BuchHam. ex D. Don) H.Hara	Lamiaceae	Raj.2016
nurus japonicus Houtt.	Lamiaceae	Raj.2016	294	Leucas cephalotes (Roth.) Spreng.	Lamiaceae	Raj.2016
cas lanata Benth.	Lamiaceae	D158	296	Leucas lavandulifolia Sm.	Lamiaceae	Raj.2016
romeria biflora (BuchHam.ex on.) Benth.	Lamiaceae	Raj.2016	298	<i>Nepeta hindostana</i> (B.Heyne ex Roth.) Haines.	Lamiaceae	Raj.2016
mum basilicum L.	Lamiaceae	D791	300	Ocimum gratissimum L.	Lamiaceae	Raj.2016
mum tenuiflorum L.	Lamiaceae	Raj.2016	302	Perilla frutescens (L.) Britton.	Lamiaceae	Raj.2016
ostemon benghalensis (Burm.f.) htze.	Lamiaceae	Raj.2016	304	Pogostemon stellatus (Lour.) Kuntze	Lamiaceae	Raj.2016
mna barbata Wall. ex Schauer	Lamiaceae	Raj.2016	306	Premna bengalensis C. B. Clarke	Lamiaceae	Raj.2016
udocaryopteris bicolor (Roxb. ex dw.) P.D. Cantino	Lamiaceae	Raj.2016	308	<i>Pseudocaryopteris foetida</i> (D. Don) P. D. Cantino	Lamiaceae	Raj.2016
udocaryo	opteris bicolor (Roxb. ex	opteris bicolor (Roxb. ex Lamiaceae	opteris bicolor (Roxb. ex Lamiaceae Raj.2016	opteris bicolor (Roxb. ex Lamiaceae Raj.2016 308	opteris bicolor (Roxb. ex Lamiaceae Raj.2016 308 Pseudocaryopteris foetida (D. Don) P.	opteris bicolor (Roxb. ex Lamiaceae Raj.2016 308 Pseudocaryopteris foetida (D. Don) P. Lamiaceae

SN	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
309	Rotheca serrata (L.) Steane & Mabb.	Lamiaceae	Raj.2016	310	Salvia plebeia R. Br.	Lamiaceae	Raj.2016
311	Scutellaria discolor Colebr.	Lamiaceae	Raj.2016	312	<i>Teucrium quadrifarium</i> Buch Ham.ex D. Don.	Lamiaceae	D159
313	Thymus linearis Benth.	Lamiaceae	Raj.2016	314	Vitex negundo L.	Lamiaceae	Raj.2016
315	<i>Cinnamomum tamala</i> (BuchHam.) Th.G.G.Nees.	Lauraceae	Raj.2016	316	Lindera nacusua (D. Don) Merr.	Lauraceae	Raj.2016
317	<i>Litsea salicifolia</i> (Roxb.ex. Nees.) Hook.f.	Lauraceae	D731	318	Phoebe attenuata (Nees) Nees	Lauraceae	Raj.2016
319	Careya arborea Roxb.	Lecythidaceae	D494	320	Utricularia aurea Lour.	Lentibulariaceae	Raj.2016
321	Utricularia striatula Sm.	Lentibulariaceae	Raj.2016	322	Reinwardtia indica Dumort.	Linaceae	Raj.2016
323	Bonnaya ruellioides (Colsm.) Spreng.	Linderniaceae	Raj.2016	324	Bonnaya antipoda (L.) Druce.	Linderniaceae	Raj.2016
327	<i>Vandellia anagallis</i> (Burm.f.) T.Yamaz.	Linderniaceae	Raj.2016	328	Dendrophthoe falcata (L. f.) Ettingsh.	Loranthaceae	Raj.2016
329	Lygodium flexuosum (L.) Sw.	Lygodiaceae	D110	330	Lygodium japonicum (Thunb.) Sw.	Lygodiaceae	Raj.2016
331	Ammannia baccifera L.	Lythraceae	Raj.2016	332	Ammannia multiflora Roxb.	Lythraceae	Raj.2016
333	Lagerstroemia parviflora Roxb.	Lythraceae	D431	334	Lawsonia inermis L.	Lythraceae	D642
335	<i>Rotala rotundifolia</i> (BuchHam. ex Roxb.) Koehne	Lythraceae	Raj.2016	336	Woodfordia fruticosa (L.) Kurz.	Lythraceae	Raj.2016
337	Aspidopterys wallichii Hook.f.	Malpighiaceae	Raj.2016	338	Hiptage benghalensis (L.) Kurtz.	Malpighiaceae	Raj.2016
339	Bombax ceiba L.	Malvaceae	Raj.2016	340	Corchorus capsularis L.	Malvaceae	Raj.2016
341	Corchorus olitorius L.	Malvaceae	D86	342	Corchorus tridens L.	Malvaceae	D35
343	Firmiana colorata (Roxb.) R. Br.	Malvaceae	Raj.2016	344	<i>Firmiana fulgens</i> (Wall.ex Mast) K .Schum.	Malvaceae	Raj.2016
345	Grewia asiatica L.	Malvaceae	Raj.2016	346	Grewia helicterifolia Wall. ex G. Don	Malvaceae	Raj.2016
347	Grewia serrulata DC.	Malvaceae	Raj.2016	348	Malva neglecta Wallr.	Malvaceae	Raj.2016

SN	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
349	Malva parviflora L.	Malvaceae	Raj.2016	350	Sida cordata (Burm.f.) Borss. Waalk.	Malvaceae	Bha.2015
351	Sida orientalis Cav.	Malvaceae	Raj.2016	352	<i>Triumfetta annua</i> L.	Malvaceae	Raj.2016
353	Triumfetta pilosa Roth	Malvaceae	Raj.2016	354	Triumfetta rhomboidea Jacq.	Malvaceae	D75
355	Urena lobata L.	Malvaceae	D12	356	Marsilea minuta L.	Marsileaceae	Raj.2016
357	Osbeckia chinensis L.	Melastomataceae	D53	358	Osbeckia nepalensis Hook.	Melastomataceae	D153
359	Cipadessa baccifera (Roth) Miq.	Meliaceae	Raj.2016	360	Melia azedarach L.	Meliaceae	D999
361	Heynea trijuga Roxb.	Meliaceae	Raj.2016	362	Stephania japonica (Thunb.) Miers.	Menispermaceae	D459
363	Tinospora sinensis (Lour.) Merr.	Menispermaceae	Bha.2015	364	Cocculus hirsutus (L.) Diels	Menispermaceae	Raj.2016
365	<i>Nymphoides hydrophylla</i> (Lour.) Kuntze.	Menyanthaceae	Raj.2016	366	Nymphoides indica (L.) Kuntze	Menyanthaceae	Raj.2016
367	Artocarpus lacucha BuchHam.ex D.Don.	Moraceae	Raj.2016	368	Ficus auriculata Lour.	Moraceae	Raj.2016
369	Ficus hederacea Roxb.	Moraceae	D615	370	Ficus heterophylla L.f.	Moraceae	D234
371	Ficus hirta Vahl.	Moraceae	D482	372	Ficus hispida L.f.	Moraceae	Raj.2016
373	Ficus lacor BuchHam.	Moraceae	D456	374	Ficus racemosa L.	Moraceae	Raj.2016
375	Ficus rumphii Blume.	Moraceae	Raj.2016	376	Ficus sarmentosa BuchHam. ex Sm.	Moraceae	D116
377	<i>Ficus semicordata</i> Buch Ham. ex. Sm.	Moraceae	D720	378	Ficus subincisa BuchHam.ex Sm	Moraceae	Raj.2016
379	Morus alba L.	Moraceae	D565	380	Morus serrata Roxb.	Moraceae	Bha.2015
381	Streblus asper Lour.	Moraceae	Raj.2016	382	<i>Myrica esculenta</i> BuchHam.ex D.Don.	Myricaceae	D271
383	Syzygium cumini (L.) Skeels	Myrtaceae	D451	384	Syzygium formosum (Wall.) Mason.	Myrtaceae	Raj.2016
385	Syzygium jambos (L.) Alston	Myrtaceae	Raj.2016	386	Syzygium nervosum A. Cunn.ex DC.	Myrtaceae	Raj.2016
387	Nelumbo nucifera Gaertn.	Nelumbonaceae	Raj.2016	388	Nymphaea nouchali Burm.f.	Nymphaeaceae	Raj.2016

