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ABSTRACT

Radio-based direction finding is an old concept for manned aircraft where a pilot man-

ually flies towards the directed bearing. However, it is a relatively new field of study for

unmanned aerial systems like quad-rotors especially motivated by the desire of making

the homing process autonomous. In this study, the received signal strength method to

localize the radio source has been applied and tested. The proposed method employs a

UAS equipped with a radio frequency (RF) receiver to get RSSI readings from the RF

source. The obtained RSSI measurements at three receiving locations are converted to

approximate distances from the transmitter using a log-distance path loss model, and

the localization algorithm based on trilateration is run onboard the microcomputer to

localize the radio transmitter. Through simulations and experiments, the performance

of the suggested method is assessed. The verification mission employing the suggested

technique localized the RF source with a distance error of 15.8 meters and an angle

error of 8.62 degrees, at best, whereas the actual UAS-based flight localized it to the

distance accuracy of 25 meters, and the angle accuracy of 8.32 degrees at a test domain

of 100 meters radius. As the measured signal strength values are highly noisy, with the

standard deviation of the Gaussian distributed random noise variable reaching as high

as 5, Kalman filter is designed for the off-board application to reduce the effect of such

noises during the calibration phase. It is observed to provide smoother filtering charac-

teristics than Simple Moving Average and Exponential Moving Average filters which

seemed to overfit the noises. Finally, two approaches: range of distance, and moving

towards/away, are presented to consider uncertainties in distance approximations, and

it is recommended to build a system that works reliably within the distance confidence

interval below 86 % to achieve the localization accuracy of at least 30 %.

Keywords: Unmanned Aerial System, Radio Frequency Localization, RSSI, Trilater-

ation, Gaussian Noise, Kalman Filter
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CHAPTER ONE: INTRODUCTION

1.1 Background

The effectiveness of Unmanned Aerial Systems has led to their applications in diverse

fields. Notably, they have gained significant traction in search and rescue operations due

to their ability to efficiently access remote and hard-to-reach locations that would other-

wise be inaccessible or unidentified to immediate human responders. The identification

of a location represents a crucial prerequisite for conducting search and rescue missions.

GPS is the industry standard when it comes to location findings and it is widely being

used in the 21st century. GPS systems, however, are highly power-intrusive systems,

and in case of a power outage, access to GPS signals will be cut off. Mobile phones are

the most prevalent means of obtaining GPS location information; however, their battery

life is insufficient for extended usage. Radio-based localization proves advantageous in

this regard since the radio signal source can operate for several months with minimal

power consumption. Consequently, the work presented here focuses on localizing the

target by utilizing Radio Frequency (RF) localization technique, under the condition

that the subject in search is equipped with an RF-transmitting device. The technique

involves equipping the subject with an RF source, the strength of which is then utilized

by the localization algorithm to determine the location of the subject. Localization can

be achieved through various methods, including range-based and range-free schemes

[1]. The approach taken in this study employs a range-based technique that utilizes

Received Signal Strength Indication (RSSI) measurements.

The process of localization relies on filtered RSSI values owing to its acceptable degree

of accuracy and relatively lower complexity compared to other techniques. Further-

more, the RSSI-based method is regarded as the most cost-effective means of local-

ization in outdoor settings. However, in indoor conditions, the performance of this

technique is somewhat limited [2]. Nonetheless, the use of RSSI measurements re-

mains a popular and effective means of achieving localization in various settings. The

practice of target localization has been extensively studied and applied using fixed ref-

erence nodes [2]. However, the current research seeks to extend the same methodology
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to Unmanned Aerial Systems (UAS) for enhanced target-tracking capabilities.

1.2 Problem statement

GPS, being power intrusive, can be extremely unreliable in cases when electric power

sources are scarce. This can result in total loss of connection, which poses a signif-

icant risk if the subject is a beneficiary of a search and rescue mission. Therefore, a

technology to track the subject with an uninterrupted connection is desirable.

1.3 Objectives

1.3.1 Main objective

The main objective of the project is to develop a quadrotor-based Unmanned Aerial Sys-

tem that will detect the radio frequency signals emitted by the transmitter, and travel to

the transmitter location by using a target localization algorithm to a minimum accuracy

of 30 meters with respect to the transmitter and 20 degrees with respect to the origin

(mission start point) within the test domain of 100 meters radius.

1.3.2 Specific objectives

• To fabricate a drone and incorporate various sensors required for target localiza-

tion.

• To develop custom transmitter and receiver modules.

• To develop a MATLAB program to simulate the target localization algorithm.

• To study and apply different techniques to filter out the noisy RSSI signals.

• To present methods to quantify uncertainty considerations in distance estimations.
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1.4 Applications

Some potential applications of RF source localization using UAS include:

• Search and rescue operations: By detecting the signal from a communication

device of the missing person, drones with RF sensors may rapidly and effectively

look for them in disaster zones or other hazardous situations.

• Emergency response for hazardous incidents: Drones equipped with RF sensors

can be used to quickly find and identify the source of a fire, gas leak, or other

hazardous situation. Emergency responders may be better able to prioritize and

coordinate their efforts with the aid of this information.

• Security and surveillance: Drones with RF sensors can be used to monitor and

track suspicious activity, as well as detect and locate illicit Wi-Fi transmissions

in off-limits locations.

• Environmental monitoring and research: RF sensors aboard drones can be used

for environmental monitoring and research, including mapping and measuring

RF signals in far-off places that are difficult to access. This data can be crucial

for determining how wireless communication affects the environment.

• Wildlife tracking and monitoring: By detecting the signal from tracking devices

connected to animals, RF sensors on drones can be utilized for wildlife tracking

and monitoring. The movements and behavior of wildlife can be better under-

stood with the help of this knowledge.

1.5 Features

RF source localization using drones refers to the process of determining the location of

a RF-emitting source from a drone-borne device. Some of the key features of RF source

localization using drones include:
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• Real-time data collection: By using RF sensors on drones, researchers may quickly

and precisely gather information on the position and strength of radio waves.

• Increased mobility: Compared to conventional ground-based techniques, drones

may fly to difficult-to-reach places, giving them more access for RF source local-

ization.

• Remote monitoring: Remote monitoring of RF sources is made possible by lo-

calizing RF sources utilizing drones, which enables real-time data gathering and

processing from a secure distance.

• Cost-effectiveness: Compared to conventional approaches that demand special-

ized equipment and personnel, drones offer a cost-effective solution for RF source

localization.

• Greater accuracy and dependability: Drones equipped with high-precision sen-

sors and cutting-edge algorithms enable RF source localization to be more accu-

rate and reliable.

• Ease of deployment and use: Drones are simple to deploy and operate, and they

require little training to be used effectively for RF source localization.

1.6 Feasibility analysis

1.6.1 Economic Feasibility

The project incorporates assembling a quadrotor and applying various electronic com-

ponents for transmitting and receiving purposes. The cost of UAS components and

electronics accessories is the major chunk of the budget. However, UAS components

(drone frame, microcontroller, motors, ESCs, battery, etc.) are available at the Depart-

ment of Mechanical and Aerospace Engineering. Remaining expenses are met by the

members themselves. Further, application for funds from institutions is also consid-

ered. The expenses of fabrication and application of this drone are not outstandingly

expensive. Therefore, the project is economically feasible.
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1.6.2 Technical Feasibility

The design and manufacturing requirements for the completion of the drone is met

completely by the resources available in the Department of Mechanical and Aerospace

Engineering. Other technical requirements are not unprecedented and have been done

individually but not in combination. The theory required to build is not new and had

been incorporated in the syllabus for Bachelor in Aerospace Engineering. For these

reasons the project is technically feasible

1.6.3 Operational feasibility

The localization of the RF source doesn’t require huge pristine space. The required

space is easily met by the Campus area. The calibration of UHF source can be done

easily by the space requirement. The major operational hurdle for the drone is the

permission to fly. According to the rules of the air document, drones under 2kg do

not require permission to fly in an unrestricted area. As the manufactured drone which

localizes the RF source will be under 2 kg, the project is operationally feasible.

1.7 System Requirements

For drone-based RF source localization, the following software and hardware require-

ments are necessary:

1.7.1 Software Requirements

1. Drone flight control software (ArduPilot)

2. Microcontroller (Arduino IDE)

3. RF signal processing software (e.g., MATLAB or Python with relevant libraries)

4. Geolocation algorithms (e.g., trilateration) to determine the location of the RF

source
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5. Mapping software (e.g., Google Maps) to visualize the location of the RF source

in a geographical context

6. Data storing and analyzing software (Cool term and Excel)

1.7.2 Hardware Requirements

• Drone with GPS and altitude control capabilities and stable hovering characteris-

tics

• RF receiver (with antennas) capable of detecting signals from the RF source

• A computer or data processor to collect, process, and analyze the RF data

• Communication system (e.g., Wi-Fi or telemetry) to transmit data from the drone

to the computer

1.8 Scope

• Possible targets may not have GPS access due to some reasons. In such cases the

target identification is done by the locals and by helicopter which is expensive

and lengthy process.

• There are many endangered wild animals in Nepal so this project could help to

track their location and study their behaviors.

• It can also be used in disaster rescue operation.

• It can be useful to track lost and distressed trekkers in remote trekking locations.

Figure 1.1: Pictorial Realization of Project Objective
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CHAPTER TWO: LITERATURE REVIEW

2.1 Localization modality

Radio frequency (RF) based localization has a rich history, dating back to World War

II when it was used to locate soldiers in emergency situations [3]. Earlier approaches

to sensing the RF signal were based on creating maps of the signal strength over the

area by using mobile robots [4]. This approach was later used on an unmanned aerial

vehicle for localization of radio-tagged sturgeon assuming that a stationary radio source

is transmitting with constant power [5]. However, this method is highly inefficient as the

vehicle has to move over the entire area to generate a signal strength map. Talking about

the strength map, researchers have also dabbled with infrared (IR) based localization

techniques, primarily for indoor purposes, where a badge emitting an IR signal every

10 seconds was worn by a person and sensors placed at various locations localized the

target [4]. However, IR being sensitive to sunlight, has limited application in outdoor

localization. RF networks, on the other hand, have greater reliability, range, scalability,

and maintainability.

Different RF localization techniques have been studied including angle of arrival (AOA)

[6], time of arrival (TOA) [7], time difference of arrival (TDOA) [8], and received signal

strength indication (RSSI) [9, 10, 11]. The accuracy of these methods depends on the

target source being under the line of sight of the localizing system [3].

AOA-based localization is based on estimating the bearing by rotating a directional

antenna to measure signal strengths at different directions [12]. However, it necessitates

additional hardware increasing the overall weight and complexity of the system. With

the advancement of highly maneuverable UAVs, the need for an actuator mechanism to

rotate the antenna can be eliminated. However, studies have reported the rotation time

for a single measurement to be 40s [13] and 45s [5] thereby consuming a significant

portion of battery life, and increasing the localization time. ToA and TDoA have been

reported to provide more accurate location estimates at shorter time [14]. However,

they are very sensitive to timing errors and their implementation requires sophisticated
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hardware. RSSI is the cheapest and simplest technique for localization. While it can

suffer from inaccuracy due to the reflection and attenuation of signals when impacted by

the environment, the issue can be mitigated by implementing a more detailed physical

model of the environment [15]. The combinations of RSSI, AOA, TOA, and TDOA

are presented in different studies [16, 17]. Combining TDOA and TOA techniques has

been found to offer better accuracy than RSSI, but it comes with a substantially higher

cost [16]. Therefore, the RSSI-based technique is seen as a good candidate to achieve

the desired localization accuracy at a minimum cost.

Recent RSSI-based works have focused on the localization of a target by using multiple

UAVs simultaneously [18]. Using multiple UAVs can be expensive, so it becomes de-

sirable to use a single UAV. For this, RSSI-based outdoor localization techniques have

been developed. An RSSI technique based on the clustering method along with Singular

Value Decomposition has been reported to provide an accuracy of 7m [19].

RSSI values are obtained from radio transceivers. LoRa (Long Range) technology is of-

ten used in low power wide area networks (LPWANs) to support IoT applications. It is

a low-power unit with a range of up to 15 km and is inexpensive, making it highly suit-

able for long-range indoor and outdoor localization [20]. LoRa is being incorporated in

UAS to improve the network coverage to communicate during a disaster [21]. However,

its use in UAV-based target localization is yet to be seen. In the work presented ahead,

an RF signal source is localized using RSSI measurements from the LoRa transceivers

for an outdoor environment. The mission test flights were carried on an open-controlled

environment within the visual line of sight as limited by CAAN regulation [22].

2.2 Filtering

The received signal strength values are affected by multipath fading [23], antenna ori-

entation [24], ground effects [25], and other temporal and spatial changes in the en-

vironment [26] including weather [27], human activity [28, 29], etc. Likewise, strong

sensor mobility at the measuring nodes also hampers the communication channel which

results in errors while receiving the signals and increases packet delivery latency [30].

8



Filtering of the signals to reduce the effects of perturbations and fading in RSSI-based

technique is proposed in [31]. The paper suggests that filtering improves the ranging ac-

curacy by eliminating the noises. To reduce the noises and improve the overall accuracy

of the RSSI-based localization, various filtering techniques are analyzed and compared

in [32]. Low computational filters like Simple Moving Average (SMA), Exponential

Moving Average (EMA), Moving Median, and Moving Mode are selected for the com-

parison. The results indicated that SMA and EMA provide the best overall filtering

performance. In [33], the Kalman filter is also used to mitigate the noises present in

the received signal. Its efficacy has been observed to be comparable to that of a sim-

ple moving average filter when signal shadowing is absent. However, in scenarios with

higher levels of signal shadowing, the Kalman filter has demonstrated a notably reduced

mean error. The results suggest that the Kalman filter exhibits enhanced robustness and

suitability for implementation in dynamically changing environmental conditions. In a

LoRaWAN protocol, the Kalman filter is reported to improve the positioning accuracy

by a whooping 22 % [34]. The study reports no significant effect in accuracy while

using Fast Fourier Transform (FFT) and Particle filtering methods.
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CHAPTER THREE: METHODOLOGY

Problem Statement

Literature Review

Conceptual Design

Localization Modelling

Localization Simulation

Component Selection and Testing

UAS Assembly

Stability Test of UAS

Is
θ, β, ψ ≈ 0

during
takeoff?

