
TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

THESIS NO: PUL076MSDSA006

Blockchain-Based E-Voting With Zero-Knowledge

Proof Using Smart Contracts

by

Juned Alam

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND

COMPUTER ENGINEERING IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN

COMPUTER ENGINEERING SPECIALIZATION IN DATA SCIENCE

AND ANALYTICS

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

LALITPUR, NEPAL

September, 2022

Blockchain-Based E-Voting With Zero-Knowledge Proof Using Smart

Contracts

by

Juned Alam

PUL076MSDSA006

Thesis Supervisor

Prof. Dr. Shashidhar R. Joshi

A thesis submitted in partial fulfillment of the requirements for the

degree of Master of Science in Computer Engineering Specialization in Data

Science and Analytics

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Tribhuvan University

Lalitpur, Nepal

September, 2022

COPYRIGHT©

The author has agreed that the library, Department of Electronics and Computer

Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis

freely available for inspection. Moreover the author has agreed that the permission

for extensive copying of this thesis work for scholarly purpose may be granted

by the professor(s), who supervised the thesis work recorded herein or, in their

absence, by the Head of the Department, wherein this thesis was done. It is

understood that the recognition will be given to the author of this thesis and to

the Department of Electronics and Computer Engineering, Pulchowk Campus in

any use of the material of this thesis. Copying of publication or other use of this

thesis for financial gain without approval of the Department of Electronics and

Computer Engineering, Institute of Engineering, Pulchowk Campus and author’s

written permission is prohibited.

Request for permission to copy or to make any use of the material in this thesis in

whole or part should be addressed to:

Head

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Pulchowk, Lalitpur, Nepal

iii

DECLARATION

I declare that the work hereby submitted for Master of Science in Computer

Engineering Specialization in Data Science and Analytics (MSDSA) at IOE, Pul-

chowk Campus entitled “Blockchain-Based E-Voting With Zero-Knowledge

Proof Using Smart Contracts” is my own work and has not been previously

submitted by me at any university for any academic award.

I authorize IOE, Pulchowk Campus to lend this thesis to other institution or

individuals for the purpose of scholarly research.

Juned Alam

PUL076MSDSA006

Date: September, 2022

iv

RECOMMENDATION

The undersigned certify that they have read and recommended to the Depart-

ment of Electronics and Computer Engineering for acceptance, a thesis entitled

“Blockchain-Based E-Voting With Zero-Knowledge Proof Using Smart

Contracts”, submitted by Juned Alam in partial fulfillment of the requirement

for the award of the degree of “Master of Science in Computer Engineering

Specialization in Data Science and Analytics”.

..

Supervisor: Prof. Dr. Shashidhar R. Joshi,

Department of Electronics and Computer Engineering,

Institute of Engineering, Tribhuvan University

..

External Examiner: Mr. Krishna P. Bhandari,

CEO, Nepal Digital Payments Co.

..

Committee Chairperson: Assoc. Prof. Dr. Arun Kumar Timalsina

Program Co-ordinator, MSDSA

Date: September, 2022

v

DEPARTMENTAL ACCEPTANCE

The thesis entitled “Blockchain-Based E-Voting With Zero-Knowledge

Proof Using Smart Contracts”, submitted by Juned Alam in partial fulfill-

ment of the requirement for the award of the degree of “Master of Science in

Computer Engineering Specialization in Data Science and Analytics”

has been accepted as a bonafide record of work independently carried out by him

in the department.

..

Prof. Dr. Ram Krishna Maharjan

Head of the Department,

Department of Electronics and Computer Engineering,

Pulchowk Campus,

Institute of Engineering,

Tribhuvan University,

Nepal

vi

ACKNOWLEDGEMENT

I would like to extend my appreciation and gratitude to the Department of Electron-

ics and Computer Engineering (DoECE) of the Institute of Engineering, Pulchowk

Campus for the opportunities and guidelines throughout my academic career. I

want to thank my supervisor Prof. Dr. Shashidhar R. Joshi sir, the department

faculty members, and our program coordinator Dr. Arun Kumar Timalsina

sir, for providing the opportunity to submit this thesis report for the fulfillment

of the requirements for the degree of Master of Science in Computer Engineering

Specialization in Data Science and Analytics.

Sincerely,

Juned Alam

(PUL076MSDSA006)

vii

ABSTRACT

The data of the public block chain, being available to all nodes, it is necessary to

hide the vote preference of the voter, and preserve the integrity of the casted vote,

while at the same time, it is necessary to show that the voter has already voted,

to prevent someone from casting multiple votes. This thesis work proposes an

e-voting system using block chain and its smart contract as the rule setter. Here,

with the help of the Paillier Cryptography system, the zero knowledge proof was

accomplished. The zero knowledge proof here was used to show that the voter has

already voted while at the same time, hiding the casted vote. The homo-morphic

additive property of the Paillier cryptography system was used to perform addition

on the encrypted cipher texts without the need to decrypt the cipher text to reveal

the votes in the process. In the end, a secure voting mechanism was achieved.

Keywords: block chain, zero knowledge proof, paillier cryptographic system,

smart contract

viii

TABLE OF CONTENTS

COPYRIGHT iii

DECLARATION iv

RECOMMENDATION v

DEPARTMENTAL ACCEPTANCE vi

ACKNOWLEDGEMENT vii

ABSTRACT viii

TABLE OF CONTENTS ix

LIST OF FIGURES xii

LIST OF TABLES xiv

LIST OF ABBREVIATIONS xv

1 INTRODUCTION 1

1.1 Background and Motivation . 1

1.2 The motivation behind block chain 2

1.3 Immutable nature of Block Chain 5

1.4 Problem Statement . 7

1.5 Objectives . 8

1.6 Scope of the thesis work . 8

1.7 Probable implementations of this thesis work 9

1.8 The originality of the thesis work 9

1.9 Organization of the thesis work . 9

2 LITERATURE REVIEW 10

3 METHODOLOGY 13

3.1 Block chain structure . 13

ix

3.1.1 Blocks in a block chain . 15

3.2 Mining of a block . 16

3.3 Smart Contracts in Block chain . 20

3.4 Memory Pools . 20

3.5 Elliptic Curve Cryptography (ECC) 21

3.6 Zero Knowledge Proof . 22

3.6.1 Key generation . 23

3.6.2 Encryption . 24

3.6.3 Decryption . 24

3.6.4 Homomorphic addition property 24

3.7 The proposed system . 24

3.8 State Sequence of the voting system 26

3.8.1 Initialization Phase . 26

3.8.2 Voting Phase . 27

3.8.3 Result Publishing phase . 29

4 RESULTS AND DISCUSSION 31

4.1 Experimental Setup . 31

4.2 Paillier cryptography computation time 31

4.3 Hash rate per second using parallelism 32

4.4 Use of SHA-512 in the system . 33

4.5 Mining of blocks using a single thread 34

4.6 Mining of blocks using multiple threads 35

4.7 Time taken to generate hash for different number of parties in the

ballot . 37

4.8 Time taken at each phase of the system 38

x

4.9 The calculation for the size of the block and block chain 39

4.9.1 Size of the paillier enciphered text 39

4.9.2 Size of parties . 39

4.9.3 Size of the map of votes . 39

4.9.4 Size of the list of transactions 40

4.9.5 Size of a genesis block . 40

4.9.6 Size of a normal block . 40

4.9.7 Size of the block chain . 41

4.10 Graphics Processing Unit (GPU) and Application-specific integrated

circuit for mining (ASIC) . 42

4.11 The potential threat to the system with the emerging Quantum

Technology . 42

4.12 Output . 43

5 THESIS TIMELINE 44

6 CONCLUSION AND RECOMMENDATION 45

6.1 Conclusion . 45

6.2 Limitation . 45

6.3 Recommendation . 45

REFERENCES 48

APPENDIX A 49

APPENDIX B 50

APPENDIX C 52

APPENDIX D 54

APPENDIX E 57

APPENDIX F 65

xi

LIST OF FIGURES

1.1 A trust-less car buy-sell system requiring the third party 2

1.2 Block chain based trusted car buy-sell network 3

1.3 A trust-less money laundering system requiring the third party . . . 4

1.4 Block chain based trusted money laundering network 4

1.5 Traditional voting system vs block chain-based voting system 8

3.1 Blocks in a block chain . 15

3.2 Elements of a block . 15

3.3 Range of SHA-256 hash function outputs 17

3.4 Memory pool in a block chain . 21

3.5 The process of signing a transaction 22

3.6 The proposed system for the E-voting system 25

3.7 State Sequence of the voting system 26

3.8 State Sequence of the initialization phase 27

3.9 State sequence of the voting phase 28

3.10 The process of homomorphic addition in the cipher texts of the

ballot of voters; the short cipher texts are only for representational

purpose . 29

3.11 State Sequence of the Result publishing phase 30

4.1 Duration of paillier operations for different length of key seeds . . . 32

4.2 Hashes per second for different numbers of threads 33

4.3 System’s Performance when using a single thread 35

4.4 Performance of mining when using multiple threads 36

xii

4.5 Mining performance using different approaches 37

4.6 Time taken to generate a single hash for different ballot sizes 38

5.1 Thesis Timeline . 44

6.1 Miner node . 49

6.2 Voter node . 49

xiii

LIST OF TABLES

3.1 Comparison of RSA vs ECDSA . 23

4.1 Specifications of the machine on which the experimentations have

been performed . 31

4.2 Correlation matrix of seed length, encryption and decryption time

of paillier cryptography . 32

4.3 Time of each phase of the election 38

6.1 Hash generated per second of SHA-256 and SHA-512 while using

given number of threads . 50

6.2 Hash generated per second of SHA-256 and SHA-512 while using

given number of threads, continued 51

6.3 System Performance Metrics Data 54

6.4 System Performance Metrics Data, continued 55

6.5 System Performance Metrics Data, continued 56

6.6 System Performance Metrics Data with multiple thread 57

6.7 System Performance Metrics Data with multiple thread, continued . 58

6.8 System Performance Metrics Data with multiple thread, continued . 59

6.9 System Performance Metrics Data with multiple thread, continued . 60

6.10 System Performance Metrics Data with multiple thread, continued . 61

6.11 System Performance Metrics Data with multiple thread, continued . 62

6.12 System Performance Metrics Data with multiple thread, continued . 63

6.13 System Performance Metrics Data with multiple thread, continued . 64

xiv

LIST OF ABBREVIATIONS

ABBR ABBREVIATIONS

ASIC Application-specific integrated circuit

CPU Central Processing Unit

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EVM Electronic Voting Machine

GPU Graphics Processing Unit

IM RSA Improved Modification RSA Algorithm

IT Information Technology

Nonce Number Only UsedOnce

OTP One-time password

P2P Peer to Peer

PBFT Practical Byzantine Fault Tolerance

PoB Proof of Burn

PoS Proof of Stake

PoW Proof of Work

SHA-256 Secure Hash Algorithm 256

SHA-512 Secure Hash Algorithm 512

xv

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The trending topic everywhere nowadays is elections and voting. Voting is the

process of selection or election of decisions or individuals by a population. The

process of voting is done in an election to choose a government, elect a person

or a group of persons, has been done since medieval times and is still going on

as a way to represent democracy. The voting in the elections is mostly done the

old-fashioned way, that is using the ballot papers. There are also a few alternatives

to the old-fashioned paper-based ballot-paper voting like voting via Electronic

Voting Machine (EVM), which is popular nowadays, the electronic voting, that is

voting done online. Although convenient and modern, the legitimacy of EVM is

always a concern and there is always a chance of rigging the EVM.

