

Tribhuvan University Institute of Science and Technology

Automatic Generation of Basis Set of Paths for White Box Unit Testing

Dissertation

Submitted to

Central Department of Computer Science and Information Technology Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements for the Master's Degree in Computer Science and Information Technology

By

Suraj Karki

May, 2010

Tribhuvan University Institute of Science and Technology

Automatic Generation of Basis Set of Paths for White Box Unit Testing

Dissertation

Submitted to

Central Department of Computer Science and Information Technology Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements for the Master's Degree in Computer Science and Information Technology

By

Suraj Karki May, 2010

Supervisor Prof. Dr. Shashidhar Ram Joshi

Co-Supervisor Mr. Bhogendra Mishra

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Supervisor's Recommendation

I hereby recommend that the dissertation prepared under my supervision by **Mr. Suraj Karki** entitled **"Automatic Generation of Basis Set of Paths for White Box Unit Testing"** be accepted as fulfilling in partial requirements for the degree of M.Sc. in Computer Science and Information Technology.

Prof. Dr. Shashidhar Ram Joshi Department of Electronics and Computer Engineering Institute of Engineering, Pulchowk, Nepal (Head)

Date:_____

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation work and in our opinion it is satisfactory in the scope and quality as a dissertation in the partial fulfillment for the requirement of Master of Science in Computer Science and Information Technology.

Evaluation Committee

Prof. Dr. Jeevan Jyoti Nakarmi Head,Central Department of Computer Science and Information Technology Tribhuvan University Prof. Dr. Shashidhar Ram Joshi Head, Department of Electronics and Computer Engineering, Institute of Engineering Pulchowk, Nepal (Supervisor)

(External Examiner)

(Internal Examiner)

Date: _____

Tribhuvan University Institute of Science and Technology

Central Department of Computer Science and Information Technology Kirtipur, Kathmandu, Nepal

Student's Declaration

I hereby declare that I am the only author of this work and that no sources other than the listed here have been used in this work.

Suraj Karki Date: May, 2010

ACKNOWLEDGEMENT

The completion of this thesis was made possible by the contributions, knowledge and support of many individuals. At first, I would like to express my gratitude to my parents, who offered me the opportunity of education they never had.

I am deeply indebted to Prof. Dr. Shashidhar Ram Joshi, the supervisor of my thesis, and Mr.Bhogendra Mishra, co-supervisor of my thesis, for their valuable guidance and expertise as well as for their kind advice, encouragement, and constant support. I am grateful to the Head of the Central Department of Computer Science and Information Technology, Prof.Dr.Jeevan Jyoti Nakarmi, for his help and support. I am also greatful to Prof.Dr.Devi Dutta Paudyal and Dr.Tanka Nath Dhamala, former Head of the Central Department of Computer Science at the department of Computer Science and Information Technology for their advice and support during my study period at the department.

I am also grateful and thankful to all the respected teachers, Dr. Onkar P. Sharma (Marist College, USA), Dr. Subarna Shakya, Mr. Sudarshan Karanjit, Mr. Min Bahadur Khati, Mr. Bishnu Gautam, Mr. Hemanta G.C., Mr. Dinesh Bajracharya, Mr.Sammujjal Bhandari and others for granting me broad knowledge and inspirations during my study period in Central Department of Computer Science and Information Technology (CDCSIT).

I would like to thank all the colleagues at the CDCSIT for the pleasant work atmosphere. I am indebted to my friends Mr. Laxman Thapa and Mr. Yoga Raj Joshi for their valuable suggestion and help during the preparation of this dissertation. I would also like to give gratitude to my friends Mr. Suresh Khatiwada, Mr.Sushil Nepal and Mr.Bhoj Raj Ghimire to encourage me to finish this dissertation in time.Finally, I must thank to all my family members for cooperating with me while I was doing this work.

Suraj Karki May, 2010

ABSTRACT

Software testing is defined as the process of executing the program with the intent of finding an error that ensures the correctness, completeness and quality of the developed software. Black-box and white-box testing are the two major techniques for software testing. In black-box testing, no information about the internal structure of the program under testing is available. However, in white-box testing, a complete source code or the internal structure is available.

Unit testing of conventional or object-oriented software makes heavy use of white-box testing techniques, specifically basis path testing. Basis path testing is a white-box testing technique that uses a Control Flow Graph (CFG) of a program under test to generate a basis set of independent paths .Different techniques have been proposed in this thesis to generate basis set of independent paths.

In this thesis, we implemented an algorithm to develop a software tool that performs the following three tasks:

-) Constructs a control flow graph of a given program based on the pseudocode.
- Computes the cyclomatic complexity of the control flow graph.
-) Generates a basis set of independent paths of the control flow graph.

