

Tribhuvan University

Institute of Science and Technology

News Clustering System based on Text Mining

A Dissertation

Submitted to

Central Department of Computer Science and Information Technology

Tribhuvan University, Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements

 For the Master’s Degree in Computer Science and Information Technology

Submitted by

 Deni Shahi

September, 2016

Tribhuvan University

Institute of Science and Technology

News Clustering System based on Text Mining

A Dissertation

Submitted to

Central Department of Computer Science and Information Technology

Tribhuvan University, Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements

 For the Master’s Degree in Computer Science and Information Technology

Supervisor

Prof. Dr. Shashidhar Ram Joshi

Co-Supervisor

Bikash Balami

Submitted by

 Deni Shahi

September, 2016

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than the listed

here have been used in this work.

………………………………

Deni Shahi

Date: 20 September, 2016

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Supervisor’s Recommendation

I hereby recommend that this dissertation prepared under my supervision by Ms. Deni Shahi

entitled “News Clustering System based on Text Mining” in partial fulfillment of the

requirements for the degree of M. Sc. in Computer Science and Information Technology be

processed for the evaluation.

…………………………………...

Prof. Dr. Shashidhar Ram Joshi

Department of Electronics and Computer Engineering,

Institute of Engineering,

Pulchowk, Nepal

Date: 20 September, 2016

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope and

quality as a dissertation in the partial fulfillment for the requirements of Masters Degree in

Computer Science and Information Technology.

Evaluation Committee

………………………………………… ..

 Asst. Prof. Nawaraj Paudel Prof. Dr. Shashidhar Ram Joshi

 Head of Department Department of Electronics and Computer

Center Department of Computer Science Engineering

 and Information Technology, Institute of Engineering,

Tribhuvan University, Kirtipur, Nepal Pulchowk, Nepal

………………………………………. ………………………………………..

(External Examiner) (Internal Examiner)

Date: 26 October, 2016

Acknowledgement

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Dr. Shashidhar

Ram Joshi. I have been amazingly fortunate to have a supervisor who gave me the freedom to

explore on my own, and at the same time the guidance to recover when my steps faltered. His

patience and support helped me overcome many crisis situations and finish this dissertation.

Besides my supervisor, I would like to special thanks to my co-supervisor Mr. Bikash Balami

who gave me the lots of ideas and support to complete this work.

I would like to thank the research committee for their encouragement, insightful comments, and

hard questions. I am indebted to all the people who supported and encouraged me involving

directly or indirectly to complete this work. I am also obliged to Head of Department, Asst.

Prof. Nawaraj Paudel and all respected teachers and staffs of Central Department of Computer

Science and Information Technology, Tribhuvan University for their cooperation to bring this

work in a tangible form.

I am very much thankful to Mr. Ashish Singh Bista for his valuable time and effort to complete

this work.

Last but not the least, I would like to thank my family for their love and supporting me

spiritually throughout my life.

i

Abstract

Data mining is the process of analyzing data from different perspectives and summarizing it into

useful information. This dissertation entitled ―News Clustering System based on Text Mining”

is one of the implementation of Data Mining in which the similar type articles of different

Newspapers are grouped together which is in English language.

In this work, documents from different newspapers’ sites are retrieved i.e. Information

Extraction (IE) using crawler then document preprocessing is applied. Parser parses the data into

article heading and corresponding links, then the headings are split into individual terms and a

list of distinct terms are maintained. Then the porter steaming algorithm is applied over the

distinct terms collection. Steaming minimizes the vocabulary size (i.e. no. of terms will be

minimized). TF-IDF of individual heading is calculated. This process represents individual

content and heading in to n-dimensional vector space (n is the number of distinct terms in the

article). Finally, K-means algorithm is implemented to group the news.

The Efficiency of K-means Clustering Algorithm has been analyzed for different values of initial

number of cluster seeds (K) and different iterations (I). The result analysis is on seven days news

data. The result obtained by the experiment shows that the result is efficient with the initial

clusters seed 12 (K=12), Iterations to maintain the constant cluster centers in K-means clustering

depends upon the number of data sets and running time is also directly proportional to the

number of iterations and number of initial clusters seeds.

Keywords: Data Mining, Information Extraction, Document Preprocessing, Porter Stemming

Algorithm, TF-IDF, K-means Clustering Algorithm

ii

Contents

Abstract……………………………………………………………………………………………i

List of Figures…………………………………………………………………………………….iv

List of Tables……………………………………………………………………………………...v

List of Abbreviations……………………………………………………………………………..vi

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 THESIS ORGANIZATION.. 2

CHAPTER 2 ... 3

BACKGROUND STUDY AND PROBLEM FORMULATION .. 3

2.1. BACKGROUND ... 3

2.1.1 Information Extraction ... 3

2.1.2 Web Crawler .. 3

2.1.3 Document Preprocessing ... 4

2.1.4 Clustering ... 8

2.2 PROBLEM FORMULATION.. 11

2.2.1 Problem Statement ... 11

2.2.2 Objectives .. 12

2.3 MOTIVATION ... 12

CHAPTER 3 ... 14

LITERATURE REVIEW AND METHODOLOGY .. 14

3.1 RELATED WORKS ... 14

3.2 RESEARCH QUESTION ... 16

3.3 PROPOSED FRAMEWORK ... 17

3.3.1 News Content Extraction ... 17

3.3.2 Parsing.. 17

3.3.3 Document Preprocessing ... 19

3.3.4 Document Representation .. 19

3.3.5 Document Clustering ... 19

CHAPTER 4 ... 20

IMPLEMENTATION ... 20

4.1 TOOLS USED .. 20

4.1.1 Resource Requirements ... 20

4.1.2 Programming Language ... 20

iii

4.2 DATA SOURCE MODULE... 21

4.3 News Extraction Module .. 22

4.4 DOCUMENT PREPROCESSING MODULE ... 23

4.5 CLUSTERING MODULE.. 26

4.6 EVALUATION MODULE .. 29

CHAPTER 5 ... 31

DATA COLLECTION AND ANALYSIS ... 31

5.1 DATA COLLECTION ... 31

5.1.1 Sources ... 31

5.1.2 News Data .. 32

5.2 EXPERIMENTAL RESULT .. 36

5.2.1 Experimental Setup .. 36

5.2.2 Sample Output ... 36

5.2.3 Evaluation Metrics ... 38

5.2.4 Result ... 43

CHAPTER 6 ... 45

CONCLUSION AND FUTURE WORK ... 45

6.1 CONCLUSION ... 45

6.2 FUTURE ENHANCEMENTS ... 46

References ... 47

Bibliography ... 49

APPENDIX ... 50

Implementation Code .. 50

Evaluation Table…………………………………………………………………………………60

iv

List of Figures

Figure 2.1.2.1 Architecture of Web Crawler …………………………………………………….4

Figure 2.1.2.2 Basic Architecture of Web Crawler……………………………………………….5

Figure 2.1.4.1.1 Representation of document in Vector Space………………………………….10

Figure 3.3.1 Proposed Framework for News Clustering………………………………………...16

Figure 5.2.1.1 Screenshoot of Sample News headings extracted from respective portal……….33

Figure 5.2.1.2 Screenshoot of Sample terms of news before preprocessing…………………….34

Figure 5.2.1.3 Screenshoot of Sample terms of news after preprocessing……………………...34

Figure 5.2.2.1 Screenshot of Output of total News of each portal……………………………….35

Figure 5.2.2.2 Screenshot of Output News before clustering……………………………………36

Figure 5.2.2.3 Screenshot of Output News after Clustering……………………………………..36

Figure 5.2.2.4 Screenshot of Output of Evaluation Metrics of clusters………………………….37

Figure 5.2.3.1 Graph of Evaluation Metrics with variations of K (19 august 2016)…………….38

Figure 5.2.3.2 Graph of Evaluation Metrics with variations of I (19 august 2016)……………...39

Figure 5.2.3.3 Graph of Evaluation Metrics with variations of K (August 26, 2016)…………...40

Figure 5.2.3.4 Graph of Evaluation Metrics with variations of I (August 26, 2016)……………40

Figure 5.2.3.5 Graph of Completion Time of Clustering Process with different values of I……41

Figure 5.2.3.6 Graph of Completion Time of Clustering Process with different values of K…...42

v

List of Tables

Table 5.2.1 List of Data Sets……………………………………………………………………..31

Table 5.2.3.1 Evaluation Table for I=12, and Variations of K ………………………………….38

Table 5.2.3.2 Evaluation Table for K=12, and Variations of I…………………………………..38

Table 5.2.3.3 Evaluation Table for I=12, and Variations of K …………………………………39

Table 5.2.3.4 Evaluation Table for K=12, and Variations of I…………………………………..39

Table 5.2.3.5 Completion Time of Clustering Process with different values of I..……………...41

Table 5.2.3.6 Completion Time of Clustering Process with different values of K………………41

vi

List of Abbreviations

Abbreviations Full Form

IR Information Retrieval

IE Information Extraction

HTML Hypertext Markup Language

Tf-idf Term frequency-Inverse Document Frequency

MVC Model -View -Controller

CSS Cascading Style Sheets

SQL Structural Query Language

HAC Hierarchical Agglomerative Clustering

1

CHAPTER 1

INTRODUCTION

Data mining (sometimes called data or knowledge discovery) is the process of analyzing data

from different perspectives and summarizing it into useful information - information that can be

used to increase revenue, cuts costs, or both. Data mining software is one of a number of

analytical tools for analyzing data. It allows users to analyze data from many different

dimensions or angles, categorize it, and summarize the relationships identified. Technically, data

mining is the process of finding correlations or patterns among dozens of fields in large

relational databases [1, 2].

