
 

 

 

 

Tribhuvan University 

Institute of Science and Technology 

 

News Clustering System based on Text Mining 
 

A Dissertation 

Submitted to 

 

Central Department of Computer Science and Information Technology 

Tribhuvan University, Kirtipur, Kathmandu, Nepal 

 

In partial fulfillment of the requirements 

   For the Master’s Degree in Computer Science and Information Technology 

 

Submitted by 

      Deni Shahi 

September, 2016



 

 

 
 

Tribhuvan University 

Institute of Science and Technology 

 

News Clustering System based on Text Mining 
 

A Dissertation 

Submitted to 
 

Central Department of Computer Science and Information Technology 

Tribhuvan University, Kirtipur, Kathmandu, Nepal 

 

In partial fulfillment of the requirements 

   For the Master’s Degree in Computer Science and Information Technology 

 

Supervisor 

Prof. Dr. Shashidhar Ram Joshi 

Co-Supervisor 

Bikash Balami 

 

Submitted by 

      Deni Shahi 

September, 2016 



 

 

 
 

 

Tribhuvan University 

Institute of Science and Technology 

Central Department of Computer Science and Information Technology 

 

 

Student’s Declaration 

 

I hereby declare that I am the only author of this work and that no sources other than the listed 

here have been used in this work. 

 

 

 

……………………………… 

Deni Shahi 

 

Date: 20 September, 2016 

 

 

 

 

 

 

 

 

 



 

 

 
 

 

 

Tribhuvan University 

Institute of Science and Technology 

Central Department of Computer Science and Information Technology 

 

 

Supervisor’s Recommendation 

 

 
I hereby recommend that this dissertation prepared under my supervision by Ms. Deni Shahi 

entitled “News Clustering System based on Text Mining” in partial fulfillment of the 

requirements for the degree of M. Sc. in Computer Science and Information Technology be 

processed for the evaluation. 

 

 

 

…………………………………... 

Prof. Dr. Shashidhar Ram Joshi 

Department of Electronics and Computer Engineering, 

Institute of Engineering, 

Pulchowk, Nepal 

 

Date: 20 September, 2016 

 

 

 



 

 

 

 

Tribhuvan University 

Institute of Science and Technology 

Central Department of Computer Science and Information Technology 

 

LETTER OF APPROVAL 

 
We certify that we have read this dissertation and in our opinion it is satisfactory in the scope and 

quality as a dissertation in the partial fulfillment for the requirements of Masters Degree in 

Computer Science and Information Technology. 

 

Evaluation Committee 

 

 

…………………………………………                     .................................................................... 

       Asst. Prof.  Nawaraj Paudel       Prof. Dr. Shashidhar Ram Joshi 

           Head of Department   Department of Electronics and Computer 

Center Department of Computer Science              Engineering 

       and Information Technology,    Institute of Engineering, 

Tribhuvan University, Kirtipur, Nepal          Pulchowk, Nepal 

 

 

 

……………………………………….   ……………………………………….. 

 

(External Examiner)                                                 (Internal Examiner) 
 

 

Date: 26 October, 2016 



 

 

Acknowledgement 

 

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Dr. Shashidhar 

Ram Joshi. I have been amazingly fortunate to have a supervisor who gave me the freedom to 

explore on my own, and at the same time the guidance to recover when my steps faltered. His 

patience and support helped me overcome many crisis situations and finish this dissertation. 

 

Besides my supervisor, I would like to special thanks to my co-supervisor Mr. Bikash Balami 

who gave me the lots of ideas and support to complete this work.  

 

I would like to thank the research committee for their encouragement, insightful comments, and 

hard questions. I am indebted to all the people who supported and encouraged me involving 

directly or indirectly to complete this work. I am also obliged to Head of Department, Asst. 

Prof. Nawaraj Paudel and all respected teachers and staffs of Central Department of Computer 

Science and Information Technology, Tribhuvan University for their cooperation to bring this 

work in a tangible form. 

 

I am very much thankful to Mr. Ashish Singh Bista for his valuable time and effort to complete 

this work. 

 

Last but not the least, I would like to thank my family for their love and supporting me 

spiritually throughout my life. 

  



i 

 

Abstract 

Data mining is the process of analyzing data from different perspectives and summarizing it into 

useful information. This dissertation entitled ―News Clustering System based on Text Mining” 

is one of the implementation of Data Mining in which the similar type articles of different 

Newspapers are grouped together which is in English language.  

 

In this work, documents from different newspapers’ sites are retrieved i.e. Information 

Extraction (IE) using crawler then document preprocessing is applied. Parser parses the data into 

article heading and corresponding links, then the headings are split into individual terms and a 

list of distinct terms are maintained. Then the porter steaming algorithm is applied over the 

distinct terms collection. Steaming minimizes the vocabulary size (i.e. no. of terms will be 

minimized). TF-IDF of individual heading is calculated. This process represents individual 

content and heading in to n-dimensional vector space (n is the number of distinct terms in the 

article). Finally, K-means algorithm is implemented to group the news. 

The Efficiency of K-means Clustering Algorithm has been analyzed for different values of initial 

number of cluster seeds (K) and different iterations (I). The result analysis is on seven days news 

data. The result obtained by the experiment shows that the result is efficient with the initial 

clusters seed 12 (K=12), Iterations to maintain the constant cluster centers in K-means clustering 

depends upon the number of data sets and running time is also directly proportional to the 

number of iterations and number of initial clusters seeds. 

 

Keywords: Data Mining, Information Extraction, Document Preprocessing, Porter Stemming 

Algorithm, TF-IDF, K-means    Clustering Algorithm 
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CHAPTER 1 

INTRODUCTION 
 

 
Data mining (sometimes called data or knowledge discovery) is the process of analyzing data 

from different perspectives and summarizing it into useful information - information that can be 

used to increase revenue, cuts costs, or both. Data mining software is one of a number of 

analytical tools for analyzing data. It allows users to analyze data from many different 

dimensions or angles, categorize it, and summarize the relationships identified. Technically, data 

mining is the process of finding correlations or patterns among dozens of fields in large 

relational databases [1, 2]. 

 

News Clustering System based on Text Mining is one of the implementation of Data Mining in 

which the similar type articles of different Newspapers are grouped together. The algorithms 

implemented for this work are as follows: 

 News Extraction 

 Document Parsing 

 Document Preprocessing 

 Document Representation 

 Cosine Similarity Algorithm 

 Document Clustering 

The efficiency of K-means clustering algorithm for different values of K (initial number of 

seeds) has been analyzed to group the similar news. The relationship between the size of data (n) 

and the initial number of seeds (K) has been analyzed. 

This this work entitled ―News Clustering System based on Text Mining‖ is based on the 

approach of extracting information from the online news portals, i.e. information extraction (IE) 

and arranging them into clusters based on the similarity of the extracted information, i.e. 

clustering [3, 4]. The IE process and the clustering technique are the main focus points of this 

work. 
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Text mining is an important technique because it enables efficient analysis of existing 

knowledge. As explained by the authors in [5, 6], some of the advantages of implementing text 

mining include:  

 Efficiency in terms of time.  

 Unlocking hidden information and developing new knowledge. 

 Exploring new horizons (research areas). 

 Improved research and evidence base. 

 Improving the research process and quality.  

 

1.1 THESIS ORGANIZATION 

Introduction Part of this dissertation work focuses on the IR and the Data Mining along with the 

main processes of this work. 

The rest of the material in this study is organized into five subsequent chapters. 

Chapter 2 provides the background study required for this work. In this chapter, problem of lack 

of news clustering system is given, problem statement is formulated and main objective is 

mentioned. 

Chapter 3 contains the previous work related to this dissertation in detail under literature review 

and research question is formulated. Proposed framework is described in detail in this chapter. 

Chapter 4 provides the implementation of News Clustering System using Ruby on Rails. 

Chapter 5 includes the collected data of news, and the performance measure of the system with 

different values of initial clusters seeds with table as well as graph.  

At last, the concluding remarks and further enhancements are outlined in chapter 6.   
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CHAPTER 2 

BACKGROUND STUDY AND PROBLEM FORMULATION 

 

2.1. BACKGROUND 

2.1.1. Information Extraction 

Information Extraction has the goal of retrieving and storing structured data from natural 

language texts in order to improve corporate knowledge based (KB) processes. It is the type of 

information retrieval whose main theme is to automatically extract structured information from 

unstructured or semi-structured machine readable documents. IR retrieves relevant documents 

from collections, while IE extracts relevant information from documents [7, 8]. Hence the two 

techniques are complementary, and used in combination they can provide powerful tools for text 

processing. The tasks that IE system can perform are as follows: 

 Term analysis – Identifies the terms in a document (For e.g. scientific research papers). 