Mission Test Flight

Is RF Source
Localized

within 30m, 20◦ ?

Documentation and Reporting

Yes

No

Yes

No

Figure 3.1: Methodology Flowchart
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3.1 Localization Modeling

The objective of this work is to use a UAS to localize a stationary RF transmitter to best

possible accuracy. It is aspired to attain reliable positioning accuracy with a single UAS

by discarding inaccurate RSSI measurements and identifying the most accurate ones.

RSSI measurements in UASs vary due to various elements such as structures, trees,

wind, speed of the vehicle, etc. As a result, a localization technique based on several

sample measurements is required.

As the position of the UAS in space will be known, a model is necessary to obtain the

distance of the UAS from the transmitter to further proceed with localization. As we

will be receiving radio frequency signals, a distance conversion model based on the

Received Signal Strength Indicator (RSSI) values is selected.

3.1.1 RSSI Based Localization

RSSI values are the measure of the power of received radio signals measured in dBm.

In RSSI-based localization, a receiver will measure the RSSI values of the signal trans-

mitted by the transmitter. When RSSI values are measured at three known locations,

those values can be translated into the distance values based on some signal propagation

model. Then, we will have a system of three non-linear equations, which are linearized

and solved to obtain the transmitter coordinates. The flowchart for RSSI based local-

ization is shown in figure 3.2.
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UAS takes off from the ground

Flies to three preset waypoints

Records RSSI values and mean RSSI values for each waypoint

Using the mean RSSI values, calculates the corresponding
distance from the calibrated path-loss model

Solves the trilateration model to obtain localization coordinates

Updates the mission with localized coordinate as new waypoint

Does it arrive
within 30m, 20◦ of the

target location?

With current location
as a new waypoint,
update two other
nearby waypoints

End the mission

No

Yes

Figure 3.2: RSSI based Localization

3.1.2 Distance Estimation Model

RSSI values (measured in dBm) give the power of the received signals as the signal

propagates from transmitter to receiver. As the signal power decays with distance,

RSSI values can be used to infer the proximity between the receiver and transmitter

by approximating the distance between them. One of the most widely used distance

estimation model for radio wave propagation is the log-normal model [35] given by
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equation as:

PL(d) = PLd0 + 10nlog10
d

d0
+Xσ (3.1)

Here, PL(d) is the path loss at a distance d, d0 is the reference distance, PLd0 is the

experimentally measured average path loss at d0, and n is the path loss index. X(σ) is

the Gaussian distributed random variable with mean, μ = 0, and some finite value of the

standard deviation, σ.

Equation 3.1 in terms of RSSI can be written as:

RSSI = RSSI0 − 10nlog10
d

d0
−Xσ (3.2)

The effect of X(σ) can be removed to some extent by filtering. If we neglect X(σ), and

take the reference distance d0 equal to 1 meters then, equation 3.2 becomes

RSSI = RSSI0 − 10nlog10(d) (3.3)

RSSI0 can be experimentally determined and the value of n can be computed by min-

imizing the sum of squares.

f =
∑

(RSSI −RSSI0 + 10n log10(d))
2

Here, f is the function to minimize. Then, the distance between the receiver and the

transmitter can be approximated by

d = 10
RSSI0 −RSSI

10n (3.4)

3.1.3 Trilateration Model

The trilateration model aims to calculate the localized transmitter coordinates based on

three known measurement coordinates and the approximated distances of those coordi-

nates from the transmitter.

(x− x1)
2 + (y − y1)

2 = d21 (3.5)

(x− x2)
2 + (y − y2)

2 = d22 (3.6)

(x− x3)
2 + (y − y3)

2 = d23 (3.7)

Ax = B (3.8)
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x = A−1B (3.9)

where,

A =

⎡
⎣ 2(x1 − x2) 2(y1 − y2)

2(x1 − x3) 2(y1 − y3)

⎤
⎦ (3.10)

B =

⎡
⎣ r22 − r21 + x21 − x22 + y21 − y22

r23 − r21 + x21 − x23 + y21 − y23

⎤
⎦ (3.11)

x =

⎡
⎣ x

y

⎤
⎦ (3.12)

It is based on simple matrix operations, and is basically converting a system of three

non-linear circle equations into a linear form as in the equation 3.8 and solving for

matrix, x, which contains the co-ordinates of the localized transmitter.

3.1.4 Conversion to Geographical Coordinates

Conversion of the localized cartesian coordinates into geographical coordinates is nec-

essary in order to command the UAS to fly to the localized GPS location. Calculation

of the latitude and longitude of the localized coordinate given the latitude and longitude

of the reference point and the distances east and north of the reference point is given by:

latitude = latituderef +
y

earth′sradius
∗ 180

π
(3.13)

longitude = longituderef +
y

earth′sradius
∗ 180

π
∗ 1

cos(latituderef )
(3.14)

The formula is based on the principles of spherical trigonometry. It assumes a spherical

Earth, which is an approximation that works well for small distances. It is commonly

used in geodesy and navigation, and is often implemented in software libraries and pro-

gramming languages. The cartesian coordinate system is fixed in such a way that the
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X-axis and Y-axis are directed towards east and north respectively, such that when lo-

calized cartesian point (x,y) is obtained with respect to the reference point (0,0), values

of x and y can be directly implemented in the coordinate transformation formula.

3.2 Filtering

There is a substantial presence of noise in the signal strength values, and it is highly

desirable to remove those noise effects. Three different filtering techniques are studied,

namely, the Kalman filter, Simple Moving Average (SMA) filter, and the Exponential

Moving Average (EMA) filter. In this work, these filtering techniques are applied only

in offline cases, primarily during calibration to get the smooth curve of the data points

which are used to fit the log-distance path loss model. Application of these filters will

remove noise from the RSSI measurements, and provide stability and robustness to the

overall localization scheme.

3.2.1 Simple Moving Average Filter

The SMA is a kind of filter that averages a predetermined subset of data called a ”win-

dow” and slides this window over a time series to produce a new sequence of data

points. The weight of each data point in the window is the same, thus each one con-

tributes equally to the average. The window’s length can be changed, and while ex-

panding it produces a smoother output, it also causes the filtered data to lag more.

The SMA filter needs some data points to calculate the average and produce an output.

At the beginning of the time series, there are not enough data points to do this. There-

fore, the output is either undefined or set to a default value. Once enough data points

are available to fill the window, the filter can calculate the average of the data subset

and give an output sequence.

The SMA filter is a useful tool for removing high-frequency noise while preserving

low-frequency trends in noisy data. It’s easy to use and doesn’t require a lot of pro-

cessing power, making it ideal for real-time applications. As each data point in RSSI

filtering is given equal weight, it is possible to apply a SMA filter with a window size
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of ’n’. Nevertheless, the SMA filter’s output sequence is not established at the start of

the time series until there are adequate numbers of data points to compute an average.

After there are enough data points, the filter may calculate the average and offer an out-

put sequence. When a past average is known, the SMA filter’s key advantage is that it

is straightforward to compute for subsequent time occurrences.

Expression to calculate SMA at time t,

SMAt =
1

N

N−1∑
i=0

xt−i (3.15)

where, SMAt is the SMA at time t, calculated as the sum of the previous N RSSI

measurements (xt−i where i ranges from 0 to N − 1) divided by N . The value of N de-

termines the number of past measurements included in the moving average calculation,

with a higher value of N resulting in a smoother output with less noise.

3.2.2 Exponentially Moving Average Filter

EMA is another kind of filter in which older data points are given less weight, whereas

newer data points are given greater weight. Unlike other filters, which need a certain

number of data points to produce a result, this filter starts creating an output right away.

A parameter known as the ”smoothing parameter (α)” determines the weight given to

each data item. A higher value of α gives more weight to recent measurements and

less weight to older measurements, resulting in a faster response to changes in the RSSI

signal. The value of α is typically a value between 0 and 1, and is chosen based on

the desired filtering effect for the specific application. The filter may add noise and lag

to the output if the smoothing parameter is set too high. If it is set too low, the output

could be excessively smooth and insensitive to input signal variations. The EMA filter

is helpful when a smooth output is sought, but if it is not properly tuned, it might cause

lag in the output.

Expression to calculate EMA at time t,

EMAt = αxt + (1− α)EMAt−1 (3.16)

Here, EMAt is the EMA at time t, calculated as a weighted average of the current RSSI

measurement xt and the previous EMA value EMAt−1, where the weight given to xt
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is determined by the smoothing parameter α.

3.2.3 Kalman Filter

The Kalman filter is an effective way of removing the noise of the signal and obtaining

a smoothed estimate of the true signal. Kalman filter combines two sets of information

as it functions: predictions of the model of the system, and the measurements of the

system. To filter out the RSSI values, we need to supply the Kalman filter with the

mathematical model that gives the expected behavior of the RSSI values as a function

of distance. Then, by combining the predicted and measured values, Kalman filter pro-

duces a smoothed estimate of the RSSI values which are less affected by noises, thereby

allowing us to make more accurate estimation of the distance between the transmitter

and receiver.

The working algorithm of the Kalman filter is summarized below:

i. Initialize the state vector ‘x’ and the covariance matrix ‘P’

ii. Define the system model matrix ‘A’, the measurement matrix ‘C’, and the process

noise covariance ‘Q’.

iii. Define the measurement noise covariance ‘R’.

iv. Initialize the filtered signal vector.

v. For each measurement in the input signal, ‘noisy-signal’, do the following:

a. Predict the next state using the system model: x = A * x.

b. Predict the next covariance matrix using the system model and the process noise

covariance: P = A * P * A’ + Q.

c. Compute the Kalman gain K using the current covariance matrix, the measurement

matrix, and the measurement noise covariance: K = P * C’ / (C * P * C’ + R).

d. Update the state estimate using the Kalman gain and the difference between the

measurement and the predicted measurement: x = x + K * (noisy-signal(i) - C * x).

e. Update the covariance matrix using the Kalman gain and the measurement matrix: P

= (eye(size(P)) - K * C) * P.

f. Calculate the filtered signal using the current state estimate and the measurement
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matrix: filtered-signal(i) = C * x.

vi. Return the filtered signal.

The selection of appropriate values for the covariance matrices, P, Q, and R is critical

for the design of the Kalman filter. The estimation of these values can be done based on

the statistical properties of the system and measurement noises, and/or trial and error

method where the values are adjusted based on desired filter performance. For our

purposes, we have selected R as equal to the variance of the noisy signal. P and Q

are both 2 by 2 diagonal matrices with diagonal elements in P being 100 and Q being

0.0000001.

3.3 Considering Uncertainty

Although the Gaussian noise in the signal, as denoted by Xσ in equation 3.1 can be re-

duced by the use of filters, the signal data will still not be completely free of unexpected

variations in RSSI values caused by several unknown and unmodeled factors. This will

inherently bring uncertainty in distance approximation. Therefore, it will be unrealistic

to state a single distance value based on the mean of RSSI measurements.

Two different approaches can be used to consider uncertainty: providing range of dis-

tance as output [36], and/or providing moving towards or away information as output.

3.3.1 Range of Distance

The standard deviation in the filtered RSSI signals can be used to output a predicted

range of distances based on 68-95-99.7 rule. If X is a normally distributed random

variable with mean μ and standard deviation σ, then

Prob(μ− σ ≤ X ≤ σ + μ) ≈ 0.6826

Prob(μ− 2σ ≤ X ≤ 2σ + μ) ≈ 0.9544

Prob(μ− 3σ ≤ X ≤ 3σ + μ) ≈ 0.9974

If X is a random variable that denotes the filtered RSSI value, and sigma be the standard

deviation of the still existing noises, then there is a 68% probability of the target being
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in the range [f(X+σ), f(X−σ)] where f(x) is the distance function for the fitted path

loss model.

f(x) = 10
RSSI0− x

10n (3.17)

It is assumed that the standard deviation of the RSSI values at every distance is constant,

and equal to the standard deviation of the noise values.

3.3.2 Moving Towards/Away

The idea of implementing the moving towards/away information involves continuously

reading RSSI values, translating them into distances from the target at two consecutive

time stamps, and computing the instantaneous velocity. The instantaneous velocity is

given by equation 3.18.

Vins,i+1 =
di+1 − di
ti+1 − ti

(3.18)

As the instantaneous velocity is calculated based on the information supplied by the

filtered instantaneous RSSI measurements, the velocity information might appear noisy.

So, it will be necessary to use a smoothing filter for instantaneous velocity calculations.

RSSI → Filter1 → Distance Model → Instantaneous Velocity → Smoothing Filter

Negative values of instantaneous velocity mean that the system is moving towards the

transmitter, and the positive values mean that it is moving away.

3.4 UAS Development

3.4.1 Software Development

A MATLAB-based application is created to select drone components by taking input

for the drone’s weight, number of motors, and drone range required. The application

is designed to provide the necessary propeller, motor, ESC and battery capacity for

drone building. A database of motor static thrust ratings is kept, providing the necessary

information on the propeller’s pitch and KV rating. Using the input weight of the drone,
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the thrust per motor is calculated, and then compared with the database’s thrust values

to select the appropriate motor and propeller. The data base is created with the motors

and propeller that are available in Nepal.

3.4.2 CAD Geometry

The drone proposed to be assembled is designed in CAD software CATIA V5 to under-

stand the overall design and architecture.

Figure 3.3: CAD model of the drone

3.4.3 UAS Hardware

An X-type drone configuration consisting of four 980kv DC brushless motors is used.

To vary the speed, four electronic speed controllers are present. Pixhawk 4 and Arduino

Uno are used as the flight controller and the flight computer respectively. Other periph-

eral components and sensors include PM07, SX1278 LoRa transceiver, etc. To power

all the components a 3-cell Li-Po battery is used. 10*4.5 propellers are used during the

mission. GPS module and telemetry are connected to Pixhawk to provide the necessary

data to control and perform the mission.
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Figure 3.4: Developed UAS (Quad)

To perform the localization mission, antenna and sensors are attached to the drone.