	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
389	Fraxinus floribunda Wall.	Oleaceae	Raj.2016	390	<i>Jasminum multiflorum</i> (Burm. f.) Andrews	Oleaceae	D777
391	Jasminum officinale L.	Oleaceae	Raj.2016	392	Ligustrum confusum Decne.	Oleaceae	Raj.2016
393	Ligustrum nepalense Wall.	Oleaceae	Raj.2016	394	Nyctanthes arbor-tristis L.	Oleaceae	D788
395	Epilobium hirsutum L.	Onagraceae	Raj.2016	396	Ludwigia perennis L.	Onagraceae	D808
397	Ludwigia prostrata Roxb.	Onagraceae	Raj.2016	398	Helminthostachys zeylanica (L.) Hook.	Ophioglossaceae	D474
399	<i>Brachycorythis obcordata</i> (Lindl.ex Wall.) Summerh.	Orchidaceae	D163	400	<i>Bulbophyllum careyanum</i> (Hook.) Spreng.	Orchidaceae	Raj.2016
401	Calanthe tricarinata Lindl.	Orchidaceae	Raj.2016	402	Cephalanthera longifolia (L.) Fritsch	Orchidaceae	Raj.2016
403	Coelogyne fimbriata Lindl.	Orchidaceae	Raj.2016	404	<i>Coelogyne nitida</i> (Wall. ex D. Don) Lindl.	Orchidaceae	Raj.2016
405	Coelogyne ovalis Lindl.	Orchidaceae	Raj.2016	406	<i>Crepidium acuminatum</i> (D.Don.) Szlach.	Orchidaceae	Raj.2016
407	Cryptochilus luteus Lindl.	Orchidaceae	Raj.2016	408	Cymbidium aloifolium (L.) Sw.	Orchidaceae	Raj.2016
409	Dendrobium denudans D. Don	Orchidaceae	Raj.2016	410	Dendrobium eriiflorum Griff.	Orchidaceae	Raj.2016
411	<i>Dendrobium heterocarpum</i> Wall.ex. Lindl.	Orchidaceae	Raj.2016	412	Epipactis helleborine (L.) Crantz	Orchidaceae	Raj.2016
413	Epipactis royleana Lindl.	Orchidaceae	Raj.2016	414	Epipactis veratrifolia Boiss. & Hohen.	Orchidaceae	Raj.2016
415	Eulophia dabia (D. Don) Hochr.	Orchidaceae	Raj.2016	416	Eulophia herbacea Lindl.	Orchidaceae	Raj.2016
417	Geodorum densiflorum (Lam.) Schltr.	Orchidaceae	D452	418	Goodyera procera (Ker-Gawl.) Hook.	Orchidaceae	Raj.2016
419	Goodyera repens (L.) R. Br.	Orchidaceae	Raj.2016	420	Habenaria arietina Hook.f.	Orchidaceae	Raj.2016
421	<i>Habenaria commelinifolia</i> (Roxb.) Wall ex Lindl.	Orchidaceae	D670	422	Habenaria intermedia D. Don	Orchidaceae	Raj.2016
423	Luisia zeylanica Lindl.	Orchidaceae	D285	424	Nervilia concolor (Blume) Schltr.	Orchidaceae	Raj.2016
425	Oberonia ensiformis (Sm.) Lindl.	Orchidaceae	Raj.2016	426	<i>Oberonia falconeri</i> Hook.f.	Orchidaceae	Raj.2016

SN	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
427	<i>Oberonia pachyrachis</i> Rchb.f. ex Hook.f.	Orchidaceae	Raj.2016	428	Papilionanthe teres (Roxb.) Schltr.	Orchidaceae	Raj.2016
429	<i>Pecteilis triflora</i> (D. Don) Tang. & Wang.	Orchidaceae	Raj.2016	430	Pelatantheria insectifera (Rchb. f.) Ridl.	Orchidaceae	Raj.2016
431	Peristylus constrictus (Lindl.) Lindl	Orchidaceae	Raj.2016	432	<i>Peristylus densus</i> (Lindl.) Santapau & Kalipada	Orchidaceae	Raj.2016
433	<i>Peristylus goodyeroides</i> (D. Don) Lindl.	Orchidaceae	Raj.2016	434	Phalaenopsis taenialis (Lindl.) Christenson & Pradhan	Orchidaceae	Raj.2016
435	Pholidota articulata Lindl.	Orchidaceae	Raj.2016	436	<i>Pinalia spicata</i> (D.Don.) S.C. Chen. & J.J. Wood.	Orchidaceae	Raj.2016
437	Rhynchostylis retusa (L.) Blume.	Orchidaceae	Raj.2016	438	Satyrium nepalense D. Don.	Orchidaceae	Raj.2016
439	<i>Smitinandia micrantha</i> (Lindl.) Holttum	Orchidaceae	Raj.2016	440	Spiranthes sinensis (Pers) Ames	Orchidaceae	Raj.2016
441	Vanda cristata Wall.ex Lindl.	Orchidaceae	Raj.2016	442	<i>Vanda tessellata</i> (Roxb.) Hook. ex G. Don	Orchidaceae	Raj.2016
443	Vandopsis undulata (Lindl.) J. J. Sm	Orchidaceae	Raj.2016	444	Zeuxine strateumatica (L.) Schltr.	Orchidaceae	Raj.2016
445	Aeginetia indica L.	Orobanchaceae	Raj.2016	446	Orobanche aegyptiaca Pers.	Orobanchaceae	Raj.2016
447	Sopubia trifida BuchHam. ex D. Don	Orobanchaceae	Raj.2016	448	Biophytum reinwardtii (Zucc.) Klotzsh	Oxalidaceae	Raj.2016
449	Fumaria indica (Hausskn.) Pugsley	Papaveraceae	Raj.2016	450	Fumaria vaillantii Loisel.	Papaveraceae	Raj.2016
451	Eurya acuminata DC.	Pentaphyllaceae	D279	452	Eurya cerasifolia (D.Don.) Kobuski.	Pentaphyllaceae	D724
453	<i>Erythranthe tenella</i> (Bunge) G.L. Nesom.	Phrymaceae	Raj.2016	454	Mimulus strictus Benth.	Phrymaceae	D631
455	Antidesma acidum Retz.	Phyllanthaceae	D427	456	<i>Aporosa octandra</i> (BuchHam. ex D.Don.) Vickery	Phyllanthaceae	Raj.2016
457	Baccaurea ramiflora Lour.	Phyllanthaceae	Raj.2016	458	Bridelia retusa (L.) A. Juss.	Phyllanthaceae	Raj.2016
459	Phyllanthus emblica L.	Phyllanthaceae	D277	460	<i>Phyllanthus nubigenus</i> (Hook.f.) Chakrab. & N.P. Balakr.	Phyllanthaceae	Raj.2016