News Clustering System based on Text Mining is one of the implementation of Data Mining in

which the similar type articles of different Newspapers are grouped together. The algorithms

implemented for this work are as follows:

 News Extraction

 Document Parsing

 Document Preprocessing

 Document Representation

 Cosine Similarity Algorithm

 Document Clustering

The efficiency of K-means clustering algorithm for different values of K (initial number of

seeds) has been analyzed to group the similar news. The relationship between the size of data (n)

and the initial number of seeds (K) has been analyzed.

This this work entitled ―News Clustering System based on Text Mining‖ is based on the

approach of extracting information from the online news portals, i.e. information extraction (IE)

and arranging them into clusters based on the similarity of the extracted information, i.e.

clustering [3, 4]. The IE process and the clustering technique are the main focus points of this

work.

2

Text mining is an important technique because it enables efficient analysis of existing

knowledge. As explained by the authors in [5, 6], some of the advantages of implementing text

mining include:

 Efficiency in terms of time.

 Unlocking hidden information and developing new knowledge.

 Exploring new horizons (research areas).

 Improved research and evidence base.

 Improving the research process and quality.

1.1 THESIS ORGANIZATION

Introduction Part of this dissertation work focuses on the IR and the Data Mining along with the

main processes of this work.

The rest of the material in this study is organized into five subsequent chapters.

Chapter 2 provides the background study required for this work. In this chapter, problem of lack

of news clustering system is given, problem statement is formulated and main objective is

mentioned.

Chapter 3 contains the previous work related to this dissertation in detail under literature review

and research question is formulated. Proposed framework is described in detail in this chapter.

Chapter 4 provides the implementation of News Clustering System using Ruby on Rails.

Chapter 5 includes the collected data of news, and the performance measure of the system with

different values of initial clusters seeds with table as well as graph.

At last, the concluding remarks and further enhancements are outlined in chapter 6.

3

CHAPTER 2

BACKGROUND STUDY AND PROBLEM FORMULATION

2.1. BACKGROUND

2.1.1. Information Extraction

Information Extraction has the goal of retrieving and storing structured data from natural

language texts in order to improve corporate knowledge based (KB) processes. It is the type of

information retrieval whose main theme is to automatically extract structured information from

unstructured or semi-structured machine readable documents. IR retrieves relevant documents

from collections, while IE extracts relevant information from documents [7, 8]. Hence the two

techniques are complementary, and used in combination they can provide powerful tools for text

processing. The tasks that IE system can perform are as follows:

 Term analysis – Identifies the terms in a document (For e.g. scientific research papers).

 Named-Entity Recognition – Identifies the names in a document (For e.g. names of

people/organization).

 Fact Extraction – Identifies and extracts complex facts from documents.

2.1.2 Web Crawler

A Web crawler is a computer program that browses the World Wide Web in a methodical,

automated manner or in an orderly fashion. Other terms for Web crawlers are ants, automatic

indexers, bots, Web spiders, Web robots, or—especially in the FOAF community—Web scutters.

This process is called Web crawling or spidering. Many sites, in particular search engines, use

spidering as a means of providing up-to-date data. Web crawlers are mainly used to create a copy

of all the visited pages for later processing by a search engine that will index the downloaded

pages to provide fast searches. Crawlers can also be used for automating maintenance tasks on a

Web site, such as checking links or validating HTML code. Also, crawlers can be used to gather

specific types of information from Web pages, such as harvesting e-mail addresses (usually for

sending spam).

http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Internet_bot
http://en.wikipedia.org/wiki/FOAF_(software)
http://en.wikipedia.org/wiki/Web_search_engine
http://en.wikipedia.org/wiki/Index_(search_engine)
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Spamming

4

Figure 2.1.2.3 Architecture of Web Crawler [3]

Web Crawler Architecture

The basic architecture of a web crawler is shown in the figure 2.1.2.2 given below. The crawler

consists of several modules namely URL frontier, DNS resolution module, fetch module, parsing

module, duplicate elimination module, URL filter and document finger print module.

5

Figure 4.1.2.2 Basic Architecture of Web Crawler [3]

Each module has its own specific function or task to carry out, which are as follows:

 URL Frontier – It contains the URLs yet to be fetched.

 Fetch Module – It retrieves the web pages at the URL.

 DNS Resolution Module – It determines the web server from which to fetch the page

specified by the URL.

 Parsing Module – Extracts the text and set of links from a fetched web page.

 Duplicate Elimination Module – It determines whether an extracted link is already in

the URL frontier.

 URL Filter – It determines whether the extracted link should be excluded from the URL

frontier.

 Document Finger Print Module – It checks whether a web page with the same content

has been already seen at another URL.

The Crawling Operation

The basic operations of a crawler are as follows:

 The crawler begins with one or more URLs that constitute a seed set.

 It picks a URL from this seed set, and then fetches the web page at that URL.

WW
W

Fetch

DNS

Parse
Conte

nt
Seen?

URL
Filter

Duplicate
URL

Elimination

DOC
FP’s

Robots
Template

s

URL Set

URL
Frontier

6

 The extracted text is then fed to a text indexer.

 The extracted links (URLs) are then added to a URL frontier which at all-time consists of

URLs whose corresponding pages have yet to be fetched by the crawler.

 Initially, the URL frontier contains the seed set, as pages are fetched, the corresponding

URLs are deleted from the URL frontier.

2.1.3 Document Preprocessing

a. Tokenization

Before any further processing can be done on a document, its text must be segmented into words

and sentences; such task is known as tokenization. Given a character sequence and a defined

document unit, tokenization is the task of chopping it up into pieces called tokens. In other

words, tokenization is the process of breaking up a stream of text into words, phrases, symbols or

other meaningful elements called tokens [8, 9]. A token is an instance of characters in some

particular document that are grouped together as a useful semantic unit for processing. Hence,

these tokens become input for further processing such as parsing, text mining, etc. During this

phase of document preprocessing, all the remaining text is parsed and lowercased. Also, all the

punctuations are removed.

For example: Input : Please, Lend me your ears.

 Output : |Please| |Lend| |me| |your| |ears|

In the above example, the sentence ―Please, Lend me your ears.‖ is chopped up into 5 tokens i.e.

Please, Lend, me, your, ears excluding the punctuation.

A tokenizer depends on simple heuristics such as the follows [10]:

 All nearby strings of alphabetic characters are part of one token. The same applies for

numbers.

 Tokens are separated by whitespace characters, such as a space or line break or by

punctuation characters.

 Punctuation and whitespace may or may not be included in the resulting list of tokens.

7

b. Stop Word Removal

Every now and then, some extremely common words which would appear to be of little value in

helping select documents matching a user need are excluded from the vocabulary. Such words

are called stop words. The process of excluding such words from documents is called stop word

removal. The stop words, i.e. the occurrence of some very frequent words that does not carry

information are removed since it reduces the quality of data mining.

The common strategy for determining a stop list is to sort the terms by collecting frequency and

then to take out the most frequent terms and are then discarded during indexing. Using a stop list

significantly reduces the number of postings that a system has to store. For example: a, am, are,

and, as, at, be, by, for, from, has, he, in, is, it, its, of, on, that, the, to, was, were, will, with, etc.

c. Porter Stemming Algorithm

Stemming is the process of removing suffixes by automatic means is an operation which is

especially useful in the field of information retrieval. In a typical IR environment, one has a

collection of documents, each described by the words in the document title and possibly by

words in the document abstract. Ignoring the issue of precisely where the words originate, we

can say that a document is represented by a vetor of words, or terms. Terms with a common stem

will usually have similar meanings, for example:

 CONNECT

 CONNECTED

 CONNECTING

 CONNECTION

 CONNECTIONS

Frequently, the performance of an IR system will be improved if term groups such as this are

conflated into a single term. This may be done by removal of the various suffixes -ED, -ING, -

ION, IONS to leave the single term CONNECT. In addition, the suffix stripping process will

reduce the total number of terms in the IR system, and hence reduce the size and complexity of

the data in the system, which is always advantageous.

8

2.1.4 Clustering

The process of grouping a set of objects into classes, subsets or clusters of similar objects is

called clustering. A cluster is a collection of data objects that are similar to one another within

the same cluster and are dissimilar to the objects in other clusters. The idea of clustering is to

partition a free set of objects into clusters. Among many mechanisms of text mining, clustering is

one of the most important techniques. There are number of clustering algorithms which are used

in different areas or fields. If clustering algorithms are to be used, two conditions are necessary;

(i) an object representation and (ii) a similarity (or distance) measure between objects [8].

Clustering algorithm mainly focuses on distance based cluster analysis.

In context to this work, since text and documents are to be clustered i.e. text clustering, texts are

considered as the objects. The goal of text clustering is to create a group of similar documents or

document fragments like news items [5].

2.1.4.1 K-Means Clustering

The K-means clustering algorithm is known to be efficient in clustering large data sets. This

clustering algorithm was developed by MacQueen , and is one of the simplest and the best

known unsupervised learning algorithms that solve the well-known clustering problem. The K-

Means algorithm aims to partition a set of objects, based on their attributes/features,

into K clusters, where K is a predefined or user-defined constant. The main idea is to

define K centroids, one for each cluster. The centroid of a cluster is formed in such a way that it

is closely related (in terms of similarity function; similarity can be measured by using different

methods such as cosine similarity, Euclidean distance, Extended Jaccard) to all objects in that

cluster.