After the assembly of the drone, control, stability as well as performance of the drone

are tested and the necessary modifications are done accordingly.

The hardware that was used for the drone and localization are:

1. Motor:

The motor is the fundamental component of a drone, required to rotate the pro-

pellers to produce the necessary thrust. The number of anticlockwise rotating

motors must match with the clockwise rotating motor in order to equalize the

force produced by the propeller. The KV rating of the motor determines the size

and thrust it can produce. KV rating is the RPM constant of a motor, indicating

the number of revolutions a motor makes after the application of 1 volt without

any load attached. When a high KV motor is paired with a large propeller, it will

spin the propeller with high rpm which requires more torque, causing heating and

premature failure.

Four 980kv brushless motors are used in the drone.

2. Propellers:

Propellers are vital components of the drone responsible for the generation of the

required lift force. The performance of a propeller depends on its size and pitch.
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The pitch of a propeller is defined as the traveling distance per single revolution

of the propeller. Lower pitch values account for more torque, while higher pitch

propellers account for greater lift force. Smaller propellers with a high pitch are

better suited for quick and high-maneuvering drones, while larger propellers with

lower pitches are suited for carrying heavier loads.

A 10*4.5 (inch) propeller is attached to each motor. The diagonally opposite

propellers rotate in a similar direction, with two rotating in a clockwise direction

and the other two in an anticlockwise direction.

3. ESC:

Electronic Speed Controllers (ESCs) are components of drones capable of ad-

justing the speed of electric motors. A signal from the flight controller causes the

ESC to change the voltage provided to the motor, which in turn changes the RPM

value and allows the drone to maneuver. ESCs for drones are typically rated for

the maximum current drawn by the motor and have a refresh rate in hertz, in-

dicating how many times per second the ESC can change the motor speed. For

quadcopters, high refresh rate ESCs are used. An ESC with a 10A rating will

draw a maximum continuous current of 10A, and the ESC current rating is usu-

ally chosen higher than the maximum current to prevent burnout. ESCs also have

a burst rating, which is the maximum amount of current an ESC can handle for a

short period without damage.

30 A ESC is incorporated in the drone hardware to control the speed of the drone

motors.

4. Battery:

The battery is crucial for powering all the electrical and electronic components

of the drone. Typically, Li-Po batteries are used, with a nominal voltage of 3.7V.

Cells are kept together in series to increase the voltage. The number of cells in

the battery is known via the number followed by the letter ’S’; for example, 3S

signifies a 3-cell battery. The main parameters for battery selection are battery

capacity and C rating. Battery capacity is the measured current in milli Ampere-

hours (mAh) that it can supply for a unit period of time. For example, a 5000mAh

battery would be able to supply 5A current for an hour (C-rating:1). For a higher
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value of C rating, say 5, the same battery can provide 25 A current for 12 minutes.

Therefore, the C rating of the battery increases the maximum safe current drawn

by the battery, allowing the same battery to be used to lift heavier payloads.

Maximum Safe Current draw (mA) = Battery capacity ∗ C − rating

5. Pixhawk:

Pixhawk 4 is the primary flight controller used in the quadrotor to control it during

the localization mission. The quadrotor setup uses Pixhawk connected to the

M8N GPS module, telemetry, and Arduino Uno.

6. Arduino Uno:

Arduino Uno is a flight computer that is used to receive RSSI values, process

them, carry out the necessary computations, and send the output to the ground

station. Various sensors are incorporated with the Arduino to measure the RSSI

from the transmitter, and to measure the humidity and temperature of the envi-

ronment. The data from various sensors are stored in the SD card via the SD card

module of Arduino. Pixhawk is used to power the Arduino via the telemetry port.

The sensors that are used with the Arduino are:

• DHT11 sensor:

The DHT11 sensor is a digital temperature and humidity sensor that is com-

monly used with Arduino. It measures the temperature and humidity of the

surrounding air. The DHT11 sensor has a single-wire digital interface, mak-

ing it easy to connect with Arduino boards.

The DHT11 sensor is widely used in various applications such as weather

stations, air quality monitoring systems, etc. It is a cost-effective solution

for measuring temperature and humidity and is suitable for both indoor and

outdoor applications. The use of the DHT11 sensor with RSSI measurement

can help in observing the impact of temperature and humidity on radio sig-

nal strength.

• Micro SD card module:

The SD card module is a device used for storing data observed by the Ar-

duino. It is a compact and easy-to-use device that, based on the size of the
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SD card, can store large amounts of data. The SD card module is commonly

used in data logging applications, where data is collected over a period and

stored on the SD card for post-analysis.

The SD card module works by interfacing with the SPI interface of the Ar-

duino board. It has a slot for inserting the SD card, and the data is stored

on the SD card using the FAT file system. The SD card module can be used

in various applications such as weather monitoring systems, GPS tracking

systems, and data logging systems.

7. Telemetry radio:

Telemetry radio is a wireless communication device used for transmitting flight

data from the drone to the ground station. It is commonly used in drone applica-

tions for real-time monitoring of the drone’s flight status. The telemetry radio is

connected to the Pixhawk flight controller using a 915 MHz RF module.

The telemetry radio provides real-time data such as altitude, speed, GPS position,

and battery status to the ground station. It also allows for sending commands to

the drone, such as changing the flight mode or setting the waypoint. The telemetry

radio is a critical component of drone applications, as it enables safe and efficient

operation of the drone.

8. M8N GPS module:

The M8N GPS module is a high-performance GPS receiver that is commonly

used in drone applications. It provides accurate GPS positioning data to the drone,

which is essential for accurate flight control and navigation. The M8N GPS mod-

ule has a built-in compass, which aids in localization algorithms.

The M8N GPS module works by receiving signals from multiple GPS satellites

and calculating the position of the drone using the received data. The GPS data

is transmitted to the drone’s flight controller, where it is used for navigation and

control. The M8N GPS module is a critical component of drone applications, as

it enables a reliable and safe operation of the drone.
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3.4.4 Hardware for 433MHz band

3.4.4.1 LoRa-ESP 8266 Transmitter:

A prototype transmitting device was made with SX1278 LoRa module, using ESP 8266

as microcontroller. When the switch is turned on, the device starts transmitting “Help!

Help!!” packets on the frequency band of 433 MHz, which is a license-free RF band

for Asia.

Figure 3.5: LoRa transmitter

Figure 3.6: Circuit diagram for transmitter
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The circuit diagram shown in the figure 3.6 depicts the connection between a SX1278

LoRa module, an ESP8266 module, and a battery.

The LoRa module is connected to the ESP8266 module via serial communication, and

the ESP8266 module is powered by a battery. The LoRa module is used for long-range

wireless communication and operates at low power. The ESP8266 module is a Wi-Fi

enabled microcontroller with built-in Wi-Fi capabilities. The ESP8266 is connected

to the battery via a switch, which is used to turn the device on and off. The battery

provides power to the ESP8266 module, allowing it to operate independently. This

makes the system portable and suitable for use in remote locations.

3.4.4.2 LoRa-Arduino Receiver:

It is a prototype receiving device with Arduino as microcontroller. It is programmed to

continuously receive the transmitted signals along with their RSSI, after syncing with

the transmitter. Other peripheral sensors and devices like DHT 11 Temperature and

Humidity sensor, and micro SD card module are also interfaced with Arduino.

Figure 3.7: LoRa receivers
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Figure 3.8: Circuit diagram for Arduino-based LoRa receiver

The circuit diagram shown in figure 3.8 depicts the connection between an Arduino, a

LoRa module, a DHT11 temperature and humidity sensor, and an SD card module.

The LoRa module is connected to the Arduino through serial communication. The

DHT11 sensor is connected to one of the digital pins of the Arduino for data transfer.

The SD card module is connected to the Arduino through the SPI interface for data

transfer.

Since we are using two modules (LoRa and SD card module) that communicate with

Arduino using Serial Peripheral Interface (SPI), they utilize the same MOSI, MISO,

and Serial Clock pins. However, different chip-select pins should be used.

The LoRa module is used to receive the transmitter-transmitted signals. The DHT11

sensor is used to read the temperature and humidity data. The SD card module is used

to store the temperature and humidity data along with the RSSI of the received signals

for later analysis. The Arduino writes the data to the SD card in a text file format, which

can be easily read and analyzed using a computer.
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3.4.5 Hardware for 2.4 GHz Band

3.4.5.1 Wi-Fi router:

A Wi-Fi router was used as the transmitter for high-frequency low range and indoor

testing purposes. It transmits radio signals at 2.4 GHz

Figure 3.9: Wi-Fi router

3.4.5.2 ESP 8266-Arduino Receiver:

The ESP 8266 comes with a built-in Wi-Fi module. It is programmed to connect with

the router network, and read the RSSI values. Those RSSI values are then serially

communicated to the Arduino. The RSSI data are stored in a separate SD card interfaced

to Arduino through a micro-SD card adapter module.

Figure 3.10: Circuit diagram for ESP-Arduino receiver
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The circuit diagram in figure 3.10 shows the connection between an Arduino, a Pixhawk

flight controller, an SD card module, and an ESP8266 Wi-Fi module.

In this circuit, the SD card module is connected to the Arduino through a SPI interface

(MOSI, MISO, SCK, and CS pins). The ESP8266 is connected to the Arduino through

a serial communication interface (Tx and Rx pins). The Arduino reads the Wi-Fi RSSI

data from ESP8266 module using the serial port and stores them on the SD card.

3.5 Sensing modality

Measurement of RSSI values as the drone reaches a defined waypoint is the backbone

of our localization model. The sensing modality consists of two different setups for the

different frequency bands.

3.5.1 Sensing modality for 433Mhz

The sensing modality for 433Mhz radio signals consists of two modules:

1. First module is a SX1278 LoRa transceiver which is connected with the antenna and

can measure RSSI of RF source. It communicates with the microcontroller module with

Serial Peripheral Interface (SPI).

2. Second module is the microcontroller module, which is the Arduino. It reads the

values of RSSI from RF module, processes them, and runs the localization calculation,

and sends the localized coordinates to the ground station. The ground station then

gives the coordinates to the Pixhawk through Ground station controlling software. The

proposed sensing modality is as shown in figure 3.11.

Figure 3.11: Sensing modality for 433Mhz
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3.5.2 Sensing modality for 2.4GHz

The 2.4 GHz sensing module consists of an ESP 8266 Wi-Fi microchip capable of mea-

suring RSSI values from the transmitter, processing them, and performing the local-

ization calculation. It sends the localized coordinates to a server that can be remotely

accessed from the ground station. The coordinates are then relayed to the Pixhawk

via the ground station control software. The proposed sensing modality is as shown

in figure 3.12. However, this modality is not actually implemented in outdoor flight

test. Simple wireless sensor network-based localization was performed for 2.4 GHz

frequency bandwidth.

Figure 3.12: Sensing modality for 2.4GHz
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3.6 Localization architecture
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Figure 3.13: Localization Modelling
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3.7 Localization Mission

Start

Define Cartesian co-ordinate system in the mission area,
with X-axis pointing east and Y-axis pointing north

Plan mission with three measurement waypoints

Start the UAS, and begin the mission

Run localization code in the microcomputer of the UAS

Transmit the mean RSSI values, approximated distance values,
transmitter’s localized coordinates, and corresponding latitude

and longitude values to the ground station

Update the mission based on received latitude and
longitude values for the localized waypoint

Move to the waypoint

End the mission

Figure 3.14: Flowchart for Localization Mission
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CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 MATLAB Simulation

The localization algorithm was first simulated in MATLAB before its experimental ver-

ification tests, and main mission implementation. Two different types of simulations

were performed. First, a generalized case simulation was performed to understand the

effects of Gaussian noise Xσ on localization accuracy. This was performed before con-

ducting any experiments. Second, a simulation pertaining to a specific experimental

localization case was performed. Here, the simulation model is fed with parameters (n,

RSSI0 and σ) obtained from the characterization experiment. The specific case simula-

tion is discussed in section 4.7.3.

Equation 3.2, rewritten below, describes the simulation model.

RSSI = RSSI0− 10nlog10
d

d0
−X(σ)

The path-loss exponent, n, is an important parameter of the propagation model given

by 3.2. It basically determines how fast the signal strength decreases with distance.

Figure 4.1: Variation of RSSI with distance
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Figure 4.1 gives the plot of RSSI vs distance for different values of n (neglecting Xσ).

As n increases, the RSSI vs distance curve becomes steeper. This means that the signal

strength decreases more rapidly with distance, and the signal cannot travel as far as it

would for a lower value of n. This has implications in RSSI-based ranging. If we want

signal strength to vary noticeably for proper distancing, we are always limited by its

range. We will see in the later sections that the value of n was obtained nearly equal

to 5 for the Wi-Fi signal for the indoor case, and around 2 for the LoRa module in the

outdoor case. Further, the test performed at Pepsicola area, as presented later, shows

that even though the LoRa module can give the signal range in kilometers, RSSI to

distance conversion at higher distances is quite unreliable and heavily affected by the

environment.

The implication of Xσ in equation 3.2 is captured by a noise model known as Additive

White Gaussian Noise (AWGN). It is based on Gaussian distributed random variable,

and is used to mimic the random noises that occur in nature.

Figure 4.2: Simulation without AWGN on the left and with AWGN σ = 3 on the right

Figure 4.2 shows that the injection of AWGN model gives a more realistic picture of

signal strength read at different distances (Compare with figure 4.32, which shows the

actual measured RSSI values).
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4.1.1 General Case Simulation

An omnidirectional transmitter located at (250,250) is modeled in a 2-dimensional

space of 500 m by 500 m. Standard values are selected for simulation parameters,

i.e., n = 2, RSSI0 = -32 dBm.

Capabilities of the simulation model:

• Computes the RSSI values at each grid point based on the path loss model, and

associated parameters.