SN	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
461	Phyllanthus reticulatus Poir.	Phyllanthaceae	Raj.2016	462	Phyllanthus urinaria L.	Phyllanthaceae	D229
463	<i>Phyllanthus velutinus</i> (Wight.) Mull.Arg.	Phyllanthaceae	Raj.2016	464	Phyllanthus virgatus G. Frost.	Phyllanthaceae	D221
465	Pinus roxburghii Sarg.	Pinaceae	D170	466	Piper longum L.	Piperaceae	D469
467	Hemiphragma heterophyllum Wall.	Plantaginaceae	Raj.2016	468	Limnophila indica (L.) Druce	Plantaginaceae	Raj.2016
469	Limnophila sessiliflora (Vahl.) Blume.	Plantaginaceae	Lam.2014	470	<i>Lindenbergia grandiflora</i> (Buch Ham.ex D.Don.) Benth.	Plantaginaceae	D149
471	<i>Lindenbergia muraria</i> (Roxb.ex D. Don) Bruhl	Plantaginaceae	Raj.2016	472	Veronica undulata Wall.	Plantaginaceae	D15
473	Apluda mutica L.	Poaceae	D93	474	Arthraxon hispidus (Thunb.) Makino.	Poaceae	Raj.2016
475	Arthraxon lancifolius (Trin.) Hochst.	Poaceae	Raj.2016	476	Arundinella bengalensis (Spreng.) Druce	Poaceae	Raj.2016
477	Arundinella nepalensis Trin.	Poaceae	D169	478	Arundo donax L.	Poaceae	D557
479	<i>Bothriochloa bladhii</i> (Retz.) S.T. Blake.	Poaceae	Raj.2016	480	Bothriochloa ischaemum (L.) Keng.	Poaceae	D664
481	Bothriochloa pertusa (L.) A. Camus.	Poaceae	D287	482	Urochloa ramosa (L.) T.Q.Nguyen	Poaceae	Raj.2016
483	Brachiaria villosa (Lam.) A.Camus.	Poaceae	D406	484	<i>Capillipedium assimile</i> (Steudel) A. Camus.	Poaceae	Raj.2016
485	Cenchrus flaccidus (Griseb.) Marrone.	Poaceae	Raj.2016	486	Chrysopogon aciculatus (Retz.) Trin.	Poaceae	D585
487	Chrysopogon fulvus (Spreng.) Chiov.	Poaceae	D148	488	Chrysopogon gryllus (L.) Trin.	Poaceae	Raj.2016
489	Chrysopogon serrulatus Trin.	Poaceae	D05	490	Coix lacryma-jobi L.	Poaceae	Raj.2016
491	<i>Cymbopogon pendulus</i> (Nees ex Steud.) W. Watson	Poaceae	Raj.2016	492	<i>Cymbopogon pospischilii</i> (K. Schum.) C.E. Hubb.	Poaceae	Raj.2016
493	Cynodon dactylon (L.) Pers.	Poaceae	Raj.2016	494	Cyrtococcum patens (L.) A. Camus	Poaceae	Raj.2016
495	Desmostachya bipinnata (L.) Stapf.	Poaceae	Raj.2016	496	Dichanthium annulatum (Forssk.) Stapf	Poaceae	Raj.2016

SN	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
497	<i>Digitaria abludens</i> (Roem. & Schult.) Veldkamp	Poaceae	Raj.2016	498	Digitaria ciliaris (Retz.) Koeler	Poaceae	D06
499	Digitaria cruciata (Nees.) A. Camus.	Poaceae	Raj.2016	500	Digitaria longiflora (Retz.) Pers	Poaceae	Raj.2016
501	Digitaria radicosa (J. Presl) Miq.	Poaceae	Raj.2016	502	Digitaria setigera Roth.	Poaceae	Raj.2016
503	Digitaria stricta Roth.	Poaceae	Raj.2016	504	Digitaria violascens Link	Poaceae	Raj.2016
505	<i>Drepanostachyum falcatum</i> (Nees.) Keng. f.	Poaceae	Raj.2016	506	Echinochloa crus-galli (L.) Beauv.	Poaceae	D734
507	Eleusine indica (L.) Gaertn.	Poaceae	D613	508	Eragrostiella nardoides (Trin.) Bor.	Poaceae	D160
509	Eragrostis amabilis (L.) Weight & Arn.	Poaceae	Raj.2016	510	<i>Eragrostis atrovirens</i> (Desf.) Trin.ex Steud.	Poaceae	D663
511	Eragrostis japonica (Thunb.) Trin.	Poaceae	Raj.2016	512	Eragrostis minor Host.	Poaceae	D660
513	Eragrostis nigra Nees ex Steud.	Poaceae	D979	514	Eragrostis pilosa (L.) P.Beauv.	Poaceae	D662
515	Eragrostis tremula Hoschst.ex Steud.	Poaceae	Raj.2016	516	<i>Eragrostis unioloides</i> (Retz.) Nees ex Steud.	Poaceae	D309
517	Eragrostis viscosa (Retz.) Trin.	Poaceae	Raj.2016	518	<i>Eulalia fastigiata</i> (Nees ex Steud.) Haines.	Poaceae	Raj.2016
519	Eulalia leschenaultiana (Decne.) Ohwi	Poaceae	Raj.2016	520	Eulalia mollis (Griseb.) Kuntze	Poaceae	Raj.2016
521	Eulaliopsis binata (Retz.) C. E. Hubb.	Poaceae	Raj.2016	522	Hackelochloa granularis (L.) Kunthze.	Poaceae	D58
523	Hemarthria compressa (L.f.) R. Br.	Poaceae	Raj.2016	524	<i>Heteropogon contortus</i> (L.) P. Beauv.ex Roem & Schult.	Poaceae	D68
525	<i>Hygroryza aristata</i> (Retz.) Nees.ex Weight & Arn.	Poaceae	Raj.2016	526	Imperata cylindrica (L.) P.Beauv.	Poaceae	D57
527	Isachne albens Trin.	Poaceae	Raj.2016	528	Isachne globosa (Thumb.) Kuntze	Poaceae	Raj.2016
529	Ischaemum rugosum Salisb.	Poaceae	Raj.2016	530	<i>Microstegium fasciculatum</i> (L.) Henrard.	Poaceae	Raj.2016

