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Chapter 1

Introduction

1.1 Background

JIT (Just-in-Time) is the name used to describe a manufacturing system where the parts

which are needed to complete the finished products are produced or arrive at the

assembly site as they are needed. Just-in-Time is a Japanese manufacturing management

method developed in 1970s. It was first adopted in Toyota manufacturing plants by

Taiichi Ohno. The main concern at that time was to meet consumer demands.

The concept of penalizing jobs both for being tardy and for being early has proven one of

the most important and fertile research topic in operations research. Sequencing different

products with even distribution under Just-in-Time production system for minimization

of earliness and tardiness penalties is a challenging non-linear integer programming

problem. The purpose of Just-in-Time production is to reduce cost by eliminating waste.

In sales the Just-in-Time concept is realized by producing only salable products or part in

salable quantities. Mixed model assembly lines are used to produce many different

products without carrying large inventories.  An important and obvious optimization

problem associated with these lines is that of determining the sequence for manufacturing

different type of parts on the line. The sequence will depend upon the objective of the

company.

Miltenburg [28] considers the quantity of each part used by mixed model assembly line

per unit of time should be kept as constant as possible. Monden [30] states this as most

important goal of Just-in-Time production system implemented by Toyota. Toyota’s Goal

Chasing Method, a local search heuristic, has been most popular for solving the problem.

The sequence referred to as level, balanced or fair sequence always keeps actual

production level and desired production level as close to each other as possible all the

times.
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The goal of Just-in-Time approach is to sequence small batches of variety of part types in

order to satisfy customers demand for them with out holding excessive inventories or

incurring large shortage. A sequence with this goal is termed as a balanced schedule,

Miltenburg and Sinnamon [29]. In some special cases, this sequence will be optimal for

level schedule problem for mixed model assembly line, Monden [30]. The level schedule

problem is concerned with keeping as constant as possible the rate of usage of component

parts going into part type being assembled.

Different cases arise here. One is component required for different part types are distinct.

Other is different part types require the same number and mix of components. In this

case, Monden [30] provides a simple heuristic method Goal Chasing Method II (GSM II)

used at Toyota for sequencing its mixed model assembly line. Miltenburg has developed

several heuristic methods and conducts computational experiments to compare their

performance. Monden [30] and Miltenburg and Sinnamon [29] provide several heuristic

methods for obtaining level schedule in general case. Kubiak and Sethi [25] reduce the

minimization of total deviation Just-in-Time problem into assignment problem and there

by presents an efficient optimization algorithm for this problem. Steiner and Yeomans

[33] give a graph theoretic optimization algorithm for minimizing maximum deviation

Just-in-Time single level sequencing problem. They also give an algorithm for

minimizing multi-level maximum deviation Just-in-Time assembly system under pegging

assumption. If the outputs at production level to the final product onto which they will be

assembled, the problem with pegging is equivalence to a weighted single level problem.

There exist cyclic schedules for both maximum and minimum deviations. These

schedules are optimal and reduce the computational requirement, Steiner and Yeomans

[33] and Kubiak [23]. The minimization of maximum deviation (bottleneck) for single

level is co-NP, Brauner and Crama [4]. The multilevel problem for two or more

production levels is strongly NP-Hard, Kubiak [23]. Bautista, Companys and Corominas

[1] linked Just-in-Time sequencing and apportionment problem. Dhamala [10] propose

an efficient algorithm which obtains optimal solution for a variation of maximum

deviation objective function in single level.
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1.2 Motivation

The motivation behind the cyclic scheduling approach in Just-in-Time environment

comes from the environment where nearly all the demand requires (or customer

purchase) most of the productions form a company in the repetitive manner. This

environment is attractive setting for a cyclic schedule to be implemented. Cyclic

scheduling is consistent with Just-in-Time in two important respects. First, the cyclic

sequence aims to globally minimize inventory by having production ready when it is

needed. Second, efforts to reduce setup times are more effective since they can be

directed at the specific changeovers that occur in the sequence. Also, the task of

coordinating other activities such as raw material delivery, preventive maintenance, and

work force schedules becomes simpler.

1.3 Objective of the Study

The specific objective of the study was to study and analyze a cyclic scheduling approach

in Just-in-Time environment.

The general objectives of this study were stated as:

- To study different models in Just-in-Time production system.

- To study different objective functions under Just-in-Time production environment.

- To find out possibility of cyclic approach in Just-in-Time System.

- To achieve goal of min-max objective function in cyclic manner

1.4 Organization of the Thesis

Thesis is organized as follows:

Chapter 2 describes algorithms and computational complexity. The theoretical basis of

computer science has been formulated. Computational resources and complexity classes

are described.
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Chapter 3 sets out the scheduling problems as encountered in the literature. It presents

representation of schedule, job characteristics, constraints and criterions. Grahm’s

notation of scheduling problem is provided. Some areas of applications of scheduling

problem are mentioned. Min-max and min-sum criteria for scheduling problem are

described.

Chapter 4 deals with Just-in-Time system. Mixed model production system is described.

Mathematical models are formulated for single level and multi level problems.

Chapter 5 focuses on objective functions for the schedule in Just-in-Time environment.

We study min-max objective function which gives maximum overproduction (inventory)

/ underproduction (shortage) from the desired level of production that occurs at any time

during schedule. Min-max problem is reduced to release date/ due date decision problem.

Single level just in time sequencing problem is formulated under chain constraints and

min-max-absolute-chain-algorithm is covered in this chapter.

Chapter 6 is related with cyclic schedules. Cyclic scheduling problems encountered in

manufacturing system are illustrated. A cyclic solution to PRV problem is described. This

chapter extends min-max-absolute-chain-algorithm for cyclic sequence. An optimal

cyclic approach is used in min-max-absolute-chain-algorithm to increase performance of

the algorithm.

Chapter 7 “Implementation and Testing” shows the organization of the program to

implement the algorithms. The program is tested for input data set (chains), which

represent the demands of products in the mixed model assembly line manufacturing

system.

Chapter 8 “Conclusion and Future Recommendation” has concluded the study with some

remarks and future recommendation for the study on cyclic paradigm over mixed model

Just-in-Time production system with min-max objective.
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1.5 Methodology

Papers related to the Scheduling, Optimization problems, Just-in-Time sequencing

problems and Cyclic Just-in-Time sequences were collected. Study of these papers

encouraged us to work in mixed model Just-in-Time production system. Initially, we

studied min-max problems and min-max-absolute-chain-algorithm in detail. Since

optimal Just-in-Time sequences are always cyclic, the goal of min-max-absolute-chain-

algorithm was tried to achieve in cyclic paradigm.

An application was developed to achieve the goal in Java programming language. The

min-max-absolute-chain-algorithm was implemented in cyclic paradigm. Different

constraints considered in this work were:

1. Number of cycle and length of cycle is equal in each chain.

2. Number of cycle is equal and length of cycle differs in different chains.

3. Number of cycle differs and length of cycle is same in different chains.
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Chapter 2

Computational Complexity

Computational complexity analysis, as a branch of the theory of computation in computer

science, investigates the problems related to the amounts of resources required for the

execution of algorithms (e.g., execution time), and the inherent difficulty in providing

efficient algorithms for specific computational problems. In particular, the theory places

practical limits on what computers can accomplish. Manuel Blum developed axiomatic

approach to measure computational complexity, Blum [3]. He introduced such measures

of complexity as the size of a machine and axiomatic complexity measure of recursive

functions. The time complexity and space complexity of algorithms are special cases of

the axiomatic complexity measure. The axiomatic approach helps to study computational

complexity in the most general setting. An important aspect of the theory is to categorize

computational problems and algorithms into complexity classes.

2.1 Turing Machines and Algorithms

It all started with a machine. In 1936, Alan Turing developed his theoretical

computational model. His model is based on his perception of the way mathematicians

think. As digital computers were developed in the 40's and 50's, the Turing machine

proved itself as the right theoretical model for computation. Basically, Turing machine

converts one set of strings to another. A Turing Machine comprises of a finite control, a

tape, and a head that can be used for reading and writing on the tape.

There is no precise definition of an algorithm. It is believed that algorithms and Turing

machines are equivalent. That is every problem solvable by Turing machine is solvable

by algorithm and vice versa. There are other models of computations apart from Turing

machines and algorithms. Church Turing’s thesis states that all these models are

equivalent, Deutsch [9]. An algorithm is any well defined computational procedure that

takes some value or set of values as input and produces some value or set of values as

output.
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The basic Turing machine model fails to account for the amount of time or memory

needed by a computer, a critical issue today but even more so in those early days of

computing. The key idea to measure time and space as a function of the length of the

input came in the early 1960's by Hartmanis and Stearns, Hartmanis and Stearns [18].

And thus computational complexity was born.

2.2 Computational Resources

Complexity theory analyzes the difficulty of computational problems in terms of many

different computational resources. The same problem can be explained in terms of the

necessary amounts of many different computational resources, including time, space,

randomness, and other less-intuitive measures. A complexity class is the set of all of the

computational problems which can be solved using a certain amount of a certain

computational resource.