• Allows the user to input three different positions to measure corresponding RSSI

values.

• Reads 50 RSSI values at each location, computes their mean, and translates into

corresponding distance values.

• Solves the system of three non-linear equations to obtain the coordinates of the

transmitting device.

The RSSI distribution over the space for varying values of the standard deviation of the

Gaussian noise, and the corresponding localization result obtained through simulation

is presented.

Figure 4.3: σ = 0 variation with RSSI on the left and Localization at σ = 0 on the right
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Figure 4.4: σ = 1 variation with RSSI on the left and Localization at σ = 1 on the right

Figure 4.5: σ = 3 variation with RSSI on the left and Localization at σ = 3 on the right

Figure 4.6: σ = 5 variation with RSSI on the left and Localization at σ = 5 on the right
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Table 4.1: Variation of σ with distance error

σ Distance Error

0 0

1 1.85 m

3 16.15 m

5 36.79 m

The arguably observed trend is that the localization error increases with the increase in

σ. However, this is not strictly true given the randomness in AWGN values at all three

locations. Moreover, the distance error for the same σ value can vary for different itera-

tions. However, the higher value of σ brings a larger variation in signal values, possibly

making the localization scheme unstable. Therefore, the engineering challenge is not

just to perfectly calibrate for the environment, but also to reduce highly varying random

noises. The problem with experimental implementation is that neither the environmen-

tal factors are perfectly calibrated, nor the random noises are avoided.

4.2 Localization setup

Beacon

433MHz localizationOutdoor

2.4 GHz localizationIndoor

Figure 4.7: Localization setup

A 2.4 GHz WiFi transmitter is used for indoor localization, and a 433 MHz LoRa trans-

mitter is used for outdoor purposes. A transmitting beacon is kept at a known location,
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which is then compared with the localized position to determine the accuracy of the

localization scheme. Before performing the actual flight-based tests, Wireless Sensor

Network (WSN)-based tests were performed, where RSSI values are read at three dif-

ferent locations by the static sensors positioned there. As it was not practical to fly

a quadrotor in the indoor environment, flight-based tests were only performed for the

outdoor environment.

4.2.1 and 4.2.2 discuss the testing approaches and results for the WSN-based tests in

indoor and outdoor environments respectively. Mobility-based tests are discussed in 4.6

and 4.7.

4.2.1 WSN-based indoor localization of 2.4 GHz RF transmitter

4.2.1.1 Coordinate system

The indoor localization was performed in an unobstructed room with a width of approx-

imately 5 m, specifically at the basement of the Centre of Energy Studies at Pulchowk

Campus. A 2.4 GHz WiFi router was used as the radio source. After calibrating the

setup environment, measurements were taken from three pre-defined positions, and the

mean RSSI values are calculated for each position. The coordinate system used for

indoor localization is shown in figure 4.9.

Figure 4.8: Indoor localization space
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Figure 4.9: Coordinate system for indoor localization

4.2.1.2 Calibration

For calibration, signal strength values were measured at five different locations, namely

at 1 m, 2 m, 3 m, 4 m and 4.5 m, from the transmitter. The corresponding mean RSSI

values at these locations are tabulated in table 4.2.

Table 4.2: RSSI value at different distances for calibration

Distance(m) Mean RSSI (dBm)

1 -38.22

2 -50.93

3 -60.08

4 -66.07

4.5 -71.8

With these data points, the log-distance path loss model is fitted. The value for the

path-loss exponent, n, is obtained to be 4.7821.
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Figure 4.10: Indoor Calibration

4.2.1.3 Test and Results

The mean RSSI values at the three different pre-defined positions were recorded, and

the distance associated with each RSSI value was evaluated from the calibrated model.

Using the distance and known Cartesian coordinates, the coordinates of the location are

obtained (4.8, 4.29). This brings us the distance error of 1.29 m, and the angular error

of 1.8 degrees (as measured with origin as vertex).

Table 4.3: Measured RSSI at the coordinates

Coordinates Mean RSSI (dBm)

(0,0) -71.7

(4,0) -48.6

(0,3.35) -59.3

Table 4.4: The Localized Data of Indoor Localization

Test
Localized Cartesian Distance Error

(m)

Angle Error (◦)

X Y

1 4.8 4.29 1.2 1.8
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Given the smaller testing area, the transmitter was initially expected to be localized

with a distance error of less than 1 m. As seen in figure 4.25, the RSSI values at a

particular location are slightly unstable. Therefore, it is believed that the other Wi-Fi

signals of similar frequency (2.4 GHz) interfered with the signal in consideration, and

caused error in distance estimation.

4.2.2 WSN-based outdoor localization of 433MHz RF transmitter

A 433MHz transmitter module made using ESP 8266 microcontroller and LoRa module

is the object to localize. The receiver setup contains a LoRa module with Arduino Uno.

The setup also incorporates a DHT 11 temperature and humidity sensor to measure the

temperature and humidity at the location. Different tests were conducted at Pulchowk

Campus cricket ground and Pepsicola region.

4.2.2.1 Localization in campus area:

A transmitter was placed in a fixed position of the Campus cricket ground and the re-

ceivers were scattered in multiple known locations. Using CoolTerm, the data obtained

from the LoRa module were stored and processed. From the processed RSSI values, the

unique path loss model was calibrated. After successful calibration, RSSI values were

measured at three known locations, and the trilateration was carried out to localize the

radio source.

Figure 4.11: LoRa test location in the campus ground
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The results of calibration and trilateration are discussed below:

Figure 4.12: Graph of Distance vs RSSI

Figure 4.13: LoRa test result at Campus
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Table 4.5: Transmitter GPS coordinates for LoRa test at campus

Transmitter

GPS coordinates

Latitude Longitude

27.68294 85.32195

Table 4.6: LoRa test result with RSSI and Distance

Receiver Node
GPS coordinates Measured

average

RSSI value

Actual

Distance

Calculated

Distance

Latitude Longitude

1 27.68282 85.32185 -88.42 dB 17 m 21.8 m

2 27.68381 85.32154 -115.52 dB 104 m 115.64 m

3 27.68309 85.32275 -106.45 dB 80 m 66.16 m

If we consider node 1 to be origin, and consider Y-axis to pass through the transmitter,

then the coordinates of the nodes are:

N1(0,0) = (X1, Y1)

N2(-102,30) = (X2, Y2)

N3(41.5,68) = (X3, Y3)

(0, 17) = Actual transmitter coordinates

To localize the transmitter using trilateration, we iteratively solved the system of three

non-linear equations using Newton-Raphson method, and obtained transmitter co-ordinates

as: T (11.825, 9.245), which is around 14 meters offset from the actual location, (0, 17).

4.2.2.2 RSSI measurements in Pepsicola:

As the LoRa module has a range of 10 km, RSSI tests were conducted for larger dis-

tances to see if the proposed localization model will be suitable for greater distances. A
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total of two tests were done in the region of Pepsicola where the transmitter was kept

on the roof of Suncity apartment. The receivers were kept at separate distances from

the transmitter provided that VLOS was maintained. The value of RSSI was recorded

for 15 minutes at each location and then the transmitter was moved to another location

for the next test.

In the first test, we wanted to observe the effects of high altitude above ground level

with the RSSI value so one of the receivers was kept at Jagdol hill top while other two

were kept near the apartment (within 1km).

Figure 4.14: LoRa test one at Pepsicola
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Figure 4.15: LoRa transmitter Figure 4.16: LoRa receiver

Table 4.7: Transmitter GPS coordinates for test one of LoRa

Transmitter

GPS coordinates

Latitude Longitude

27.69292 85.37155

Table 4.8: Test results of LoRa test one

Receiver Node
GPS coordinates Actual

Distance

Mean

RSSI value

Latitude Longitude

1 27.69048 85.37577 496 m -101.196

2 27.68862 85.37335 511 m -96.34

3 27.74293 85.37642 5.59 km -109.73

In test two, the transmitter was kept at another position still on the top of Suncity apart-

ment. A total of four receivers were placed at four different positions with varying

distances from the transmitter. The data was stored using Cool term software, and the

duration of data capture was 15 minutes.
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The RSSI values received at Jagdol hill (receiver node 3 at table 4.8) offered an inter-

esting result, and the signal strength received there was higher than expected (compare,

for example, with receiver node 1 at table 4.10. This is because the Jagdol hill was

located at a high altitude and at clear line of sight from Suncity apartment, reducing the

effects of multipath. This observation is important, and gives us an idea that flying UAS

at higher altitude from the ground level will offer better signal readings.

Figure 4.17: LoRa test two at Pepsicola

Figure 4.18: LoRa transmitter Figure 4.19: LoRa receiver
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Table 4.9: Transmitter GPS coordinates for test two of LoRa

Transmitter

GPS coordinates

Latitude Longitude

27.69209 85.37135

Table 4.10: Test results for test two of LoRa

Receiver Node
GPS coordinates Actual

Distance

Mean

RSSI value

Latitude Longitude

1 27.68623 85.36473 922 m -112.606

2 27.68862 85.37335 434 m -96.34

3 27.68728 85.37215 542 m -86.66

4 27.68772 85.37154 487 m -87.93

The results from both tests do not match the variations resulting from the path-loss

model, and the distance conversion is slightly unreliable. This is because at larger dis-

tances when environmental factors are varying and unstable at different measurement

directions, even slight variations in RSSI values can result in significant distance errors.

As calibration in the outdoor Pepsicola region is difficult without actually flying the

UAS, which requires special permission from the Civil Aviation Authority of Nepal,

the further localization applications were focused only on the Campus area.

4.3 Temperature, relative humidity and RSSI

Temperature and relative humidity data of the air were measured at the receiver’s end

along with RSSI while receiving the signals to infer whether the signal strength is af-

fected by variations in temperature and humidity, as mentioned extensively in the liter-

ature [37, 38]. The results drawn from the data are shown in figures 4.20 and 4.21.
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Figure 4.20: Temperature vs Relative Humidity

The obtained data of temperature and relative humidity when plotted with each other

provide an important result. A strong negative correlation was observed between tem-

perature and relative humidity, i.e. as relative humidity increased, the temperature de-

creased, and vice versa. The Karl-Pearson correlation coefficient was found to be -

0.9214. This is physically explainable. As the temperature increases the water-storing

capacity of air increases thus decreasing the relative humidity.

Effects of temperature and relative humidity on RSSI values could not be independently

performed as different additional infrastructure would be necessary. In a combined

form, there is a strong correlation between relative humidity and temperature. There-

fore, it is acceptable to use only one variable to study the effect in RSSI measurements.

As relative humidity offered a greater range of data points, it was selected.

The RSSI vs Relative Humidity graph in figure 4.21 shows that there is a small nega-

tive correlation between the variables. The higher the relative humidity, the lower the

signal strength. This result goes with the result from [39], which states that the signal

strength is inversely proportional to the relative humidity at constant pressure. Here,

the distance associated with the RSSI value increases when relative humidity increases
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and the distance decreases as relative humidity decreases.

Figure 4.21: Relative Humidity vs RSSI

4.4 RSSI variation with day time

Three different tests were performed at three different times of the day and found that

RSSI values vary even for the same locations at different times. Interestingly, the curves

shifted upwards, i.e. the signal strength decreased. This can be attributed to the increase

in relative humidity as the time progresses from 11 am to 5 pm.

Figure 4.22: The known five nodes for RSSI calculation
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The measured RSSI at the known distance is plotted in the table below:

Table 4.11: RSSI value at different distances and time

Distance(m) RSSI value at 11 am RSSI value at 4pm RSSI value at 5pm

28 -63.56 -67 -76.76

23 -61.03 -65 -73.6

18 -58.02 -64 -70.25

13 -56.15 -62 -67.21

8 -51.32 -56 -65.42

Figure 4.23: RSSI vs distance at different times of the day.

4.5 Filtering of noisy signals

The results from these tests show that the RSSI values are greatly affected by factors

like obstacles, interference, antenna orientation, multipath, weather, and various other

environmental conditions. This results in multiple measurements even at the same dis-

tance, and can dramatically affect the localization accuracy. The noise effect on the

RSSI values for indoor and outdoor environment are visualized in figure 4.24 and fig-

ure 4.25 respectively. It is important to use the most reliable RSSI values for calibration

and mission implementation. Therefore, an approach to filter out the noisy signals is

desired.
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Figure 4.24: Noise effect on the RSSI measurements at different distances (indoor

environment).

Figure 4.25: Noise effect on the RSSI measurements at different distances (outdoor

environment).

In figures 4.26, 4.27, and 4.28, Simple Moving Average filter (15 window samples),

Exponential Moving Average filter (smoothing parameter of 0.1), and Kalman filter are

used over continuous RSSI measurements from 0 m to 120 m distance respectively. It

is seen that the Kalman filter has very low responsiveness to changes and gives an al-
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most smooth fit to the noisy signal data. Therefore, the Kalman filter can be particularly

helpful to generate the filtered data that will be used to fit the path loss model during

the calibration phase.

Figure 4.26: SMA

Figure 4.27: EMA
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Figure 4.28: Kalman Filter

SMA and EMA filters are much simpler than the Kalman filter and offer better respon-

siveness to signal changes. It is observed that SMA and EMA offer very similar fitting

to the signal data. However, EMA uses just two samples at a time, whereas SMA is

using 15 samples. Therefore, EMA has very low computational cost than SMA. These

moving average filters are not just simply good for several applications, they are also

optimal for a problem involving the reduction of random white noise while keeping the

sharpest step response [40]. In this work, however, filters are not expected to demon-

strate a response to the noisy signals. Therefore, the Kalman filter is selected for most

of filtering-related applications.

4.6 Algorithm verification

It is important to verify the developed localization code (Appendix II) before actually

implementing it on a UAS. Therefore, three different localization tests, to be discussed

in 4.6.3, were carried out. Before the tests, a coordinate system was set up, and the

parameters of the path loss model were obtained from the calibration experiment.
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4.6.1 Coordinate System

The coordinate system developed at the Pulchowk Campus Cricket Ground with three

measurement points (blue location markers) is shown in figure 4.29. One of the points,

the origin, located at the geographical coordinates (27.68292, 85.32213), served as the

starting point for RSSI measurement. The other two points are located to the North and

East, with coordinates (27.68293, 85.32255) and (27.68355, 85.32219), respectively.