If or when we press the button of the EVM during any future election, we may have

a few concerns. Like whether, there is any guarantee that our vote is actually being

registered, that our vote will actually be counted, or if any scam might take place.

All these concerns are guaranteed by a central agency: The Election Commission.

Basically, we have to trust the Election Commission that the commission will work

properly for our votes to be counted properly. But what if we want to conduct our

own elections on our organizations, area, or even be a part of these elections. We

would require a system that is transparent, automated, and trustable. The answer

lies in blockchain.

A Block chain is an incrementally growing list of transaction ledgers called blocks

which are linked together in a chain-like structure using pointers referred to as

hash; which will be explained further in this thesis document. Basically, block

chain is the left-linked list of blocks.

In the current scenario, centralized systems are dominating every industry. Block

chain technology aims to get rid of these centralized systems (to a certain extent)

1

and use decentralized ones instead. Blockchain technology has been used to build

many crypto-currency systems like the most popular one: Bitcoin.

The block chain technology can revolutionize the entire voting system. Not

only voting, block chain has the potential to revolutionize the entire Information

Technology (IT) domain.

1.2 The motivation behind block chain

First of all, of we need to talk about the motivation for requiring block chains at

all. I will consider an example. For example, a given person, who wants to buy a

car, and another person tries to sell the given car. So, this is the car we are talking

about. And the problem is that there is no trust between the buyer and the seller.

The buyer does not trust the seller and vice versa, the seller does not trust the

buyer. So that’s why we need a trusted third party such as banks or governments.

So, in this case, both the buyer and seller are going to notify the government or a

bank. The buyer has to notify the government that now he does own the given car

and the seller has to notify the government that he sold his car. For example, the

seller bought the car approximately three months ago and it took approximately

one week to be able to buy this given car because the buyer had to notify the

government that the buyer would like to buy the car. The seller has to notify the

bank of the cost of the car, create new identification papers and transfer ownership

of the car, and so on. This process requires the expenditure of time and money.

Figure 1.1: A trust-less car buy-sell system requiring the third party

2

So, there is a very important inference, because there’s no trust between the buyers

and sellers, and that’s why trusted third parties came to be, such as governments

or banks. With the help of block chains, we can get rid of these third parties.

So instead of notifying the bank, with the help of blockchain technology and a

decentralized network of car buyers and sellers we can solve the same problem

easier. It is costless because the block chain itself guarantees trust. So, as we

can see the main problem is that there’s no trust in a centralized system. And

that’s why these third parties are needed when dealing with block chains and

decentralized networks. Here, block chain can guarantee trust by forming a network

of buyers and sellers without requiring a third party to establish trust.

Figure 1.2: Block chain based trusted car buy-sell network

It is the same when a given person ‘A’ wants to send the money to another person

‘B’. ‘B’ wants to receive money from ‘A’ and again that there is no trust. They

don’t trust each other and that’s why a trusted third party in this case a bank is

going to guarantee that the sender will send the money to the receiver and the

receiver is going to get the money. The sender has to notify the bank that he/she

wants to send X dollars to B and the bank is going to handle everything. The

bank has a centralized database and the bank is going to handle this transaction

by updating the database on the transactions accordingly. Now, the bank is going

to update the entry for ‘A’ which, means that the bank is going to decrement the

actual balance of ‘A’ by X dollars and the bank is going to update the database

entry for ‘B’ as well, which means that the balance of ‘B’ is going to be incremented

by X dollars. So again, there is a trusted third party, in this case, a bank, that is

3

going to handle the transaction(s) and update its central database accordingly.

Figure 1.3: A trust-less money laundering system requiring the third party

We also have decentralized networks like block chain networks to guarantee trust.

So, clients within this decentralized network can send money without a trusted

third party because the block chain itself guarantees trust. So that’s the motivation

behind block chains, that we would like to get rid of the trusted third parties to

some extend and form a decentralized network of clients; clients who need the help

of this block change technology, where the block chain itself guarantees trust.

Figure 1.4: Block chain based trusted money laundering network

So, this is the motivation behind my thesis to introduce a voting system using

block chain. A voting system, where clients can themselves be a part of, where the

clients can act as a mediator of the election process, along with less dependency

4

on a third party and faster time to results publication. Also, where the clients

would be able to vote, and prove to others that they have cast the votes, without

actually revealing to whom they have given the vote.

1.3 Immutable nature of Block Chain

In a centralized system, there is a central database or a central server where the

data is stored. And this is called a centralized ledger. Let’s take a look at an

example that we have already explained earlier in this thesis documentation. ‘A’

wants to send some money to ‘B’ and ‘B’ wants to receive money from ‘A’. The

problem is that they do not trust each other and this is why there are trusted third

parties in this case, for example, banks. The bank is going to have a centralized

ledger, which is basically a database with all of the given transactions. In this case,

the transaction is that a certain sum of money to be this transaction is going to be

inserted in the central ledger and a trusted third party. So, in this case, they give

them the bank, which owns the given database decentralized ledger, with these

transactions. The bank maintains all the information such as the identity of the

clients: ‘A’ and ‘B’ along with their previous and current transaction(s). So, in

this case, that person ‘A’ sends X dollars to person ‘B’. The problem is that if

the central database is compromised then the entire system is compromised. This

centralized architecture is very similar to the client-server model. The server is

the center and all the clients can contact these centralized servers in order to get

the given information. The data is present on a single logical server and anyone

with the right credentials username and password can access and manipulate these

systems.

On the other hand, in decentralized systems, there is no central database. There

is no centralized server storing the data. That’s why it is called a de-centralized

ledger. We are not able to hack the system because we should hack most of the

nodes in the network in order to do so. So, it is a peer-to-peer (p2p) decentralized

network of nodes and every node in the network has a copy of the block chain. So,

every client has a copy of the block chain. In this case the block chain stores all

the transactions. So, the block chain is the decentralized ledger and all the clients

5

have a decentralized ledger. So basically, there’s no central database and there’s

no central server.

Even if someone tampers the data in a given block the cryptographic hash changes

as well. So, the pointers are broken, breaking the block chain in turn. That is, if

we change something in a given block for example the transaction done because the

hash is generated based on the data, based on the previous hash, the value of the

hash will be changed. If the hash is changed then the next block’s previous hash is

not going to match with the hash in the previous block. This means that there’s

going to be a problem in the block chain. This is how we can detect malfunctions.

So even the hash pointers are not available. So, if the previous hash is not the same

as the actual hash in the previous block then we know for certain that something

has changed in the block because the hash is generated based on the data in the

given block.

The hacker may change the hash values in other blocks as well. But it is extremely

hard to hack de-centralized systems because instead of hacking just a central

database one has to hack every single client. After all, every single client or every

single node in the network has a de-centralized Ledger. So, one has to change the

ledger in every single node in the decentralized network. So, that’s why the data

that has been written or recorded to a block in a block chain cannot be changed or

erased. This is why block chain are called immutable. So, it is called an immutable

decentralized ledger because we are not able to change this ledger if we are dealing

with a centralized system such as for a trusted search party.

For the banks, we just have to hack the bank’s database and we have to manipulate

these transactions. And if we have managed to change these transactions then

basically, we have hacked the system. So, this is why decentralized blocks are quite

powerful, because every single node has a decentralized Ledger. So, if we hack a

given node basically it doesn’t matter because all the other nodes in the network

have a valid ledger.

For example, we have a block chain and we had four transactions. Let’s consider

the situation that every single block within the block chain stores just a single

transaction and the data and transactions are visible to everyone in the network

6

because every single node is going to have a copy of the decentralized ledger. If a

node added a transaction, it is going to notify every single node in the network in

order to update their ledgers. So, in this case, every single node in the network will

know that this client added a new transaction. So that’s why they update their

block chain as well. And if for example, the hacker manages to tamper with this

block first of all the hacker has to change the hash pointers in subsequent nodes

as well, in order to make sure that the hash references will be valid. Even if we

assume that the hacker is going to hack the system.

Because every other node in the network has developed a copy of the ledger. So,

the nodes are going to notify this user that the block for the block chain is not

valid. So, the user is going to get rid of these tamper blocks and going to have the

valid block chain again. And basically, this is the most powerful feature of block

chain that we are not able to hack the system. We have to hack at least half of

the nodes in the network (also referred to as a 51% attack) in order to be able

to manipulate the given block chain with invalid transactions. This makes block

chain an immutable ledger.

1.4 Problem Statement

With everything digitizing why should our voting system operate like the old ways

by sticking to the ballot papers method. The EVMs used in voting, generate

controversy on the ground of being rigged worldwide, especially in our neighboring

country India, no matter how secure they are. Alternatively, electronic voting

being a viable alternative to traditional voting, still is untrustworthy based on

security issues. The software can be undermined, rigged, manipulated, and may be

damaged. Elections always need to be secure and trusted irrespective of the scope

and size and at the same time must ensure the anonymity of the voters. So, a block

chain based e-voting system can be used to secure the voting data along with the

transactions. Albeit contrary to some beliefs, block chain provides only security and

immutability of the data, not privacy. Here, as will be proposed in the upcoming

sections, Zero-Knowledge proof, can be utilized along with smart contracts of block

7

Figure 1.5: Traditional voting system vs block chain-based voting system

chain to preserve the anonymity of the voters and the transactions of the vote

itself.

1.5 Objectives

The objective of this research work is:

• Design and create a blockchain-based e-voting system that preserves the

anonymity of the voters and their votes.

1.6 Scope of the thesis work

There are many types of voting systems, researched upon. The security and

complexity of the systems vary upon the use case. This research work focuses on

designing an e-voting system that uses block chain technology to store votes in

such a way that even if the blocks are shared by all the nodes, the anonymity of

the voter’s vote is preserved.

8

1.7 Probable implementations of this thesis work

The proposed e-voting system in this thesis work can be applied from small

organization-wide elections to country-wide elections; the parameters proposed in

this thesis work can be adjusted to meet and balance the security requirements

and the capacity of the machines at the organizer’s side.

1.8 The originality of the thesis work

Many kinds of research work on conducting e-voting and the use of EVMs have

already been done before this thesis work, as will be presented in the Section

2. Many have also incorporated block chain as a means to store voting data by

using the block chain privately (in other words, within the confined network of

an organization). This thesis work proposes a system that utilizes a public block

chain to securely and anonymously store voter data.

1.9 Organization of the thesis work

This thesis report has been organized as below:

Section 1 lays out the introduction to the voting system, and e-voting system, along

with block chain, the objective of this thesis work, its scope, and the probable

implementation areas.

Section 2 lays out the literature review on the previously done research on the

domain of e-voting.

Section 3 lays out the process and methodologies applied for this thesis work to

create the desired system.

Section 4 lays out and discusses the results obtained and the various observations

derived from them.