The most well-studied computational resources are time and space. The time complexity

of a problem is the number of steps that an algorithm takes to solve an instance of the

problem. The space complexity of a problem is a measures the amount of space, or

memory required by the algorithm.  A good algorithm always takes less time and less

space. A better algorithm in bad machine may appear insufficient compared to bad

algorithm in good machine. To minimize effect of these considerations, computational

complexity deals with instances whose input size is very large, so that machine size can

be neglected. To describe behavior of algorithm for large input the concept of asymptotic

order is useful.

2.3 Functions

Given two sets A and B, a function f is a binary relation on A X B such that for all aA,

there exists precisely on bB such that (a, b)f. The set A is called domain of f, and the

set B is called co-domain of f. We write f:A→B and if (a, b)  f, we write b=f(a), since b

is uniquely determined by choice of a. Two functions f and g are equal if they have the

same domain and co-domain and if, for all a in the domain, f(a)=g(a).
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A finite sequence of length n is a function f whose domain is the set of n integers {0, 1, 2,

…, n-1}. Finite sequence is denoted by listing its values: {f(0), f(1), f(2), …, f(n-1)}. An

infinite sequence is a function whose domain is set of N natural numbers. For example,

the Fibonacci sequence, defined by recurrence, is the infinite sequence {0, 1, 1, 2, 3, 5, 8,

…..}.

A function f(x) between two ordered set is unimodal if for some value m (the mode), it is

monotonically increasing for x ≤ m and monotonically decreasing for x ≥ m. In that case,

the maximum value of f(x) is f(m) and there are no other local maxima. Examples of

unimodal function: quadratic polynomial, logistic map, tent map.

A function is convex if and only if its epigraph (the set of points lying on or above the

graph) is a convex set. Pictorially, a function is called 'convex' if the function lies below

the straight line segment connecting two points, for any two points in the interval. A

function f is said to be concave if − f is convex.

2.4 Asymptotic Order of Functions

There are three asymptotic orders that are commonly used. They are big-O, big-omega

and big-theta. Let f:N→R+ and g:N→R+ be two functions from the set of natural

numbers to the set of non-negative real numbers.

The function f(n) = O(g(n)) (read as “f of n is big oh of g of n”) if and only if there exist

positive constants c and n0 such that f(n)  c * g(n) for all n such that n  n0.

The function f(n) =  (g(n)) (read as “f of n is omega of g of n”) if and only if there exits

positive constants c and n0 such that f(n)  c * g(n) for all n such that n  n0.

The function f(n) =  (g(n)) (read as “f of n is theta of g of n”) if and only if there exits

positive constants c1, c2 and n0 such that c1* g(n) f(n)  c2* g(n) for all n such that n 

n0.
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2.5 Complexity Classes

A complexity class is the set of all of the computational problems which can be solved

using a certain amount of a certain computational resource. There are several complexity

classes in the theory of computation. The major classes are discussed below.

2.5.1 Class P

The complexity class P is the set of decision problems that can be solved by a

deterministic machine in polynomial time. This class corresponds to an intuitive idea of

the problems which can be effectively solved in the worst cases.

Example 2.1 The problem of sorting n numbers can be done in O(n2) time using the

quicksort algorithm in worst case . Thus all sorting problems are in P.

2.5.2 Class NP

The complexity class NP is the set of decision problems that can be solved by a non-

deterministic machine in polynomial time. This class contains many problems that people

would like to be able to solve effectively, including the Boolean satisfiability problem,

the Hamiltonian path problem and the Vertex cover problem. All the problems in this

class have the property that their solutions can be checked efficiently.

Example 2.2 A vertex cover of an undirected graph G=(V, E) is a subset of V’  V such

that if (u, v)E, then uV’ and vV’ or both. That is, each edge touches at least one

vertex V’. The vertex-cover problem is to find such a vertex cover of minimal cardinality.

This problem is NP.

2.5.3 The P=NP Question

The question of whether NP is the same set as P (that is whether problems that can be

solved in non-deterministic polynomial time can be solved in deterministic polynomial

time) is one of the most important open questions in theoretical computer science due to

the wide implications a solution would present. If it were true, many important problems
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would be shown to have "efficient" solutions. These include various types of integer

programming in operations research, many problems in logistics, protein structure

prediction in biology, and the ability to find formal proofs of pure mathematics theorems

efficiently using computers. The P=NP problem is one of the Millennium Prize Problems

proposed by the Clay Mathematics Institute the solution of which is a USD 1,000,000

prize for the first person to provide a solution.

2.5.4 co-NP

co-NP is the set containing the complement problems (i.e. problems with the yes/no

answers reversed) of NP problems. It is believed that the two classes are not equal;

however it has not yet been proven. It has been shown that if these two complexity

classes are not equal, then it follows that no NP-Complete problem can be in co-NP and

no co-NP-Complete problem can be in NP.

2.5.5 NP-Complete

NP-Complete are the hardest problems among the NP class. The class NP-Complete is

the set of decision problems X such that

1. X  NP

2. Every problem in NP is reducible to X. i.e, NP-Complete are the hardest

problems among the NP-class.

2.5.6 NP-Hard

NP-Hard can contain problems other than decision problems. It is a class of all problems

X such that for all Y  NP, Y P X. That is there may be a problem X which is as hard

as any problem in NP, but one may not be able to prove its NP-Completeness.
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Chapter 3

Scheduling Problems

Scheduling problems are encountered in all types of systems, since it is necessary to

organize and/or distribute the work between many entities. A definition of scheduling

problem and its components are described in different literature in different way. A

definition quoted by Carlier and Chretienne: “Scheduling is to forecast the processing of

a work by assigning resources to tasks and fixing their start times. The different

components of scheduling problem are the tasks, the potential constraints, the resources

and the objective function. The tasks must be programmed to optimize a specific

objective function. Of course, often it will be more realistic in practice to consider several

criteria.”, Carlier and Chretienne [5].

Another definition put forward by Pinedo: “Scheduling concerns the allocation of limited

resources to tasks over time. It is decision-making process that has a goal the

optimization of one or more objectives.”, Pinedo [31].

In the above definitions, the task (or operation) is the entity to schedule. In this

dissertation work we deal with jobs to schedule, each job is broken down into a series of

operations. When all jobs contain only a single operation we term mono-operation

problem.  Else we say multi-operation problem. The operation of a job may be connected

by precedence constraints. We deal with the resource or machine. We consider two types

of resources: renewable resource (which is available after use e.g.: machine, file,

processor, personnel etc.) and non renewable resources (which disappear after use e.g.:

money, raw materials etc.). There are two types of optimality criterion: those relating to

completion time and those relating to costs. In the category of completion time related

criteria we find for example those which measure the completion time of whole schedule

and those which measure tardiness of jobs in relation to their due date. In the category of

cost related criteria we may cite those which represent cost of machine use and those

which represent cost allied to waiting time of operations before and/or after they are

processed.
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Generally scheduling problems are studied in two research communities:

a) Operations Research

– Job shop and flow-shop problems

– Scheduling of machines, orders, batches, projects etc

– Resources: machines, factory cells, unit processes etc

– Static (off-line) techniques

b) Computer Science

– Schedule tasks in a uni-processor or multi-processor environment.

– Dynamic techniques.

Three activities are common in scheduling:

a) Run-time Dispatching

The actual switching between computations for different events occur at run-time

– Task-based system

– Preemptive or non-preemptive

– Uses knowledge about

– the current state of the system (e.g. the time)

– off-line information (e.g. task priorities)

b) Off-line Configuration

The static information for the run-time dispatcher is generated during off-line

configuration. There can be very large activities in some approaches – scheduling table;

very small activities in other approaches – task priorities.

c) Analysis

In hard real-time systems the deadlines must always be met. Off-line analysis (before the

system is started) is required to check so that there are no circumstances that could lead to

missed deadlines. There may be a situation where deadlines could be missed. The system

is unschedulable in this case. If the scheduler does not find a way to switch between the

tasks, then also the system is unschedulable. If all the deadlines are met, the system is
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schedulable. A sufficient analysis is an absolute requirement and we like it to be as close

to necessary as possible.

3.1 Representation of Schedule

Let there be m number of machines, Mi , i = 1, 2, …,m which have to process n jobs, Ji , i

= 1, 2, …,n. The problem is to assign each job one or more time intervals on one or more

machines. Such an assignment is called a schedule in general term. A schedule is often

represented by Gantt chart. Below is an example of a schedule for a single machine:

Figure 3.1 Gantt chart for a schedule of four jobs in single machine

The schedule of jobs can be represented as a sequence of jobs. For example, the schedule

shown in Figure 3.1 can be written as the sequence s = (J1, J4, J3, J2). The machine may

remain idle for some time interval. We specify idle intervals by writing ‘idle’ for that

time interval.

3.2 Machine Environment

The number of machines may vary according to the production environment. The number

of machines may be known or sometime unknown in advance. The simplest machine

environment is the single machine environment, on which each n job Ji ,each consisting

of single operation, have to spend a processing time equal to their given processing

requirements Pi (i=1, 2, …,n) .

