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ABSTRACT 

Phase-Field Model is an innovative approach for the simulation of crack propagation 

in the material. Instead of the traditional method of re-meshing and tracking the crack's 

tip, the phase-field model is based on the principle of minimum energy and uses a 

continuous phase-field variable to separate the crack from the matrix. This project 

utilizes the phase-field problem to solve for the minimum elastic energy by combining 

two functions, the phase-field parameter, and mechanical displacement, over a defined 

area domain for an anti-plane elastic solid. The governing equation is solved using PDE 

models and FEM methods in MATLAB's PDE Toolbox. The results of the study 

demonstrate the advantages of the phase-field model in predicting the effects of varying 

shear modulus and notch location and geometry on crack propagation in anti-plane 

elastic solids. To further validate the effectiveness of the code, notched specimens were 

tested with tension loading in the UTM and compared with simulation results, 

advertising the phase-field model’s real-world applications for failure prediction. 

Keywords: Phase-Field Model, Crack Propagation, Phase-Field Parameter, MATLAB 
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1 CHAPTER ONE: INTRODUCTION 

1.1  Background 

1.1.1 Introduction to Phase-Field Model 

Phase-Field Model (PFM) is a mathematical method for modeling the behavior of 

materials that undergo phase transitions, such as solidification, crystallization, or 

microstructural evolution. It works by dividing the material into small regions, or 

phases, and using partial differential equations to describe how the boundary between 

these phases changes over time. PFM can be used for the simulation of complicated 

fracture processes such as crack initiation, propagation, coalescence, and branching. 

The simulation for fracture evaluation can be done on a fixed mesh. The phase-field 

method employs a single variable, referred to as the order parameter φ, to continuously 

represent the state of the complete microstructure. For example, φ = 0 and φ = 1 

represent cracks and non-cracks respectively in the material. Order parameters simply 

are field variables that remain constant in bulk and their changes indicate the presence 

of an interface.  

The phase-field model uses a scalar order parameter to represent fracture and material 

parameters to simulate changes in the stiffness of damaged and undamaged materials. 

For undamaged material, the value of the order parameter is 1, and there is no effect on 

the property of the material. On the other hand, the value of zero represents the broken 

material, and this results in a corresponding reduction in stiffness. As a result, the phase-

field model depicts cracks as lines or regions in the material where the value of the 

order parameter is zero, and the stiffness is significantly decreased. The advantage of 

this approach is that cracks don't have to be treated as material boundaries, which is 

particularly useful when implementing the fracture model using finite element methods. 

Typically, a phase-field model is designed to capture the correct behavior of interfacial 

dynamics in the sharp interface limit, which involves an infinitesimal interface width. 

This allows the problem to be solved by the integration of a set of partial differential 

equations for the entire system, without requiring definite treatment of boundary 

conditions at the interface. The concept of phase-field models was propounded by Fix 

and Langer.  
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1.1.2 Need for Phase-Field Model 

Material failure is a critical aspect of engineering, and various numerical methods have 

been developed to deal with fracture problems. These methods are broadly categorized 

into two types: continuous and discontinuous approaches. 

Discontinuous approaches such as XFEM and GFEM introduce strong discontinuities 

in the displacement field. This approach discretizes the material into small elements, 

and the displacement field is represented as a piecewise polynomial function. The 

discontinuous approach and its accuracy are highly dependent on the mesh, and the 

mesh must be refined near the crack tip to capture the behavior of the material 

accurately. All these aspects make the approach complex, tedious, and time-consuming. 

In contrast, continuous methods such as the Phase-Field Model (PFM) avoid 

introducing discontinuities in the displacement field. Instead, the evolution equation of 

the phase-field is used to describe fracture propagation. This involves using a scalar 

field (phase-field) to represent the crack in a diffusive manner. The PFM approach 

doesn't require continuous mesh refinement, and a single equation governs the entire 

process. Moreover, the PFM offers great flexibility in selecting boundary conditions, 

enabling the modeling of different types of loading conditions such as homogeneous 

and inhomogeneous boundary conditions. All of these factors indicate the significance 

of introducing the PFM for the analysis of fractures. 

1.1.3 Application of Phase-Field Model 

The techniques of the phase-field model can be used extensively in engineering as well 

as material science mainly to evaluate phase boundaries and materials that go through 

phase transformation. Phase-Field Model can be used in microstructure evolution such 

as solidification, grain growth and coarsening, domain evolution in thin films, pattern 

formation on surfaces, solid-state structural phase transformations, dislocation 

microstructures, and crack propagation. The model deals with energies leading to phase 

transformations, and their minimization and describes the change with the help of order 

parameters. For the study of crack propagation, there are two phases: solid and broken. 

These phases are represented as 1 and 0 by an order parameter.   
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1.1.4 Crack in Metals 

When a crack grows in a material, it generates new surfaces that act as the faces of the 

crack. This process demands energy to overcome the cohesive force at increasing 

surface energy. Griffith came up with a principle for crack propagation by analyzing 

the balance of energy using these two types of energies. According to his principle, a 

crack can propagate only when the reduction in elastic strain energy is equal to or 

greater than the energy needed to create the new surface caused by the crack growth. 

The extent of the tensile stress needed to propagate a brittle fracture and a crack of a 

particular size is determined by the thermodynamic connection between these two 

forms of energy. 

1.1.5 Crack Propagation in Brittle Fracture 

The propagation of cracks in a material is a result of energy derived from various 

factors, including mechanical, thermal, and chemical effects. These factors, either 

individually or in combination, can affect crack initiation and growth. Crack 

propagation in a brittle fracture occurs in several steps leading to final failure. The 

major steps for crack propagation in brittle fracture can be summarized as follows: 

i. Elastic deformation: In this step, the deformation material is directly proportional 

to the applied tensile load. The process of elastic deformation occurs up to 

maximum load. The process can be seen in the initial portion of the force vs 

displacement graph. 

ii. Crack initiation: In case of brittle fracture, the process of crack initiation occurs 

when there is a pre-existing defect in the material. The process occurs when the 

applied tensile load exceeds the strength of the material. 

iii. Formation of microcracks: Before the starting of crack propagation, microcracks 

will form at the point of high-stress concentration. The point of high-stress 

concentration is at the tip of the notch and such point, the microcracks are formed 

even at relatively low stress.  

iv. Crack propagation: After the formation of microcracks, the propagation of the 

crack will be rapid without significant plastic deformation. The crack will continue 

till it reaches a critical length.  
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v. Failure: After the crack reaches a critical length, the material is not able to 

withstand applied load leading to failure. 

1.1.6 Phase-Field Model for Crack Propagation 

The Phase-Field Model (PFM) represents fracture as a continuous field, referred to as 

the phase-field. The term ‘phase-field’ is a scalar function that ranges from 0 to 1, with 

0 indicating a region completely fractured and 1 indicating a region with no cracks. A 

set of partial differential equations are used to describe the changes in the phase-field 

over time and these equations model the development of the crack. PFM can monitor 

the crack growth process without explicitly requiring the monitoring of the crack tip, 

eliminating the need for mesh refinement near the fracture tip. The value order 

parameter varies steadily between the values given to the different phases of the 

material at interfaces where broken and unbroken materials meet. The regularization 

parameter determines the size of the transition zone that encloses the phase-field cracks. 

It can be shown that for the phase-field fracture model, the underlying energy 

expressions in the limit of a dissipating regularization length converge to the surface 

and elastic energy of Griffith's formulation. Thus, Griffith's fracture criterion can be 

regularized by the phase-field fracture model. Furthermore, the phase-field model can 

be used to simulate complicated fracture geometries, such as branched cracks or cracks 

that interact with other microstructural characteristics. 
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1.1.6.1 Governing Equations  

To simulate crack propagation using the phase-field model, an equation that governs 

the crack's propagation based on energies is needed. The equation is derived from 

Griffith's theory, and in the case of a thin plate with uniform thickness, a straight initial 

crack, and subject to displacement at one of its edges, its behavior is analyzed. The 

main consideration is the thin plate under tension obeying Hooke's law. The governing 

equation comes from the variational approach of brittle fracture based on regularization 

formulation. The energy function in equation (1.1) is the sum of both elastic energy due 

to displacement and fracture energy due to crack, and the minimization of this energy 

function governs crack initiation, propagation, and branching. As the applied load 

increases, the crack initiates and propagates, converting the elastic energy into fracture 

energy. The governing energy equation is: 

E (𝑢, 𝑣) =  ∫ 𝑣2𝑊(∇𝑢)
 

Ω

𝑑Ω + ∫ [
(1 − 𝑣)2

4𝜅
+ 𝜅|∇𝑣|2]  𝑑Ω 

 

Ω

 
(1.1) 

 