Basic K-Means Algorithm

1. Choose K number of clusters to be determined

2. Choose K objects randomly as the initial cluster center

3. Repeat

http://en.wikipedia.org/wiki/K-means_clustering

9

 3.1. Assign each object to their closest cluster centre.

 3.2. Compute new cluster centres, i.e. Calculate mean points.

 4. Until

 4.1. No changes on cluster centers (i.e. Centroids do not change location any more) OR

 4.2. No object changes its cluster (We may define stopping criteria as well)

Termination Condition

We can apply one of the following termination conditions.

 A fixed number of iterations . This condition limits the runtime of the clustering

algorithm, but in some cases the quality of the clustering will be poor because of an

insufficient number of iterations.

 Assignment of documents to clusters does not change between iterations but runtimes

may be unacceptably long.

 Centroids do not change between iterations.

Bad choice of initial seed

In K-Means algorithm there is unfortunately no guarantee that a global minimum in the objective

function will be reached, this is a particular problem if a document set contains many outliers ,

documents that are far from any other documents and therefore do not fit well into any cluster.

Frequently, if an outlier is chosen as an initial seed, then no other vector is assigned to it during

subsequent iterations. Thus, we end up with a singleton cluster (a cluster with only one

document).

Effective heuristics for seed selection include:

1. Excluding outliers from the seed set.

2. Trying out multiple starting points.

2.1.4.1 Cosine Similarity Algorithm

Cosine similarity is a measure of similarity between two vectors by measuring the cosine of the

angle between them. The cosine of 0 is 1, and less than 1 for any other angle; the lowest value of

10

the cosine is -1. The cosine of the angle between two vectors thus determines whether two

vectors are pointing in roughly the same direction.

In data mining we can use this technique to find the similarity of the documents.

For example

d1 = i have to go to school.

d2 = i have to go to toilet.

The words of the first sentence are i , have, to, go , school and all the words frequency is 1

except to the words of the second sentence. The words of the second sentence are i, have, to, go,

to, toilet and again all the words frequency is 1 and if we think n-dimensional space the points of

the words in space is

1 [i , have , to , go, school , toilet] = [1,1,2,1,1,0]

2 [i , have , to , go , school , toilet] = [1,1,2,1,0,1]

cos θ = 1*1 + 1*1 + 2*2 + 1*1 + 1*0 + 0*1 / sqrt((1^2 + 1^2 + 2^2 + 1^2 + 1^2 + 0^2) + 1^2 +

1^2 + 2^2 + 1^1 + 0^0 + 1^2)

In general

So on the above two documents we will have altogether 6 dimensional vector space so the

documents is represented as below

Figure 2.1.4.1.1 Representation of document in Vector Space

d1

d2

θ

.
Similarity(d1,d2) = cos(θ) =

d1 d2

|d1|.|d2|

11

2.1.4.2 TF-IDF

Tf-idf stands for term frequency-inverse document frequency, and the tf-idf weight is a weight

often used in information retrieval and text mining. This weight is a statistical measure used to

evaluate how important a word is to a document in a collection or corpus. The importance

increases proportionally to the number of times a word appears in the document but is offset by

the frequency of the word in the corpus. Variations of the tf-idf weighting scheme are often used

by search engines as a central tool in scoring and ranking a document's relevance given a user

query.

Tf-idf can be successfully used for stop-words filtering in various subject fields including text

summarization and classification.

Example:

Consider a document containing 100 words wherein the word cat appears 3 times. The term

frequency (i.e., tf) for cat is then (3 / 100) = 0.03. Now, assume we have 10 million documents

and the word cat appears in one thousands of these. Then, the inverse document frequency (i.e.,

idf) is calculated as log(10,000,000 / 1,000) = 4. Thus, the Tf-idf weight is the product of these

quantities: 0.03 * 4 = 0.12.

2.2 PROBLEM FORMULATION

2.2.1 Problem Statement

Most of the users consider online news as resourceful web facility instead of reading the news by

purchasing papers. Now a days there are numbers of websites available which provides daily

national and international news. If a user wants to get more information on a concerned news

article from a different source; for this purpose, the user will have to list out the sites containing

articles on similar topic which can be tedious and time consuming. To overcome these problems,

the concept of article mining is used to cluster the news on the WWW.

The information extraction process from various online news portals is the most challenging task

in article mining. The main issue in article mining is to use short description of stories or

12

headings available. Such tasks are solved using simple strategies like analyzing the HTML code

of the news’s web-page and recognizing its pattern of display. News mining/Article mining

mainly focuses to disambiguate information and to provide users with greater search

experiences. This approach increases the quality of the results because [7]; the news items are

short and contain relevant and descriptive key words. In general, article mining is based on a

repository of web newspapers pages and extracting the items for these pages. The web pages are

dynamic and changes continuously, hence to capture the information we retrieve the pages of the

newspaper at regular intervals and store it in a database.

In this work, the news headlines from different sources of online web newspapers have been

used. The keywords for each piece of news are extracted from the headlines which are further

used to cluster similar news from a news data bank.

User have desire to read article in the newspaper that haven’t been read already in another

newspaper. But there is no grouping of similar type article from different newspapers. They have

to visit all the news sites and have to search into all the respective newspapers’ sites which is not

reliable for them.

2.2.2 Objectives

The main purposes of this dissertation are:

 To group the similar articles of different newspapers.

 To analyze the efficiency of K-means clustering algorithm to group the similar news with

different values of K, and to analyze the relationship between number of documents N

with number of iterations (I) and K.

 To reduce the complexity of searching similar news by visiting each website.

2.3 MOTIVATION

News is today’s most common sources for learning about current events. In addition, news may

deal with topics of more long-term interest. It reflects and form societies’, groups’ and

individuals’ views of the world, fast or even instantaneous with the events triggering the

reporting circumscribe. News is generally authored by people with journalistic training who

13

abide by journalistic standards regarding the style and language of reporting. Topics and ways of

reporting are bed by general societal consensus and the policies of the news provider. The

content of news basically involves text, pictures and additional content in other formats. The

news items in an online news portal are a good source for studying the text mining techniques.

14

CHAPTER 3

LITERATURE REVIEW AND METHODOLOGY

3.1 RELATED WORKS

There are many approaches to text mining. Several researchers have implemented the concept of

text mining.

This thesis includes three contributions: a survey of known clustering methods, an evaluation of

human versus human results when grouping news articles in an event-centric manner, and last an

evaluation of an incremental clustering algorithm [1,2]. In this work an information system has

been proposed that will extract the main topics in the news archive in a weekly basis. By getting

a weekly report, user can know what were the main news events in the past week [3].

In this paper work different clustering methods and their effectiveness has been compared for

text document datasets for sentiment analysis. It results that K-means algorithm gives overall

best results when used with Cosine Similarity considering all the factors that affects performance

of Document Similarity Algorithm and Document Clustering Algorithm [4, 5]. This paper

discusses the terms document and similarity in the given context and Apache Lucene tool which

provides a foundation to build an information retrieval system for documents [6, 9]. This paper

compares and analyzes the effectiveness of these measures in partial clustering for text

document datasets. Experiments utilize the standard K-means algorithm and results on seven text

document datasets and five similarity measures (Euclidian Distance, Cosine Similarity, Jaccard

Coefficient, Pearson Correlation Coefficient, Averaged KullBack-Leibler Divergence) that have

been most commonly used in text clustering [7]. This a real time news extraction system capable

of identifying up-to-date ―hot news‖ from large amounts of news reports on the internet [8].

In this HAC (Hierarchical Agglomerative Clustering) algorithm and Correlation similarity is

used for any type of text document to display the most relevant document of the clusters [10].

This thesis is mainly focused on the use of text mining techniques and the K-means algorithm to

create the clusters of similar news articles headlines. It is based on the text mining with primary

focus on data mining and information extraction [12].

15

In order to improve on complete-page mining, it presents an approach based on extracting the

individual news items from the web pages and mining these separately [13, 18]. This paper

presents UPD Digital Library Miner, a software application for mining document collections of a

digital library for topical structure discovery and topic-based similarities search between

collection pairs, using topic modeling algorithm and Kullback-Leibler divergence measure [14].

This proposal work is made to improve the pruning of feature selection algorithm by clustering

with distance boundaries and partitioning of uncertain probability distribution values [15]. This

presents the comparison of two main document clustering techniques: agglomerative hierarchical

clustering and K-means. For K-means a ―standard‖ K-means algorithm and variant of K-means,

―bisecting‖ K-means is used [16, 20]. In this paper, the similarity of two documents is gauged by

using two string-based measures which are character-based method, n-gram is utilized to find

fingerprint and Dice coefficient is used to match two fingerprints [17]. This survey discusses the

existing works on text similarity through partitioning them into three approaches; String-based,

Corpus-based and Knowledge-based similarities. Furthermore, samples of combination between

these similarities are presented [19].

16

3.2 RESEARCH QUESTION

News published in news portal vary from each other and people who read news desire to go

through each of them in order have better and more clear information in that particular news

headline. Therefore, it becomes a tiresome job for a person who has such a desire. The main

objective of this work is to answer question of ―how it is possible to view and compare same

news which are published in different news portal into one single roof with the use of text

mining‖.