In multiple machine environments, a job Ji is a set of ni number of operations Oi. Here

any operation of any job can be processed in any machine. Multiple machine

environments are categorized into two broad categories: parallel machines and dedicated

J1 J4 J3 J2
M1

time
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machines. In parallel machine Ji has to spend its processing requirement on any of m

machines. These can be identical, in which case the machines operate at the same speed;

uniform, in which case each machine has its own speed; unrelated, in which case speed

of the machines is job independent. Operations executable on machines is constrained in

dedicated machine environment. Flow shops, Open shops and Jobs shops are m machine

environments in which each job consists of several operations, each of which has to be

executed on a designated machine; no job can undergo more than one operation at a time.

In Job shop, the order in which jobs has to be executed is fixed; in a Flow shop, this order

is fixed and same for all jobs; and in Open shop, the order is free and hence up to the

scheduler.

3.3 Job Characteristics

The job characteristics include the possibility of allowing preemption, and of specifying

precedence constraints, release dates, the deadlines, due date and weight. If preemption is

allowed, then an operation may be interrupted and resumed at the same time on a

different machine or at a later time on any machine; if preemption is not allowed, an

operation, once started, must be processed until completion with-out interruption. A

precedence constraint stipulates that a certain job cannot start before another has

completed. Job availability may be restricted by imposing a release date ri, before which

Ji cannot be started, and a deadline di, by which Ji has to be completed. If the job does not

complete before its due date, the quality of the output detoriates. If a job does not

complete before its deadline, the output is invalid. Weight of a job means its priority.

Blaziwicz et al. [2] categorize scheduling problems regarding different characteristics.
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Figure 3.2 Types of scheduling problems according to different characteristics,

Blaziwicz et al. [2]

3.3.1 Deterministic vs. Stochastic

In the case where all the characteristics of the problem (processing time of each

operation, release dates, etc.) are well known, we speak of a deterministic problem.

Conversely, some of these characteristics may be random variables of known probability

law. In this case we speak of a stochastic problem, Pinedo [31].

3.3.2 Unitary vs. Repetitive

If the operations are cyclical, we are dealing with a repetitive problem. Conversely, if

each operation corresponds to a unique product the problem is said to be unitary.

3.3.3 Static vs. Dynamic

If all the data of the problem are known at the same time we speak of a static problem.

For some problems, a schedule may have been calculated and being processed when new

Unitary

DynamicStatic

Deterministic

Stochastic

Repetitive
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operations arrive in the system. Then the foregoing schedule has to be re-established in

realtime. These problems are said to be dynamic.

3.4 Objective Functions in Scheduling

The optimality criteria of the schedule depend upon the objective functions in scheduling.

For each job Jj, let release time be rj , due-date be dj, and weight be wj. Following can be

the objective function in scheduling:

Completion time Cj

Flow time Fj = Cj - rj

Lateness Lj = Cj - dj

Tardiness Tj = max{ Cj - dj ,0}

Earlyness Ej = max{ dj - Cj ,0}

Some other objective functions are:

Schedule length (makespan) Cmax = max{ Cj }

Weighted completion time  j
jjCw

Total completion time  j
jC

Mean flow time Fmean = (1/n) j
jF

Flow time variance Fvar = (1/n)
2

meanj )F(F  j
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3.5 The Three Field Notation

Scheduling problems can be described by a three field notation α | β | γ where α describes

the machine environment, β describes the job characteristics, and γ describes the

objective criterion to be minimized, Graham et al [16]. A field may contain more than

one entry but may also be empty.

Machine environment is described as α = α1 • α2, where • represents string

concatenation.  Parameter α1 characterize the type of machine used as follows:

α1 = Φ : single machine

α1 = P : identical machines

α1 = Q : uniform machines

α1 = R : unrelated machines

α1 = O : dedicated machines, Open shop system

α1 = F : dedicated machines, Flow shop system

α1 = J : dedicated machines, Job shop system

Parameter α2  denotes number of machines used.

α2 = Φ : number of machines is assumed to be variable.

α2 = k : number of machines is fixed, k number of machines.

Job characteristics is represented as β = β1 • β2 • β3 • β4 • β5 • β6.

Parameter β1{ Φ, pmtn }indicates whether preemption is allowed or not.

β1 = Φ : preemption is not allowed.

β1 = pmtn : preemption is allowed.

Parameter β2{ Φ, res } indicates additional resource constratints

β2 = Φ : no resource constraints.

β2 = res : resource constraints are given.
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Parameter β3{ Φ, prec,tree } indicates precedence constraints.

β3 = Φ : no precedence constraints.

β3 = prec : precedence is in the form of an arbitrary DAG.

β3 = tree : precedence is given in the form of tree.

β3 = intree : precedence is in the form of intree.

β3 = outtree : precedence is in the form of outtree.

Parameter β4{ Φ, rj } indicates release dates.

β4 = Φ : release date is 0 for all jobs.

β4 = rj : release date is given for each job.

Parameter β5{ Φ, pj = p } indicates processing times.

β5 = Φ : jobs have arbitrary processing time.

β5 = (pj = p) : all jobs have processing time equal to p.

Parameter β6{ Φ, d } indicates processing times.

β6 = Φ : no deadlines.

β6 = d : jobs have deadlines.

Objective criterion to be minimized is represented by third field γ. In this field, the

formula that describes the objective function is simply written. One can write  j
jC to

indicate total completion time. For example 1 |  tree | Cmax denotes single machine where

the precedence is given in the form of tree and the objective is to minimize the maximum

completion time.

3.6 Some Areas of Applications

Scheduling problems are encountered at all levels and in all sectors of activity. Generally

we can distinguish between those of manufacturing production and those in computer in

computer systems or project management.
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3.6.1 Problems Related to Production

We encounter scheduling problems in Flexible Manufacturing Systems (FMS).

Numerous definitions of an FMS are found in the literature. Lu and MacCarthy [26],

states: “An FMS comprises three principal elements: computer controlled machine tools,

an automated transport system and a computer control system”. Besides, this very broad

problem encompasses other problems related to Robotic Cell Scheduling and Scheduling

of Automated Guided Vehicles (AGV). Electroplating and chemical shops have their own

peculiarities in scheduling problems. These shops are characterized by the presence of

one or more traveling cranes sharing the same physical area and which are ordered to

transport the products for treatment in tanks. In general, the soaking time in a tank is

bounded by a minimum and a maximum, transport time is not negligible and the

operations must be carried out without waiting time. These problems are very common in

industry and the “simple” cases (mono-robot, single batch tanks, etc) have been solved by

now.

Scheduling problems in car production lines, so called Car Sequencing Problems, are

encountered in assembly shops where certain equipment must be assembled in the

different models of vehicles. These problems have constraints and peculiarities of their

own. Knowing a sequence of vehicles undergoing treatment, the problem is to determine

the type of next vehicle programmed. We have to take account of a group of constraints

connected principally to assembly options for these vehicles and to the limited movement

of the tools along the production line.

3.6.2 Scheduling Problems in Operating System

Scheduling problems posed by Operating Systems (OS) are online versions of various

scheduling problems. In an online version, one does not know processing time and other

relevant information of a job until it actually arrives in the system. In an OS, a machine is

a processor, and jobs are processes (a process is a program ready for execution. The

machine environment has a vast variety. There can be multiple processors, preemption

may or may not be allowed, and in almost all situations, the scheduling problems are
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resource constrained. OS designers take engineering approach due to this variation. The

scheduling algorithms are selected on the basis of simulation experiments. Objective

function for OS oriented scheduling is different than those for manufacturing companies.

A manufacturing company aims to reduce production cost, where as an OS aims to

provide a fair service to all user processes. This leads objective functions like:

1. Processor utilization: This is the average function of time during which the

processor is busy.

2. Throughput: This is the number of processes executed per unit time. Throughput

is computed by dividing number of processes by schedule length.

3. Average turnaround time: The time that elapses from the moment a program

released until it is completed by the system.

4. Average waiting time: The time that a process spends waiting for the processor or

some other resources.

5. Average response time: The time taken by a process to response after it is

released.

Scheduling problems in computer system is mostly based on the analysis of queuing

theory. The basic queuing model is given below.

Figure 3.3 The basic queuing model

Queue Processor
Job arrival

Job departure

Preemption ( if allowed )
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Jobs arrive and wait in a queue as shown above. The queue is the main memory for an

OS. Every scheduling algorithms of an OS follows this model. Some basic algorithms

used in OS for uni-processor computers are given below.

1. First Come First Serve (FCFS): At any instant when machine is idle, select

available job having least release date.

2. Shortest Processing Time (SPT): When the machine is idle select the available job

having least processing time. This rule is also called Shortest Job First (SJF).

3. Shortest Remaining Time Next (SRTN): Select an unfinished job which is having

the smallest remaining processing time.

4. Round Robin: Available jobs are stored in a queue according to release dates.

Unit processing time is given to each job in a queue in the sorted order. The

newly arrived job is appended to the queue. Completed jobs are removed from the

queue.

