

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

A THESIS REPORT ON

Effect of Activated Carbon, CMC and Fly Ash on Different Grade of Concrete

 $\mathbf{B}\mathbf{Y}$

ADARSHA CHAUHAN

076/MSMSE/001

SUBMITTED TO THE DEPARTMENT OF APPLIED SCIENCE AND CHEMICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR

DEGREE OF MASTER OF SCIENCE IN MATERIAL SCIENCE AND ENGINEERING

DEPARTMENT OF APPLIED SCIENCE AND CHEMICAL ENGINEERING,

LALITPUR, NEPAL

APRIL, 2023

COPYRIGHT

The author has agreed that the library, Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering may make this thesis freely available for inspection. Moreover, the author has agreed that permission for extensive copying of this thesis for the scholarly purpose may be granted by the professor(s) who supervised the work recorded herein or, in their absence, by the Head of the Department wherein the thesis was done. It is understood that the recognition will be given to the author of this report and the Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering in any use of the material of this thesis. Copying or publication or the other use of this thesis for financial gain without the approval of the Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering and the author's written permission is prohibited.

Request for permission to copy or make any other use of the material in this report in whole or in part should be addressed to:

Head

Department of Applied Science and Chemical Engineering

Pulchowk Campus, Institute of Engineering

Lalitpur, Nepal

CERTIFICATE OF THESIS APPROVAL

This is to certify that they have read, and recommended to the Institute of Engineering for acceptance, a thesis report titled "Effect of Activated Carbon, CMC and Fly Ash on Different Grade of Concrete" submitted by Mr. Adarsha Chauhan (076-MSMSE-001) in the partial fulfillment of the requirements for the degree of Masters of Science in Material Science and Engineering.

Supervisor

External Examiner

Prof. Dr. Gokarna Bahadur Motra

Department of Civil Engineering, IOE, Pulchowk Campus Prof. Dr. Prakash Chandra Lohani

Amrit Science Campus

Date: April, 2023

DECLARATION

I declare that this dissertation has not been previously accepted in substance for any degree and is not being concurrently submitted in candidature for any degree. I state that this dissertation is result of my own independent work/investigation, except where otherwise stated. I, hereby, give my consent for my dissertation, if accepted, to be available for photocopying and understand that any reference to or quotation from my thesis will receive an acknowledgement.

Adarsha Chauhan

076/MSMSE/001

April, 2023

ABSTRACT

Cement is the extensively used material in the world after water. Adding new functional materials to like Activated Carbon (AC), Carboxymethylcellulose (CMC) sodium salt, fly ash (FA), PCE (Poly Carboxylic Ether) based plasticizer can improve the quality and add novel characteristics. Also, reducing the usage of cement.

This study focused on the investigation of compressive strength and modulus of elasticity after introduction of CMC, AC, FA on different grade of concrete. 41 batches of concrete were prepared and tested for M 30 and M 25 grade concrete. The AC being a highly hydrophobic material, agglomeration occurs. CMC sodium salt aqueous solution is chosen surfactant to form the gel structure to disperse the AC. Standard mix design of 132 concrete cubes were carried out varying CMC, AC, FA and its effects were analyzed.

Keywords: Concrete, Mix Design, Carboxymethylcellulose sodium salt, Activated Carbon, Fly Ash

ACKNOWLEDGEMENT

I would like to to express sincere thanks and gratitude to all the people who has been linked with this thesis. Firstly, supervisor, Prof. Dr. Gokarna Bahadur Motra for continuous guidance, comments, suggestions, and motivation.

I am thankful to the Department of Applied Science and Chemical Engineering, Pulchowk campus and all the faculty members for their help during this thesis. I am obliged to Prof. Dr. Hem Raj Panta, Prof. Dr. Sahira Joshi and Prof. Dr. Rinita Joshi for constant support and guidance.

I extend high appreciation for support from all staff from Research Lab, Nano Lab, Central Material testing Lab, Heavy Lab, Water Lab and Research lab of Pulchowk Campus. I would like to thank Shivam Cements, Create Acme Associates and Department of Pharmacy, Kathmandu University for their resources.

I extend my gratitude to colleague, Anish Bhusal, Anup Adhikari, Gaurab Raj Neupane for their valuable time, resources, equipment and support which were vital for this research.

Also, I would like to thank all my friends and family without whom non is possible.

Adarsha Chauhan

076-MSMSE-001

April, 2023

TABLE OF CONTENT

COPYRIGHT i
CERTIFICATE OF THESIS APPROVALii
DECLARATIONiii
ABSTRACT iv
ACKNOWLEDGEMENT
TABLE OF CONTENT
LIST OF TABLES viii
LIST OF IMAGES ix
LIST OF FIGURES x
ABBREBRIATION AND SYMBOLS xi
CHAPTER 1: INTRODUCTION
1.1 Background1
1.2 Problem statement
1.3 Research Questions
1.4 Objectives
1.5 Limitation
CHAPTER 2: LITERATURE REVIEW
2.1. AC on concrete
2.2. CMC on concrete
2.3. Fly Ash on concrete
2.4. Plasticizer on concrete
2.5. Prospects benefits
CHAPTER 3: MATERIALS AND METHODOLOGY 10
3.1 Research Design
3.2 Selection of Material12

3.3 Tools and Test Performed
3.4 Preparation of Solution
3.5 Mix Design
CHAPTER 4: RESULTS AND DISCUSSION27
4.1 Compressive Strength for M 30 grade27
4.2 Modulus of Elasticity for M 30 grade
4.3 Compressive Strength for M 25 grade
4.4 Comparison between M 30 and M 25 grade of concrete
CHAPTER 5: CONCLUSION AND RECOMENDATIONS
5.1 Conclusion
5.2 Recommendation
BIBLIOGRAPHY41
ANNEX
ANNEX-A: Choice of Materials
ANNEX-B: Mix Design Error! Bookmark not defined
ANNEX-C: Compressive Strength
ANNEX-D: Modulus of Elasticity Error! Bookmark not defined
ANNEX-E: Photographs

LIST OF TABLES

Table 1	Compressive Strength for different mix by Tommaso
Table 2	Compressive Strength for different mix by Zhang
Table 3	Setting time for different mix by Mishra
Table 4	Composition of OPC Cement
Table 5	Compressive Strength and avg. Modulus of Elasticity for M 30 concrete 27
Table 6	avg. compressive strength for M 25 concrete
Table 7	Content in ANNEX46
Table 8	AC Specification55
Table 9	CMC Specification
Table 10) Indication for different peaks in band range

LIST OF IMAGES

Image 1	CMC used	15
Image 2	Compressive Testing Machine	.17
Image 3	Strain Gauge	17
Image 4	Magnetic Stirrer with CMC solution	18
Image 5	150 mm cube molds	19
Image 6	Vibrating Table	20
Image 7	OPC test report	.47
Image 8	FA Specification	57
Image 9	FA FTIR test	58
Image 10	0 PCE Specification	59
Image 1	1 Water Test Report	60

LIST OF FIGURES

Figure 1 Flowchart showing research design 10
Figure 2 Test performed 11
Figure 3 Different Variation of AC, CMC, FA on M30 grade concrete 11
Figure 4 Different Variation of AC, CMC, FA on M30 grade concrete 12
Figure 5 Mix Design Composition for 1 m ³ M 3025
Figure 6 Mix Design Composition for 1 m ³ M 2525
Figure 7 Plot of compressive Strength of M 30 control vs days of curing28
Figure 8 Compressive strength plot for CMC concrete
Figure 9 Compressive Strength plot for CMC-AC concrete CMC variation
Figure 10 Compressive Strength plot for CMC-AC concrete AC variation29
Figure 11 Compressive Strength plot for CMC-AC-FA concrete FA variation30
Figure 12 Compressive Strength plot for CMC-AC-FA concrete AC variation 30
Figure 13 Plot of compressive Strength of M 25 control vs days of curing
Figure 14 Compressive strength plot for CMC concrete
Figure 15 Compressive strength plot for AC concrete
Figure 16 Compressive Strength plot for CMC-AC concrete CMC variation
Figure 17 Compressive Strength plot for CMC-AC concrete AC variation35
Figure 18 Compressive Strength plot for AC-FA concrete
Figure 19 Compressive Strength plot for CMC-FA concrete
Figure 20 Comparison chart for CMC concrete
Figure 21 Comparison chart for CMC-AC concrete
Figure 22 Comparison chart AC
Figure 23 Comparison chart CMC

ABBREBRIATION AND SYMBOLS

- AC : Activated Carbon
- CMC : Carboxy methyl cellulose
- w/c : water cement ratio
- FA : Fly Ash
- CA : CA
- VOC : Volatile Organic Compound
- MPa : Mega Pascle
- M 30 : Mix Design concrete for 30 MPa Strength
- M 25 : Mix Design concrete for 25 MPa Strength
- FM : Fineness Modulus
- IST : Initial Setting Time
- FST : Final Setting Time
- XRD : X-Ray Diffraction
- FTIR : Fourier Transform Infrared
- SEM : Scanning Electron Microscope
- OPC : Ordinary Portland Cement
- IS : Indian Standard
- ACI : American Concrete Institute
- wt. : weight
- max. : maximum
- min. : minimum
- avg. : average

CHAPTER 1: INTRODUCTION

1.1 Background

During the manufacture of 1 ton cement is estimated at 0.85 -1.1 ton CO2 is produced(Deja et al., 2010; Fayomi et al., 2019). CO₂ is predominant greenhouse gas contributing to the human caused climate change (IPCC 2013). The carbon intensity of global cement production needs to be reduced. Forty of the world's leading cement and concrete manufacturers today join forces to accelerate the shift to greener concrete by pledging to cut CO₂ emissions by a further 25% by 2030, marking a decisive step in the race to 'Net Zero' concrete by 2050(CAT, 2022; United Nations, 2022).

Global Cement and Concrete Association(GCCA, 2021) has set seven-point action plan to net zero future. Some of them are: savings in clinker production and binders, investment in technology and innovation, add novel chemistry alternative to Portland cement clinker, increase natural uptake of CO₂ in concrete and efficiency in concrete production.

 CO_2 are entrapped by carbonation in concrete but is not significant compared to quantities released during concrete production. So to entrap large CO_2 , AC is has many upside among adsorbents like zeolites, carbon molecular sieves, silicas and metal oxides(Dantas et al., 2011; Plaza et al., 2012; Shafeeyan et al., 2011).

AC is integrated in cement paste to minimize air pollution and VOCs(Krou et al., 2015). In cement mortars, fine aggregate was replaced by AC to improve its physical and mechanical strengths(Justo-Reinoso et al., 2018). Also, concrete can become conducting due to the continuous percolating network of conductive AC and modulus of elasticity was also increased(Pellenq, 2019).

AC are difficult to dissolve or disperse in water(Adeleke et al., 2019). CMC disperses AC, making little hydrophilic(Qiu et al., 2007). CMC in OPC has improved the Compressive Strength, water resistance, porosity reduction and acid resistance. Despite this, setting time of cement has increased(Farooque et al., 1970; Mishra et al., 2003).

The XRD and SEM observation indicate that organic polymer CMC influences the hydration of OPC and micro structure(Farooque et al., 2010).

FA decrease the waste materials and their associated environmental impacts through reusing capability. Also reduces the OPC consumption amount and its associated CO₂ releases from cement manufacturing(González-Kunz et al., 2017). Replacement level of FA with cement of 15- 25% for high strength concrete is seen fruitful(Malhotra et al., 2000).

It has been found that by use of FA, min. cement content is reduced which helps in consuming FA and saving cement(Mishra et al., 2015).

Conductive fillers are frequently used in cement-based composites for greater electrical conductivity and electrical resistance. Self-heating cement-based composites are created by including conductive fillers like carbon fibers, steel fibers, graphite, and nickel particles. In a cold environment, infrastructures such as urban highways, bridges, and airport runways are prone to freezing or being buried with snow, jeopardizing their safety and the daily lives of users. Self-heating cement-based composites are being proposed as a means of heating infrastructure and melting snow and ice(D. Wang et al., 2020).

Concrete is a porous material and its pore network is connected closely. AC is an inert filler which reduces the presence of pores enhancing the performance of concrete and increases workability. It can entrap harmful gases and it can act as conducting material on addition of porous conducting material.

On the contrary, AC is hydrophobic so it does not disperse in water evenly. For even distribution of AC in the concrete mix CMC is used which is good surfactant.

Use of FA in concrete to reduce the percentage of cement content and to use industrial waste FA to make green environment for sustainable life. Also, increase in workability is observed.

Use of PCE based plasticizer on cement improves consistency and has higher hydration heat and IST.

Such functional concrete is to be developed with AC, CMC and FA.

1.2 Problem statement

Forecast of 24,000 premature death per year by 2030 in Nepal will be responsible due to poor quality of air(Fiore et al., 2012). Making sustainable functional concrete by mixing AC, CMC and FA at once could be way out to solution to less carbon emission. As we know AC cannot be directly mixed with water as it is a hydrophobic material with high density. Therefore, it must be mixed with one of the chemical surfactants such as alginate or ethylcellulose, or carboxymethyl cellulose to distribute it evenly in the concrete. Carboxymethyl Cellulose is chosen. CMC aqueous solution with AC mix in concrete mix performance of concrete is assessed and interaction of CMC, AC, PCE plasticizer and FA is never studied to my knowledge. So now, the major question is how does the novel mix affect the mechanical property of concrete.

1.3 Research Questions

Some of the research questions encountered at the very beginning of the thesis are:

- i. What is the process for making the AC, CMC water suspension?
- ii. How does the addition of AC and CMC effect the mechanical property of concrete?
- iii. How does the addition of AC, CMC, FA and plasticizer affect the mechanical properties of concrete?

1.4 Objectives

The main objective of thesis is to investigate the effect of the AC, CMC, FA on M 30 and M 25 grade concrete.

The other general objectives are:

- i. To evaluate the performance of concrete varying CMC, AC and FA content.
- ii. To compare the effect of additives on different grade of concrete.

1.5 Limitation

- i. It only considers 28th day compressive strength.
- ii. It only considers for M 30 and M 25 grade of concrete.

For M 30 grade concrete:

- i. Interaction between CMC-AC-FA is studied for 3 FA ratio for 2 CMC-AC ratio.
- ii. No interaction between only AC addition to concrete is not studied.

For M 25 grade concrete:

i. No interaction between CMC-AC-FA is studied.

CHAPTER 2: LITERATURE REVIEW

Comprehensive analysis of literature related to a similar study was conducted to identify, locate, analyze and organize the document related to research problem. This involved a review of various books, proceedings, presentation, patent, articles, journals, online sources, and relevant documents to gain an understanding of how the similar situation was analyzed and solutions were suggested. Literature review was done with usage of AC, CMC, FA and plasticizers are separately enlisted below. Also different prospect benefits of using it are mentioned.

2.1. AC on concrete

On addition of AC on concrete showed 20-25% NO₂ adsorption and with creation of smaller amount Nitrate ions in concrete(Horgnies et al., 2014).

(Tommaso & Bordonzotti, 2016) used AC in concrete in optimal dose to high performance concrete of 65 MPa showed no effect on its performance in both hardened and fresh state. Also, reduction of NO_x group and showed excellent fire resisting property. Use of 1 % AC will lower the carbon footprint of concrete. The study has showed compressive strength as below:

Mixture	Percentage of AC	Compressive Strength (7 days)	Compressive Strength (28 days)
0	0	50	65.3
Mix 1	0.48	52.3	71.8
Mix 2	1.06	51.3	65.8
Mix 3	1.43	53	61.8

Table 1 Compressive Strength for different mix by Tommaso

(Zhang et al., 2017)experimentally showed the addition of AC to concrete is an effective method of decreasing the rate of radon exhalation. Different types of AC, such as those derived from nut shell, coconut shell, coal, and wood, have varying rates of decreasing radon exhalation, with nut shell and coconut shell-based AC showing the highest reduction rates of 44.3% and 47.1%, respectively, while coal and wood-based AC have lower reduction rates of 29.0% and 19.2%, respectively. Although AC

with a larger specific area tends to have a more significant impact on reducing radon exhalation rates, it is important to note that the specific area of the AC is only one of several factors that contribute to the reduction effect, and it is not the sole determining factor. The study has showed compressive strength as below:

Mixture	Percentage of AC	Compressive Strength (28 days)	Compressive Strength (28 days)
0	0	45.8	45.8
Mix 1	1	49.7	45.6
Mix 2	3	48.1	43.7
Mix 3	5	49	50.3
Mix 4	10	49.4	45.7
Mix 5	12	46.7	46.2
L	1	Cocunut Shell Based AC	Coal Based AC

Table 2 Compressive Strength for different mix by Zhang

2.2. CMC on concrete

The impact of the sodium salt of CMC on the characteristics of OPC has been analyzed. The study examined the changes in properties such as setting time, heat of hydration, compressive strength, and fracture toughness. Study concluded the mix Cement/CMC mix of 1% has been found to have improved strength and fracture toughness as compared with OPC. The material has shown better corrosion resistance in HCl, H₂SO₄ and sea-water. At different ages of 7, 28, and 91 days, the cement mixed CMC achieved its highest compressive strength when the additive content was 0.25%, 0.50%, and 0.50%, respectively. Specifically, the max. compressive strength observed for these mixtures was 32.53 MPa at 7 days, 45.87 MPa at 28 days, and 64.37 MPa at 91 days. The compressive strength of the cement-only control group was measured at 7, 28, and 91 days and recorded as 31.3, 43.7, and 53.5 MPa, respectively(Mishra et al., 2003). Delay in setting time and decrease in heat of hydration was observed when increasing CMC content in mix as table below:

Table 3 Setting time for different mix by Mishra

Percentage of CMC	Initial Setting Time (min)	Final Setting Time (min)
0	130	230
0.05	169	328
0.1	195	345
0.25	235	370
0.5	325	495
1	415	555
2	510	630
3	605	705
4	706	783

CMC has both hydrophobic and hydrophilic sides that improves dispersion. 0.4%, 0.8%, 1.2% and 1.6% CMC was used for dispersion of carbon fiber. Upto 0.8% showed shows good dispersion and research concluded that increase of pH increases dispersion(Akbar et al., 2014). The inclusion of CMC and silica fume increased Carbon Nano Fiber dispersion(H. Wang et al., 2017).

Carboxylmethyl Cellulose Sulfate (CMC-S) has a high potential for usage as a cement and concrete additive as a water reducer, set retarder, and water reducer and set retarder (Huang et al., 2014).

2.3. Fly Ash on concrete

Review study by (Ahmaruzzaman, 2010) on FA summarized below:

- i. One potential use of FA is as an inexpensive adsorbent in construction to eliminate pollutants like organic compounds, flue gas, and metals.
- FA has demonstrated positive outcomes in removing pollutants such as NO_x, SO_x, organic compounds, mercury, and dyes from air and water.
- iii. The adsorption capacity of FA can be enhanced through chemical and physical activation processes.

- Researchers worldwide have undertaken significant studies to find ways to utilize FA and minimize its environmental impact.
- v. FA is a by-product of coal combustion and known to cause environmental pollution.
- vi. FA can also be utilized as a light wt. aggregate, mine backfill, road sub-base, and for zeolite synthesis.
- vii. Continuous research and development in this field can aid in finding more efficient and sustainable ways to utilize FA while minimizing its environmental impact.
- viii. Nevertheless, environmental concerns must be considered while utilizing FA to avoid causing further damage to the ecosystem.
- ix. FA holds immense potential for use in the construction industry due to its properties as an effective adsorbent and light wt. aggregate.

In (Naik, 1987)study, the impact of high FA content, specifically FA, on concrete's setting and hardening was investigated. The results revealed that as the proportion of FA replacement increased, the setting time also increased, ranging from a few minutes to several hours. The effect was most prominent in high-replacement concretes with a greater amount of FA replacement.

The delay in setting time was attributed to the pozzolanic nature of FA, which reacts slowly with calcium hydroxide produced during cement hydration, resulting in additional calcium silicate hydrate (C-S-H) gel formation. As the amount of FA increased, the available calcium hydroxide for reaction decreased, resulting in a longer setting time.

2.4. Plasticizer on concrete

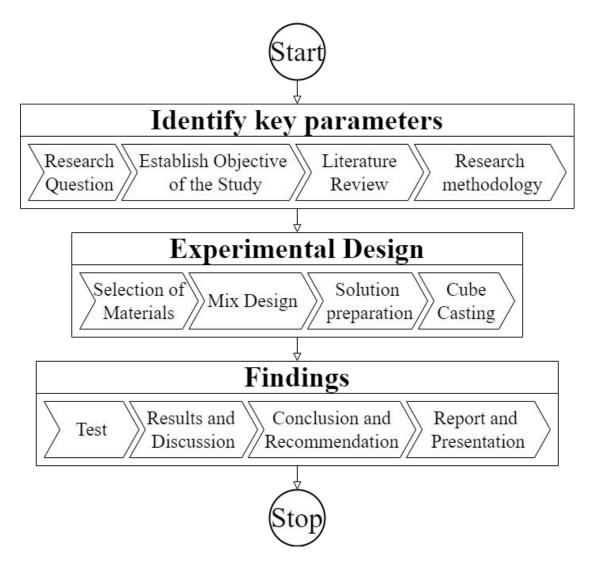
Plasticizer in concrete improve the strength of hardened concrete without increasing the amount of cement by reducing admixtures are used to reduce the mixing water, compared to concrete without admixtures, while maintaining the same slump. Concrete containing a water-reducing admixture is more workable and can improve the pumpability of the concrete, remains more cohesive and is less prone to segregation during placement. High strength concrete has lower w/c ratio and high content of fines to fill intergranular space to achieve denser packing instead of water(Etsuo, 2003; Plank et al., 2009).

2.5. Prospects benefits

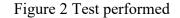
The study by (Mahoutian et al., 2015) investigated the air void characteristics of AC-FA concrete and found that AC decreased the air void content surface area. Also, the study concluded that ink-prepared specimens provided more accurate and reliable air void characteristics compared to epoxy impregnated specimens in any future image analysis for studying air void character.

FA is a supplementary cementing material that has been successfully used in concrete to enhance its mechanical properties and durability. Other materials such as slag, silica fume, construction and demolition wastes, rice husk ash, biomass ash, wood waste, blast furnace slag, steel slag, ceramic wastes, glass powder, marble powder, and other mineral powders have also been used as partial replacements for cement in concrete mixtures to improve their mechanical properties and sustainability(Aprianti S, 2017).

If Carbon black is dispersing in system, it is beneficial to uplift strength and durability of concrete due to its fineness. CMC as dispersing agent was used in research(Sama, 2020).


It was found that modified AC has higher CO_2 sequestration capacity. 1 kg of such modified AC concrete contain 5 gm of AC and can hold 12 mg CO_2 adsorbed, while 22 gm carbon would be stored as calcite. Whereas, for traditional concrete 13 gm is stored as calcite(Hamad, 2019).