SN	Name of species	Family	Remarks	•		Family	Remarks
531	Neyraudia reynaudiana (Kunh.) Keng.ex A.S. Hitsc.	Poaceae	Raj.2016	532	Oplismenus burmanni (Retz.) P. Beauv.	Poaceae	Raj.2016
533	Oryza officinalis Wall. ex Watt	Poaceae	Raj.2016	534	Oryza rufipogon Griff.	Poaceae	D507
535	Panicum curviflorum Hornem.	Poaceae	D65	536	Panicum dichotomum L.	Poaceae	Raj.2016
537	Panicum humile Steud.	Poaceae	D826	538	Panicum notatum Retz.	Poaceae	D66
539	Panicum repens L.	Poaceae	Raj.2016	540	Paspalum scrobiculatum L.	Poaceae	Raj.2016
541	Perotis hordeiformis Nees ex Hook. & Arn.	Poaceae	Raj.2016	542	Eragrostis nigra Nees.ex Steud.	Poaceae	Raj.2016
543	<i>Phragmites karka</i> (Retz.) Trin.ex Steud.	Poaceae	Lam.2014	544	Polypogon fugax Nees.ex Steud.	Poaceae	Raj.2016
545	Polypogon monspeliensis (L.) Desf.	Poaceae	Raj.2016	546	Saccharum bengalense Retz.	Poaceae	Raj.2016
547	Setaria helvola (L.f.) Roem. & Schult.	Poaceae	Raj.2016	548	Setaria palmifolia (J. Koenig) Stapf	Poaceae	Raj.2016
549	Setaria verticillata (L.) P. Beauv.	Poaceae	Raj.2016	550	Sporobolus diandrus (Retz.) P. Beauv.	Poaceae	Raj.2016
551	Sporobolus fertilis (Steud.) Clayton	Poaceae	Raj.2016	552	Sporobolus piliferus (Trin.) Kunth.	Poaceae	D139
553	<i>Themeda anathera</i> (Nees ex Steud.) Hack.	Poaceae	Raj.2016	554	<i>Themeda arundinacea</i> (Roxb.) A. Camus	Poaceae	Raj.2016
555	Tripogon filiformis Nees ex Steud.	Poaceae	Raj.2016	556	Urochloa panicoides P. Beauv.	Poaceae	D614
557	Polygala abyssinica R. Br. ex Fresen.	Polygalaceae	Raj.2016	558	<i>Polygala crotalarioides</i> BuchHam.ex DC.	Polygalaceae	Raj.2016
559	Polygala longifolia Poir.	Polygalaceae	D218	560	Polygala persicariifolia DC.	Polygalaceae	Raj.2016
561	Persicaria barbata (L.) H. Hara	Polygonaceae	D45	562	<i>Persicaria capitata</i> (BuchHam. ex D. Don) H. Gross	Polygonaceae	Raj.2016
563	Persicaria chinensis (L.) H. Gross	Polygonaceae	Raj.2016	564	Persicaria limbata (Meisn.) H. Hara	Polygonaceae	Raj.2016
565	<i>Persicaria nepalensis</i> (Meisn.) Miyabe.	Polygonaceae	D168	566	<i>Persicaria praetermissa</i> (Hook.f.) H.Hara	Polygonaceae	Raj.2016

SN	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
567	Persicaria tenella (Blume.) H. Hara	Polygonaceae	Raj.2016	568	<i>Persicaria viscosum</i> (Buch Ham.ex. D.Don.) H.Gross ex.T.Mori.	Polygonaceae	Raj.2016
569	Rumex dentatus L.	Polygonaceae	Lam.2014	570	Rumex hastatus D. Don	Polygonaceae	Raj.2016
571	Rumex nepalensis Spreng.	Polygonaceae	Raj.2016	572	Persicaria lapathifolia (L.) Delarbre.	Polygonaceae	Raj.2016
573	Lepisorus nudus Ching.	Polypodiaceae	D186	574	<i>Microsorum membranaceum</i> (D. Don) Ching.	Polypodiaceae	Raj.2016
575	Monochoria hastata (L.) Solms.	Pontederiaceae	D650	576	<i>Monochoria vaginalis</i> (Burm.f.) C. Presl ex Kunth	Pontederiaceae	Raj.2016
577	Potamogeton crispus L.	Potamogetonaceae	Raj.2016	578	Ardisia solanacea Roxb.	Primulaceae	Raj.2016
579	Maesa chisia BuchHam.ex D.Don.	Primulaceae	Raj.2016	580	Myrsine semiserrata Wall.	Primulaceae	Raj.2016
581	Pteris vittata L.	Pteridaceae	Raj.2016	582	Aleuritopteris bicolor (Roxb.) Fraser Jenk.	Pteridaceae	Raj.2016
583	Pteris biaurita L.	Pteridaceae	D128	584	Clematis acuminata DC	Ranunculaceae	Raj.2016
585	Clematis smilacifolia Wall.	Ranunculaceae	D730	586	<i>Eriocapitella vitifolia</i> (BuchHam.ex DC.) Nakai.	Ranunculaceae	Raj.2016
587	Ranunculus diffusus DC.	Ranunculaceae	Raj.2016	588	Thalictrum foliolosum DC.	Ranunculaceae	Raj.2016
589	Ziziphus incurva Roxb.	Rhamnaceae	Raj.2016	590	Ziziphus jujuba Mill.	Rhamnaceae	Raj.2016
591	Agrimonia pilosa Ledeb.	Rosaceae	Raj.2016	592	Argentina lineata (Trevir) Sojak.	Rosaceae	Raj.2016
593	Photinia integrifolia Lindl.	Rosaceae	Raj.2016	594	Prunus cerasoides BuchHam.ex D.Don.)	Rosaceae	Raj.2016
595	<i>Pyracantha crenulata</i> (D. Don) M. Roem.	Rosaceae	Raj.2016	596	Pyrus pashia BuchHam.ex D.Don.	Rosaceae	Raj.2016
597	Rosa moschata Hiern.	Rosaceae	Raj.2016	598	Rubus ellipticus Sm.	Rosaceae	Raj.2016
599	Adina cordifolia (Roxb.) Brandis	Rubiaceae	D907	600	Argostemma sarmentosum Wall.	Rubiaceae	Raj.2016
601	Catunaregam longispina (Thunb.) Tirveng.	Rubiaceae	D738	602	Galium elegans Wall.ex. Roxb.	Rubiaceae	Raj.2016