Here, the first term represents the elastic energy whereas the second term represents the 

fracture energy. The displacement field is represented by u and the phase-field is 

represented by v. The scalar field v varies continuously between v=1 (intact material) 

and v=0 (fully damaged material). The term 𝑊(∇𝑢) known as the elastic energy density 

is represented as: 

𝑊 (𝛻𝑢)  =  ∫
µ

2
|𝛻𝑢𝑧|2

 

Ω

𝑑Ω 
(1.2) 

Where µ is the modulus of rigidity of the brittle material. The parameter κ has the 

dimension of a length that controls the transition zone between the completely damaged 

and intact body. The governing equation is minimized and further solved to get the 

partial differential equations for obtaining displacement field u and phase-field v. The 

partial differential equation is the elliptic type. The partial differential equations are 

solved within the framework of the FEM using the MATLAB PDE toolbox. The partial 

differential equation expected by the MATLAB PDE toolbox is: 

  𝑎𝑢 −  𝑐 ∙ ∇2𝑢 =  𝑓 (1.3) 
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The above equation describes the behavior of u, where 𝛻2 represents the Laplacian 

operator, which calculates the second spatial derivative of u. The term ‘au’ represents 

the rate of change of u in time, and the term ‘c 𝛻2u’ represents the rate of change of u 

in space. The term ‘f’ is a source or forcing function that drives the change in u. The 

parameters a, c, and f are assigned properly. Respectively the behavior of v is described 

in the same way as assigning the values of a, c, and f properly. 

1.1.6.2 Elliptical PDE and its Features 

An elliptic partial differential equation (PDE) is a type of PDE that describes a wide 

range of physical phenomena including fracture phenomenon and elasticity. The 

various key features of elliptic PDEs include: 

i. Second-order derivatives: Elliptic PDEs uses second-order partial derivatives of 

the unknown function. This is in contrast to hyperbolic and parabolic PDEs, 

which involve first and second-order derivatives, respectively. 

ii. Constant coefficients: The coefficients of the second-order derivatives are 

constant. This means that the PDE is homogeneous, and its solutions are 

invariant under translations and rotations. 

iii. Positive-definite: The coefficient matrix of the second-order derivatives is 

positive-definite. This ensures that the PDE has a unique solution, and it also 

ensures that the solutions are smooth and have no sharp corners or edges. 

iv. Boundary conditions: Elliptic PDEs are typically solved subject to boundary 

conditions, which specify the values of the unknown function on the boundary 

of the domain. These boundary conditions can be Dirichlet (prescribing the 

value of the function), Neumann (prescribing the normal derivative of the 

function), or mixed (prescribing a combination of the value and normal 

derivative). 

v. Laplace's equation: The most famous example of an elliptic PDE is Laplace's 

equation, which describes the steady-state distribution of a scalar field in a 

region with no sources or sinks. Laplace's equation is a homogeneous PDE, and 

its solutions are harmonic functions. 
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vi. Maximum principle: Elliptic PDEs satisfy the maximum principle, which states 

that the maximum and minimum values of the solution occur on the boundary 

of the domain. This property is useful for proving the uniqueness of solutions 

and for obtaining qualitative information about the behavior of solutions. 

vii. Sobolev spaces: The solutions of elliptic PDEs typically belong to the Sobolev 

space, which is a function space that captures the regularity and smoothness of 

the solutions. The Sobolev space provides a natural framework for studying the 

existence and regularity of solutions. 

viii. Numerical methods: Numerical methods for solving elliptic PDEs include finite 

difference, finite element, and spectral methods. These methods are widely used 

in engineering and scientific applications, and they require careful analysis to 

ensure their accuracy and convergence. 

ix. Variational formulation: Elliptic PDEs can be formulated as variational 

problems, which involve minimizing a function over a function space subject to 

certain constraints. This approach provides a powerful tool for solving PDEs 

and for obtaining qualitative information about their solutions. 

1.1.6.3 Shear Modulus 

The modulus of rigidity or shear modulus is a mechanical characteristic of a material 

that represents its ability to resist shear deformation. It quantifies a material's rigidity 

when subjected to shear stress and is one of the fundamental elastic moduli, alongside 

Young's modulus and Poisson's ratio. The shear modulus can be defined as the ratio of 

shear stress to shear strain within a material and is mathematically expressed as the 

derivative of shear stress concerning shear strain. Typically, the shear modulus is 

measured in units of gigapascals (GPa) or mega-pounds per square inch (Msi). The 

shear modulus is a crucial parameter in the analysis of metal structures as it provides 

essential information about the material's ability to resist deformation and stiffness. 
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1.1.6.4 Elastic and Fracture Energy 

The elastic energy of a material is a quantity that represents the energy that is stored 

within the material as a result of deformation due to the application of stress. 

Deformation refers to the change in shape experienced by metal when subjected to 

stress. The energy required to cause this deformation is stored within the material as 

elastic energy. 

Fracture energy is a crucial factor in the field of fracture mechanics that indicates the 

amount of energy necessary to initiate and advance a crack in a metal. It is a valuable 

parameter in evaluating the durability and crack resistance of a material. Essentially, 

fracture energy is the amount of energy needed to produce a new surface area when a 

crack advances through the material. As the crack propagates, the material stores the 

energy as strain energy, which is eventually released. 

1.1.6.5 Anti-plane Solid 

Anti-plane solids refer to solid objects or materials designed to resist deformation in a 

single plane, typically perpendicular to the loading plane. This means that the material 

can resist forces that would cause it to bend or deform in one direction while remaining 

flexible in other directions. In anti-plane deformation, the displacement along the plane 

of constant displacement is accompanied by a change in the shape of the solid and its 

volume change. The behavior of anti-plane solids is governed by equations that describe 

the mechanical behavior of the solid, such as its elasticity, strength, and stress-strain 

relationship. These equations are used to predict the response of the solid to external 

loads and to design structures that are capable of resisting these loads.  

1.1.6.6 Staggered Scheme 

In the context of the phase-field model, the staggered scheme is a numerical scheme 

used to solve the partial differential equations that govern the evolution of the phase-

field variable. The staggered scheme involves discretizing the spatial domain into a 

grid, where the values of the phase-field variable are defined at the center of the grid 

cells, while the values of other variables like potential energy are defined at the edges 

of the grid cells. 
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The staggered scheme involves the following steps: 

i. Discretize the spatial domain into a grid of points with uniform grid spacing. 

ii. Offset the order parameter and potential energy grids by half a grid spacing. 

iii. Calculate the potential energy on the staggered grid using a finite difference 

scheme that uses the order parameter on the central grid. 

iv. Update the order parameter on the central grid using a finite difference scheme 

that uses the potential energy on the staggered grid. 

v. Repeat steps 3 and 4 for a given time interval until the desired simulation time 

is reached.  

1.1.7 Universal Testing Machine 

A UTM is a specialized piece of equipment that tests the mechanical properties of 

materials by applying tensile, compression, and bending forces to materials and then 

measures the corresponding deformation and strain. Doing such, a UTM can determine 

the material’s strength, stiffness, ductility, and other mechanical properties of any type 

of material. UTM is used for experimental validation of our code by applying tension 

loads on a set test specimen containing notches and measuring the force applied with 

displacement. 

 

Figure 1.1: UTM setup 

 

Figure 1.2: Computer interface for UTM 
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A hydraulic UTM typically consists of a frame, a load cell, grips or fixtures to hold the 

specimen, a hydraulic pump, and a hydraulic cylinder. The specimen is first fixed 

between the grips to hold it in place, then the hydraulic pump is run so pressure is 

applied on the hydraulic cylinder, providing force to the workpiece. The load cells 

measure the force applied and the displacement then sends it to the computer for 

analysis. Hydraulic UTM has the advantage over mechanical UTMs of giving greater 

force with higher accuracy and precision. 

1.1.8 Mild Steel 

Mild Steel is a type of carbon steel with relatively less amount of carbon content, less 

than 0.3%. When mild steel is subjected to a tensile load, it can develop a crack if the 

applied stress surpasses the yield strength of the material. This happens because the 

material stretches in the direction of the load and experiences localized distortion and 

increased stress levels in areas where it is weak, such as surface defects, notches, or 

inclusions. If the tensile stress is too high for the material to withstand, plastic 

deformation may occur and create tiny cracks or voids. With time, these cracks can 

spread through the material, influenced by cyclic or repeated loading, and result in more 

severe damage or even failure of the component. The features of mild steel are as 

follows: 

Table 1.1: Properties of Mild Steel 

Density 7850 kg/𝑚3  

Electrical Conductivity 3-15% IACS 

6.99 x 10^6 S/m 

Ultimate Tensile Strength 400 MPa to 550 MPa 

Yield Strength 250 MPa 

Young’s Modulus of Elasticity 200 GPa 

Thermal Conductivity 50 W/mK 
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1.1.9 PDE Toolbox in MATLAB 

The PDE Toolbox is a collection of functions within MATLAB software that enables 

solving of partial differential equations using numerical methods. The toolbox can 

handle a range of PDEs, including linear and non-linear, time-dependent, and stationary 

problems. It is equipped with various numerical methods such as finite element and 

finite difference methods. Furthermore, it has features that aid in tasks such as mesh 

generation, which are crucial for solving PDEs using numerical methods. Discretization 

is also an important feature, which is a crucial step in solving PDEs using numeric 

methods. The toolbox is also equipped with various post-processing functions for the 

solutions to PDEs. The solutions can be visualized using contour plots, surface plots, 

and animations. The wide range of features and support for different types of PDEs 

available in the PDE toolbox makes it a useful tool for researchers and engineers in 

various fields. 