CHAPTER 3: MATERIALS AND METHODOLOGY


3.1 Research Design

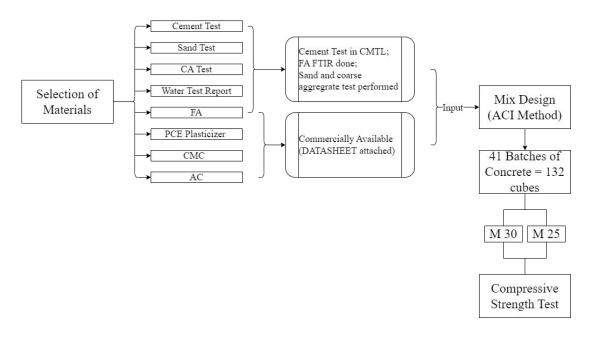

The research design of the thesis comprises of identifying key parameters, experimental design and interpreting the test results. Below flowchart shows the basic idea and work flow of this experimental thesis design.

Figure 1 Flowchart showing research design

Suitable material selections in concrete is includes specimen arrangements, preparations, experimental procedures, measurement techniques. Different types of test were done to select the materials used in research. Following test were conducted and calculation are presented in ANNEX. Whereas, mix design is placed in later in this section. Total of 132 cubes sample were casted and compressive strength test was carried out.

Certain target strength of concrete was set to M 30 and M 25 grade from mix design by ACI method using water reducing admixture for M 30 grade only. PCE based plasticizer was used. In M 30 and M 25 grade concrete, different addition were performed.

The procedure for preparation of concrete, concrete with CMC content, concrete with AC and CMC, and a varying amount of carbon is shown in the flow chart below:

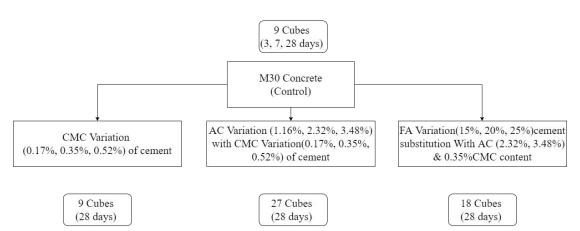
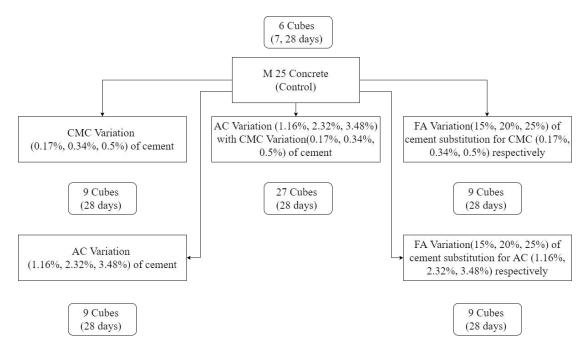



Figure 3 Different Variation of AC, CMC, FA on M30 grade concrete

All 63 concrete cubes were tested to compressive strength by compressive testing machine and for different content variation strain gauge was used for calculation of modulus of elasticity.

M 25 grade concrete was also casted whose mix design is without water reducing agent to see interaction of CMC, AC, FA on concrete. Total of 69 concrete cubes were casted and compressive strength of 28 days was calculated.

Figure 4 Different Variation of AC, CMC, FA on M30 grade concrete

3.2 Selection of Material

Following are the materials used:

3.2.1 Ordinary Portland Cement

OPC is a type of cement that is frequently used in construction. It is created by grinding clinker into a fine powder, and clinker is primarily made up of calcium silicates. This cement is widely used due to its affordability, flexibility, and capacity to resist damage. OPC cement is a extensively used material in various construction projects such as the construction of buildings, bridges, and roads due to its beneficial properties. OPC cement is composed of several chemical compounds, including(Taylor, 1997):

Table 4 Composition of OPC Cement

S.N.	Chemical	Chemical Formula	Content	Function
	Compound	Formula		

1	Tricalcium silicate	Ca ₃ SiO ₅	50-70%	Provides strength and durability to concrete by responding with water to form calcium silicate hydrate (C-S-H) gel.
2	Dicalcium silicate	Ca ₂ SiO ₄	10-30%	Contributes to the strength of cement over a longer period of time than tricalcium silicate.
3	Tricalcium aluminate	Ca ₃ Al ₂ O ₆	5-15%	Imparts early strength to concrete by reacting with water to form calcium aluminate hydrate (C-A-H) gel which is responsible for the IST time of cement.
4	Tetracalcium aluminoferrite	Ca4Al2Fe2O10	<10%	Contributes to the color of cement and also contribute to the early strength development.
5	Gypsum	CaSO ₄ .2H ₂ O	<5%	Regulates the setting time of cement and prevents flash setting.
6	(MgO, Fe ₂ O ₃ , alkalies, etc.)	-	<5%	Contribute to the properties of cement such as workability, setting time, and strength.

OPC cement of 53 Grade was used in our research.

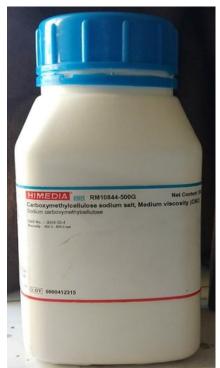
Several stages are involved in the production of OPC cement, including raw material extraction, crushing, grinding, and mixing. The main raw ingredients in OPC cement production are limestone, clay, and gypsum(PCA, 2023).

It is stated by the Indian Standards Institution (ISI) that the grade of OPC cement is determined by the compressive strength of the cement after 28 days of curing and that an increase in the proportion of clinker in the cement results in higher compressive strength(ISI, 2013). Likewise, the American Concrete Institute (ACI) observes that an increase in clinker content leads to an increase in both compressive strength and heat of hydration of OPC cement(ACI, 2014).

OPC cement of 53 grade was used manufactured by Shivam Cement was tested according to IS 4031-1988 and compressive strength for 3, 7 and 28 days and used. Also, Normal Consistency, IST and FST were calculated in CMTL Pulchowk Campus and report is placed below in ANNEX.

3.2.2 Activated Carbon

Activated carbon is a versatile and highly porous material utilized in several applications, including purification of water and air, gas separation, and energy storage. It results from carbonization of organic materials and activation by subjecting the carbonized matter to a mixture of gases or an oxidizing agent, such as carbon dioxide and steam. The activation process yields a porous network structure that boosts the carbon's surface area, thereby facilitating efficient adsorption of impurities. AC is manufactured by carbonizing organic materials, such as coal, coconut shells, and wood, followed by activation through exposure to an oxidizing agent or a mixture of gases, like steam and carbon dioxide. This leads to the creation of a network of pores and increases the carbon's surface area, allowing it to effectively adsorb impurities. AC has wide range of application in different field(Marsh, H., & Reinoso, 2006).


Commercially available AC in Kathmandu from Eureka Suppliers, Tripureshowr, Kathmandu was used in this research with company proclaimed specification is attached in ANNEX.

3.2.3 Carboxymethyl Cellulose Sodium Salt

Carboxymethylcellulose (CMC) or cellulose gum is a cellulose derivative that contains carboxymethyl groups (-CH2-COOH) that are attached to some of the hydroxyl groups of the glucopyranose monomers that comprise the cellulose backbone. It is frequently used as the sodium salt, sodium CMC. It was sold under the brand name Tylose, which is a registered trademark of SE Tylose.

The alkali-catalyzed reaction of cellulose with chloroacetic acid produces CMC. The cellulose is liquid and chemically reactive due to the polar (organic acid) carboxyl groups.

Image 1 CMC used

CMC's functional properties are determined by the number of hydroxyl groups participated in the substitution reaction and as well as the chain length of the cellulose backbone structure and the degree of clustering of the carboxymethyl substituents (Hollabaugh, 1945).

Commercially available CMC in Kathmandu from Himedia supplied by Eureka Suppliers, Tripureshowr, Kathmandu was used in this research with company proclaimed specification is attached in ANNEX.

3.2.4 Fly Ash

Commercially available processed FA for concrete application by DIRK India Pvt. Ltd. in Kathmandu supplied by Acme Suppliers, Pulchowk, Lalitpur was used in this research with company proclaimed specification is attached in ANNEX.

FA FTIR report is presented in ANNEX.

3.2.5 Fine Aggregate and CA

Fine Aggregate from Sankhu and CA from Kavrepalanchowk whose avg. FM was found 2.78 and dry rodded bulk density as 1575.61 kg/m³.

- i. Sampling of fine aggregate and CA was done according to ASTM D75
- ii. FM of sand was found according to ASTM C128 and ASTM C33
- iii. Dry rodded bulk density of CA was found according to ASTM C29

Calculation are presented in ANNEX.

3.2.6 Poly Carboxylic Ether (PCE) Based Superplasticizer

Commercially available PCE based water reducing agent known as flowgel from Acme Suppliers, Pulchowk, Lalitpur was used in this research with company proclaimed specification is attached in ANNEX. Flowgel is 4th generation high performance super-plasticizers based on a modified polycarbolxylic ether. It confirms to IS:9103-1999 and ASTM C-494-1981(Type- G).

3.2.7 Water

It is necessary to use the min. amount of mixing water to achieve workability in concrete while maintaining its strength. There is guideline emphasizes the significance of controlling water content in the mixture(IS10262, 2009).

Likewise, ACI emphasizes that the water content of the mix plays a crucial role in determining the final properties, including strength and durability, of the concrete(ACI 211, 2002).

Tap water was used from the Heavy lab. Water test report from Water Lab is placed in ANNEX.

3.3 Tools and Test Performed

The equipment, tools and test performed during this thesis is enlisted under:

3.3.1. Compressive Testing Machine

The Compressive Testing Machine (CTM) is a mechanical device used to determine the compressive strength of construction materials, such as concrete. It applies pressure on a sample until it fails, enabling the calculation of the max. load it can handle before collapsing. Typically, the CTM is equipped with a load cell, loading platen, and control panel to monitor the load and deformation during testing. This device is crucial in construction quality control to ensure that materials used in construction meet the required strength standards for safety and longevity. The CTM is typically powered by hydraulic or electric sources.

Image 2 Compressive Testing Machine

3.3.2. Strain Gauge

A strain gauge is a device that can detect the deformation or change in length of a material under an applied force, thus allowing for the precise calculation of the resulting strain. By measuring the strain and the applied force, the modulus of elasticity of the material can be determined, which is a crucial factor in analyzing its structural behavior and durability.

Strain gauges are particularly useful for measuring small changes in deformation due to their high sensitivity and accuracy. They can be employed to measure strain in a wide range of materials, including concrete, which enables the calculation of its modulus of elasticity.


Image 3 Strain Gauge

3.3.3. Magnetic Stirrer

A magnetic stirrer is an instrument that is utilized in laboratories for producing a magnetic field that causes a stir bar or flea to rotate quickly when it is immersed in a liquid. The liquid is stirred by the rotation of the stir bar, ensuring homogeneity of the sample. The magnetic stirrer is composed of a motorized base that generates a rotating magnetic field and a container or flask that is capable of withstanding heat, which contains the liquid to be stirred. The stir bar is placed in the container or flask and is held in place by the magnetic field. The degree of mixing can be controlled by adjusting the speed of rotation, and temperature can also be controlled by some magnetic stirrers, making them suitable for various laboratory applications, including chemical reactions, titrations, and biological assays.

Image 4 Magnetic Stirrer with CMC solution

3.3.4. Cube Mould

These moulds are typically made of steel or cast iron and have tight-fitting lids to prevent any leaks during the casting process. Once the concrete is poured into the mould, it is left to set and cure for a specific period of time before being tested for its compressive strength.

Image 5 150 mm cube molds

3.3.5. Vibrating Table

A flat vibrating device is employed in the concrete industry to consolidate the material and eliminate any entrapped air bubbles. Usually made of steel or concrete, the equipment shakes at a high frequency to facilitate uniform distribution and removal of air pockets. This is critical in concrete casting processes where air bubbles may compromise the integrity and robustness of the material. Poor consolidation can result in weak sections of concrete, leading to cracks or other imperfections.

Image 6 Vibrating Table

3.4 Preparation of Solution

The amount of cement is found from mix design required for the preparation of the concrete was first calculated. Then from percentage of CMC and AC addition is concrete quantity of CMC and AC is worked out for different 41 batches of concrete.

3.5 Mix Design

Mix design was performed for M 30 and M 25 grade concrete by ACI Method.

3.4.1. M 30 mix design

i. Slump Determination

From table 22,

Adopt Placing Condition for Concreting of lightly reinforced sections with vibration Degree of workability: Medium

Values of workability: 25mm-75mm slump for 20mm max. nominal aggregate

ii. max. Size of CA

Adopt max. size of CA as 20mm

iii. Water Cement Ratio determination

For 30MPa= 305.81kgf/cm² From table 31, Interpolating;We get w/c ratio by wt. as 0.541

iv. Approximate mixing water for the desired workability and max. size of CAFrom table 32,

For slump: 3cm to 5cm

max. Size of aggregate 20mm

For non air entrained concrete Adopt approximate mixing water 185 kg/m³

v. Cement Content Determination and check

Cement Content = Water content / w/c ratio = $185/0.541 = 341.98 \text{ kg/m}^3$

Check based on exposure condition, from table 5 max. Size of CA 20mm

Type of Concrete Reinforced concrete

Exposure Severe

max. free w/c ratio 0.45

min. Cement Content 320 kg/m³

Adopt w/c ratio 0.45

Cement Content to be used 185/0.45 = 411 kg/m3

Use of high range water reducing admixture ASTM C-494-1981(Type G)

(0.2%-1.5% of cement wt.(w/w)) decreases the water content 12% to 30 %. So, reducing water content by 20 % i.e.

Use mixing water $185 \times 0.8 = 148 \text{ kg/m}^3$

Actual w/c ratio 0.36

Use high range water reducing admixture 0.7% of cement content i.e 2.88 kg/m3

vi. Determination of amount of CA

FM of Sand 2.78 (Sankhu Sample)

max. Size of CA 20mm

Volume of dry rodded CA per unit volume of concrete by table 33. Interpolating we get, for 20mm CA and 2.78 FM,

Volume of dry rodded CA per unit volume of concrete 0.622

Dry rodded bulk density of the aggregate 1575.61 kg/m³ (Sankhu Sample) Dry wt. of CA 0.622×1575.61=980.03 kg/m³

vii. Determination of amount of fine aggregate

Nominal max. size of CA 20mm

For non air entrained concrete

First estimate of wt. of fresh concrete 2345 kg/m³

wt. of fine aggregate wt. of fresh concrete- wt. of all other ingredients= $2345-411-148-980-2.88=803.12 \text{ kg/m}^3$

viii. Water content adjustment

Water content in Fine Aggregate 9%

Water content in CA 0.00%

Total free surface moisture in Fine Aggregate $=9\% \times 803.12 = 72.28 \text{ kg/m}^3$

wt. of Fine Aggregate in field condition =803.12+72.28 =875.40 kg/m³

CA absorbs 4% water =4%×980.03=39.20 kg/m³

wt. of CA in field condition $=980.03-39.20 = 940.83 \text{ kg/m}^3$

Water in Fine Aggregate that acts as mixing water =72.28-39.20=33.08kg/m³

Actual Water to be used as mixing water $=148-33.08 = 114.92 \text{ kg/m}^3$

3.4.2. M 25 mix design

i. Slump Determination

From table 22, Adopt Placing Condition for Concreting of lightly reinforced sections with vibration Degree of workability: Medium

Values of workability: 25mm-75mm slump for 20mm max. nominal aggregate

ii. max. Size of CA

Adopt max. size of CA as 20mm

iii. Water Cement Ratio determination

For 25 MPa= 254.85 kgf/cm²

From table 31, Interpolating; We get w/c ratio by wt. as 0.61

iv. Approximate mixing water for the desired workability and max. size of CA

From table 32, For slump: 3cm to 5cm

max. Size of aggregate 20mm

For non air entrained concrete Adopt approximate mixing water 185 kg/m³

v. Cement Content Determination and check

Cement Content Water content / w/c ratio 185/0.61=303.28 kg/m³

Check based on exposure condition, from table 5 max. Size of CA 20mm

Type of Concrete Reinforced concrete

Exposure Severe

max. free w/c ratio 0.5

min. Cement Content 300 kg/m³

Adopt w/c ratio 0.5

Cement Content to be used 185/0.5 = 370 kg/m3

vi. Determination of amount of CA

FM of Sand 2.78 (Sankhu Sample)

max. Size of CA 20mm

Volume of dry rodded CA per unit volume of concrete by table 33. Interpolating we get, for 20mm CA and 2.78 FM,

Volume of dry rodded CA per unit volume of concrete 0.622

Dry rodded bulk density of the aggregate 1575.61 kg/m³ (Sankhu Sample) Dry wt. of CA 0.622×1575.61=980.03 kg/m³

vii. Determination of amount of fine aggregate

Nominal max. size of CA 20mm

For non air entrained concrete, First estimate of wt. of fresh concrete 2345 kg/m³

wt. of fine aggregate wt. of fresh concrete- wt. of all other ingredients= $2345-370-185-980.03 = 809.97 \text{ kg/m}^3$

viii. Water content adjustment

Water content in Fine Aggregate 6.55%

Water content in CA 0.00%

Total free surface moisture in Fine Aggregate $=6.55\%\%\times809.97=53.05$ kg/m³

wt. of Fine Aggregate in field condition $=809.97+53.05 = 863.02 \text{ kg/m}^3$

CA absorbs 4% water =4%×980.03=39.20 kg/m³

wt. of CA in field condition $=980.03-39.20 = 940.83 \text{ kg/m}^3$

Water in Fine Aggregate that acts as mixing water $=53.05-39.20 = 13.85 \text{ kg/m}^3$ Actual Water to be used as mixing water $=185-13.85 = 167.29 \text{ kg/m}^3$

Volume calculation

The volume of each ingredient of concrete was calculated by taking the volume of concrete 1 m³ for M 30 and M 25 grade. Summary of mix design is presented in below figures and volume calculation are presented in ANNEX.

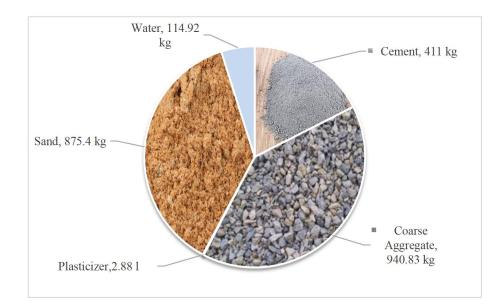
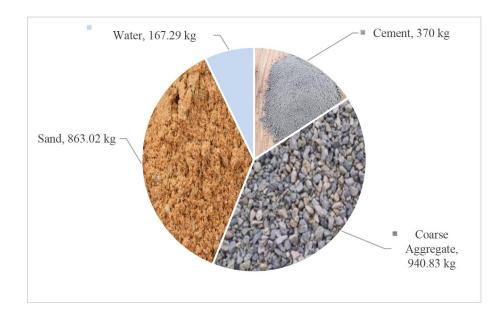



Figure 5 Mix Design Composition for 1 m³ M 30

Figure 6 Mix Design Composition for 1 m³ M 25

Preparation of concrete cubes

The number of molds accounted for the experiment, added to a total of twenty-seven. Special attention was given while casting the cube. The mold was greased up so that the cube could easily be removed from the mold after a day.

Casting, Drying and Curing of Cubes

The cubes were casted in cube mould of $150 \text{mm} \times 150 \text{mm} \times 150 \text{mm}$ size. After the preparation of concrete cubes, the cubes were set for the next 24 hrs except for mix containing CMC which was set for 48 hrs. The specimen was demolded after set and cured with tap water for 28 days. After letting them dry for a given time.

Testing of concrete cubes

After end of curing period, concrete cubes were saturated surface dried and compressive strength test was carried on accordance to ASTM C192 as:

- i. Three test specimens of standard size (150mm × 150mm × 150mm) using the same mix design and curing conditions.
- ii. Place test specimens on the CTM with the smooth surfaces facing each other and centered under the loading platen.
- iii. Applying a load gradually at a constant rate of 35 MPa/min until the specimen fails suddenly and without significant deformation or cracking. The max. load applied just before the specimen fails was recorded.
- iv. Calculation the compressive strength of each specimen using the formula: Compressive strength = max. load / Cross-sectional area of the cube.
- v. ACI method specifies the use of a min. of three specimens, and the avg. compressive strength of the three specimens should be used to represent the compressive strength of the concrete in the structure.
- vi. Report the compressive strength of each specimen. Convert the units to MPa as per your requirement. and the avg. strength of the three specimens along with relevant information such as the date of testing, wt. of cube, curing conditions, mix design, and any deviations from the standard testing procedure.

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Compressive Strength for M 30 grade

The summary of results for M 30 grade is presented in below table. Its interpretation and discussion is explained in this section.

Table 5	Compressive	Strength a	and avg. Modulus	s of Elasticity fo	or M 30 concrete

S.N.	Description	CMC kg/m ³	AC kg/m ³	FA kg/m ³	Avg. Compressive Strength(MPa)	Avg. Modulus of Elasticity (GPa)		
1	Control				31.96			
	Concrete with CMC							
2	CMC 1	0.69	-	-	26.50			
	CMC 2	1.38	-	-	24.03			
	CMC 3	2.07	-	-	23.20			
	Concrete with	n CMC-A	мС					
	1AC-1	0.69	4.60	-	20.00	23156		
	1AC-2	1.38	4.60	-	18.96	20755		
	1AC-3	2.07	4.60	-	17.19	20605		
3	2AC-1	0.69	9.19	-	19.11	21441		
	2AC-2	1.38	9.19	-	20.74	22820		
	2AC-3	2.07	9.19	-	19.70	21324		
	3AC-1	0.69	13.79	-	19.41	21900		
	3AC-2	1.38	13.79	-	18.52	22527		
	3AC-3	2.07	13.79	-	17.19	20045		
	Concrete with	n CMC-A	C-FA					
	FA-1	1.38	9.19	61.65	16.74	19603		
	FA-2	1.38	9.19	82.2	16.22	20848		
4	FA-3	1.38	9.19	102.75	15.63	19334		
	FA-4	1.38	13.79	61.65	18.30	20346		
	FA-5	1.38	13.79	82.2	18.59	19818		
	FA-6	1.38	13.79	102.75	15.85	20551		

The control contains mix design for M 30. Concrete with CMC include the same composition as control with additional CMC, concrete with CMC-AC include same composition as control with additional CMC and AC content, and concrete with CMC-AC-FA include same composition as control with addition of CMC, AC content and replacement of cement content with FA.