SN	Name of species	Family	Remarks	SN	Name of species	Family	
603	Galium hirtiflorum Req. ex DC.	Rubiaceae	D145	604	Hymenodictyon orixense (Roxb.) Mabb.	Rubiaceae	Raj.2016
605	Leptodermis kumaonensis R. Parker	Rubiaceae	Raj.2016	606	Oldenlandia corymbosa L.	Rubiaceae	Raj.2016
607	Ophiorrhiza rugosa Wall.	Rubiaceae	Raj.2016	608	Scleromitrion diffusum (Willd.) R.J. Wang.	Rubiaceae	Raj.2016
609	Spermacoce articularis L.	Rubiaceae	Raj.2016	610	Spermacoce pusilla Wall.	Rubiaceae	Raj.2016
611	Spermadictyon suaveolens Roxb.	Rubiaceae	Raj.2016	612	Catunaregam spinosa (Thunb.) Tirveng.	Rubiaceae	Raj.2016
613	Hedyotis pruinosa Wight & Arn.	Rubiaceae	Raj.2016	614	Aegle marmelos (L.) Corrêa	Rutaceae	D491
615	<i>Boenninghausenia albiflora</i> (Hook.) Rchb. ex Meisn.	Rutaceae	Raj.2016	616	Clausena kanpurensis J.F.Molino	Rutaceae	Raj.2016
617	Glycosmis pentaphylla (Retz.) DC.	Rutaceae	D742	618	Murraya koenigii (L.) Spreng.	Rutaceae	D425
619	Toddalia asiatica (L.) Lam.	Rutaceae	Raj.2016	620	Zanthoxylum armatum DC.	Rutaceae	D276
621	<i>Meliosma dilleniifolia</i> (Wall.ex Wight & Arn.) Walp.	Sabiaceae	Raj.2016	622	Sabia paniculata Edgew.ex Hook.f. & Thomsom.	Sabiaceae	Raj.2016
623	Casearia graveolens Dalzell.	Salicaceae	Raj.2016	624	Flacourtia indica (Burm.f.) Merr.	Salicaceae	D460
625	Flacourtia jangomas (Lour.) Raeusch.	Salicaceae	Raj.2016	626	Azolla pinnata R. Br.	Salviniaceae	Raj.2016
627	Schleichera oleosa (Lour.) Merr.	Sapindaceae	D418	628	<i>Diploknema butyracea</i> (Roxb.) H.J. Lam.	Sapotaceae	Raj.2016
629	<i>Madhuca longifolia</i> (J.Koenig ex L.)J.F. Macbr.	Sapotaceae	Raj.2016	630	Astilbe rivularis BuchHam.ex D. Don.	Saxifragaceae	Raj.2016
631	<i>Bergenia pacumbis</i> (BuchHam. ex D.Don) C.Y.Wu & J.T. Pan.	Saxifragaceae	Raj.2016	632	Buddleja asiatica Lour.	Scrophulariaceae	Raj.2016
633	Verbascum thapsus L.	Scrophulariaceae	Raj.2016	634	Selaginella subdiaphana (Wall.ex Hook. & Gress) Spreng.	Selaginellaceae	D142

SN	Name of species	Family	Remarks	SN	Name of species	Family	Remarks
635	Selaginella tamariscina (P. Beauv.) Spring.	Selaginellaceae	Raj.2016	636	Smilax aspera L.	Smilacaceae	Raj.2016
637	Smilax ovalifolia Roxb. ex. D.Don.	Smilacaceae	D754	638	Smilax zeylanica L.	Smilacaceae	D749
639	Solanum virginianum L.	Solanaceae	D264	640	Symplocos racemosa Roxb.	Symplocaceae	D566
641	Ampelopteris prolifera (Retz.) Copel	Thelypteridaceae	D251	642	Thelypteris arida (D.Don.) Morton.	Thelypteridaceae	Raj.2016
643	<i>Thelypteris dentata</i> (Forssk.) E.P. John.	Thelypteridaceae	Raj.2016	644	<i>Thelypteris erubescens</i> (Wall.ex Hook.) Ching.	Thelypteridaceae	Raj.2016
645	Daphne bholua BuchHam. ex D. Don	Thymelaeaceae	Raj.2016	646	Boehmeria virgata (G.Forst.) Guill.	Urticaceae	Raj.2016
647	Debregeasia saeneb (Forssk.) Hepper & J.R.I. Wood.	Urticaceae	Raj.2016	648	Girardinia diversifolia (Link.) Friis.	Urticaceae	D260
649	<i>Gonostegia hirta</i> (Blume ex Hassk) Miq.	Urticaceae	Raj.2016	650	Gonostegia pentandra (Roxb.) Miq.	Urticaceae	D787
651	Pilea glaberrima (Blume) Blume	Urticaceae	D187	652	<i>Pouzolzia rugulosa</i> (Wedd.) Acharya & Kravtsora.	Urticaceae	Raj.2016
653	Pouzolzia zeylanica (L.) Benn.	Urticaceae	D48	654	Viola canescens Wall.	Violaceae	Raj.2016
655	Viola betonicifolia Sm.	Violaceae	Raj.2016	656	Viola pilosa Blume	Violaceae	Raj.2016
657	Ampelocissus latifolia (Roxb.) Planch.	Vitaceae	Raj.2016	658	Cissus repens Lam.	Vitaceae	D405
659	Leea aequata L.	Vitaceae	Raj.2016	660	Leea alata Edgew.	Vitaceae	D409
661	Leea asiatica (L.) Ridsdale.	Vitaceae	Raj.2016	662	Leea macrophylla Roxb.ex Hornem.	Vitaceae	D192
663	Parthenocissus semicordata (Wall.) Planch.	Vitaceae	Raj.2016	664	Tetrastigma hookeri (Laws.) Planch.	Vitaceae	D579
665	<i>Tetrastigma serrulatum</i> (Roxb.) Planch.	Vitaceae	Raj.2016	666	Cautleya gracilis (Sm.) Dandy	Zingiberaceae	Raj.2016
667	Curcuma angustifolia Roxb.	Zingiberaceae	Raj.2016	668	Globba marantina L.	Zingiberaceae	Raj.2016
669	Globba racemosa Sm.	Zingiberaceae	D401	670	Hedychium ellipticum Buch	Zingiberaceae	D173

*Lam.2014 = Lamsal *et al.*, 2014; Bha.2015 = Bhattrai & Acharya, 2015; Raj.2016 = Rajbhandari *et al.*, 2016; MoFSC.2017 = MoFSC, 2017.

***D** = Collection from present study.

SN	Botanical Name	Family	Life form	Origin	Status	Remarks
1	Agave cantala (Haw.) Roxb. ex Salm-Dyck	Asparagaceae	Shrub	America	Naturalized non-invasive	Raj.2016
2	Ageratina adenophora (Spreng.) R.M.King & H.Rob.	Asteraceae	Herb	America	Invasive	Raj.2016
3	Ageratum conyzoides L.	Asteraceae	Herb	America	Invasive	TUCH 00057
4	Ageratum houstonianum Mill.	Asteraceae	Herb	America	Invasive	TUCH 00094
5	Alternanthera philoxeroides (Mart.) Griseb.	Amaranthaceae	Herb	America	Invasive	Raj.2016
6	Alternanthera sessilis (L.) R.Br.ex DC.	Amaranthaceae	Herb	America	Naturalized non-invasive	TUCH 00156
7	Amaranthus hybridus L.	Amaranthaceae	Herb	America	Naturalized non-invasive	TUCH 00166
8	Amaranthus spinosus L.	Amaranthaceae	Herb	America	Invasive	TUCH 00184
9	Amaranthus viridis L.	Amaranthaceae	Herb	America	Naturalized non-invasive	TUCH 00168
10	Argemone mexicana L.	Papaveraceae	Herb	America	Invasive	Raj.2016
11	Asclepias curassavica L.	Apocynaceae	Herb	America	Naturalized non-invasive	Raj.2016
12	Axonopus compressus (Sw.) P.Beauv.	Poaceae	Herb	America	Naturalized non-invasive	TUCH 00167
13	Bidens biternata (Lour.) Merr. & Sherff	Asteraceae	Herb	Africa	Naturalized non-invasive	Raj.2016
14	Bidens pilosa L.	Asteraceae	Herb	America	Invasive	Raj.2016
15	Biophytum sensitivum (L.) DC.	Oxalidaceae	Herb	Asia	Naturalized non-invasive	Raj.2016
16	Bolboschoenus fluviatilis (Torr.) Sujak.	Cyperaceae	Herb	America	Naturalized non-invasive	Raj.2016
17	Cardamine flexuosa With.	Brassicaceae	Herb	Europe	Naturalized non-invasive	Raj.2016
18	Cenchrus purpureus (Schumach) Morrone	Poaceae	Herb	Africa	Naturalized non-invasive	Raj.2016

Appendix 5. List of naturalized plant species with their life form and native range.