The North and East points have the Cartesian coordinates of (0,70) and (40,0) respec-

tively.

Figure 4.29: Coordinate system

4.6.2 Calibration

It is necessary to carry out a pre-mission calibration test to determine the path loss ex-

ponent, n, and RSSI0, the signal strength value at 1m. RSSI values are read at different

discrete points. The mean values for the corresponding distances from the transmitter

are plotted. Then, the log-distance path loss model is fitted by minimizing the sum of

squares. Values of n and RSSI0 are obtained to be 2.2377 and -45 dBm respectively.
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Figure 4.30: Fitted log-distance path loss model for the characterization experiment.

4.6.3 Testing and Results

The test involved placing three different markers at the measurement locations defined

at the developed coordinated system, with one marker positioned at the origin and the

other two markers at Y-axis and X-axis i.e. the North and the East position respectively.

These markers helped to identify the location for RSSI data acquisition. A scooter was

used to move the receiving system to the next location after measuring RSSI values at

one. The results from the three different tests are presented in table 4.12 and 4.13.

Table 4.12: Mean RSSI for various tests performed

Coordinates Test 1 Mean RSSI (dBm) Test 2 Mean RSSI (dBm) Test 3 Mean RSSI (dBm)

(0,0) -86.92 -86.92 -84.99

(40,0) -75.97 -77.67 -76.32

(0,70) -90.03 -90.61 -89.04
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Table 4.13: Algorithm Verification

Test
Localized Cartesian Localized Geographical (◦) Distance

Error (m)

Angle

Error(◦)

X Y Latitude Longitude

1 82.43 -0.74 27.682913 85.322966 20.5 9.26

2 79.36 -10.32 27.682827 85.5322935 28.4 16

3 59.02 0.13 27.682921 85.322729 15..8 8.62

From the Cartesian coordinates of the markers and the mean RSSI value measured at

each marker position, the target’s localized Cartesian coordinates are obtained. Mean

RSSI values are obtained at the markers using the hardware of the 433MHz band. Using

mean RSSI values in the calibrated path loss model, the distances from the markers

to the transmitter are computed. Knowing the distances from the three markers, the

trilateration algorithm was run in real-time on the Arduino Uno setup which provided

the necessary localized geographic coordinates.

The algorithm validation involved conducting three tests. The first two tests yielded

values with distance errors of 20.5m and 28.4m respectively. These errors could have

been due to disturbances in the ground and other environmental factors. However, in

the final test, the localization algorithm only provided an error of 15.8m. This result is

particularly noteworthy because it compares favorably to the distance error of about 20

m that can be expected with GPS with the low fix. Therefore, from the third test, the

algorithm can be proven valid and tests on the UAS could be performed.

4.7 Main Mission

After the validation of the localization algorithm, a mission was conducted using a

drone equipped with the localization algorithm hardware at Pulchowk Cricket ground.

The mission involved creating axes for target localization.
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4.7.1 Coordinate System

The coordinate system used for the mission was different than that of the algorithm

verification. To find the coordinates of the three positions, they were marked. The ori-

gin was placed at the geographic coordinates of (27.6831534, 85.3221424) which was

also the starting point of the mission flight path. The other two positions were kept at

the north and east axis with coordinates of (27.6836279, 85.3221545) and (27.683138,

85.3224484) respectively. The geographical coordinate system was converted to Carte-

sian Coordinate system. where the north point and the east point had the coordinates of

(0,50) and (30,0) respectively.

Figure 4.31: Coordinate system

4.7.2 Calibration

To accurately fit the log-distance path loss model for the testing environment, calibra-

tion flight was carried out by continuously measuring RSSI values at different distances

from the transmitter. The measured values were extremely noisy (σ ≈ 5), so the noisy

signals were filtered using Kalman filter.
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Figure 4.32: Noisy signal filtered out for calibration

The log-distance path loss model is then fitted to the filtered values. Figure 4.33 shows

that the model almost perfectly fits the filtered values, with RSSI0 = -59.1 and n = 2.1.

Figure 4.33: Fitted log-distance path loss model

4.7.3 Simulation

The simulation of the localization algorithm for the main mission localization case was

carried out in MATLAB. The simulation, however, is not completely independent of
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experimental results. The simulation needs to be fed with the values of path loss ex-

ponent, n, and mean RSSI value at reference distance (d0), RSSI0, which are obtained

after a characterization experiment. The simulation model also incorporates the effects

of Gaussian noises. Therefore, it is also necessary to estimate the standard deviation of

the unfiltered Gaussian noise for the environment beforehand.

Rewriting equation 3.2 in terms of the Gaussian noise, we have

Xσ = RSSI0− 10nlog10
d

d0
−RSSI (4.19)

From the noisy RSSI values obtained from the characterization experiment (figure 4.32)

and the fitted parameters of the log-distance model(figure 4.33), Xσ is obtained. Here,

Mean (Xσ) = - 0.0552 (≈ 0)

Standard Deviation = 4.6, i.e. σ = 4.6

So, the parameters to feed to the simulation model are shown in table 4.14

Table 4.14: Values of parameters to feed to the simulation model

Parameters Values

n 2.1

RSSI0 -59.1

σ 4.6

A perfectly omnidirectional transmitter located at (64.77,-7.5) is modeled in a 2-dimensional

space of 250 m by 250 m. The noisy signal is added to the RSSI value at a location by

the command sigma*randn. The simulated RSSI distribution over the test domain is

shown in figure 4.34.
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Figure 4.34: Simulated RSSI distribution over the test domain

The localization simulation was carried out for two different cases: the receiver reading

a single RSSI value at each measurement point, and the receiver reading 100 RSSI

values and using the mean RSSI value for each measurement point.

4.7.3.1 Reading single RSSI sample

The simulation model is such that a single value of RSSI is read at each of the three

locations, and those three RSSI values are used to compute the corresponding distances.

Figure 4.35 shows the localized transmitter position with respect to the actual position.

Clearly, there is a significant error in localization.

Figure 4.35: Localization based on single RSSI sample at each measurement point
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As the value of Gaussian noise changes over time (with the mean value, μ being zero,

and the standard deviation, σ being 4.6), 100 similar iterations for localization were

performed, and the corresponding distance and angle errors are observed for each lo-

calization mission.

Figure 4.36: Distance errors for 100 similar missions (1 RSSI sample at each

measurement point.

Figure 4.37: Angle errors for 100 similar missions (1 RSSI sample at each

measurement point.

Figures 4.36 and 4.37 not only show significant errors in the distance and angle of

the localized transmitter with respect to the origin (0,0) respectively but also highlight

the highly unstable nature of the localization scheme. Sometimes, the transmitter is

localized to a distance error as low as 3 meters, whereas sometimes the error shoots as

high as 382 meters. Therefore, reading just a single RSSI value at each point is prone to

inaccuracy, and gives highly unstable localization results even for the similar missions.
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4.7.3.2 Reading multiple RSSI samples

One of the approaches to improve the accuracy and stability of the localization scheme

is to measure multiple RSSI values at each point and use the mean value for that point

for further computation. Reading multiple RSSI values at a point sums up the Gaussian

noise variables, and their cumulative effect approaches toward their mean value, i.e. 0,

thereby bringing accuracy and stability to the scheme.

Figure 4.38 shows the localization result. Compare it to figure 4.35, and it is clearly

observed that the localization accuracy has significantly increased.

Figure 4.38: Localization based on the mean value of 100 RSSI samples at each

measurement point.

To study the stability of the localization scheme, 100 similar missions are simulated, and

their distance and angle error are presented in figure 4.39 and figure 4.40 respectively.

In every case, the distance and angle errors are less than 20 meters and 20◦ respectively.

In 83 % of cases, the transmitter is localized to a maximum distance error of 10 meters,

and in 84 % of cases, it is localized to the maximum angle error of 8◦.
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Figure 4.39: Distance errors for 100 similar missions (100 RSSI samples for each

measurement point.

Figure 4.40: Angle errors for 100 similar missions (100 RSSI samples for each

measurement point.

Although, it was desired to increase the number of RSSI samples to read at a mea-

surement point, it would increase the localization time, and the battery resources UAS

would require. Therefore, the number of packets to read at a point was set to 75 for the

mission flight.

4.7.4 Mission Flight

The mission flight was planned in the QGroundControl application using the three posi-

tions as waypoints in the coordinate system. The flight altitude was set to 3 m from the

ground, and the flight speed was selected as 5 m/s. At each waypoint, the drone hovered

for 25 seconds to acquire data on RSSI values. After obtaining the mean RSSI value at
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the third position, the drone landed there, and the localized coordinates were provided

to the ground station. Another mission was then planned to the localized position using

the obtained geographical coordinates.

Figure 4.41: Main mission flight plan

Figure 4.42: Main mission actual flight path
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4.7.5 Mission Result

The mean RSSI values received at the three waypoints are shown in table 4.15. Us-

ing the calibration of RSSI values with distance, the corresponding distance for each

RSSI value was calculated by the onboard computer, which then performed the trilater-

ation calculations, and provided the localized latitude and longitude to be (27.682944,

85.323031). This resulted in a distance error of 25.6 m from the source and an angular

error of 8.32 degrees with respect to the origin.

Table 4.15: Mean RSSI received at different co-ordinates

Coordinate RSSI (dBm)

(0,0) -97.93

(30,0) -88.51

(0,50) -101.02

Table 4.16: Main Mission Localization

Test
Localized Cartesian Localized Geographical (◦) Distance

Error (m)

Angle Er-

ror (◦)

X Y Latitude Longitude

1 87.62 -23.36 27.682944 85.323031 25.6 8.32

The results from the main mission show that the transmitter is localized within the

desired minimum distance error of 30 meters with respect to its actual position and 20◦

with respect to the origin. The results could have been even better if not for the GPS

offset at measurement locations, which was showing errors as high as 5 meters.

With this mission test, the main objective of the project is successfully met.
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Figure 4.43: Localization flight plan

Figure 4.44: Localization actual flight path

4.8 Uncertainty Considerations

New sets of experiments were carried out for the presentation of the uncertainty con-

sideration concept. First, a characterization experiment was carried out to fit a path loss

model where the RSSI values are measured continuously over 120 m distance. The

obtained noisy RSSI values were filtered using the Kalman filter, and the filtered data
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points were used to obtain the path loss model given by equation 4.20.

RSSI = −49.6732–10 ∗ 2.4381 ∗ log10d (4.20)

Figure 4.45: Kalman Filtered

Figure 4.46: Fitted Path Loss
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Then a validation experiment was performed where the UAS flew towards the trans-

mitter on a straight path from 120 meters away. The RSSI values were continuously

measured throughout the flight and stored on the SD card.

The stored RSSI values are retrieved and filtered using Kalman filter.

4.8.1 Range of Distance

The existing noises in the filtered RSSI values are given by an equation 4.21

Xnoise = RSSI0− 10nlog10d−X (4.21)

where, X and Xnoise are the array of filtered signals and existing noise signals respec-

tively. Each element in Xnoise denotes the RSSI noise at the particular distance.

Table 4.17: Mean and standard deviation of Xnoise

Mean (μ) -0.3695 dBm

Standard Deviation (σ) 1.985 dBm

As preferred, the mean value of the existing noise is close to zero. It is then assumed

that the standard deviation of RSSI values at every distance is constant and equal to the

standard deviation of the noisy signal, i.e. σ = 1.985

Then, for every value of X , [f(X + m.σ), f(X − m.σ)] are evaluated to obtain the

range of probable distances, where f(x) is given by equation 3.17, and m = 1, 1.5, 2, and

3. Range of distances for the entire flight for 68.26% (m=1), 86.64% (m=1.5), 95.44%

(m=2) and 99.74% (m=3) confidence interval are shown in figures below:
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Figure 4.47: Range of distances for 68% confidence interval

Figure 4.48: Range of distances for 86% confidence interval

Figure 4.49: Range of distances for 95% confidence interval
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Figure 4.50: Range of distances for 99% confidence interval

As we increase the probability, the predicted distance range at a particular time in-

creased as expected. It can be observed that the range of distances is gradually de-

creasing for all the cases as we proceed forward in time, and the predicted minimum

and maximum distances have finally converged as the vehicle reaches the transmitter

location. This is because at larger distances, we have higher values of negative RSSI,

and even a slight RSSI variation will result in significant distance error owing to the

logarithmic nature of the path loss model. To put this into perspective, for the model

given by 4.20, a 1 dBm variation of RSSI values from -59 dBm to -60 dBm will bring

the distance error of 0.25 m, whereas, the same variation from -99 dBm to -100 dBm

will give the distance error of 10.5 m.

With the increase in the confidence interval, we are introducing more uncertainty in our

distance predictions. Selection of best confidence interval needs extensive validation

tests, which is beyond the scope of this work, and depends upon the requirements and

capabilities of the particular system (for example, does UAS has resources to carry

out multiple localization iterations? If yes, a system with greater distance confidence

interval might also be acceptable) . Considering the maximum distance estimation error

of around 30% to be acceptable for the farthest distance, confidence interval below

86.6%is recommended. Note that, the decrease in the distance confidence interval,

however, demands a system with increased robustness, reliability and stability.
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4.8.2 Moving towards/away

Another approach to consider uncertainty in distance measurement based on RSSI val-

ues is to provide the information on whether the UAS is moving towards or away from

the transmitter source. The filtered RSSI values of the validation experiment are con-

verted to the distance values based upon the model given by equation 2. The instanta-

neous velocity is then computed for each time step. The graph of instantaneous velocity

looks heavily noise. So, the smoothing filter (EMA with α = 0.02) is used as shown in

figures 4.51 and 4.52.