Compressive strength of control concrete was found to be 15.26 MPa, 20.59 MPa and 31.96 MPa for 3 days, 7 days and 28 days respectively.

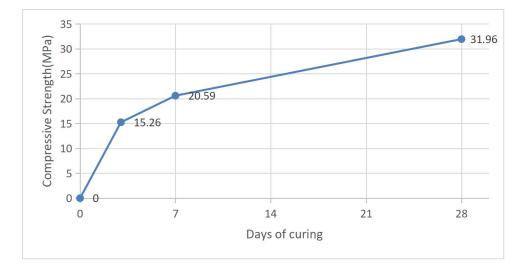


Figure 7 Plot of compressive Strength of M 30 control vs days of curing

The 28-day compressive strength of CMC addition of 0.17%, 0.34%, 0.5% of cement mass on concrete was 24.87 MPa, 21.87 MPa, 21.27 MPa respectively.

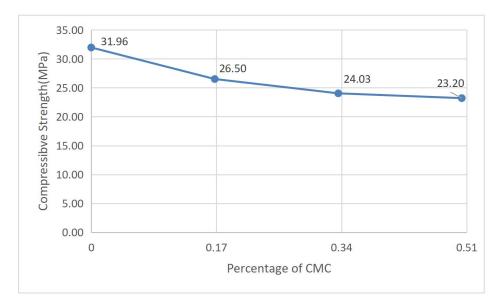


Figure 8 Compressive strength plot for CMC concrete

The 28 day compressive strength of AC addition of 1.12%, 2.24%, 3.36% of cement mass on concrete for different ratio of CMC is plotted in below figure.

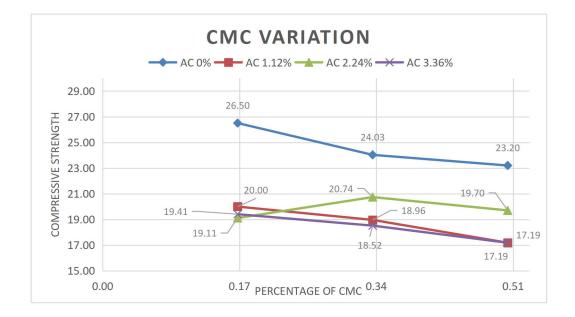


Figure 9 Compressive Strength plot for CMC-AC concrete CMC variation

On increasing the CMC content, compressive strength shows declination for every AC content except for AC 2.24% whose strength goes on increasing till 0.34% addition of CMC and slight drop in strength is seen.

The 28 day compressive strength of CMC addition of 0.17%, 0.34%, 0.5% of cement mass on concrete for different ratio of AC is plotted in below figure.

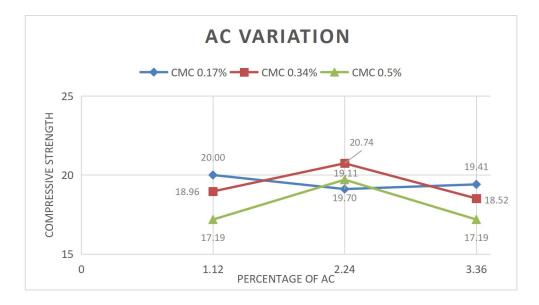


Figure 10 Compressive Strength plot for CMC-AC concrete AC variation

On increasing the AC content, compressive strength shows increment for 0.17% CMC content. Also, for other two CMC ratio compressive strength shows increment till 2.24% addition of AC and slight drop in strength is seen.

The 28 day compressive strength of CMC addition of 0.34% & AC addition of 2.24%, 3.36% of cement mass on concrete for different ratio of replacement of FA is plotted in below figure.

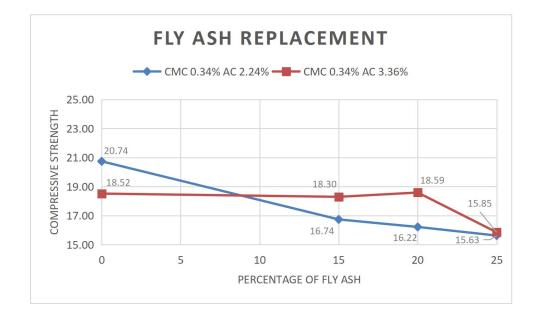
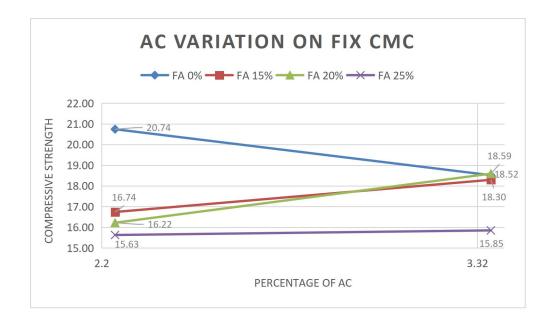



Figure 11 Compressive Strength plot for CMC-AC-FA concrete FA variation

For fix 0.34% CMC ratio, on increasing the FA replacement content, compressive strength shows decreasing trend for 2.24% AC & 0.34% CMC. Whereas, for 3.36% AC & 0.34% CMC compressive strength goes on increasing till 20% increment and decreased at 25% replacement.

The 28 day compressive strength of CMC addition of 0.34% & AC addition of 2.24%, 3.36% of cement mass on concrete for different ratio of replacement of FA is plotted in below figure.

Figure 12 Compressive Strength plot for CMC-AC-FA concrete AC variation

For fix 0.34% CMC ratio, on increasing the AC content, compressive strength shows decreasing trend for 0% FA. Whereas, for 15%, 20%, 25% replacement compressive strength goes on increasing. Among all this replacement 15% FA replacement seems to be good replacement. Also 20% FA replacement has similar compressive strength.

Compressive strength calculation are shown in ANNEX.

4.2 Modulus of Elasticity for M 30 grade

Strain gauge was used to find deflection in different load and from which strain is calculated and corresponding stress was plotted. From that, linear part in the diagram is noted in separate chart and linear line is drawn to find out modulus of elasticity.

For different addition to concrete, Stress Vs Strain plot for M 30 grade is only drawn and averaged to find out modulus of elasticity placed at Table and figure are placed in ANNEX.

From that Stress Vs Strain plot linear part is considered and st line is plotted and equation of straight line $y = m \times x + c$ is found out where m is slope of the equation known as modulus of elasticity and c is intercept length. This plot are placed in ANNEX. Also R² value is found out which refers to strength of the relationship between linear model and the dependent variable on a convenient 0 - 100% scale.

4.3 Compressive Strength for M 25 grade

The summary of results and discussion for M 25 grade is presented in below section.

S.N.	Description	FA replacement %	CMC kg/m3	AC kg/m3	FA kg/m3	Avg. Compressive Strength(MPa)
1	Control					26.98
	Concrete wit	h CMC				
2	CC 1	-	0.62	-	-	23.85
2	CC 2	-	1.24	-	-	23.26
	CC 3	-	1.86	-	-	21.33
	Concrete wit	h AC		·	·	
3	C1	-	-	4.14	-	20.00
5	C2	-	-	8.28	-	26.67
	C3	-	-	12.41	-	21.19
	Concrete wit	h CMC-AC		•		
	C1C1	-	0.62	4.14	-	20.00
	C2C1	-	1.24	4.14	-	19.85
	C3C1	-	1.86	4.14	-	20.59
3	C1C2	-	0.62	8.28	-	24.59
5	C2C2	-	1.24	8.28	-	17.93
	C3C2	-	1.86	8.28	-	18.37
	C1C3	-	0.62	12.41	-	21.63
	C2C3	-	1.24	12.41	-	20.30
	C3C3	-	1.86	12.41	-	17.93
	Concrete wit	h AC-FA		•		
4	CF1	15	-	4.14	55.5	25.93
	CF2	20	-	8.28	74	25.63
	CF3	25	-	12.41	92.5	26.96
	Concrete wit	h CMC-FA				
5	CCF1	15	0.62	-	55.5	23.41
	CCF2	20	1.24	-	74	20.59
	CCF3	25	1.86	-	92.5	18.07

Table 6 avg. con	pressive strength for M 25 concrete	
	8	

The control concrete contains mix design for M 25 including cement, fine aggregate, CA and water. Concrete with CMC include the same composition as control with addition of CMC. Concrete with AC contain same composition as control including addition of AC to concrete. Concrete with CMC-AC include same composition as control with additional CMC and AC content. Concrete with AC-FA contain same composition as control with additional AC and replacement to cement with FA content to mix. Concrete with CMC-FA contain same composition as control with additional CMC and replacement to cement with FA content to mix. The detail variation table is placed on ANNEX.

Compressive strength of control concrete was found to be 17.27 MPa and 26.98 MPa for 7 days and 28 days respectively.

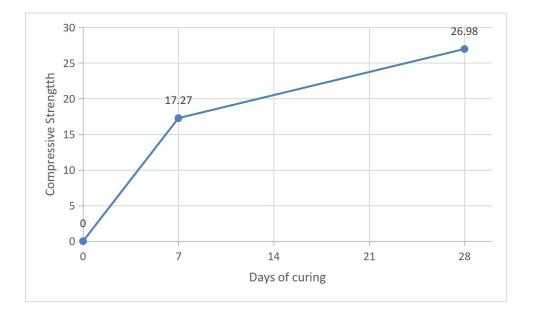
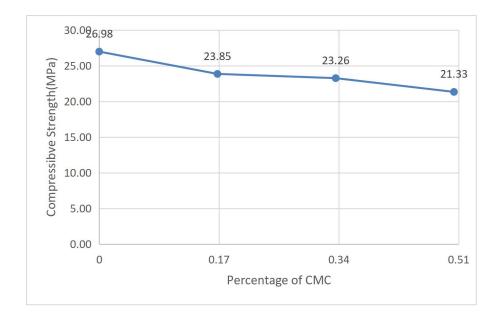



Figure 13 Plot of compressive Strength of M 25 control vs days of curing

The 28-day compressive strength of CMC addition of 0.17%, 0.34%, 0.5% of cement mass on concrete was 23.85 MPa, 23.26 MPa, 21.33 MPa respectively.

Figure 14 Compressive strength plot for CMC concrete

On increasing 0.17% of cement CMC content on concrete, decrease in compressive strength is seen.

The 28-day compressive strength of AC addition of 1.12%, 2.24%, 3.36% of cement mass on concrete was 20 MPa, 26.67 MPa, 21.19 MPa respectively.

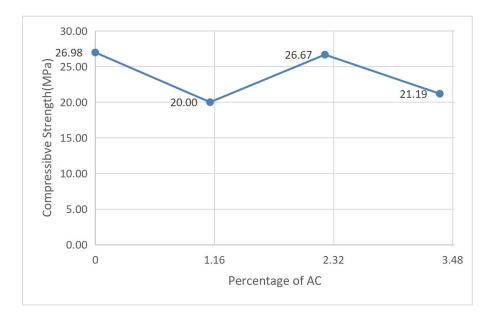
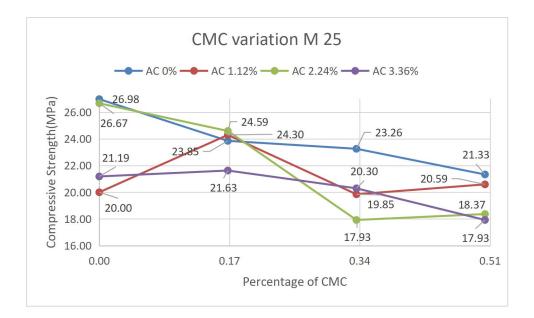
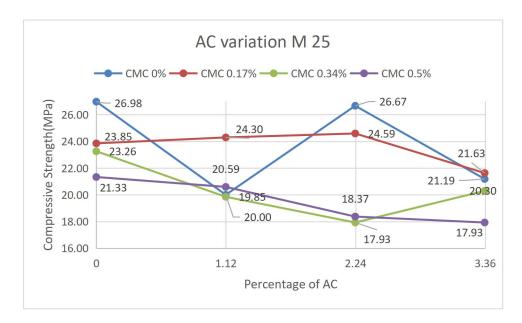



Figure 15 Compressive strength plot for AC concrete

The 28 day compressive strength of AC addition of 1.12%, 2.24%, 3.36% of cement mass on CMC-AC concrete for different ratio of CMC is plotted in below figure.


Figure 16 Compressive Strength plot for CMC-AC concrete CMC variation

On increasing the CMC content, compressive strength shows declination for every AC content. Except for AC 1.12% and AC 3.36% whose strength increases till 0.17% addition of CMC and eventually declination is seen.

The 28 day compressive strength of CMC addition of 0.17%, 0.34%, 0.5% of cement mass on CMC-AC concrete for different ratio of AC is plotted in below figure.

Figure 17 Compressive Strength plot for CMC-AC concrete AC variation

On increasing the AC content, compressive strength shows increment for CMC 0.17% till 2.24% AC addition. For other CMC ratio decrease is seen compressive strength in the case of CMC-AC concrete.

The 28 day compressive strength of AC-FA concrete for different substitution and addition of AC is presented below.

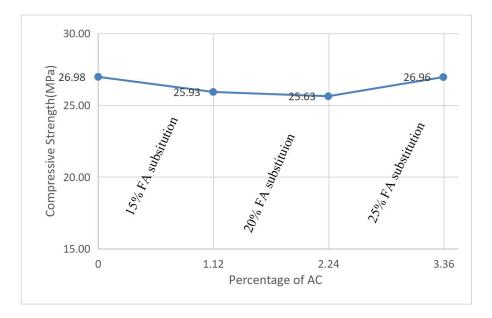


Figure 18 Compressive Strength plot for AC-FA concrete

AC-FA concrete shows no declination in compressive strength below 25 MPa upto 3.36% addition of AC.

The 28 day compressive strength of CMC-FA concrete for different substitution and addition of AC is presented below.

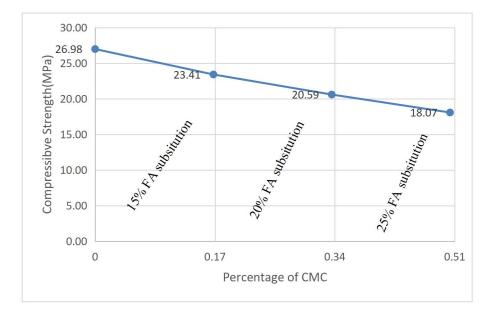


Figure 19 Compressive Strength plot for CMC-FA concrete

CMC-FA concrete shows declination in compressive strength below 25 MPa upto 0.5% addition of CMC. Compressive strength calculation are shown in ANNEX.

4.4 Comparison between M 30 and M 25 grade of concrete

In CMC concrete, For M 30 grade concrete on increasing CMC content shows 12%, 20% and 23% decrease in compressive strength, whereas, M 25 shows 5%, 7% and 15% reduction as respective below shown addition.

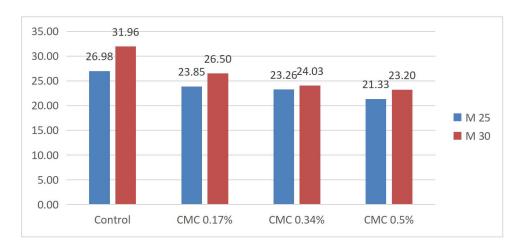
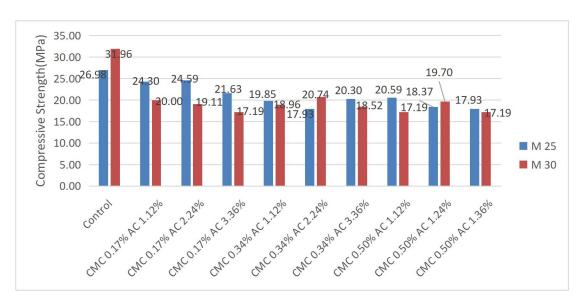



Figure 20 Comparison chart for CMC concrete

In CMC-AC concrete, comparison between every M 30 and M 25 is shown in below bar diagram. Maximum reduction in strength is seen up to 29% for M 25 and up to 43% for M 30 grade concrete. Among 9 CMC-AC concrete, 7 CMC-AC concrete for M 30 mix has less strength than of M 25 concrete.

Summary table showing different CMC percentage for different mix of concrete. Right four joined bar chart is for M 30 concrete and other four for M 25.

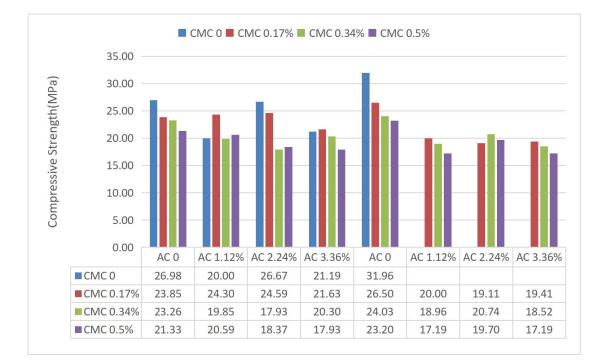


Figure 22 Comparison chart AC

Summary table showing different AC percentage for different mix of concrete.

Figure 23 Comparison chart CMC

CHAPTER 5: CONCLUSION AND RECOMENDATIONS

5.1 Conclusion

Novel addition of AC, CMC, FA and plasticizer in attempt of creating sustainable concrete was done in this work. ACI method of mix design was adopted to cast M 30 and M 25 grade concrete. 19 batches of concrete were casted for M 30 grade of concrete and 22 batches of concrete were casted for M 25 grade concrete. Sand, aggregate, cement, water was tested in lab. Laboratory grade AC, CMC was used. Commercially, available FA and plasticizer was used. FTIR of fly ash has been done. Compressive Strength test and modulus of elasticity was found out for M 30 grade concrete. Compressive strength test of M 25 grade of concrete was calculated.

For M 30 grade concrete:

- i. For CMC concrete, Increase in CMC content up to 0.5% addition in concrete shows decrease in 28-day compressive strength.
- ii. For CMC-AC concrete, increasing the CMC content, compressive strength shows declination for every AC content except for AC 2.24% whose strength goes on slight increase till 0.34% addition of CMC and very slight drop in strength is seen.
- iii. Drop of strength is distinctly seen for CMC-AC concrete.
- iv. On increasing the AC content, compressive strength shows increment for 0.17% CMC content. Also, for other two CMC ratio compressive strength shows increment till 2.24% addition of AC and slight drop in strength is seen. This shows that AC is increasing strength in concrete.
- v. For CMC-AC-FA concrete, compressive strength reduced 50 % upto 15.63 MPa.

For M 25 grade concrete,

- i. For CMC concrete, increase in CMC content up to 0.5% addition in concrete shows decrease in 28-day compressive strength.
- ii. For AC concrete, compressive strength was found to be declining for AC 1.12% whereas for AC 2.24% satisfactory result seen and again for AC 3.36% descent is seen.

- iii. For CMC-AC concrete, On increasing the AC content, compressive strength shows increment for CMC 0.17% till 2.24% AC addition. For other CMC ratio decrease in compressive strength is seen.
- iv. For AC-FA concrete, compressive strength do not decrease for any (FA 15% to FA 25%) and (AC 1.12% to 3.36%). So, we can conclude that on introduction of AC and FA on concrete has no negative impact on compressive strength.
- v. For CMC-FA concrete, compressive strength of such concrete is inversely proportional to addition of CMC.

5.2 Recommendation

In the present work, laboratory grade AC and CMC were used. Modified AC and CMC could be used. Only 28-day compressive strength is calculated, for further research 7 days, 56 days & 90 days would be useful. Also, fresh concrete property, flexural strength, electrical resistivity would make great value.

Also, some useful recommendation for further study to make AC-CMC solution and mix design step is suggested below:

- i. While mixing aqueous solution beaker was used. Instead, wide spread bucket could be used.
- ii. Mixing CMC in surrounding temperature takes 6-10 hours in magnetic stirrer. while warm water will make it faster.
- iii. At first mix CMC to little amount of water. And, place 1 liter warm water in wide spread bucket in magnetic stirrer for 30-45 min and solution is ready.
- iv. Only after even aqueous solution AC should be added or agglomeration is seen.
- v. Dry mix of aggregate is thoroughly mix for 5 min. After even texture, cement is added for 3-5 min. Then novel-character solution is placed. After even mix, plasticizer is placed and again mixed for 5 min and concrete is placed.