 Named-Entity Recognition – Identifies the names in a document (For e.g. names of 

people/organization). 

 Fact Extraction – Identifies and extracts complex facts from documents. 

 

2.1.2 Web Crawler 

 

A Web crawler is a computer program that browses the World Wide Web in a methodical, 

automated manner or in an orderly fashion. Other terms for Web crawlers are ants, automatic 

indexers, bots, Web spiders, Web robots, or—especially in the FOAF community—Web scutters. 

This process is called Web crawling or spidering. Many sites, in particular search engines, use 

spidering as a means of providing up-to-date data. Web crawlers are mainly used to create a copy 

of all the visited pages for later processing by a search engine that will index the downloaded 

pages to provide fast searches. Crawlers can also be used for automating maintenance tasks on a 

Web site, such as checking links or validating HTML code. Also, crawlers can be used to gather 

specific types of information from Web pages, such as harvesting e-mail addresses (usually for 

sending spam). 

http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Internet_bot
http://en.wikipedia.org/wiki/FOAF_(software)
http://en.wikipedia.org/wiki/Web_search_engine
http://en.wikipedia.org/wiki/Index_(search_engine)
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Spamming
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Figure 2.1.2.3 Architecture of Web Crawler [3] 

 

 

Web Crawler Architecture 

 

The basic architecture of a web crawler is shown in the figure 2.1.2.2 given below. The crawler 

consists of several modules namely URL frontier, DNS resolution module, fetch module, parsing 

module, duplicate elimination module, URL filter and document finger print module.  
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Figure 4.1.2.2 Basic Architecture of Web Crawler [3] 

 

Each module has its own specific function or task to carry out, which are as follows: 

 URL Frontier – It contains the URLs yet to be fetched. 

 Fetch Module – It retrieves the web pages at the URL. 

 DNS Resolution Module – It determines the web server from which to fetch the page 

specified by the URL. 

 Parsing Module – Extracts the text and set of links from a fetched web page. 

 Duplicate Elimination Module – It determines whether an extracted link is already in 

the URL frontier. 

 URL Filter – It determines whether the extracted link should be excluded from the URL 

frontier. 

 Document Finger Print Module – It checks whether a web page with the same content 

has been already seen at another URL. 

 

The Crawling Operation 

The basic operations of a crawler are as follows: 

 The crawler begins with one or more URLs that constitute a seed set. 

 It picks a URL from this seed set, and then fetches the web page at that URL. 
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 The extracted text is then fed to a text indexer. 

 The extracted links (URLs) are then added to a URL frontier which at all-time consists of 

URLs whose corresponding pages have yet to be fetched by the crawler. 

 Initially, the URL frontier contains the seed set, as pages are fetched, the corresponding 

URLs are deleted from the URL frontier. 

 

2.1.3 Document Preprocessing 

 

a. Tokenization 

Before any further processing can be done on a document, its text must be segmented into words 

and sentences; such task is known as tokenization. Given a character sequence and a defined 

document unit, tokenization is the task of chopping it up into pieces called tokens. In other 

words, tokenization is the process of breaking up a stream of text into words, phrases, symbols or 

other meaningful elements called tokens [8, 9]. A token is an instance of characters in some 

particular document that are grouped together as a useful semantic unit for processing. Hence, 

these tokens become input for further processing such as parsing, text mining, etc. During this 

phase of document preprocessing, all the remaining text is parsed and lowercased. Also, all the 

punctuations are removed.  

 

For example:  Input : Please, Lend me your ears. 

  Output : |Please| |Lend| |me| |your| |ears| 

In the above example, the sentence ―Please, Lend me your ears.‖ is chopped up into 5 tokens i.e. 

Please, Lend, me, your, ears excluding the punctuation. 

 

A tokenizer depends on simple heuristics such as the follows [10]: 

 All nearby strings of alphabetic characters are part of one token. The same applies for 

numbers. 

 Tokens are separated by whitespace characters, such as a space or line break or by 

punctuation characters. 

 Punctuation and whitespace may or may not be included in the resulting list of tokens. 
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b. Stop Word Removal 

Every now and then, some extremely common words which would appear to be of little value in 

helping select documents matching a user need are excluded from the vocabulary. Such words 

are called stop words. The process of excluding such words from documents is called stop word 

removal. The stop words, i.e. the occurrence of some very frequent words that does not carry 

information are removed since it reduces the quality of data mining.  

 

The common strategy for determining a stop list is to sort the terms by collecting frequency and 

then to take out the most frequent terms and are then discarded during indexing. Using a stop list 

significantly reduces the number of postings that a system has to store. For example: a, am, are, 

and, as, at, be, by, for, from, has, he, in, is, it, its, of, on, that, the, to, was, were, will, with, etc. 

c. Porter Stemming Algorithm 

Stemming is the process of removing suffixes by automatic means is an operation which is 

especially useful in the field of information retrieval. In a typical IR environment, one has a 

collection of documents, each described by the words in the document title and possibly by 

words in the document abstract. Ignoring the issue of precisely where the words originate, we 

can say that a document is represented by a vetor of words, or terms. Terms with a common stem 

will usually have similar meanings, for example: 

        CONNECT 

        CONNECTED 

        CONNECTING 

        CONNECTION 

        CONNECTIONS 

Frequently, the performance of an IR system will be improved if term groups such as this are 

conflated into a single term. This may be done by removal of the various suffixes -ED, -ING, -

ION, IONS to leave the single term CONNECT. In addition, the suffix stripping process will 

reduce the total number of terms in the IR system, and hence reduce the size and complexity of 

the data in the system, which is always advantageous. 
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2.1.4 Clustering 

 

The process of grouping a set of objects into classes, subsets or clusters of similar objects is 

called clustering. A cluster is a collection of data objects that are similar to one another within 

the same cluster and are dissimilar to the objects in other clusters. The idea of clustering is to 

partition a free set of objects into clusters. Among many mechanisms of text mining, clustering is 

one of the most important techniques. There are number of clustering algorithms which are used 

in different areas or fields. If clustering algorithms are to be used, two conditions are necessary; 

(i) an object representation and (ii) a similarity (or distance) measure between objects [8]. 

Clustering algorithm mainly focuses on distance based cluster analysis.  

 

In context to this work, since text and documents are to be clustered i.e. text clustering, texts are 

considered as the objects. The goal of text clustering is to create a group of similar documents or 

document fragments like news items [5].  

 

2.1.4.1 K-Means Clustering 

The K-means clustering algorithm is known to be efficient in clustering large data sets. This 

clustering algorithm was developed by MacQueen , and is one of the simplest and the best 

known unsupervised learning algorithms that solve the well-known clustering problem. The K-

Means algorithm aims to partition a set of objects, based on their attributes/features, 

into K clusters, where K is a predefined or user-defined constant. The main idea is to 

define K centroids, one for each cluster. The centroid of a cluster is formed in such a way that it 

is closely related (in terms of similarity function; similarity can be measured by using different 

methods such as cosine similarity, Euclidean distance, Extended Jaccard) to all objects in that 

cluster. 

Basic K-Means Algorithm 

1. Choose K number of clusters to be determined 

2. Choose K objects randomly as the initial cluster center 

3. Repeat   

http://en.wikipedia.org/wiki/K-means_clustering
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 3.1. Assign each object to their closest cluster centre. 

 3.2. Compute new cluster centres, i.e. Calculate mean points.  

       4. Until  

         4.1. No changes on cluster centers (i.e. Centroids do not change location any more) OR 

         4.2. No object changes its cluster (We may define stopping criteria as well)  

 

Termination Condition 

We can apply one of the following termination conditions. 

 A fixed number of iterations . This condition limits the runtime of the clustering 

algorithm, but in some cases the quality of the clustering will be poor because of an 

insufficient number of iterations. 

 Assignment of documents to clusters does not change between iterations but runtimes 

may be unacceptably long. 

 Centroids do not change between iterations.  

Bad choice of initial seed 

In K-Means algorithm there is unfortunately no guarantee that a global minimum in the objective 

function will be reached, this is a particular problem if a document set contains many outliers , 

documents that are far from any other documents and therefore do not fit well into any cluster. 

Frequently, if an outlier is chosen as an initial seed, then no other vector is assigned to it during 

subsequent iterations. Thus, we end up with a singleton cluster (a cluster with only one 

document). 