3.6.3 Other Problems

We encounter scheduling problems in computer systems. These problems are studied in

different forms by considering mono or multi processor systems, with the constraints of

synchronization of operations and resource sharing. In these problems, certain operations

are periodic others are not; some are subject to dates, others to deadlines. The objective is

to find a feasible solution i.e. a solution which satisfies the constraints. In fact, in spite of

appearances they are very close to those encountered in manufacturing systems,

Blazewicz et al [2].

Timetable scheduling problems concern all educational establishments or universities,

since they involve timetabling of courses assuring the availability of teachers, students

and classrooms. These problems are just as much the object of studies.

Project scheduling problems comprise a vast literature. We are interested more generally

in problems of scheduling operations which use several resources simultaneously

(money, personnel, equipment, raw materials etc.), these resources being available in
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known amounts. In other words, we deal with the multi-resource scheduling problem

with cumulative and non-renewable resources.

3.7 Shop Environment

When confronted with a scheduling problem, one has to identify it before tackling it.

Acknowledging that the problem is complicated and to know it is already solved in the

literature, we must use a recognized notation. For that purpose, shop “models” have been

set up, which differ from each other by composition and organization of their resources.

Liu and MacCarthy generalize types of scheduling problems according to machine

environments and operations, Liu and MacCarthy [26].

Figure 3.4 Types of scheduling problems according to machine environments and
operations, Liu and MacCarthy [26]
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3.8 Constraints

A solution of a scheduling problem must always satisfy a certain number of constraints,

be they explicit or implicit. For example, in a flow shop problem it is implicit that the

jobs are processed according to the routing and therefore an operation can not start while

its precedent remains uncompleted. On the other hand, the occurrence of different release

dates constitutes a constraint which must be stated precisely.

3.9 Optimality Criteria

In order to evaluate schedules we can use a certain number of criteria. Occasionally we

want a criterion to be close to a certain reference value. Here we are at the frontier

between the notions of criteria and constraints. If a constraint represents a fact which

definitely must be respected, optimizing a criterion allows rather a certain degree of

freedom. For example, stating that no job should be late regarding its due date leaves no

margin in the schedule calculation. We may even find a situation where no feasible

schedule exists. On the other hand, minimizing the number of late jobs allows us to

guarantee that there will always be solution even though to achieve this certain operation

might be late. From a particular point of view the difference between a criterion and a

constraint is only apparent to the decision maker who initiates a schedule calculated by an

algorithm.

We can classify criteria into two large families: “min-max” criteria, which represent the

maximum value of a set of functions to be minimized, and “min-sum” criteria, which

represent a sum of functions to be minimized.

3.9.1 Minimization of a Maximum Function: “min-max” Criteria

Min-max criteria is most frequently presented topic in the literature. The most traditional

is the criterion measuring the completion time of the whole jobs. This criterion is denoted

by Cmax. We define Cmax =
n..1i

max


)(Ci , with Ci being completion time of the job Ji . To

simplify this notation we write “max” for “
n..1i

max


”. When there is no ambiguity, Cmax is
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the total length or duration of a schedule, i.e. it is the completion time of the last

scheduled job.

We also encounter other criteria based solely on the completion time of jobs such as

criteria:

 Fmax = max (Fi), with Fi = Ci- ri: the maximum time spent in the shop, or even

yet, the duration of resting with ri the release date of the job Ji.

 Imax = max (Ik): with Ik the sum of idle times on resource Mk.

Equally we encounter in the literature criteria which are based on the due dates di, for all i

= 1, 2… n of jobs. Notably, we find criteria:

 Lmax = max (Li): with Li = Ci- di: the maximum lateness.

 Tmax = max (Ti): with Ti = max (0, Ci - di): the maximum tardiness.

 Emax = max (Ei): with Ei = max (0, di - Ci): the maximum earliness.

Generally fmax refers to an ordinary “min-max” criterion, which is a non decreasing

function of the completion time of jobs. This is not the case for the criterion Emax .

3.9.1 Minimization of a Sum Function: “min-sum” Criteria

Min-sum criteria are usually more difficult to optimize than “min-max” criteria. This is

confronted from a theoretical point of view for certain special problems, Ehrgott [14]. We

write “∑” for “ 


n

i 1

” when there is no ambiguity. Among min-sum criteria, we meet

criteria:

 Ĉ to designate  iC
n

1 or  iC . This criterion represents the average

completion time or total completion time of jobs.
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 Ĉw to designate  iiCw
n

1 , 
ii

i
Cw

w

1 or else iiCw . This criterion

represents the average weighted completion time or total weighted completion time of

jobs.

 Ē is the average earliness of jobs.

 Ēw is the average weighted earliness of jobs.

In a general way, ğ designates an ordinary “min-sum” criterion which is usually a non

decreasing function of the completion times of jobs. This is not the case for criterion Ē.
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Chapter 4

Just-in-Time Systems

Just-in-Time is an inventory strategy implemented to improve the return on investment of

a business by reducing in-process inventory and its associated cost. The Just-in-Time

(JIT) production system was first introduced by Toyota Company. The central goal of

Just-in-Time systems is to produce only the necessary product in the necessary quantity

at the necessary time.

Just-in-Time has been introduced in mixed model assembly line in order to response to

the customer demands for a variety of products without holding large inventories or

incurring large storages of the products. Such mixed-model must have negligible switch

over costs from one model to another and must have a small-lot production. This model

aims to hold inventory and shortage cost as small as possible, Dhamala and Khadka [11].

There has been growing interest in Just-in-Time systems research since Monden [30].

Monden [30] states that most important goal of a Just-in-Time system is to keep the

schedule as balanced as possible. That is production rate of each type of product per unit

time must be as smooth as possible. Miltenburg [28], assuming product require

approximately same number and mix of parts, has formulated the problem as a non linear

integer programming with objective of minimizing the total deviation between the actual

and ideal production.

Just-in-Time philosophy has been used in obtaining an optimal sequence in a mixed

model production system where an assembly line is drawn and optimality is tried to

achieve within this assembly line. One of the most important optimization problems have

been considered is to determine the sequence in which different models are scheduled in

the line. The sequence always keep the actual production level and the desired production

one as close to each other as possible all the time.

For larger demand sizes, cyclic Just-in-Time sequence model have been introduced and

implemented, which is proved to be optimal, Kubiak [22].
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4.1 Mixed Model Production

Mixed Model Production is the practice of assembling several distinct models of a

product on the same assembly line without changeovers and then sequencing those

models in a way that smoothes the demand for upstream components

Each product assembled on the mixed model assembly line requires variety of parts.

Often these parts vary from product to product. Scheduling large lots of each product

requires large lots of parts. When a part is only needed for certain products, its usage will

be high when those products are being assembled and will be low otherwise. This is that

Just-in-Time systems wish to avoid. Just-in-Time systems only work when there is

constant rate of usage of all parts. To minimize the variation of usage in each part,

products will be sequenced in very small number and mix of parts. In this case we can

achieve constant rate of part usage by considering only the demand rates for the products.

The objective is then to schedule a constant rate of production for each product.

4.2 Mathematical Model Formulations

Just-in-time systems are applicable when there is constant rate of usage of all parts. This

is achievable by considering demand rates for products yield. However variability

appears between the actual and the ideal production due to integral nature of production.

This leads the sequencing problem to minimize the variation so that a balanced sequence

of diversified products that minimizes the earliness and tardiness penalties could be

obtained in a reasonable time. While formulating problem, we assume that the systems

have sufficient capacity, negligible switch-over cost and production in unit time. Kubiak

[22] refers to single level problem as Product Rate Variation (PRV) problem and multi

level problem as Output Rate Variation (ORV) problem.

4.2.1 The PRV Problem Formulation

In Product Rate Variation (PRV) problem, we assume product require approximately the

same number and mix of parts. This is a single level case. Let D units of n products be
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produced to meet the demands di where i=1, 2, …,n and D=


n

i 1

di during a specified time

horizon. The objective is to maintain cumulative production xik, a non-negative integer,

i=1, 2, ..., n and k=1, 2, …, D of product i during time period 1 through k as close to ideal

production kri, a non-negative rational number, i=1, 2, ..., n and k=1, 2, …, D with

ri= Ddi with 


n

i

i

1

ri =1 as possible. The specified time horizon is portioned into D equal

times of which one unit time is required for a unit of a product to be produced.

The mathematical model of the PRV problem P1 is as follows:

minimize 







 )(

,

max
iiki krxf

ki
F --------------------- (1)

and

minimize 







 



)(
11

iiki

n

i

D

k

krxfG ----------------------(2)

subject to




n

i

ikx
1

= k, k=1, 2, ..., D -----------------------(3)

xi(k-1) ≤ xik,  i=1, 2, ...,n and k=1, 2, …., D -----------------------(4)

xiD ≤ di ; xi0 = 0, i=1, 2, ..., n -----------------------(5)

xik ≥ 0, integer -----------------------(6)

The constraint (3) shows that exactly k units of products are produced in the periods 1

through k. (4) states that the total production is a non-decreasing function of k. (5)

guarantees the demands are met exactly. (3), (4) and (6) ensure that exactly one unit of a

product is sequenced during a time unit.
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This model minimizes the perennial objective functions, the bottleneck measure of

deviation F that produces smooth sequence in every time unit and the total measure of

deviation G (for min sum) that produces smooth sequence on the average Jost [21].