Section 5 lays out the timeline followed for the accomplishment of this thesis work.

Section 6 provides the conclusion of this thesis work.

9

CHAPTER 2

LITERATURE REVIEW

Paper [1] presents a modified blockchain technology for the healthcare sector to

improve performance and overcome some gaps that appeared in normal blockchain

techniques. They proposed building a real and convenient blockchain environment

for medical applications, along with an Improved Modification RSA Algorithm

(IM RSA), and developed a Lightweight Secure Hash Function algorithm of high

randomly generation keystream sequence.

Paper [2], has explored the application of blockchain in food supply chain manage-

ment. They investigated the implementation of blockchain in food companies. And

how such companies implement the blockchain in food supply chain management.

Paper [3], has implied to make sure that the customers can find the genuineness of

the product without relying on the words of middlemen. Here the authors have

implemented a block chain-based system of authenticating that manufacturers

can ensure that their products are genuine without having to run direct-operated

stores, utilizing the tamper-proof nature of data in block chain.

Paper [4], implies the usage of block chain in the health domain for securing patient

records, along with clinical trials and the supply chain of drugs and medical devices.

Also, various research work has been done on block chain to secure and prove the

authenticity of data in various domains [5, 6, 7].

The paper [8] proposed a leader-free algorithm to achieve consensus in a partially

synchronous system. A partial synchronous system is an asynchronous system that

eventually changes to synchronous mode. The consensus leader-free algorithm for

the synchronous system is extended for the partial synchronous system.

In the paper [9], the authors analyzed proof of work in detail. In Proof of Work

(PoW), introduced by Bitcoin all the nodes vote by solving a proof of work (a

complex calculation operation) and create new blocks with their computation

power. The authors have measured the average time to mine a block, the number

10

of stale blocks, and the average fork length varying problem complexity. It was

found that the mining time for new blocks was directly proportional to the problem

complexity.

Paper [10], proposes Proof of Vote to be more efficient than Proof of work (PoW).

In the Proof of Vote (PoV), the voting mechanism verifies the blocks. The authors

have defined the roles: commissioner, butler candidate, butler, and ordinary user

in a consortium network model. It was found that the PoV is the most power

efficient.

In the paper [11], an analysis and comparison of the parameters related to the

performance and security of consensus in block chain algorithms have been done.

The paper intends to act as a guide for developers and researchers to evaluate and

design a consensus algorithm.

Paper [12], highlights and summarizes the benefits of block chain on personal data

protection by using zero-knowledge proof which is Zerocoin and Zerocash.

Paper [13], reviews and presents open research challenges of block chain in e-voting

domain.

Paper [14], proposes an e-voting system that allows voters to connect to the system

having an easy-to-use user interface, through which they can cast their vote by

importing their account and can easily review their vote.

Paper [15], also proposes a similar voting system to paper [14]. The problem with

these types of systems is that the blocks if fall into the wrong hand, easily reveal

the voter’s vote.

In paper [16], a block chain based e-voting system has been proposed. Here it has

been proposed to encrypt the voter’s vote along with voter’s data. Not much detail

has been provided on the type of encryption to be used and also, and the process

of counting the votes has not been mentioned properly.

Paper [17], proposes a sealed bid auction mechanism, where the participants

themselves are part of the block chain, using Pedersen Commitment’s slightly

modified version bulletproof to achieve zero knowledge proof to compare the

auctioned amount’s positive differential without revealing the auctioneer’s data.

11

My thesis work has been inspired by this paper to hide the voter’s data in such a

way that they are visible in the blocks without revealing the actual content of the

data.

12

CHAPTER 3

METHODOLOGY

3.1 Block chain structure

In this section, we are going to look at the underlying data structure and the

technology itself. Block chain is an incrementally growing list of transaction ledgers

called blocks which are linked together in a chain-like structure. This block chain

technique was first constructed in the early 1990s by Stuart Haber and W. Scott

Tornetta to timestamp digital document records in a tamper-proof way. This block

chain technique was later used by Satoshi Nakamoto; it is actually considered a

pseudo name or an alias for a person or group of persons; used in 2009 to create

the most popular digital cryptocurrency “Bitcoin” [18].

In the block chain, multiple transactions are stored in a ledger and each ledger

consists of numerous transactions. The blocks are continually growing, each time,

adding new sets of transactions. The blocks grow in a continual list structure,

consisting of only a single branch. Thus, this single branched structure forms a

name, thus its name derived to be: block chain. The chain is formed based on the

linking of references. Each block in a chain refers to its previous block using a

reference, referred to as a previous hash. It also exposes its own reference in the

form of a hash. Thus, the subsequent block can be used to refer to the previous

block using the hash. The hash of the current block can be acquired by applying a

one-way cryptographic function to the content of the block itself. The hash used

in this thesis work is Secure Hash Algorithm 256 or SHA-256 [19] for generating

a hash of the block. Alternatively, SHA-512 can also be used [20]. The choice of

using a slow hash function instead of a faster one will be explained in the Proof of

Work (PoW) section.

The first block in the block chain is called the “Genesis Block”. Since it is the

starting block and does not refer to any previous blocks, its previous hash value

is generally set as “000..”. The number of ‘0’s is equal to the length of the hash

13

generated by the hashing function. In my case, the SHA-256 hashing function was

used, which produces a hash of length 64, irrespective of the input object, i.e. the

output is always 64 characters hexadecimal string.

Being hexadecimal, [0 : 9] and [A : F] are the possible values for any particular

character. It means there are 16 possibilities that can be represented on 4 bits

(24 = 16). Because the hash itself takes up 256 bits in the memory and every

character’s size is 4 bits, that’s why the length of the output is 64. An example of

a hash generated by the SHA-256 hash function is:

37f47ded94c31186f3a1d6c27fb7d607847ff2a91b4e98d84e1e28ec583cedbd

A hashing function have the properties of being: deterministic, one-way, collision-

free, and having an avalanche effect.

• The deterministic property of a hash function denotes the production of

the exact same hash output for a given input object.

• One-way property of a hash function denotes the ease of producing a hash

from a given object and the extreme difficulty of restoring the same object

from the given hash, denoting the trap-door functionality of the hash function.

• The collision-free property of a hash function denotes the very low proba-

bility of 2 different objects producing the same hash function.

• The Avalanche Effect property of a hash function denotes the vast change

in the output of the hash function, even for a slight change of a single bit in

the input object.

Let’s say that the hash of the GENESIS block is ‘056FH’ as shown in Figure 3.1.

Now, the subsequent block: “BLOCK 1” will now refer to this genesis block by

storing the hash ‘056FH’ as its previous Hash. The referencing of the previous

hash by its subsequent hash follows in this manner.

14

Figure 3.1: Blocks in a block chain

3.1.1 Blocks in a block chain

Each block in a block will have elements as shown in Figure 3.2.

Figure 3.2: Elements of a block

The block id is the identification of a block.

The data is a data structure containing numerous other data structures and lists.

The data used in my case for this thesis work is the List of voters, who have voted

and the List of Cumulative encrypted votes, achieved by performing homo morphic

addition, which I will explain in further sections.

The hash, as previously mentioned is the hash obtained by passing the block to the

SHA-256 hash function. The generated hash acts as the fingerprint of the block,

denoting the uniqueness of the block.

15

The previous hash is the hash referring to the previous block as explained earlier.

The timestamp, as the name suggests is the timestamp at which the block was

created.

A nonce is a number generated only once. It will be further discussed in the

upcoming section on the mining of a block.

3.2 Mining of a block

When dealing with decentralized systems trusted the third party like the banks

are going to handle the transactions with software and database updates and so

on. That’s why all the clients have to notify the bank in order to make a given

transaction. In this case, the bank, which is a centralized system handles the

transactions. But the problem is that in a decentralized system such as block

chains which node will handle the transactions. And basically, this is why mining

came to be. Miners are special node(s) that will handle and verify the transactions.

We must have heard of the miners getting a reward in bitcoin mining. Getting a

reward is not the aim of mining, it is just the byproduct. In other words, mining

is the mechanism that allows the block chain to be a decentralized system because

without a trusted third party no one is to verify the transactions and basically

with the help of the mining procedure, miners can verify these transactions.

Mining is about finding the right hash values for the blocks and adding these blocks

to the block chain. Firstly, miners will verify transactions, and add the blocks to

the block chain. They are going to find hash values for their given block. And

this is how they can add the given block to the block chain. Miners reveal verified

transactions and add the blocks to the block chain.

But the question arises on how to find these given hash values and how to know that

these hash values are generated by miners. So this is why mining is the fundamental

concept of block chain because miners will generate these hash values and the

miners will make sure that these hash pointers are valid. It is a computationally

heavy procedure to find these hash values. And basically, that’s why miners need

good computers with good CPUs, GPUs, and specifications in order to be able to

16

find these hash values quite fast. Firstly, let us look at the hash value generated

from SHA-256 hash function.

Figure 3.3: Range of SHA-256 hash function outputs

One hash takes up 256 bits in the memory with binary values (0or1): it means the

total number of hashes is 2256. Our hash output ranges from all 0’s; 64 number of

zeros; to all F ’s; 64 number of F . The same result is in hexadecimal format: there

are 64 hexadecimal characters (so 16 possible values) which yield 1664 possible

combinations. It is an extremely huge value.

Mining aims to find the right hash value and there is one more important concept

we have to understand it is the difficulty level and it is characterized by leading

zeros. Mining aims to generate hashes, but there are some constraints: most of

the generated SHA-256 hashes are not allowed. It is extremely important that we

would like to make sure that the mining procedure is computationally heavy so as

to make sure that the block chain is going to be a secured decentralized network.

It is going to take a while to generate the valid hash values. So the difficulty of

mining is defined by the leading zeros. So let’s take a look at a given example. The

difficulty can be defined by the number of leading zeros. Let’s say the difficulty is

four which means that the first four characters of the 64 characters long hexadecimal

string must be all zeros. In this case, there are four leading zeros in the hash. So

the aim of mining is to find an arbitrary hash if it is for leading zeros. We call it

difficulty because the more the leading zeros are there the harder to find the given

17

hash. So let’s calculate the probability of finding a hash with one leading zero. We

have just a single leading zero then we have to calculate the total number of shares

which is 1664. We have to calculate the number of hashes we want leading 0 and

all the other characters can be anything. So that’s why (64 – 1) which is 63.

07d38ebf07b0ca1ed92f3cdce825df28d36d8fdc39904060d2c18b13c096edc

P (findinghashwith1leadingzero) =
hasheswith1leadingzero

totalnumberofhashes

=
1663

1664

= 0.0625

So it means that there is approximately a 6 percent chance that if we generate a

hash at random then the first character will be zero. Let’s calculate the probability

for two leading zeros. So was the probability of finding a hash with two leading

zeros. We have to calculate the number of hashes with two leading zeros and divide

them by the total number of hashes. It means that the first two characters are

fixed. And we just have to bother about the other characters. So that’s why there

are 16 to the power of (64 – 2) which is 62. So that’s why there is 1662. This is the

number of hashes with two leading zeros. So that is going to be the probability is

going to be about 0.4 percent if we generate a hash at random it will have two

leading zeros.