Experiments on our tool show that the algorithms implemented for control flow graph construction, computation of cyclomatic complexity and generation of basis set of independent paths for a program under test gives acceptable results and yield results in a reasonable time. It has been observed that the algorithm implemented in our program generates a basis set of paths for a given control flow graph in O (max (n, e)) time complexity where n is the number of nodes and e is the number of edges in the control flow graph.

Table of Contents

Details	Page No
Acknowledgements	i
Abstract	ii
Tables of Contents	iii
List of Figures	vi
List of Tables	vii
Abbreviations	viii
CHAPTER 1	1-5
1. INTRODUCTION	1
1.1 Software Testing	1
1.2 Testing Objectives	2
1.3 Testing Principles	3
1.4 Justification for Research	4
1.5 Research Goal	5
1.6 Organization of Thesis	5
CHAPTER 2	6-17
1.1. LITERATURE SURVEY ON SOFTWARE TESTING	6
1.2. Conventional Software Testing	6
1.3. Object Oriented Software Testing	6
1.4. Software Testing Techniques	9
1.4.1. Static Testing	9
2.3.1.1 Code Inspections	10
2.3.1.2 Code Walkthroughs	10
2.3.1.3 Desk Checking	10
2.3.1.4 Code Reviews	11
1.4.2. Dynamic Testing	11

2.3.2.1 Black Box Testing	11
i) Equivalence Partitioning	12
ii) Boundary Value Analysis	12
iii) Graph-Based Testing Method	12
iv) Cause-and-Effect Graphing	12
v) Error Guessing	12
2.3.2.2 White Box Testing	13
i) Control Flow Testing	14
ii) Data Flow Testing	15
iii) Loop Testing	16
iv) Mutation Testing	16
CHAPTER 3	18-41
1.5. RESEARCH METHODOLOGY	18
Drawing Control Flow Graph	18
3.1.1 Importance of Control Flow Graph	20
3.1.2 Example of Control Flow Graph	21
3.1.3 Matrix Representation of Control Flow Graph	23
1.6. Determining Cyclomatic Complexity	24
3.2.1 Data Structure to Compute the Cyclomatic Complexity	26
3.2.2 Relationship between Cyclomatic Complexity and Testing	28
3.3. Determining a Basis set of Linearly Independent Paths	29
3.3.1 Methods to Generate the Basis set of Paths	30
3.3.1.1 Joseph Poole Approach	31
3.3.1.2 Bhattacherjee et al. Approach	32
3.3.1.3 Guangmei et al. Approach	36
3.3.1.4 Salloum and Salloum Approach	37
3.3.1.5 Baseline Method	40
CHAPTER 4	42-50
2. IMPLEMENTATION	42

2.1. Pseudocode of the Program	42
2.2. Program Facts	47
4.2.1 Control Flow Graph	47
4.2.2 Syntax Errors	48
4.2.3 Semantic Errors	48
4.2.4 Data Structure	48
4.2.5 Programming Language	49
4.2.6 Display	49
4.2.7 Program Assumptions	50
CHAPTER 5	51-65
3. EXPERIMENTS, RESULTS AND EVALUATION	51
3.1. Experiments Design	51
3.2. Experimental Results	51
5.2.1 Compare	51
5.2.2 Sum of Squares	52
5.2.3 Binary Search	53
5.2.4 Bubble Sort	55
5.2.5 Selection Sort	57
5.2.6 Quick Sort's Partition Algorithm	59
5.2.7 Insertion Sort	61
5.3 Evaluation of Results	65
CHAPTER 6	66-67
3.3. CONCLUSION AND FURTHER RECOMMENDATION	66
3.4. Conclusion	66
3.5. Further Recommendation	67
References	68-71

List of Tables

Details	Page No.
Table 1.1 : Graph matrix to compute the cyclomatic complexity	27

List of Figures

Details	Page No.
Figure 1.1 : A block diagram of the software testing process	2
Figure 3.1 : Control flow graph notations	20
Figure 3.2 : Pseudocode for finding greatest common divisor	21
Figure 3.3`: Control flow graph of pseudocode in figure 3.2	22
Figure 3.4 : Labelled control flow graphs of different programming constructs	23
Figure 3.5 : A control flow graph to illustrate Joseph approach to generate the basis set of paths	32
Figure 3.6 : An example graph to illustrate the Symmetric Algorithm	34
Figure 3.7: A control flow graph to illustrate the Salloum and Salloum algorithm	38
Figure 3.8: A tree representing a basis set of paths generated by the algorithm for	the 38
CFG of figure 3.7	

List of Abbreviations

BBT	Black Box Testing
CASE	Computer Assisted Software Engineering
CC	Cyclomatic Complexity
CFG	Control Flow Graph
DFS	Depth First Search
00	Object Oriented
SUT	Software Under Test
WBT	White Box Testing