1.1.10 GUI and App Designer in MATLAB 

Graphical User Interface is a method to make a working code more interactive to the 

user, by using graphical elements such as buttons, sliders, or value editors. Modern 

computer codes use GUIs regularly to provide a more user-friendly and intuitive 

experience for the users while using said code. Instead, the users can opt to select an 

item from menus or only input set variables to perform tasks. This has the advantage of 

making the code available to a wider audience of users, including those with little to no 

experience in the programming language. GUIs can also be customized to fit the 

particular task using specific design elements or layouts to make sure the code is 

tailored to the specific user needs and preferences. 

MATLAB uses App designer as its GUI development environment, which is built into 

itself as a tool. App designer uses drag-and-drop tools and visual programming 

techniques to help users in making applications with ease. This tool presents a variety 

of pre-built components like buttons, sliders, plots, and tables to the user that can be 

easily arranged and customized to create any desired interface. App designer integrates 

seamlessly with other MATLAB tools and functions, convenient for use alongside 

MATLAB’s PDE toolbox. 
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1.2 Problem Statement 

Crack is a primary way that materials fail, and the way cracks propagate can display 

complex dynamics that depend on both microscopic processes in the crack's tip region 

and macroscopic elasticity. Detecting cracks and their propagation is challenging, and 

there are both continuous and discontinuous approaches to the problem. The majority 

of the research has focused on discontinuous approaches, which create a sharp 

discontinuity in the displacement field and do not work on a fixed mesh. However, a 

continuous approach called the Phase-field Model, originally developed for phase 

transformations, can avoid explicit front tracking by using spatially diffuse material 

interfaces. This approach can contain the short-scale physics of failure as well as the 

problems of macroscopic linear elasticity, allowing for simulations on relevant time and 

length scales. While phase-field models have been applied to various software, there 

has been limited simulation using the MATLAB platform. The MATLAB toolbox 

provides several functions for easily and simultaneously solving differential equations. 

1.3 Objectives 

1.3.1 Main Objective 

To investigate crack propagation on a thin plate with an implementation of the Phase-

Field Model. 

1.3.2 Specific Objectives 

i. To implement the phase-field model on a simple geometry. 

ii. To study the propagation of cracks in metal. 

iii. To develop code in MATLAB. 

iv. To compare numerical and experimental data. 
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1.4 Application 

The major applications of our projects are: 

i. Prediction of failure 

ii. Improvement of manufacturing techniques to minimize risks of failure 

iii. Design of material with improved fracture properties 

 

1.5 Features 

The major features of our project are: 

i. Computational Method 

ii. Algorithm and Models 

iii. Analysis of Result 

iv. Validation of Code and Accuracy 

1.6 Feasibility Analysis 

1.6.1 Economic Feasibility 

The project requires less amount of funding compared to other crack propagation 

techniques such as XFEM and GFEM. The computational time cost is also relatively 

low because the need for mesh refinement is eradicated. 

1.6.2 Technical Feasibility 

The project requires less computational time compared to other techniques. The project 

can be done using available resources.  

1.6.3 Operational Feasibility 

The project is practical and feasible to implement and operate. The project can be 

completed within the available time limit.  
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1.7 System Requirements 

1.7.1 Software Requirements 

For the completion of this project, we require MATLAB for coding and simulation. 

MATLAB R2021a is used for this project. 

1.7.2 Hardware Requirements 

For the completion of this project, we require a computer that can run MATLAB 

efficiently. With Windows 10 or higher OS, any 64-bit processor, at least 4 GB of 

RAM, and up to 35 GB of storage. 

For experimental validation, we require a specimen, a setup for UTM, and a camera.  
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2 CHAPTER TWO: LITERATURE REVIEW 

2.1 Phase-field Model: Development Trends 

In engineering and material science, it is crucial to be able to predict when materials, 

particularly metals, will fail. To address fracture problems, various numerical 

approaches have been developed, which can mainly be divided into two main 

categories: continuous and discontinuous approaches [1]. 

The phase-field model for brittle cracks was first developed in the 1990s and has since 

generated significant interest among researchers because it can naturally simulate 

complex fracture processes. The primary advantage of the phase-field model is its 

capability to simulate the evolution of fracture on a fixed mesh [2]. 

In case of steel or any other metals, there are two commonly used hypotheses of crack. 

According to the hypotheses, cracks may occur if (a) the maximum tensile stress or (b) 

the maximum extension exceeds a certain critical value. According to the traditional 

theory of minimum energy, “the equilibrium state of an elastic solid body, deformed by 

specified surface forces, is such that the potential energy of the whole system is 

minimum”. On the contrary, the new theory by Griffith, obtained in addition to 

traditional ones, suggests that “the equilibrium position, if an equilibrium is possible, 

must be on in which crack of the solid has occurred if the system can pass from the 

unbroken to the broken condition by a process involving a continuous decrease in 

potential energy” [3].  

The tip of a crack will start to widen when it reaches a specific critical loading intensity. 

The critical stress intensity factors, designated as  𝐾𝐼𝑐, 𝐾𝐼𝐼𝑐 𝑎𝑛𝑑 𝐾𝐼𝐼𝐼𝑐, express the 

failure criterion and are material parameters dependent on the type of material, its 

physical characteristics, grain size, strain-hardening, temperature, and pressure levels. 

Other parameters are also used to describe the criterion of local failure instead of the 

critical stress intensity factors. If a single parameter can represent such criteria, such as 

the energy release rate or crack extension force, all criteria can be considered equivalent 

for linear elastic fracture in the small-scale yielding regime. The energy release rate 

(𝐺𝑐) is a commonly used parameter that measures the rate at which the potential energy 

of the loading system and the elastic strain energy of the material decrease with the 

extension of the crack [4].  
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The mechanics community has developed phase-field models for quasi-static fractures 

using a variational approach to brittle fracture. While Griffith's theory could predict 

crack growth, it had limitations in predicting crack initiation, its path, and crack jumps 

along the path. To address these limitations, Francfort and Marigo [5] analyzed a 2-D 

domain filled with a homogeneous, isotropic, and linearly elastic material with a 

straight crack. Based on their analysis, they developed the variational approach to 

fracture, which involved the construction of an energy function which will be able to 

govern the entire fracture process. By minimizing this energy function the process of 

crack initiation, propagation, and branching can be obtained [5]. 

To numerically approximate the variational approach, a two-dimensional body with 

uniform fracture toughness is subjected to a displacement field. The total energy of the 

body is calculated, along with three crack conditions. The first condition ensures the 

crack grows over time. The second condition requires the actual crack to have the 

lowest total energy compared to all other possible cracks. The third condition tracks 

previous energy states and can be used to select among all possible crack evolutions 

[6].  

The governing equations in phase-field models are usually seen as partial differential 

equations, which can be solved using finite element methods (FEM). Therefore, most 

phase-field approaches are solved using this method. For completely coupled phase-

field fracture problems, the space domain is discretized using finite element techniques, 

and appropriate decoupling methods are applied to solve them [7]. 

A method for efficiently solving the phase-field model was developed, which involves 

updating the fracture phase-field and the displacement field incrementally using an 

operator split algorithm. The algorithm allows for gradual updates of both fields during 

a time step, and a current history field approximation is used to decouple the linked 

equations. The approach involves solving two linear problems for updating the phase 

and displacement fields within a time step, and a staggered plan is suggested as a 

reliable solution. The method can be used to implement phase-field-type fracture in a 

rate-independent environment using a conventional framework [8]. 