BIBLIOGRAPHY

- ACI. (2014). Building Code Requirements for Structural Concrete (ACI 318-14). In *American Concrete Institute*.
- ACI 211. (2002). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91).
- Adeleke, O. A., Ismail, N., Fadilat, A., Apandi, N., Latiff, A. A. A., Saphira, M. R., Daud, Z., Ab Aziz, N. A., Al-Gheethi, A., Kumar, V., & Ahsan, A. (2019). Principles and Mechanism of Adsorption for the Effective Treatment of Palm Oil Mill Effluent for Water Reuse. In Nanotechnology in Water and Wastewater Treatment: Theory and Applications (pp. 1–33). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813902-8.00001-0
- Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. *Progress in Energy and Combustion Science*, 36(3), 327–363. https://doi.org/10.1016/j.pecs.2009.11.003
- Akbar, A. Y., Lestari, Y., Ramadhan, G., Candra, S. A., & Sugiarti, E. (2014). The influence of carboxy methyl cellulose (CMC) and solution pH on carbon fiber dispersion in white cement matrix. *Applied Mechanics and Materials*, 493, 661–665. https://doi.org/10.4028/www.scientific.net/AMM.493.661
- Aprianti S, E. (2017). A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production a review part II. *Journal of Cleaner Production*, 142, 4178–4194. https://doi.org/10.1016/j.jclepro.2015.12.115
- CAT. (2022). Global reaction to energy crisis risks zero carbon transition. In *Climateactiontracker.Org* (Issue June). https://climateactiontracker.org/documents/1055/CAT_2022-06-08_Briefing_EnergyCrisisReaction.pdf
- Dantas, T. L. P., Luna, F. M. T., Silva, I. J., de Azevedo, D. C. S., Grande, C. A., Rodrigues, A. E., & Moreira, R. F. P. M. (2011). Carbon dioxide-nitrogen separation through adsorption on activated carbon in a fixed bed. *Chemical Engineering Journal*, 169(1–3), 11–19. https://doi.org/10.1016/j.cej.2010.08.026
- Deja, J., Uliasz-Bochenczyk, A., & Mokrzycki, E. (2010). CO2 emissions from Polish cement industry. *International Journal of Greenhouse Gas Control*, *4*(4), 583–588.

https://doi.org/10.1016/j.ijggc.2010.02.002

- Etsuo, S. (2003). *Molecular Structure and Dispersion-Adsorption Mechanisms*.
- Farooque, K., Yeasmin, Z., Halim, M., Mahmood, A., & Mollah, M. (1970). Effect of Carboxymethyl Cellulose on the Properties of Ordinary Portland Cement. Bangladesh Journal of Scientific and Industrial Research, 45(1), 1–8. https://doi.org/10.3329/bjsir.v45i1.5171
- Farooque, K., Yeasmin, Z., Halim, M., Mahmood, A., & Mollah, M. (2010). Effect of Carboxymethyl Cellulose on the Properties of Ordinary Portland Cement. Bangladesh Journal of Scientific and Industrial Research, 45(1), 1–8. https://doi.org/10.3329/bjsir.v45i1.5171
- Fauzi, A., Nuruddin, M. F., Malkawi, A. B., & Abdullah, M. M. A. B. (2016). Study of Fly Ash Characterization as a Cementitious Material. *Procedia Engineering*, 148, 487–493. https://doi.org/10.1016/j.proeng.2016.06.535
- Fayomi, G. U., Mini, S. E., Fayomi, O. S. I., & Ayoola, A. A. (2019). Perspectives on environmental CO2 emission and energy factor in Cement Industry. *IOP Conference Series: Earth and Environmental Science*, 331(1). https://doi.org/10.1088/1755-1315/331/1/012035
- Fiore, A. M., Naik, V., Spracklen, D. V., Steiner, A., Unger, N., Prather, M., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J., Dalsøren, S., Eyring, V., Folberth, G. A., Ginoux, P., Horowitz, L. W., Josse, B., Lamarque, J. F., Mac Kenzie, I. A., Nagashima, T., ... Zeng, G. (2012). Global air quality and climate. *Chemical Society Reviews*, 41(19), 6663–6683. https://doi.org/10.1039/c2cs35095e
- García Lodeiro, I., Macphee, D. E., Palomo, A., & Fernández-Jiménez, A. (2009). Effect of alkalis on fresh C-S-H gels. FTIR analysis. *Cement and Concrete Research*, 39(3), 147–153. https://doi.org/10.1016/j.cemconres.2009.01.003
- GCCA. (2021). Concrete Future The GCCA 2050 Cement and Concrete Industry Roadmap for Net Zero Concrete. In *Global Cement and Concrete Association*. https://gccassociation.org/concretefuture/wpcontent/uploads/2021/10/GCCA-Concrete-Future-Roadmap.pdf
- González-Kunz, R. N., Pineda, P., Bras, A., & Morillas, L. (2017). Plant biomass ashes in cement-based building materials. Feasibility as eco-

efficient structural mortars and grouts. *Sustainable Cities and Society*, *31*, 151–172. https://doi.org/10.1016/j.scs.2017.03.001

- Hamad, H. (2019). *Modification and performance of carbon fo carbon dioxide sequestration. April.*
- Hollabaugh, C. B. (1945). CARBOXYMETHYLCELLULOSE Uses and Applications. In *Industrial & Engineering Chemistry* (pp. 943–947). https://doi.org/10.1021/ie50430a015
- Horgnies, M., Serre, F., Dubois-brugger, I., & Gartner, E. (2014). NOx De - pollution Using Activated Charcoal Concrete - From Laboratory Experiments to Tests with Prototype Garages. *Cement and Concrete Research*, 42(10), 1348–1355.
- Huang, F. Y., Wu, X. J., Ying, W. F., Yu, Y. P., & Chi, H. X. (2014).
 Effect of carboxylmethyl cellulose sulfate (CMC-S) on the hydration process of cement paste. *Advanced Materials Research*, 838–841, 123–126. https://doi.org/10.4028/www.scientific.net/AMR.838-841.123
- IS10262, (2009).
- ISI. (2013). IS 12269:2013. Bureau of Indian Standards, New Delhi.
- Justo-Reinoso, I., Srubar, W. V., Caicedo-Ramirez, A., & Hernandez, M. T. (2018). Fine aggregate substitution by granular activated carbon can improve physical and mechanical properties of cement mortars. *Construction and Building Materials*, 164, 750–759. https://doi.org/10.1016/j.conbuildmat.2017.12.181
- Krou, N. J., Batonneau-Gener, I., Belin, T., Mignard, S., Javierre, I., Dubois-Brugger, I., & Horgnies, M. (2015). Reactivity of volatile organic compounds with hydrated cement paste containing activated carbon. *Building and Environment*, 87, 102–107. https://doi.org/10.1016/j.buildenv.2015.01.025
- Mahoutian, M., Lubell, A. S., & Bindiganavile, V. S. (2015). Effect of powdered activated carbon on the air void characteristics of concrete containing fly ash. *Construction and Building Materials*, 80, 84–91. https://doi.org/10.1016/j.conbuildmat.2015.01.019
- Malhotra, M. V., Zhang, M. H., Read, P. H., & Ryell, J. (2000). Longterm mechanical properties and durability characteristics of highstrength/high-performance concrete incorporating supplementary cementing materials under outdoor exposure conditions. *ACI*

Structural Journal, 97(5), 518–525. https://doi.org/10.14359/9284

Marsh, H., & Reinoso, F. R. (2006). Activated Carbon. Elsevier.

- Mishra, S., Kenna-o, D., Sonam, L., Pamtheid, P., & Taram, R. (2015). *Effects of Fly Ash and Super Plasticiser on Cement Content in M30* Grade Concrete. 1, 2411–2416.
 https://doi.org/10.15680/IJIRSET.2015.0404121
- Mishra, Singh, V. K., Narang, K. K., & Singh, N. K. (2003). Effect of carboxymethyl-cellulose on the properties of cement. *Materials Science and Engineering A*, 357(1–2), 13–19. https://doi.org/10.1016/S0921-5093(02)00832-8
- Naik, T. (1987). Setting and hardening of high fly ash content concrete. Paper presented at Washington, the American Coal Ash Association's 8th International Coal Ash Utilization Symposium. USA.
- PCA. (2023). Portland Cement Association. https://www.cement.org/
- Pellenq, R. J. M. (2019). United States Patent Application Publication (10) Pub. No.: US 20190218144A1 Patent Application Publication. In *Physical Chemistry Chemical Physics*.
- Plank, J., Schroefl, C., Gruber, M., Lesti, M., & Sieber, R. (2009). Effectiveness of polycarboxylate superplasticizers in ultra-high strength concrete: The importance of PCE compatibility with silica fume. *Journal of Advanced Concrete Technology*, 7(1), 5–12. https://doi.org/10.3151/jact.7.5
- Plaza, M. G., González, A. S., Pevida, C., Pis, J. J., & Rubiera, F. (2012). Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. *Applied Energy*, 99, 272–279. https://doi.org/10.1016/j.apenergy.2012.05.028
- Puligilla, S., & Mondal, P. (2015). Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction. *Cement and Concrete Research*, 70, 39–49. https://doi.org/10.1016/j.cemconres.2015.01.006
- Qiu, J., Xu, L., Peng, J., Zhai, M., Zhao, L., Li, J., & Wei, G. (2007). Effect of activated carbon on the properties of carboxymethylcellulose/activated carbon hybrid hydrogels synthesized by γ-radiation technique. *Carbohydrate Polymers*, 70(2), 236–242. https://doi.org/10.1016/j.carbpol.2007.04.001

- Sama, T. (2020). Effect of Nano Cellulose and Nano Carbon Black on Cement Paste.
- Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A., & Arami-Niya, A. (2011). Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation. *Applied Surface Science*, 257(9), 3936–3942. https://doi.org/10.1016/j.apsusc.2010.11.127
- Taylor, H. F. W. (1997). Cement chemistry. *Cement Chemistry*. https://doi.org/10.1680/cc.25929
- Tommaso, M. Di, & Bordonzotti, I. (2016). NO x Adsorption, Fire Resistance and CO 2 Sequestration of High Performance, High Durability Concrete Containing Activated Carbon *Istituto Meccanica dei Materiali SA (IMM SA) † Gamatec SA Second International Conference on concrete Sustainability, Madrid. x. www.imm.ch
- United Nations. (2022). Emissions Gap Emissions Gap Report 2022. https://www.unenvironment.org/interactive/emissions-gap-report/2019/
- Wang, D., Zhang, W., & Han, B. (2020). New generation of cementbased composites for civil engineering. In New Materials in Civil Engineering (pp. 777–795). Elsevier. https://doi.org/10.1016/B978-0-12-818961-0.00025-9
- Wang, H., Gao, X., & Wang, R. (2017). The influence of rheological parameters of cement paste on the dispersion of carbon nanofibers and self-sensing performance. *Construction and Building Materials*, 134, 673–683. https://doi.org/10.1016/j.conbuildmat.2016.12.176
- Zhang, Y., Wang, Y., Yang, C., Li, G., & Yan, H. (2017). Study on the reduction of radon exhalation rates of concrete with different activated carbon. *Key Engineering Materials*, 726 KEM(2), 558–563. https://doi.org/10.4028/www.scientific.net/KEM.726.558

ANNEX

Table 7 Content in ANNEX

ANNEX	Description	Page
А	Choice of Material	47
	I. OPC Cement Test Report	47
	II. Sand and Coarse aggrerate Test	48
	III. AC Specification	55
	IV. CMC Specification	56
	V. FA Specification and FTIR	57
	VI. Plasticizer Specification	59
	VII. Water Test Report	60
В	Mix Design	61
	I. Volume Calculation for M 30	61
	II. Volume Calculation for M 25	62
	III. Mix Design reference	63
С	Compressive Strength	64
	I. Calculation for M 30	64
	II. Calculation for M 25	68
D	Modulus of Elasticity	73
	I. Deflection and compressive load table	73
	II. Stress- Strain Plot	77
	III. Linear Stress- Strain Plot	82
Е	Photographs	87

ANNEX-A: Choice of Materials

I. OPC Cement Test Report

Image 7 OPC test report

v		- 24.		·	TRIBH) ISTITUT		VERSIT	Y J		1	J	
			مراجع کې	T P	ULCH		CAMP	US				
		Ċ	ENTR	AL MA	TERN	ORCIVI	RENGI		RATO	RY		
			9 <u>6</u>	C	Mar	stat	END FOR		<u>PIL</u>			_
			10. ml	11. 5 ¹ (C	EMEN	T TES	Г				÷	
	Project :	NA	a Chauhar	n/Gaurav	Raî Neur	000 (11-4		F	eport No:	7911CN	ITL032	
	Client :	Science	and Engl	ineering)	and mode	VOLID (IMISIE	ariai ":			10/2/207		
	Contractor : Contract No:	NA	and the second	and the second second	-				Standard:	IS 4031-	1988	
	Brand/Type:	and the second se	OPC (53	Grade)				an a				n na traite
	Sand:	Standa										
	Water:	Tap Wa	ter									
	Physical Properties											
	Room Temperature	=	NA	°C		: (27 ± 2 °						
	Relative Humidity	=	NA		Prefered	: (65 ± 5 9	%)					
	Normal Consistency		30.5									
	Initial Setting Time	=		Min.	IS (30 Mi							
	Final Setting Time	=	216	Min.	IS (600 N	Ainuets)						
	Compressive Stre	ngth	31	Days Res	a sit	7	Days Res	uit	28	Days Rea	sult	ī
	Sample No.		1	2	3	1	2	3	1	2	3	1
	Date of Casting						9/4/2079					1
	Date of Testing			9/7/2079		1	9/11/2079)		10/2/2079	ł]
	Age	Days	70.0	3 x 70.0 x	70.0	70.0	7 x 70 <u>.0 x</u> `	70.0	70.0	28 x 70.0 x	70.0	4
المقاصد بالشاك	Sample Size Area of Sample	mm mm ²	4900	4900	4900	4900	4900	4900	4900	4900	4900	f .
		cm ³	343	343	343	343	343	343	343	343	343	{
1	Vol. of Sample	kN	181.59	157.17	176.28	221.00	202.52	213.41	274.52	276.75	284.17	1
	Comp. Strength	N/mm ²	37.058	32.076		45.102	41.331	43.552	56.025			1
	Avg. Comp. Strength			35.04			43.33			56.83		1
÷	Weight	gm	845	839	848	854	835	846	845	854	847	1
	Density	T/m ³	2.46	2.45	2.47	2.49	2.43	2.47	2.46	2.49	2.47]
2	Note: Material supp	lied by	Adarsha (Chauhan/	Gaurav R	aj Neupar	ne (Materi	al Scienc	e and Eng	ineering)		
												. * *1
						/				- 1		L u M
	Wans	ay	L	0	10	×				ØX	<u>*</u> *	
	Tested By			C	hecked E	Зу	-		A	pproved	Ву	ا وگرد. اندور
	(Jr. Er. Lilambar Kr.				jendra Ra			•	(Str. I	Er. Arun F	'audel)	<u>_</u>
		a teana		- محض								
1					1. 50							
-A	Ananda Niketan	Pulcho	wk, Lalitpu	ir, Nepal.	Tel. 5548	3835. Ema	il: cmtl@i	oe.edu.np	, www.pci	ampus.ec	lu.np/	-
	3 de .								1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	The state		

II. Sand/CA Test

- Determination of FM of aggregate was done according to ASTM C128 and ASTM C33 Sampling of fine aggregate and CA was done according to ASTM D75
- Determination of dry rodded bulk density of CA was done according to ASTM C29 Seive analysis of CA was done according to ASTM C136-01
- Specific Gravity of CA was done according to ASTM C 127-88 Specific Gravity of FA was done according to ASTM C 128-97
- iv. Water Content of FA and CA was done according to ASTM D2216-19
- avg. FM of Sand = 2.78

Dry rodded bulk density was found to be 1575.61 kg/m³.

CA water content = 0%; Sand water content = 8%

Mean bulk specific gravity (SSD) was found to be 1636

i. FM of Sand

Sankhu Sample A

wt. of sample

600gm

Seive Size	wt. of seive(gm)	wt. of seive and sand(gm)	wt. of sand retained (gm)	Percentage wt. retained (%)	Cumulative percentage wt. retained (%)
4.75mm	420	502.5	82.5	13.8	13.8
2.36mm	323	345	24.5	4.1	17.8
1.18mm	308.5	416.5	108	18.0	35.8
600µm	344.5	440.5	96	16.0	51.8
300µm	325.5	455	129.5	21.6	73.4

150µm	298.5	402	103.5	17.3	90.7
Pan	400.5	456.5	56	9.3	
			600		283.3
				FM	2.83

Sankhu Sample B			wt. of sample	600gm	
Seive Size	wt. of seive(gm)	wt. of seive and sand(gm)	wt. of sand retained (gm)	Percentage wt. retained (%)	Cumulative percentage wt. retained (%)
4.75mm	420	495	75	12.5	12.5
2.36mm	323	344	21	3.5	16.0
1.18mm	308.5	409.5	101	16.8	32.8
600µm	344.5	442	97.5	16.3	49.1
300µm	325.5	460.5	135	22.5	71.6
150µm	298.5	411	112.5	18.8	90.3
Pan	400.5	458.5	58	9.7	
			600		272.3
				FM	2.72

Sankhu Sample C

wt. of sample

600gm

Seive Size	wt. of seive(gm)	wt. of seive and sand(gm)	wt. of sand retained (gm)	Percentage wt. retained (%)	Cumulative percentage wt. retained (%)
4.75mm	420	501	81	13.5	13.5
2.36mm	323	347	24	4.0	17.5
1.18mm	308.5	410	101.5	16.9	34.4
600µm	344.5	440.5	96	16.0	50.4
300µm	325.5	458	132.5	22.1	72.5
150µm	298.5	410.5	112	18.7	91.2
Pan	400.5	453.5	53	8.8	
			600		279.5
		•	·	FM	2.80

Avg. FM= 2.78

ii. Dry rodded bulk density

wt. of container967gwt. of water and container2830g

Temperature of water

250C	
23°C	

Temperature of water(⁰ C)	Density of water(kg/m ³)
21.1	997.97
26.7	996.59

		25		?		
Interpolat	ing for 25°C we get	t density of water		997.01	kg/m ³	
wt. of wat	ter			1863 g		
Volume o	f water	0.0019 m ²	3			
Sample	wt. of aggregate and container(kg)	wt. of container(kg)	Volume of water(m ³)	Dry roddec Density(kş		
Α	3.904	0.967	0.0019		1545.79	
В	3.984	0.967	0.0019		1587.89	
С	3.994	0.967	0.0019		1593.16	
1	1		Mean		1575.61	

Dry rodded bulk density = 1575.61 kg/m^3

iii. CA sieve analysis

Sample A Sankhu

Sieve Size	wt. of sieve(g)	wt. of sieve and CA(g)	wt. of CA retained (g)	% wt. retained	Percentage Passing (%)
19 mm	907.5	1017.5	110	4.4	95.6
12.5 mm	772	2560.5	1788.5	71.54	24.06

9.5 mm	809	1172.5	363.5	14.54	9.52
4.75 mm	812	1023	211	8.44	1.08
Pan	887.5	914.5	27	1.08	0
			2500		

Sample B Sankhu

Sieve Size	wt. of sieve(g)	wt. of sieve and CA(g)	wt. of CA retained (g)	% wt. retained	Percentage Passing (%)
19 mm	907.5	1040.5	133	5.32	94.68
12.5 mm	772	2635	1863	74.52	20.16
9.5 mm	809	1112	303	12.12	8.04
4.75 mm	812	996	184	7.36	0.68
Pan	887.5	904.5	17	0.68	0
			2500		

iv. Water content of CA and sand

For M 30 mix

Determination of water content

S.N.	Description	wt. of container (w1)	Wet sample + container wt. (w2)	Dry sample+ container wt. (w3)	water Content	wt. of water / wt of dry sample
1	CA A	700	11200			
2	CA B-1010	853	1103	1102.5	0.002	
3	CA C-1051	838.5	1088.5	1087.5	0.004	0.3%
4	CA D-1004	837.5	1087.5	1087	0.002	
5	FiA 1051	10.51	30.51	29.16	0.072	
6	FiA 1004	10.08	30.08	28.54	0.083	8%
7	FiA 1010	9.18	29.18	27.66	0.082	
8	Fi F	874	3874		·	

For M 25 mix, Determination of moisture content ASTM D2216

						wt. of
			Wet	Dry		water /
			sample+	sample+		wt of
		wt. of	container	container	Moisture	dry
S.N.	Description	container(w1)	wt. (w2)	wt. (w3)	Content	sample
1	CA-1(Main)	240	710	710	0.00	0

2	CA-2(Black)	335	885	885	0.00	
3	CA-3(Bronge)	480	925	925	0.00	
4	FiA-1(3)	9.452	37.399	35.661	6.63	
5	FiA-2(10)	9.511	35.242	33.717	6.30	
6	FiA-3(1002)	11.516	41.293	39.415	6.73	6.55

v. Specific Gravity of CA

Mass of container A and field condition of CA	11200
Mass of container A and oven dry CA	10487.5
Mass of oven dry CA	9787.5

Dividing above sample into three equal parts i.e. 3262g for CA-A

The divided sample is immersed in water for 24 hours and weighed.

Sample	Mass of SSD CA in air(g)	Mass of Saturated CA in water(g)	Bulk Specific Gravity (SSD)
Container P	3272	3270	1636
Container Q	3272	3270	1636
Container R	3272	3270	1636

Mean bulk specific gravity(SSD) was found to be 1636

III. AC Specification

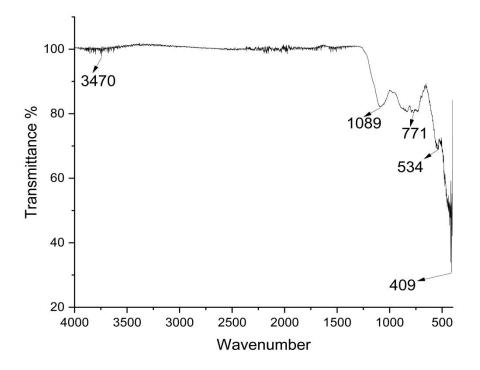
Headings	Index
CAS	7440-44-0
Molecular Formula	С
Molecular wt. (g/mol)	12.01
MDL Number	MFCD00133992
InChI Key	OKTJSMMVPCPJKN-UHFFFAOYSA-N
Synonym	acticarbone
PubChem CID	5462310
ChEBI	CHEBI:27594
IUPAC Name	carbon
SMILES	[C]
Formula wt.	12.01
Chloride	0.2% Max
Packaging	Composite Container
Sulfate	0.2% Max
Loss on Drying	10% Max (at 120°C)
Heavy Metals	0.005% Max (as Pb)
Density	1.8g/mL
Residue after Ignition	5% Max
Melting Point	3652°C
Quantity	500g
Appearance	Black fine powder
рН	2.0-3.5

Table 8 AC Specification

IV. CMC Specification

Headings	Index
Appearance	White to yellow to light tan powder
Solubility	10 mg soluble in 1 mL of water
pH (1% in water at 25 deg Celsius)	6.50- 8.00
FTIR	Matches with the standard pattern
Loss on drying (at 110°C, 2 hrs.)	<= 15.00%
Viscosity (2% in water at 25°C)	400 - 800 cps
WGK	1
Storage Temperature(°C)	Store below 30°C
Product Name	Carboxymethylcellulose sodium salt, Medium viscosity (CMC)
Synonym	Sodium carboxymethylcellulose
Shelf Life	4 years

Table 9 CMC Specification


V. FA Specification and FTIR

Commercially available class F fly ash from Dirk India Pvt. Ltd. supplied by Acme Engineering Associates, Pulchowk, Lalitpur has below proclaimed specification.

DI	RK Regd Office:10, India Hou Phone:(0253)	k India Pvt. Li use, Geetanjali Cotori 2322816, 2322815, Fi ocrete.co.in www.c	y, Indiranagar, Nasik - 4 ax:(0253) 2326678	22009		
		Pozzocrete 6	0 Docum Rev	ent No.:	F/QC/007 -A 0	
	SPECI	MEN TEST CER	TIFICATE			
			1999 - Series - V.	Pozzo	ocrete 60	
Test No.	Test	Unit	EN 450- Specification 'S Category'		ical Test esults	
1	Fineness - Specific Surface by Blaine's Permeability Method(Min.)	m²/kg	320		340	
2	ROS # 350(45 MIC) Max.	%	34	1	17.20	
3	Lime Reactivity (Minimum)	N/mm ²	4.5		5.48	
4	Moisture Content(Max.)	%	2		0.27	
5	Autoclave Expansion(Max.)	%	0.8	(0.029	
6	Compressive Strength At 28 days -	N/mm ²	80% of strength of			
	Pozzocrete + Cement Mortar		plain cement	32.11	96.14%	
	Plain Cement Mortar	-	mortar cubes (min.	33.40		
7	Chemical Analysis					
	Test %	IS- Specification				
	Loss on Ignition (Max.)	%	5		1.60	
	$SIO_2 + AI_2O_3 + Fe_2O_3$	%	70 min, by mass	1	92.49	
	SiO ₂	%	35 min. by mass	1	57.30	
	MgO	%	5 max. by mass		2.13	
	SO,	%	3.00 max. by mass	1	1.06	
	Na,O	%	1.5 max, by mass		0.73	
	Total Chlorides	%	0.05 max. by mass	1	0.029	

Image 8 FA Specification

Image 9 FA FTIR test

In FTIR analysis, there are typically six band ranges. The band area and indicator details for fly ash are presented in the table below(García Lodeiro et al., 2009; Puligilla & Mondal, 2015):

Band Range(cm ⁻¹)	Indication	Peak Number
4000-3500	Loss of Ca(OH) ₂	0
3500-1600	Stretching (-OH), bending (H-O-H)	0
1600-1000	Gains Si-O-Si bands typical of quartz	1
1000-800	Loss of gel CaCO ₃	0
800-500	Symmetric stretching of Si-O-Si and Al-O-Si	2
<500	Bending vibrations of Si-O-Si and O-Si-O bonds	1
Total Band Points	4	

Table 10 Indication for different peaks in band range

This fly ash has a total of four band points. More peak number suggests increased production of (C-S-H) & (C-A-H) and structural bond(Si-O-Al) & (-Si-O-Si-) in the band range 800-500 cm⁻¹(Fauzi et al., 2016).

