Cyclic Sequences for Min-Max Objective in Mixed Model Just-in-Time Production System

A Dissertation Submitted to

The Central Department of Computer Science and Information Technology

Faculty of Science and Technology

Tribhuvan University

In Partial Fulfillment of the Requirements for the Degree of Masters of

Science in Computer Science and Information Technology

By:

Bishnu Prasad Pandey

January 2009

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Date:

Recommendation

I hereby recommend that the dissertation prepared under my supervision by **Mr. Bishnu Prasad Pandey** entitled "**Cyclic Sequences for Min-Max Objective in Mixed Model Just in-Time Production System**" be accepted as a partial fulfillment of the requirement for the degree of Master of Computer Science, from Tribhuvan University, Nepal. In my best knowledge this is an original work in computer science.

Dr. Tanka Nath Dhamala

Head of the Department,

Central Department of Computer Science

and Information Technology,

Tribhuvan University, Nepal

(Supervisor)

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Date:

Evaluation Committee

We certify that we have read this dissertation work and in our opinion it is satisfactory in the scope and quality as a dissertation as the partial fulfillment of the requirement of Master in Computer Science and Information Technology from Tribhuvan University, Nepal.

Dr. Tanka Nath Dhamala

Head of the Department,

Central Department of Computer Science

and Information Technology,

Tribhuvan University, Nepal

(Supervisor)

Internal Examiner

External Examiner

ABSTRACT

Cyclic scheduling has received considerable attention in recent years as an effective technique for repetitive manufacturing. Cyclic scheduling has been primarily studied under deterministic assumptions. In practice, stochastic variability exists and must be taken into account. The cyclic scheduling problems that arise in manufacturing are studied in this dissertation. Starting with practical Just-in-Time sequencing problem with given set of sequences as precedence constraints, efficient algorithm which obtains an optimal solution for the maximum deviation objective in the single level is studied. From this study, formulation for solving min-max-absolute-chain problem in cyclic paradigm is introduced. Moreover, the study purposes algorithms for implementation of cyclic version of min-max-absolute-chain problem. With its implementation, repetitive manufacturing industry could benefit.

ACKNOWLEDGEMENT

It is a great feeling to thank all, who encouraged me and made contributions to my work. I would like to express my deep and sincere gratitude to my supervisor, Dr. Tanka Nath Dhamala, Head of the Department, Central Department of Computer Science and Information Technology, Tribhuvan University for his detailed and constructive comments, and for his important support throughout this work. Dr. Dhamala, apart from guiding me, also provided plenty of research papers.

I express my warm and sincere thanks to Prof. Dr. Devi Dutta Paudyal (Former Head, Central Department of Computer Science and Information Technology) for his inspiration and encouragement. I am grateful to Mr. Bishnu Gautam for his valuable suggestions.

I warmly thank to the respected teachers Prof. Dr. Shashidhar Ram Joshi, Dr. Subarna Shakya, Prof. Dr. Onkar Sharma, Mr. Arun Timalsina, Mr. Sudarshan Karanjit, Mr. Min. B. Khati, Mr. Samujjwal Bhandari, Mr. Hemanta B.G.C., Mr. Dinesh Bajracharya and all others for the knowledge and inspirations they give me in the time period of two years. I would also like to thank Mr. Dipak Pandey who gave me untiring help during my difficult moments.

During this work I have collaborated with many colleagues for whom I have great regards, and I wish to extend my warmest thanks to all those who have helped me with my work in the department. I owe my loving thanks to my parents for their constant support and encouragement.

Bishnu Pd. Pandey

CDCSIT, T.U.

FIGURES

Figure 3.1 Gantt chart for a schedule of four jobs in single machine	13
Figure 3.2 Types of scheduling problems according to characteristics	15
Figure 3.3 The basic queuing model	20
Figure 3.4 Types of scheduling problems according to environments	22
Figure 6.1 Minimum cycle length schedule	44
Figure 7.1 Input window when number of cycle and length of cycle is equal .	50
Figure 7.2 Calculation of early and late due date	51
Figure 7.3 Modified due dates and the generated schedule	51
Figure 7.4 Input window for equal number of cycle with different length	52
Figure 7.5 Calculation of early and late due date.	52
Figure 7.6 Modified due dates and the generated schedule	53
Figure 7.7 Input window when number of cycle differs but same length	53
Figure 7.8 Calculation of early and late due date	54
Figure 7.9 Modified due dates and the generated schedule	54

Table of Contents

1	Intr	oduction1
	1.1	Background1
	1.2	Motivation
	1.3	Objective of the Study
	1.4	Organization of the Thesis
	1.5	Methodology
2 Computational Complexity		nputational Complexity6
	2.1	Turing Machine and Algorithm
	2.2	Computational Resource
	2.3	Functions7
	2.4	Asymptotic Order of Functions
	2.5	Complexity Classes
	2.5.1	Class P9
	2.5.2	2 Class NP9
2.5.3 The P=NP Question2.5.4 co-NP		3 The P=NP Question
		4 co-NP
2.5.5 NP-Complete		5 NP-Complete10
	2.5.6	5 NP-Hard 10
3 Scheduling Problems		eduling Problems11
	3.1	Representation of Schedule
	3.2	Machine Environment13
	3.3	Job Characterestics
	3.3.1	Deterministic vs. Stochastic
	3.3.2	2 Unitery vs. Repetitive
	3.3.3	3 Static vs. Dynamic
	3.4	Objective Functions in Scheduling

	3.5	The Three Field Notation	17
	3.6	Some Areas of Applications	18
	3.6.1	Problems Related to Production	19
	3.6.2	2 Scheduling Problems in Operation System	19
	3.6.3	B Other Problems	21
	3.7	Shop Environment	22
	3.8	Constraints	23
	3.9	Optimality Criteria	23
	3.9.1	Minimization of a Maximum Function: "min-max" Criteria	23
	3.9.2	2 Minimization of a Sum Function: "min-sum" Criteria	24
4	Just	-in-Time Systems	26
	4.1	Mixed Model Production	27
	4.2	Mathematical Model Formulations	27
	4.2.1	The PRV Problem Formulation	27
	4.2.2	2 The ORV Problem Formulation	29
5	Min	-max Problem	32
	5.1	Graph and Matching Problems	32
	5.2	Release Date/ Due Date Decision Problem	33
	5.3	Just-in-Time Sequencing with Input Sequences	34
	5.4	An Efficient Scheduling Algorithm	35
	5.5	Algorithm: min-max-absolute-chain-algorithm	36
	5.6	Correctness of min-max-absolute-chain-algorithm	37
6	Cycl	lic Schedulings	40
	6.1	Cyclic Scheduling Problems	42
	6.2	Cyclic Scheduling with Minimal Part Set	43
	6.3	Cyclic Solution to PRV Problem	45
	6.4	Cyclic Solution to min-max-absolute-chian Problem	45

7	Implementation and Testing Conclusion and Future Recommendation		50 55
8			
	8.1	Conclusion	55
	8.2	Recommendation	55

References	
Bibliography	
Appendix A: Basic Mathematical Notations	I-II
Appendix B: Program Source Code	III-XIV

ABBREVIATIONS

AGV	Automated Guided Vehicles
EDD	Earliest Due Date
FCFS	First Come First Serve
FMS	Flexible Manufacturing Systems
GSM	Goal Chasing Method
JIT	Just-in-Time
MPS	Minimal Part Set
ORV	Output Rate Variation
OS	Operating System
PRV	Product Rate Variation
SJF	Shortest Job First

SP Sequencing Problem

SPT Shortest Processing Time

SRTN Shortest Remaining Time Next

WIP Work-in-Process