The exact complexity of the PRV problem still remains open. The problem has been

proven to be Co-NP but remains open whether Co-NP-complete or polinomially solvable,

Brouner and Crama [4].

4.2.2 The ORV Problem Formulation

A mixed model multi-level problem falls under ORV problem. Consideration of part

demand rate reduces problems into the ORV problem. The production system consists of

hierarchy of several distinct production levels such as products, sub-assemblies,

component parts, raw materials, etc.

Consider the system consist of L different production levels l, l = 1, 2, …, L with product

level l. dil be the demand for part type i of level l , i = 1, 2, …, nl, nl is the number of

different part types. Total units of part type i at level l required to produce one unit of

product p, p = 1, 2, … , nl be tilp . dil = 


l

p

n

1

lilpdpl , the dependent demand for part i of

level l determined by dpl , p = 1, 2, …, nl . Note that tilp = 1 for i = p and 0 otherwise. Dl =




l

i

n

1

dil stands for the total demands of level l with demand ratio ril = dil/Dl and 


l

i

n

1

ril=1

for l = 1, 2, ..., L.

This is non-preemptive model. The time horizon in the product level is partitioned into

D1 time units and there will be k complete units of various products p at level 1 during

the first k time units. This introduces the concept of stage of a cycle. The pull nature of

the systems implies that the lower level parts are pulled forward according to the need of

the product level.  Let  xilk be the quantity of part i produced at level l in the time units 1

through k and ylk = 


l

i

n

1

xilk be the total quantity produced at level l during the time units
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1 through k. Clearly, at level 1, y1k = 


1

1

n

i
xi1k = k . The required cumulative production

for part i of level l, l ≥ 2 through k time units will be  xilk = 


l

p

n

1

tilp xplk . Consider fi

unimodal convex function with minimum 0 at 0, i=1, 2, ...,nl. The mathematical model

for the ORV problem is as follows :

minimize 







 illkilki ryxf

kli
F .(

,,

max
------------------ (7)

minimize 



  



)( .

111

illkilki

nl

i

L

l

Dl

k

ryxfG -------------------(8)

subject to

xilk = 


1

1

n

p

tilp- xp1k , i=1, 2,..., nl; l=1, 2, …, L and k=1, 2, ..., D1 ---------------(9)

ylk = 


l

i

n

1

xilk, l=2, …, L and k=1, 2, …, D1 -------------------(10)

y1k = 


l

i

n

1

xp1k = k,  k=1, 2, …, D1 -------------------(11)

xp1k ≥ xp1 (k-1) ; p=1, 2, …,n1 and k=1, 2, ..,D1 -------------------(12)

xp1D1 = d1 , xpl0 = 0, p=1, 2, …,nl -------------------(13)

xilk ≥ 0, integer i=1, 2, ...,nl , i=1, 2, …,L and k=1, 2, ...,Dl -------------------(14)

Constraint (9) ensures that the necessary cumulative production of part i of level l by the

end of time unit k is determined explicitly by the quality of products produced at level l.

Constraints (10) and (11) show the total cumulative production of level l and level 1,

respectively, during the time units 1 through k. Constraint (12) ensures that the total
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production of every product over k time units is a non-decreasing function of k. Constrain

(13), (11), (12), (14) ensure that exactly one unit of a product is scheduled during one

time unit in the product level. ORV problems are NP-hard in general. Two level ORV

problems can be solved in pseudo-polynomial time.
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Chapter 5

Min-max Problem

The sum of deviations type objective functions produce “smooth” schedules on average.

They do not preclude, however, the possibilities of relatively large deviations in certain

time periods, contrast the min-max objective function looks for “smooth” schedules  in

every time period. Min-max objective function has more applicable, physical

interpretation than the min-sum functions. The min-max objective function value gives

maximum overproduction (inventory) / underproduction (shortage) from the desired level

of production that occurs at any time during schedule.

5.1 Graph and Matching Problems

A graph-theoretic approach is used to determine an optimal solution for Just-in-Time

problems with non-convex objective function. A graph G is a pair G = (V, E), where V is

finite non-empty set of nodes(vertices) and EV X V is a relation set of order pairs (u,

v). An edge between two vertices is denoted by [u, v], consists of pairs (u, v) and (v, u) in

the set E. A pair (u, v)E is called an arc if pair (v, u)E. If all pairs in E are arcs, the

graph G is called directed graph. Graph G is called an undirected graph if all pairs in E

are edges.

Let  G = (V, E) be a graph in which vertex set V can be portioned into two disjoint sets,

V1 and V2, and each edge in E has one vertex in V1 and another in V2.  In such case G is

called bipartite graph. Bipartite graph is denoted by G = (V1V2, E). Otherwise graph is

called non-bipartite graph.

A graph G = (V, E) is called a complete graph if [u, v]E for all u, vV with u v. A

bipartite graph G = (V1V2, E) is called complete bipartite graph if each uV1 is joined

to each vV2. A graph G = (V, E) with a function w: E→Z is called a weighted graph,

where Z is usually the set of positive integers.
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Given a graph G = (V, E), a matching M in G is a subset of the edge set E with the

property that no two edges of M share the same node. A matching M in Graph G is called

a maximum matching if no matching in G exists with cardinality more than that of M.

The largest possible cardinality of a matching in a graph with |V| nodes is  /2|V| .

When the cardinality of a matching M in a graph G = (V, E) is  /2|V| , M is called

complete graph or perfect matching.

Steiner and Yeamons [33] study min-max problem reducing to a single machine

scheduling decision problem with release time and due dates. They represent the problem

as a perfect matching in a V1 convex bipartite graph G=(V1UV2, E) where V1={1, 2, ...,

D}  represents positions and V2={(i, j) | i=1, 2, …, n; j=1, 2, ..., di} represents the copies

of the products. There exists an edge {k, (i, j)}  E if and only if k lies in the permissible

interval [E(i, j), L(i, j)] V1 of release time and due date for the jth copy of the product

i.

5.2 Release Date/Due Date Decision Problem

As no general solution techniques exist which could handle such large integer

programming problems, a special solution procedure is developed for the specific

problem under considerations, Miltenburg [28]. Denote a target value for the objective

function by the variable B. The goal is to determine the smallest possible B for which a

sequence can be created for each j(i) has a completion time k, such that fj
i(k) ≤ B for

k[kj, (kj+1-1)]. For target value B, j(i) can not start before k ≤ 1 if gj
i – j-kri >B and can

start k if fj
i(k+1) = j-(k+1)ri≤B. Therefore, any fixed target value B allows the calculation

of a release date and a due date for a specific copy of a product. For a given B early and

late starting dates can be calculated for each copy of each product in a one pass procedure

and, hence, can be constructed in O(D) time.
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The earliest starting time E(i, j) for (i, j) must be the unique integer satisfying

ii r

Bj
jiE

r

Bj 



),(1 and latest starting time L(i, j) of (i, j) must be the unique

integer satisfying
ii r

Bj
jiL

r

Bj 


 1
),(1

1
.

Lemma 5.1 Let d1, d2, ..., dn be any instance of min-max-absolute problem. A sequence

s=s1, s2, …, sn is B-feasible if and only if for all i=1, 2, …, n and j=1, 2, ..., di this

sequence assigns the copy (i, j) to the interval  [E(i,  j), L(i,  j)] where

E(i, j) = 



 

ir

Bj

L(i, j) = 



 


1

1

ir

Bj

denote the release date and the due date of the copy (i, j) for given upper bound B,

Dhamala [10].

Other measure of deviation is still open. There are various versions of the earliest due

date algorithm for scheduling unit time jobs with release times and due dates on a single

machine. We can apply a modified version of Glover’s EDD algorithm for finding

maximum matching in a V1 convex bipartite graph G = (V1UV2, E) such that each

ascending kV1 is matched to the unmatched copy (i, j) with smallest due date value of

L(i, j). The optimal solution can be obtained by using the matching problem and bisection

search within the bounds for target value.

5.3 Just-in-Time Sequencing with Input Sequences

Single level just in time sequencing problem is formulated under chain constraints. This

sequence is denoted by JIT-Chain, Dhamala/ Kubiak [13].

Let u(n1, D1) = u(n1, D1)1 u(n1, D1)2 …………… u(n1, D1)D1

u(n2, D2) = u(n2, D2)1 u(n2, D2)2 …………… u(n2, D2)D2

.

.
u(nt, Dt) = u(nt, Dt)1 u(nt, Dt)2 …………… u(nt, Dt)Dt
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.