VI. Plasticizer Specification

Image 10 PCE Specification

Industries		ADMIXTURES TECHNICAL DATASHEET
		METHOD OF USE
Main Ingredient Appearance PH Specific Gravity Sett ing & Hardening	 Polycarboxylic ether Light Brown liquid 7 ± 1 1.10 ± 0.02 Even at high dosage if dose not have retarding effect on 	FLOWGEL is supplied ready for use. For maximum dispersion throughout the mix, measured quantity of FLOWGEL should be directly added into the mixer at the same time as the mixing water. On no account should it be added to the dry cement. To
Chloride Content	the setting time. : Nil, as per BS - 5075	achieve the best results, the mixer along with material should be rotated for at least 2-3 minutes
Compatibility	(Part-I) : Can be used with all types of OPC, Pozzolana Cement including Sulphate	RATE OF ADDITION
Consistency	Resisting Cement. : FLOWGEL is formulated from carefully selected raw material and manufactured under controlled conditions to give a consistent product.	The optimum dosage should be determined by site trials with the particular concrete mix. As a guide the rate of addition is generally in the range of 0.2-1.5% on cement wt.(w/w) PACKING FLOWGEL is available in 15, 20, 40, 100 & 200
Handling	FLOWGEL is formulated from chemicals which present no fire or health hazards.	Kgs. Carbuoys.
Toxicity Shelf Life	: Non-toxic : If stored in unopened containers at normal ambient temp., a shelf-life of approx. 12 months could be expected.	

A&A Additives & Allied Industries Kathmandu, Nepal.

VII. Water Test

Water quality test report is presented from Water Lab, Department of Civil Engineering, Pulchowk Campus.

Source: Well water		; Heavy Lab		receipt:	10/12/202.			
			Campus, laitpur			Analyzed date:	18/12/2022	
			campus, tu	upur		Purpose	NA	
S.N	Parameters		Results	WHO Reference	Nepal	-		
Physical Parameters			value	Standard	Methods Used			
1	pH							
2	Temperature (de		6.5	6.5-8.5	6.5-8.0	nH water	pl/mai	
	Celsius)	gree	16.9	-	-	pH meter Thomas and the second		
3						Thermometer		
4	Conductivity (µS	S/cm)	550	1000	1500	0.1.1.1	0.1.1.1	
I would ty (NTU)		2	5 00		Conductivit	Conductivity meter		
Che	mical Parameters		1		20	Nephthalom	leter	
5	Total hardness of	is of	156	500	600			
6	$1 CaCO_3 (mg/I)$		150	500	S\$00	EDTA Titral	EDTA Titration method	
(W)	Chloride content(mg/L)		10.22	250	/			
7	Iron content(mg/L)		10.22	250	≤200	Argentometr	ic Titration	
			1.5	0.3	10.2/01	method		
9			1.0	0.5	≤0.3(3)	Phenanthroli	Phenanthroline	
10	9 Ammonia content(mg/) 10 Total Alkalini		0.5	1.5	<15	Spectrophoto		
(mg/L)		70	1.98/	≤1.5	Phenate Spec	trophotometer		
Com	ments:				≤	Titration met	hod	

Image 11 Water Test Report

ANNEX-B: MIX DESIGN

I. Table Volume Calculation for casting of M 30 concrete

Description	No. of cubes	Wet volume of cube (m3)	Dry volume of cube (m3)	Quantity of Cement (kg)	Quantity of plasticizer(ml)	Quantity of Sand(Kg)	Quantity of coarse aggregate(kg)	Quantity of water(kg)	Quantity of CMC (in gm)	Quantity of AC(gm)	Fly Ash(Kg)
Control	9	0.03	0.045	18.48	221.72	39.35	42.30	5.17			
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	10.34		
with CMC	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	20.69		
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	31.03		
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	10.34	68.95	
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	20.69	68.95	
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	31.03	68.95	
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	10.34	137.90	
CMC-AC	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	20.69	137.90	
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	31.03	137.90	
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	10.34	206.86	
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	20.69	206.86	
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	31.03	206.86	
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	20.69	137.90	0.92
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	20.69	137.90	1.23
CMC-AC-FA	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	20.69	137.90	1.54
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	20.69	137.90	0.92
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	20.69	137.90	1.23
	3	0.01	0.015	6.17	73.98	13.13	14.11	1.72	20.69	137.90	1.54
	63	0.21 m ³	0.31 m ³	129.45 kg	1553.36 ml	275.71 kg	296.32 kg	36.19 kg	372.34 gm	2068.56 ng	7.40 kg

Description	No. of cubes	Wet Volume of concrete in (m3)	Dry volume of concrete in (m3)	Quantity of Cement (kg)	Concentration of CMC (%)	Concentratio n of AC(%)	Concentration of Fly Ash(%)	Quantity of Sand(Kg)	Quantity of CA(kg)	Quantity of water(kg)	Quantity of CMC (in gm)
Control	6	0.02	0.030	11.09				25.86	28.20	5.13	
	3	0.01	0.015	5.54	0.17			12.93	14.10	2.56	9.30
with CMC	3	0.01	0.015	5.54	0.34			12.93	14.10	2.56	18.60
	3	0.01	0.015	5.54	0.50			12.93	14.10	2.56	27.91
	3	0.01	0.015	5.54		1.12		12.93	14.10	2.56	
AC only	3	0.01	0.015	5.54		2.24		12.93	14.10	2.56	
	3	0.01	0.015	5.54		3.36		12.93	14.10	2.56	
	3	0.01	0.015	5.54	0.17	1.12		12.93	14.10	2.56	9.30
CMC+ AC	3	0.01	0.015	5.54	0.17	2.24		12.93	14.10	2.56	9.30
	3	0.01	0.015	5.54	0.17	3.36		12.93	14.10	2.56	9.30
	3	0.01	0.015	5.54	0.34	1.12		12.93	14.10	2.56	18.60
CMC+ AC	3	0.01	0.015	5.54	0.34	2.24		12.93	14.10	2.56	18.60
	3	0.01	0.015	5.54	0.34	3.36		12.93	14.10	2.56	18.60
	3	0.01	0.015	5.54	0.50	1.12		12.93	14.10	2.56	27.91
CMC+ AC	3	0.01	0.015	5.54	0.50	2.24		12.93	14.10	2.56	27.91
	3	0.01	0.015	5.54	0.50	3.36		12.93	14.10	2.56	27.91
	3	0.01	0.015	5.54	0.17		15	12.93	14.10	2.56	9.30
CMC+FA	3	0.01	0.015	5.54	0.34		20	12.93	14.10	2.56	18.60
	3	0.01	0.015	5.54	0.50		25	12.93	14.10	2.56	27.91
	3	0.01	0.015	5.54		1.12	15	12.93	14.10	2.56	
AC+FA	3	0.01	0.015	5.54		2.24	20	12.93	14.10	2.56	
	3	0.01	0.015	5.54		3.36	25	12.93	14.10	2.56	
	69	0.23	0.34	127.52 kg				297.44 kg	324.26 kg	58.99 kg	279.05 gm

II. Table Volume Calculation for casting of M 25 concrete

III. Mix Design Reference

ABLE 22 SUG	GESTED RANGES	OF VALUES OF WOI PLACING CONDI (Clause 3.1.2.)	TIONS	CONCRETE FOR	DIFFERENT	SP : 23-1982	IIP BETWEEN WATER-CEMENT R			COARSE .	AGGRE	E OF DRY GATE PEI CONCRE	R UNI	
			-,			TABLE ST RELATIONS	STRENGTH OF CONCRETE	CHO AND COMPRESSIVE			(Claus	e 6.1)		
PLACING CON	DITIONS	DEGREE OF WORKABILITY	VALU	es of Workability		COMPRESSIVE STRENGTH	(Clause 6.1) WATER-CEMENT	RATIO, BY WEIGHT		MAXIMUM SIZE OF	FIN	ENESS MOD	ULE OI	F SAND
(1)		(2)		(3)		at 28 Days, kgf/cm ²	Non-Air-Entrained Concrete	Air-Entrained Concrete	A	GGREGATE	2.40	2.60	2.80	3.00
oncreting of sha	allow sections	Very low	20-10 sec	onds, Vee-Bee time	,	(1)	(2)	(3)		(1)	(2)	(3)	(4)	(5)
with vibration			0.75-0.80	or compacting facto	r	450 400	0.38 0.43	-		10	0.50	0.48	0.46	0.44
		1 C C C C C C C C C C C C C C C C C C C		A A A		350	0.48	0.40		12.5	0.59	0.57	0.55	0.53
ncreting of light sections with vib		Low	10-5 seco	nds, Vee-Bee time		300	0.55	0.46		20	0.66	0.64	0.62	0.60
			0.80-0.85	, compacting facto	r	250 200	0.62	0.53		25	0.71	0.69	0.67	0.65
						200	0.70 0.80	0.61		40	0.76	0.74	0.72	0.70
ncreting of ligh		Medium	5-2 secon	ids, Vee-Bee time			ded Practice for Selecting Proportions f			50	0.78	0.76	0.74	0.72
or heavily reinfo			0.85-0.92	, compacting facto	r	by ACI Committee 211 (ACI Manual	of Concrete Practice, Part I, 1979). An	nerican Concrete Institute, USA.		70	0.81	0.79	0.77	0.75
with vibration				or n, slump for 20 mm						150	0.87	0.85	0.83	0.81
ncreting of heav	uily minformed	High		•						- Table 33 is				
sections without		High	Above 0.9	2, compacting fact	or					ted by ACI Committee 211 (AC ete Practice, Part I, 1979). Ameri				
or smaller aggre	egate the values will b	be lower.			m ⁴ aggregate				Institu	ite, USA.				
ble 5 Minimu	um Cement Conten	nt, Maximum Water-0		d Minimum Gra	de of Concrete				Institu	Table8 estim			of fre	
ble 5 Minimu	im Cement Conten nt Exposures with		regates of 20 mm	d Minimum Gra	de of Concrete num Size	DIFFERENT	E MIXING WATER (kg/m ³ OF CON SLUMPS AND MAXIMUM SIZES OI (<i>Clause</i> 6.1) Mayourus Ser	AGGREGATES	Institu	ate, USA.	ate of u			esh concrete
ble 5 Minimu for Differe	im Cement Conten ent Exposures with Plai Minimum	nt, Maximum Water- h Normal Weight Agg (<i>Clauses</i> 6.1.2, 8.2.4 un Concrete Maximum Minimu	m Minimum	d Minimum Gra Nominal Maxin Reinforced Concre Maximum	de of Concrete num Size te	TABLE 32 APPROXIMAT DIFFERENT 3 SLUMP, cm	SLUMPS AND MAXIMUM SIZES OI (Clause 6.1) MAXIMUM SIZI	CRETE) REQUIREMENTS FOR AGGREGATES ES OF AGOREGATES IN MM 25 40 50 70 150	Institu	Table8 estim	ate of u	nit weight Non air entrained		esh concrete Air – entraine
ble 5 Minimur for Differe Exposure	im Cement Conten ent Exposures with Minimum 1 Cement F Content C kg/m ²	nt, Maximum Water-(h Normal Weight Agg (Clauses 6.1.2, 8.2.4 aln Concrete Maximum Maximum Maximum Attinum Maximum Attinum Minimu Minim	m Minimum of Cement te Content kg/m ³	d Minimum Gra Nominal Maxin Reinforced Concre Maximum Free Water- Cement Ratio	de of Concrete num Size te Minimum Grade of Concrete	DIFFERENT	SLUMPS AND MAXIMUM SIZES OF (Clause 6.1) Maximum Size 10 12.5 20 Non-Air-	S OF AGGREGATES IN mm	Institu	Table8 estim	ate of u x. mm)	nit weight Non air entrained 22		esh concrete Air – entraine 22
ble 5 Minimu for Differe	Im Cement Conten Int Exposures with Minimum 1 Cement F Content C	nt, Maximum Water-(h Normal Weight Agg (Clauses 6.1.2, 8.2.4 ain Concrete Maximum Minimu Free Water Grade	m Minimum of Cement te Content	d Minimum Gra Nominal Maxim Reinforced Concre Maximum Free Water- Cement Ratio (7)	de of Concrete num Size te Minimum Grade of Concrete (8)	DIFFERENT SLUMP, cm 3 to 5 8 to 10	SLUMPS AND MAXIMUM SIZES OI (Clause 6.1) 10 12.5 20 Non-Air 205 200 185 1 225 215 200 1	AGGREGATES So AGGREGATES IN mm 25 40 50 70 150 Entrained Concrete 80 160 155 145 125 95 175 170 160 140	Institu	Table8 estim	nate of u x.] mm) 6 9.5 12.5	nit weight Non air entrained 22 23	280 810	esh concrete Air – entraine 22 22
ble 5 Minimu for Differe Exposure (2)	Im Cement Conten Int Exposures with Minimum 1 Cement F Content C kg/m ² (3) 220 240	nt, Maximum Water-(h Normal Weight Agg (Clauses 6.1.2, 8.2.4 ain Concrete Maximum Minimu Maximum Grade Concret (4) (5) 0.60 – 1 0.60 M 1	m Minimum of Cement te Content kg/m ³ (6) 300	d Minimum Gra Nominal Maxin Reinforced Concre Maximum Free Water- Cement Ratio	de of Concrete num Size te Minimum Grade of Concrete	DIFFERENT : SLUMP, cm 3 to 5 8 to 10 15 to 18	SLUMPS AND MAXIMUM SIZES OF (Clause 6.1) / 10 12.5 20 Non-Air 205 200 185 1 225 215 200 1 240 230 210 2	AGGREGATES So F AGGREGATES IN mm 25 40 50 70 150 Entrained Concrete 80 160 155 145 125 95 175 170 160 140 05 185 180 170	Institu	Table8 estim	nate of u x.] mm) 6 9.5	nit weight Non air entrained 22 23	280	esh concrete Air – entraine 22 22
ble 5 Minimum for Differe Exposure (2) Mild Moderate Severe	m Cement Conten nt Exposures with Minimum I Ceneat C kg/m ² (3) 220 240 250	nt, Maximum Water-G h Normal Weight Agg (Clauses 6.1.2, 8.2.4 ain Concrete Maximum Minimu Free Water-Grade Cement Ratio Concre (4) (5) 0.60 - 0.60 M 1 0.50 M 2	regates of 20 mm 1 and 9.1.2) m Minimum of Cement kg/m ³ (6) 300 5 300 0 320	d Minimum Gra Nominal Maxim Reinforced Concre Maximum Free Water- Cernent Ratio (7) 0.55 0.55 0.45	de of Concrete num Size te Minimum Grade of Concrete (8) M 20 M 25 M 30	DIFFERENT SLUMP, cm 3 to 5 8 to 10	SLUMPS AND MAXIMUM SIZES OF (Clause 6.1) / 10 12.5 20 Non-Air 205 200 185 1 225 215 200 1 240 230 210 2	AGGREGATES So AGGREGATES IN mm 25 40 50 70 150 Entrained Concrete 80 160 155 145 125 95 175 170 160 140	Institu	Table8 estim	nate of u x. 1 mm) 0 9.5 12.5 20	nit weight Non air entrained 22 23 23	280 310 345	esh concrete Air – entraine 22 22 22 22
ble 5 Minimu for Differe Exposure (2) Mild Moderate Severe Very sever	m Cement Conten nt Exposures with Minimum 1 Cement C kgm ² (3) 220 240 250	nt, Maximum Water- h Normal Weight Agg (Clauses 6.1.2, 8.2.4 uin Concrete Maximum Minimu Maximum Concre (4) (5) 0.60 – 0.60 M I 0.50 M 2 0.45 M 2	regates of 20 mm 1 and 9.1.2) m Minimum of Cement kg/m ³ (6) 300 5 300 0 320 0 340	d Minimum Gra Nominal Maxim Reinforced Concre Maximum Free Water- Cement Ratio (7) 0.55 0.55 0.55 0.45 0.45	de of Concrete num Size te Minimum Grade of Concrete (8) M 20 M 25 M 30 M 35	DIFFERENT : SLUMP, cm 3 to 5 8 to 10 15 to 18 Approximate amount of entrained at	SLUMPS AND MAXIMUM SIZES OF (Clause 6.1) 10 12.5 20 Non-Air- 205 200 185 11 225 215 200 1 240 230 210 2 ir in non- 3.0 2.5 2.0	AGGREGATES So F AGGREGATES IN mm 25 40 50 70 150 Entrained Concrete 80 160 155 145 125 95 175 170 160 140 05 185 180 170	Institu	Table8 estim	nate of u x.] mm) 6 9.5 12.5	nit weight Non air entrained 22 23 23	280 810	esh concrete Air – entraine 22 22 22
ble 5 Minimu for Differe Exposure (2) Mild Moderate Severe Very severe Severe NOTES	Im Cement Conten Int Exposures with Minimum 1 Cement F Kgm ² (3) 220 240 250 c 260 280	nt, Maximum Water-G h Normal Weight Agg (Clauses 6.1.2, 8.2.4 In Concrete Maximum Minimu Free Water-Grade (4) (5) 0.60 0.60 M 1 0.50 M 2 0.45 M 2 0.40 M 2	regates of 20 mm 1 and 9.1.2) m Minimum of Cenent Content kg/m (6) 3 00 0 320 0 320 0 340 5 360	d Minimum Gra Nominal Maxim Reinforced Concre Maximum Free Water- Cement Ratio (7) 0.55 0.50 0.45 0.45 0.45 0.40	te Minimum Grade of Concrete (8) M 20 M 25 M 30 M 35 M 40	DIFFERENT : SLUMP, cm 3 to 5 8 to 10 15 to 18 Approximate amount of entrained at	LUMPS AND MAXIMUM SIZES OF (Clause 6.1) MAXIMUM Size 10 12.5 20 Non-Air- 205 200 185 1 240 230 210 2 ir in non- 3.0 2.5 2.0 ir in non- 180 175 165 1	AGGREGATES 25 40 50 70 150 Entrained Concrete 80 160 145 125 95 175 170 160 140 05 185 180 170 — 0.5 0.5 0.3 0.2 urained Concrete 60 145 140 135 120	Institu	Table8 estim	nate of u x. 1 mm) 0 9.5 12.5 20	nit weight Non air entrained 22 23 23 23	280 310 345	esh concrete Air – entrainer 22 22 22 22 22 22
ble 5 Minimu for Differe Exposure (2) Mild Moderate Severe Very severe Extreme NOTES I Cement cost addition such as	Im Cement Conten Int Exposures with Minimum 1 Cement P Content C kg/m ¹ (3) 220 230 240 250 e 260 280 260 280 20 20 20 20 20 20 20 20 20 2	nt, Maximum Water-(h Normal Weight Agg (Clauses 6.1.2, 8.2.4 ain Concrete Maximum Minimu Pree Water Grade Cement Ratio Concre (4) (5) 0.60 – (4) (5) 0.60 – 0.60 M (2) 0.45 M (regates of 20 mm 1 and 9.1.2) m Minimum of Cernent te: Content kg/m ³ (6) 300 5 300 0 320 0 320 0 340 5 360 sof cernent and it is in be taken into account	d Minimum Gran Nominal Maxim Reinforced Concre Maximum Free Water- Cement Ratio (7) 0.55 0.50 0.45 0.45 0.45 0.46 0.45 0.46 0.45	de of Concrete num Size te Minimum Grade of Concrete (8) M 20 M 25 M 30 M 35 M 40 sentioned in 5.2 The selidon with respect to	JIFFERENT S SLUMP, cm 3 to 5 8 to 10 15 to 18 Approximate amount of entrained an air-entrained concrete, percent 3 to 5 8 to 10 15 to 18	SLUMPS AND MAXIMUM SIZES OF (Clause 6.1) MAXIMUM Size / 10 12.5 20 Non-Air- 205 200 185 1 240 230 210 5 ir in non- 3.0 2.5 2.0 Air-Er 180 175 165 1 200 190 180 1 215 205 190 1	AGGREGATES 25 40 50 70 150 25 40 50 70 150 Entrained Concrete 80 160 155 145 125 95 175 177 160 140 100 155 185 180 170 — .5 1.0 0.5 0.3 0.2	Institu	Table8 estim	nate of u x. mm) 9.5 12.5 20 25 37.5	nit weight Non air entrained 22 23 23 23 23 24	280 310 345 380 410	esh concrete Air – entrained 22 22 22 22 22 22 22 22 22 22
ble 5 Minimu for Differe Exposure (2) Mild Moderate Severe Extreme NOTES I Centent content additions such as the centent content additions such as	m Cement Conten ent Exposures with Minimum F Cemen F Cemen F Cecen C kg/m ¹ (3) 220 240 250 e 260 e 260 e 260 e 260 at prescribed in this table fly ash or ground graun est and wate-cement and	nt, Maximum Water- h Normal Weight Agg (Clauses 6.1.2, 8.2.4 ain Concrete Maximum Minimu Maximum Minimu (4) (5) 0.60 – 0.60 M I 0.50 M 2 0.45 M 2 0.40 M 2 0.45 M 2	m Minimum of Cement Content Kg/m ³ (6) 300 5 300 0 320 0 340 5 360 5 360 5 360 5 360	d Minimum Gran Nominal Maxim Reinforced Concre Maximum Free Water- Cement Ratio (7) 0.55 0.50 0.45 0.45 0.45 0.46 0.45 0.46 0.45	de of Concrete num Size te Minimum Grade of Concrete (8) M 20 M 25 M 30 M 35 M 40 sentioned in 5.2 The selidon with respect to	DIFFERENT : SLUMP, cm 3 to 5 8 to 10 15 to 18 Approximate amount of entrained a air-entrained concrete, percent 3 to 5 8 to 10 15 to 18 Recommended average total air percent	SLUMPS AND MAXIMUM SIZES OI (Clause 6.1) 10 12.5 20 Non-Air- 205 200 185 1 225 215 200 1 240 230 210 2 ir in non- 3.0 2.5 2.0 1 180 175 165 1 200 190 180 1 215 205 190 1 content, 8.0 7.0 6.0 2	AGGREGATES Stor AGGREGATES IN mm 25 40 50 70 150 Entrained Concrete 80 160 155 145 125 95 175 176 140 100 95 175 176 140 100 105 185 180 170 — 1.5 1.0 0.5 0.3 0.2 trained Concrete 60 145 140 135 120 75 160 155 135 135 135 135 85 170 165 160 — … … … 0.0 4.5 4.0 3.5 3.0 … … …	Institu	Table8 estim	nate of u x. 1 9.5 1 12.5 20 25 37.5 50 50	nit weight Non air entrained 22 23 23 23 24 24 24	280 310 345 380 410 445	esh concrete Air – entrained 22 22 22 22 23 23 23
ble 5 Minimu for Differe Exposure (2) Mild Moderate Severe Extreme NOTES I Centent content additions such as the centent content additions such as	m Cement Conten ent Exposures with Minimum F Cemen F Cemen F Cecen C kg/m ¹ (3) 220 240 250 e 260 e 260 e 260 e 260 at prescribed in this table fly ash or ground graun est and wate-cement and	nt, Maximum Water-C h Normal Weight Agg (Clauses 6.1.2, 8.2.4 Maximum Grade Center Ratio Concer (4) (5) 0.60 - 0.60 M 1 0.50 M 2 0.45 M 2 0.40 M 2 He is irrespective of the gate may utiof it the suitability is estability its specified in 15 1489 (Part	m Minimum of Cement Content Kg/m ³ (6) 300 5 300 0 320 0 340 5 360 5 360 5 360 5 360	d Minimum Gran Nominal Maxim Reinforced Concre Maximum Free Water- Cement Ratio (7) 0.55 0.50 0.45 0.45 0.45 0.46 0.45 0.46 0.45	de of Concrete num Size te Minimum Grade of Concrete (8) M 20 M 25 M 30 M 35 M 40 sentioned in 5.2 The selidon with respect to	DIFFERENT : SLUMP, cm 3 to 5 8 to 10 15 to 18 Approximate amount of entrained a: air-entrained concrete, percent 3 to 5 8 to 10 15 to 18 Recommended average total air percent NoTe — Table 32 is from 'Recommended	SLUMPS AND MAXIMUM SIZES OI (Clause 6.1) 10 12.5 20 Non-Air- 205 200 185 1 225 215 200 1 240 230 210 2 ir in non- 3.0 2.5 2.0 1 180 175 165 1 200 190 180 1 215 205 190 1 content, 8.0 7.0 6.0 2	AGGREGATES BO AGGREGATES IN mm 25 40 50 70 150 Entrained Concrete B0 160 155 145 125 95 175 170 160 140 05 185 180 170 - 1.5 1.0 0.5 0.3 0.2 trained Concrete 60 145 140 135 120 75 160 155 150 135 85 170 165 160 - 0.4.5 4.0 3.5 3.0 for Normal Weight Concrete' Reported	Institu	Table8 estim	nate of u x. mm) 9.5 12.5 20 25 37.5	nit weight Non air entrained 22 23 23 23 24 24 24	280 310 345 380 410	esh concrete Air – entrained 22 22 22 22 22 22 22 22 22 22