The overall purpose of this work can be summarized as following research questions:

 How text mining and clustering techniques can be used to generate required system?

 How it is possible to cluster similar news published in different portal into one single

roof?

 Is there any relationship between the initial number of clusters (K) and the number of

data i.e. number of news?

17

3.3 PROPOSED FRAMEWORK

 Figure 3.3.1. Proposed Framework for News Clustering

3.3.1 News Content Extraction

A web crawler extracts the news contents with their links and news heading from the respective

news sites.

Web Crawler:

A Web crawler is a computer program that browses the World Wide Web in a methodical,

automated manner or in an orderly fashion. Other terms for Web crawlers are ants, automatic

indexers, bots, Web spiders, Web robots, or—especially in the FOAF community—Web scutters.

Categorized news article

Data Source

Extract documents Using

Crawler

Document Parsing and

Preprocessing

Calculate the TF-IDF of

individual document

News Categorization

User Interface

http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Internet_bot
http://en.wikipedia.org/wiki/FOAF_(software)

18

Web crawlers are mainly used to create a copy of all the visited pages for later processing by a

search engine that will index the downloaded pages to provide fast searches [5].

3.3.2 Parsing

The HTML parser parses the unnecessary tags and links present in the extracted news contents. It

also identifies the headings of the news [5, 6].

3.3.3 Document Preprocessing

When the news contents with their links and news heading is extracted by crawler, it is further

Preprocessed for text mining using document preprocessing techniques, which includes the

following steps:

Tokenization

Tokenization is the process of chopping up a given stream of text or character sequence into

words, phrases, symbols, or meaningful elements called tokens, which are input for the further

processing of text mining [5,7]. The headings of different newspapers are tokenized. This

process of tokenization is accomplished by using space to split the sequence of tokens.

Stop Word Removal

Those common words which would appear to be a little value in the documents matching, need

to be excluded, are stop words and the process of excluding such words is called stop word

removal [5, 7, 8]. The stop word such as a, an, the, and prepositions is created and the tokens

contained in the stop word list are discarded.

Lemmatization

Lemmatization is the process of reducing the derived forms of a word to its base form called

lemma so that they can be analyzed as a single term [5, 7, 8]. Stemming is a preferred method for

lemmatization.

Porter Stemming Algorithm:

Stemming is the process of removing suffixes which is especially useful in the field of

http://en.wikipedia.org/wiki/Index_(search_engine)

19

information retrieval. In a typical IR environment, one has a collection of documents, each

described by the words in the document title and possibly by words in the document abstract.

Ignoring the issue of precisely where the words originate, we can say that a document is

represented by a vector of words, or terms. The suffix stripping process will reduce the total

number of terms in the IR system, and hence reduce the size and complexity of the data in the

system, which is always advantageous [5, 7, 8].

3.3.4 Document Representation

Document representation is a key process in the information retrieval systems. To extract the

relevant documents from the large collection of documents, it is very important to transfer the

documents to vector form. The vector space model is popular algebraic model to represent the

textual document as vectors. Using the vector space model documents are represented with the

term frequency, inverse document frequency (tf-idf) weighting scheme [5, 14,15].

Example: The one of the news heading of August 26, 2016 is “President, PM condolence to

death in Chitwan bus fall”

tokens: | president | PM | condolence | to | death | in | chitwan | bus | fall |

After stop word removal and stemming: | president | pm | condolence | death | chitwan | bus | fall |

Vector: [0.01555, 0.02358, 0.02137, 0.02028, 0.01867, 0.01806, 0.03129]

3.3.5 Document Clustering

After the construction of document vector, the clustering process is carried out using K-means

clustering algorithm. The K-Means algorithm aims to partition a set of objects, based on their

attributes/features, into K clusters, where K is a predefined or user-defined constant [20]. The

main idea is to define K centroids, one for each cluster. The centroid of a cluster is formed in

such a way that it is closely related (in terms of similarity function; similarity can be measured

by using different methods such as cosine similarity, Euclidean distance, Extended Jaccard) to all

objects in that cluster [9, 10, 11, 19]. Here, cosine measure is used to compute which document

centroid is closest to a given document.

20

CHAPTER 4

IMPLEMENTATION

4.1 TOOLS USED

All the algorithms have been implemented using ruby language in ruby on rails framework with

the partial use of ruby libraries.

4.1.1 Resource Requirements

The resources used to complete this work are as follows:

 My-SQL for database design.

 Web Server for testing proposed system.

 Platform: Windows XP or greater.

 Internet Explorer, Google Chrome, Mozilla Firefox or any other browser to view results.

 Programming Languages used: Ruby.

 Interface Design: HTML, CSS.

4.1.2 Programming Language

Ruby

Ruby programming language has been used for the implementation of this work. Ruby is

a dynamic, reflective, object-oriented, general-purpose programming language. Everything is

an expression (even statements) and everything is executed imperatively (even declarations) in

ruby. It has an elegant syntax that is natural to read and easy to write.

Ruby 2.3.1 has been used in ruby on rails web framework to complete this work. Ruby on Rails,

or simply Rails, is a server-side web application framework written in Ruby. Rails is a model–

view–controller (MVC) framework, providing default structures for a database, a web service,

and web pages. It encourages and facilitates the use of web standards such as

HTML, CSS and JavaScript for display and user interfacing.

https://en.wikipedia.org/wiki/Dynamic_programming_language
https://en.wikipedia.org/wiki/Reflection_(computer_science)
https://en.wikipedia.org/wiki/Object-oriented_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Expression_(programming)
https://en.wikipedia.org/wiki/Statement_(programming)
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Declaration_(computer_science)
https://en.wikipedia.org/wiki/Web_application_framework
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Web_page
https://en.wikipedia.org/wiki/Web_standards
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/JavaScript

21

MySQL

MySQL is an open-source relational database management system (RDBMS).

Its name is a

combination of "My", the name of co-founder Michael Widenius' daughter, and "SQL", the

abbreviation for Structured Query Language. MySQL is also used in many high-profile, large-

scale websites, including Google. MySQL is written in C and C++.

CSS

Cascading Style Sheets (CSS) is a style sheet language used for describing the presentation

semantics (the look and formatting) of a document written in a markup language. It’s most

common application is to style web pages written in HTML and XHTML. CSS is designed

primarily to enable the separation of document content (written in HTML or a similar markup

language) from document presentation, including elements such as the layout, colors, and fonts.

This separation can improve content accessibility, provide more flexibility and control in the

specification of presentation characteristics, enable multiple pages to share formatting, and

reduce complexity and repetition in the structural content. It can also be used to allow the web

page to display differently depending on the screen size or device on which it is being viewed.

HTML

HTML, which stands for Hypertext Markup Language, is the predominant markup language for

web pages. HTML uses markup tags to describe web pages. HTML is written in the form of

HTML elements consisting of tags, enclosed in angle brackets (like <html>), within the web

page content. HTML tags normally come in pairs like <h1> and </h1>. The first tag in a pair is

the start tag, the second tag is the end tag (they are also called opening tags and closing tags).

The purpose of a web browser is to read HTML documents and compose them into visual web

pages. The browser does not display the HTML tags, but uses the tags to interpret the content of

the page. HTML elements form the building blocks of all websites. HTML allows images and

objects to be embedded and can be used to create interactive forms. It provides a means to create

structured documents by denoting structural semantics for text such as headings, paragraphs,

lists, links, quotes and other items. It can embed scripts in languages such as JavaScript which

affect the behavior or HTML markup.

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Michael_Widenius
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Structured_Query_Language
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B

22

4.2 DATA SOURCE MODULE

SOURCES = {

 "The Himalayan Times" => "http://www.thehimalayantimes.com",

 "Republica" => "http://www.myrepublica.com",

 "The Kathmandu Post" => "http://kathmandupost.ekantipur.com",

 "Nepal News" => "http://www.nepalnews.com",

 "The Rising Nepal" => "http://therisingnepal.org.np/",

 "Online Khabar" => "http://english.onlinekhabar.com/",

 "NP News Portal" => "http://www.npnewsportal.com/",

 "Nepali Headlines" => "http://nepaliheadlines.com/"

 }

SOURCES.each do |name, link|

 puts "Creating news source: #{name}"

 NewsSource.create(name: name, link: link)

end

4.3 News Extraction Module

require 'open-uri'

namespace :crawler do

 desc 'Gets news URLS'

 task run: :environment do

 NewsSource.all.each do |source|

 doc = Nokogiri::HTML(open(source.link))

 links = doc.css('a').select { |l| l.content.length > 20 }

 puts "News Source: #{source.name}"

 puts "Total Headings: #{links.count}"

 links.each do |link|

23

 href = link.attributes['href'].value rescue next

 permalink = href =~ URI::regexp ? href : source.link + href

 source.news.find_or_create_by(title: link.content, link: permalink)

 end

 end

 end

 desc "Updates lemma"

 task lemmatize: :environment do

 News.all.each do |news|

 news.lemma = news.lemmatize

 news.save

 end

 end

 desc "Save generated tokens based on News items"

 task tokenize: :environment do

 Token.generate

 end

end

4.4 DOCUMENT PREPROCESSING MODULE

class Token < ActiveRecord::Base

 belongs_to :news_source

 belongs_to :news

 def self.generate

 News.all.each do |news|

24

 news.lemma.each do |lema|

 token = Token.find_by(word: lema.downcase, news_source: news.news_source, news:

news)

 if token

 token.increment!(:frequency)

 else

 Token.create(word: lema.downcase, news_source: news.news_source, frequency: 1, news:

news)

 end

 end

 end

 end

 def self.distinct

 @@distinct ||= Token.pluck(:word).uniq

 end

 def tf_idf

 tf*idf

 end

end

class News < ActiveRecord::Base

 serialize :lemma, Array

STOP_WORDS = [

"a","about","above","after","again","against","all","am","an","and""any","are","arn't","as","at","

be","because","been","before","being","below","between","both","but","by","can","can't","cann

ot","could","couldn't","did","didn't","do","does","doesn't","doing","don't","down","during","eac

h","few","for","from","further","had","hadn't","has","hasn't","have","haven't","having","he","he'

d","he'll","he's","her","here","here's","hers","herself","him","himself","his","how","how's","i","i'