Figure 4.51: Unfiltered and filtered velocity
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Figure 4.52: Filtered instantaneous and average velocity

The filtered signal shows that the instantaneous velocity is negative at every instance

which is exactly what was expected, as the UAS was continuously moving towards the

transmitter, making dt+1 < dt. Therefore, it is accurately predicted that the UAS was

moving towards the transmitter at every instant of time.

4.8.2.1 Velocity Estimation

It was also possible to estimate the average velocity based upon the filtered RSSI values.

The measured distance between the transmitter and the starting location was 120 meters,

and the mission time was 110 seconds. As we expect the UAS to take 10 seconds for

take off and landing, the average mission speed is 1.2 m/s, which is also the value set

while uploading the mission. Completely based upon the RSSI measurements, and the

corresponding distance estimates for starting and ending mission points, the average

velocity of the UAS was predicted to be -1 m/s (- sign meaning that the UAS is moving

towards transmitter). This, compared to the measured value of -1.2 m/s, accounts for an

error of 16.6 %.
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Table 4.18: Velocity Estimation

Average Velocity (Measured) -1.2 m/s

Average Velocity (Predicted) -1 m/s

Error 16.6 %

This prediction is, however, based upon single distance estimates for starting and end

points. If we consider the probabilistic approach of mentioning the distance ranges, the

predicted average velocity intervals are shown in table 4.19.

Table 4.19: Distance Confidence Interval & Predicted Average Velocity (Absolute)

Interval

Distance Confidence Interval Predicted Average Velocity (Absolute) Interval (m/s)

68.26 % 0.84 m/s to 1.16 m/s

86.64 % 0.78 m/s to 1.25 m/s

95.44 % 0.72 m/s to 1.36 m/s

99.74 % 0.6 m/s to 1.6 m/s

4.9 Limitations

Considering the primitive level of the system developed with its research and develop-

ment at Pulchowk Campus being at an early phase, the acceptable error tolerance was

set as 30 meters within an angular accuracy of 15 degrees for the test domain of 100

meters radius. Given this, the developed system localized the transmitter to an accept-

able level of accuracy. However, the system has some important limitations offering

an scope for future enhancement. The limitations of the developed system are listed

below:

• It will only be capable of locating a stationary transmitter source that emits radio

signals with constant power.

• The proposed localization modality is affected by multi-path and signal fading.
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• It is based on the assumption that the transmitter is perfectly omnidirectional.

Therefore, it does not model the possible variation in RSSI values measured at

equal distances at different directions as shown by the results of the tri-line test

shown in figure 4.53 and 4.54.

Figure 4.53: Tri-line test region (geographic perspective).

Figure 4.54: Schematic of tri-line test region with average RSSI values at test points
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CHAPTER FIVE: CONCLUSIONS AND RECOMMENDA-

TIONS

5.1 Conclusions

A UAS system, with underlying tools, techniques, and capabilities for the localiza-

tion of radio frequency sources for indoor and outdoor environments, is presented. For

indoor localization, a 2.4 GHz Wi-Fi router is used as the radio transmitter, and the

ESP8266-Arduino combination has been prototyped as the receiver. Since it was not

possible to fly the fabricated UAS in the indoor environment, only the WSN-based lo-

calization was performed, and the transmitter was localized with a distance error of

1.2m. Most of the work afterward involved localization for an outdoor environment.

433 MHz LoRa-based custom prototype transmitters and receivers were developed. A

series of tests: UAS-based and Wireless Sensor Network (WSN) based, have been per-

formed at the premises of the Pulchowk Campus and Pepsicola area. LoRa-used WSN-

based test at the Pulchowk Campus localized the transmitter with a distance error of

14 m. A localization algorithm is developed for UAS implementation, and during its

verification test, the transmitter was localized at best with a distance error of 15.8 m

and an angle error of 8.6◦. The main mission was simulated in MATLAB simultane-

ously with practical implementation. The simulation results showed that under ideal

conditions, except for the presence of Gaussian noises, the transmitter can be localized

within the accuracy of 5 to 10 meters by increasing the number of RSSI samples read at

each measurement point. Using mean RSSI values, computed from 100 sample values

at each measurement, the UAS, in its final test mission, localized the transmitter with a

distance error of 25 meters, and an angle error of 8 degrees. As the acceptable level of

accuracy was set at 30 meters within the angular accuracy of 15 meters, the results are

accepted.

Graphical correlations between temperature, humidity and RSSI have been established.

It is clearly understood that RSSI-based localization, despite being simple, is highly

affected by weather conditions and environmental dynamics. Therefore, it is prone to

inaccuracy and requires extensive testing for calibration. Therefore, it is recommended
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to measure the reference values before each flight. Simulation results show that it is

desirable to reduce the effect of random noises, and simply taking large number of RSSI

measurements at a measurement point and using the mean value for distance calculation

brings significant improvement in the accuracy and stability of the localization scheme.

However, this will be achieved at the expense of increased localization time.

Different filtering techniques like Simple Moving Average, Exponential Moving Aver-

age, and Kalman filter are studied and compared. Kalman filter is designed for the off-

board application and is observed to provide better filtering characteristics than SMA

and EMA. Finally, two approaches for considering uncertainties in distance approxima-

tions at each time step are presented: range of distances and moving towards/away. For

the maximum distance estimation error of 30 % to be acceptable, a distance confidence

interval below 86 % is recommended.

5.2 Recommendations

The project offers several rooms for enhancements in the future. One of the immediate

actions would be to incorporate the directional antenna into the system and develop a

corresponding localization algorithm based on RSSI and Angle of Arrival data. This

will increase the accuracy, as well as reduce the localization time. If accuracy becomes

the major concern, and not the resources, then employing multiple UAS systems that

communicate with each other in real-time, instead of just one, will help develop a high-

fidelity localization scheme. The project, currently, employs the deterministic model for

localization purposes, i.e you measure the RSSI, translate to distance, use trilateration

and locate the source. In the bigger picture, it can be enhanced into the probabilistic

model in the near future, which, contrary to what the name suggests, is expected to be

more accurate, as it will be based on real-time iterative path planning.
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APPENDICES

Appendix I: LoRa-ESP8266 transmitter code for Arduino IDE

# i n c l u d e <SPI . h>

# i n c l u d e <LoRa . h>

# d e f i n e s s 15

# d e f i n e r s t 16

# d e f i n e d io0 4

i n t c o u n t e r = 0 ;

i n t b u t t o n p i n = 5 ;

b o o l e a n b u t t o n s t a t e = LOW;

void s e t u p ( )

{
S e r i a l . b e g i n ( 1 1 5 2 0 0 ) ;

pinMode ( b u t t o n p i n , INPUT ) ;

whi le ( ! S e r i a l ) ;

S e r i a l . p r i n t l n ( ”LoRa Sender ” ) ;

LoRa . s e t P i n s ( ss , r s t , d io0 ) ;

i f ( ! LoRa . b e g i n (433 E6 ) ) {
S e r i a l . p r i n t l n ( ” S t a r t i n g LoRa f a i l e d ! ” ) ;

whi le ( 1 ) ;

}
LoRa . setSyncWord (0 xFF ) ;

S e r i a l . p r i n t l n ( ”LoRa I n i t i a l i z i n g OK! ” ) ;

}
void l oop ( ) {
b u t t o n s t a t e = d i g i t a l R e a d ( b u t t o n p i n ) ;

i f ( b u t t o n s t a t e == HIGH)

{
/ / S e r i a l . p r i n t (” Send ing p a c k e t : ”) ;

S e r i a l . p r i n t ( c o u n t e r ) ;

S e r i a l . p r i n t l n ( ” Help ! Help ! ! ” ) ;

/ / send p a c k e t
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LoRa . b e g i n P a c k e t ( ) ;

LoRa . p r i n t ( ” Help ! Help ! ! ” ) ;

LoRa . e n d P a c k e t ( ) ;

c o u n t e r ++;

d e l a y ( 1 0 0 ) ;

}
e l s e {

S e r i a l . p r i n t l n ( ” . . . ” ) ;

d e l a y ( 1 0 0 0 ) ;

}
}
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Appendix II: Localization Code running on-board on the flight computer (Arduino

Uno)

# i n c l u d e <SPI . h>

# i n c l u d e <LoRa . h>

# d e f i n e s s 10

# d e f i n e r s t 9

# d e f i n e d io0 3

# d e f i n e NUM PACKETS 75

i n t r s s i v a l u e s [NUM PACKETS ] ;

i n t p a c k e t c o u n t = 0 ;

i n t mean count = 0 ;

f l o a t r1 ;

f l o a t r2 ;

f l o a t r3 ;

f l o a t m e a n r s s i ;

f l o a t m e a n r s s i 1 ;

f l o a t m e a n r s s i 2 ;

f l o a t m e a n r s s i 3 ;

f l o a t m e a n r s s i 4 ;

f l o a t m e a n r s s i 5 ;

/ / D e f i n i n g x , y c o o r d i n a t e s o f t h e t h r e e measur ing l o c a t i o n s

f l o a t x1 = 0 . 0 ;

f l o a t y1 = 0 . 0 ;

f l o a t x2 = 3 0 . 0 ;

f l o a t y2 = 0 . 0 ;

f l o a t x3 = 0 . 0 ;

f l o a t y3 = 5 0 . 0 ;

/ / C a l i b r a t e d Parame ter s

f l o a t RSSI0 = − 5 9 . 1 ;

f l o a t n = 2 . 1 ;

f l o a t d0 = 1 ;
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/ / D e f i n i n g l a t i t u d e and l o n g i t u d e o f t h e r e f e r e n c e p o i n t

f l o a t r e f l a t = 27 .6831534 ; / / l a t i t u d e o f r e f e r e n c e p o i n t i n d e g r e e s

f l o a t r e f l o n = 8 5 . 3 2 2 1 4 2 4 ; / / l o n g i t u d e o f r e f e r e n c e p o i n t i n

d e g r e e s

/ / D e f i n i n g c o n s t a n t s f o r l a t i t u d e and l o n g i t u d e c o n v e r s i o n

f l o a t deg2rad = PI / 1 8 0 . 0 ; / / c o n v e r s i o n f a c t o r from d e g r e e s t o

r a d i a n s

f l o a t e a r t h r a d i u s = 6 3 7 8 1 3 7 . 0 ; / / r a d i u s o f t h e e a r t h i n m e t e r s

void s e t u p ( ) {
S e r i a l . b e g i n ( 1 1 5 2 0 0 ) ;

whi le ( ! S e r i a l ) ;

S e r i a l . p r i n t l n ( ”LoRa R e c e i v e r ” ) ;

LoRa . s e t P i n s ( ss , r s t , d io0 ) ;

i f ( ! LoRa . b e g i n (433 E6 ) ) { / / or 915E6

S e r i a l . p r i n t l n ( ” S t a r t i n g LoRa f a i l e d ! ” ) ;

whi le ( 1 ) ;

}
LoRa . setSyncWord (0 xFF ) ;

d e l a y ( 2 0 0 0 ) ;

S e r i a l . p r i n t l n ( ”LoRa I n i t i a l i z i n g OK! ” ) ;

d e l a y ( 1 5 0 0 0 ) ;

/ / r e g i s t e r t h e r e c e i v e c a l l b a c k

LoRa . onRece ive ( onRece ive ) ;

/ / p u t t h e r a d i o i n t o r e c e i v e mode

LoRa . r e c e i v e ( ) ;

}
void l oop ( ) {
/ / do n o t h i n g

}

void onRece ive ( i n t p a c k e t S i z e ) {
/ / check i f t h e p a c k e t i s v a l i d

i f ( p a c k e t S i z e == 0) {
/ / i n v a l i d packe t , s k i p i t

LoRa . r e c e i v e ( ) ;

re turn ;
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}
/ / r e c e i v e d a v a l i d p a c k e t

S e r i a l . p r i n t ( ” Rece ived : ’ ” ) ;

/ / read p a c k e t

f o r ( i n t i = 0 ; i < p a c k e t S i z e ; i ++) {
S e r i a l . p r i n t ( ( char ) LoRa . r e a d ( ) ) ;

}
S e r i a l . p r i n t ( ” ’ RSSI : ” ) ;

S e r i a l . p r i n t l n ( LoRa . p a c k e t R s s i ( ) ) ;

/ / s t o r e t h e RSSI v a l u e

r s s i v a l u e s [ p a c k e t c o u n t ] = LoRa . p a c k e t R s s i ( ) ;

p a c k e t c o u n t ++;

i f ( p a c k e t c o u n t == NUM PACKETS) {
/ / r e s e t t h e p a c k e t c o u n t and compute t h e average RSSI v a l u e

p a c k e t c o u n t = 0 ;

i n t sum = 0 ;

f o r ( i n t i = 0 ; i < NUM PACKETS; i ++) {
sum += r s s i v a l u e s [ i ] ;

}
m e a n r s s i = ( f l o a t ) sum / NUM PACKETS;

S e r i a l . p r i n t ( ”Mean RSSI : ” ) ;

S e r i a l . p r i n t l n ( m e a n r s s i ) ;

mean count ++;

i f ( mean count == 1) {
m e a n r s s i 1 = m e a n r s s i ;

}
e l s e i f ( mean count == 2) {
m e a n r s s i 2 = m e a n r s s i ;

}
e l s e i f ( mean count == 3) {
m e a n r s s i 3 = m e a n r s s i ;

}
e l s e i f ( mean count == 4) {
m e a n r s s i 4 = m e a n r s s i ;

}
e l s e i f ( mean count == 5) {

m e a n r s s i 5 = m e a n r s s i ;

S e r i a l . p r i n t ( ”Mean RSSI a t l o c a t i o n 1 : ” ) ;

S e r i a l . p r i n t l n ( m e a n r s s i 1 ) ;

86



S e r i a l . p r i n t ( ”Mean RSSI w h i l e moving from 1 t o 2 : ” ) ;

S e r i a l . p r i n t l n ( m e a n r s s i 2 ) ;

S e r i a l . p r i n t ( ”Mean RSSI a t l o c a t i o n 2 : ” ) ;

S e r i a l . p r i n t l n ( m e a n r s s i 3 ) ;