.
u(nm, Dm) = u(nm, Dm)1 u(nm, Dm)2 …………… u(nm, Dm)Dm

be B1, B2, ..., Bm feasible sequences of lengths D1, D2, …, Dm , where Dt = 


m

i

t
id

1

of any

given model sets nt , t=1, 2, …, m, respectively. Different chains may contain the same

type of product models. This is called overlapping system. Dhamala/ Kubiak [13]

considers the problem with non-overlapping system.

They derive B-feasible sequence s=s1, s2, …, sn where D = 


m

t
td

1

for min-max-absolute

problem such that the restricted mapping satisfy ),(:),(| ttDnu Dnuss tt  for all t = 1, 2,

…, m and has the least maximum deviation. It means F(s) ≤ F(ŝ) for any sequence  ŝ =s1,

s2, …, sn satisfying ŝ :),(| tt Dnu ŝ ),( tt Dnu . The restriction ),(| tt Dnus of the super

sequence s to any given sub-sequence ),( tt Dnu , t=1, 2, …, m yields the sequence ),( tt Dnu .

Therefore, the super sequence s that contains ),( tt Dnu as its subsequence is order

preserving with respect to the m-chain constraints ),( tt Dnu l ≺ ),( tt Dnu l’ if l<l’ for all l=1, 2,

…,Dt and t=1, 2, …, m. Such sequence is called order-preserving super sequence. By

construction each subsequence represents a chain and there exist at most D constraints all

together in these chains.

5.4 An Efficient Scheduling Algorithm

Consider collective demand rates of n = 


m

t
td

1

models. Total demands is the union of all

chains given by D = s


m

t
tD

1

. For given bound B, permissible intervals of time windows

is given by [E(i, j), L(i, j)], where i=1, 2, …, n and j=1, 2, …, di using known algorithm

of Steiner and Yeamons [33]. These time windows must be feasible without chain

constraints for this data set.
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To ensure B is feasible for the super sequence to be delivered, a test is required. The min-

max-absolute-chain sequencing algorithm is reduced to a single machine scheduling

decision problem with release times, due dates and chain constraints. Given bound B for

min-max-absolute-chain problem, we find out whether a feasible solution of the single

processor scheduling problem 1|ri, chain|Lmax , with Lmax ≤ 0 exists or not.

Consider the problem 1| ri, chain | Lmax, represent time windows by the intervals [ri, di =

[E(i, j),L(i, j)] calculated as function of given bound B. The chain constraints are given

by the subsequence 
m

i

D
tt

l

t

Dnu
1

}),({
1

 
that may be represented by following graph. Define

a directed graph G=(V, E) with vertex set V = 
m

i

D
tt

l

t

Dnu
1

}),({
1




. There exists an arc E

from u(nt, Dt)k to u(nt, Dt)k’ if the precedence relation u(nt, Dt)k ≺ u(nt, Dt)k’ is satisfied.

Horn [19] formulated O(nlogn) time algorithm to the single machine scheduling problem

1|ri, chain|Lmax. This is called Earliest Due Date (EDD) algorithm and it schedules an

available job with the smallest due date at any time. To implement this rule to 1|ri,

chain|Lmax , the due date need to be modified. In this modification, if job k is the

immediate predecessor of job l in any chain and dk’ = di – 1 < dk ,denoted by k→l, the

due date dk has to be replaced by modified due date dk’. A proof on the validity of

optimality on Lmax makes the use of interchange arguments.

Following algorithm is proposed for the min-max-absolute-chain sequencing problem

Dhamala/Kubiak [13].

5.5 Algorithm: min-max-absolute-chain-algorithm

Given:   dit for i=1, 2, …,n and t=1, 2, …,m;

an upper bound B for min-max-absolute-chain-problem

chain1, chain2, …, chaini , …, chainm;

Update :
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number of demands n = 


m

t
tn

1

;

demand rates di for i = 1, 2, …,n;

total demand D=


n

i
id

1

.

Step 1 : Calculate windows [E(i, j),L(i, j)], where i=1, 2, …,n and j=1, 2, …,di by Steiner/

Yeomans [33].

Step 2 : Modify due dates L(i, j):

If (i, j) → (i’, j’), then L(i, j):=min{L(i, j), L(i’, j’) -1 }

Step 3 : Schedule the job by EDD-Algorithm by Horn [19].

Output : B-feasible for (n, D) if Lmax ≤ 0.

Step 1 and Step 2 requires O(D) time and the Step 3 costs O(DlogD). The overall time

complexity of the min-max-absolute-chain-algorithm is O(DlogD). An EDD algorithm in

Step 3 applied to modified due dates by Step 2 is called modified EDD algorithm.

5.6 Correctness of min-max-absolute-chain-algorithm

Theorem 5.1 Let B be a target value for the objective function of min-max-absolute-

chain sequencing problem. Then, if the modified EDD algorithm finds an optimal

solution with Lmax ≤ 0, then min-max-absolute-chain-algorithm finds a B-feasible

solution to min-max-absolute-chain sequencing problem, Dhamala [10].

Proof:  Suppose s = s1, s2, …, sd be a sequence obtained by  min-max-absolute-chain-

algorithm such that Lmax ≤ 0. That is, each job k = 1, 2, …, D is scheduled in the proper

window and none of the job is delayed. If s is infeasible to min-max-absolute-chain

sequencing problem, then |xik - kri|>B for some product copy (i, j) with k=1, 2, …, D and

i=1, 2, …, n. But this is impossible by the construction of time windows.
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If the first copy (i, 1) of the product i has to be completed at position k, then it must hold

|xik-kri| = 1-ri . Therefore, the sharp lower bound 1-rmax on a target value B is still valid.

An optimal solution to the min-max-absolute-chain problem has to be determined by

applying binary search of the target value B in the interval [1-rmax, B].

Upper bound to the obtained sequence is obtained by putting given sequence:


m

i

D
tt

l

t

Dnu
1

}),({
1

 

one after another and then calculate:

B =
ki,

max {|xik - kri| : i=1, 2, …,n and k=1, 2, …,D}.

The properties of batch sequence also alter upper bound on target value B of super

sequence s. A batch w is a factor of sequence s consisting of the same product copies

which cannot be extended either to the right or to the left by same product type copy. |w|

represents the batch size of the batch w in s. Clearly, longer batches reduce the number of

setups provided sufficiently long buffer size. Given an instance (n, D), we consider a

batch sequence s with exactly n-batches, say s = i1, i2, …, in , where it represents a

batch with respect to the product type it ,t = 1, 2, …, n.

Lemma 5.2 Let s = i1, i2, …, in in be a sequence with batches it for t = 1, 2, …, n.

Then an upper bound on the target value of s is dmax(1-rmax), Dhamala [10].

Corollary 5.1 An upper bound on the target value of the super sequence s obtained by

min-max-absolute-chain-algorithm is dmax(1-rmax). Moreover, the tight lower bound is 1-

rmax , Dhamala [10].

Proof: An optimal solution to the min-max-absolute-chain problem can be determined by

applying binary search in the interval [1-rmax, dmax(1-rmax)]. But a feasibility test requires

O(DlogD) time.

As the Horn [19] algorithm works for the problem 1|ri,prec|Lmax this approach is

applicable for the min-max-absolute-chain problem with precedence constraint as well.

The time complexity of the problem remains intact.
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Example 5.1 Given two sequence u(3,11) = bcbbcebcbbc and u(2,9)= aadaaaada, the

super sequence s=abcabdabcaacbaebacbadbea preserves the orders of the subsequence

s|u(3, 11) = bcbbcebcbbc and s|u(2,9)= aadaaaada. Moreover the obtained super sequence s is

optimal as B=1-rmax =1-7/20 = 0.65 is tight, Dhamala [10].

Note the first subsequence of the input subsequence is not optimal for: |3-(4 X 6/11)| =

9/11>6/11 for the third copy product b. But the sequence u(3,11) = bcbbcebcbbc is

optimal with upper bound 6/11.
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Chapter 6

Cyclic Schedulings

A cyclic schedule is a sequence of tasks that are executed repeatedly so that each task is

performed exactly once during each cycle. In a multi-machine, multi-product setting,

precedence constraints exist between successive tasks on the same lot of a product as well

as those defined by the prescribed production sequence on each machine. The use of

these schedules has become increasingly prevalent in recent years in various

manufacturing environments because they are significantly simpler to describe,

understand, and implement than many other scheduling schemes. Communication with

the shop floor is improved since the sequence is fixed. There is no need for dispatching

decisions. Cyclic scheduling is consistent with the just-in-time or minimum inventory

philosophy in two important respects. First, the cyclic sequence aims to globally

minimize inventory by having production ready just when it is needed. Second, efforts to

reduce setup times are more effective since they can be directed at the specific

changeovers that occur in the sequence. Also, the task of coordinating other activities

such as raw material delivery, preventive maintenance, and work force schedules

becomes simpler. Whybark [34] provides an excellent early description of a cyclic type

of production control and the benefits that were realized.

Cyclic scheduling or periodic production has received considerable attention in recent

years as an effective technique for repetitive manufacturing. The approach allows for

global consideration of inventory costs, setup costs, and work center capacities. The

effort to find a good sequence is rewarded by the fact that the sequence will be repeated.