25

d","i'll","i'm","i've","if","in","into","is","isn't","it","it's","its","itself","let's","me","more","most","

mustn't","my","myself","no","nor","not","of","off","on","once","only","or","other","ought","our

","ours","ourselves","out","over","own","same","shan't","she","she'd","she'll","she's","uld","shou

ldn't","so","some","such","than","that","that's","the","their","theirs","them","themselves","then",

"there","there's","these","they","they'd","they'll","they're","they've","this","those","through","to",

"too","under","until","up","very","was","wasn't","we","we'd","we'll","we're","we've","were","we

ren't","what","what's","when","when's","where","where's","which","while","who","who's","who

m","why","why's","with","won't","would","wouldn't","you","you'd","you'll","you're","you've","

your","yours","yourself","yourselves"]

 belongs_to :news_source

 belongs_to :cluster

 has_many :tokens

 def self.lemmatizer

 @@lemmatizer ||= Lemmatizer.new

 end

 def tokenize

 title.gsub(/[^\w\s]/, '').to_s.split(" ")

 end

 def without_stop_words

 tokenize - News::STOP_WORDS

 end

 def stem

 without_stop_words.map(&:stem)

 end

 def lemmatize

 stem.map {|s| News.lemmatizer.lemma(s) }

 end

amespace :token do

 namespace :tf do

 desc "Calculates TF"

 task calculate: :environment do

26

 Token.all.each do |token|

 news_count = token.news_source.news.count

 token.tf = token.frequency.to_f / news_count.to_f

 token.save

 end

 end

 end

 namespace :idf do

 desc "Calculates IDF"

 task calculate: :environment do

 Token.all.each do |token|

 news_count = News.count

 global_token_frequency = Token.where(word: token.word).map(&:frequency).sum

 token.idf = Math.log10(news_count/global_token_frequency)

 token.save

 end

 end

 end

end

4.5 CLUSTERING MODULE

def vector

 news_tokens = tokens.select {|t| t.news_source_id == news_source_id &&

lemma.map(&:downcase).include?(t.word) }

 Token.distinct.map do |t|

 token = news_tokens.select{ |l| l.word == t }.first

 token ? token.tf_idf : 0.0

 end

 end

27

 def similarity(news1)

 vector_1 = self.vector

 vector_2 = news1.vector

 product = vector_1.zip(vector_2).map {|p| p.map(&:to_f).inject(:*)}.compact.sum

 length_1 = Math.sqrt(vector_1.map{|i| i ** 2}.sum)

 length_2 = Math.sqrt(vector_2.map{|i| i ** 2}.sum)

 sim = product.to_f/(length_1*length_2).to_f

 sim.nan? ? 0.0 : sim

 end

end

namespace :clusterify do

 desc "Clusterify"

 task run: :environment do

 # Random centers

 k = ENV['K'] || 12

 k = k.to_i

 i = ENV['I'] || 7

 i = i.to_i

 Cluster.delete_all

 News.update_all(cluster_id: nil)

 puts "Creating initial centers"

 initial_centers = News.all.sample(k).to_a

 k.times do |i|

 initial_center = initial_centers[i]

 cluster = Cluster.create(name: "Cluster_#{i+1}")

 initial_center.cluster = cluster

 initial_center.save

 end

 puts "Clustering items to the initial centers"

 clusters = Cluster.all.to_a

 news = News.all.includes(:tokens).to_a

28

 (news - initial_centers).each do |n|

 rank = {}

 initial_centers.each do |initial_center|

 rank[initial_center.cluster_id] = n.similarity(initial_center)

 end

 highest_matching_key = rank.key(rank.values.max)

 unless rank[highest_matching_key].zero?

 n.cluster_id = highest_matching_key

 else

 n.cluster_id = clusters.sample.id

 end

 n.save

 end

 # Calculate new centers

 i.times do |i|

 puts "Start of Iteration #{i}"

 clusters.each do |cluster|

 cluster_news = cluster.news.reload.includes(:tokens)

 cluster_news_count = cluster_news.count

 cluster.mean = cluster_news.map(&:vector).transpose.map(&:sum).collect { |n|

n/cluster_news_count }

 puts "Cluster: #{cluster.name}"

 puts "Sum of mean: #{cluster.mean.sum}"

 end

 news.each do |n|

 rank = {}

 clusters.each do |c|

 rank[c.id] = n.similarity(c)

 end

 highest_matching_key = rank.key(rank.values.max)

 n.cluster_id = highest_matching_key

29

 n.save

 end

 puts "End of Iteration #{i}"

 end

 end

end

4.6 EVALUATION MODULE

namespace :evaluation do

 desc "Calculating"

 task run: :environment do

 threshold = 0.12

 puts "Threshold: #{threshold}"

 Cluster.all.each do |cluster|

 puts "Calculating similarity between news of cluster: #{cluster.name}"

 cluster_news = cluster.news.reload.includes(:tokens)

 cluster_news_count = cluster_news.count

 cluster.mean = cluster_news.map(&:vector).transpose.map(&:sum).collect { |n|

n/cluster_news_count }

 similar_count = 0

 cluster.news.each do |news|

 #puts "News: #{news.title}"

 #puts "Similarity: #{news.similarity(cluster)}"

 similar_count += 1 if news.similarity(cluster) > threshold

 end

 news_count = cluster.news.count

 puts "Total news: #{news_count}"

 puts "Similar news: #{similar_count}"

 precision = similar_count.to_f/news_count.to_f

 recall = similar_count.to_f/(similar_count + 10.0).to_f

 cluster.update(precision: precision, recall: recall)

30

 end

 end

end

class Cluster < ActiveRecord::Base

 attr_accessor :mean

 has_many :news

 def agg_mean

 total_news = news.reload.includes(:tokens)

 total_news_count = total_news.count

 total_news.map(&:vector).transpose.map(&:sum).collect { |n| n/total_news_count }

 end

 def f_measure

 (2*recall.to_f*precision.to_f)/(precision.to_f + recall.to_f)

 end

 alias_method :vector, :mean

end

31

CHAPTER 5

DATA COLLECTION AND ANALYSIS

5.1 DATA COLLECTION

In order to complete this work on article mining, data collection is a must. The data is collected

or extracted from the HTML source code of various URL’s related to the online Nepali news

portal. Here, the news items or headlines are considered as the data used and are needed to be

extracted. Besides the news item, other fragments such as general information about the

newspaper, advertisements and links to regular columns like weather, horoscope, etc are not

considered.

The extraction of news item (data) from various newspapers is done by the web crawler. The

crawler is designed using simple strategies that are based on analyzing the HTML code of the

web pages.

5.1.1 Sources

The web consists of a number of websites which provides daily news. These website are called

web newspapers or online news portals. These web newspapers are the source from which the

data (i.e. headings) are extracted for this this work. There are 8 web newspaper websites from

which the data was extracted.

The websites are:

 The Himalayan Times (www.thehimalayantimes.com)

 Republica (www.myrepublica.com)

 The Kathmandu Post (www.ekantipur.com/tkp/)

 Nepal News (http://www.nepalnews.com)

 The Rising Nepal (http://therisingnepal.org.np)

 Online (http://english.onlinekhabar.com)

 NP News Portal (http://www.npnewsportal.com)

 Nepali Headlines (http://nepaliheadlines.com)

http://www.ekantipur.com/tkp/
http://www.npnewsportal.com/

32

The web newspapers may contain topics that are not necessary or are unrelated such as banners,

links, weather, images, etc. These set of components are discarded from being extracted. In this

work, information extraction process has mainly two tasks: (a) crawl the online news portal to

fetch the page of interest and (b) extract the news by parsing the HTML content.

5.1.2 News Data

All the news data are secondary data collected from the eight news portal listed above.

Table 5.2.1 List of Data Sets

S.N Day Source News Total News

1

19 August 2016

Himalayan Times 104

638

Republica 116

The Kathmandu Post 140

Nepal News 159

The Rising Nepal 61

Online Khabar 58

2

20 August 2016

Himalayan Times 103

634

Republica 115

The Kathmandu Post 140

Nepal News 157

The Rising Nepal 62

Online Khabar 57

3

21 August 2016

Himalayan Times 104

639

Republica 112

The Kathmandu Post 139

Nepal News 158

The Rising Nepal 71

Online Khabar 55

4

22 August 2016

Himalayan Times 103

641 Republica 118

33

The Kathmandu Post 136

Nepal News 155

The Rising Nepal 71

Online Khabar 58

5

23 August 2016

Himalayan Times 108

803

Republica 115

The Kathmandu Post 140

Nepal News 162

The Rising Nepal 62

Online Khabar 58

NP News Portal 98

Nepali Headlines 60

6

25 August 2016

Himalayan Times 103

798

Republica 116

The Kathmandu Post 141

Nepal News 154

The Rising Nepal 69

Online Khabar 58

NP News Portal 97

Nepali Headlines 60

7

26 August 2016

Himalayan Times 104

791

Republica 119

The Kathmandu Post 140

Nepal News 158

The Rising Nepal 62

Online Khabar 48

NP News Portal 100

Nepali Headlines 60

34

Figure5.2.1.1 Screenshoot of Sample News headings extracted from respective portal

35

 Figure 5.2.1.2 Screenshoot of Sample terms of news before preprocessing

Figure 5.2.1.3 Screenshoot of Sample terms of news after preprocessing

36

5.2 EXPERIMENTAL RESULT

5.2.1 Experimental Setup

The aim is to experimentally verify the efficiency of proposed system of news clustering and to

analyze the relationship of K with number of data.