S e r i a l . p r i n t ( ”Mean RSSI w h i l e moving from 2 t o 3 : ” ) ;

S e r i a l . p r i n t l n ( m e a n r s s i 4 ) ;

S e r i a l . p r i n t ( ”Mean RSSI 3 a t l o c a t i o n 3 : ” ) ;

S e r i a l . p r i n t l n ( m e a n r s s i 5 ) ;

/ / C a l c u l a t i n g d i s t a n c e s ( example )

r1 = d0 * pow ( 1 0 , ( RSSI0 − m e a n r s s i 1 ) / ( 1 0 * n ) ) ;

r2 = d0 * pow ( 1 0 , ( RSSI0 − m e a n r s s i 3 ) / ( 1 0 * n ) ) ;

r3 = d0 * pow ( 1 0 , ( RSSI0 − m e a n r s s i 5 ) / ( 1 0 * n ) ) ;

S e r i a l . p r i n t ( ”D1 : ” ) ;

S e r i a l . p r i n t l n ( r1 ) ;

S e r i a l . p r i n t ( ”D2 : ” ) ;

S e r i a l . p r i n t l n ( r2 ) ;

S e r i a l . p r i n t ( ”D3 : ” ) ;

S e r i a l . p r i n t l n ( r3 ) ;

/ / C a l c u l a t i n g t r a n s m i t t e r co−o r d i n a t e s

/ / d e f i n e t h e m a t r i x o f c o e f f i c i e n t s

f l o a t A[ 2 ] [ 2 ] = {
{2 . 0 * ( x1−x2 ) , 2 . 0 * ( y1−y2 ) } ,

{2 . 0 * ( x1−x3 ) , 2 . 0 * ( y1−y3 ) }
} ;

/ / d e f i n e t h e v e c t o r o f c o n s t a n t s

f l o a t b [ 2 ] = {
r2 * r2 − r1 * r1 + x1*x1 − x2*x2 + y1*y1 − y2*y2 ,

r3 * r3 − r1 * r1 + x1*x1 − x3*x3 + y1*y1 − y3*y3

} ;

/ / compute t h e i n v e r s e o f A

f l o a t d e t = A[ 0 ] [ 0 ] *A[ 1 ] [ 1 ] − A[ 0 ] [ 1 ] *A [ 1 ] [ 0 ] ;

f l o a t invA [ 2 ] [ 2 ] = {
{A [ 1 ] [ 1 ] / de t , −A [ 0 ] [ 1 ] / d e t } ,

{−A [ 1 ] [ 0 ] / de t , A [ 0 ] [ 0 ] / d e t }
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} ;

/ / compute t h e s o l u t i o n v e c t o r x

f l o a t x [ 2 ] = {
invA [ 0 ] [ 0 ] * b [ 0 ] + invA [ 0 ] [ 1 ] * b [ 1 ] ,

invA [ 1 ] [ 0 ] * b [ 0 ] + invA [ 1 ] [ 1 ] * b [ 1 ]

} ;

/ / p r i n t t h e s o l u t i o n

S e r i a l . p r i n t ( ” x = ” ) ;

S e r i a l . p r i n t ( x [ 0 ] ) ;

S e r i a l . p r i n t ( ” , y = ” ) ;

S e r i a l . p r i n t l n ( x [ 1 ] ) ;

/ / c a l c u l a t e t h e l a t i t u d e and l o n g i t u d e o f t h e p o i n t

f l o a t l a t = r e f l a t + ( x [ 1 ] / e a r t h r a d i u s ) * ( 1 . 0 / deg2rad ) ;

f l o a t l o n = r e f l o n + ( x [ 0 ] / e a r t h r a d i u s ) * ( 1 . 0 / deg2rad ) / cos (

r e f l a t * deg2rad ) ;

/ / D i s p l a y i n g l a t i t u d e and l o n g i t u d e v a l u e s

S e r i a l . p r i n t ( ” L a t i t u d e : ” ) ;

S e r i a l . p r i n t l n ( l a t , 6 ) ; / / p r i n t l a t i t u d e w i t h 6 d e c i m a l p l a c e s

S e r i a l . p r i n t ( ” L o n g i t u d e : ” ) ;

S e r i a l . p r i n t l n ( lon , 6 ) ; / / p r i n t l o n g i t u d e w i t h 6 d e c i m a l p l a c e s

/ / S e t t i n g LoRa t o t r a n s m i t t i n g mode

LoRa . b e g i n P a c k e t ( ) ;

LoRa . p r i n t ( ”Mean RSSI a t L o c a t i o n 1 : ” ) ;

LoRa . p r i n t l n ( m e a n r s s i 1 ) ;

LoRa . p r i n t ( ”Mean RSSI w h i l e moving from 1 t o 2 : ” ) ;

LoRa . p r i n t l n ( m e a n r s s i 2 ) ;

LoRa . p r i n t ( ”Mean RSSI a t l o c a t i o n 2 : ” ) ;

LoRa . p r i n t l n ( m e a n r s s i 3 ) ;

LoRa . p r i n t ( ”Mean RSSI w h i l e moving from 2 t o 3 : ” ) ;

LoRa . p r i n t l n ( m e a n r s s i 4 ) ;

LoRa . p r i n t ( ”Mean RSSI a t l o c a t i o n 3 : ” ) ;

LoRa . p r i n t l n ( m e a n r s s i 5 ) ;

LoRa . e n d P a c k e t ( ) ;

LoRa . b e g i n P a c k e t ( ) ;

LoRa . p r i n t ( ”D1 : ” ) ;

LoRa . p r i n t l n ( r1 ) ;
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LoRa . p r i n t ( ”D2 : ” ) ;

LoRa . p r i n t l n ( r2 ) ;

LoRa . p r i n t ( ”D3 : ” ) ;

LoRa . p r i n t l n ( r3 ) ;

LoRa . e n d P a c k e t ( ) ;

LoRa . b e g i n P a c k e t ( ) ;

LoRa . p r i n t l n ( ” C a r t e s i a n ” ) ;

LoRa . p r i n t ( ” x = ” ) ;

LoRa . p r i n t ( x [ 0 ] ) ;

LoRa . p r i n t ( ” , y = ” ) ;

LoRa . p r i n t l n ( x [ 1 ] ) ;

LoRa . e n d P a c k e t ( ) ;

LoRa . b e g i n P a c k e t ( ) ;

LoRa . p r i n t ( ” 1 La t : ” ) ;

LoRa . p r i n t ( l a t , 6 ) ;

LoRa . p r i n t ( ” Long : ” ) ;

LoRa . p r i n t l n ( lon , 6 ) ;

LoRa . e n d P a c k e t ( ) ;

LoRa . end ( ) ;

re turn ;

}
}
/ / p u t t h e r a d i o back i n t o r e c e i v e mode

LoRa . r e c e i v e ( ) ;

}
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Appendix III: MATLAB Simulation Code

c l c ;

c e a r a l l ;

% D e f i n e g r i d s i z e and g r i d p o i n t s

g r i d s i z e = 500 ;

s t e p s i z e = 1 ;

[X,Y] = meshgrid ( 0 : s t e p s i z e : g r i d s i z e − s t e p s i z e , 0 : s t e p s i z e :

g r i d s i z e − s t e p s i z e ) ;

% D e f i n e t r a n s m i t t e r l o c a t i o n

t x x = 250 ;

t x y = 250 ;

% D e f i n e r e f e r e n c e d i s t a n c e and r e f e r e n c e RSSI

d0 = 1 ;

RSSI0 = −32;

% D e f i n e pa th l o s s e x p o n e n t

n = 2 ;

% D e f i n e v a r i a n c e o f t h e Gauss ian n o i s e

s igma = 2 ;

% C a l c u l a t e d i s t a n c e o f each g r i d p o i n t from t h e t r a n s m i t t e r

D = s q r t ( ( X− t x x ) . ˆ 2 + (Y− t x y ) . ˆ 2 ) ;

% C a l c u l a t e pa th l o s s

p a t h l o s s = 10* n* l og10 (D/ d0 ) ;

AWGN mean = z e r o s ( s i z e (X) ) ;

f o r j = 1 : 1 : 5 0

Random = randn ( s i z e (X) ) ;

AWGN mean = AWGN mean + Random ;

end

AWGN mean = sigma * AWGN mean / 5 0 ;

% C a l c u l a t e t h e RSSI
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RSSI = RSSI0 − p a t h l o s s − AWGN mean ;

% P l o t t h e RSSI v a l u e s

f i g u r e ( ) ;

imagesc ( RSSI ) ;

colormap ( ’ j e t ’ ) ;

c o l o r b a r ;

x l a b e l ( ’X’ , ’ FontWeight ’ , ’ bo ld ’ ) ;

y l a b e l ( ’Y’ , ’ FontWeight ’ , ’ bo ld ’ ) ;

s e t ( gca , ’ YDir ’ , ’ normal ’ ) ;

s e t ( gca , ’ fon tname ’ , ’ t i m e s ’ ) ;

t i t l e ( ’ RSSI Values (\ s igma = 5) ’ )

gr id on ;

% I n p u t t h r e e measurement l o c a t i o n s

l o c a t i o n 1 = input ( ’ E n t e r c o o r d i n a t e s f o r l o c a t i o n 1 i n f o r m a t [ X1 Y1

] ) : ’ ) ;

l o c a t i o n 2 = input ( ’ E n t e r c o o r d i n a t e s f o r l o c a t i o n 2 i n f o r m a t [ X2 Y2

] ) : ’ ) ;

l o c a t i o n 3 = input ( ’ E n t e r c o o r d i n a t e s f o r l o c a t i o n 3 i n f o r m a t [ X3 Y3

] ) : ’ ) ;

% Read t h e RSSI v a l u e s a t t h r e e measurement l o c a t i o n s

RSSI1 = i n t e r p 2 (X, Y, RSSI , l o c a t i o n 1 ( 1 ) , l o c a t i o n 1 ( 2 ) ) ;

RSSI2 = i n t e r p 2 (X, Y, RSSI , l o c a t i o n 2 ( 1 ) , l o c a t i o n 2 ( 2 ) ) ;

RSSI3 = i n t e r p 2 (X, Y, RSSI , l o c a t i o n 3 ( 1 ) , l o c a t i o n 3 ( 2 ) ) ;

i f i snan ( RSSI1 ) | | i snan ( RSSI2 ) | | i snan ( RSSI3 )

di sp ( ’ I n v a l i d l o c a t i o n e n t e r e d ’ ) ;

e l s e

% Conver t RSSI t o d i s t a n c e u s i n g t h e pa th l o s s model

d1 = d0 * 1 0 ˆ ( ( RSSI0 − ( RSSI1 ) ) / ( 1 0 * n ) ) ;

d2 = d0 * 1 0 ˆ ( ( RSSI0 − ( RSSI2 ) ) / ( 1 0 * n ) ) ;

d3 = d0 * 1 0 ˆ ( ( RSSI0 − ( RSSI3 ) ) / ( 1 0 * n ) ) ;

end

% S o l v i n g s y s t e m o f l i n e a r e q u a t i o n s

x1 = l o c a t i o n 1 ( 1 ) ;

y1 = l o c a t i o n 1 ( 2 ) ;
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x2 = l o c a t i o n 2 ( 1 ) ;

y2 = l o c a t i o n 2 ( 2 ) ;

x3 = l o c a t i o n 3 ( 1 ) ;

y3 = l o c a t i o n 3 ( 2 ) ;

% D e f i n e t h e s y s t e m o f e q u a t i o n s

f = @( x ) [ ( ( x ( 1 ) −x1 ) ˆ2 + ( x ( 2 ) −y1 ) ˆ2 − d1 ˆ 2 ) ;

( ( x ( 1 ) −x2 ) ˆ2 + ( x ( 2 ) −y2 ) ˆ2 − d2 ˆ 2 ) ;

( ( x ( 1 ) −x3 ) ˆ2 + ( x ( 2 ) −y3 ) ˆ2 − d3 ˆ 2 ) ] ;

% D e f i n e t h e J a c o b i a n m a t r i x

J = @( x ) [ 2 * ( x ( 1 ) −x1 ) , 2*( x ( 2 ) −y1 ) ;

2*( x ( 1 ) −x2 ) , 2*( x ( 2 ) −y2 ) ;

2*( x ( 1 ) −x3 ) , 2*( x ( 2 ) −y3 ) ] ;

% I n i t i a l g u e s s f o r t h e s o l u t i o n

x0 = [ 1 0 0 ; 1 0 0 ] ;

% S o l v e t h e s y s t e m o f e q u a t i o n s u s i n g f s o l v e

o p t i o n s = o p t i m o p t i o n s ( @fsolve , ’ D i s p l a y ’ , ’ o f f ’ ) ;

x = f s o l v e ( f , x0 , o p t i o n s ) ;

% Va l u e s i n x are t h e s o l u t i o n

s o l x = x ( 1 ) ;

s o l y = x ( 2 ) ;

% P l o t t h e r e s u l t

f i g u r e ( ) ;

s c a t t e r ( l o c a t i o n 1 ( 1 ) , l o c a t i o n 1 ( 2 ) , ’ r ’ , ’ f i l l e d ’ ) ;

hold on ;

s c a t t e r ( l o c a t i o n 2 ( 1 ) , l o c a t i o n 2 ( 2 ) , 5 0 , ’m’ , ’ f i l l e d ’ ) ;

s c a t t e r ( l o c a t i o n 3 ( 1 ) , l o c a t i o n 3 ( 2 ) , 5 0 , ’ k ’ , ’ f i l l e d ’ ) ;

s c a t t e r ( x ( 1 ) , x ( 2 ) , ’ g ’ , ’ f i l l e d ’ ) ;

s c a t t e r ( 2 5 0 , 250 , ’ * ’ , ’ b ’ ) ;

l egend ( ’ L o c a t i o n 1 ’ , ’ L o c a t i o n 2 ’ , ’ L o c a t i o n 3 ’ , ’ T r a n s m i t t e r