Effective heuristics for seed selection include: 

1. Excluding outliers from the seed set. 

2. Trying out multiple starting points. 

2.1.4.1 Cosine Similarity Algorithm 

Cosine similarity is a measure of similarity between two vectors by measuring the cosine of the 

angle between them. The cosine of 0 is 1, and less than 1 for any other angle; the lowest value of 
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the cosine is -1. The cosine of the angle between two vectors thus determines whether two 

vectors are pointing in roughly the same direction. 

In data mining we can use this technique to find the similarity of the documents.  

For example 

d1 = i have to go to school. 

d2 = i have to go to toilet. 

The words of the first sentence are i , have, to, go , school and all the words frequency is 1 

except to the words of the second sentence.  The words of the second sentence are i, have, to, go, 

to, toilet and again all the words frequency is 1 and if we think n-dimensional space the points of 

the words in space is 

 

1   [i , have , to , go,  school , toilet] = [1,1,2,1,1,0] 

2   [i , have , to , go , school , toilet] = [1,1,2,1,0,1] 

 

cos θ = 1*1 + 1*1 + 2*2 + 1*1 + 1*0 + 0*1 / sqrt((1^2 + 1^2 + 2^2 + 1^2 + 1^2 + 0^2 ) + 1^2 + 

1^2 + 2^2 + 1^1 + 0^0 + 1^2) 

In general  

 

So on the above two documents we will have altogether 6 dimensional vector space so the 

documents is represented as below 

 

 

 

 

Figure 2.1.4.1.1 Representation of document in Vector Space 

d1 

d2 

θ 

. 
Similarity(d1,d2) = cos(θ) =  

d1 d2 

|d1|.|d2| 
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2.1.4.2 TF-IDF 

Tf-idf stands for term frequency-inverse document frequency, and the tf-idf weight is a weight 

often used in information retrieval and text mining. This weight is a statistical measure used to 

evaluate how important a word is to a document in a collection or corpus. The importance 

increases proportionally to the number of times a word appears in the document but is offset by 

the frequency of the word in the corpus. Variations of the tf-idf weighting scheme are often used 

by search engines as a central tool in scoring and ranking a document's relevance given a user 

query. 

Tf-idf can be successfully used for stop-words filtering in various subject fields including text 

summarization and classification. 

Example: 

Consider a document containing 100 words wherein the word cat appears 3 times. The term 

frequency (i.e., tf) for cat is then (3 / 100) = 0.03. Now, assume we have 10 million documents 

and the word cat appears in one thousands of these. Then, the inverse document frequency (i.e., 

idf) is calculated as log(10,000,000 / 1,000) = 4. Thus, the Tf-idf weight is the product of these 

quantities: 0.03 * 4 = 0.12. 

2.2 PROBLEM FORMULATION 
 

2.2.1 Problem Statement 

 

Most of the users consider online news as resourceful web facility instead of reading the news by 

purchasing papers. Now a days there are numbers of websites available which provides daily 

national and international news. If a user wants to get more information on a concerned news 

article from a different source; for this purpose, the user will have to list out the sites containing 

articles on similar topic which can be tedious and time consuming. To overcome these problems, 

the concept of article mining is used to cluster the news on the WWW.  

 

The information extraction process from various online news portals is the most challenging task 

in article mining. The main issue in article mining is to use short description of stories or 
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headings available. Such tasks are solved using simple strategies like analyzing the HTML code 

of the news’s web-page and recognizing its pattern of display. News mining/Article mining 

mainly focuses to disambiguate information and to provide users with greater search 

experiences. This approach increases the quality of the results because [7]; the news items are 

short and contain relevant and descriptive key words. In general, article mining is based on a 

repository of web newspapers pages and extracting the items for these pages. The web pages are 

dynamic and changes continuously, hence to capture the information we retrieve the pages of the 

newspaper at regular intervals and store it in a database. 

 

In this work, the news headlines from different sources of online web newspapers have been 

used. The keywords for each piece of news are extracted from the headlines which are further 

used to cluster similar news from a news data bank.  

User have desire to read article in the newspaper that haven’t been read already in another 

newspaper. But there is no grouping of similar type article from different newspapers. They have 

to visit all the news sites and have to search into all the respective newspapers’ sites which is not 

reliable for them. 

2.2.2 Objectives 

 

The main purposes of this dissertation are: 

 To group the similar articles of different newspapers. 

 To analyze the efficiency of K-means clustering algorithm to group the similar news with 

different values of K, and to analyze the relationship between number of documents N 

with number of iterations (I) and K. 

 To reduce the complexity of searching similar news by visiting each website. 

2.3 MOTIVATION 
 

News is today’s most common sources for learning about current events. In addition, news may 

deal with topics of more long-term interest. It reflects and form societies’, groups’ and 

individuals’ views of the world, fast or even instantaneous with the events triggering the 

reporting circumscribe. News is generally authored by people with journalistic training who 
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abide by journalistic standards regarding the style and language of reporting. Topics and ways of 

reporting are bed by general societal consensus and the policies of the news provider. The 

content of news basically involves text, pictures and additional content in other formats. The 

news items in an online news portal are a good source for studying the text mining techniques. 
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CHAPTER 3 

LITERATURE REVIEW AND METHODOLOGY 

3.1 RELATED WORKS 
 

There are many approaches to text mining. Several researchers have implemented the concept of 

text mining. 

This thesis includes three contributions: a survey of known clustering methods, an evaluation of 

human versus human results when grouping news articles in an event-centric manner, and last an 

evaluation of an incremental clustering algorithm [1,2]. In this work an information system has 

been proposed that will extract the main topics in the news archive in a weekly basis. By getting 

a weekly report, user can know what were the main news events in the past week [3]. 

In this paper work different clustering methods and their effectiveness has been compared for 

text document datasets for sentiment analysis. It results that K-means algorithm gives overall 

best results when used with Cosine Similarity considering all the factors that affects performance 

of Document Similarity Algorithm and Document Clustering Algorithm [4, 5]. This paper 

discusses the terms document and similarity in the given context and Apache Lucene tool which 

provides a foundation to build an information retrieval system for documents [6, 9]. This paper 

compares and analyzes the effectiveness of these measures in partial clustering for   text 

document datasets. Experiments utilize the standard K-means algorithm and results on seven text 

document datasets and five similarity measures (Euclidian Distance, Cosine Similarity, Jaccard 

Coefficient, Pearson Correlation Coefficient, Averaged KullBack-Leibler Divergence) that have 

been most commonly used in text clustering [7]. This a real time news extraction system capable 

of identifying up-to-date ―hot news‖ from large amounts of news reports on the internet [8]. 

In this HAC (Hierarchical Agglomerative Clustering) algorithm and Correlation similarity is 

used for any type of text document to display the most relevant document of the clusters [10]. 

This thesis is mainly focused on the use of text mining techniques and the K-means algorithm to 

create the clusters of similar news articles headlines. It is based on the text mining with primary 

focus on data mining and information extraction [12]. 
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In order to improve on complete-page mining, it presents an approach based on extracting the 

individual news items from the web pages and mining these separately [13, 18]. This paper 

presents UPD Digital Library Miner, a software application for mining document collections of a 

digital library for topical structure discovery and topic-based similarities search between 

collection pairs, using topic modeling algorithm and Kullback-Leibler divergence measure [14]. 

This proposal work is made to improve the pruning of feature selection algorithm by clustering 

with distance boundaries and partitioning of uncertain probability distribution values [15]. This 

presents the comparison of two main document clustering techniques: agglomerative hierarchical 

clustering and K-means. For K-means a ―standard‖ K-means algorithm and variant of K-means, 

―bisecting‖ K-means is used [16, 20]. In this paper, the similarity of two documents is gauged by 

using two string-based measures which are character-based method, n-gram is utilized to find 

fingerprint and Dice coefficient is used to match two fingerprints [17]. This survey discusses the 

existing works on text similarity through partitioning them into    three approaches; String-based, 

Corpus-based and Knowledge-based similarities. Furthermore, samples of combination between 

these similarities are presented [19]. 
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3.2 RESEARCH QUESTION 
 

News published in news portal vary from each other and people who read news desire to go 

through each of them in order have better and more clear information in that particular news 

headline. Therefore, it becomes a tiresome job for a person who has such a desire. The main 

objective of this work is to answer question of ―how it is possible to view and compare same 

news which are published in different news portal into one single roof with the use of text 

mining‖. 

  

The overall purpose of  this work can be summarized as following research questions:  

 

 How text mining and clustering techniques can be used to generate required system?  

 How it is possible to cluster similar news published in different portal into one single 

roof?  