SN	Botanical Name	Family	Life form	Origin	Status	Remarks
19	Chenopodium album L.	Amaranthaceae	Herb	Europe	Naturalized non-invasive	Raj.2016
20	Cirsium arvense (L.) Scop.	Asteraceae	Herb	Europe	Naturalized non-invasive	TUCH 00273
21	Corchorus aestuans L.	Malvaceae	Herb	America	Naturalized non-invasive	TUCH 00363
22	Crassocephalum crepidioides (Benth.) S.Moore.	Asteraceae	Herb	Africa	Naturalized non-invasive	TUCH 00326
23	Croton bonplandianus Baill.	Euphorbiaceae	Herb	America	Naturalized non-invasive	Raj.2016
24	Cyanthillium cinereum (L.) H. Rob.	Asteraceae	Herb	America	Naturalized non-invasive	Raj.2016
25	Cynodon plectostachyus (K.Schum.) Pilg.	Poaceae	Herb	Africa	Naturalized non-invasive	D520
26	Dactyloctenium aegyptium (L.) Willd.	Poaceae	Herb	Africa	Naturalized non-invasive	TUCH 00221
27	Datura metel L.	Solanaceae	Herb	America	Naturalized non-invasive	Raj.2016
28	Drymaria villosa Schltdl. & Cham.	Caryophyllaceae	Herb	America	Naturalized non-invasive	TUCH 00230
29	Drymaria cordata (L.) Willd.ex Schult.	Caryophyllaceae	Herb	America	Naturalized non-invasive	TUCH 00247
30	Dysphania ambrosioides (L.) Mos. & Clem.	Amaranthaceae	Herb	America	Naturalized non-invasive	Raj.2016
31	Eclipta prostrata (L.) L.	Asteraceae	Herb	America	Naturalized non-invasive	TUCH 00676
32	Eichhornia crassipes (Mart.) Solms.	Pontederiaceae	Herb	America	Invasive	D22
33	Erigeron canadensis L.	Asteraceae	Herb	America	Naturalized non-invasive	Raj.2016
34	Erigeron karvinskianus DC.	Asteraceae	Herb	America	Invasive	TUCH 01719
35	Euphorbia heterophylla L.	Euphorbiaceae	Herb	America	Naturalized non-invasive	TUCH 00827
36	Euphorbia hirta L.	Euphorbiaceae	Herb	America	Naturalized non-invasive	TUCH 00723
37	Euphorbia prostrata Aiton.	Euphorbiaceae	Herb	America	Naturalized non-invasive	Raj.2016
38	Evolvulus nummularius (L.) L.	Convolvulaceae	Herb	America	Naturalized non-invasive	TUCH 01086

SN	Botanical Name	Family	Life form	Origin	Status	Remarks
39	Galinsoga parviflora Cav.	Asteraceae	Herb	America	Naturalized non-invasive	Raj.2016
40	Galinsoga quadriradiata Ruiz. & Rav.	Asteraceae	Herb	America	Invasive	TUCH 00663
41	Gomphrena celosioides Mart.	Amaranthaceae	Herb	America	Naturalized non-invasive	TUCH 00704
42	Heliotropium indicum L.	Boraginaceae	Herb	America	Naturalized non-invasive	Raj.2016
43	Hyptis suaveolens (L.) Poit.	Lamiaceae	Herb	America	Invasive	TUCH 00969
44	<i>Ipomoea carnea</i> subsp. <i>fistulosa</i> (Mart.ex Choisy) D.F. Austin.	Convolvulaceae	Shrub	America	Invasive	MoFSC,2017
45	Ipomoea quamoclit L.	Convolvulaceae	Climber	America	Naturalized non-invasive	TUCH 00788
46	Jatropha curcas L.	Euphorbiaceae	Shrub	America	Naturalized non-invasive	Bha.2015
47	Lantana camara L.	Verbenaceae	Shrub	America	Invasive	TUCH 00876
48	Lemna perpusilla Torr.	Araceae	Herb	America	Naturalized non-invasive	Raj.2016
49	Leonotis nepetifolia (L.) R. Br.	Lamiaceae	Herb	Africa	Naturalized non-invasive	Raj.2016
50	Ludwigia octovalvis (Jacq.) P. H. Raven	Onagraceae	Herb	America	Naturalized non-invasive	Raj.2016
51	Martynia annua L.	Martyniaceae	Herb	America	Naturalized non-invasive	Raj.2016
52	Mimosa pudica L.	Fabaceae	Herb	America	Invasive	TUCH 00940
53	Mirabilis jalapa L.	Nyctaginaceae	Herb	America	Naturalized non-invasive	Raj.2016
54	Nasturtium officinale R. Br.	Brasicaceae	Herb	Europe	Naturalized non-invasive	TUCH 01558
55	Nicandra physalodes (L.) Gaertn.	Solanaceae	Herb	America	Naturalized non-invasive	Raj.2016
56	Nicotiana plumbaginifolia Viv.	Solanaceae	Herb	America	Naturalized non-invasive	Raj.2016
57	Oenothera rosea L.Her.ex Aiton	Onagraceae	Herb	America	Naturalized non-invasive	Raj.2016
58	Oxalis corniculata L.	Oxalidaceae	Herb	America	Naturalized non-invasive	TUCH 01046
59	Panicum dichotomiflorum Michx.	Poaceae	Herb	America	Naturalized non-invasive	Raj.2016

SN	Botanical Name	Family	Life form	Origin	Status	Remarks
60	Parthenium hysterophorus L.	Asteraceae	Herb	America	Invasive	TUCH 01155
61	Paspalum distichum L.	Poaceae	Herb	America	Naturalized non-invasive	TUCH 01612
62	Peperomia pellucida (L.) Kunth.	Piperaceae	Herb	America	Naturalized non-invasive	TUCH 01093
63	Physalis angulata L.	Solanaceae	Herb	America	Naturalized non-invasive	TUCH 01562
64	Pistia stratiotes L.	Araceae	Herb	America	Invasive	Raj.2016
65	Psidium guajava L.	Myrtaceae	Tree	America	Naturalized non-invasive	TUCH 01179
66	Ricinus communis L.	Euphorbiaceae	Shrub	Africa	Naturalized non-invasive	Raj.2016
67	Sambucus canadensis L.	Adoxaceae	Shrub	America	Naturalized non-invasive	Raj.2016
68	Schoenoplectiella supina (L.) Lye.	Cyperaceae	Herb	Europe	Naturalized non-invasive	Raj.2016
69	Scoparia dulcis L.	Plantaginaceae	Herb	America	Naturalized non-invasive	TUCH 01589
70	Senna occidentalis (L.) Link.	Fabaceae	Shrub	America	Invasive	TUCH 01519
71	Senna sophera (L.) Roxb.	Fabaceae	Shrub	America	Naturalized non-invasive	Raj.2016
72	Senna tora (L.) Roxb.	Fabaceae	Herb	America	Invasive	TUCH 01500
73	Setaria parviflora (Poir.) M. Kerguelen	Poaceae	Herb	America	Naturalized non-invasive	D44
74	Sida acuta Burm.f.	Malvaceae	Shrub	America	Naturalized non-invasive	TUCH 01328
75	Sida cordifolia L.	Malvaceae	Shrub	Australia	Naturalized non-invasive	TUCH 01335
76	Sida rhombifolia L.	Malvaceae	Shrub	America	Naturalized non-invasive	TUCH 01381
77	Solanum aculeatissimum Jacq.	Solanaceae	Herb	America	Naturalized non-invasive	TUCH 01307
78	Solanum torvum Sw.	Solanaceae	Herb	America	Naturalized non-invasive	TUCH 01406