ANNEX-C: COMPRESSIVE STRENGTH

I. Compressive Strength calculation for M 30 concrete

cubes	Nos	1	2	3	1	2	3	1	2	3
			Control			Control			Control	
dates of casting		Monda	y,September 12	,2022	Monda	y,September 12	,2022	Monda	y,September 12	,2022
date of testing		Thursda	ay,September 15	5,2022	Monda	y,September 19	,2022	Tuesc	lay,October 11,2	2022
ages	Days	3	3	3	7	7	7	28	28	28
dimension	mm	150	150	150	150	150	150	150	150	150
surface area	sq. mm.	22500	22500	22500	22500	22500	22500	22500	22500	22500
volume	cum	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375
weight	kg	8.175	8.270	8.125	8.440	8.120	8.225	8.225	8.460	8.440
density	kg/m3	2422.22	2450.37	2407.41	2500.74	2405.93	2437.04	2437.04	2506.67	2500.74
breaking load	KN	374	314	342	530	407	453	680	771	706
brealing strength	N/mm2	16.62	13.96	15.20	23.56	18.09	20.13	30.22	34.27	31.38
average breaking strength	N/mm2	15.26		20.59			31.96			

Table Compressive Strength of Control for 3, 7 and 28 days

Table Compressive Strength of CMC concrete for 28 days

cubes	Nos	1	2	3	1	2	3	1	2	3
			CMC 1			CMC 2			CMC 3	
dates of casting		Mond	ay,September 12	2,2022	Mond	ay,September 12	2,2022	Mond	ay,September 12	2,2022
date of testing		Tues	day,October 11,	2022	Tues	day,October 11,	2022	Tues	day,October 11,	2022
ages	Days	28	28	28	28	28	28	28	28	28
dimension	mm	150	150	150	150	150	150	150	150	150
surface area	sq. mm.	22500	22500	22500	22500	22500	22500	22500	22500	22500

volume	cum	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375
weight	kg	8.340	8.080	7.950	7.880	8.020	8.040	7.970	7.920	7.880
density	kg/m3	2471.11	2394.07	2355.56	2334.81	2376.30	2382.22	2361.48	2346.67	2334.81
breaking load	KN	592	612	585	525	593	504	500	514	552
brealing strength	N/mm2	26.31	27.20	26.00	23.33	26.36	22.40	22.22	22.84	24.53
average breaking strength	N/mm2		26.50			24.03			23.20	

Table Compressive Strength of CMC-AC 1.12% concrete for 28 days

cubes	Nos	1	2	3	1	2	3	1	2	3
			1AC-1			1AC-2			1AC-3	
dates of casting		Thursda	ay,September 15	5,2022	Thursda	ay,September 15	5,2022	Thursd	ay,September 15	5,2022
date of testing		Wedne	sday,October 12	2,2022	Wednes	sday,October 12	2,2022	Wedne	sday,October 12	2,2022
ages	Days	28	28	28	28	28	28	28	28	28
dimension	mm	150	150	150	150	150	150	150	150	150
surface area	sq. mm.	22500	22500	22500	22500	22500	22500	22500	22500	22500
volume	cum	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375
weight	kg	7.813	7.930	7.795	8.066	7.978	8.120	7.394	7.411	7.468
density	kg/m3	2314.96	2349.63	2309.63	2389.93	2363.85	2405.93	2190.81	2195.85	2212.74
breaking load	KN	480	460	410	440	430	410	390	400	370
brealing strength	N/mm2	21.33	20.44	18.22	19.56	19.11	18.22	17.33	17.78	16.44
average breaking strength	N/mm2		20.00			18.96			17.19	

Table Compressive Strength of CMC-AC 2.24% concrete for 28 days

cubes	Nos	1	2	3	1	2	3	1	2	3
			2AC-1			2AC-2			2AC-3	
dates of casting		Sunday	,September 18,	2022	Sunday	,September 18	,2022	Sunday	,September 18	,2022
date of testing		Mond	ay,October 17,2	2022	Mond	ay,October 17,2	2022	Mond	ay,October 17,2	2022

ages	Days	28	28	28	28	28	28	28	28	28
dimension	mm	150	150	150	150	150	150	150	150	150
surface area	sq. mm.	22500	22500	22500	22500	22500	22500	22500	22500	22500
volume	cum	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375
weight	kg	7.769	8.275	8.163	8.043	8.034	7.829	7.703	7.851	7.694
density	kg/m3	2301.93	2451.85	2418.67	2383.11	2380.44	2319.70	2282.37	2326.22	2279.70
breaking load	KN	450	430	410	460	490	450	430	470	430
brealing strength	N/mm2	20.00	19.11	18.22	20.44	21.78	20.00	19.11	20.89	19.11
average breaking strength	N/mm2		19.11			20.74			19.70	

Table Compressive Strength of CMC-AC 3.36% concrete for 28 days

cubes	Nos	1	2	3	1	2	3	1	2	3
			3AC-1			3AC-2			3AC-3	
dates of casting		Wedneso	lay,September 2	1,2022	Wednesd	lay,September 2	21,2022	Wedneso	lay,September 2	21,2022
date of testing		Wednes	sday,October 19	,2022	Wednes	sday,October 19	,2022	Wedne	sday,October 19	,2022
ages	Days	28	28	28	28	28	28	28	28	28
dimension	mm	150	150	150	150	150	150	150	150	150
surface area	sq. mm.	22500	22500	22500	22500	22500	22500	22500	22500	22500
volume	cum	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375
weight	kg	8.033	8.311	8.062	7.847	8.123	7.912	7.563	8.106	7.685
density	kg/m3	2380.15	2462.52	2388.74	2325.04	2406.81	2344.30	2240.89	2401.78	2277.04
breaking load	KN	460	440	410	440	400	410	360	390	410
brealing strength	N/mm2	20.44	19.56	18.22	19.56	17.78	18.22	16.00	17.33	18.22
average breaking strength	N/mm2		19.41			18.52			17.19	

Table 28 day Compressive Strength of CMC=0.34%, AC= 2.24% concrete for different FA

cubes	Nos	1	2	3	1	2	3	1	2	3
		-	_		-			-	_	-

			FA-1			FA-2		FA-3			
dates of casting		Friday	,September 23,2	2022	Friday	,September 23,2	2022	Friday	,September 23,2	2022	
date of testing		Thurse	lay,October 20,	2022	Thurso	day,October 20,	2022	Thurse	day,October 20,	2022	
ages	Days	28	28	28	28	28	28	28	28		
dimension	mm	150	150	150	150	150	150	150	150	150	
surface area	sq. mm.	22500	22500	22500	22500	22500	22500	22500			
volume	cum	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	
weight	kg	7.799	7.874	7.968	7.900	8.088	7.830	7.741	7.964	7.934	
density	kg/m3	2310.81	2333.04	2360.89	2340.74	2396.44	2320.00	2293.63	2359.70	2350.81	
breaking load	KN	410	370	350	350	400	345	350	340	365	
brealing strength	N/mm2	18.22	16.44	15.56	15.56	17.78	15.33	15.56	16.22		
average breaking strength	N/mm2		16.74			16.22					

Table 28 day Compressive Strength of CMC=0.34%, AC= 3.36% concrete for different FA

cubes	Nos	1	2	3	1	2	3	1	2	3	
			FA-4			FA-5	•		FA-6		
dates of casting		Monda	y,December 26	,2022	Thursda	ay,December 29	,2022	Thursday, December 29, 2022			
date of testing		Mond	Monday, January 23, 2023			day,January 26,	2023	Thursday, January 26, 2023			
ages	Days	28	28 28 28			28	28	28	28	28	
dimension	mm	150	150 150 150			150	150	150	150	150	
surface area	sq. mm.	22500	22500	22500	22500	22500	22500	22500	22500	22500	
volume	cum	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	
weight	kg	7.665	7.890	7.900	7.840	7.555	7.375	7.945	7.866	8.010	
density	kg/m3	2271.11	2337.78	2340.74	2322.96	2238.52	2185.19	2354.07	2330.67	2373.33	
breaking load	KN	415	415 400 420			380	450	340	380	350	
brealing strength	N/mm2	18.44	18.44 17.78 18.67			18.89 16.89 20.00			16.89	15.56	
average breaking strength	N/mm2		18.30			18.59			15.85		

II. Compressive Strength calculation for M 25 concrete

cubes	Nos	1	2	3	1	2	3			
			Control			Control				
dates of casting		Mor	nday,March 20,2	023	Monday,March 20,2023					
date of testing		Mo	nday,April 17,20	023	Ν	1onday,April 17,202	23			
ages	Days	7	7	7	28	28	28			
dimension	mm	150	150	150	150	150	150			
surface area	sq. mm.	22500	22500	22500	22500 22500 22500					
volume	cum	0.003375	0.003375	0.003375	0.003375 0.003375 0.003375					
weight	kg	7.950	8.105	8.000	8.145	8.065	8.210			
density	kg/m3	2355.56	2401.48	2370.37	2413.33	2389.63	2432.59			
breaking load	KN	404	371	391	612	625	584			
brealing strength	N/mm2	17.96	16.49	17.38	3 27.20 27.78 25.96					
average breaking strength	N/mm2		17.27		26.98					

Table: Compressive Strength of Control for 7 and 28 days

Table: 28 day Compressive Strength of CMC concrete

cubes	Nos	1	2	3	1	2	3	1	2	3	
			CC1			CC2		CC3			
dates of casting		Tue	sday,March 21,2	2023	Tue	esday,March 21,2	2023	Tuesday,March 21,2023			
date of testing		Tu	Tuesday, April 18,2023			Tuesday, April 18, 2023			Tuesday, April 18, 2023		
ages	Days	28	28	28	28	28	28	28	28	28	
dimension	mm	150	150	150	150	150	150	150	150	150	
surface area	sq. mm.	22500	22500	22500	22500	22500	22500	22500	22500	22500	
volume	cum	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	
weight	kg	8.054	8.088	8.117	8.076	7.939	8.105	8.059	7.705	7.779	

density	kg/m3	2386.37	2396.44	2405.04	2392.89	2352.30	2401.48	2387.85	2282.96	2304.89
breaking load	KN	510	540	560	510	560	500	460	500	480
brealing strength	N/mm2	22.67	24.00	24.89	22.67	24.89	22.22	20.44	22.22	21.33
average breaking strength	N/mm2		23.85			23.26			21.33	

Table: 28 day Compressive Strength of AC concrete

cubes	Nos	1	2	3	1	2	3	1	2	3		
			C1			C2			C3			
dates of casting		Wedı	nesday,March 22	2,2023	Wedr	nesday,March 22	2,2023	Wednesday, March 22, 2023				
date of testing		Wed	nesday,April 19,	,2023	Wed	nesday,April 19	,2023	Wed	Wednesday, April 19, 2023			
ages	Days	28	28	28	28	28	28	28	28	28		
dimension	mm	150	150	150	150	150	150	150	150	150		
surface area	sq. mm.	22500	22500	22500	22500	22500	22500	22500	22500	22500		
volume	cum	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375		
weight	kg	7.865	8.086	7.894	8.231	8.433	8.242	8.083	8.066	7.998		
density	kg/m3	2330.37	2395.85	2338.96	2438.81	2498.67	2442.07	2394.96	2389.93	2369.78		
breaking load	KN	430	430 450 470			590	630	520	430	480		
brealing strength	N/mm2	19.11	19.11 20.00 20.89			25.78 26.22 28.00			19.11	21.33		
average breaking strength	N/mm2		20.00			26.67			21.19			

Table: 28 day Compressive Strength of CMC-AC concrete for CMC 0.17%

cubes	Nos	1	2	3	1	2	3	1	2	3	
			C1C1			C1C2 C1C3					
dates of casting		Sur	nday,March 26,2	023	Sur	nday,March 26,2	023	Sunday, March 26, 2023			
date of testing		Su	nday,April 23,20	023	Su	nday,April 23,20	023	Su	nday,April 23,20)23	
ages	Days	28	28	28	28	28	28	28	28	28	
dimension	mm	150	150	150	150	150	150	150	150	150	

surface area	sq. mm.	22500	22500	22500	22500	22500	22500	22500	22500	22500	
volume	cum	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	
weight	kg	7.838	7.997	7.855	8.096	7.948	7.886	7.532	7.802	8.091	
density	kg/m3	2322.37	2369.48	2327.41	2398.81	2354.96	2336.59	2231.70	2311.70	2397.33	
breaking load	KN	530	550	560	560	540	560	500	480	480	
brealing strength	N/mm2	23.56	24.44	24.89	24.89	24.00	24.89	22.22	21.33	21.33	
average breaking strength	N/mm2		24.30			24.59		21.63			

Table: 28 day Compressive Strength of CMC-AC concrete for CMC 0.34%

cubes	Nos	1	2	3	1	2	3	1	2	3		
			C2C1	•		C2C2	•		C2C3			
dates of casting		Mo	nday,March 27,2	2023	Mo	nday,March 27,2	2023	Monday,March 27,2023				
date of testing		Мо	onday,April 24,2	023	Mo	onday,April 24,2	023	Мо	Monday, April 24, 2023			
ages	Days	28	28	28	28	28	28	28	28	28		
dimension	mm	150	150 150 150			150	150	150	150	150		
surface area	sq. mm.	22500	22500	22500	22500	22500	22500	22500	22500	22500		
volume	cum	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375		
weight	kg	7.600	7.688	7.596	7.421	7.585	7.480	7.861	7.816	7.926		
density	kg/m3	2251.85	2277.93	2250.67	2198.81	2247.41	2216.30	2329.19	2315.85	2348.44		
breaking load	KN	450	450 430 460			400	420	420	470	480		
brealing strength	N/mm2	20.00 19.11 20.44			17.33 17.78 18.67			18.67	20.89	21.33		
average breaking strength	N/mm2		19.85			17.93		20.30				

Table: 28 day Compressive Strength of CMC-AC concrete for CMC 0.5%

cubes	Nos	1	2	3	1	2	3	1	2	3
			C3C1			C3C2			C3C3	
dates of casting		Tue	sday,March 28,2	2023	Tue	esday,March 28,2	2023	Tue	sday,March 28,2	2023

date of testing		Tue	esday,April 25,2	023	Tue	esday,April 25,2	023	Tuesday, April 25, 2023			
ages	Days	28	28	28	28	28	28	28	28	28	
dimension	mm	150	150	150	150	150	150	150	150	150	
surface area	sq. mm.	22500	22500	22500	22500	22500	22500	22500	22500	22500	
volume	cum	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	
weight	kg	7.486	7.577	7.582	7.345	7.756	7.429	7.475	7.752	7.539	
density	kg/m3	2218.07	2245.04	2246.52	2176.30	2298.07	2201.19	2214.81	2296.89	2233.78	
breaking load	KN	470	480	440	420	420	400	390	400	420	
brealing strength	N/mm2	20.89	21.33	19.56	18.67	18.67	17.78	17.33	17.78	18.67	
average breaking strength	N/mm2	20.59			18.37			17.93			

Table: 28 day Compressive Strength of AC-FA concrete

cubes	Nos	1	2	3	1	2	3	1	2	3		
			CF1			CF2		CF3				
dates of casting		Thu	rsday,March 23,	2023	Thu	rsday,March 23,	2023	Thu	Thursday, March 23, 2023			
date of testing		Thu	Thursday, April 20, 2023			ırsday,April 20,2	2023	Thu	Thursday, April 20, 2023			
ages	Days	28	28 28 28			28	28	28	28	28		
dimension	mm	150	150 150 150			150	150	150	150	150		
surface area	sq. mm.	22500	22500	22500	22500	22500	22500	22500	22500	22500		
volume	cum	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375		
weight	kg	8.038	8.068	7.946	8.140	8.110	7.921	8.191	7.920	8.243		
density	kg/m3	2381.63	2390.52	2354.37	2411.85	2402.96	2346.96	2426.96	2346.67	2442.37		
breaking load	KN	580	580 580 590			550	570	640	580	600		
brealing strength	N/mm2	25.78 25.78 26.22			27.11 24.44 25.33			28.44	25.78	26.67		
average breaking strength	N/mm2		25.93			25.63			26.96			

cubes	Nos	1	2	3	1	2	3	1	2	3		
			CCF1			CCF2		CCF3				
dates of casting		Fri	day,March 24,20	023	Fri	day,March 24,20)23	Fri	Friday,March 24,2023			
date of testing		Fr	iday,April 21,20	23	Fr	iday,April 21,20	23	Fi	iday,April 21,20	23		
ages	Days	28	28	28	28	28	28	28	28	28		
dimension	mm	150	150	150	150	150	150	150	150	150		
surface area	sq. mm.	22500	22500	22500	22500	22500	22500	22500	22500	22500		
volume	cum	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375	0.003375		
weight	kg	7.830	7.610	7.948	7.975	7.970	7.793	7.669	7.411	7.363		
density	kg/m3	2320.00	2254.81	2354.96	2362.96	2361.48	2309.04	2272.30	2195.85	2181.63		
breaking load	KN	530	530 500 550			450	480	400	400	420		
brealing strength	N/mm2	23.56	23.56 22.22 24.44			20.44 20.00 21.33			17.78	18.67		
average breaking strength	N/mm2		23.41			20.59			18.07			

Table: 28 day Compressive Strength of CMC-FA concrete

ANNEX-D: Modulus of Elasticity

Modulus of elasticity for M 30 grade was calculated for CMC-AC concrete and CMC-AC-FA concrete. And, presented below.