L o c a l i z e d ’ , ’ T r a n s m i t t e r A c t u a l ’ ) ;

x l im ( [ 0 g r i d s i z e ] ) ;

y l im ( [ 0 g r i d s i z e ] ) ;

s e t ( gca , ’ YDir ’ , ’ normal ’ ) ;
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s e t ( gca , ’ fon tname ’ , ’ t i m e s ’ ) ;

x l a b e l ( ’X’ , ’ FontWeight ’ , ’ bo ld ’ ) ;

y l a b e l ( ’Y’ , ’ FontWeight ’ , ’ bo ld ’ ) ;

t i t l e ( ’\ s igma = 5 ’ ) ;

gr id on ;
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Appendix IV: Kalman, SMA, and EMA Filter

c l c ;

c l e a r a l l ;

% %Read t h e da ta from t h e E x c e l f i l e , ToFilter , i n t h i s case

[ num , t x t , raw ] = x l s r e a d ( ’ T o F i l t e r . x l s x ’ ) ;

% E x t r a c t t h e s i g n a l s t r e n g t h and d i s t a n c e columns from t h e da ta

s i g n a l c o l u m n = 1 ; % assuming t h e s i g n a l s t r e n g t h column i s t h e f i r s t

column

d i s t c o l u m n = 2 ; % assuming t h e d i s t a n c e column i s t h e second column

n o i s y s i g n a l = num ( : , s i g n a l c o l u m n ) ;

d i s t = num ( : , d i s t c o l u m n ) ;

% D e f i n e t h e p a r a m e t e r s o f t h e l o g pa th l o s s model ( s t a n d a r d

p a r a m e t e r s are used )

n = 2 ; % Path l o s s e x p o n e n t

RSSI0 = −32; % R e f e r e n c e RSSI v a l u e a t r e f e r e n c e d i s t a n c e d0

d0 = 1 ; % R e f e r e n c e d i s t a n c e

% C a l c u l a t e t h e measurement m a t r i x based on t h e l o g pa th l o s s model

H = −10*n* l og10 ( d i s t / d0 ) + RSSI0 ;

% Reshape H t o be a column v e c t o r w i t h t h e same number o f e l e m e n t s as

d i s t

H = reshape (H, [ ] , 1 ) ;

% D e f i n e t h e measurement m a t r i x C f o r t h e Kalman f i l t e r

C = [H’ ; ones ( 1 , l e n g t h ( d i s t ) ) ] ;

% C a l c u l a t e t h e measurement n o i s e c o v a r i a n c e R based on t h e v a r i a n c e

o f t h e u n f i l t e r e d s i g n a l

R = v a r ( n o i s y s i g n a l ) ;

% I n i t i a l i z e t h e s t a t e v e c t o r

x = [ RSSI0 ; 0 ] ;

% I n i t i a l i z e t h e c o v a r i a n c e m a t r i x

P = diag ( [ 1 0 0 , 1 0 0 ] ) ;

% D e f i n e t h e p r o c e s s n o i s e c o v a r i a n c e m a t r i x Q
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q = 0 . 0 0 0 0 0 0 1 ; % P r o c e s s n o i s e i n t e n s i t y

Q = [ q , 0 ; 0 , q ] ;

% D e f i n e t h e s t a t e t r a n s i t i o n m a t r i x A f o r t h e Kalman f i l t e r

A = eye ( 2 ) ;

% Run t h e Kalman f i l t e r o v er t h e s i g n a l

f i l t e r e d s i g n a l k a l m a n = z e r o s ( s i z e ( n o i s y s i g n a l ) ) ;

f o r i = 1 : l e n g t h ( n o i s y s i g n a l )

% P r e d i c t t h e n e x t s t a t e

x = A * x ;

P = A * P * A’ + Q;

% Update t h e s t a t e e s t i m a t e

K = P * C ( : , i ) / (C ( : , i ) ’ * P * C ( : , i ) + R) ;

x = x + K * ( n o i s y s i g n a l ( i ) − C ( : , i ) ’ * x ) ;

P = ( eye ( 2 ) − K * C ( : , i ) ’ ) * P ;

% C a l c u l a t e t h e f i l t e r e d s i g n a l

f i l t e r e d s i g n a l k a l m a n ( i ) = H( i ) * x ( 1 ) + x ( 2 ) ;

end

% Run t h e moving average f i l t e r over t h e s i g n a l

window s ize = 2 0 ;

f i l t e r e d s i g n a l m a = movmean ( n o i s y s i g n a l , w indow s ize ) ;

% Run t h e e x p o n e n t i a l moving average f i l t e r over t h e s i g n a l

a l p h a = 0 . 1 ;

f i l t e r e d s i g n a l e m a = f i l t e r ( a lpha , [1 a lpha − 1] , n o i s y s i g n a l ) ;

% P l o t t h e n o i s y s i g n a l and t h e f i l t e r e d s i g n a l s

p l o t ( d i s t , n o i s y s i g n a l , d i s t , f i l t e r e d s i g n a l k a l m a n , d i s t ,

f i l t e r e d s i g n a l m a , d i s t , f i l t e r e d s i g n a l e m a ) ;

x l a b e l ( ” D i s t a n c e ” ) ;

y l a b e l ( ” RSSI ” ) ;

l egend ( ” Noisy S i g n a l ” , ” Kalman F i l t e r ” , ” Moving Average F i l t e r ” , ”

E x p o n e n t i a l Moving Average F i l t e r ” , ’ L o c a t i o n ’ , ’ s o u t h e a s t ’ ) ;

% R e v e r s e t h e y−a x i s t o d i s p l a y i n c r e a s i n g n e g a t i v e v a l u e s

s e t ( gca , ’ YDir ’ , ’ r e v e r s e ’ ) ;

s e t ( gca , ’ fon tname ’ , ’ t i m e s ’ ) ;
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Appendix V: Fitting Path Loss Model

c l c ;

c l e a r a l l ;

% Read t h e da ta from t h e E x c e l f i l e

[ num , t x t , raw ] = x l s r e a d ( ’ F i l t e r e d . x l s x ’ ) ;

% E x t r a c t t h e s i g n a l s t r e n g t h and d i s t a n c e columns from t h e da ta

s i g n a l c o l u m n = 1 ; % assuming t h e s i g n a l s t r e n g t h column i s t h e f i r s t

column

d i s t c o l u m n = 2 ; % assuming t h e d i s t a n c e column i s t h e second column

RSSI = num ( : , s i g n a l c o l u m n ) ;

d = num ( : , d i s t c o l u m n ) ;

n = 2 ; % s t a r t i n g v a l u e f o r t h e pa th l o s s e x p o n e n t

d0 = 1 ; % r e f e r e n c e d i s t a n c e

%% When RSSI0 i s known

% RSSI0 = −58.5;

% % D e f i n e t h e f u n c t i o n t o m i n i m i z e

% f u n = @( x ) sum ( ( RSSI − RSSI0 + 10 * x ( 1 ) * log10 ( d / d0 ) ) . ˆ 2 ) ;

% % Min imize t h e f u n c t i o n u s i n g t h e f m i n s e a r c h f u n c t i o n

% x = f m i n s e a r c h ( fun , n ) ;

%% Get t h e pa th l o s s e x p o n e n t and r e f e r e n c e RSSI

% n = x ( 1 ) ;

%% When RSSI0 i s n o t known

% D e f i n e t h e f u n c t i o n t o m i n i m i z e

fun = @( x ) sum ( ( RSSI − x ( 1 ) + 10 * x ( 2 ) * l og10 ( d / d0 ) ) . ˆ 2 ) ;

% Minimize t h e f u n c t i o n u s i n g t h e f m i n s e a r c h f u n c t i o n

x = f m i n s e a r c h ( fun , [ RSSI ( 1 ) , n ] ) ;

% Get t h e pa th l o s s e x p o n e n t and r e f e r e n c e RSSI

RSSI0 = x ( 1 ) ;

n = x ( 2 ) ;
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Appendix VI: Quadcopter Performance Calculator

%% drone per fo rmance c a l c u l a t o r

c l c ;

c l e a r a l l ;

%%i n p u t p a r a m e t e r s

f ramewt =1; % t h e t o t a l f rame w e i g h t o f t h e drone i n k g

p a y l o a d = 0 . 6 2 3 ; %t h e pay load o f t h e drone i n k g

TWR=2; % t h r u s t t o w e i g h t r a t i o t y p i c a l l y 2

n =4; %no o f motor

r a n g e =300; %maximum range r e q u i r e d

%% t o t a l w e i g h t c a l c u l a t i o n

t o t a l w t = framewt + p a y l o a d ;

%% t o t a l t h r u s t r e q u i r e d

m a x t h r u s t = t o t a l w t *TWR;

m o t o r t h r u s t r = m a x t h r u s t / n *1000 ; %t h e maximum motor t h r u s t per motor

%% f i n d i n g t h e d i a m e t r and p i t c h r e q u i r e d

% t t h e r f i l e name i n which t h e da ta o f drone i s s t o r e d

f i l e n a m e = ’ t h r u s t c a l c . x l s x ’ ;

s h e e t n a m e = ’ S h e e t 1 ’ ;

% t h e v a l u e o f t h r u s t c a l c u l a t e d f o r each motor

t h r u s t t o f i n d = m o t o r t h r u s t r ;

% Reading t h e e x c e l f i l e

d a t a = x l s r e a d ( f i l e n a m e , s h e e t n a m e ) ;

% E x t r a c t t h e t h r u s t column

t h r u s t c o l u m n = d a t a ( : , 9 ) ; % assuming t h r u s t column i s t h e second

column i n t h e E x c e l f i l e

g r e a t e r i n d i c e s = f i n d ( t h r u s t c o l u m n > t h r u s t t o f i n d ) ;%f i n d s t h e

v a l u e o f t h r u s t t h a t i s g r e a t e r than t h e c a l c u l a t e d da ta

i f i sempty ( g r e a t e r i n d i c e s )

error ( ’ T h r u s t v a l u e n o t found i n t h e Exce l f i l e ’ ) ;

end

% Find t h e minimum t h r u s t v a l u e t h a t i s g r e a t e r than t h e known t h r u s t

v a l u e

m i n t h r u s t = min ( t h r u s t c o l u m n ( g r e a t e r i n d i c e s ) ) ;

r o w i n d e x = f i n d ( t h r u s t c o l u m n == m i n t h r u s t , 1 ) ;

i f i sempty ( r o w i n d e x )

error ( ’ T h r u s t v a l u e n o t found i n t h e Exce l f i l e ’ ) ;
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end

% E x t r a c t da ta from a n o t h e r column c o r r e s p o n d i n g t o t h e t h r u s t v a l u e

d i a m e t e r f i n d = d a t a ( row index , 3 ) ; % t h e column o f d i a m e t e r i s 5

d i a m e t e r = d i a m e t e r f i n d * 1 0 0 / 2 . 5 4 ;

p i t c h f i n d = d a t a ( row index , 4 ) ; % t h e column o f p i t c h i s 6

p i t c h = p i t c h f i n d ;

f p r i n t f ( ’ The d i a m e t e r o f p r o p e l l e r r e q u i r e d i n c h e s = ’ ) ;

di sp ( d i a m e t e r ) ;

f p r i n t f ( ’ The p i t c h o f p r o p e l l e r r e q u i r e d i n i n c h e s = ’ ) ;

di sp ( p i t c h f i n d * 1 0 0 / 2 . 5 4 ) ;

f p r i n t f ( ’ The c u r r e n t o f e s c t o be used i n amps = ’ ) ;

I = d a t a ( row index , 5 ) ;%c u r r e n t a t maximum t h r o t t l e

d i s p l a y ( round ( d a t a ( row index , 5 ) * 1 . 5 , − 1 ) +10) ;

v o l t a g e f i n d = d a t a ( row index , 2 ) ;

f p r i n t f ( ’ The no of c e l l s o f b a t t e r y r e q u i r e d = ’ ) ;

n c e l l =round ( v o l t a g e f i n d / 3 . 7 ) ;%no o f c e l l s o f b a t t e r y

d i s p l a y ( round ( v o l t a g e f i n d / 3 . 7 ) ) ;

f p r i n t f ( ’ The KV r a t i n g o f motor = ’ ) ;

KV= d a t a ( row index , 1 ) ;

d i s p l a y ( d a t a ( row index , 1 ) ) ;

I0 = d a t a ( row index , 6 ) ;

V= n c e l l * 3 . 7 ;

%% t h e range and f l i g h t t i m e o f t h e d r o n e

t h r 1 = 0 . 8 ; % maximum t h r o t t l e s e t t i n g s o f motor

t h r 2 = 0 . 4 ; % minimum t h r o t t l e s e t t i n g s o f motor

I1 = t h r 1 * I ; % t h e t h r o t t l e a t maximum t h r o t t l e s e t t i n g s

I2 = t h r 2 * I ; %t h e t h r o t t l e a t minimum t h r o t t l e s e t t i n g s

bd= 0 . 8 ; %t h e b a t t e r y d i s c h a r g e r a t i n g s e t

Esc I = I1 ; % t h e maximum c u r r e n t drawn by t h e motor i s t h e e s c

c u r r e n t

Esc2= I2 ;

I t o t a l = Esc I *n ; % t h e maximum c u r r e n t drawn by t h e motor which i s

a l s o t h e b a t t e r y c u r r e n t drawn

I t o t a l 2 = Esc2 *n ;

Iw = I t o t a l / t o t a l w t ; % t h e maximum c u r r e n t i n amps r e q u i r e d t o l i f t

one kg o f drone

Iw2 = I t o t a l 2 / t o t a l w t ;

rangem= r a n g e * 0 . 0 0 0 6 2 1 3 7 1 ;

f l t i m e = ( rangem *63120) / (KV*V*60* p i t c h ) ; % t h e f l i g h t t i m e i n m i n u t e s
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mah = f l t i m e *Iw *1000 ;

f p r i n t f ( ’ The mah of b a t t e r y r e q u i r e d = ’ ) ;

d i s p l a y ( mah ) ;

Figure 7.1: Quadcopter performance calculator GUI

Figure 7.2: Database
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