FEAP, a Finite Element Analysis Program, now includes the phase-field concept where 

the phase-field order parameter is considered an extra degree of freedom at each node 

in addition to the displacement vector. The nodal values within elements can be 



17 

 

interpolated using standard linear shape functions as the formulation of the phase-field 

which ensures that the displacement and fracture fields remain continuous. An implicit 

time integration approach is used to discretize the transient evolution equation to ensure 

stability. The equations for discretized field and the evolution equation form a non-

linear coupled system of equations that is solved at each time step using the Newton-

Raphson method. The crack field is considered an additional crack indicator rather than 

a physical crack. To ensure appropriate surface energy recovery upon unloading, 

boundary conditions with irreversibility restrictions have been selected [9]. 

The standard phase-field models do not address the issue of premature stiffness 

degradation around areas of stress concentration, nor do they account for the simulated 

failure loads’ dependence on the regularization parameter. To overcome these 

limitations, a new set of degradation functions was introduced that is capable of 

simulating fractures more accurately. The main advantage of these degradation 

functions is their dependence on a set of parameters that allow for fine-tuning of shapes. 

The use of a quadratic degradation function also leads to a delay in crack propagation. 

The new degradation functions can accurately reproduce the start of failure for a broad 

range of values of the regularization parameter. In cases where the phase-field evolution 

equation is non-linear, a new linearization scheme that is based on a truncated Taylor 

series approximation can be used to avoid nested loops in the solution scheme [10]. 

Simulation of the fracture of solids using computational approaches at the macroscopic 

scale can be broadly categorized into two types: (a) discrete crack models and (b) 

smeared crack models. Discrete crack models necessitate the inclusion of discontinuous 

fields in the numerical model. On the contrary, smeared crack models employ element 

deletion methods that are based on constitutive laws incorporating strain-softening. 

Here, a regularized Ambrosio-Tortorelli [11] type model is introduced that includes the 

impact of unilateral contact and takes into account asymmetric traction and 

compression behaviors inside a linearized elasticity framework. This approach to 

fracture prediction is based on the concept of energy density and the classification of 

strain energy into spherical and deviatoric parts, using the local volume change as a 

basis. Through the refinement of several numerical aspects, the variational approach to 

fracture, along with its regularized variations, has become a useful tool for predicting 

crack paths without requiring any prior assumptions [12]. 
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Order parameters are a more appropriate term to refer to the phase-field variables when 

modeling cracks. The order parameter creates distinction between the solid phase and 

the broken phase inside the crack. The transition between these states occurs at the 

fracture surfaces in the context of the phase-field. In the continuum theory framework, 

the uniform motion of a crack is comparatively well understood. The typical approach 

is to represent the crack as a front or interface that divides the broken and unbroken 

parts of the material, and its propagation is controlled by the equilibrium of the elastic 

forces in the material and cohesive stresses near the tip of the crack [13]. 

Crack propagation at low speeds is mainly influenced by macroscopic linear elasticity 

and traction-free boundary conditions on the fracture surfaces. Thus, simple 

phenomenological phase-field models, such as the KKL model, can accurately capture 

the dynamics because the process zone physics does not significantly impact the results. 

However, for inertial cracks of fast-moving nature, phase-field models reproduce 

experimentally observed crack branching instabilities. The threshold velocity for 

branching, which is still not well understood, depends on the process zone description 

[14]. 

The researchers utilized Miehe's approach for simulating crack propagation in 2D 

brittle elastic materials. They studied the behavior of starting horizontal cracks with 

varying lengths that were located on the horizontal symmetry axis (y=0.5) under pure 

tension loading. The results showed that an increase in the initial crack length led to a 

decrease in peak force and maximum displacement, with horizontally symmetric cracks 

tending to propagate in that direction and displaying similar force-displacement curves 

for the same initial crack length. Furthermore, the peak force increased as the initial 

crack moved away from the symmetry axis. The phase-field model based on Miehe's 

approach was found to be sensitive to the length-scale, including the regularization 

parameter l and element size h [15]. 

To simulate crack growth caused by cyclic fatigue, an additional energy contribution is 

considered, which considers the crack driving forces that are caused by fatigue damage 

in the regularized energy density function. This energy at the crack surface enables 

crack extension even under low maximum loads and is a time-dependent elastic strain 

energy that includes all accumulated energies. The proposed model accurately predicts 

the growth rates of real-life fatigue cracks and considers the effects of mean stress and 

various stress ratios [16]. 
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The proposed approach presents a modification to the standard approach to phase-field 

model for brittle fracture, introducing a distinction between the critical energy release 

rates for mode-I and mode-II cracks. It has been applied to simulate crack propagation 

in geotechnical materials, using a new framework based on the division of the fracture 

energy release rate. The model takes into account that the critical release rate for energy 

is much lower for tensile fractures than for shear cracks. To address this, the proposed 

method identifies the energy driving crack propagation and introduces a new 

degradation function that uses a non-dimensional parameter to describe the different 

rates of weakening in brittle materials as cracks spread [17]. 

2.2 Related Theory  

2.2.1 Griffith’s Theory 

The Griffith theory states that, “a crack will propagate when the reduction in potential 

energy that occurs due to crack growth is greater than or equal to the increase in surface 

energy due to the creation of new free surfaces.” 

Griffith’s theory can be applied to any elastic material that fracture in brittle fashion. 

The theory was based on following assumptions:  

i. The material is homogeneous, isotropic and brittle. 

ii. The crack is sharp having well-defined boundary between two fracture surfaces. 

iii. The fracture process is assumed to be quasi-static ignoring effects of inertia and 

dynamic loading. 

iv. The strain energy density is constant throughout the fracture process. 

Griffith’s theory takes energy release rate G into account which can be defined as the 

energy that flows over to the tip of crack per unit of new crack surface created. From 

energy balance: 

𝐺 =
𝜕𝜋

𝜕𝑠
 , 

(2.1) 
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where s is the surface of fracture and 𝜋 is the potential energy which is given by, 

𝜋 = ∫ 𝑊 𝑑𝑉
 

𝑣

− ∫ 𝑡 ∙ 𝑢 𝑑𝑆
 

𝑆𝑡

− ∫ 𝑏 ∙ 𝑢𝑑𝑉
 

𝑣

 
(2.2) 

where W is the strain energy density, 𝑣 is the region occupied by a body, 𝑆𝑡 is the 

surface of the body on which tensile (𝑡) is applied, 𝑢 is the displacement and 𝑏 is the 

body force.  

The inelastic deformations such as plastic flow, micro cracking and crazing also 

dissipates energy in the zone surrounding the crack. So, taking the surface energy (𝛾), 

and inelastic energy dissipation per unit of crack growth, 𝑈𝑓 into consideration, the 

generalization of Griffith’s theory can be given as: 

i. The crack grows when the energy released by the body per unit fracture area is 

greater than or equal to the sum of increase in surface energy and inelastic 

energy dissipation per unit of crack growth. Mathematically,  

𝐺 ≥ 2𝛾 + 𝑈𝑓 

ii. For materials whose 𝑈𝑓 ≫ 2𝛾, the crack criteria is such that the value of energy 

release rate is greater than or equal to the value of critical energy release rate. 

Mathematically, 

𝐺 ≥ 𝐺𝑐 

2.3 Overview of Governing Equation 

Griffith's theory proposes that crack growth occurs due to the release of strain energy, 

compensated by additional energy related to the surface area of infinitesimal crack 

growth. In the phase-field model for brittle fracture, cracks are represented by a 

continuous transition function s(x,t) that varies from 1 for intact material to 0 for 

broken material. The model uses a regularized equation for brittle fracture, with the 

goal of minimizing the total internal energy of a loaded and fractured body by 

determining the displacement and crack patterns represented by s(x,t) [10]. 

𝐸 =  ∫ 𝜓
 

Ω

(𝜀, 𝑠, ∇s) dΩ =  ∫ (𝑔(𝑠) +  𝜂)𝑊(𝜀) dΩ +  𝛤(𝑠, ∇s) dΩ  
 

Ω

 
(2.3) 
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The first term of energy in above equation is the strain energy along with the strain 

energy density of a linear elastic material  

                                                           𝑊(𝜀) =
1

2
𝜀 ∶ (ℂ𝜀) 

(2.4) 

where ℂ is the infinitesimal stiffness tensor and 𝜀 is the infinitesimal stress tensor.  

Now, the strains are computed as follows: 

𝜀(𝑢) =
1

2
(∇u + (∇u)𝑇) 

(2.5) 

The second energy term in equation (2.3) is based on Griffith’s theory taking crack 

energy into account which is characterized by the crack energy density 

𝛤 = 𝐺𝑐

(1 − 𝑠)2

4𝜖
+  𝜖|∇s|2 

(2.6) 

where 𝐺𝑐 is the critical energy release rate and 𝜖 is the length scale. 