VIII. Deflection- Compressive Load Table

				1AC-1			1AC-2						1AC-3						
Sample Nos		1		2		3		1		2		3		1	2		3		
weight(kgs)		7.813	7.930		7.795		8.066		7.978		8.120		7.394		7.411		7.468		C to a to
	defl	del. 1/ 1	defl	del. 1/ 1	defl	del. 1/1	defl	del. 1/1	defl	del. 1/ 1	defl	del. 1/ 1	defl	del. 1/ 1	defl	del. 1/1	defl	del. 1/1	Stress
50	40	0.000267	70	0.000467	40	0.000267	60	0.000400	30	0.000200	30	0.000200	60	0.000400	50	0.000333	40	0.000267	2.22
100	70	0.000467	80	0.000533	70	0.000467	80	0.000533	50	0.000333	50	0.000333	80	0.000533	60	0.000400	65	0.000433	4.44
150	80	0.000533	90	0.000600	90	0.000600	90	0.000600	70	0.000467	70	0.000467	90	0.000600	70	0.000467	105	0.000700	6.67
200	90	0.000600	100	0.000667	105	0.000700	100	0.000667	90	0.000600	80	0.000533	120	0.000800	80	0.000533	120	0.000800	8.89
250	105	0.000700	120	0.000800	120	0.000800	130	0.000867	100	0.000667	100	0.000667	150	0.001000	120	0.000800	140	0.000933	11.11
300	120	0.000800	130	0.000867	145	0.000967	160	0.001067	150	0.001000	120	0.000800	195	0.001300	180	0.001200	160	0.001067	13.33
350	170	0.001133	150	0.001000	160	0.001067	180	0.001200	220	0.001467	190	0.001267	220	0.001467	230	0.001533	190	0.001267	15.56
400	230	0.001533	180	0.001200	180	0.001200	250	0.001667	230	0.001533	250	0.001667	280	0.001867	300	0.002000	240	0.001600	17.78
450	260	0.001733	240	0.001600	250	0.001667	350	0.002333	270	0.001800	260	0.001733							20.00
500	280	0.001867	290	0.001933															22.22
550																			24.44

Table: Deflection- Compressive load for AC=1.12%

			_	2AC-1	_					2AC-2			2AC-3						
Sample Nos		1		2		3		1		2		3		1		2		3	
weight(kgs)		7.769	8.275		8.163		8.043		8.034		7.829		7.703		7.851		7.694		
	defl	del. 1/1	defl	del. 1/1	defl	del. 1/1	defl	del. 1/ 1	Stress										
50	50	0.000333	30	0.000200	20	0.000133	20	0.000133	40	0.000267	30	0.000200	30	0.000200	60	0.000400	30	0.000200	2.22
100	70	0.000467	40	0.000267	30	0.000200	30	0.000200	60	0.000400	45	0.000300	40	0.000267	70	0.000467	50	0.000333	4.44
150	80	0.000533	50	0.000333	40	0.000267	50	0.000333	70	0.000467	60	0.000400	65	0.000433	90	0.000600	60	0.000400	6.67
200	100	0.000667	80	0.000533	60	0.000400	70	0.000467	80	0.000533	70	0.000467	75	0.000500	100	0.000667	80	0.000533	8.89
250	120	0.000800	120	0.000800	85	0.000567	100	0.000667	90	0.000600	100	0.000667	125	0.000833	120	0.000800	120	0.000800	11.11
300	140	0.000933	145	0.000967	120	0.000800	125	0.000833	110	0.000733	120	0.000800	160	0.001067	140	0.000933	190	0.001267	13.33
350	160	0.001067	170	0.001133	155	0.001033	140	0.000933	130	0.000867	140	0.000933	190	0.001267	170	0.001133	210	0.001400	15.56
400	235	0.001567	290	0.001933	190	0.001267	160	0.001067	150	0.001000	250	0.001667	220	0.001467	200	0.001333	250	0.001667	17.78
450	270	0.001800	360	0.002400	240	0.001600	180	0.001200	190	0.001267	310	0.002067	300	0.002000	220	0.001467	340	0.002267	20.00
500							280	0.001867	300	0.002000					280	0.001867			22.22
550																			24.44

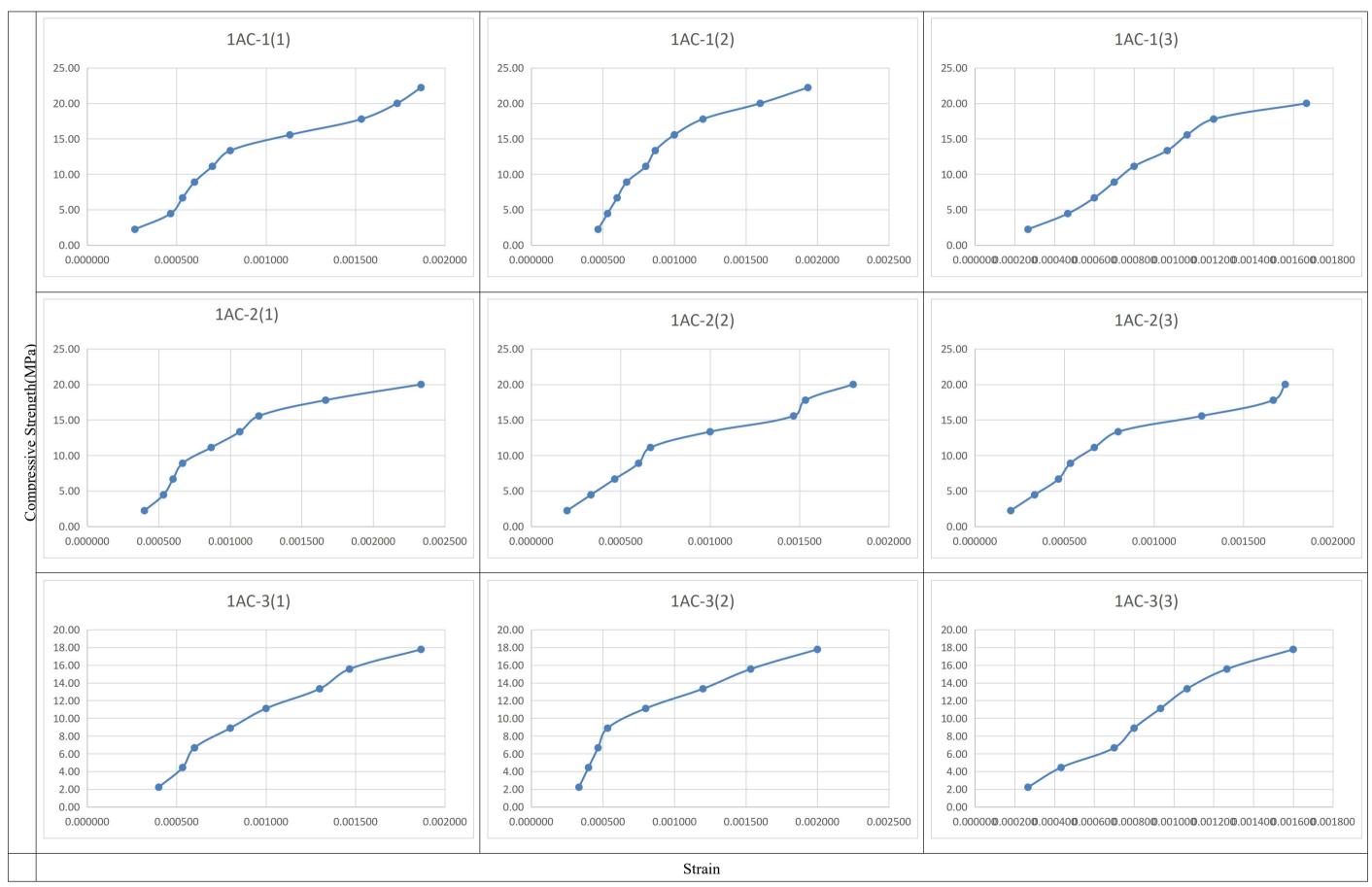
Table: Deflection- Compressive load for AC=2.24%

Table: Deflection- Compressive load for AC=3.36%

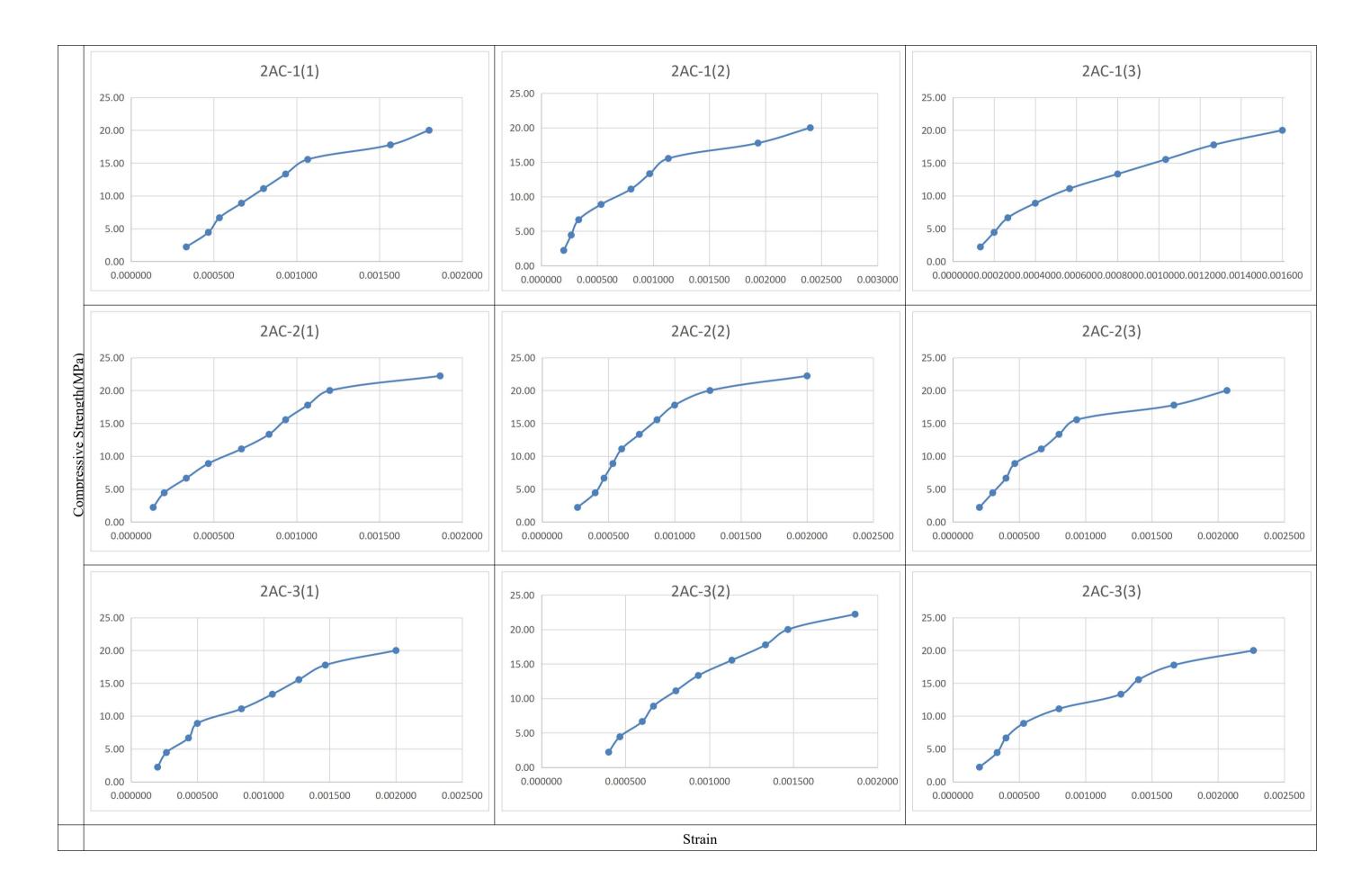
			2	3AC-1						3AC-2			3AC-3							
Sample Nos		1		2		3		1		2		3		1		2		3		
weight(kgs)		8.033 8.311		8.311	8.062		7.847			8.123	7.912		7.563		8.106		7.685			
	defl	del. 1/ 1	defl	del. 1/1	defl	del. 1/1	defl	del. 1/1	defl	del. 1/ 1	defl	del. 1/ 1	defl	del. 1/ 1	defl	del. 1/ 1	defl	del. 1/1	Stress	
50	50	0.000333	22	0.000147	90	0.000600	10	0.000067	22	0.000147	35	0.000233	30	0.000200	30	0.000200	45	0.000300	2.22	
100	60	0.000400	40	0.000267	110	0.000733	25	0.000167	40	0.000267	50	0.000333	40	0.000267	45	0.000300	60	0.000400	4.44	
150	80	0.000533	55	0.000367	120	0.000800	43	0.000287	55	0.000367	60	0.000400	60	0.000400	60	0.000400	70	0.000467	6.67	

200	100	0.000667	72	0.000480	125	0.000833	60	0.000400	75	0.000500	70	0.000467	85	0.000567	80	0.000533	90	0.000600	8.89
250	120	0.000800	90	0.000600	130	0.000867	80	0.000533	90	0.000600	90	0.000600	120	0.000800	100	0.000667	130	0.000867	11.11
300	145	0.000967	105	0.000700	132	0.000880	110	0.000733	110	0.000733	140	0.000933	140	0.000933	125	0.000833	170	0.001133	13.33
350	150	0.001000	120	0.000800	150	0.001000	150	0.001000	125	0.000833	180	0.001200	170	0.001133	140	0.000933	240	0.001600	15.56
400	160	0.001067	130	0.000867	155	0.001033	180	0.001200	240	0.001600	200	0.001333	200	0.001333	200	0.001333	250	0.001667	17.78
450	190	0.001267	200	0.001333	170	0.001133	240	0.001600			280	0.001867					290	0.001933	20.00
500	270	0.001800																	22.22
550																			24.44

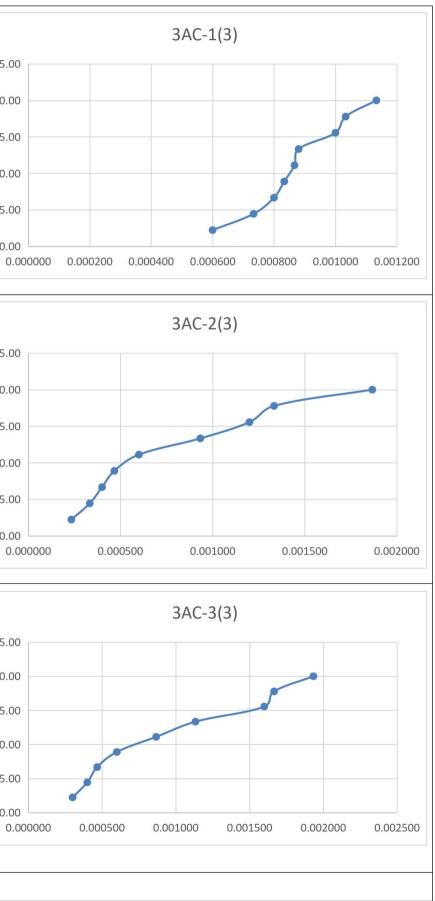
Table: Deflection- Compressive load for FA(CMC=0.34%, AC=2.24%)


				FA-1						FA-2									
Sample		1		2		3	1		2		3		1		2		3		
weight(kgs)		7.799		7.874	7.968		7.900		8.088		7.830		7.741		7.964		7.934		Stres
	defl	del. 1/1	defl	del. 1/ 1	defl	del. 1/ 1	defl	del. 1/1	defl	del. 1/1	defl	del. 1/1	defl	del. 1/ 1	defl	del. 1/ 1	defl	del. 1/ 1	Siges
50	10	0.000067	10	0.000067	30	0.000200	30	0.000200	20	0.000133	20	0.000133	35	0.0002	30	0.000200	25	0.000167	2.22
100	20	0.000133	30	0.000200	40	0.000267	50	0.000333	30	0.000200	40	0.000267	40	0.0002	60	0.000400	50	0.000333	4.44
150	40	0.000267	45	0.000300	70	0.000467	70	0.000467	50	0.000333	50	0.000333	60	0.0004	70	0.000467	60	0.000400	6.67
200	50	0.000333	60	0.000400	90	0.000600	90	0.000600	70	0.000467	55	0.000367	80	0.0005	80	0.000533	80	0.000533	8.89
250	70	0.000467	110	0.000733	150	0.001000	140	0.000933	100	0.000667	90	0.000600	90	0.0006	130	0.000867	110	0.000733	11.11
300	100	0.000667	140	0.000933	190	0.001267	180	0.001200	155	0.001033	150	0.001000	120	0.0008	180	0.001200	150	0.001000	13.33
350	120	0.000800	200	0.001333	250	0.001667	200	0.001333	210	0.001400	160	0.001067	180	0.0012	200	0.001333	200	0.001333	15.56
400	150	0.001000	250	0.001667					350	0.002333							220	0.001467	17.78
450	210	0.001400																	20.00
500																			22.22
550																			24.44

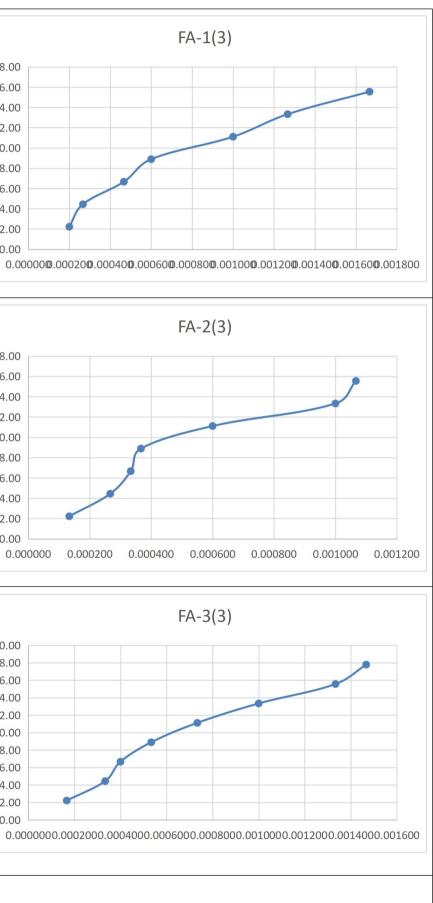
]	FA-4						FA-5			FA-6							
Skomple		1		2		3		1		2		3		1		2		3		
weight(kgs)	7	7.330		7.290		7.555		7.665		7.890		7.900	7	.700		7.805		7.934	Stres	
	defl	del. 1/1	defl	del. 1/1	defl	del. 1/ 1	defl	del. 1/1	defl	del. 1/1	defl	del. 1/1	defl	del. 1/ 1	defl	del. 1/1	defl	del. 1/1	Siges	
50	20	0.000133	30	0.000200	30	0.000200	20	0.000133	20	0.000133	20	0.000133	30	0.000200	15	0.000100	30	0.000200	2.22	
100	30	0.000200	40	0.000267	50	0.000333	30	0.000200	30	0.000200	30	0.000200	40	0.000267	30	0.000200	50	0.000333	4.44	
150	50	0.000333	55	0.000367	65	0.000433	40	0.000267	50	0.000333	50	0.000333	65	0.000433	50	0.000333	60	0.000400	6.67	
200	70	0.000467	75	0.000500	80	0.000533	70	0.000467	70	0.000467	65	0.000433	70	0.000467	65	0.000433	80	0.000533	8.89	
250	100	0.000667	110	0.000733	100	0.000667	120	0.000800	120	0.000800	100	0.000667	90	0.000600	100	0.000667	150	0.001000	11.11	
300	120	0.000800	160	0.001067	120	0.000800	180	0.001200	140	0.000933	140	0.000933	110	0.000733	120	0.000800	250	0.001667	13.33	
350	140	0.000933	200	0.001333	180	0.001200	200	0.001333	220	0.001467	190	0.001267	200	0.001333	150	0.001000	280	0.001867	15.56	
400	155	0.001033	240	0.001600	200	0.001333	230	0.001533	280	0.001867	200	0.001333			330	0.002200			17.78	
450	280	0.001867			300	0.002000	260	0.001733			280	0.001867							20.00	
500																			22.22	
550																			24.44	

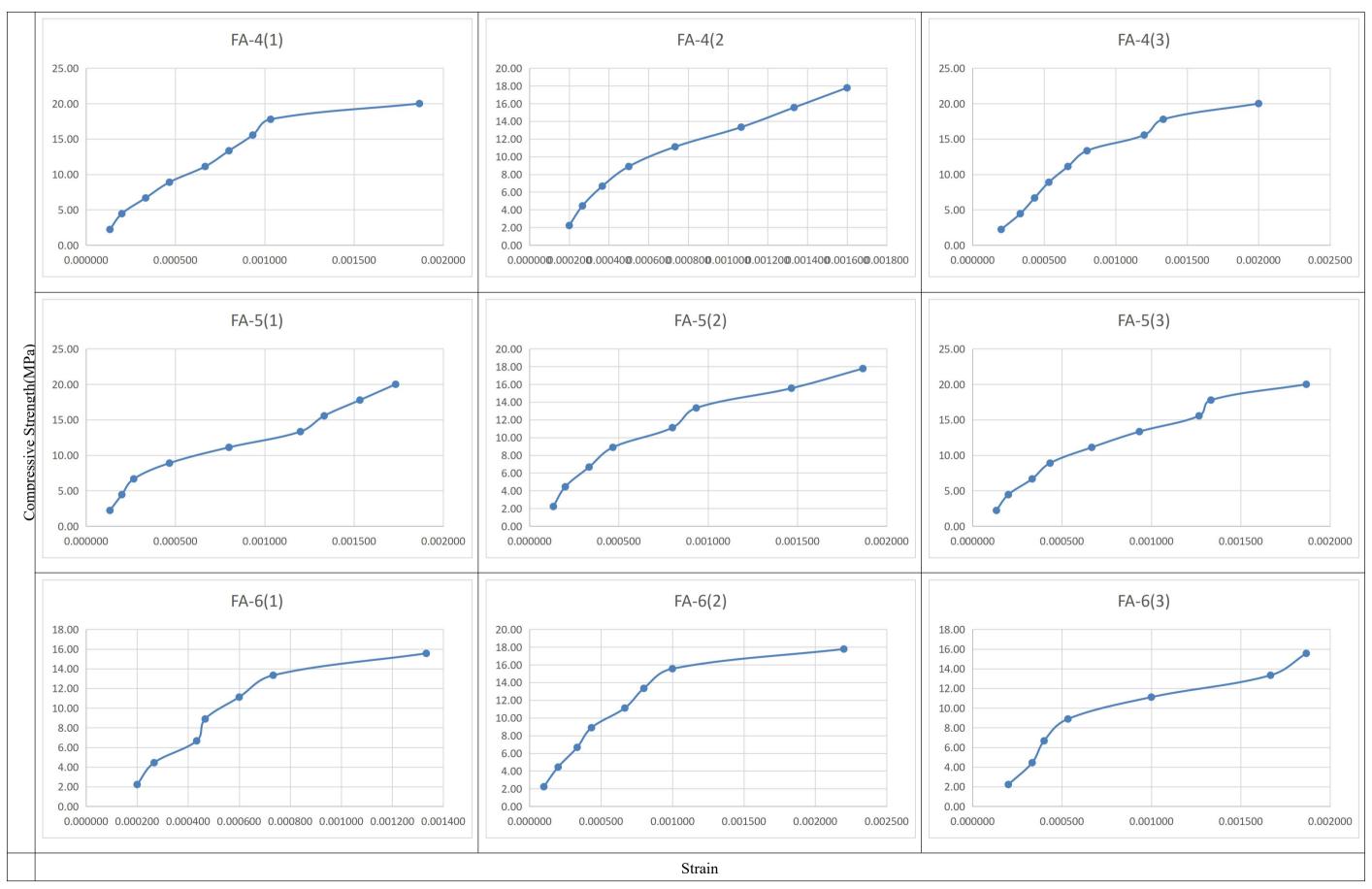

Table: Deflection- Compressive load for FA(CMC=0.34%, AC=3.36%)