The experiments were performed with Intel (R) Core (TM) i5 – M430 CPU @ 2.27 GHz 2.27

GHz of 4 GB RAM in 64-bit Windows 7 Operating System.

Clustering was conducted with Iteration I=12 and variations of K from 5 to 15, and with K=12,

variations of I from 5 to 15 using the above datasets listed in Table 5.2.1. The efficiency was

measured in terms of precision, recall and F-measure and running time.

5.2.2 Sample Output

Here are some snapshot of output of clustering testing at dated 26
th

 August 2016 with K=12 and

I=12.

Figure 5.2.2.1 Screenshot of Output of total News of each portal.

37

Figure 5.2.2.2 Screenshot of Output News before clustering

Figure 5.2.2.3 Screenshot of Output News after Clustering

38

Figure 5.2.2.4 Screenshot of Output of Evaluation Metrics of clusters

5.2.3 Evaluation Metrics

Following metrics were used for the analysis of the news clustering:

For cluster i and class j:

Precision(i,j) :

 and Recall(i,j) :

Where, is the number of members of class i in cluster j, is the numbers of members of

cluster j, and is the number of members of class i.

The F measure of cluster j and class i is then given by

F(i,j) :
 () ()

 () ()

The sample results of the experiment (Day19 August 2016 with 638 News headings, Day 26

August 2016 with 791 News headings) have been shown as follows:

39

Table 5.2.3.1 Evaluation Table for I=12, Table 5.2.3.2 Evaluation Table for K=12,

 and Variations of K and Variations of I

 Figure 5.2.3.1 Graph of Evaluation Metrics with variations of K (19 august 2016)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 6 7 8 9 10 11 12 13 14 15

R
e

su
lt

s
in

 P
e

rc
e

n
ta

ge

K

Precision

Recall

Fmeasure

K Precision Recall Fmeasure

5 0.2962 0.7698 0.4278

6 0.5255 0.8250 0.6420

7 0.5577 0.8085 0.6601

8 0.6091 0.8005 0.6918

9 0.6466 0.7874 0.7101

10 0.6615 0.7756 0.7140

11 0.6840 0.7747 0.7265

12 0.7402 0.7710 0.7553

13 0.7158 0.7851 0.7489

14 0.6905 0.7891 0.7365

15 0.6514 0.7929 0.7152

I Precision Recall Fmeasure

5 0.70031 0.7543 0.7263

6 0.7160 0.7459 0.7306

7 0.7101 0.7609 0.7347

8 0.7256 0.7508 0.7380

9 0.7378 0.7541 0.7458

10 0.7475 0.7617 0.7545

11 0.7470 0.7627 0.7548

12 0.7498 0.7589 0.7543

40

 Figure 5.2.3.2 Graph of Evaluation Metrics with variations of I (19 august 2016)

Table 5.2.3.3 Evaluation Table for I=12, Table 5.2.3.4 Evaluation Table for K=12,

 and Variations of K and Variations of I

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

5 6 7 8 9 10 11 12

R
e

su
lt

s
in

 P
e

rc
e

n
ta

ge

I

Precision

Recall

Fmeasure

K Precision Recall Fmeasure

5 0.4392 0.8563 0.5794

6 0.4730 0.8473 0.6069

7 0.5705 0.8415 0.6787

8 0.5632 0.8221 0.6677

9 0.6098 0.8212 0.6984

10 0.6212 0.8023 0.6980

11 0.6417 0.7941 0.7085

12 0.6847 0.7879 0.7299

13 0.6780 0.7812 0.7251

14 0.6670 0.7728 0.7160

15 0.6069 0.7490 0.6705

I Precision Recall Fmeasure

5 0.6782 0.7914 0.7298

6 0.6742 0.7812 0.7225

7 0.6984 0.7937 0.7420

8 0.6557 0.7870 0.7135

9 0.6853 0.7959 0.7348

10 0.6463 0.7789 0.7044

11 0.6481 0.7804 0.7071

12 0.6508 0.7821 0.7073

41

 Figure. 5.2.3.3 Graph of Evaluation Metrics with variations of K (August 26, 2016)

 Figure. 5.2.3.4 Graph of Evaluation Metrics with variations of I (August 26, 2016)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 6 7 8 9 10 11 12

R
e

su
lt

s
in

 P
e

rc
e

n
ta

ge

I

Precision

Recall

Fmeasure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 6 7 8 9 10 11 12 13 14 15

R
e

su
lt

s
 in

 P
e

rc
e

n
ta

ge

K

Precision

Recall

Fmeasure

42

Time to complete the clustering process is tabulated as follows:

Table 5.2.3.5. Completion Time of Clustering Table 5.2.3.6. Completion Time of Clustering

 Process with different values of I (K=12) Process with different values of K (I=6)

Figure 5.2.3.5 Graph of Completion Time of Clustering Process with different values of I

0

500

1000

1500

2000

2500

5 6 7 8 9 10 11 12

Ti
m

e
 (

M
ili

se
co

n
d

)

I

Time (Milliseconds)

I Time (Milliseconds)

5 1153.997447357

6 1248.188404786

7 1315.59471999

8 1438.740552225

9 1495.91359973

10 1812.084138415

11 2047.042212379

12 2100.17744123

K Time (Milliseconds)

5 566.571551612

6 687.226066205

7 749.015990558

8 754.71924938

9 953.17702253

10 997.230870193

11 1035.973754392

12 1173.250517585

43

Figure 5.2.3.6 Graph of Completion Time of Clustering Process with different values of K

5.2.4 Result

From the experimental results, the result is efficient with the initial clusters seed 12 (K=12) and

the iterations of no change in clusters centers depend upon the numbers of data sets. With the

value of K=12; when the less number is data (638 News headings of 19 August, 2016), the value

of f-measure is higher (75.53) and the F-measure is comparatively lower (72.99) when the

number of data increased (791 News headings of 26 August, 2016).

When the less number of data (638 News headings of 19 August, 2016) then the less number of

iterations (I=10) required and when the number of data increased (791 News headings of 26

August, 2016) then the less number of iterations (I=12) required to maintain the constant cluster

canters in K-means clustering. As well as when the less number of data, the value of f-measure is

higher (0.7545) and lower the f-measure (0.7277) when number of data increased.

While increasing the iteration (I), the completion time also increased. If initial cluster seed

increased, completion time also increased. The time complexity of this work is the complexity of

K-means clustering algorithm i.e. O(K), where K is the initial clusters seed.

0

200

400

600

800

1000

1200

1400

5 6 7 8 9 10 11 12

Ti
m

e
(M

ili
se

co
n

e
)

K

Time (Milliseconds)

44

Therefore we can conclude that the number of iterations of changing the clusters mean of K-

means clustering algorithm directly proportional to the number of data sets. The F-measure result

is efficient with the value K=12. Running time is also directly proportional to the number of

iterations and number of initial clusters seeds.

45

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

Only news headlines from the websites homepage are published. The headlines from other pages

are not considered. Also, categorization of the news has not been done for the similar news

found, i.e. the news headlines are not categorized into categories like national, business, etc. This

work considers only those websites which are in English language. The online news portals

which are designed in Nepali language are not considered. These portals may consist of similar

news which is relevant with the news in the English publications. To include this part or feature,

machine translation is required.

This work entitled “News Clustering System based on Text Mining” was developed for

discovering or finding the similarities between the news articles extracted from different sources.

Firstly, crawling and parsing methods for document retrieval from the web was applied. Then,

the corpus of pre-processed document is prepared using various document pre-processing

techniques. In the end, K-means clustering algorithm was implemented to discover the clusters

of news items or articles and the efficiency of K-means algorithm was analyzed by Precision,

Recall and F-measure evaluation metrics and finally the impact of initial value of K and

iterations (I) and number of news (N) to discover the clusters were analyzed.

The similar news was grouped into a single cluster and presented in such a way that the news

within the clusters was similar with each other. The real world application of this study is that it

would help people to find detailed and more similar information about a particular news item in

which the user is interested. This would not have been possible without the use of text mining

techniques. In general, it is not feasible to manually look for similar news in each of the online

news portals and then compare each of them to find similarities between them.

In the context of Nepal, not all online web newspapers are up-to-date. Hence, sometimes the

clustering process might not be as accurate as expected.

46

6.2 FUTURE ENHANCEMENTS

Some of the future enhancements that can be applied or done are as follows:

 Clustering of Nepali and English language can be done by using machine learning

process (machine translation process).

 Categorization methods can be added to make the results and user interface more

manageable and user friendly.

 Enhancement can be done to cover the news articles over large domains.