 Is there any relationship between the initial number of clusters (K) and the number of 

data i.e. number of news? 
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3.3 PROPOSED FRAMEWORK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 3.3.1. Proposed Framework for News Clustering 

 

3.3.1 News Content Extraction 

A web crawler extracts the news contents with their links and news heading from the respective 

news sites. 

Web Crawler: 

A Web crawler is a computer program that browses the World Wide Web in a methodical, 

automated manner or in an orderly fashion. Other terms for Web crawlers are ants, automatic 

indexers, bots, Web spiders, Web robots, or—especially in the FOAF community—Web scutters.  

Categorized news article 

Data Source 

Extract documents Using 

Crawler  

Document Parsing and 

Preprocessing 

Calculate the TF-IDF of 

individual document  

News Categorization 

User Interface 

http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Internet_bot
http://en.wikipedia.org/wiki/FOAF_(software)
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Web crawlers are mainly used to create a copy of all the visited pages for later processing by a 

search engine that will index the downloaded pages to provide fast searches [5].  

3.3.2 Parsing 

The HTML parser parses the unnecessary tags and links present in the extracted news contents. It 

also identifies the headings of the news [5, 6]. 

 

3.3.3 Document Preprocessing 

When the news contents with their links and news heading is extracted by crawler, it is further 

Preprocessed for text mining using document preprocessing techniques, which includes the 

following steps: 

Tokenization 

Tokenization is the process of chopping up a given stream of text or character sequence into 

words, phrases, symbols, or meaningful elements called tokens, which are input for the further 

processing of text mining [5,7]. The headings of different newspapers are tokenized. This 

process of tokenization is accomplished by using space to split the sequence of tokens. 

Stop Word Removal 

Those common words which would appear to be a little value in the documents matching, need 

to be excluded, are stop words and the process of excluding such words is called stop word 

removal [5, 7, 8]. The stop word such as a, an, the, and prepositions is created and the tokens 

contained in the stop word list are discarded. 

Lemmatization 

Lemmatization is the process of reducing the derived forms of a word to its base form called 

lemma so that they can be analyzed as a single term [5, 7, 8]. Stemming is a preferred method for 

lemmatization. 

Porter Stemming Algorithm: 

Stemming is the process of removing suffixes which is especially useful in the field of  

http://en.wikipedia.org/wiki/Index_(search_engine)
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information retrieval. In a typical IR environment, one has a collection of documents, each 

described by the words in the document title and possibly by words in the document abstract. 

Ignoring the issue of precisely where the words originate, we can say that a document is 

represented by a vector of words, or terms. The suffix stripping process will reduce the total 

number of terms in the IR system, and hence reduce the size and complexity of the data in the 

system, which is always advantageous [5, 7, 8]. 

3.3.4 Document Representation 

Document representation is a key process in the information retrieval systems. To extract the 

relevant documents from the large collection of documents, it is very important to transfer the 

documents to vector form. The vector space model is popular algebraic model to represent the 

textual document as vectors. Using the vector space model documents are represented with the 

term frequency, inverse document frequency (tf-idf) weighting scheme [5, 14,15]. 

Example: The one of the news heading of August 26, 2016 is “President, PM condolence to 

death in Chitwan bus fall” 

tokens: | president | PM | condolence | to | death | in | chitwan | bus | fall | 

After stop word removal and stemming: | president | pm | condolence | death | chitwan | bus | fall | 

Vector: [0.01555, 0.02358, 0.02137, 0.02028, 0.01867, 0.01806, 0.03129] 

 

3.3.5 Document Clustering 

After the construction of document vector, the clustering process is carried out using K-means 

clustering algorithm. The K-Means algorithm aims to partition a set of objects, based on their 

attributes/features, into K clusters, where K is a predefined or user-defined constant [20]. The 

main idea is to define K centroids, one for each cluster. The centroid of a cluster is formed in 

such a way that it is closely related (in terms of similarity function; similarity can be measured 

by using different methods such as cosine similarity, Euclidean distance, Extended Jaccard) to all 

objects in that cluster [9, 10, 11, 19]. Here, cosine measure is used to compute which document 

centroid is closest to a given document. 
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CHAPTER 4 

IMPLEMENTATION 

4.1 TOOLS USED 

All the algorithms have been implemented using ruby language in ruby on rails framework with 

the partial use of ruby libraries. 

4.1.1 Resource Requirements 

 

The resources used to complete this work are as follows: 

 

 My-SQL for database design. 

 Web Server for testing proposed system. 

 Platform: Windows XP or greater. 

 Internet Explorer, Google Chrome, Mozilla Firefox or any other browser to view results. 

 Programming Languages used: Ruby. 

 Interface Design: HTML, CSS. 

4.1.2 Programming Language 

Ruby 

Ruby programming language has been used for the implementation of this work. Ruby is 

a dynamic, reflective, object-oriented, general-purpose programming language. Everything is 

an expression (even statements) and everything is executed imperatively (even declarations) in 

ruby. It has an elegant syntax that is natural to read and easy to write. 

Ruby 2.3.1 has been used in ruby on rails web framework to complete this work. Ruby on Rails, 

or simply Rails, is a server-side web application framework written in Ruby. Rails is a model–

view–controller (MVC) framework, providing default structures for a database, a web service, 

and web pages. It encourages and facilitates the use of web standards such as 

HTML, CSS and JavaScript for display and user interfacing.  

 

https://en.wikipedia.org/wiki/Dynamic_programming_language
https://en.wikipedia.org/wiki/Reflection_(computer_science)
https://en.wikipedia.org/wiki/Object-oriented_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Expression_(programming)
https://en.wikipedia.org/wiki/Statement_(programming)
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Declaration_(computer_science)
https://en.wikipedia.org/wiki/Web_application_framework
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Web_page
https://en.wikipedia.org/wiki/Web_standards
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/JavaScript
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MySQL 

MySQL is an open-source relational database management system (RDBMS).
 
Its name is a 

combination of "My", the name of co-founder Michael Widenius' daughter, and "SQL", the 

abbreviation for Structured Query Language. MySQL is also used in many high-profile, large-

scale websites, including Google. MySQL is written in C and C++.  

CSS 

Cascading Style Sheets (CSS) is a style sheet language used for describing the presentation 

semantics (the look and formatting) of a document written in a markup language. It’s most 

common application is to style web pages written in HTML and XHTML. CSS is designed 

primarily to enable the separation of document content (written in HTML or a similar markup 

language) from document presentation, including elements such as the layout, colors, and fonts. 

This separation can improve content accessibility, provide more flexibility and control in the 

specification of presentation characteristics, enable multiple pages to share formatting, and 

reduce complexity and repetition in the structural content.  It can also be used to allow the web 

page to display differently depending on the screen size or device on which it is being viewed.  

 

HTML 

HTML, which stands for Hypertext Markup Language, is the predominant markup language for 

web pages. HTML uses markup tags to describe web pages. HTML is written in the form of 

HTML elements consisting of tags, enclosed in angle brackets (like <html>), within the web 

page content. HTML tags normally come in pairs like <h1> and </h1>. The first tag in a pair is 

the start tag, the second tag is the end tag (they are also called opening tags and closing tags). 

The purpose of a web browser is to read HTML documents and compose them into visual web 

pages. The browser does not display the HTML tags, but uses the tags to interpret the content of 

the page. HTML elements form the building blocks of all websites. HTML allows images and 

objects to be embedded and can be used to create interactive forms. It provides a means to create 

structured documents by denoting structural semantics for text such as headings, paragraphs, 

lists, links, quotes and other items. It can embed scripts in languages such as JavaScript which 

affect the behavior or HTML markup. 