SN	Botanical Name	Family	Life form	Origin	Status	Remarks
79	Spergula arvensis L.	Caryophyllaceae	Herb	Europe	Invasive	Raj.2016
80	Spermacoce alata Aubl.	Rubiaceae	Herb	America	Invasive	TUCH 01452
81	Sphenoclea zeylanica Gaertn.	Sphenocleaceae	Herb	Africa	Naturalized non-invasive	D17
82	Stellaria media (L.) Vill.	Caryophyllaceae	Herb	Europe	Naturalized non-invasive	Raj.2016
83	Tridax procumbens L.	Asteraceae	Herb	America	Naturalized non-invasive	TUCH 01531
84	Trifolium repens L.	Fabaceae	Herb	Europe	Naturalized non-invasive	Raj.2016
85	Vachellia farnesiana (L.) Wight & Arn.	Fabaceae	Tree	America	Naturalized non-invasive	Raj.2016
86	Vachellia nilotica (L.) P.J.H. Hurter & Mabb.	Fabaceae	Tree	Africa	Naturalized non-invasive	Raj.2016
87	Xanthium strumarium L.	Asteraceae	Herb	America	Invasive	TUCH 01462

*Lam.2014 = Lamsal et al., 2014; Bha.2015 = Bhattrai & Acharya, 2015; Raj.2016 = Rajbhandari et al., 2016; MoFSC.2017 = MoFSC, 2017.

***TUCH** = already digitized barcode for naturalized species; ***D** = Collection from present study.

SN	Botanical Name	Family	Remarks	SN	Botanical Name	Family	Remarks
1	Acmella paniculata (Wall. ex DC.) R. K. Jansen	Asteraceae	D244	2	Acorus calamus L.	Acoraceae	Raj.2016
3	Adiantum philippense L.	Pteridaceae	D98	4	Aeschynomene indica L.	Fabaceae	Raj.2016
5	Alopecurus aequalis Sobol.	Poaceae	Raj.2016	6	Ammannia auriculata Willd.	Lythraceae	D29
7	Bacopa monnieri (L.) Pennell	Plantaginaceae	Raj.2016	8	Bidens bipinnata L.	Asteraceae	D122
9	Boerhavia diffusa L.	Nyctaginaceae	D407	10	Thelypteris interrupta (Willd.) K.Iwats.	Thylipteridaceae	Raj.2016
11	Cyperus compressus L.	Cyperaceae	D602	12	Cyperus corymbosus Rottb.	Cyperaceae	D653
13	Cyperus cuspidatus Kunth	Cyperaceae	Raj.2016	14	Cyperus cyperoides (L.) Kuntze	Cyperaceae	Raj.2016
15	Cyperus digitatus Roxb.	Cyperaceae	Raj.2016	16	Cyperus distans L.f.	Cyperaceae	D16
17	Cyperus esculentus L.	Cyperaceae	Raj.2016	18	Cyperus squarrosus L.	Cyperaceae	Raj.2016
19	Echinochloa colona (L.) Link.	Poaceae	Raj.2016	20	Euphorbia thymifolia L.	Euphorbiaceae	D665
21	Fimbristylis complanata (Retz.) Link	Cyperaceae	Raj.2016	22	Fimbristylis dichotoma (L.) Vahl.	Cyperaceae	D51
23	Fimbristylis ovata (Burm.f.) J.Kern	Cyperaceae	Raj.2016	24	Lemna minor L.	Araceae	Lam.2014
25	Lessingianthus plantaginodes R. Parker.	Asteraceae	Raj.2016	26	<i>Ludwigia adscendens</i> (L.) H. Hara	Onagraceae	Raj.2016
27	Ocotea lancifolia (Scott.) Mez.	Lauraceae	Raj.2016	28	Ophioglossum reticulatum L.	Ophioglossaceae	D465
29	<i>Peperomia tetraphylla</i> (G. Forst) Hook. & Arn.	Piperaceae	Raj.2016	30	<i>Persicaria glabra</i> (Willd.) M. Gomez	Polygonaceae	Raj.2016
31	Phyla nodiflora (L.) Greene.	Verbenaceae	D527	32	Ranunculus sceleratus L.	Ranunculaceae	Raj.2016
33	Torenia crustacea (L.) Cham. & Schltdl.	Linderniaceae	Raj.2016	34	Typha angustifolia L.	Typhaceae	MoFSC,2017
35	Urtica dioica L.	Urticaceae	D294				

Appendix 6. List of Cryptogenic plant species and their families.

Lam.2014 = Lamsal et al., 2014; Bha.2015 = Bhattrai & Acharya, 2015; Raj.2016 = Rajbhandari et al., 2016; MoFSC.2017 = MoFSC, 2017.

Land use types	Native	Naturalized	Invasive	Cryptogenic	Total
Agriculture land	66	29	6	24	119
Roadside grazing land	79	32	11	16	127
Degraded Sal forest	85	19	3	10	114
Agriculure fallow land	74	14	2	9	97
Mixed broad leaved forest	123	14	2	13	150
Riverine forest	81	12	2	7	100
Shorea-Terminalia forest	101	9	2	1	111

Appendix 7. Diversity of vascular plants across different land use types.

Appendix 8. Total vascular plant species recorded in 35 selected sample plots.

SN	Land-use types	Plot	Plot 2	Plot 3	Plot 4	Plot 5	Total
		1					species
1	Shorea-Terminalia forest	44	40	50	56	58	111
2	Riverine forest	40	47	52	45	45	100
3	Agriculture land	57	26	41	47	66	119
4	Agriculture fallow land	43	42	49	47	52	97
5	Mixed broad leaved forest	59	57	63	59	64	150
6	Roadside grazing land	61	66	52	48	57	127
7	Degraded Sal forest	48	56	59	52	51	114

SN	Invasive species	Sho-Ter.	Rivrine	Agriculture	Ag. Falw.	Mixed	Roadside	Deg. Sal	Cover (%)
1	Ageratum houstonianum	48.33	5	98.5	2.5	16.25	103.5	116.5	30.04
2	Senna tora	2.5	15	12	6.87	52.5	711	30.5	63.87
3	Ipomoea carnea subsp. fistulosa	0	0	2.5	0	0	15	0	1.35
4	Bidens pilosa	0	0	2.5	0	0	2.5	0	0.38
5	Pistia stratiotes	0	0	2.5	0	0	0	0	0.19
6	Eichhornia crassipes	0	0	2.5	0	0	2.5	0	0.38
7	Parthenium hysterophorus	0	0	0	0	0	24	0	1.85
8	Hyptis suaveolens	0	0	0	0	0	58	0	4.46
9	Lantana camara	0	0	0	0	0	9.17	0	0.71
10	Senna occidentalis	0	0	0	0	0	3.75	2.5	0.48
11	Xanthium strumarium	0	0	0	0	0	4.5	0	0.35
12	Amaranthus spinosus	0	0	0	0	0	2.5	0	0.19