 The proposed method can be applied to other web documents such as research papers,

digital libraries, etc.

47

References

[1] Azzopardi Joel,Staff Christopher, Faculty of ICT, University of Malta, Msida, Incremental

Clustering of News Reports, An Article, ISSN 1999-4893, 24 August, 2012

[2] Borglund Jon, Department of Information Technology, UPPSALA UNIVERSITET, Event-

Centric Clustering of News Articles, A Thesis, October 2013.

[3] Bun Khyou Khoo, Ishizuka Mitsuru, Department of Information and Communication

Engineering, University of Tokyo,Topic Extraction from News Archive Using TF-PDF

Algorithm.

[4] Deshpande Rugved, Vaze Ketan, Rathod Suratsingh, Jarhad Tushar, Comparative Study of

Document Similarity Algorithms for Sentiment Analysis, P.E.S Modern College of

Engineering, Shivajinagar, Pune, India, September-October 2014.

[5] Gomma H. Wael, Fahmy A. Aly, A Survay of Text Similarity Approaches, Cairo

University, Cairo, Egypt, International Journal of Computer Applications (0975 – 8887)

Volume 68– No.13, April 2013.

[6] Hausler Christian, Method for Determining the Similarity of Documents, University of

Applied Sciences and Arts, Northwestern Switzerland, 2012/13.

[7] Huang Anna, Similarity Measures for Text Document Clustering, Department of Computer

Science, The University of Waikato, New Zealand, April 2008.

[8] Huang Zhen, Cardenas F. Alfonso, Computer Science Department,University of California,

Los Angeles, Extracting Hot Events from News Feeds, Visualization and Insights,

[9] Izzat Alsmadi, Zakaria Issa Saleh,IT faculty Yarmouk University Irbid, Jordan, Documents

Similarities Algorithms for Research Papers Authenticity. ICCIT 2012.

[10] K. Kalaivendhan, P. Sumathi, Department of CSE, Tiruchengode, Namakkal, TamilNadu,

An Efficient Clustering Method To Find Similarity Between The Documents, March 2014.

48

[11] Khaled M.Hammouda. Web Document Clustering Using Phrase-based Document

Similarity, 2002.

[12] Lama Prabin, CLUSTERING SYSTEM BASED ON TEXT MINING USING THE K-MEANS

ALGORITHM, TURKU UNIVERSITY OF APPLIED SCIENCES, 2013

[13] Norvag Kjetil, Oyri Randi, News Item Extraction for Text Mining in Web Newspapers,

Department of Computer and Information Science, Norwegian University of Science and

Technology

[14] Olowookere A. Toluwase(Department of Computer Science, University of Port Harcourt,

Nigeria), Fasiku I. Ayodeji(Department of Computer Engineering, Ekiti State University,

Nigeria), Emeto C. Ifeanyi(Department of Computer Science, University of Port Harcourt,

Nigeria), UPH Digital Library Miner: A Topic Modelling-based Software Application for

Mining Document Collections of a Digital Library, December 2015.

[15] P. Nithya, R. Umamaheswari, Dr. N. Shanthi, A Data Mining Objective Function with

Feature Selection Algorithm using Document Clustering, Gnanamani College of

Technology, Namakkal, Tamilnadu, India, April 2015

[16] Steinbach Michael, Karypis George, Kumar Vipin, A Comparision of Document Clustering

Techniques, Department of Computer Science and Engineering, University of Minnesota.

[17] Tung Thanh Khuat, Hung Duc Nguyen, Hanh Thi My Le, A Comparision of Algorithms

used to measure the similarity between two documents, IJARCET, April 2015

[18] TOMALA Karel, PLUCAR Jan, RAPANT Lukas, The Data Extraction Using Distributed

Crawler Inside the Multi-Agent System, Technical University of Ostrava, Volume:11,

December 2013.

[19] Wael A. Gomma, Aly A. Fahmy, A survey of Text Similarity Approaches, Computer

Science Department Faculty of Computers and Information, Cairo University Cairo, Egypt,

April 2013.

49

[20] Zaho Ying, Karypis, Department of Computer Science, University of Minnesota,

Minneapolis, Comparison of Agglomerative and Partitional Document Clustering

Algorithms, 2008.

Bibliography

 http://en.wikipedia.org/wiki/Web_crawler

 http://www.google.com/search?q=web+crawler+architecture&hl=en&prmd=imvns&tbm=isc

h&tbo=u&source=univ&sa=X&ei=n028T8CHNobSrQfk7IHcDQ&sqi=2&ved=0CGAQsAQ

&biw=1366&bih=667

 Ricardo Baeza-Yates,Berthier Ribeiro-Neto:Morden Information Retrieval

 http://tfidf.com/

 http://www.celi.it/english/sophia.htm?referrer=google

 http://user.phil-fak.uni-duesseldorf.de/~rumpf/SS2003/Informationsextraktion/Pub/Eik99.pdf

 http://www.capital.health.vic.gov.au/capdev/PlanningEvaluation/FeasibilityStudy/Feasibility

StudyProcess/

http://en.wikipedia.org/wiki/Web_crawler
http://www.google.com/search?q=web+crawler+architecture&hl=en&prmd=imvns&tbm=isch&tbo=u&source=univ&sa=X&ei=n028T8CHNobSrQfk7IHcDQ&sqi=2&ved=0CGAQsAQ&biw=1366&bih=667
http://www.google.com/search?q=web+crawler+architecture&hl=en&prmd=imvns&tbm=isch&tbo=u&source=univ&sa=X&ei=n028T8CHNobSrQfk7IHcDQ&sqi=2&ved=0CGAQsAQ&biw=1366&bih=667
http://www.google.com/search?q=web+crawler+architecture&hl=en&prmd=imvns&tbm=isch&tbo=u&source=univ&sa=X&ei=n028T8CHNobSrQfk7IHcDQ&sqi=2&ved=0CGAQsAQ&biw=1366&bih=667
http://tfidf.com/
http://www.celi.it/english/sophia.htm?referrer=google
http://user.phil-fak.uni-duesseldorf.de/~rumpf/SS2003/Informationsextraktion/Pub/Eik99.pdf

50

APPENDIX

Implementation Code

SOURCES = {

 "The Himalayan Times" => "http://www.thehimalayantimes.com",

 "Republica" => "http://www.myrepublica.com",

 "The Kathmandu Post" => "http://kathmandupost.ekantipur.com",

 "Nepal News" => "http://www.nepalnews.com",

 "The Rising Nepal" => "http://therisingnepal.org.np/",

 "Online Khabar" => "http://english.onlinekhabar.com/",

 "NP News Portal" => "http://www.npnewsportal.com/",

 "Nepali Headlines" => "http://nepaliheadlines.com/"

 }

SOURCES.each do |name, link|

 puts "Creating news source: #{name}"

 NewsSource.create(name: name, link: link)

end

require 'open-uri'

namespace :crawler do

 desc 'Gets news URLS'

 task run: :environment do

 NewsSource.all.each do |source|

 doc = Nokogiri::HTML(open(source.link))

 links = doc.css('a').select { |l| l.content.length > 20 }

 puts "News Source: #{source.name}"

 puts "Total Headings: #{links.count}"

51

 links.each do |link|

 href = link.attributes['href'].value rescue next

 permalink = href =~ URI::regexp ? href : source.link + href

 source.news.find_or_create_by(title: link.content, link: permalink)

 end

 end

 end

 desc "Updates lemma"

 task lemmatize: :environment do

 News.all.each do |news|

 news.lemma = news.lemmatize

 news.save

 end

 end

 desc "Save generated tokens based on News items"

 task tokenize: :environment do

 Token.generate

 end

end

namespace :token do

 namespace :tf do

 desc "Calculates TF"

 task calculate: :environment do

52

 Token.all.each do |token|

 news_count = token.news_source.news.count

 token.tf = token.frequency.to_f / news_count.to_f

 token.save

 end

 end

 end

 namespace :idf do

 desc "Calculates IDF"

 task calculate: :environment do

 Token.all.each do |token|

 news_count = News.count

 global_token_frequency = Token.where(word: token.word).map(&:frequency).sum

 token.idf = Math.log10(news_count/global_token_frequency)

 token.save

 end

 end

 end

end

class News < ActiveRecord::Base

 serialize :lemma, Array

STOP_WORDS = [

"a","about","above","after","again","against","all","am","an","and""any","are","arn't","as","at","

be","because","been","before","being","below","between","both","but","by","can","can't","cann

ot","could","couldn't","did","didn't","do","does","doesn't","doing","don't","down","during","eac

h","few","for","from","further","had","hadn't","has","hasn't","have","haven't","having","he","he'

d","he'll","he's","her","here","here's","hers","herself","him","himself","his","how","how's","i","i'

53

d","i'll","i'm","i've","if","in","into","is","isn't","it","it's","its","itself","let's","me","more","most","

mustn't","my","myself","no","nor","not","of","off","on","once","only","or","other","ought","our

","ours","ourselves","out","over","own","same","shan't","she","she'd","she'll","she's","uld","shou

ldn't","so","some","such","than","that","that's","the","their","theirs","them","themselves","then",

"there","there's","these","they","they'd","they'll","they're","they've","this","those","through","to",