00d38ebf07b0ca1ed92f3cdce825df28d36d8fdc39904060d2c18b13c096edc

P (findinghashwith1leadingzero) =
hasheswith1leadingzero

totalnumberofhashes

=
1662

1664

= 0.0039

The actual difficulty of Bitcoin is 18 leading 0s. For, the probability of finding the

hash with 18 leading zeros. We just have to calculate the total number of hashes

with 18 leading zeros which is 16(64–18) which is 46 divided by the total number of

18

hashes and we get an extremely small number.

0000000000000000008f3cdce825df28d36d8fdc39904060d2c18b13c096edc

P (findinghashwith1leadingzero) =
hasheswith1leadingzero

totalnumberofhashes

=
1646

1664

= 2.1 ∗ 10−22

If we make sure that there must be lots of lots of leading zeros in the hash we are

able to define how hard it is to find the right hash. To get the right hash, we use all

the information present in the block and feed these data to the SHA-256 algorithm

to get the output which is a 64-character long character. We are basically going

to use all the data within the block in order to generate the hash. Since most of

the data is immutable and if we want to generate a new Hash we have to change

something away in the block. We are not able to change the block ID. We are not

able to change the data of course. We are not able to change the previous hash

because then the hash pointers would be invalid. And basically, this is why we

have these nonce variables. We can change the value of the nonce and thus we

change the output of the SHA-256 hash. So the mining procedure is to change the

value of these nonces until we find a given hash will be the right amount of leading

zeros. As for now for Bitcoin, the difficulty can be characterized by 18 leading

zeros which means that we have to generate lots and lots of hashes, and have to

change the value of the nonce lots and lots of times before we end up with the

right hash value of the given block.

The number only used once or nonce, as it is asserted to be is usually an unsigned

integer. So the range is zero up to 4 billion and during the mining operation, miners

change the value of the nonce. In java, the primitive int data type is of 4 bytes,

which means that it has a maximum value of 4, 294, 967, 296. For every possible

value of the nonce, the miners get a new output hash. If we change something

in the block, the output of the algorithm will change so we get a different hash

because the input has changed. The very important thing here is that the miners

cannot guess the value of the nonce because of the avalanche effect of the hash

19

function, as mentioned in the earlier section, and will have to increase the nonce

value by one without skipping any of the nonce value.

Usually, the miners have to start with zero and keep incrementing the value of the

nonce by one until they find the golden hash. The golden hash is the hash with

the right amount of leading zeros. So, basically the hash we can use for a given

block in the block chain, is called the Golden hash. The process of making mining

so difficult is called the proof of work. The aim of mining is to verify the given

transactions, make them into a block and add the block to the block chain. In my

thesis work, the difficulty level is configurable and ready to be made available to

the miner nodes via the smart contract.

3.3 Smart Contracts in Block chain

Smart contracts are static rules for block chain technology that run when predeter-

mined conditions are met and determine the overall working of the block chain.

They are used to complete the execution of pre-defined criteria, so that all nodes

can be certain of the outcome, without any third party’s involvement or time loss.

They can also automate a workflow, triggering the next action when conditions

are met. They are basically programmed using a high-level language called solidity

[21], but for this thesis work, a similar implementation of smart contracts has been

done using another high-level language: java [22].

3.4 Memory Pools

The memory pools or shortly referred to as mempools are the local cache of the

transactions that each node keeps until miners perform mining on them and are

later added into blocks. Every node after generating a transaction broadcasts that

transaction to all other nodes in the blockchain network, including the miner nodes.

The receiving nodes will take the transaction and store it in their mempools. The

miner nodes will take up the transaction, from the mempool, depending upon the

limit of transactions per block. Then the miner will perform pow on them and once

the golden hash is received, the miner will add these transactions to the block and

20

broadcast the block to all the other nodes in the block chain network. Here in this

thesis work, the transaction limit for each mining is made to be fully configurable

via the Smart contract.

Figure 3.4: Memory pool in a block chain

3.5 Elliptic Curve Cryptography (ECC)

There’s a huge problem with the public block chain; all the data is public. So,

somehow, we have to encrypt the transactions and have to make sure that other

nodes in the network can verify these transactions. The problem is that we can

create multiple new vote transactions for a given party of my choice, then one of

the miners will take that given transaction and put that transaction within a given

block. And now the block is in the block chain with a valid transaction. So, it

means that we are able to send numerous votes to our favorite party. And that’s

why for my thesis work, the voting system of block chain network uses Elliptic

Curve Digital Signature Algorithm (ECDSA)[23] to ensure that votes can only be

cast by the rightful voter to a valid party one time.

For this, a private key and a public key together forming a keypair are going to

be generated. The private key is a secret number 256-bit integer known only to

the person that generated it. It is then used to sign the transaction; the private

21

key is secret. Other nodes of the network do not know about this private key

and we can generate a public key based on the private key and not the other way

around. And there’s no need to keep the public key secret because it is extremely

hard to get the private key from the public key. The public key is a point on a

two-dimensional plane. Basically, the coordinates are on an elliptic curve. When

we create a transaction, we can sign it with the help of the private key, and we kind

broadcast that transaction with the given signature, and anyone else can verify

that the transaction belongs to us. With the help of the public key which is easily

accessible, we can verify the message that has the signature. And this is how the

nodes of the voting system I proposed ensure that votes can only be cast by their

rightful voters.

Figure 3.5: The process of signing a transaction

The choice for signing the blocks with an ECDSA key comes from the fact that it

has a shorter key length compared to Rivest–Shamir–Adleman (RSA) cryptographic

algorithm to provide the same level of security. Table 3.1 illustrates the difference

in key length between ECDSA and RSA to provide the same level of security in

bits.

3.6 Zero Knowledge Proof

In this thesis scope, Zero Knowledge Protocol (ZPF) can be defined as a way for

the voter to prove that they have actually voted, without actually revealing their

22

Table 3.1: Comparison of RSA vs ECDSA

Security (In Bits) RSA Key Length Required (In Bits) ECDSA Key Length Required (In Bits)
80 1024 160-223
112 2048 224-255
128 3072 256-383
192 7680 384-511
256 15360 512+

vote. For this thesis work, I have chosen the Paillier cryptosystem[24], named after

and invented by Pascal Paillier, which is a probabilistic asymmetric algorithm for

public key cryptography. The probabilistic mentioned in the previous sentence

means that for the same key pair and for the same input, the encrypted results

are vastly unrelated, due to the introduction of some random factors. I chose the

Paillier cryptosystem, as it supports the homomorphic sum of plaintexts. That

is with the help of the Paillier cryptosystem, we can easily perform the addition

of two cipher texts, obtained from encrypting a number with the same key pair

without actually needing to decrypt the cipher texts during the process. Later

using the key-pair, the homomorphic sum can be decrypted to a value, which is

the result of the sum of the previous two numbers.

This makes our communication so secure and protected that nobody else can find

out which voter has voted for which party and how much a party has achieved in

votes, until the end of election time as governed by the smart contract.

The Paillier algorithm as taken from[24] is:

3.6.1 Key generation

• Choose two large prime numbers p and q randomly and independently of

each other and of equal length; here p and q act as a seed for the creation of

the key pair.

• calculate n = p ∗ q and λ = lcm(p− 1, q − 1)

• Select random integer g where where g ∈ Z∗
n2

• Ensure n divides the order of g by checking the existence of the following

modular multiplicative inverse: µ = (L(gλmodn2))−1modn, where function L

is defined as where, L(µ) = µ−1
n

• The public encryption key is (n, g) and the private decryption key is (λ, µ)

23

3.6.2 Encryption

• Let m be a message to be encrypted, where 0 <= m <= n

• Select random r where 0 <= r <= n

• Compute ciphertext as: c = gm.rnmodn2

3.6.3 Decryption

• Let c be the ciphertext to decrypt, where c ∈ Z∗
n2

• Compute the plaintext message as: m = L(cλmodn2) ∗ µ ∗modn2

3.6.4 Homomorphic addition property

• The product of two ciphertexts will decrypt to the sum of their corresponding

plaintexts such as:

D(E(m1, r1) ∗ E(m2, r2)modn2) = (m1 +m2)modn

A simple implementation of the working of the Paillier algorithm can be found in

the APPENDIX C.

3.7 The proposed system

The key elements of the proposed system are the voters, the miners, and the system

consisting of both the voters and miners.

The voters will have to pre-register themselves from the election committee by

showing their eligibility by providing valid identification, along with an at least

8-character password of their choice, their mobile number; where the One Time

Password (OTP) will come during the start of election phase and which would

correspond to only a single vote; all of which will be used for logging-in in the

election. The election committee after registering the voter would provide them a

unique 12-character string for uniquely identifying a voter.

24

Figure 3.6: The proposed system for the E-voting system

During the election phase, the voters after entering their 12-character string along

with their password to a Voting User Interface will receive an OTP. The combination

of these 3 things will help to identify a valid unique voter. Once the voter has

voted, the voter’s side of the application would encrypt the ballot object with

the inserted vote by using a key provided by the miner’s side, which is further

explained in section 3.8. Later he/she may remain connected to the system to

store the block chain on their device until the elections end to get the election

results once published.

Another element to the system is the miners, which would be the powerful computers

performing proof of work at the election’s organizing side. They would do the

computation work required to create a new block to the block chain. The creation of

the block would require the tallying of the maximum allowed votes per transaction,

without decrypting the ballot object by performing homomorphic addition, and

finding the appropriate hash of the block in accordance with the difficulty level.

More details of the working of the system is explained in section 3.8.

25

3.8 State Sequence of the voting system

The voting process in my thesis work has been divided into three phases: the

initialization phase, the voting phase, and the election end phase. The explanation

of each phase can be found in the upcoming sections.

Figure 3.7: State Sequence of the voting system

3.8.1 Initialization Phase

This phase will be driven by the miner and the smart contract. The organizer of

the election will first set the configurations of the system like the election period,

the difficulty level for mining, and the maximum limit of transactions in the block.

26

Figure 3.8: State Sequence of the initialization phase

The organizer will then start the miner node and first the smart contract will

be instantiated. The instantiated smart contract will then convey to the miners

the pre-configured parameters like the election period, the maximum limit of

transactions in the block, and the difficulty level for mining. Also, the smart

contract will generate a Paillier cryptography key pair; (n, g) as the public key and

(λ, µ) as the private key. The smart contract will provide the Paillier public key

(n, g) to the miner and will not release the Paillier private key (λ, µ) until the end

of the election period.

Based on these configurations, the miner will mine a genesis block and add its

local copy of block chain.

3.8.2 Voting Phase

In the voting phase, a voting node with the proper credential will connect to the

miner node via passing the 12-character identifier and the password. In turn, the

voters would receive an OTP via SMS. Now, after passing OTP to the miner by the

voter, the miner will acknowledge the voter node to vote based on the credentials.

The unique voter would only be able to vote once during the election phase.

For a valid voter node, the voter node will fetch the blockchain from the miner node,

and it will store it locally. Next from the smart contract, the voter node will fetch

the Paillier public key (n, g) and using this paillier public key, perform encryption

on its ballot object. Since the paillier cryptographic system is probabilistic, the

same votes of either 1s and 0s, even though being the same in number, will yield

different enciphered text even if encrypted with the same public key (n, g)), one

27

Figure 3.9: State sequence of the voting phase

after another, thus it prevents the exposure of the voter’s vote in the ballot object.