The coefficient is chosen such that the value of η lies between 0 < η ≪ 1 so that there 

is a marginal amount of residual stiffness. This avoids numerical problems concerning 

the static solution scheme. The most widely used form of a degradation functions is a 

simple quadratic approach: 

𝑔(𝑠) = 𝑠2 (2.7) 

Now, since strain is the change in displacement, from equation (2.4) and equation (2.5)  

we obtain: 

𝑊(∇𝑢) =  ∫
𝜇

2
(∇𝑢𝑧)2 𝑑Ω

 

Ω

 
(2.8) 

Let, Phase-field parameter, s = 𝑣 

       Length scale parameter, 𝜖 = 𝜅 

Now, equation (2.6) becomes, 

𝛤 = 𝐺𝑐 ( 
(1 − 𝑣)2

4𝜅
+  𝜅|∇𝑣|2) 

(2.9) 

The material is taken such that its value of 𝐺𝑐 is equal to one which signifies that the 

toughness of the material is relatively low. 
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Hence, equation (2.3) becomes, 

E (𝑢, 𝑣) =  ∫ 𝑣2𝑊(∇𝑢)
 

Ω

𝑑Ω + ∫ [
(1 − 𝑣)2

4𝜅
+ 𝜅|∇𝑣|2]  𝑑Ω 

 

Ω

 
(2.10) 

2.4 Implementation of MATLAB Code  

For variational mode of brittle fracture, the value of critical energy release should be 

constant. The crack propagation will take place if 𝐺 = 𝐺𝑐, if 𝐺 > 𝐺𝑐 the propagation 

will be unstable [5]. For simplicity and easiness in computation the value of critical 

energy rate, 𝐺𝑐=1 [6]. 

Some of the parameters should be set before computation such as: mesh step ‘h’ and 

regularization parameters ‘c’ and ‘𝜅’.  

For the value of regularization parameter ‘𝜅’, if 𝜅 = 0, the solution to FEM will diverge. 

On the contrary if the value of ‘𝜅’ is very big, some rigidity of the material remains in 

the cracked region causing bulk energy to be overestimated. 

For the value of mesh step ‘h’, the closer the value of h is to zero that is closer to crack, 

more refined the mesh becomes. Also, the value for element size must be less than or 

equals to the half of regularization parameter. 

For the value of regularization constant ‘c’, the value should be small enough to prevent 

softening effect so that the bulk energy is underestimated. On the contrary, it should be 

large enough to be compared to discretization steps near crack. Also, the domain must 

be in accordance to ‘c’ for accurate estimation of cracks near boundaries [5]. 
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3 CHAPTER THREE: METHODOLOGY 

3.1 Methodology Chart 

 

Figure 3.1: Methodology Chart 
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3.1.1 Governing Equation Selection 

The first step in the procedure was to choose the governing equation that can define 

ductile cracks in an anti-plane elastic solid. The governing equation is chosen with 

Griffith’s theory in mind.  The following equation (3.1) that defines the total energy of 

an elastic body with a smeared crack was selected as the governing equation. 

E (𝑢, 𝑣) =  ∫ 𝑣2𝑊(∇𝑢)
 

Ω

𝑑Ω + ∫ [
(1 − 𝑣)2

4𝜅
+ 𝜅|∇𝑣|2]  𝑑Ω 

 

Ω

 
(3.1) 

The energy functional equation above maps the functions v, representing the crack 

phase-field parameter, and u, which is mechanical displacement, defined over the 

region Ω to the total energy of the elastic body. The two integrals define the elastic 

energy stored in the cracked body, and the second integral represents the energy 

required for a crack to propagate, as stated in Griffith’s theory. The crack surface 

density function was taken in its original proposed form, with κ as its phase-field 

regularization parameter. The first term is a penalization term that discourages values 

of v away from 1. The second term is a regularization term that penalizes large gradients 

of v. As the problem is an anti-plane problem, the elastic potential becomes: 

𝑊(∇u) =  ∫
𝜇

2
(∇𝑢𝑧)2 𝑑Ω

 

Ω

 
(3.2) 

3.1.2 MATLAB Coding 

We can obtain two governing elliptic PDEs to solve the above defined governing 

equations. The PDEs are obtained by minimizing the total energy of the system with 

respect to u and v. To solve the given equations, we take use of MATLAB’s PDE 

Toolbox. It is a toolbox for MATLAB software that provides functions for solving 

partial differential equations using numerical methods. The toolbox supports the 

solution of linear and non-linear PDEs, including time-dependent and stationary 

problems. It supports finite element, finite difference, and other numerical methods for 

solving PDEs, and includes functions for performing tasks such as meshing, 

discretization, and post processing of solutions. For convenience, the elastic potential 

and other equations are rewritten into an expected and easily readable form by the PDE 

toolbox. 
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  𝑎𝑢 −  𝑐 ∙ 𝛻2 𝑢 =  𝑓 (3.3) 

The parameters a, c, and f are to be properly defined and fed into the toolbox 

accordingly to the two PDEs. The code starts with defining important variables, it 

defines the total steps, and the time interval between steps. For the anti-plane elasticity 

parameters, the shear modulus of the material is defined as ‘μ’. The Initializing crack 

phase-field parameter is defined as 𝑣𝑡 = 1. For our phase-field problem, non-crack 

regions are signified with v value as 1 and v = 0 signifies crack region. 𝜅 is the 

regularization parameter for the phase-field gradient of v. The parameters 𝑎1 and 𝑓1 for 

the elastic problem PDE are given a value of zero. The parameters 𝑐2 and 𝑓2 for the 

phase-field crack problem PDE are defined as: 

𝑐2 = 2. 𝜅 (3.4) 

𝑓2 =  
1

2 . 𝜅
 

 

(3.5) 

After defining all variables and initial parameters, PDE models are made with a single 

dependent variable for the anti-plane displacement variable u and Phase-field parameter 

v each, as pdem1 and pdem2 respectively. 

The geometry of the anti-plane elastic solid is defined with the DECSG function using 

subtraction to cut notches into a rectangular specimen. The width, height, notch 

position, notch length, and notch half-width are defined with the gdm1 matrix that is 

fed to the DECSG function along with the set formula that creates a DECSG geometry 

out of them. After converting it into a geometry model it can be appended to the PDE 

models pdem1 and pdem2. The mesh is created as a linear triangular mesh on the 

geometry setting an appropriate maximum element size. 

The PDE models are then solved within a loop to minimize energy with respect to the 

values of u and v. For the boundary conditions, the top and bottom edges are subjected 

to a displacement on the top and bottom edges with a displacement u that increases with 

each step in steady increments of DeltaT. For initialization, 𝑣𝑡 = 1, and     

ElasticEnergy = 0. The 𝑐1 value for the elastic problem is assigned as a function of the 

𝑣𝑡 value. 
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𝑐1 =  𝑣𝑡
2 . 𝜇 (3.6) 

The elastic problem PDE is solved using the elliptic solver. The "assempde" function 

is used to assemble the PDE problem with data pdem1, 𝑐1, 𝑎1, and 𝑓1 and solves for u, 

where u is stored in a matrix with each column corresponding to a time step. The 

function "pdegrad" is then used to calculate the gradient of u in the x and y directions, 

represented by dudx and dudy respectively. The variable "area" is then calculated using 

the "pdetrg" function which computes the area of the triangles formed by the mesh 

points in the region Ω. Next, the elastic energy is calculated as: 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝐸𝑛𝑒𝑟𝑔𝑦 =  
µ

2
( 

𝑑𝑢2

𝑑𝑥
+  

𝑑𝑢2

𝑑𝑦
) 

(3.7) 

  

Finally, the function "pdeprtni" is used to compute the integral of the elastic energy 

over the region Ω. The result is stored in the variable 𝑢. 

For the irreversibility condition, the code loops over all elements in the mesh 

represented by the triangles t and checks the value of 𝑣𝑡 at each element. If 𝑣𝑡 is less 

than 0.005, then the corresponding value of ElasticEnergy is set to the maximum value 

of ElasticEnergy for that element, represented by MaxElasticEnergy. This 

irreversibility condition ensures that the energy in the system does not decrease during 

the time-stepping process. 

The phase-field crack problem parameter 𝑎2 is assigned a proper value in the loop with 

the formula: 

𝑎2 = 2 (𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝐸𝑛𝑒𝑟𝑔𝑦 +  
1

4 . 𝑘
) 

(3.8) 

The Phase-field crack problem is then solved using elliptic solver again. The 

"assempde" function is used again to assemble the PDE problem with data pdem2, 𝑐2, 

𝑎2, and 𝑓2 and it solves for v, where v is stored in a matrix with each column 

corresponding to a time step. The function "pdeintrp" is then used to interpolate the 

nodal values of the solution v on the elements of the mesh, represented by the triangles 

t. The result is stored in the variable 𝑣𝑡. 