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Michael_Widenius
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Structured_Query_Language
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
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4.2 DATA SOURCE MODULE 

SOURCES = { 

    "The Himalayan Times" => "http://www.thehimalayantimes.com", 

    "Republica" => "http://www.myrepublica.com", 

    "The Kathmandu Post" => "http://kathmandupost.ekantipur.com", 

    "Nepal News" => "http://www.nepalnews.com", 

    "The Rising Nepal" => "http://therisingnepal.org.np/", 

    "Online Khabar" => "http://english.onlinekhabar.com/", 

    "NP News Portal" => "http://www.npnewsportal.com/", 

    "Nepali Headlines" => "http://nepaliheadlines.com/" 

  } 

SOURCES.each do |name, link| 

  puts "Creating news source: #{name}" 

  NewsSource.create(name: name, link: link) 

end 

4.3 News Extraction Module 

require 'open-uri' 

namespace :crawler do 

  desc 'Gets news URLS' 

  task run: :environment do 

    NewsSource.all.each do |source| 

      doc = Nokogiri::HTML(open(source.link)) 

      links = doc.css('a').select { |l| l.content.length > 20 } 

      puts "News Source: #{source.name}" 

      puts "Total Headings: #{links.count}" 

      links.each do |link| 
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        href = link.attributes['href'].value rescue next 

        permalink = href =~ URI::regexp ? href : source.link + href 

        source.news.find_or_create_by(title: link.content, link: permalink) 

      end 

    end 

  end 

  desc "Updates lemma" 

  task lemmatize: :environment do 

    News.all.each do |news| 

      news.lemma = news.lemmatize 

      news.save 

    end 

  end 

  desc "Save generated tokens based on News items" 

  task tokenize: :environment do 

    Token.generate 

  end 

end 

 

4.4 DOCUMENT PREPROCESSING MODULE 

class Token < ActiveRecord::Base 

  belongs_to :news_source 

  belongs_to :news 

  def self.generate 

    News.all.each do |news| 
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      news.lemma.each do |lema| 

        token = Token.find_by(word: lema.downcase, news_source: news.news_source, news: 

news) 

        if token 

          token.increment!(:frequency) 

        else 

          Token.create(word: lema.downcase, news_source: news.news_source, frequency: 1, news: 

news) 

        end 

      end 

    end 

  end 

  def self.distinct 

    @@distinct ||= Token.pluck(:word).uniq 

  end 

  def tf_idf 

    tf*idf 

  end 

end 

 

class News < ActiveRecord::Base 

  serialize :lemma, Array 

STOP_WORDS = [ 

"a","about","above","after","again","against","all","am","an","and""any","are","arn't","as","at","

be","because","been","before","being","below","between","both","but","by","can","can't","cann

ot","could","couldn't","did","didn't","do","does","doesn't","doing","don't","down","during","eac

h","few","for","from","further","had","hadn't","has","hasn't","have","haven't","having","he","he'

d","he'll","he's","her","here","here's","hers","herself","him","himself","his","how","how's","i","i'
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d","i'll","i'm","i've","if","in","into","is","isn't","it","it's","its","itself","let's","me","more","most","

mustn't","my","myself","no","nor","not","of","off","on","once","only","or","other","ought","our

","ours","ourselves","out","over","own","same","shan't","she","she'd","she'll","she's","uld","shou

ldn't","so","some","such","than","that","that's","the","their","theirs","them","themselves","then",

"there","there's","these","they","they'd","they'll","they're","they've","this","those","through","to",

"too","under","until","up","very","was","wasn't","we","we'd","we'll","we're","we've","were","we

ren't","what","what's","when","when's","where","where's","which","while","who","who's","who

m","why","why's","with","won't","would","wouldn't","you","you'd","you'll","you're","you've","

your","yours","yourself","yourselves"] 

  belongs_to :news_source 

  belongs_to :cluster 

  has_many :tokens 

  def self.lemmatizer 

    @@lemmatizer ||= Lemmatizer.new 

  end 

  def tokenize 

    title.gsub(/[^\w\s]/, '').to_s.split(" ") 

  end 

  def without_stop_words 

    tokenize - News::STOP_WORDS 

  end 

  def stem 

   without_stop_words.map(&:stem) 

  end 

  def lemmatize 

    stem.map {|s| News.lemmatizer.lemma(s) } 

  end 

amespace :token do 

  namespace :tf do 

    desc "Calculates TF" 

    task calculate: :environment do 
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      Token.all.each do |token| 

        news_count = token.news_source.news.count 

        token.tf = token.frequency.to_f / news_count.to_f 

        token.save 

      end 

    end 

  end 

  namespace :idf do 

    desc "Calculates IDF" 

    task calculate: :environment do 

      Token.all.each do |token| 

        news_count = News.count 

        global_token_frequency = Token.where(word: token.word).map(&:frequency).sum 

        token.idf = Math.log10(news_count/global_token_frequency) 

        token.save 

      end 

    end 

  end 

end 

 

4.5 CLUSTERING MODULE 
 

def vector 

    news_tokens = tokens.select {|t| t.news_source_id == news_source_id && 

lemma.map(&:downcase).include?(t.word) } 

    Token.distinct.map do |t| 

      token  = news_tokens.select{ |l| l.word == t }.first 

      token ? token.tf_idf : 0.0 

    end 

  end 
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  def similarity(news1) 

    vector_1 = self.vector 

    vector_2 = news1.vector 

    product = vector_1.zip(vector_2).map {|p| p.map(&:to_f).inject(:*)}.compact.sum 

    length_1 = Math.sqrt(vector_1.map{|i| i ** 2}.sum) 

    length_2 = Math.sqrt(vector_2.map{|i| i ** 2}.sum) 

    sim = product.to_f/(length_1*length_2).to_f 

    sim.nan? ? 0.0 : sim 

  end 

end 

namespace :clusterify do 

  desc "Clusterify" 

  task run: :environment do 

    # Random centers 

    k = ENV['K'] || 12 

    k = k.to_i 

    i = ENV['I'] || 7 

    i = i.to_i 

    Cluster.delete_all 

    News.update_all(cluster_id: nil) 

    puts "Creating initial centers" 

    initial_centers = News.all.sample(k).to_a 

    k.times do |i| 

      initial_center = initial_centers[i] 

      cluster = Cluster.create(name: "Cluster_#{i+1}") 

      initial_center.cluster = cluster 

      initial_center.save 

    end 

    puts "Clustering items to the initial centers" 

    clusters = Cluster.all.to_a 

    news = News.all.includes(:tokens).to_a 
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    (news - initial_centers).each do |n| 

      rank = {} 

      initial_centers.each do |initial_center| 

        rank[initial_center.cluster_id] = n.similarity(initial_center) 

      end 

      highest_matching_key = rank.key(rank.values.max) 

      unless rank[highest_matching_key].zero? 

        n.cluster_id = highest_matching_key 

      else 

        n.cluster_id = clusters.sample.id 

      end 

      n.save 

    end 

    # Calculate new centers 

    i.times do |i| 

      puts "Start of Iteration #{i}" 

      clusters.each do |cluster| 

        cluster_news = cluster.news.reload.includes(:tokens) 

        cluster_news_count = cluster_news.count 

        cluster.mean = cluster_news.map(&:vector).transpose.map(&:sum).collect { |n| 

n/cluster_news_count } 

        puts "Cluster: #{cluster.name}" 

        puts "Sum of mean: #{cluster.mean.sum}" 

      end 

      news.each do |n| 

        rank = {} 

        clusters.each do |c| 

          rank[c.id] = n.similarity(c) 

        end 

        highest_matching_key = rank.key(rank.values.max) 

        n.cluster_id = highest_matching_key 
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        n.save 

      end 

      puts "End of Iteration #{i}" 

    end 

  end 

end 

4.6 EVALUATION MODULE 

namespace :evaluation do 

  desc "Calculating" 

  task run: :environment do 

    threshold = 0.12 

    puts "Threshold: #{threshold}" 

    Cluster.all.each do |cluster| 

      puts "Calculating similarity between news of cluster: #{cluster.name}" 

      cluster_news = cluster.news.reload.includes(:tokens) 

      cluster_news_count = cluster_news.count 

      cluster.mean = cluster_news.map(&:vector).transpose.map(&:sum).collect { |n| 

n/cluster_news_count }   

      similar_count = 0 

      cluster.news.each do |news| 

        #puts "News: #{news.title}" 

        #puts "Similarity: #{news.similarity(cluster)}" 

        similar_count += 1 if news.similarity(cluster) > threshold 

      end 

      news_count = cluster.news.count 

      puts "Total news: #{news_count}" 

      puts "Similar news: #{similar_count}" 

      precision = similar_count.to_f/news_count.to_f 

      recall = similar_count.to_f/(similar_count + 10.0).to_f 

      cluster.update(precision: precision, recall: recall) 
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    end 

  end 

end 

class Cluster < ActiveRecord::Base 

  attr_accessor :mean 

  has_many :news 

  def agg_mean 

    total_news = news.reload.includes(:tokens) 

    total_news_count = total_news.count 

    total_news.map(&:vector).transpose.map(&:sum).collect { |n| n/total_news_count } 

  end 

  def f_measure 

    (2*recall.to_f*precision.to_f)/(precision.to_f + recall.to_f) 

  end 

  alias_method :vector, :mean 

end  
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CHAPTER 5 

DATA COLLECTION AND ANALYSIS 

5.1 DATA COLLECTION 
 

In order to complete this work on article mining, data collection is a must. The data is collected 

or extracted from the HTML source code of various URL’s related to the online Nepali news 

portal. Here, the news items or headlines are considered as the data used and are needed to be 

extracted. Besides the news item, other fragments such as general information about the 

newspaper, advertisements and links to regular columns like weather, horoscope, etc are not 

considered. 