Next, the voter node will generate an ECDSA keypair and sign its id and ballot

object with the ECDSA private key and add the signature along with ECDSA

public key to its transaction. Next, it will broadcast the transaction to all the

nodes, where the receivers will be able to verify the validity of the transaction with

the help of the signature and the provided public key.

The miner, which continuously runs a loop of mining will verify and store the

transaction in its mempool. When the miner has finished mining (if there are any

transactions to be mined), it will pop up the transactions from its mempool queue

based on the number of maximum transactions allowed in the smart contract. Then

based on the Paillier public key (n, g), the miner will perform a homomorphic sum

on the encrypted ballot object. The idea is to store a cumulation of votes in each

block so that, during the publishing of the result, the miner will only have to look

at the latest block to get the result of the election.

Now, the miner will perform pow, that is it has to obtain the golden hash based

on the difficulty level set on the election. Once the desired hash is obtained, the

28

Figure 3.10: The process of homomorphic addition in the cipher texts of the
ballot of voters; the short cipher texts are only for representational purpose

miner will broadcast the block to the nodes and add the block to its local copy of

block chain.

The voter nodes upon receiving the block will verify if the mining has been done,

using the hash value. When everything is right, the voter node will add the block

to its local copy of block chain.

This process will be repeated until all the votes received within the voting period

have been tallied and mined; even after the election period may have ended.

3.8.3 Result Publishing phase

This is the last and shortest phase of the voting system. Here the miner will fetch

the Paillier private key (λ, µ) from the smart contract. The smart contract will

only provide the Paillier private key once the duration of the election has ended

and once all the mining tasks for the votes within the election duration have been

mined.

Now, the miner will fetch the latest block of the block chain from its local copy of

block chain.

29

Figure 3.11: State Sequence of the Result publishing phase

Next, the miner will decrypt the cumulative transaction from the latest block using

Paillier private key (λ, µ). Here since before the addition of each block, the results

from the previous block and the current transactions are added homomorphically,

the result would be in the latest block.

The miner will broadcast all the results to all the other nodes.

And at last, the miner will send a signal to all the other nodes to disconnect from

the network as the election would have been successfully organized.

30

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Experimental Setup

This system is built using java language, with java JDK version 1.8 and Intellij

IDE 2019 version, and also used for the development and testing process of the

system.

The specifications of the machine where the experiments have been conducted is

tabulated in the Table 4.1.

Table 4.1: Specifications of the machine on which the experimentations have been
performed

Specifications
Processor 2 GHz Quad-core Intel Core i5
Memory 16 GB

Solid-state drive 1 TB

4.2 Paillier cryptography computation time

As mentioned in Section3.6.1, the keypair generation for the paillier operation

depends upon the choice of two prime numbers ‘p’ and ‘q’ of equal length, which

are the key seeds. The length of these prime numbers will dictate the size of the

key pair and in turn affect, the size of the enciphered text generated and the time

it takes to perform encryption, decryption, and homomorphic operation. Figure

4.1 shows the different times it takes to perform encryption of votes, decryption

of enciphered text of votes, and the homomorphic operations on those enciphered

text.

Table 4.2shows that the higher the seed length, the longer it takes to encrypt and

decrypt the paillier cryptography; also, it shows that the encryption and decryption

time are very highly positively correlated. Figure 4.1 shows that despite the seed

31

Figure 4.1: Duration of paillier operations for different length of key seeds

Table 4.2: Correlation matrix of seed length, encryption and decryption time of
paillier cryptography

Seed length Encryption time Decryption time
Seed length 1 0.811038443 0.811845174

Encryption time 0.81103844 1 0.999959312
Decryption time 0.81184517 0.999959312 1

length, the time taken to perform homomorphic summation is always constant.

4.3 Hash rate per second using parallelism

The hash rate or the number of hashes per second plays a major factor in generating

the golden hash in a given range of time. A single thread can only generate a

limited amount of hashes per second. Nowadays, we have multi-cored Central

Processing Units (CPU). There are two parameters involved with the CPU’s cores.

They are physical cores and logical cores. Physical cores are the actual hardware

cores of the CPU, whereas an actual core is divided into two logical cores for

hyperthreading to allow multiple instructions (threads) to be processed on each

core simultaneously. In other words, the processor has four cores that are acting as

eight cores. Normally a physical core is only divided into 2 different logical cores.

As per [25], although the normal approach for designing an application is to use 1

32

thread per processor, but for high-performance applications deployed in a quad-core

system, the optimal number of threads is 3-5 threads per processor, which may

differ according to different loads, so testing of different configurations is required

to determine the optimal amount of threads for an application.

Figure 4.2: Hashes per second for different numbers of threads

The results seen in Figure 4.2, are of experiments conducted on a quad-core CPU

for a ballot object size of 5. Each data on result is an average of five different

conducted experiments. It can be observed that the peak hash output of SHA-256

is observed while using 18 threads and for SHA-512, it is observed while using 19

threads. The values may vary, depending upon the state of other processes running

on the same CPU as well. So for up to 100 threads, we can observe that the peak

hash rate was observed only for threads that are multiples of 3-5 of the physical

core; the data can be found in APPENDIX B.

4.4 Use of SHA-512 in the system

SHA-512, like the SHA-256, is a hashing algorithm that takes in a variable length

of plain text and outputs a fixed length of ciphertext in the hexadecimal format; in

33

the case of SHA-256, the output is a 64 length of the hexadecimal hash value and

in case of SHA-512, the output is a 128 length of hexadecimal hash value; twice

in the length of the SHA-256. The total possible combinations of hashes of the

SHA-256 hashing algorithm is 2256, and that of the SHA-512 hashing algorithm is

2512.

Currently, bitcoin-like cryptocurrency is self-sufficient with the SHA-256 hashing

algorithm. SHA-512 is more secure than and longer in length, it can be applied to

the voting system proposed in this report. The probability of finding the golden

hash for the difficulty level of 1 in this hashing algorithm is 16127/16128, which is

0.0625, for difficulty level 2 is 0.00390, and so on like that of the SHA-256. The

advantage here is the difficulty level can be extended far beyond that of SHA-256

for highly secured and difficult mining. The hash rate as observed in Figure4.2,

shows that the SHA-512 hashes, are faster to compute compared to SHA-256

hashes, and provide better security with a slight increase in the size of the block;

they add an extra overhead of 256 bytes per block.

4.5 Mining of blocks using a single thread

For testing the system, the time in milliseconds (ms), it took the system to homo-

morphically add, and different numbers of transactions were measured. Considering

only a single thread was to be used, the total number of parties was selected to be 3

and the number of transactions was increased. 50 to 1000 transactions in multiple

of 50 were repeated for different difficulty levels, ranging from 1 to 4 and only the

SHA-256 hashing algorithm was considered for this case. Each of the tasks was

repeated 20 times (because the mining time can vary depending upon the block)

and the average time in ms was measured. This evaluation was run in a 2 GHz

Quad-Core Intel Core I5 processor, with 16 GB of memory. The data obtained is

as shown in Figure 4.3. Despite the varying number of transactions, ultimately, the

resulting block only stores the tallied results, thus the mining time of the block also

remains similar, and thus curve remains almost flat for a particular difficulty level.

The raw data can be found in APPENDIX D and the visualization can be found

34

Figure 4.3: System’s Performance when using a single thread

in [26].

4.6 Mining of blocks using multiple threads

Another experiment was conducted where the mining of blocks containing ran-

domized ballots of 100 parties. The aim was to note the time of mining while

using multithreading. For this experiment, the seed length of paillier cryptographic

system was chosen to be 512. Like in section 4.5, difficulty levels were only chosen

from 1 to 4. In this experiment, threads from 1 to 20 were chosen to mine and the

time taken to generate a golden hash was noted for both the SHA-256 and SHA-512

hashing algorithms. Also, an average of 20 different test values are selected for

each individual data point.

Here, two different approaches were taken for the purpose of mining.

In the first approach, the nonce was divided into blocks, where each thread would

perform mining on a specific block only. To simplify, say two threads “T1” and

“T2” are taken to mine for a block, which has nonce ranging from 1 to 10. Here,

35

“T1” will only mine using nonce from 1 to 5 and “T2” will mine from 6 to 10 for

the golden hash. And once a thread finds out a golden hash, it would send a signal

to all the other threads to stop. This type of mining has been referred to as “block

wise” mining in this report.

Another approach was chosen such that the threads would perform mining on

continuous values of the nonce. To simplify, say two threads “T1” and “T2” are

taken to mine for a block, which has nonce ranging from 1 to 10. Here, “T1” will

mine nonce from 1 and lock it, if locked, “T2” will try to lock 2 and mine on it,

next after a while, “T1” would try to mine with a value of 2 as a nonce, but since

it would be locked, it would try to mine with the nonce value of 3 after acquiring a

lock on it. This process would be repeated until the golden hash would have been

reached and the thread which would have mined the golden hash would notify all

other threads to stop. This type of mining has been referred to as “continuous”

mining in this report.

Figure 4.4: Performance of mining when using multiple threads

From Figure 4.4, it can be seen that for both the SHA-256 and SHA-512 hashing,

36

the block-wise mining on average performs better than the continuous mining

approach; since the latter mining approach involved the continuous locking and

releasing of nonce resources. Also, needless to say, the multithreaded approach far

outperformed the single-threaded approach even for generating hashes for a block

with 100 parties, compared to the 5 parties for the single-threaded approach. The

raw data can be found in APPENDIX E.

Figure 4.5: Mining performance using different approaches

4.7 Time taken to generate hash for different number of parties in the

ballot

The time taken to generate a single hash for different ballot sizes; the number of

parties; is as in Figure 4.6.

As seen from the results, as the number of parties increases, for up to 200 parties,

the hash generation time remains constant, which will not affect the hash rate and

thus the mining time of the system would remain almost similar for a ballot size of

up to 200.

37

Figure 4.6: Time taken to generate a single hash for different ballot sizes

4.8 Time taken at each phase of the system

For observing the time taken by each phase of the election, the system was config-

ured to allocate 5 parties; the ballot size of 5; seed length of paillier cryptography

was set to 512, the difficulty of mining was set to 1, and the maximum transaction

limit was set to 50, election duration of 2 minutes, and a random delay ranging

from 1 to 10 ms was introduced at the organizer’s node before sending the data to

the voter’s end, to simulate a delayed system. The observations are as shown in

Table 4.3, for the different number of nodes.

Table 4.3: Time of each phase of the election

number of voter nodes initialization phase (in ms) voting phase (in ms) ending phase (in ms)
10 1356 121740 31
100 1525 120568 36
1000 1524 120816 6567
10000 1530 120182 13685

From the previous table, it can be observed that choosing a difficulty level of 1

and the voting phase was kept under 2 minutes, which was well under the mining

capacity of 200 blocks thus, the voting phase was conducted under 2 minutes. The

initialization phase took around 1.5 seconds, and the ending phase, where the

result was to be broadcasted to different voter nodes by the miners, increased along

with the increase in the number of nodes.

