Climatic Trends, Farmers' Perception on Climate Change and its Impact on Agro-ecosystem Services in Organic and Conventional Tomato Farms in Salyan, Nepal

A Dissertation

submitted for the partial fulfillment of the requirement for the M.Sc. in Botany, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal

Submitted By

Anita Khadka Exam Roll No: 01 Batch: 2070/72 Regd. No: 5-2-54-228-2009

Submitted to

Central Department of Botany Tribhuvan University Kirtipur, Kathmandu, Nepal April, 2017

RECOMMENDATION

This is to certify that **Ms. Anita Khadka** has completed this dissertation work entitled "**Climatic Trends, Farmers' Perception on Climate Change and its Impact on Agro-ecosystem Services in Organic and Conventional Tomato Farms in Salyan, Nepal**" as a partial fulfillment of M.Sc. degree in Botany under our supervision. To the best of our knowledge, this is her original research work and has been submitted for any other degree in any institutions.

.....

Dr. Giri Prasad Joshi Supervisor Central Department of Botany

Tribhuvan University, Kathmandu

.....

Dr. Chandra Prasad Pokhrel

Co-supervisor

Central Department of Botany

Tribhuvan University, Kathmandu

LETTER OF APPROVAL

This dissertation paper entitled "Climatic Trends, Farmers' Perception on Climate Change and its Impact on Agro-ecosystem Services in Organic and Conventional Tomato Farms in Salyan, Nepal" submitted at the Central Department of Botany, Tribhuvan University by Ms. Anita Khadka has been accepted for the partial fulfillment of requirements for Master of Science in Botany (Plant Pathology).

EVALUATION COMMITTEE

Dr. Giri Prasad Joshi (Supervisor) Central Department of Botany Tribhuvan University, Kathmandu, Nepal

.....

.....

Dr. Chandra Prasad Pokhrel (Co-Supervisor) Central Department of Botany Tribhuvan University, Kathmandu, Nepal

Dr. Anjana Giri (External Examiner) Seniro Scientific Officer National Academy of Science and Technology (NAST), Khumaltar, Lalitpur

Dr. Lal B Thapa (Internal Examiner) Central Department of Botany Tribhuvan University, Kathmandu, Nepal

Prof. Dr. Mohan Siwakoti (Head of Department) Central Department of Botany Tribhuvan University, Kathmandu

.....

ACKNOWLEDGEMENT

It is with immense gratitude that I would like to thank first and foremost to my respected supervisor and co supervisor Dr. Giri Prasad Joshi and Dr. Chandra Prasad Pokhrel for their supervision and mentorship. This thesis would not have been possible without their help, support, strict guidance and co-operation during the entire period of my research work.

I would like to acknowledge Prof. Dr. Mohan Siwakoti, Head of Central Department of Botany for providing the platform and required materials for this work. It gives me great pleasure in acknowledging my respected teachers Prof. Dr. Sangeeta Rajbhandary, Dr. Lal B Thapa and Prof. Dr. Sanjay Kumar Jha from Central Department of Botany, Tribhuvan University and Dr. Biva Joshi from ASCOL for their valuable idea, continuous encouragement and cooperation in the completation of this work.

Sincere thanks to Mr. Suresh Raj Paneru, Shanta Budha Magar, Kranti Kumal and Nirjan Sen Oli for unstinting support, encouragement and technical help during my entire research work. I would like to express my sincere gratitude to all the respondents from Phalabang VDC who willingly participated in the interview for social survey and provide their valuable information. Similarly, I owe my deepest gratitude to the administration of Central Department of Botany, for providing me administrative help and also thanks to all the staff for their kind cooperation during the research work.

Finally, I express my deepest gratitude to my mother, mama, aunt and brothers for their inspiration and support. I am equally greatful to my all dear friends and all the people who directly or indirectly helped me in completing this work.