Management of the schedule is facilitated by this repetition; it allows for easier

communication and planning, and setup reduction efforts can be focused on a much

smaller number of transitions.

Fundamental notions of cyclic scheduling for repetitive manufacturing are described in

the book by Gessner [15]. Successful practical implementations of the cyclic scheduling

paradigm have been reported by Whybark [34] at Kumera Oy (a manufacturer of
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transmissions for automobiles) and by Cunninghame-Green [7] in an industrial

steelworks. For a more detailed literature survey, refer to Rao [32].

Hall [17] has discussed the numerous advantages of cyclic scheduling. For example,

cyclic schedules are non-myopic in the sense that they consider an infinite horizon, and

capture within the “cycle length” what happens in steady state over that infinite horizon,

while giving us valuable information on system throughput and production lead times.

Cyclic schedules result in easier shop floor control (by virtue of the structure and

repetitiveness imposed on the facility by cyclic schedules). This allows production

planners to concentrate their efforts on reducing manufacturing inefficiencies involving

unproductive machine set-up times or yield/quality problems. Cyclic schedules also offer

an effective way of modeling the production capacity of an “ideal” facility. In such

situations, cyclic scheduling can be looked upon as a “higher level” (tactical) planning

and scheduling tool by aggregating over different items with similar routing and

processing requirements.

One of the drawbacks of efficient cyclic schedules is that minor variability in the system

can disrupt the cyclic schedule, making real-time dynamic control under uncertainty a

challenging problem. However, results in McCormick et al [27] show that in most cases a

system can recover its steady state after a disruption quite quickly. One possible way to

hedge against this contingency is to incorporate some safety time and buffer stock into

the system.

The complexity of cyclic scheduling has not been as thoroughly investigated as has the

complexity of static scheduling. Just as in static scheduling, one does not have to push

cyclic scheduling problems very far before they become intractable. However, cyclic

scheduling still excites a lot of interest because of the belief that cyclic scheduling is

often superior in practice to static scheduling.
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6.1 Cyclic Scheduling Problems

Deterministic scheduling is concerned with entities that need work called jobs, and with

the resources that work on jobs called machines. Typically each job consists of several

operations, where each operation is required to be done on a particular machine. There is

some sort of processing time associated with each operation on each machine, and a

machine typically can work on only a single operation at a time. The objective is then to

find a schedule that is feasible (does not require a machine to process more than one

operation at a time) and which minimizes some objective function. For example, we may

wish to minimize the makespan, which is the latest finishing time of any operation of any

job.

In a flow shop, each job has the same set of operations, call them 1, 2, . . . , n (although

job j’s operation i can have a different processing time than job k’s), and each operation i

must be done on the same machine. Furthermore, operations must be done in consecutive

order.

In a typical non-cyclic scheduling problem (static scheduling), the set of jobs we must

schedule is static and finite. For example, we must schedule all of one day’s production

in a job shop to minimize makespan. By contrast, cyclic scheduling has a desired pattern

of output over time that we want to produce in a steady state. For example, we might

want to produce 200 model A’s, 400 model B’s, and 800 model C’s every day for the

foreseeable future. We can achieve this by designing a schedule that produces 200

replications of a cycle consisting of one model A, two model B’s, and four model C’s.

Here we are not so much interested in minimizing the makespan of a single cycle, but

rather in making sure that consecutive cycles fit together well.

This requires a different sort of objective such as minimizing cycle time (sometimes

called cycle length), which is the time between starting the first operation of the first job

in a cycle, and starting the first operation of the first job in the next cycle. Cycle time is

roughly equivalent to static scheduling’s makespan. In the same way that static makespan
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problems can be modeled via precedence constraints graphs, where earliest start times

correspond to longest paths, cycle time problems in cyclic scheduling can be modeled

with precedence constraints graphs that have been “wrapped around a cylinder” so that

the final job(s) in a cycle can influence the first job(s) in the next cycle, McCormick et al

[27]. Here a smaller cycle time means that we are producing a larger number of finished

units per time, i.e., minimizing cycle time is equivalent to maximizing throughput.

However, modern manufacturing is concerned not only with large throughput, but also

with minimizing work-in-process (WIP) inventories. We can measure this by counting

the elapsed time between when the first operation of a job starts and when its last

operation finishes, its flow time. For example, if job j’s flow time in a cyclic schedule

spans four cycles then there are four jobs j simultaneously in the system (i.e., WIPj = 4).

In more complicated situations we shall see that there is a trade-off between a small cycle

time (large throughput) and a small flow time (low WIP).

We now briefly survey previous complexity work in cyclic scheduling. Hsu [20] shows

that the Economic Lot Scheduling Problem on a single machine is NP-complete. A

different problem that can be seen as a single machine cyclic scheduling problem

involves traffic-signal control at a single intersection. Dauscha et al [8] consider the

feasibility of scheduling such fixed-duration periodic operations within a given interval

of time. They show that their cyclic scheduling problem is strongly NP-complete, but that

given the “cyclic sequence type”, the resulting sub problem is polinomially solvable.

6.2 Cyclic Scheduling with Minimal Part Set

Consider an assembly line with m machines. There are n different types of jobs to be

assembled. We have a flow shop where each job j visits every machine i in consecutive

order and spends time pij (possibly zero) there. Given a minimum required production

rate for each job type, the problem is to operate the assembly line to maximize

throughput. We restrict attention to cyclic production schedules in which a Minimal Part

Set (MPS) consisting of a known mix of jobs is produced repetitively. Here is an example

from McCormick et al [27] for the special case where all pij are 0 or 1.
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Example 6.1 There are four machines and six jobs (A, B, C, D, E & F) in the Minimal

Part Set (MPS). The processing requirements matrix is:

Pij =



















111101

101011

010111

111110

Since the largest row sum is five, the minimum possible cycle length is five. Does this

instance have a cyclic schedule with cycle length five?

If we order the jobs in the same sequence as the columns in the matrix above, we get an

optimal schedule with cycle time five. A complete schedule over an infinite horizon is

obtained by repeating the above schedule every five time units.

Figure 6.1 Minimum cycle length schedule

The problem of determining the optimal (i.e., maximum throughput) permutation

sequence in which to process the jobs in the MPS is called the Sequencing Problem (SP).

This problem was studied in McCormick et al [27] where it was claimed that two special

cases of SP are strongly NP-hard.

B C D E

A B C E

A B D F

A C D E

F

F

M1

M2

M3

M4

t = 0 A   B   C      D      E       F

A   B     C       D      E       F
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6.3 Cyclic Solution to PRV Problem

The cyclic solution to the PRV problem has received growing attention. The time

complexities of all heuristic algorithms are pseudo-polynomial. To reduce the complexity

concept of cyclic sequence is introduced. Miltenburg [28] observes existence of cyclic

sequence in min-sum problem (sum deviation). Miltenburg states a concatenation of sm

copies of an optimal sequence s for instance (d1,d2, …, dn) is optimal for (md1, md2, ….,

mdn), m>=1 to build a sequence for a larger time horizon. Bautista, Companys and

Corominas[1] have proven an affirmative answer to optimality of cyclic approach

provided that fi = f for all i such that function f is convex and symmetric with minimum

f(0) = 0. The cornerstone of their proof is an observation that even with the constraints

xiD = di, i=1, 2, …, n, relaxed there still exists an optimal sequence. Kubiak and Kovalyov

[24] extend the result to be true if all fi are convex and symmetric and equal in the

interval (0,1) but not true even if a single fi is asymmetric.

6.4 Cyclic Solution to min-max-absolute-chain Problem

Consider single level just in time sequencing problem formulated under chain constraints.

Let u(n1,D1) = u(n1,D1)1 u(n1,D1)2 …………… u(n1,D1)D1

u(n2,D2) = u(n2,D2)1 u(n2,D2)2 …………… u(n2,D2)D2

u(nt,Dt) = u(nt,Dt)1 u(nt,Dt)2 …………… u(nt,Dt)Dt

u(nm,Dm) = u(nm,Dm)1 u(nm,Dm)2 …………… u(nm,Dm)Dm

be B1, B2, ..., Bm feasible sequences of lengths D1, D2, …, Dm , where Dt = 


m

i

t
id

1

of any

given model sets nt , t=1, 2, …, m, respectively.

We demonstrate some examples before putting cyclic version of algorithms for the min-

max-absolute-chain-algorithm as specified in Chapter 5.5.  Consider we have two chains:

chain1 and chain2. The number of jobs in these two chains may vary, the number of cycle
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that can be formed in each chain may vary and the length of cycle that has been formed in

these two jobs may differ. Taking these situations in account, we have tried to make

cyclic version of min-max-absolute-chain-algorithm under constraints.

Case 1: Number of cycle and length of cycle is equal

Example 6.1

Suppose two chains,

Chain1 = ababab

Chain2 = fgfgfg

For Chain1:

Number of cycle = 3

Cycle length =  2

For Chain2:

Number of cycle = 3

Cycle length =  2

The number of cycle and length of cycle is equal.