38

4.9 The calculation for the size of the block and block chain

This section proposes a formula for the size of the block when and the block chain

when stored as a serialized object.

4.9.1 Size of the paillier enciphered text

For any seed length for paillier cryptographic system and for any value of an input,

the length of the enciphered text is 617, which is stored in java’s BigInteger data

type. The space occupied by BigInteger is given by the formula: 4N + 64 bytes;

where N is the length of the BigInteger and 64 bytes are occupied by the object

overhead of the BigInteger object.

By replacing N , with 617, we get 2532 bytes.

4.9.2 Size of parties

The parties are represented as an enum in the proposed system. The size of each

enum is 4 bytes. So, the formula can be calculated as: 4 ∗Np bytes; where Np is

the number of parties to whom the users can vote to.

4.9.3 Size of the map of votes

The map of the votes contains the consits of enum of parties as the key and the

corresponding enciphered text of the vote as values. In the proposed system, the

block only stores the tallied result for each party and not every ballot object. So,

the for a Np number of parties, the size of the object can be calculated as:

(4 ∗Np+Np ∗ 2532) bytes;

which becomes:

Np ∗ 2536 bytes; where Np is the number of the parties.

39

4.9.4 Size of the list of transactions

The transaction object after the formation of a block only contains the ids of voters

who have voted for a given transaction, where the ids are of type integer; which

are of 4 bytes. So, the size of the list of transactions can be calculated as:

4 ∗ NT bytes; where NT is the number of transactions, or in other words, the

number of votes cast per transaction.

4.9.5 Size of a genesis block

The genesis block of the proposed system contains an id of type integer, nonce of

type integer, timestamp of time long, hash of type string, previous hash of type

string, an empty list of transaction objects, and an empty map of total votes;

linking parties to their corresponding votes.

The integer types are of size 4 bytes.

The long types are of size 8 bytes.

The hash size being of string type can be calculated as:

2 ∗ LH bytes; where LH is the length of the hash, 64 for SHA-256 hash, and 128

for SHA-512 hash.

Thus, the size of the genesis block proposed by the system is:

(4 + 4 + 8 + 2 ∗ 2 ∗ LH) bytes,

Which is:

272 bytes; while using SHA-256 hashing and 528 bytes; while using SHA-512

hashing.

4.9.6 Size of a normal block

Like the genesis block, a normal block contains the id of type integer, nonce of

type integer, timestamp of time long, a hash of type string, the previous hash of

type string, a non-empty list of transaction objects, and a non-empty map of total

votes; linking parties to their corresponding votes. The size of the block can be

40

calculated as:

(272 +Np ∗ 2536 + 4 ∗NT) bytes; where NT is the number of transactions, Np is

the number of the parties; while using SHA-256 hashing and

(528 +Np ∗ 2536 + 4 ∗NT) bytes; where NT is the number of transactions, Np is

the number of the parties; while using SHA-512 hashing.

4.9.7 Size of the block chain

A block chain as proposed by the system would consist of a genesis block linked with

other normal blocks. The total number of such normal blocks can be calculated as:

Total no of normal blocks = Totalnoofvoters(Tv)
NT

;whereNT isthenumberoftransactions.

Total size of the block chain = Size of genesis block + Total no of normal blocks *

Size of normal blocks

Total size of the block chain (in bytes while using SHA-256 hashing) = 272 +

Tv/NT ∗ (272 +Np ∗ 2536 + 4 ∗NT)

Total size of the block chain (in bytes while using SHA-512 hashing) = 528 +

Tv/NT ∗ (528 +Np ∗ 2536 + 4 ∗NT)

Assuming a case for 18 million voters in the context of Nepal, by applying the

above formula, and taking 1000 votes per transaction, the total size of the block

chain becomes:

The total size of the block chain (in bytes while using SHA-256 hashing) = 4.64

GB, and

The total size of the block chain (in bytes while using SHA-512 hashing) = 4.65

GB.

With a total of 18000 blocks. To manage the number of blocks, NT can be adjusted

accordingly. Also, the memory capacity of the machine should be at least three

times the size of the block chain, this is taken into account excluding the mining

requirements, as mining can and should be run on either a GPU or ASIC.

41

4.10 Graphics Processing Unit (GPU) and Application-specific inte-

grated circuit for mining (ASIC)

Central Process Unit (CPU), the handful number of physical cores can only generate

a few hundred hashes per second, which is only suitable for performing proof of

work up to a difficulty level of 4. As the difficulty level for the proof of work

increases; for providing security, the few hundred hashes per second is simply not

enough to generate a valid block within a time frame of a few minutes (for bitcoin

the average block generation speed is 10 minutes, to maintain this almost constant

block generation time, they adjust the difficulty level every 2 weeks).

GPUs can generate hundreds of thousands, if not millions of hashes per second,

which would also be not enough for higher difficulty levels. For this, a special

type of Integrated Circuit (IC) chip is used; this IC is optimized for a particular

use case. There are some ASICs available, which are designed especially for the

purpose of mining and can output up to 200 Tera hash per second which can only

consume 27.5 joules of energy per tera-hash [27]. For the purpose of small-scale

elections, a simple GPU would be sufficient, but for large-scale elections like the

national election, a specially designed ASIC can be used.

4.11 The potential threat to the system with the emerging Quantum

Technology

Quantum computers are the modern emerging computers that can solve complex

mathematical problems, which require a lot of time for the current computers; also

called the classical computers; to achieve by utilizing the principles of quantum

mechanisms. There is currently a handful of quantum computers in the world.

As per [28], quantum computers can exploit two portions of the block chain based

cryptocurrency: the ECDSA algorithm and the proof of work consensus protocol.

About 317106 physical qubits will be required to break the ECDSA encryption

algorithm within one hour with a code cycle time of 1 s and 13x106 physical

qubits will be required to break it within 1 day. The best quantum computer as of

November 2021 is IBM’s eagle quantum computer with a 127 qubit processor. The

42

current factor preventing the creation of computers with more qubit processors is

the “quantum noise” phenomenon.

As per [29], without considering the advancement of ASIC chips, quantum com-

puters would unlikely be able to outperform ASIC chips for proof of work up until

2028. That too is considered without taking into account the advancement of ASIC

chips which is expected to push the date even further. To put it into perspective,

a quantum computer with 13x106 qubits would be required to break a hash within

a day.

So the block chain technology is estimated to last at least around a decade more

until quantum computers would supposedly make this technology unreliable.

4.12 Output

The screenshots of the system can be found in APPENDIX A. Also, a typical

mined block of difficulty level 5 with ballot object of 100 parties when represented

as a text can be found in APPENDIX F.

43

CHAPTER 5

THESIS TIMELINE

Figure 5.1: Thesis Timeline

44

CHAPTER 6

CONCLUSION AND RECOMMENDATION

6.1 Conclusion

Thus, a block chain based e-voting system was designed that preserves the

anonymity of the voters’ vote by using paillier cryptography, which enabled the

system to tally the votes of the voters without the need to decrypt the votes

for tallying. Smart contracts dictated the entire election process like setting the

duration of the entire election, the difficulty level of proof of work, the limit of the

transactions per block, and when and whom to provide the paillier cryptography

keys.

6.2 Limitation

Although the system proposed in this thesis work is secure and uses multiple

threads for the mining process, the thesis work does not experiment with the

mining process using GPU.

6.3 Recommendation

This thesis work proposes a voting system using paillier cryptography for anonymity

and proof of work as a consensus mechanism. Another more reliable zero-knowledge

proof system can be used in another research along with a different consensus

mechanism.

45

REFERENCES

[1] Dr Kashmar and Awn Jasim. An Enhancement of Blockchain Technology

within Health Care. PhD thesis, 05 2022.

[2] Chen Zhang. The applications of Blockchain in food supply chain management.

PhD thesis, 03 2022.

[3] Md. Rakibul Hassan Robin. Product Authentication Using Blockchain. PhD

thesis, 07 2021.

[4] Cedric Strub. CONTRIBUTION OF BLOCKCHAIN TO HEALTH DATA

MANAGEMENT. PhD thesis, 04 2021.

[5] Irene Gelyk. Applicability of Blockchain for long-term digital preservation of

the Canadian nuclear waste management deep geological repository information

assets: a literature review. PhD thesis, 05 2022.

[6] Niru Raj. How Blockchain transforms the Future of Retail Shopping. PhD

thesis, 10 2020.

[7] Saipavan Vallabhaneni. Leveraging Blockchain for Plasma Fractionation

Supply Chains. PhD thesis, 04 2020.

[8] Fatemeh Borran and André Schiper. A leader-free byzantine consensus algo-

rithm. pages 67–78, 01 2010.

[9] Arthur Gervais, Ghassan Karame, Karl Wüst, Vasileios Glykantzis, Hubert

Ritzdorf, and Srdjan Capkun. On the security and performance of proof of

work blockchains. pages 3–16, 10 2016.

[10] Kejiao Li, Li Hui, Hanxu Hou, Kedan Li, and Yongle Chen. Proof of vote: A

high-performance consensus protocol based on vote mechanism consortium

blockchain. pages 466–473, 12 2017.

46

[11] Natalia Chaudhry and Muhammad Yousaf. Consensus algorithms in

blockchain: Comparative analysis, challenges and opportunities. pages 54–63,

12 2018.

[12] Seval Çapraz and Adnan Ozsoy. Personal Data Protection in Blockchain with

Zero-Knowledge Proof, pages 109–124. 03 2021.

[13] Uzma Jafar, Mohd Aziz, and Zarina Shukur. Blockchain for electronic voting

system—review and open research challenges. Sensors, 21:5874, 08 2021.

[14] Saad Khan, Aansa Arshad, Gazala Mushtaq, Aqeel Khalique, and Tarek

Husein. Implementation of decentralized blockchain e-voting. EAI Endorsed

Transactions on Smart Cities, 4:164859, 07 2018.

[15] Subashka Ramesh. E-voting based on block chain technology. 02 2022.

[16] Ahmed Ben Ayed. A conceptual secure blockchain-based electronic voting

system. 05 2017.

[17] Honglei Li and Weilian Xue. A blockchain-based sealed-bid e-auction scheme

with smart contract and zero-knowledge proof. Security and Communication

Networks, 2021:1–10, 05 2021.

[18] Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf.

Accessed: 06 07 2022.

[19] The cryptographic hash function sha-256.

https://helix.stormhub.org/papers/SHA-256.pdf. Accessed: 06 07 2022.

[20] Shay Gueron, Simon Johnson, and Jesse Walker. Sha-512/256. In Proceedings

of the 2011 Eighth International Conference on Information Technology: New

Generations, ITNG ’11, page 354–358, USA, 2011. IEEE Computer Society.

[21] Solidity. https://docs.soliditylang.org/en/v0.8.15. Accessed: 06 07 2022.

[22] Java — oracle. https://www.oracle.com/java. Accessed: 06 07 2022.

[23] Elliptic curve digital signature algorithm.

https://www.encryptionconsulting.com/education-center/what-is-ecdsa.

Accessed: 06 07 2022.