The loop repeats with this value of 𝑣𝑡  for the set total steps, chosen so that the crack 

propagation pattern can properly be developed. The PDE models after the total steps 
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are plotted using the pdeplot function for u and v as contour plots. This gives us a proper 

diagram for crack propagation that can be used for analysis. 
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3.1.3 MATLAB Simulation 

After coding is done in MATLAB, a sample problem is selected that can be used for 

crack simulation for a notched specimen. Multiple such experiments can be simulated 

to test the feasibility of the code and problems can be run on different parameters to 

find any limitations that the code possesses. The simulation was done with a square 

specimen with two notches in each side with variable lengths and widths over different 

positions on the sides of the specimen so that crack propagation can be observed on 

different configurations of notches. 

A second problem was taken as a benchmark test from multiple papers, with a single 

2D notched square plate with geometry as shown in Figure 3.2 subjected to tension 

given by displacement u. 

 

Figure 3.2: Geometry and boundary conditions for sample benchmark test [7]  

The simulation was done in 30 total steps with a time increment of 0.1 seconds. Shear 

modulus was taken as 10 GPa, and the value of the phase-field regularization parameter 

was taken according to the length scale of the specimen for different problems.   
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3.1.3.1 Flowchart for MATLAB Code 

 

Figure 3.3: Flowchart for MATLAB code (part 1) 
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Figure 3.4: Flowchart for MATLAB code (part 2) 
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3.1.4 Analysis of Results 

Simulations were done firstly testing the benchmark test and then onto using the two 

notched problems varying specimen geometry by changing the notch geometry and 

location along the sides of the specimen to observe the crack propagation results. A 

crack propagation pattern would be observed for each configuration of geometry. The 

results would be analyzed with their phase-field plots and displacement plots to 

compare the code’s performance. 

3.1.5 Experimental Validation 

For experimental validation, a suitable specimen was chosen first taking into account 

the required material properties and availability. A 2 mm thin plate of mild steel was 

taken and cut into four pieces of dimensions 130x63 mm for one and 154x70 mm for 

the other three. Each test specimen was added with around 50 mm long clamping metal 

with width 5 mm each welded together on each side of the plate to account for the grips 

spacing in the UTM. The notches for specimen having dimension 130x60 mm were 

kept at a distance of 27% from nearest edge on each side on opposite directions. Figure 

3.5 gives us geometry model for test piece 1, and Figure 3.6 shows the fabricated test 

piece for UTM testing.  

 

Figure 3.5: Geometry for test 

specimen 1 

 

Figure 3.6: Test specimen 1 
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The second and third specimens of dimensions 154x70 mm were added with notches at 

40% from nearest edge on each side on opposite directions. Figure 3.7 gives the 

geometry model for test pieces 2 and 3 and the finished machined test specimen 2 is 

shown in Figure 3.8.  

 

Figure 3.7: Geometry for test specimen     

2 and 3 

 

Figure 3.8: Test piece 2 

The final piece of dimensions 154x70 mm was added with no notches to account for 

the energy loss due to welding. 

Each of the specimen were fitted into the UTM for testing and put under tension load 

until failure noting down the force and displacement values in the computer. 
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4 CHAPTER FOUR: RESULTS AND DISCUSSION 

4.1 Mesh Independence and Convergence Test 

A mesh convergence test was performed on the test piece keeping the value of the 

phase-field regularization parameter constant at 0.6 mm on test piece 2. The mesh 

maximum size was varied from 0.3 mm to 1.2 mm with differences of 0.05 mm in each 

step, plotting for values of peak load. The final plot for number of elements vs peak 

load is as shown in Figure 4.1. Form this a suitable mesh element number can be 

selected as 265,678 elements, corresponding to a maximum mesh element length of   

0.3 mm. 

 

Figure 4.1: Mesh independence test 

  



34 

 

4.2 Variation of Shear Modulus 

The code was run first with a test problem of rectangle anti-plane solid having two 

notches on each side given a set displacement over each time interval. A 2x2 mm anti-

plane solid with shear modulus 10 GPa was taken with triangular notches of length      

0.2 mm and width 0.1 mm. The notches were placed on 20% of height on the left side 

and 80% of height on the right side. The geometry of test sample can be seen in the 

Figure 4.2. The code was run with a displacement of 0.1 mm per step for 30 steps on 

the top edge and the bottom edge kept fixed and the crack patterns were observed with 

the phase-field parameter contour plot in Figure 4.4 and the sharp crack interface can 

be approximated using the displacement distribution plot in Figure 4.5. 

 

Figure 4.2: Geometry for sample 

problem 1 

 

Figure 4.3: Mesh for sample 

       problem 1 
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Figure 4.4: Phase-field parameter 

distribution in sample problem 1 

 

Figure 4.5: Displacement distribution in 

sample problem 1 

The code was run again for two-notched problem with same geometry changing shear 

modulus to 77 GPa, with the same geometry as shown in Figure 4.6. The resultant 

phase-field contour plot and displacement contour plot can be seen in Figure 4.7 and 

Figure 4.8 respectively. 

 

Figure 4.6: Geometry for sample 

problem 2 

 

Figure 4.7: Phase-field parameter 

distribution in sample problem 2 
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Figure 4.8: Phase-field parameter distribution in sample problem 2 

In conclusion, change in shear modulus does not bring any change in the final crack 

propagation pattern of the solid plate. However, there is a difference in crack 

propagation between the two materials of different shear modulus when steps for both 

materials is kept at a third of their total steps. 

 

Figure 4.9: Phase-field parameter 

distribution in sample problem 1 at 

step=10 

 

Figure 4.10: Phase-field parameter 

distribution in sample problem 2 at 

step=10 

From the comparison of two contour plots Figure 4.9 and Figure 4.10 , the crack 

formation for sample problem 1 is already apparent while for sample problem 2, crack 

formation is still in progress. 
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4.3 Benchmark Test 

For the benchmark test, a single thin notch was placed on the same 1x1 mm square 

specimen with a thin notch on the halfway location of the left side going inwards 0.5 

mm as shown in Figure 4.11. A regular displacement is kept on the top edge as above 

examples and the bottom is kept fixed. The shear modulus was kept as 210 GPA, and 

with a mesh size of 7.5 × 10−3 mm. 

 

Figure 4.11: Geometry for sample 

problem 3 

 

Figure 4.12: Phase-field parameter 

distribution in sample problem 3 

 

Figure 4.13: Displacement distribution in sample problem 3 

The crack patterns thus obtained as shown in Figure 4.12 and Figure 4.13 were within 

expectation and benchmark test was concluded. 
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4.4 Branching 

Our code is also capable of handling the branching of cracks. For testing the branching 

of cracks a simulation was done by creating a geometry as shown in Figure 4.14 , with 

three notches, one notch on one side and the other notches at equal distances to the first 

notch on the other side. After the simulation the crack propagation was seen to be 

smooth, propagating from one notch and branching to the two notches on other sides as 

shown in the Figure 4.15. 

 

Figure 4.14: Three-notched geometry 

 

Figure 4.15: Phase-field parameter 

distribution in three-notched geometry 
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4.5 Circular Void 

To test the robustness of the code we induced the crack in a more complex geometry. 

We added a circular void in the middle of a square shaped geometry and simulated it 

by fixing the circumference of the circular void and applying tensile load at top edge of 

the square as shown in Figure 4.16. The MATLAB code gave phase-field plot as shown 

in Figure 4.17. The code was able to simulate the crack propagation in the same way 

as [7]. 

 

Figure 4.16: Geometry with circular 

void 

 

Figure 4.17: Phase-field parameter 

distribution in geometry with circular void 
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4.6 Experimental Validation 

4.6.1 Test Specimen 1 

The results from MATLAB and UTM testing for test specimen 1 can be seen in Figure 

4.18 and Figure 4.19 respectively. 

 

Figure 4.18: Phase-field parameter 

distribution for test specimen 1 

 

Figure 4.19: Test specimen 1 after 

UTM testing 

The first specimen of 130x63 mm dimension was seen to have notches too far apart that 

resulted in crack propagating straight from notch to the other side. The bottom notch 

was seen to have been the first to cause failure. The pattern of crack propagation 

obtained from UTM testing in test specimen 1 yielded similar results to that of 

MATLAB.  
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4.6.2 Test Specimens 2 and 3 

The non-notched specimen was tested first with the UTM to find maximum possible 

peak load allowable due to welding effects, which turned out to be 56 KN for test 

specimen 2 and 3. The result from MATLAB and UTM testing for test specimen 3 can 

be seen in Figure 4.20  and Figure 4.21 respectively. 