"too","under","until","up","very","was","wasn't","we","we'd","we'll","we're","we've","were","we

ren't","what","what's","when","when's","where","where's","which","while","who","who's","who

m","why","why's","with","won't","would","wouldn't","you","you'd","you'll","you're","you've","

your","yours","yourself","yourselves"]

 belongs_to :news_source

 belongs_to :cluster

 has_many :tokens

 def self.lemmatizer

 @@lemmatizer ||= Lemmatizer.new

 end

 def tokenize

 title.gsub(/[^\w\s]/, '').to_s.split(" ")

 end

 def without_stop_words

 tokenize - News::STOP_WORDS

 end

 def stem

 without_stop_words.map(&:stem)

 end

 def lemmatize

54

 stem.map {|s| News.lemmatizer.lemma(s) }

 end

 def vector

 news_tokens = tokens.select {|t| t.news_source_id == news_source_id &&

lemma.map(&:downcase).include?(t.word) }

 Token.distinct.map do |t|

 token = news_tokens.select{ |l| l.word == t }.first

 token ? token.tf_idf : 0.0

 end

 end

 def similarity(news1)

 vector_1 = self.vector

 vector_2 = news1.vector

 product = vector_1.zip(vector_2).map {|p| p.map(&:to_f).inject(:*)}.compact.sum

 length_1 = Math.sqrt(vector_1.map{|i| i ** 2}.sum)

 length_2 = Math.sqrt(vector_2.map{|i| i ** 2}.sum)

 sim = product.to_f/(length_1*length_2).to_f

 sim.nan? ? 0.0 : sim

 end

end

class Token < ActiveRecord::Base

 belongs_to :news_source

 belongs_to :news

 def self.generate

 News.all.each do |news|

 news.lemma.each do |lema|

55

 token = Token.find_by(word: lema.downcase, news_source: news.news_source, news:

news)

 if token

 token.increment!(:frequency)

 else

 Token.create(word: lema.downcase, news_source: news.news_source, frequency: 1, news:

news)

 end

 end

 end

 end

 def self.distinct

 @@distinct ||= Token.pluck(:word).uniq

 end

 def tf_idf

 tf*idf

 end

end

namespace :clusterify do

 desc "Clusterify"

 task run: :environment do

 # Random centers

 k = ENV['K'] || 12

 k = k.to_i

 i = ENV['I'] || 7

 i = i.to_i

 Cluster.delete_all

56

 News.update_all(cluster_id: nil)

 puts "Creating initial centers"

 initial_centers = News.all.sample(k).to_a

 k.times do |i|

 initial_center = initial_centers[i]

 cluster = Cluster.create(name: "Cluster_#{i+1}")

 initial_center.cluster = cluster

 initial_center.save

 end

 puts "Clustering items to the initial centers"

 clusters = Cluster.all.to_a

 news = News.all.includes(:tokens).to_a

 (news - initial_centers).each do |n|

 rank = {}

 initial_centers.each do |initial_center|

 rank[initial_center.cluster_id] = n.similarity(initial_center)

 end

 highest_matching_key = rank.key(rank.values.max)

 unless rank[highest_matching_key].zero?

 n.cluster_id = highest_matching_key

 else

 n.cluster_id = clusters.sample.id

 end

 n.save

 end

 # Calculate new centers

 i.times do |i|

 puts "Start of Iteration #{i}"

57

 clusters.each do |cluster|

 cluster_news = cluster.news.reload.includes(:tokens)

 cluster_news_count = cluster_news.count

 cluster.mean = cluster_news.map(&:vector).transpose.map(&:sum).collect { |n|

n/cluster_news_count }

 puts "Cluster: #{cluster.name}"

 puts "Sum of mean: #{cluster.mean.sum}"

 end

 news.each do |n|

 rank = {}

 clusters.each do |c|

 rank[c.id] = n.similarity(c)

 end

 highest_matching_key = rank.key(rank.values.max)

 n.cluster_id = highest_matching_key

 n.save

 end

 puts "End of Iteration #{i}"

 end

 end

end

namespace :evaluation do

 desc "Calculating"

 task run: :environment do

 threshold = 0.12

 puts "Threshold: #{threshold}"

 Cluster.all.each do |cluster|

 puts "Calculating similarity between news of cluster: #{cluster.name}"

58

 cluster_news = cluster.news.reload.includes(:tokens)

 cluster_news_count = cluster_news.count

 cluster.mean = cluster_news.map(&:vector).transpose.map(&:sum).collect { |n|

n/cluster_news_count }

 similar_count = 0

 cluster.news.each do |news|

 #puts "News: #{news.title}"

 #puts "Similarity: #{news.similarity(cluster)}"

 similar_count += 1 if news.similarity(cluster) > threshold

 end

 news_count = cluster.news.count

 puts "Total news: #{news_count}"

 puts "Similar news: #{similar_count}"

 precision = similar_count.to_f/news_count.to_f

 recall = similar_count.to_f/(similar_count + 10.0).to_f

 cluster.update(precision: precision, recall: recall)

 end

 end

end

class Cluster < ActiveRecord::Base

 attr_accessor :mean

 has_many :news

 def agg_mean

 total_news = news.reload.includes(:tokens)

 total_news_count = total_news.count

 total_news.map(&:vector).transpose.map(&:sum).collect { |n| n/total_news_count }

59

 end

 def f_measure

 (2*recall.to_f*precision.to_f)/(precision.to_f + recall.to_f)

 end

 alias_method :vector, :mean

end

60

Evaluation Table

20 August, 2016

21 August, 2016

K Precision Recall F-measure

5 0.4659 0.8268 0.5952

6 0.5436 0.8206 0.6539

7 0.5539 0.8001 0.6547

8 0.6041 0.7981 0.6877

9 0.6502 0.7880 0.7125

10 0.6637 0.7757 0.7153

11 0.7128 0.7199 0.7163

12 0.7359 0.7539 0.7448

13 0.7270 0.7540 0.7402

14 0.7122 0.7329 0.7224

I Precision Recall F-measure

5 0.7316 0.7641 0.7475

6 0.7394 0.7602 0.7497

7 0.7347 0.7619 0.7480

8 0.7504 0.7653 0.7578

9 0.7498 0.7671 0.7584

10 0.7544 0.7598 0.7571

11 0.7501 0.7567 0.7533

12 0.7506 0.7603 0.7554

K Precision Recall F-measure

5 0.4791 0.8351 0.6089

6 0.5088 0.8192 0.6277

7 0.5496 0.8115 0.6554

8 0.6075 0.8001 0.6906

9 0.6044 0.8105 0.6924

10 0.6750 0.7875 0.7269

11 0.7000 0.7645 0.7309

12 0.7530 0.7639 0.7583

13 0.7544 0.7494 0.7518

14 0.7401 0.7414 0.7407

15 0.7200 0.7415 0.7306

I Precision Recall F-measure

5 0.7047 0.7549 0.7289

6 0.7271 0.7640 0.7451

7 0.7524 0.7520 0.7522

8 0.7542 0.7576 0.7559

9 0.7592 0.7540 0.7566

10 0.7583 0.7634 0.7608

11 0.7585 0.7633 0.7608

61

22 August, 2016

K Precision Recall F-measure

5 0.4588 0.8353 0.5923

6 0.4889 0.8144 0.6110

7 0.5411 0.8074 0.6480

8 0.5790 0.7939 0.6696

9 0.6312 0.7867 0.7004

10 0.6557 0.7764 0.7110

11 0.6748 0.7707 0.7196

12 0.7310 0.7593 0.7449

13 0.7468 0.7161 0.7311

14 0.7311 0.6854 0.7075

23 August, 2016

25 August, 2016

I Precision Recall F-measure

5 0.7142 0.7644 0.7385

6 0.7223 0.7721 0.7464

7 0.6409 0.7510 0.6916

8 0.7289 0.7651 0.7465

9 0.7491 0.7649 0.7570

10 0.7525 0.7573 0.7548

11 0.7395 0.7692 0.7541

12 0.7394 0.7697 0.7543

13 0.7457 0.7645 0.7550

I Precision Recall F-measure

5 0.6393 0.7821 0.7036

6 0.6911 0.7918 0.7380

7 0.6865 0.7277 0.7065

8 0.6806 0.7953 0.7335

9 0.6533 0.7793 0.7108

10 0.6562 0.7821 0.7137

11 0.6598 0.7784 0.7142

12 0.6660 0.7878 0.7218

13 0.6650 0.7850 0.7200

14 0.6693 0.79 0.7246

K Precision Recall Fmeasure

5 0.4025 0.8483 0.5460

6 0.4633 0.8402 0.5973

7 0.5409 0.8371 0.6572

8 0.5342 0.8181 0.6464

9 0.5677 0.8075 0.6667

10 0.5992 0.7997 0.6851

11 0.6352 0.7923 0.7051

12 0.6660 0.7882 0.7220

13 0.6774 0.7709 0.7211

I Precision Recall Fmeasure

5 0.6836 0.7969 0.7359

6 0.6622 0.7855 0.7185

7 0.6901 0.7936 0.7382

8 0.6540 0.7836 0.7130

9 0.6604 0.7848 0.7172

10 0.6807 0.7926 0.7324

11 0.6889 0.7828 0.7329

12 0.6916 0.7858 0.7357

K Precision Recall Fmeasure

5 0.4411 0.8583 0.5805

6 0.4815 0.8486 0.6137

7 0.5016 0.8288 0.6222

8 0.5515 0.8219 0.6586

9 0.6045 0.8216 0.6933

10 0.6105 0.8038 0.6925

11 0.6432 0.8003 0.7098

12 0.6444 0.78 0.7057