The extraction of news item (data) from various newspapers is done by the web crawler. The 

crawler is designed using simple strategies that are based on analyzing the HTML code of the 

web pages. 

 

5.1.1 Sources 
 

The web consists of a number of websites which provides daily news. These website are called 

web newspapers or online news portals. These web newspapers are the source from which the 

data (i.e. headings) are extracted for this this work. There are 8 web newspaper websites from 

which the data was extracted.  

 

The websites are: 

 The Himalayan Times (www.thehimalayantimes.com) 

 Republica (www.myrepublica.com) 

 The Kathmandu Post (www.ekantipur.com/tkp/) 

 Nepal News (http://www.nepalnews.com) 

 The Rising Nepal (http://therisingnepal.org.np) 

 Online  (http://english.onlinekhabar.com) 

 NP News Portal (http://www.npnewsportal.com) 

 Nepali Headlines (http://nepaliheadlines.com) 

http://www.ekantipur.com/tkp/
http://www.npnewsportal.com/
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The web newspapers may contain topics that are not necessary or are unrelated such as banners, 

links, weather, images, etc. These set of components are discarded from being extracted. In this 

work, information extraction process has mainly two tasks: (a) crawl the online news portal to 

fetch the page of interest and (b) extract the news by parsing the HTML content. 

5.1.2 News Data 

 

All the news data are secondary data collected from the eight news portal listed above. 

Table 5.2.1 List of Data Sets 

 

S.N Day Source News Total News 

 

 

1 

 

 

19 August 2016 

Himalayan Times 104 

 

 

638 

Republica 116 

The Kathmandu Post 140 

Nepal News 159 

The Rising Nepal 61 

Online Khabar 58 

 

 

2 

 

 

20 August 2016 

Himalayan Times 103 

 

 

634 

Republica 115 

The Kathmandu Post 140 

Nepal News 157 

The Rising Nepal 62 

Online Khabar 57 

 

 

3 

 

 

21 August 2016 

Himalayan Times 104 

 

 

639 

Republica 112 

The Kathmandu Post 139 

Nepal News 158 

The Rising Nepal 71 

Online Khabar 55 

 

 

4 

 

 

22 August 2016 

Himalayan Times 103  

 

641 Republica 118 
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The Kathmandu Post 136 

Nepal News 155 

The Rising Nepal 71 

Online Khabar 58 

 

 

5 

 

 

23 August 2016 

Himalayan Times 108 

 

 

 

803 

Republica 115 

The Kathmandu Post 140 

Nepal News 162 

The Rising Nepal 62 

Online Khabar 58 

NP News Portal 98 

Nepali Headlines 60 

 

 

 

 

6 

 

 

 

 

25 August 2016 

Himalayan Times 103 

 

 

 

798 

Republica 116 

The Kathmandu Post 141 

Nepal News 154 

The Rising Nepal 69 

Online Khabar 58 

NP News Portal 97 

Nepali Headlines 60 

 

 

 

7 

 

 

 

26 August 2016 

Himalayan Times 104 

 

 

 

791 

Republica 119 

The Kathmandu Post 140 

Nepal News 158 

The Rising Nepal 62 

Online Khabar 48 

NP News Portal 100 

Nepali Headlines 60 
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Figure5.2.1.1 Screenshoot of  Sample News headings extracted from respective portal 
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          Figure 5.2.1.2 Screenshoot of Sample terms of news before preprocessing 

 

Figure 5.2.1.3  Screenshoot of Sample terms of news after preprocessing 
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5.2 EXPERIMENTAL RESULT 
 

5.2.1 Experimental Setup 

 

The aim is to experimentally verify the efficiency of proposed system of news clustering and to 

analyze the relationship of K with number of data. 

The experiments were performed with Intel (R) Core (TM) i5 – M430 CPU @ 2.27 GHz 2.27 

GHz of 4 GB RAM in 64-bit Windows 7 Operating System. 

Clustering was conducted with Iteration I=12 and variations of K from 5 to 15, and with K=12, 

variations of I from 5 to 15 using the above datasets listed in Table 5.2.1. The efficiency was 

measured in terms of precision, recall and F-measure and running time. 

 

5.2.2 Sample Output 

 

Here are some snapshot of output of clustering testing at dated 26
th

 August 2016 with K=12 and 

I=12. 

 

 

Figure 5.2.2.1 Screenshot of Output of total News of each portal. 
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Figure 5.2.2.2 Screenshot of Output News before clustering 

 

 

 

Figure 5.2.2.3 Screenshot of Output News after Clustering 



38 

 

 

Figure 5.2.2.4 Screenshot of Output of Evaluation Metrics of clusters 

 

5.2.3 Evaluation Metrics 

 

Following metrics were used for the analysis of the news clustering: 

For cluster i and class j: 

Precision(i,j) : 
   

  
   and   Recall(i,j) : 

   

  
 

Where,     is the number of members of class i in cluster j,   is the numbers of members of 

cluster j, and    is the number of members of class i. 

The F measure of cluster j and class i is then given by  

F(i,j) : 
         (   )          (   )

         (   )       (   )
 

 

The sample results of the experiment (Day19 August 2016 with 638 News headings, Day 26 

August 2016 with 791 News headings) have been shown as follows: 
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Table 5.2.3.1 Evaluation Table for I=12,         Table 5.2.3.2 Evaluation Table for K=12,   

      and Variations of K                        and Variations of I 

      

   

 

 

 

 

   Figure 5.2.3.1 Graph of Evaluation Metrics with variations of K (19 august 2016) 
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K Precision Recall Fmeasure 

5 0.2962 0.7698 0.4278 

6 0.5255 0.8250 0.6420 

7 0.5577 0.8085 0.6601 

8 0.6091 0.8005 0.6918 

9 0.6466 0.7874 0.7101 

10 0.6615 0.7756 0.7140 

11 0.6840 0.7747 0.7265 

12 0.7402 0.7710 0.7553 

13 0.7158 0.7851 0.7489 

14 0.6905 0.7891 0.7365 

15 0.6514 0.7929 0.7152 

I Precision Recall Fmeasure 

5 0.70031 0.7543 0.7263 

6 0.7160 0.7459 0.7306 

7 0.7101 0.7609 0.7347 

8 0.7256 0.7508 0.7380 

9 0.7378 0.7541 0.7458 

10 0.7475 0.7617 0.7545 

11 0.7470 0.7627 0.7548 

12 0.7498 0.7589 0.7543 
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     Figure 5.2.3.2 Graph of Evaluation Metrics with variations of I (19 august 2016) 

 

 

Table 5.2.3.3 Evaluation Table for I=12,      Table 5.2.3.4 Evaluation Table for K=12,   

      and Variations of K                        and Variations of I 
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5 0.4392 0.8563 0.5794 

6 0.4730 0.8473 0.6069 

7 0.5705 0.8415 0.6787 

8 0.5632 0.8221 0.6677 

9 0.6098 0.8212 0.6984 

10 0.6212 0.8023 0.6980 

11 0.6417 0.7941 0.7085 

12 0.6847 0.7879 0.7299 

13 0.6780 0.7812 0.7251 

14 0.6670 0.7728 0.7160 

15 0.6069 0.7490 0.6705 

I Precision Recall Fmeasure 

5 0.6782 0.7914 0.7298 

6 0.6742 0.7812 0.7225 

7 0.6984 0.7937 0.7420 

8 0.6557 0.7870 0.7135 

9 0.6853 0.7959 0.7348 

10 0.6463 0.7789 0.7044 

11 0.6481 0.7804 0.7071 

12 0.6508 0.7821 0.7073 
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      Figure. 5.2.3.3 Graph of Evaluation Metrics with variations of K (August 26, 2016) 

 

 

 

 

  Figure. 5.2.3.4 Graph of Evaluation Metrics with variations of I (August 26, 2016) 
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Time to complete the clustering process is tabulated as follows: 

Table 5.2.3.5. Completion Time of Clustering       Table 5.2.3.6. Completion Time of Clustering 

    Process with different values of I (K=12)                 Process with different values of K (I=6) 

  

 

   

 

 

 

Figure 5.2.3.5 Graph of Completion Time of Clustering Process with different values of I 
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Figure 5.2.3.6 Graph of Completion Time of Clustering Process with different values of K 

 

5.2.4 Result 

From the experimental results, the result is efficient with the initial clusters seed 12 (K=12) and 

the iterations of no change in clusters centers depend upon the numbers of data sets. With the 

value of K=12; when the less number is data (638 News headings of 19 August, 2016), the value 

of f-measure is higher (75.53) and the F-measure is comparatively lower (72.99) when the 

number of data increased (791 News headings of 26 August, 2016). 