47

[24] Public-key cryptosystems based on composite.

https://link.springer.com/content/pdf/10.1007%2F3-540-48910-X 16.pdf.

Accessed: 06 07 2022.

[25] Recommended threading strategies and os platform.

https://docs.oracle.com/cd/E29584 01/webhelp/PerfTuning/platform.html.

Accessed: 06 07 2022.

[26] Masters thesis viz,” tableau public. https://public.tableau.com/app/profile

/juned.alam7696. Accessed: 06 07 2022.

[27] Bitmain. https://shop.bitmain.com/product/detail?pid=0002022010511231886

8myo6YbOL06D3. Accessed: 06 07 2022.

[28] Mark Webber, Vincent Elfving, Sebastian Weidt, and Winfried K. Hensinger.

The impact of hardware specifications on reaching quantum advantage in the

fault tolerant regime. AVS Quantum Science, 4(1):013801, 2022.

[29] Joseph J. Kearney and Carlos A. Perez-Delgado. Vulnerability of blockchain

technologies to quantum attacks. Array, 10:100065, 2021.

48

APPENDIX A

The screenshot of the output of the system has been attached below:

Figure 6.1: Miner node

Figure 6.2: Voter node

49

APPENDIX B

Table 6.1: Hash generated per second of SHA-256 and SHA-512 while using given
number of threads

No of threads SHA-256 hashes generated per second SHA-512 hashes generated per second
1 811 885
2 1003 1021
3 1253 1378
4 1821 1651
5 1863 1877
6 2131 2616
7 2369 3610
8 2752 3495
9 2712 4318
10 2706 4469
11 3113 4350
12 3076 4376
13 3284 4442
14 3297 4354
15 3734 4728
16 3844 4466
17 4384 4525
18 4684 4583
19 4363 4919
20 4368 4684
21 4372 4809
22 4229 4699
23 4438 4768
24 4346 4777
25 4359 4575
26 4365 4470
27 4237 4612
28 4210 4606
29 4224 4227
30 4203 4533
31 4242 4524
32 4217 4412
33 4164 4442
34 4233 4264
35 3809 4421
36 4226 4427
37 4233 4247
38 4130 4390
39 4257 4400
40 4153 4411
41 4179 4440
42 4046 4367
43 4155 4216
44 4056 4311

50

Table 6.2: Hash generated per second of SHA-256 and SHA-512 while using given
number of threads, continued

No of threads SHA-256 hashes generated per second SHA-512 hashes generated per second
45 4196 4239
46 4122 4213
47 4048 4095
48 4064 4282
49 4009 4288
50 4062 4207
51 4112 4242
52 4186 4207
53 4095 4236
54 4068 4111
55 3970 4237
56 3944 4174
57 4080 4206
58 4050 4176
59 3727 4254
60 4115 4338
61 4009 4239
62 4031 4234
63 4002 4285
64 4030 4287
65 3813 4125
66 4040 4194
67 3991 4085
68 3971 4297
69 3792 4295
70 3843 4199
71 3826 4224
72 3907 4230
73 3898 4112
74 3747 4160
75 3747 4136
76 3927 4155
77 3815 4079
78 3859 4143
79 3877 4297
80 3873 4188
81 3808 4105
82 3972 4224
83 3896 4019
84 3907 4175
85 3831 3946
86 3786 4075
87 4007 3957
88 3918 4008
89 3974 3996
90 3899 4113
91 3916 3532
92 3949 4069
93 3929 3975
94 3893 4050
95 3988 4140
96 4022 4164
97 3893 4120
98 3736 4237
99 3449 4029
100 3365 4355

51

APPENDIX C

An example of Paillier cryptography with small parameters is as follows.

Let us choose small prime numbers as P=7, q=11

Then, n = p*q = 7*11 = 77

Now, let’s select and integer g from Z∗
n2 , such that the order of g is a multiple of n

in Z∗
n2 . If we randomly choose the integer g = 5652

then all necessary conditions are met as the order of g is 2310 = 30 * 77 in Z∗
n2 .

The public key for the example will be as: (n, g) = (77, 5652)

To encrypt a message, let’s say 42 such that m = 42

where m belongs to Zn, let us choose a random say 23 such that r = 23

where r is a nonzero integer and r belongs to Zn.

Let us compute the cipher text c as: c=gm * rn (mod n2) = 565242*2377 (mod

5929) = 4624 (mod 5929)

To decrypt the ciphertext c, let us compute λ as λ = lcm (6, 10) =30

Let us define L(x)=(x-1)/n, compute

u = (L(gλmodn2))−1modn

= L(565230(mod5929))

= L(3928)

= (3928− 1)/77

= 3927/77

= 51

52

Let us compute the inverse of k as

u = k − 1(modn)

= 51−1

= 74(mod77)

Thus,

m = L(cλmodn2) ∗ umodn

= L(462430(mod5959)) ∗ 74(mod77)

= L(4852) ∗ 74(mod77)

= 42

53

APPENDIX D

Table 6.3: System Performance Metrics Data

Difficulty Level Time Taken (in ms) No of transactions
1 23 50
1 22 100
1 19 150
1 15 200
1 9 250
1 15 300
1 15 350
1 20 400
1 32 450
1 15 500
1 10 550
1 24 600
1 17 650
1 15 700
1 12 750
1 12 800
1 14 850
1 17 900
1 14 950
1 16 1000
2 208 50
2 225 100
2 208 150
2 148 200
2 233 250
2 217 300

54

Table 6.4: System Performance Metrics Data, continued

Difficulty Level Time Taken (in ms) No of transactions
2 293 350
2 204 400
2 197 450
2 345 500
2 214 550
2 221 600
2 173 650
2 177 700
2 193 750
2 156 800
2 178 850
2 153 900
2 166 950
2 201 1000
3 83170 50
3 18880 100
3 3846 150
3 3076 200
3 3061 250
3 2673 300
3 3623 350
3 2929 400
3 2166 450
3 2677 500
3 2160 550
3 3001 600
3 2583 650
3 3065 700
3 2522 750
3 3035 800
3 3777 850
3 2221 900
3 2894 950
3 3711 1000

55

Table 6.5: System Performance Metrics Data, continued

Difficulty Level Time Taken (in ms) No of transactions
4 52440 50
4 274111 100
4 198540 150
4 59668 200
4 169964 250
4 117144 300
4 122808 350
4 133503 400
4 129307 450
4 132295 500
4 85739 550
4 63507 600
4 108375 650
4 103461 700
4 188275 750
4 174948 800
4 65728 850
4 642173 900
4 91449 950
4 305006 1000

56

APPENDIX E

Table 6.6: System Performance Metrics Data with multiple thread

difficulty level no of thread average time to mine (in ms) type of hash mode of mining
1 1 67 SHA-512 continous
1 2 90 SHA-512 continous
1 3 68 SHA-512 continous
1 4 65 SHA-512 continous
1 5 91 SHA-512 continous
1 6 81 SHA-512 continous
1 7 70 SHA-512 continous
1 8 130 SHA-512 continous
1 9 166 SHA-512 continous
1 10 186 SHA-512 continous
1 11 70 SHA-512 continous
1 12 92 SHA-512 continous
1 13 80 SHA-512 continous
1 14 202 SHA-512 continous
1 15 95 SHA-512 continous
1 16 121 SHA-512 continous
1 17 77 SHA-512 continous
1 18 85 SHA-512 continous
1 19 89 SHA-512 continous
1 20 82 SHA-512 continous
2 1 506 SHA-512 continous
2 2 190 SHA-512 continous
2 3 157 SHA-512 continous
2 4 168 SHA-512 continous
2 5 135 SHA-512 continous
2 6 129 SHA-512 continous
2 7 136 SHA-512 continous
2 8 76 SHA-512 continous
2 9 141 SHA-512 continous
2 10 116 SHA-512 continous
2 11 160 SHA-512 continous
2 12 142 SHA-512 continous
2 13 205 SHA-512 continous
2 14 139 SHA-512 continous
2 15 80 SHA-512 continous
2 16 95 SHA-512 continous
2 17 165 SHA-512 continous
2 18 163 SHA-512 continous
2 19 87 SHA-512 continous

57

Table 6.7: System Performance Metrics Data with multiple thread, continued

difficulty level no of thread average time to mine (in ms) type of hash mode of mining
2 20 146 SHA-512 continous
3 1 2354 SHA-512 continous
3 2 2441 SHA-512 continous
3 3 1379 SHA-512 continous
3 4 1199 SHA-512 continous
3 5 564 SHA-512 continous
3 6 831 SHA-512 continous
3 7 531 SHA-512 continous
3 8 2493 SHA-512 continous
3 9 2260 SHA-512 continous
3 10 1164 SHA-512 continous
3 11 416 SHA-512 continous
3 12 792 SHA-512 continous
3 13 1427 SHA-512 continous
3 14 2057 SHA-512 continous
3 15 1142 SHA-512 continous
3 16 726 SHA-512 continous
3 17 1188 SHA-512 continous
3 18 1144 SHA-512 continous
3 19 1590 SHA-512 continous
3 20 1234 SHA-512 continous
4 1 75328 SHA-512 continous
4 2 21587 SHA-512 continous
4 3 17659 SHA-512 continous
4 4 21740 SHA-512 continous
4 5 24670 SHA-512 continous
4 6 12326 SHA-512 continous
4 7 24998 SHA-512 continous
4 8 9859 SHA-512 continous
4 9 80075 SHA-512 continous
4 10 30772 SHA-512 continous
4 11 27252 SHA-512 continous
4 12 23135 SHA-512 continous
4 13 30571 SHA-512 continous
4 14 23213 SHA-512 continous
4 15 26724 SHA-512 continous
4 16 60063 SHA-512 continous
4 17 15694 SHA-512 continous
4 18 18286 SHA-512 continous

58

Table 6.8: System Performance Metrics Data with multiple thread, continued

difficulty level no of thread average time to mine (in ms) type of hash mode of mining
4 19 13837 SHA-512 continous
4 20 70547 SHA-512 continous
1 1 56 SHA-512 block wise
1 2 59 SHA-512 block wise
1 3 65 SHA-512 block wise
1 4 95 SHA-512 block wise
1 5 69 SHA-512 block wise
1 6 66 SHA-512 block wise
1 7 56 SHA-512 block wise
1 8 77 SHA-512 block wise
1 9 129 SHA-512 block wise
1 10 83 SHA-512 block wise
1 11 94 SHA-512 block wise
1 12 67 SHA-512 block wise
1 13 190 SHA-512 block wise
1 14 94 SHA-512 block wise
1 15 96 SHA-512 block wise
1 16 75 SHA-512 block wise
1 17 227 SHA-512 block wise
1 18 75 SHA-512 block wise
1 19 229 SHA-512 block wise
1 20 297 SHA-512 block wise
2 1 167 SHA-512 block wise
2 2 83 SHA-512 block wise
2 3 132 SHA-512 block wise
2 4 107 SHA-512 block wise
2 5 152 SHA-512 block wise
2 6 78 SHA-512 block wise
2 7 65 SHA-512 block wise
2 8 86 SHA-512 block wise
2 9 121 SHA-512 block wise
2 10 110 SHA-512 block wise
2 11 94 SHA-512 block wise
2 12 120 SHA-512 block wise
2 13 137 SHA-512 block wise
2 14 91 SHA-512 block wise
2 15 105 SHA-512 block wise
2 16 92 SHA-512 block wise
2 17 93 SHA-512 block wise