 

Figure 4.20: Phase-field parameter 

distribution for test specimens 2 and 3 

 

Figure 4.21: Test specimen 3 after 

UTM testing 

The simulation results for test specimens 2 and 3 displayed an S-shaped crack pattern 

as shown in Figure 4.20 that is formed due to joining of crack tip from each notch. For 

test specimen 3, the crack pattern from UTM tensile testing was observed to be similar 

to that observed in the simulation as shown in Figure 4.21, where the crack from two 

notches met together to form one crack pattern.  
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For the test specimen 2, the crack pattern from UTM tensile testing as shown in Figure 

4.22 resulted in a different pattern of crack propagation than MATLAB simulation, 

which could be accounted for by the improper alignment of test piece. 

 

Figure 4.22: Test specimen 2 after UTM testing 
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4.6.3 Comparison Between MATLAB and UTM Data 

Between the load vs displacement graphs plotted for UTM data and the simulation data, 

the peak load for Simulation was 58.245 KN and from UTM, it was observed to be 58 

KN for test specimen 1. For test specimen 3, the peak load for simulation was 40.054 

KN and from UTM, it was 43.65 KN. The threshold test that was done to exclude the 

possibility of welding causing any cracks in the specimen yielded a peak load value of 

56 KN which is below the 43.65 KN peak load for test specimen 3. The graphs trace a 

similar pattern of progression for simulated and experimented data, where load steadily 

increases until a maximum value then plummets when failure occurs due to crack 

formation and load decreases. The experimental results had graph with irregular 

increase in maximum load due to it not being a perfectly elastic solid which is assumed 

in the simulation. 

 

Figure 4.23: Load vs Displacement graph for test specimen 1 
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Figure 4.24: Load vs Displacement graph for test specimen 2 

The crack patterns obtained from simulation were thus effective in predicting the crack 

pattern that had been experimentally observed. However, there were significant 

differences to the plot data due to property of the material, alignment of specimen in 

UTM and human errors. 

4.6.4 Effect of Welding 

Initially, a mild steel specimen was taken as a test piece to analyze the crack 

propagation. The length, width, and thickness of the specimen was 150 mm, 70 mm 

and 2 mm respectively. The specimen was welded with around 40 mm long clamping 

metal with thickness 5 mm on each side of the plate at the end which is to be clamped 

in the UTM such that the effective length is 70 mm. Two notches of length 5 mm and 

width 1 mm were created 30% in length from both the edges where they were clamped 

in opposite directions. The geometry in MATLAB is as it is in Figure 4.25. In the 

simulation, the crack propagated from one notch to the other, shown in Figure 4.27, but 

during experiment, the test piece developed crack as shown in Figure 4.26. The crack 

propagated from one notch to the welding point. 
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To analyze this problem, we created another notch at the same welding point. We found 

from the phase-field plot in Figure 4.28 that crack propagated from one notch to a notch 

that had been formed at the welding point due to high heat. Thus, we concluded that 

due to welding the material property is changed and needs less energy to break and 

during elongation welding point is the lower energy point. 

 

Figure 4.25: Geometry for initial test 

specimen 

 

Figure 4.26: Initial test specimen after 

UTM testing 

 

 

Figure 4.27: Phase-field parameter 

distribution in initial test piece without 

welding defect 

 

Figure 4.28: Phase-field parameter 

distribution in initial test piece with 

welding defect 

4.6.5 Transition from Single to Separate Cracks 

To figure out the transition distance from when the two cracks join to form an S shape 

and when they go straight through without joining up, simulation is run for the two 

specimens, as shown in Figure 4.29 and Figure 4.30 with distance between notches 

varying with percentage of total length. After MATLAB simulation, it is found that for 

both cases of width and length, the transition occurs when the distance between two 

notches is somewhere between 30% and 35%. 
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(a) 

 

(b) 

Figure 4.29: Phase-field parameter distribution in test specimen 1 with notches at a 

difference  

(a) 30% and (b) 35% specimen length from each other respectively 

 

 

(a) 

 

(b) 

Figure 4.30: Phase-field parameter distribution in test specimen 2 with notches at a 

difference 

(a) 30% and (b) 35% specimen length from each other respectively 

When the gap between two notches is small, the stress concentration due to one notch 

overlaps the stress concentration due to another notch. Due to this condition, there is a 

higher overall stress concentration at the crack tip and the propagation of the crack is 

accelerated. Ultimately, it results in failure of the material. 

When the gap between two notches is large, there is no overlap in stress concentration. 

This reduces the stress concentration at the crack's tip and the crack propagation process 

is slowed down. 
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4.7 Limitations 

The limitations of our project are: 

i. The accuracy of code is defined for brittle materials only. 

ii. The code is restricted to second order differential equation. 

iii. The working of code is restricted to 2D geometries. 

4.8 Problems Faced 

The major problem we faced during the project is finding a suitable governing equation 

and implementing it for the development of code. Very few researches have been done 

in the field of crack propagation using phase-field model. Due to this reason, it was 

difficult to find a relatable governing equation. Selection and availability of material 

for experimental validation was also a major challenge. The simulations were done 

assuming no brittle fracture on a perfectly elastic body. Though the code was developed 

for brittle fracture due to the issues of availability and machinability the governing 

equations were done imagining a 2D solid with anti-plane loading so significant 

differences were obtained from the experimental results. 
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4.9 Work Schedule 

Table 4.1: Work Schedule 

S.N. WORK TIME FRAME 

1 Literature Study 9 months 

2 Proposal Writing 2 weeks 

3 Studying Governing Equations and Related 

Parameters 

2 weeks 

4 Development of Code 10 weeks 

5 Analysis of Result 2 weeks 

6 Improvement of Code 8 weeks  

7 Mid Term Report Preparation 4 weeks 

8 Experimental Setup 2 weeks 

9 Validation of Code  4 weeks 

10 Final Report Preparation 4 weeks 

 

Figure 4.31: Gantt chart 

  

20-May 28-Aug 06-Dec

Literature Review

Proposal Writing

Studying Governing Equations…

Development of Code

Exam and Dashain Break

Development of Code

Analysis of Result

Improvement of Code

Mid-Term Report Preparation

Experimental Setup

Validation of Code

Final Report Preparation
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5 CHAPTER FIVE: CONCLUSION AND FUTURE 

ENHANCEMENT 

5.1 Conclusion 

Generally, crack in the material constitute of a discontinuous interface between the 

crack and the matrix. Usual methods for computation of crack propagation would 

involve arduous use of re-meshing and tracking the crack’s tip to simulate propagation. 

The phase-field method bases its calculation on the minimum energy principle, which 

is used alongside a continuous phase-field variable that separates non-crack and crack 

with values of one and zero respectively and assumes their interface to be a continuous 

gradient which smoothly changes value from crack to non-crack over a thin phase-field 

length. The phase-field problem used in this project has a governing equation that 

solves for minimum elastic energy using two functions v, the phase-field parameter and 

u, the mechanical displacement over an area domain for an anti-plane elastic solid. The 

equations were solved using PDE models that were computed using FEM methods in 

MATLAB using its PDE Toolbox. Various problems were proposed to show the effects 

produced by varying shear modulus and crack location and geometry. Experimental 

verification was done with the simulated results using UTM to compare the code with 

real life application, giving us the value for peak loads during fracture to be 58 𝐾𝑁 for 

test specimen 1 and 43.65 𝐾𝑁 for test specimen 2. The analysis of result demonstrates 

the efficiency of phase-field method as an efficient tool for the numerical simulation of 

crack propagation in an anti-plane elastic solid problem.  

5.2 Scope for Future Enhancements 

The project can be further enhanced in the future in the following ways: 

i.  The code can be improved to work on 3D geometries. 

ii. The governing equation and code can be further developed for ductile materials. 

iii. The propagation of crack can be done using other computational methods like 

XFEM and the accuracy of these techniques can be compared.  

iv. Study of cracks with respect to change in parameters like critical energy release rate 

and residual stress in ductile fracture.  
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A. APPENDIX A: ALGORITHM FOR MATLAB CODE 

Step 1:  Define Variables 

Step 2:  Define initial PDE parameters 

Step 3:  Create PDE models for Elastic problem and Phase-field crack problem 

Step 4:  Create 2D geometry with DECSG function with a rectangle and subtracting 

notches from it 

Step 5:  Append the final geometry to both PDE models after making a geometry 

model out of it 

Step 6:  Generate linear triangular mesh out of PDE models  

Step 7:  Apply Boundary conditions on the Top and bottom edges as displacement u, 

which grows with the increment delta with each iteration of steps 

Step 8:  Is Step = 0? 