Anita Khadka

Date: 2073/12/25

ABSTRACT

Climate change is the change in climatic pattern as temperature, rainfall etc. The uncertainties driven by the climate change impact on the agriculture is globally questioning the food security. Better understanding of processes that shape farmer's adaptation to climate change is crucial for identifying vulnerable entities and to develop targeted policies. However, in this study, focus discussion and household survey was conducted to investigate the farmers' experiences on climate change. Sixty households were selected randomly from Phalabang VDC of Salyan district. Validated structured questionnaires were used to elicit information from respondents. Data were analyzed using both descriptive and inferential statistics. Farmers were fully aware of the climate change, effect of climate change and possible coping strategies. The respondents claimed increased temperature and decreased rainfall which was verified by meteorological data. The risks associated with these changes are real but highly uncertain. Such varied climatic changes induced decreased soil fertility, invasion of weeds, diseases epidemics and poor livestock health as perceived by the respondents of the study area. Thus, most of the farmers perceived the use of chemical fertilizers and pesticides, hybrid/ improved seeds, change in crop patterns and agricultural diversification as adaptation to the changing climatic patterns which has degraded the environmental forms. In upland of the study area, maize-wheat pattern has become adapted instead of maize-millet pattern in around the homestead areas (Bari) whereas low land farms are following the similar pattern as before. While some of the framers in the study area are still following the traditional farming under the changed climatic conditions. They claimed traditional farming method as environmental friendly despite of low production. Thus, we concluded that there are two adoptational strategies against the climatic stresses as followed by the farmers of the study area.

In this study, comparison between organic and conventional farms based on different parameters was done. Two organically and four conventionally managed tomato fields from the study area were evaluated for soil microorganisms, soil carbon, soil pH, weed species richness and crop yield. Soil sampled from five plot of 1m² from each fields were used for carbon, pH and microbial analysis. And the tomato yield was calculated. The result shows that organic farms have higher soil pH, soil organic carbon, bacterial colonies and weed species richness than that of the conventional farms. This shows that compared to conventional farms, organic farming

practices have advantage over improving the soil quality. Despite of all those features, organic farms have low tomato fruits production as compared to the conventional farms. Thus, it is concluded that the main challenge in organic farming is to increase the yield and in conventional farming the challenges are to improve the soil quality and enhance and protect the above and below ground diversity. And most of the studies that compared the biodiversity between organic and conventional farms revealed the lower environmental impacts from the organic farms than the conventional ones. Thus, the present study reveals that to minimize the environmental impacts, the farmers in the study area should be ensured to follow the traditional farming systems rather than the environmental degrading conventional farming system under the changing climatic conditions.

TABLE OF CONTENTS

RECOMMENDATION	i		
ACKNOWLEDGEMENT	iii		
ABSTRACT	iv		
TABLE OF CONTENTS	vi		
LIST OF TABLES	ix		
LIST OF FIGURES	X		
LIST OF ABBREVIATION AND ACRONYMS	xi		
CHAPTER ONE: INTRODUCTION			
1.1 Background 1			
1.2 Objectives	5		
1.3 Justification	6		
1.4 Limitations	6		
CHAPTER TWO: LITERATURE REVIEW	7-15		
2.1 Global scenario of climate change and people's perception	7		
2.2 Impact of climate change on agro-biodiversity and its Comparison betwee	en organic and		
conventional agricultural	9		
2.3 Comparison between organic and conventional agricultural systems	12		
CHAPTER THREE: MATERIALS AND METHODS	16-21		
Study Area	16		
Socioeconomic information of study area	17		
Methodology	18		
Primary data collection	18		
Questionnaire Survey	18		
Design of the experimental plot	18		
Soil collection	19		
Yield	21		
Weed species diversity	21		
Secondary data collection	21		
Data processing and analysis	21		