When the less number of data (638 News headings of 19 August, 2016) then the less number of 

iterations (I=10) required and when the number of data increased (791 News headings of 26 

August, 2016) then the less number of iterations (I=12) required to maintain the constant cluster 

canters in K-means clustering. As well as when the less number of data, the value of f-measure is 

higher (0.7545) and lower the f-measure (0.7277) when number of data increased. 

While increasing the iteration (I), the completion time also increased. If initial cluster seed 

increased, completion time also increased. The time complexity of this work is the complexity of 

K-means clustering algorithm i.e. O(K), where K is the initial clusters seed. 
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Therefore we can conclude that the number of iterations of changing the clusters mean of K-

means clustering algorithm directly proportional to the number of data sets. The F-measure result 

is efficient with the value K=12. Running time is also directly proportional to the number of 

iterations and number of initial clusters seeds.  
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CHAPTER 6 
 

CONCLUSION AND FUTURE WORK 
 

6.1 CONCLUSION 
 

Only news headlines from the websites homepage are published. The headlines from other pages 

are not considered. Also, categorization of the news has not been done for the similar news 

found, i.e. the news headlines are not categorized into categories like national, business, etc. This 

work considers only those websites which are in English language. The online news portals 

which are designed in Nepali language are not considered. These portals may consist of similar 

news which is relevant with the news in the English publications. To include this part or feature, 

machine translation is required. 

 

This work entitled “News Clustering System based on Text Mining” was developed for 

discovering or finding the similarities between the news articles extracted from different sources. 

Firstly, crawling and parsing methods for document retrieval from the web was applied. Then, 

the corpus of pre-processed document is prepared using various document pre-processing 

techniques. In the end, K-means clustering algorithm was implemented to discover the clusters 

of news items or articles and the efficiency of K-means algorithm was analyzed by Precision, 

Recall and F-measure evaluation metrics and finally the impact of initial value of K and 

iterations (I) and number of news (N) to discover the clusters were analyzed.  

 

The similar news was grouped into a single cluster and presented in such a way that the news 

within the clusters was similar with each other. The real world application of this study is that it 

would help people to find detailed and more similar information about a particular news item in 

which the user is interested. This would not have been possible without the use of text mining 

techniques. In general, it is not feasible to manually look for similar news in each of the online 

news portals and then compare each of them to find similarities between them. 

In the context of Nepal, not all online web newspapers are up-to-date. Hence, sometimes the 

clustering process might not be as accurate as expected.  
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6.2 FUTURE ENHANCEMENTS 
 

Some of the future enhancements that can be applied or done are as follows: 

 Clustering of Nepali and English language can be done by using machine learning 

process (machine translation process). 

 Categorization methods can be added to make the results and user interface more 

manageable and user friendly. 

 Enhancement can be done to cover the news articles over large domains. 

 The proposed method can be applied to other web documents such as research papers, 

digital libraries, etc. 
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APPENDIX  

Implementation Code 

SOURCES = { 

    "The Himalayan Times" => "http://www.thehimalayantimes.com", 

    "Republica" => "http://www.myrepublica.com", 

    "The Kathmandu Post" => "http://kathmandupost.ekantipur.com", 

    "Nepal News" => "http://www.nepalnews.com", 

    "The Rising Nepal" => "http://therisingnepal.org.np/", 

    "Online Khabar" => "http://english.onlinekhabar.com/", 

    "NP News Portal" => "http://www.npnewsportal.com/", 

    "Nepali Headlines" => "http://nepaliheadlines.com/" 

  } 

 

SOURCES.each do |name, link| 

  puts "Creating news source: #{name}" 

  NewsSource.create(name: name, link: link) 

end 

 

require 'open-uri' 

 

namespace :crawler do 

  desc 'Gets news URLS' 

  task run: :environment do 

 

    NewsSource.all.each do |source| 

      doc = Nokogiri::HTML(open(source.link)) 

 

      links = doc.css('a').select { |l| l.content.length > 20 } 

 

      puts "News Source: #{source.name}" 

      puts "Total Headings: #{links.count}" 
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      links.each do |link| 

        href = link.attributes['href'].value rescue next 

        permalink = href =~ URI::regexp ? href : source.link + href 

        source.news.find_or_create_by(title: link.content, link: permalink) 

      end 

    end 

 

  end 

 

  desc "Updates lemma" 

 

  task lemmatize: :environment do 

    News.all.each do |news| 

      news.lemma = news.lemmatize 

      news.save 

    end 

  end 

 

 

  desc "Save generated tokens based on News items" 

 

  task tokenize: :environment do 

    Token.generate 

  end 

 

 

end 

namespace :token do 

  namespace :tf do 

    desc "Calculates TF" 

    task calculate: :environment do 
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      Token.all.each do |token| 

        news_count = token.news_source.news.count 

        token.tf = token.frequency.to_f / news_count.to_f 

        token.save 

      end 

    end 

  end 

 

  namespace :idf do 

    desc "Calculates IDF" 

    task calculate: :environment do 

      Token.all.each do |token| 

        news_count = News.count 

        global_token_frequency = Token.where(word: token.word).map(&:frequency).sum 

        token.idf = Math.log10(news_count/global_token_frequency) 

        token.save 

      end 

    end 

  end 

end 

 

class News < ActiveRecord::Base 

 

  serialize :lemma, Array 

 

STOP_WORDS = [ 

"a","about","above","after","again","against","all","am","an","and""any","are","arn't","as","at","

be","because","been","before","being","below","between","both","but","by","can","can't","cann

ot","could","couldn't","did","didn't","do","does","doesn't","doing","don't","down","during","eac

h","few","for","from","further","had","hadn't","has","hasn't","have","haven't","having","he","he'

d","he'll","he's","her","here","here's","hers","herself","him","himself","his","how","how's","i","i'
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d","i'll","i'm","i've","if","in","into","is","isn't","it","it's","its","itself","let's","me","more","most","

mustn't","my","myself","no","nor","not","of","off","on","once","only","or","other","ought","our

","ours","ourselves","out","over","own","same","shan't","she","she'd","she'll","she's","uld","shou

ldn't","so","some","such","than","that","that's","the","their","theirs","them","themselves","then",

"there","there's","these","they","they'd","they'll","they're","they've","this","those","through","to",

"too","under","until","up","very","was","wasn't","we","we'd","we'll","we're","we've","were","we

ren't","what","what's","when","when's","where","where's","which","while","who","who's","who

m","why","why's","with","won't","would","wouldn't","you","you'd","you'll","you're","you've","

your","yours","yourself","yourselves"] 

 

  belongs_to :news_source 

  belongs_to :cluster 

  has_many :tokens 

 

  def self.lemmatizer 

    @@lemmatizer ||= Lemmatizer.new 

  end 

 

  def tokenize 

    title.gsub(/[^\w\s]/, '').to_s.split(" ") 

  end 

 

  def without_stop_words 

    tokenize - News::STOP_WORDS 

  end 

 

  def stem 

   without_stop_words.map(&:stem) 

  end 

 

  def lemmatize 
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    stem.map {|s| News.lemmatizer.lemma(s) } 

  end 

 

  def vector 

    news_tokens = tokens.select {|t| t.news_source_id == news_source_id && 

lemma.map(&:downcase).include?(t.word) } 

    Token.distinct.map do |t| 

      token  = news_tokens.select{ |l| l.word == t }.first 

      token ? token.tf_idf : 0.0 

    end 

  end 

 

  def similarity(news1) 

    vector_1 = self.vector 

    vector_2 = news1.vector 

    product = vector_1.zip(vector_2).map {|p| p.map(&:to_f).inject(:*)}.compact.sum 

    length_1 = Math.sqrt(vector_1.map{|i| i ** 2}.sum) 

    length_2 = Math.sqrt(vector_2.map{|i| i ** 2}.sum) 