Step 8a:  If yes, VT =1, and elastic energy and max elastic energy = 0 

Step 8b:  If no, Max elastic energy = elastic energy 

Step 9:  Define Elastic problem parameters using the value VT 

Step 10:  Solve elastic problem with elliptic PDE solver to determine Elastic 

energy after displacement 

Step 11:  For irreversibility condition, 

Step 11a:  if value of VT is less than 0.005 for any mesh element, 

elastic energy = max elastic energy for that element 

Step 11b:  Else, continue 

Step 12:  Define Phase-field crack problem parameters using the value of elastic 

energy 

Step 13:  The Phase-field crack PDE model is solved for the value of VT 

Step 14:  Check if the step is equal to total steps 

Step 14a:  If no, do step + 1 and go to Step 7 

Step 14b:  If yes, continue 

Step 15:  Perform post processing on the PDE model by adding contours for u 

and v and adding labels 

Step 16:  Display the final PDE plots for u and v 

Step 17:  End 
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B. APPENDIX B: MATLAB CODE 

clear all; 
close all; 
%Parameters 
Totalstep = 10;    % Total steps of the simulation 
DeltaT = 0.1;      % Time interval 
%Antiplane Elasticity parameters 
Mu = 10;           % Shear Modulus 
%%%%%%%% 
a1 = 0.0;          % a assign a proper value 
f1 = 0.0;          % f assign a proper value 
%phase-field crack parameters  
VT = 1;            % initializing crack phase-field parameter v 
kappa = 0.04;      % Regularization parameter 
%%%%%%%% 
c2 = 2*kappa;          % c assign a proper value 
f2 = 0.5/kappa;        % f assign a proper value 
%% Create the PDE Model with a single dependent variable (Antiplane 

displacement u) 
numberOfPDE = 1; 
pdem1 = createpde(numberOfPDE); 
%% Create the PDE Model with a single dependent variable (Phase-field 

parameter v) 
numberOfPDE = 1;    
pdem2 = createpde(numberOfPDE); 
%% Geometry and Mesh 
% Rectangle with two notches 
width = 2;       % Width of rectangle 
height = 2;      % Length of rectangle 
LNotchL = 0.2;   % Length of notch left 
LNotchH = 0.05;  % Half width of notch left 
RNotchL = 0.2;   % Length of notch right 
RNotchH = 0.05;  % Half width of notch right 
lftloc = height*0.2;  % Left position of notch value from 0 to 1 
rgtloc = height*0.8;  % Right position of notch value from 0 to 1 
% define the geometry by giving the 4 x-locations followed by the 4 

y-location. 
gdm1(:,1) = [3 4 0 width width 0 height height 0  0]'; 
gdm1(:,2) = [2 3 0 LNotchL 0 lftloc-LNotchH lftloc lftloc+LNotchH 0 

0]'; 
gdm1(:,3) = [2 3 width width-RNotchL width rgtloc+RNotchH  rgtloc 

rgtloc-RNotchH 0 0]'; 
ns1 = char('R1', 'P1', 'P2'); 
ns1 = ns1'; 
g  = decsg(gdm1, 'R1 - P1 - P2',ns1);  % Subtracting the notches from 

the rectangle 
% Convert the DECSG geometry into a geometry object 
% on doing so it is appended to the PDEModel 
%%% Assigning the geomtry to the elastic problem (pdm1) 
geometryFromEdges(pdem1,g); 
%%% Assigning the geomtry to the crack phase-field problem (pdm2) 
geometryFromEdges(pdem2,g); 
% Plot the geometry and display the edge labels for use in the 

boundary 
figure;  
pdegplot(pdem1, 'edgeLabels', 'off');  
axis equal; 
%title 'Geometry With Edge Labels Displayed'; 
title(sprintf('Geometry \n')); 
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xlabel 'X-coordinate (cm)' 
ylabel 'Y-coordinate (cm)' 
%% Create the mesh 
% Create the triangular mesh on the geomtry  
hmax = 0.01;     % element size 
%Elastic problem 
msh=generateMesh(pdem1,'Hmax', hmax, 'GeometricOrder', 'linear'); 
%phase-field problem 
msh=generateMesh(pdem2,'Hmax', hmax, 'GeometricOrder', 'linear'); 
p=msh.Nodes;     % Number of nodes 
t=msh.Elements;  % Number of elements 
%%%%%%%%%%%%%%% 
figure;  
pdeplot(pdem1);  
axis equal; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
for step=0:Totalstep 
    time = DeltaT * step;    % Time 
    ucTop = applyBoundaryCondition(pdem1,'Edge',1, 'u', time); 
    ucBottom = applyBoundaryCondition(pdem1,'Edge',2, 'u', 0); 

  
    if(step == 0) 
        VT = 1; 
        MaxElasticEnergy = zeros(1,length(t)); 
        ElasticEnergy = zeros(1,length(t)); 
    else 
        MaxElasticEnergy = ElasticEnergy; 
    end 
    %% 
    c1 = vt.^2*Mu;          % c1 assign a proper value 
    % 
    %% Solving  
    % Elastic problem 
    % The eliptic solver 
    u(:,step+1) = assempde(pdem1,c1,a1,f1); 
    [dudx,dudy] = pdegrad(p,t,u(:,step+1)); 
    area=pdetrg(p,t); 
    % Calculating the elastic energy 0.5*Mu*|Du|^2 
    ElasticEnergy = 0.5*Mu*(dudx.*dudx + dudy.*dudy); 
    un = pdeprtni(p,t,ElasticEnergy); 
    % irreversibility condition 
    if(step > 0) 
       for i=1:length(t) 
           if(VT(i)<0.005) 
             ElasticEnergy(i) = MaxElasticEnergy(i); 
           end 
       end 
    end 
    %% 
    a2 = 2*(ElasticEnergy + 0.25/kappa); % a2   assign a proper value  
    % 
    %% Solving 
    % Phase-field crack problem 
    % The eliptic solver 
    v(:,step+1) = assempde(pdem2,c2,a2,f2); 
    % interpolating the nodal values on the elements 
    VT = pdeintrp(p,t,v(:,step + 1)); 
end 
figure; 
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pdeplot(pdem2, 'xydata', u(:,step), 'contour', 'off', 'colormap', 

'jet'); 
title(sprintf('Distribution of Displacement u \n')); 
xlabel 'X-coordinate (cm)' 
ylabel 'Y-coordinate (cm)' 
axis equal; 
%% 
figure; 
pdeplot(pdem2, 'xydata', v(:,step), 'contour', 'off', 'colormap', 

'jet'); 
title(sprintf('Distribution of the phase-field parameter v \n')); 
xlabel 'X-coordinate (cm)' 
ylabel 'Y-coordinate (cm)' 
axis equal; 

 

Geometry code for sample problem 2: 

width = 1;              % Width of rectangle 
height = 1;             % Length of rectangle 
LNotchL = 0.5;          % Length of notch left 
LNotchH = 0.0005;       % Half width of notch left 
lftloc = height*0.5;    % Left position of notch value from 0 to 1 
% define the geometry by giving the 4 x-locations followed by the 4 

y-location. 
gdm1(:,1) = [3 4 0 width width 0 height height 0  0]'; 
gdm1(:,2) = [2 3 0 LNotchL 0 lftloc-LNotchH lftloc lftloc+LNotchH 0 

0]'; 
ns1 = char('R1', 'P1'); 
ns1 = ns1'; 
g  = decsg(gdm1, 'R1 - P1',ns1);  % Subtracting the notch from the 

rectangle 
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C. APPENDIX C: GUI INTERFACE 

The GUI for the code was made to input the sample geometry, the mesh size for 

geometry, and then inputs to define the size and location of notches according to a value 

from 0 to 1 which will define the location relative to the length of the specimen. The 

user can then use geometry, mesh and solve buttons to perform the said tasks. 

 

Figure C.1: GUI Interface 
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D. APPENDIX D: RESULTS 

The second and third specimen simulation result had the expected S shaped crack 

propagation that is formed due to joining of crack tip from each notch. The crack 

propagation can be better understood by analyzing each step until the crack is observed. 

The phase-field parameter plot for each 10 steps until step 80 is analyzed to observe 

crack propagation in second test specimen 2. First, crack formation is seen on the tip of 

notch which gradually increases forwards until step 50 where phase-field parameter 

value decreases in the region between the two cracks that are forming. The phase-field 

parameter further decreases in the region and gets refined until it converges to a pattern 

of an S shape. 

   

(a) (b) (c) 

   

(d) (e)  (f) 

   

(g) (h) (i) 

Figure D.1: Phase-field parameter distribution in test specimen 2 with time step 

increment of 10 upto 80 
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The video obtained from the recording throughout the experiment was also analyzed 

and a frame from each 6 seconds were taken. The frames showed a similar crack 

propagation pattern to that of simulation. 

   

(a) (b) (c) 

   

(d) (e)  (f) 

   

(g) (h) (i) 

Figure D.2: Step by step timelapse of UTM testing in test specimen 3 in increment of 

6 seconds 

 