CHAPTER FOUR: RESULTS 22-33				
4.1	Socio-economic status of the surveyed farmer's 22			
4.2	Climatic trends and Farmer's perception	22		
	4.2.1 Change in temperature	22		
	4.2.2 Change in rainfall	23		
	4.2.3 Impact of Climatic change on agro- biodiversity	25		
4.3	Adaptation measures taken by the farmers	27		
4.4	Comparison of agro-ecosystem services of organic and conventional farms 28			
	4.4.1 Soil pH	29		
	4.4.2 Soil organic carbon (%)	29		
	4.4.3 Bacterial colony	29		
	4.4.4 Weed diversity	30		
	4.4.5 Yield (Mt/ha)	31		
4.5	Relationship between bacterial colony and soil organic carbon	31		
4.6	Relationship between soil carbon and weed diversity index	32		
CHAPTER FIVE: DISCUSSION 34-36		34-36		
5.1	Climatic trends and farmers' perceptions	34		
5.2	Impacts of climate change on agro-biodiversity	34		
5.3	Adaptation measures taken by farmers to combat climatic changes	34		
5.4	Comparison of agro-ecosystem services in organic and conventional fa	arms 36		
СНАР	TER SIX: CONCLUSION AND RECOMMENDATIONS	41		
REFE	RNCES	42		
ANNE	X			

LIST OF TABLE

Table 1	:	Linear regression statistics of temperature	23
Table 2	:	Linear regression statistics of rainfall	24
Table 3	:	Cereal crop varieties of the study area	26
Table 4	:	Cropping calendar of the study area	27
Table 5	:	Mean difference between agro-ecosystem services in organic and convention	al farms
		after t-test.	28
Table 6	:	Name of pathogens isolated from organic and conventional farms	30
Table 7	:	Pearson Correlation between bacterial colony and carbon for organic farms	32
Table 8	:	Pearson Correlation between bacterial colony and carbon for conventional far	rms
			32
Table 9	:	Pearson Correlation between weed diversity indices and carbon for organic fa	arms
			33
Table 10):	Pearson Correlation between weed diversity indices and carbon for	
		conventional farms	33

LIST OF FIGURES

Figure 1	:	Map of Salyan District showing the study area (VDCs)	17
Figure 2	:	Precipitation on temperature	23
Figure 3	:	Mean annual temperature	23
Figure 4	:	Mean annual maximum temperature	23
Figure 5	:	Mean annual minimum temperature	23
Figure 6	:	Responses in rainfall	24
Figure 7	:	Annual rainfall	24
Figure 8	:	Pre-monsoon rainfall	25
Figure 9	:	Monsoon rainfall	25
Figure 10	:	Post- monsoon rainfall	25
Figure 11	:	Winter rainfall	25
Figure12	:	Impacts of climate change on agro-biodiversity	26
Figure 13	:	Adaptation strategies to climate change	28
Figure 14	:	Comparison of mean soil pH of organic and conventional farms	29
Figure 15	:	Comparison of mean soil carbon of organic and conventional farms	29
Figure 16	:	Comparison of mean bacterial colony of organic and conventional farms	30
Figure 17	:	Comparison of mean weed diversity indices of organic and conventional farm	ns
			31
Figure 18	:	Comparison of mean tomato yield of organic and conventional farms	31
Figure 19	:	Graph of soil carbon with bacterial colony	32
Figure 20	:	Graph of weed diversity indices with soil carbon	30

LIST OF ABBREVIATION AND ACRONYMS

GHGs:	Green House Gases
IPCC:	Introgovernmental Panel on Climate Change
ADS:	Agriculture Development Strategy
CBS:	Central Bureau of Statistics
GDP:	Gross Domestic Product
FAO:	Food and Agriculture Development
DHM:	Department of Hydrology and Meteorology
PAN:	Practical Action Nepal
UNFCCC:	United Nations Framework Convention on Climate Change
MoPE:	Ministry of Population and Environment
VDC:	Village Development Committee
DDC:	District Development Committee
PDA:	Potato Dextrose Agar
masl:	Meter above sea level
%:	Percentage