 

    sim = product.to_f/(length_1*length_2).to_f 

    sim.nan? ? 0.0 : sim 

  end 

 

end 

class Token < ActiveRecord::Base 

  belongs_to :news_source 

  belongs_to :news 

 

  def self.generate 

    News.all.each do |news| 

      news.lemma.each do |lema| 
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        token = Token.find_by(word: lema.downcase, news_source: news.news_source, news: 

news) 

        if token 

          token.increment!(:frequency) 

        else 

          Token.create(word: lema.downcase, news_source: news.news_source, frequency: 1, news: 

news) 

        end 

      end 

    end 

  end 

 

  def self.distinct 

    @@distinct ||= Token.pluck(:word).uniq 

  end 

 

  def tf_idf 

    tf*idf 

  end 

 

end 

namespace :clusterify do 

  desc "Clusterify" 

  task run: :environment do 

 

    # Random centers 

    k = ENV['K'] || 12 

    k = k.to_i 

    i = ENV['I'] || 7 

    i = i.to_i 

    Cluster.delete_all 
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    News.update_all(cluster_id: nil) 

 

    puts "Creating initial centers" 

    initial_centers = News.all.sample(k).to_a 

    k.times do |i| 

      initial_center = initial_centers[i] 

      cluster = Cluster.create(name: "Cluster_#{i+1}") 

      initial_center.cluster = cluster 

      initial_center.save 

    end 

    puts "Clustering items to the initial centers" 

    clusters = Cluster.all.to_a 

    news = News.all.includes(:tokens).to_a 

    (news - initial_centers).each do |n| 

      rank = {} 

      initial_centers.each do |initial_center| 

        rank[initial_center.cluster_id] = n.similarity(initial_center) 

      end 

      highest_matching_key = rank.key(rank.values.max) 

      unless rank[highest_matching_key].zero? 

        n.cluster_id = highest_matching_key 

      else 

        n.cluster_id = clusters.sample.id 

      end 

      n.save 

    end 

 

    # Calculate new centers 

 

    i.times do |i| 

      puts "Start of Iteration #{i}" 
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      clusters.each do |cluster| 

        cluster_news = cluster.news.reload.includes(:tokens) 

        cluster_news_count = cluster_news.count 

        cluster.mean = cluster_news.map(&:vector).transpose.map(&:sum).collect { |n| 

n/cluster_news_count } 

        puts "Cluster: #{cluster.name}" 

        puts "Sum of mean: #{cluster.mean.sum}" 

      end 

 

      news.each do |n| 

        rank = {} 

        clusters.each do |c| 

          rank[c.id] = n.similarity(c) 

        end 

        highest_matching_key = rank.key(rank.values.max) 

        n.cluster_id = highest_matching_key 

        n.save 

      end 

      puts "End of Iteration #{i}" 

    end 

 

  end 

end 

namespace :evaluation do 

  desc "Calculating" 

  task run: :environment do 

    threshold = 0.12 

    puts "Threshold: #{threshold}" 

    Cluster.all.each do |cluster| 

      puts "Calculating similarity between news of cluster: #{cluster.name}" 
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      cluster_news = cluster.news.reload.includes(:tokens) 

      cluster_news_count = cluster_news.count 

      cluster.mean = cluster_news.map(&:vector).transpose.map(&:sum).collect { |n| 

n/cluster_news_count } 

        

      similar_count = 0 

      cluster.news.each do |news| 

        #puts "News: #{news.title}" 

        #puts "Similarity: #{news.similarity(cluster)}" 

        similar_count += 1 if news.similarity(cluster) > threshold 

      end 

 

      news_count = cluster.news.count 

      puts "Total news: #{news_count}" 

      puts "Similar news: #{similar_count}" 

 

      precision = similar_count.to_f/news_count.to_f 

      recall = similar_count.to_f/(similar_count + 10.0).to_f 

      cluster.update(precision: precision, recall: recall) 

    end 

  end 

end 

class Cluster < ActiveRecord::Base 

  attr_accessor :mean 

  has_many :news 

 

  def agg_mean 

    total_news = news.reload.includes(:tokens) 

    total_news_count = total_news.count 

    total_news.map(&:vector).transpose.map(&:sum).collect { |n| n/total_news_count } 
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  end 

 

  def f_measure 

    (2*recall.to_f*precision.to_f)/(precision.to_f + recall.to_f) 

  end 

 

  alias_method :vector, :mean 

 

 

end 
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Evaluation Table 

20 August, 2016 

  

 

 

21 August, 2016 

K Precision Recall F-measure 

5 0.4659 0.8268 0.5952 

6 0.5436 0.8206 0.6539 

7 0.5539 0.8001 0.6547 

8 0.6041 0.7981 0.6877 

9 0.6502 0.7880 0.7125 

10 0.6637 0.7757 0.7153 

11 0.7128 0.7199 0.7163 

12 0.7359 0.7539 0.7448 

13 0.7270 0.7540 0.7402 

14 0.7122 0.7329 0.7224 

 

 

 

 

 

 

 

I Precision Recall F-measure 

5 0.7316 0.7641 0.7475 

6 0.7394 0.7602 0.7497 

7 0.7347 0.7619 0.7480 

8 0.7504 0.7653 0.7578 

9 0.7498 0.7671 0.7584 

10 0.7544 0.7598 0.7571 

11 0.7501 0.7567 0.7533 

12 0.7506 0.7603 0.7554 

K Precision Recall F-measure 

5 0.4791 0.8351 0.6089 

6 0.5088 0.8192 0.6277 

7 0.5496 0.8115 0.6554 

8 0.6075 0.8001 0.6906 

9 0.6044 0.8105 0.6924 

10 0.6750 0.7875 0.7269 

11 0.7000 0.7645 0.7309 

12 0.7530 0.7639 0.7583 

13 0.7544 0.7494 0.7518 

14 0.7401 0.7414 0.7407 

15 0.7200 0.7415 0.7306 

I Precision Recall F-measure 

5 0.7047 0.7549 0.7289 

6 0.7271 0.7640 0.7451 

7 0.7524 0.7520 0.7522 

8 0.7542 0.7576 0.7559 

9 0.7592 0.7540 0.7566 

10 0.7583 0.7634 0.7608 

11 0.7585 0.7633 0.7608 
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22 August, 2016 

K Precision Recall F-measure 

5 0.4588 0.8353 0.5923 

6 0.4889 0.8144 0.6110 

7 0.5411 0.8074 0.6480 

8 0.5790 0.7939 0.6696 

9 0.6312 0.7867 0.7004 

10 0.6557 0.7764 0.7110 

11 0.6748 0.7707 0.7196 

12 0.7310 0.7593 0.7449 

13 0.7468 0.7161 0.7311 

14 0.7311 0.6854 0.7075 

 

23 August, 2016 

  

 

 

25 August, 2016 

  

 

 

 

I Precision Recall F-measure 

5 0.7142 0.7644 0.7385 

6 0.7223 0.7721 0.7464 

7 0.6409 0.7510 0.6916 

8 0.7289 0.7651 0.7465 

9 0.7491 0.7649 0.7570 

10 0.7525 0.7573 0.7548 

11 0.7395 0.7692 0.7541 

12 0.7394 0.7697 0.7543 

13 0.7457 0.7645 0.7550 

I Precision Recall F-measure 

5 0.6393 0.7821 0.7036 

6 0.6911 0.7918 0.7380 

7 0.6865 0.7277 0.7065 

8 0.6806 0.7953 0.7335 

9 0.6533 0.7793 0.7108 

10 0.6562 0.7821 0.7137 

11 0.6598 0.7784 0.7142 

12 0.6660 0.7878 0.7218 

13 0.6650 0.7850 0.7200 

14 0.6693 0.79 0.7246 

K Precision Recall Fmeasure 

5 0.4025 0.8483 0.5460 

6 0.4633 0.8402 0.5973 

7 0.5409 0.8371 0.6572 

8 0.5342 0.8181 0.6464 

9 0.5677 0.8075 0.6667 

10 0.5992 0.7997 0.6851 

11 0.6352 0.7923 0.7051 

12 0.6660 0.7882 0.7220 

13 0.6774 0.7709 0.7211 

I Precision Recall Fmeasure 

5 0.6836 0.7969 0.7359 

6 0.6622 0.7855 0.7185 

7 0.6901 0.7936 0.7382 

8 0.6540 0.7836 0.7130 

9 0.6604 0.7848 0.7172 

10 0.6807 0.7926 0.7324 

11 0.6889 0.7828 0.7329 

12 0.6916 0.7858 0.7357 

K Precision Recall Fmeasure 

5 0.4411 0.8583 0.5805 

6 0.4815 0.8486 0.6137 

7 0.5016 0.8288 0.6222 

8 0.5515 0.8219 0.6586 

9 0.6045 0.8216 0.6933 

10 0.6105 0.8038 0.6925 

11 0.6432 0.8003 0.7098 

12 0.6444 0.78 0.7057 