II. Stress- Strain Plot


Plot for 1AC

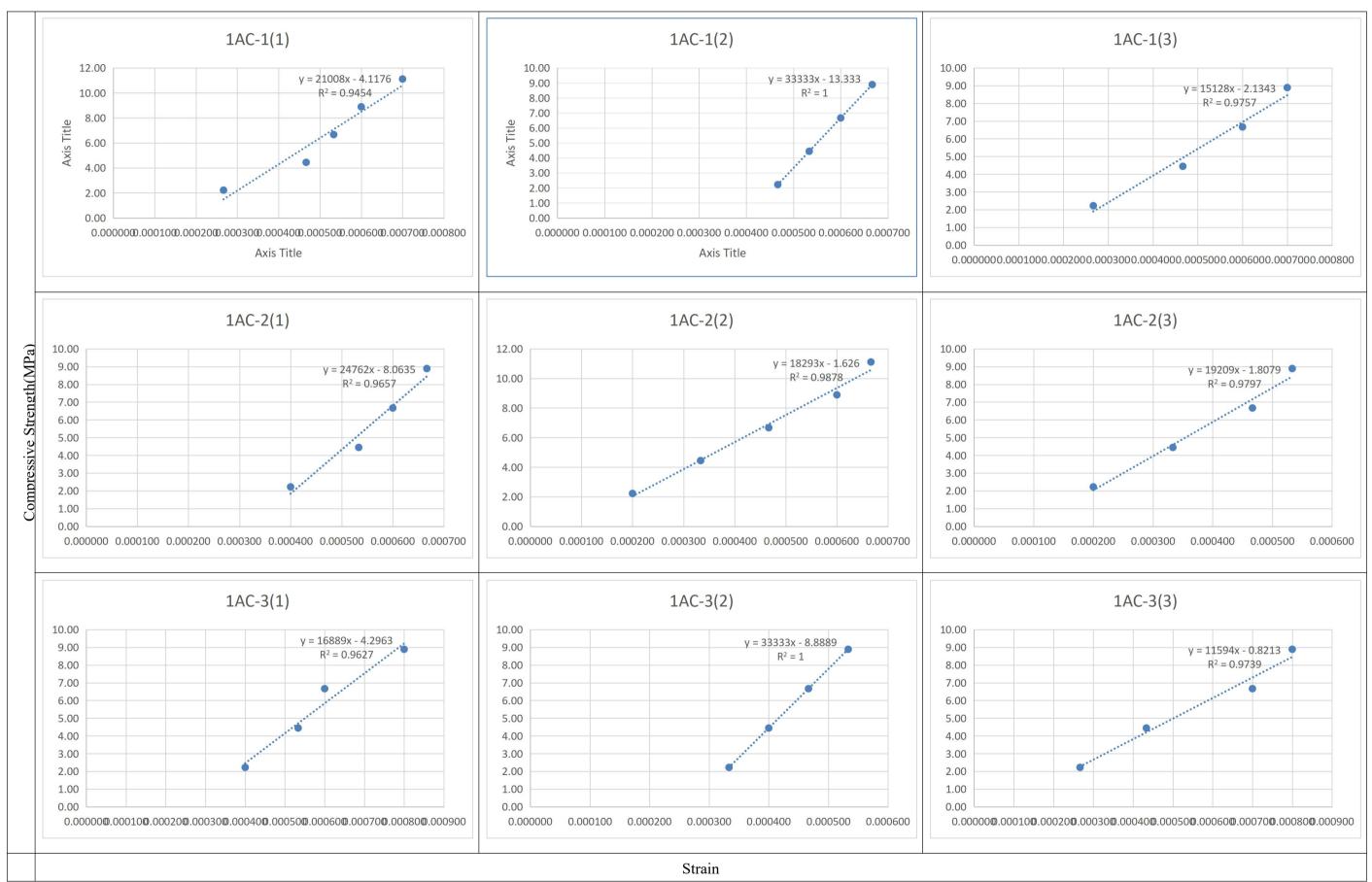
Plot for 2AC

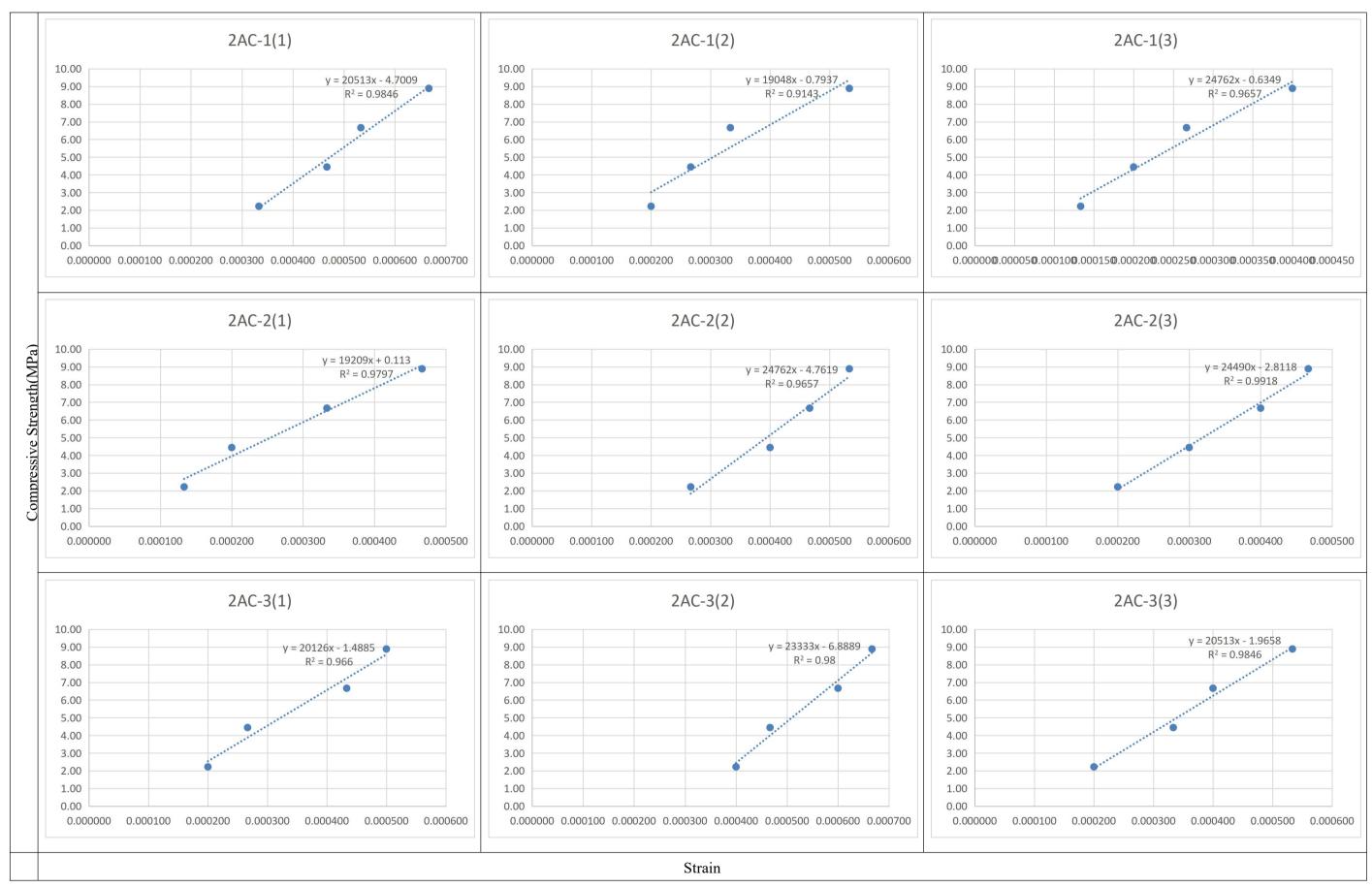



Plot for 3AC 3AC-1(1) 3AC-1(2) 25.00 25.00 25.00 20.00 20.00 20.00 15.00 15.00 15.00 10.00 10.00 10.00 5.00 5.00 5.00 0.00 0.00 0.00 0.000500 0.001000 0.002000 0.000000 0.000200 0.000400 0.000600 0.000800 0.001000 0.001200 0.001400 0.000000 0.001500 3AC-2(1) 3AC-2(2) 25.00 20.00 Compressive Strength(MPa) 25.00 18.00 20.00 16.00 20.00 14.00 15.00 12.00 15.00 10.00 10.00 8.00 10.00 6.00 5.00 4.00 5.00 2.00 0.00 0.00 0.00 0.00000@.00020@.00040@.00060@.00080@.00100@.00120@.00140@.00160@.001800 0.00000@.00020@.00040@.00060@.00080@.00100@.00120@.00140@.00160@.001800 0.000000 0.000500 3AC-3(1) 3AC-3(2) 20.00 20.00 25.00 18.00 18.00 20.00 16.00 16.00 14.00 14.00 15.00 12.00 12.00 10.00 10.00 10.00 8.00 8.00 6.00 6.00 5.00 4.00 4.00 2.00 2.00 0.00 0.00 0.00 0.000000 0.000500 0.000000 0.000200 0.000400 0.000600 0.000800 0.001000 0.001200 0.001400 0.000000 0.000200 0.000400 0.000600 0.000800 0.001000 0.001200 0.001400 Strain

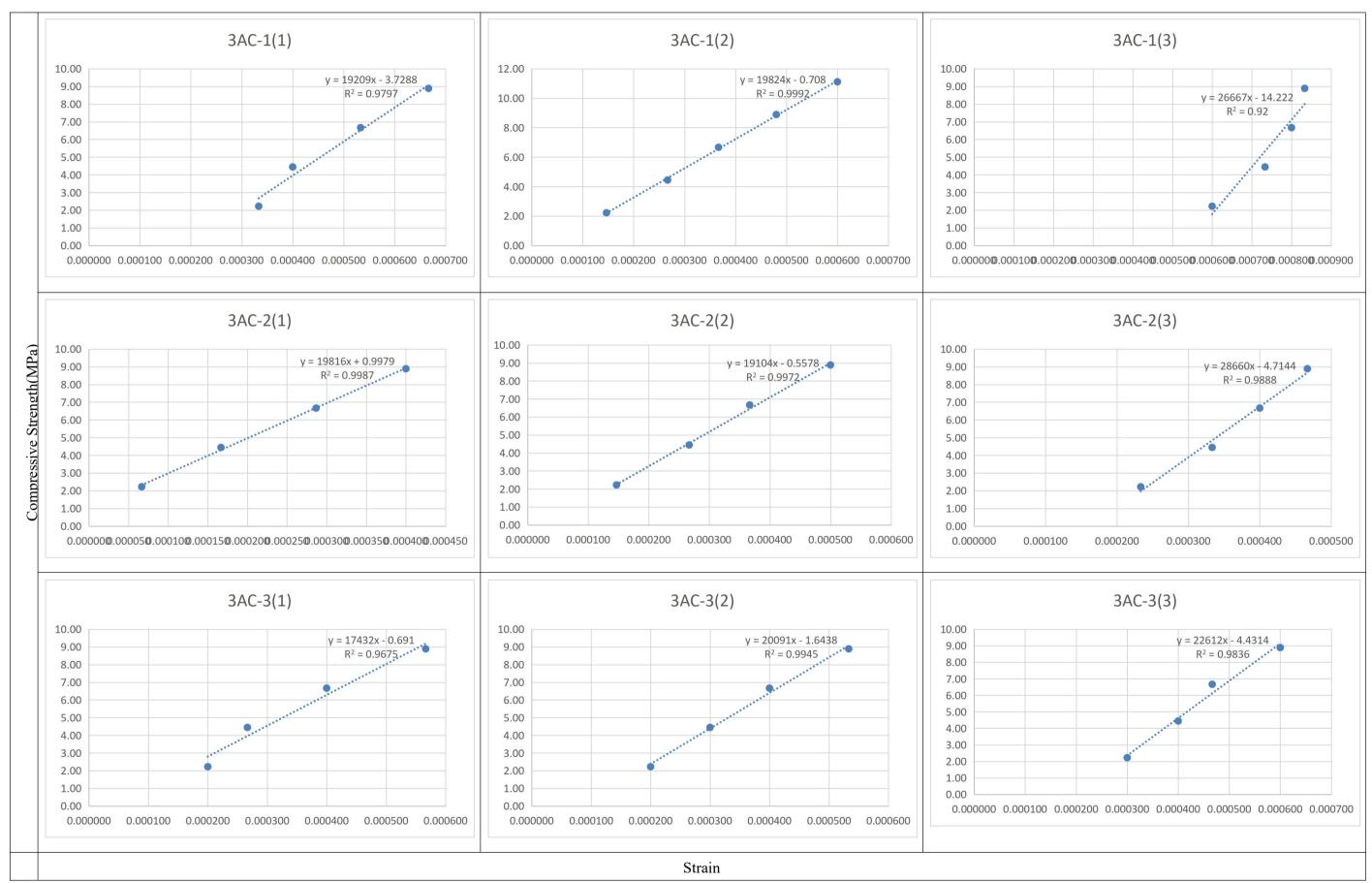
FA-1(1) FA-1(2) 25.00 20.00 18.00 18.00 16.00 20.00 16.00 14.00 14.00 12.00 15.00 12.00 10.00 10.00 8.00 10.00 8.00 6.00 6.00 4.00 5.00 4.00 2.00 2.00 0.00 0.00 0.00 0.000000.0002000.0004000.0006000.0008000.0010000.0012000.0014000.001600 0.00000@.00020@.00040@.00060@.00080@.00100@.00120@.00140@.00160@.001800 FA-2(1) FA-2(2) 18.00 20.00 18.00 Compressive Strength(MPa) 18.00 16.00 16.00 16.00 14.00 14.00 14.00 12.00 12.00 12.00 10.00 10.00 10.00 8.00 8.00 8.00 6.00 6.00 6.00 4.00 4.00 4.00 2.00 2.00 2.00 0.00 0.00 0.00 0.000000 0.000200 0.000400 0.000600 0.000800 0.001000 0.001200 0.001400 0.000500 0.001000 0.001500 0.002000 0.002500 0.000000 FA-3(2) FA-3(1) 18.00 18.00 20.00 18.00 16.00 16.00 16.00 14.00 14.00 14.00 12.00 12.00 12.00 10.00 10.00 10.00 8.00 8.00 8.00 6.00 6.00 6.00 4.00 4.00 4.00 2.00 2.00 2.00 0.00 0.00 0.00 0.000000 0.000200 0.000400 0.000600 0.000800 0.001000 0.001200 0.001400 0.000000 0.000200 0.000400 0.000600 0.000800 0.001000 0.001200 0.001400 Strain

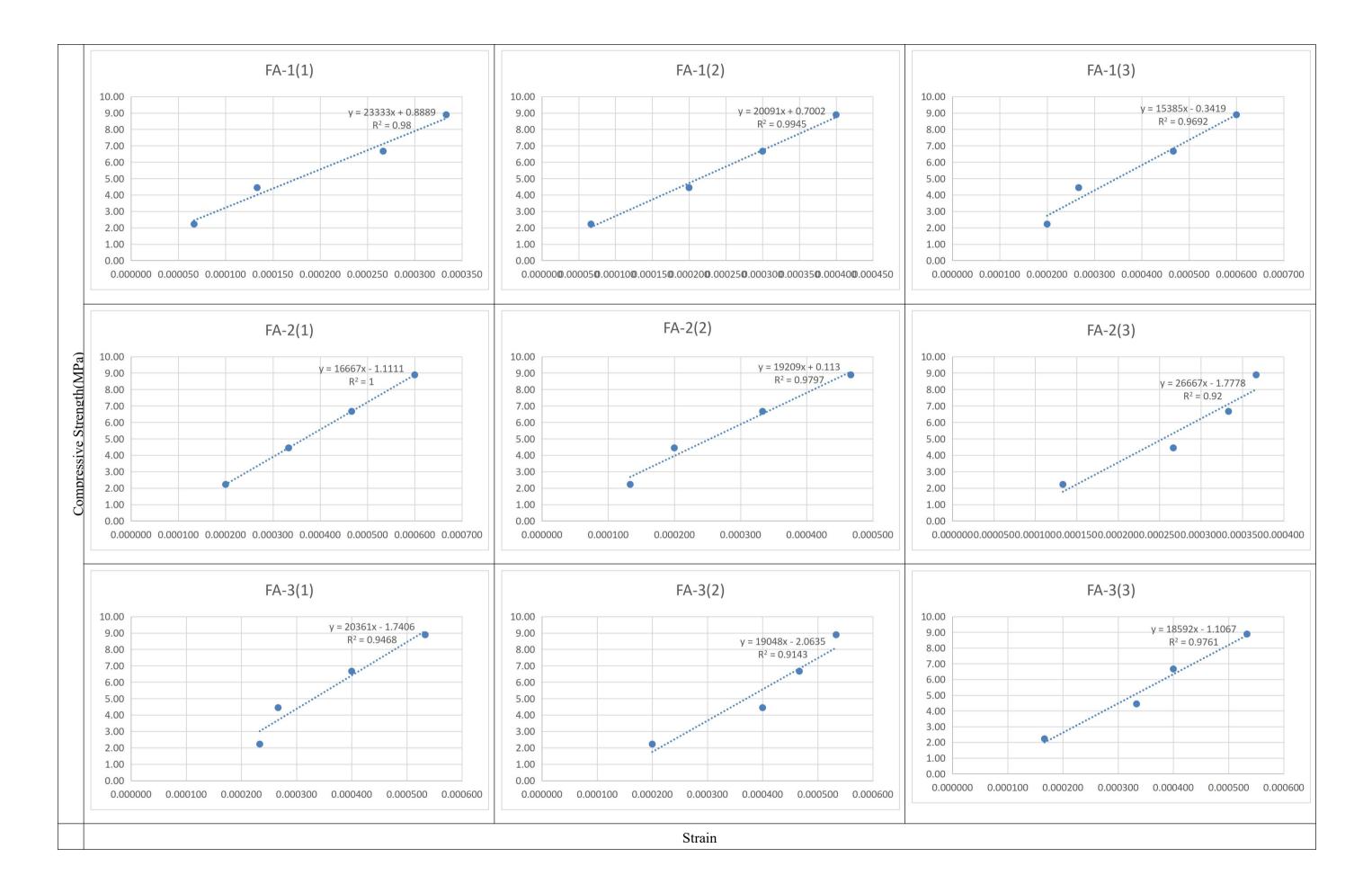
Plot for FA and AC=2.24%, CMC=0.34%

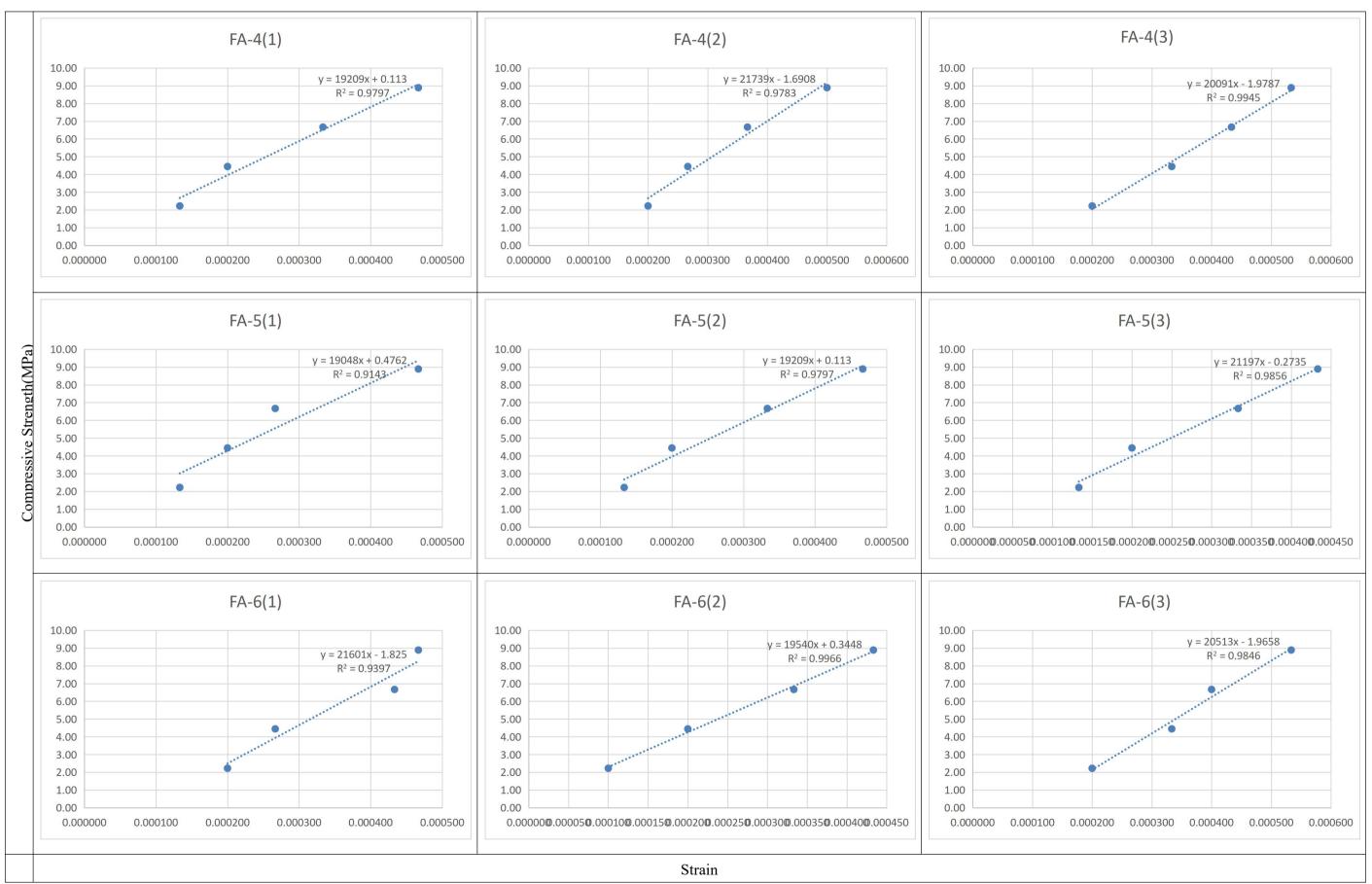



Plot for FA and AC=2.32%, CMC=0.35%

III. Linear Stress- Strain Plot


Linear Plot for 1AC


Linear Plot for 2AC



Linear Plot for 3AC

Linear Plot for FA and AC=2.24%, CMC=0.34%

Linear Plot for FA and AC=2.32%, CMC=0.35%

ANNEX-E: Photographs

Mahesh Joshi to me 👻

Dear Mr.Adarsha Chauhan, Your abstract has been accepted for ICC-2023. Please register for ICC-2023 to confirm your participation in ICC-2023.

Registration fee should be paid by bank transfer to Nepal Chemical Society in the following account:

Bank Name: Agricultural Development Bank Limited Account Holder: NEPAL CHEMICAL SOCIETY, Account Type: Saving, Account No.: 0209500156408042

Or

Bank Name: Nepal Bank Limited Account Holder: NEPAL CHEMICAL SOCIETY, Account Type: current Account No.: 04500100099092000001