* Sho-Ter. = *Shorea -Terminalia* forest; Rivrine = Riverine forest; Agriculture = Agriculture land; Ag. Falw.= Agriculture fallow land; Mixed = Mixed broad leaved forest; Roadside = Roadside grazing land; Deg. Sal = Degraded Sal forest

SN	Invasive species	Sho-Ter.	Rivrine	Agriculture	Ag. Falw.	Mixed	Roadside	Deg. Sal	F (%)
1	Ageratum houstonianum	0.359	0.154	0.692	0.077	0.308	0.596	0.708	41.34
2	Senna tora	0.077	0.206	0.215	0.211	0.154	0.985	0.477	33.22
3	Parthenium hysterophorus	0	0	0	0	0	0.354	0	5.05
4	Senna occidentalis	0	0	0	0	0	0.115	0.077	2.74
5	Hyptis suaveolens	0	0	0	0	0	0.169	0	2.41
6	Ipomoea carnea subsp. fistulosa	0	0	0.077	0	0	0.077	0	2.2
7	Eichhornia crassipes	0	0	0.077	0	0	0.077	0	2.2
8	Lantana camara	0	0	0	0	0	0.154	0	2.2
9	Pistia stratiotes	0	0	0.077	0	0	0	0	1.1
10	Xanthium strumarium	0	0	0	0	0	0.138	0	1.97
11	Bidens pilosa	0	0	0.077	0	0	0.077	0	2.2
12	Amaranthus spinosus	0	0	0	0	0	0.077	0	1.1

Appendix 10. Frequency of invasive species in selected land use types.

* Sho-Ter. = *Shorea -Terminalia* forest; Rivrine = Riverine forest; Agriculture = Agriculture land; Ag. Falw.= Agriculture fallow land; Mixed = Mixed broad leaved forest; Roadside = Roadside grazing land; Deg. Sal = Degraded Sal forest

Response variable	Polyn. order	Df	Res.Dev.	Deviance	F	p-value
Natu. with dis. road	0	34	111.632	-	-	-
	1	33	97.67	13.955	5.4714	0.02553
	2	32	91.54	20.092	4.1217	0.02554
Natu. with dis. settlement	0	34	111.63	-	-	-
	1	33	104.12	7.6176	2.5972	0.1166
	2	32	50.154	61.4778	21.97	< 0.0001
Natu. with dis. river	0	34	111.63	-	-	-
	1	33	104.12	17.512	12.5709	0.0118
	2	32	100.78	10.857	10.857	0.1638
Natu. with tree canopy	0	34	111.632	-	-	-
	1	33	78.418	33.214	16.046	0.00033
	2	32	78.157	33.476	7.8367	0.00169
Natu. with grazing	0	34	111.632	-	-	-
	1	33	85.116	26.516	10.400	0.00283
	2	32	79.912	31.721	6.6672	0.00379
Natu. with soil pH	0	34	111.632	-	-	-
	1	33	90.067	21.565	8.4951	0.0063
	2	32	89.503	22.129	22.129	0.0205
Natu. with SOC	0	34	111.632	-	-	-
	1	33	99.233	12.399	4.1896	0.0487
	2	32	99.167	12.465	2.0331	0.1475
Natu. with soil Nitrogen	0	34	111.63	-	-	-
	1	33 32	110.76	0.8712	0.2676	0.6084
	2	32	96.654	14.978	2.6531	0.0858

Appendix 11. Regration statistics between different variables; GLM was run upto 2nd order unimodel analysis.

Response variable	Polyn. order	Df	Res.Dev.	Deviance	F	p-value
Natu. with native richness	0	34	111.63	-	-	-
	1	33	101.76	9.8689	3.3755	0.075
	2	32	92.56	19.065	3.6808	0.036
Natu. with elevation	0	34	111.632	-	-	-
	1	33	98.338	13.295	4.6573	0.038
	2	32	96.505	15.127	2.6757	0.084
Non.inv with IAPs richness	0	34	111.632	-	-	-
	1	33	46.989	64.643	16.247	0.0003
	2	32	43.32	68.312	8.3195	0.001

Appendix 12. Field data sheet used for vegetation sampling in Kailali district.

Naturalized plant species across land use types (Darwin Initiative Project)

S.N: Date: Site: Land use:

Plot no: Latitude: Longitude: Elevation:

Fire marks: Y/N Grazing: 0/1/2/3 Logging: Y/N. Other disturbances:

Inventory of species in $0.5m\times 2m$ plots (herb, shrubs, tree seedling, and tree saplings)

S.N	Name of the species	Habit #	Cover class of species in plot number:									
			1	2	3	4	5	6	7	8	9	10
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												

Habit, H: herb, C: climber; S: Shrub, Sd: tree seedling, Sp: tree sapling

* Daubenmire Cover class- 1) 0-5%, 2) 5-25%, 3) 25-50%, 4) 50-75% 5) 75-95% 6) 95-100%

Remarks:

S.N.	Name of species	Habit #	Cover class* in plot	
			1	2
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				

Inventory of species in 2m × 5m plots (All Life forms)

Habit, H: herb, S: Shrub, C: Climber, Sd: tree seedling, Sp: tree sapling

* Daubenmire Cover class- 1) 0-5%, 2) 5-25%, 3) 25-50%, 4) 50-75% 5) 75-95% 6) 95-100%

Remarks:

Inventory of s	species in 5m :	× 20m plots	(All life forms)
----------------	-----------------	-------------	------------------

S.N.	Name of species	Habit #	Cover class*
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			

Habit, H: herb, C; Climber, S: Shrub, Sd: tree seedling, Sp: tree sapling

* Daubenmire Cover class- 1) 0-5%, 2) 5-25%, 3) 25-50%, 4) 50-75% 5) 75-95% 6) 95-100%

Remarks:

.....

Name of field investigator:

S.N.	Name of species	DBH (cm)
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		

Diameter of tree species at breast height (DBH, 137 cm) in $50m \times 20$ m plot (DBH ≥ 5 cm)

Remarks:

Name of investigator:

Attribute	Value
Number of invasive alien plant species	
Number of naturalized ^{\$} species	
Number of native species	
Number of fern species	
Number of herbaceous species	
Number of shrub species	
Number of climber species	
Number of tree species	
Average number of species in 0.5m × 2m plot	
Average number of species in 2m × 5m plot	
Total number of vascular plant species	
Total number of trees with DBH \geq 5cm	

To be filled as early as possible after returning back from the field

* Naturalized species include all alien species which are regenerating without human assistance. This includes both invasive as well as non-invasive species.

Remarks:

Name of the field investigator:

Appendix 13. Photo plates Field activities: Plant collection and identification

Field work: Vegetation sampling

Vield work: Vegetation sampling

Lab work: Soil analysis

Research presentation: Conference / Workshop