59

Table 6.9: System Performance Metrics Data with multiple thread, continued

difficulty level no of thread average time to mine (in ms) type of hash mode of mining
2 18 97 SHA-512 block wise
2 19 97 SHA-512 block wise
2 20 128 SHA-512 block wise
3 1 1128 SHA-512 block wise
3 2 942 SHA-512 block wise
3 3 2488 SHA-512 block wise
3 4 1008 SHA-512 block wise
3 5 909 SHA-512 block wise
3 6 698 SHA-512 block wise
3 7 750 SHA-512 block wise
3 8 731 SHA-512 block wise
3 9 716 SHA-512 block wise
3 10 532 SHA-512 block wise
3 11 658 SHA-512 block wise
3 12 334 SHA-512 block wise
3 13 517 SHA-512 block wise
3 14 982 SHA-512 block wise
3 15 1611 SHA-512 block wise
3 16 1038 SHA-512 block wise
3 17 488 SHA-512 block wise
3 18 545 SHA-512 block wise
3 19 701 SHA-512 block wise
3 20 578 SHA-512 block wise
4 1 14567 SHA-512 block wise
4 2 19177 SHA-512 block wise
4 3 22088 SHA-512 block wise
4 4 12288 SHA-512 block wise
4 5 19059 SHA-512 block wise
4 6 11943 SHA-512 block wise
4 7 24710 SHA-512 block wise
4 8 12669 SHA-512 block wise
4 9 8660 SHA-512 block wise
4 10 15905 SHA-512 block wise
4 11 18257 SHA-512 block wise
4 12 8795 SHA-512 block wise
4 13 21013 SHA-512 block wise
4 14 4709 SHA-512 block wise
4 15 12744 SHA-512 block wise
4 16 11177 SHA-512 block wise

60

Table 6.10: System Performance Metrics Data with multiple thread, continued

difficulty level no of thread average time to mine (in ms) type of hash mode of mining
4 17 4059 SHA-512 block wise
4 18 13942 SHA-512 block wise
4 19 16999 SHA-512 block wise
4 20 11152 SHA-512 block wise
1 1 47 SHA-256 continous
1 2 50 SHA-256 continous
1 3 69 SHA-256 continous
1 4 43 SHA-256 continous
1 5 76 SHA-256 continous
1 6 95 SHA-256 continous
1 7 111 SHA-256 continous
1 8 65 SHA-256 continous
1 9 69 SHA-256 continous
1 10 105 SHA-256 continous
1 11 98 SHA-256 continous
1 12 75 SHA-256 continous
1 13 172 SHA-256 continous
1 14 172 SHA-256 continous
1 15 73 SHA-256 continous
1 16 86 SHA-256 continous
1 17 216 SHA-256 continous
1 18 81 SHA-256 continous
1 19 97 SHA-256 continous
1 20 235 SHA-256 continous
2 1 97 SHA-256 continous
2 2 353 SHA-256 continous
2 3 107 SHA-256 continous
2 4 190 SHA-256 continous
2 5 133 SHA-256 continous
2 6 171 SHA-256 continous
2 7 136 SHA-256 continous
2 8 119 SHA-256 continous
2 9 175 SHA-256 continous
2 10 144 SHA-256 continous
2 11 175 SHA-256 continous
2 12 145 SHA-256 continous
2 13 98 SHA-256 continous
2 14 152 SHA-256 continous
2 15 234 SHA-256 continous

61

Table 6.11: System Performance Metrics Data with multiple thread, continued

difficulty level no of thread average time to mine (in ms) type of hash mode of mining
2 16 251 SHA-256 continous
2 17 150 SHA-256 continous
2 18 143 SHA-256 continous
2 19 115 SHA-256 continous
2 20 182 SHA-256 continous
3 1 4062 SHA-256 continous
3 2 1010 SHA-256 continous
3 3 457 SHA-256 continous
3 4 1000 SHA-256 continous
3 5 1478 SHA-256 continous
3 6 1708 SHA-256 continous
3 7 1379 SHA-256 continous
3 8 1522 SHA-256 continous
3 9 1679 SHA-256 continous
3 10 1223 SHA-256 continous
3 11 1204 SHA-256 continous
3 12 399 SHA-256 continous
3 13 1284 SHA-256 continous
3 14 875 SHA-256 continous
3 15 362 SHA-256 continous
3 16 857 SHA-256 continous
3 17 1225 SHA-256 continous
3 18 1282 SHA-256 continous
3 19 433 SHA-256 continous
3 20 2472 SHA-256 continous
4 1 57142 SHA-256 continous
4 2 22871 SHA-256 continous
4 3 16074 SHA-256 continous
4 4 10304 SHA-256 continous
4 5 11889 SHA-256 continous
4 6 20666 SHA-256 continous
4 7 25144 SHA-256 continous
4 8 16834 SHA-256 continous
4 9 14837 SHA-256 continous
4 10 33827 SHA-256 continous
4 11 15560 SHA-256 continous
4 12 16507 SHA-256 continous
4 13 15475 SHA-256 continous
4 14 35691 SHA-256 continous

62

Table 6.12: System Performance Metrics Data with multiple thread, continued

difficulty level no of thread average time to mine (in ms) type of hash mode of mining
4 15 23509 SHA-256 continous
4 16 34236 SHA-256 continous
4 17 14753 SHA-256 continous
4 18 24560 SHA-256 continous
4 19 54737 SHA-256 continous
4 20 23991 SHA-256 continous
1 1 54 SHA-256 block wise
1 2 58 SHA-256 block wise
1 3 62 SHA-256 block wise
1 4 41 SHA-256 block wise
1 5 102 SHA-256 block wise
1 6 53 SHA-256 block wise
1 7 52 SHA-256 block wise
1 8 110 SHA-256 block wise
1 9 197 SHA-256 block wise
1 10 136 SHA-256 block wise
1 11 138 SHA-256 block wise
1 12 76 SHA-256 block wise
1 13 76 SHA-256 block wise
1 14 212 SHA-256 block wise
1 15 79 SHA-256 block wise
1 16 210 SHA-256 block wise
1 17 70 SHA-256 block wise
1 18 69 SHA-256 block wise
1 19 69 SHA-256 block wise
1 20 51 SHA-256 block wise
2 1 187 SHA-256 block wise
2 2 152 SHA-256 block wise
2 3 69 SHA-256 block wise
2 4 63 SHA-256 block wise
2 5 135 SHA-256 block wise
2 6 60 SHA-256 block wise
2 7 104 SHA-256 block wise
2 8 76 SHA-256 block wise
2 9 149 SHA-256 block wise
2 10 120 SHA-256 block wise
2 11 108 SHA-256 block wise
2 12 129 SHA-256 block wise
2 13 190 SHA-256 block wise

63

Table 6.13: System Performance Metrics Data with multiple thread, continued

difficulty level no of thread average time to mine (in ms) type of hash mode of mining
2 14 120 SHA-256 block wise
2 15 146 SHA-256 block wise
2 16 136 SHA-256 block wise
2 17 143 SHA-256 block wise
2 18 110 SHA-256 block wise
2 19 96 SHA-256 block wise
2 20 87 SHA-256 block wise
3 1 6662 SHA-256 block wise
3 2 2276 SHA-256 block wise
3 3 742 SHA-256 block wise
3 4 855 SHA-256 block wise
3 5 1318 SHA-256 block wise
3 6 2646 SHA-256 block wise
3 7 947 SHA-256 block wise
3 8 981 SHA-256 block wise
3 9 428 SHA-256 block wise
3 10 1263 SHA-256 block wise
3 11 953 SHA-256 block wise
3 12 715 SHA-256 block wise
3 13 781 SHA-256 block wise
3 14 892 SHA-256 block wise
3 15 440 SHA-256 block wise
3 16 610 SHA-256 block wise
3 17 767 SHA-256 block wise
3 18 759 SHA-256 block wise
3 19 926 SHA-256 block wise
3 20 706 SHA-256 block wise
4 1 26675 SHA-256 block wise
4 2 19473 SHA-256 block wise
4 3 22853 SHA-256 block wise
4 4 16723 SHA-256 block wise
4 5 6990 SHA-256 block wise
4 6 10516 SHA-256 block wise
4 7 6549 SHA-256 block wise
4 8 15630 SHA-256 block wise
4 9 7004 SHA-256 block wise
4 10 5551 SHA-256 block wise
4 11 14420 SHA-256 block wise
4 12 6439 SHA-256 block wise
4 13 26169 SHA-256 block wise
4 14 7463 SHA-256 block wise
4 15 8391 SHA-256 block wise
4 16 6769 SHA-256 block wise
4 17 7186 SHA-256 block wise
4 18 9070 SHA-256 block wise
4 19 15191 SHA-256 block wise
4 20 13114 SHA-256 block wise

64

APPENDIX F

A typical block in a block chain, with ballot size of 3, when represented as text

looks as follows:

Block{id=1, nonce=859055285, timeStamp=1662907194197,

hash=’00000c50da2bd5e3d344857b671b9fccf7e442b03a5516c042beecfab11bb31c’,

previousHash=‘000002615941007553adbf068c1cb93f67ddfecf2787268784fd8f01a054

2115’,

transactions=[Transaction{voterIds={1}, finalBallotPaper=

{Party1= 3214101728113432780610492910743573448438523697924095319

296594134 8276678268178738216732201075839057966186864884213291156861147

9537482792 781188961463600007413329802450746441124868302483719285718

71092243394619 8871487795266331501626342930840023

4925311277174286547088293861077015158 87819441262576850

552252490078888824038017539283898319100176405669047259

61330271139236488278601583121740463858311873501890584122256110235179089

64746706493437893512851759159013184529521523195423388981075992047082400

97026637803184962403442041024019937765132324516595175639832845326362929

8053042863132607248948034565728505480466317499731366696,

Party2=23971195694803979232665370406886412352220449898865346623044811751

38032182023611105895605755327077804117550939230941199616983985348262935

29398192139934217410299963636483880750359571875672972373012223073781920

59526870890500541727067964929665164319654936407551291739054916307961564

96209712589295847952031573720918571644128222564670451360466961701776188

35299006815542025280405674195667611818888904876898839054480483232876706

45846429163932853535713646242083593194371831221940016339924510974968519

92502532558888033149326939912947799080294621760622075794725872321815422

294197591651503411080969591326336153591422525127987725,

65

Party3=13918690118073971228306173197525044814501970334220720841960073158

68325863658767409125975656673911358485669133367502929949370145570212042

31472349436850733281110057620891062627400189567388368827189847297689889

14885011462142810711480097033330045605102666877946488487706195648155260

34711548154108053021846191868744075986908749725452084906208667877001693

14893541128310605983779592501546214032420406879674629011327563355671374

92226932363141959042258622084863547635541757367095643469980517063110287

67009050015783098050042483143455748973049533607495325314875682613836983

383750394088119072950721978538605632279817907460721141}]}

66