Algorithm 6.1

1. Find the length of cycle c.

2. Take first c elements from each chain and make a jobs sequence holding

constraints.

3. Schedule the jobs from step 2 by algorithm 5.5 (min-max-absolute-chain-

algorithm) by Dhamala/Kubiak [13].

4. Repeat step 3 until the production satisfies demand.

Notice that Cyclic Scheduling is observed in step 4. Here demand is the ratio

(length of chain /cycle length).
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Illustration 6.1

For Example 6.1:

Chain1 = ababab

Chain2 = fgfgfg

The Algorithm 6.1 gives length of cycle, c =2.

We take two elements from each chain holding precedence constraint. The output

sequence is : abfg abfg abfg

(abfg)3

We execute abfg 3 times.

Case 2: Number of cycle is equal and length of cycle differs in different chain

Example 6.2

Suppose two chains,

Chain1 = abcabcabc

Chain2 = fgfgfg

For Chain1:

Number of cycle = 3

Cycle length =  3

For Chain2:

Number of cycle = 3

Cycle length =  2

The number of cycle is equal and length of cycle differs in different chain. We use the

concept of false job in this situation. We insert false job in chains such that the length of

cycle in each chain is equal.

The chains are updated as

Chain1 = abcabcabc

Chain2 = fgc’fgc’fgc’
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Where c’ in chain 2 is false job.

Algorithm 6.2

Update Chains inserting false jobs to make length of cycle same

Use Algorithm 6.1

Remove false jobs

Illustration 6.2

For Example 6.2:

Chain1 = abcabcabc

Chain2 = fgc’fgc’fgc’

The Algorithm 6.2 gives length of cycle, c =3.

We take three elements from each chain holding precedence constraint. The output

sequence is: abcfgc’ abcfgc’ abcfgc’

(abcfgc’)3

Remove false jobs c’.We get

(abcfg)3

We execute abcfg 3 times.

Case 3: Number of cycle differs in different chain and length of cycle is same

Example 6.3

Suppose two chains,

Chain1 = ababab

Chain2 = fgfg

For Chain1:

Number of cycle = 3

Cycle length = 2

For Chain2:
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Number of cycle = 2

Cycle length = 2

The number of cycle differs in different chain and length of cycle same. We can use the

concept of false job in this situation. We insert false job in chains such that the length of

cycle in each chain is equal.

The chains are updated as

Chain1 = ababab

Chain2 = fgfga’b’

Where a’, b’ are false jobs.

Alternative way to solve this sequence is to take minimal number of cycle in the first

phase. Then append the remaining cycles in it.

Algorithm 6.3

Update Chains inserting false jobs to make number of cycle same

Use Algorithm 6.1

Remove false jobs

Illustration 6.3

For Example 6.3:

Chain1 = ababab

Chain2 = fgfgf’g’

The Algorithm 6.3 returns length of cycle, c =2.

We take two elements from each chain holding precedence constraint. The output

sequence is : abfg abfg abf’g’

(abfg)3

We execute abfg 3 times.

Remove false jobs f’ and g’.
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Chapter 7

Implementation and Testing

All the algorithms mentioned in Chapter 6 were implemented for min-max-absolute-

chain-algorithm specified in Chapter 5. The program scripts are written in Java Version

1.6.0. The source codes for these programs are included in Appendix. The input data set

(chains) represent the demands of products in the mixed model assembly line

manufacturing system.

All the situations mentioned in Chapter 6 have different input parameters as follows:

Case 1: Number of cycle and length of cycle is equal

Figure 7.1 Input window when number of cycle and length of cycle is equal
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Figure 7.2 Calculation of early and late due date

Figure 7.3 Modified due dates and the generated schedule
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Case 2: Number of cycle is equal and length of cycle differs in different chain

Figure 7.4 Input window for equal number of cycle with different cycle length

Figure 7.5 Calculation of early and late due date
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Figure 7.6 Modified due dates and the generated schedule

Case 3: Number of cycle differs in different chain and length of cycle is same

Figure 7.7 Input window when number of cycle differs but same length
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Figure 7.8 Calculation of early and late due date

Figure 7.9 Modified due dates and the generated schedule
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Chapter 8

Conclusion and Recommendation

8.1. Conclusion

Flexible transfer lines or mixed model assembly lines are capable of diversified small lot

production due to negligible switch over costs. It is possible to implement Just-in-Time

production with these lines, which produces only the necessary products in the necessary

quantities at the necessary time. Many heuristic algorithms to solve the problem have

appeared in the literature. Just-in-Time problem can be reduced to assignment problem

and then can be solved more efficiently. Our concern in this dissertation, however, is to

solve the problem in cyclic paradigm.

We have developed a formulation for solving min-max-absolute-chain problem in cyclic

paradigm. Under certain constraints, we have implemented these formulations and shown

that it can be used to generate good cyclic schedules. We have not been able to do

performance comparison between our approach and other techniques, but the formulation

presented here has other clear advantage in terms of our understandability, and in terms

of being able to exploit existing constraint reasoning techniques and heuristics.

8.2 Recommendation

It is open whether the min-max problem with such constraints and/or min-max problem

with overlapping sequences as constraints are efficiently solvable in cyclic paradigm.

Perhaps most importantly, based on these formulations under constraints further research

can build in this domain for general case.
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Appendix A

Basic Mathematical Notations

Set Theory, Sequence and Series

N Set of natural numbers

R Set of real numbers

R+ Set of positive real numbers

{a1, a2, ..., an} Set of objects a1, a2, …, an

(a1, a2, ..., an) A sequence of numbers a1, a2, …, an

s A Sequence

Data of Problems

n Number of jobs

m Number of machines

l Product level

Ji Job number i, i = 1, ..., n

ni Number of operations of job Ji

ml Number of machines at stage l

Mj Machine number j, j = 1, ..., m

Oi,j Operation j of job Ji

ri Release time of job Ji

di Duedate of job Ji

si Desired start time of job Ji

pi,j Processing time of operation Oj,j

Wi or wi Weight associated to job Ji

D Total demand

Variable of Problems

ti,j Start time of operation Oi,j

Ci,j Completion time of operation Oi,j
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Ci Completion time of job Ji

Ti Tardiness of job Ji

Ei Earliness of job Ji

Li Lateness of job Ji

E(i, j) Release date of the copy (i, j)

L(i, j) Due date of the copy (i, j)

Optimality Criteria

Cmax Makespan or maximum completion time

Tmax Maximum tardiness of jobs

Lmax Maximum lateness of jobs

Emax Maximum earliness of jobs

Fmax Maximum flowtime of jobs

Imax Total idle times on resource

Ĉ Average completion time of jobs

Ĉw Average weighted completion time of jobs

Ē Average earliness of jobs

Ēw Weighted earliness of jobs

fmax Min-max criterion

ğ Min-sum criterion

Machine Environment

Φ Single machine

P Identical machines

Q Uniform machines

R Unrelated machines

F Flowshop

J Jobshop

O Openshop

X Mixedshop

m The number of machines or stages is fixed
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Appendix B

Program Source Code

1 Package: MinMaxAbsoluteChain.com

1.1 File: RunCombineChain.java

package MinMaxAbsoluteChain.com;
import java.util.Vector;
import MinMaxAbsoluteChain.POJO.Chain;
import MinMaxAbsoluteChain.POJO.Job;
import util.*;

public class RunCombineChain {

int totalChain = 0; //the size of chain
int n = 0; //total number of job
int d[] = new int[100]; //demand of job
double B = 0.5; //constraint
int D = 0;

char jobChar[] = new char[100];
int numberOfJobAtChain[] = new int[10];
String chain[] = new String[10];
String validChain[] = new String[10];
int demandForJob[] = new int[100];
double r[] = new double[100];
int totalDemand[] = new int[100];
int jobDemand[][] = new int[100][100];
char job[][] = new char[100][100];
private String combinedChain= null;

Vector <Job>cat = new Vector<Job>();
Vector <Job>jobSchedule = new Vector<Job>();

private ListViewModel Datamodel=new ListViewModel();

public RunCombineChain(Vector vec){
try{
totalChain=vec.size();
for(int i=0;i<totalChain;i++ ){

chain[i]=((Chain)vec.elementAt(i)).getChain_String();
totalDemand[i]=chain[i].length();

int jobNo=0;
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for(int l=0;l<totalDemand[i];l++){
Job testJob=new Job();
testJob.setJobPosition(l);
testJob.setJobChar(chain[i].charAt(l));
testJob.setChainId(i);
cat.add(testJob);

if(l==0){
job[i][jobNo]=chain[i].charAt(0);
jobDemand[i][jobNo]=1;
numberOfJobAtChain[i]=1;
jobNo++;

}else{
boolean jobFound=false;
for(int k=0;k<numberOfJobAtChain[i];k++){

if(chain[i].charAt(l)==job[i][k]){
jobFound=true;
jobDemand[i][k]++;
break;

}
}

if(jobFound==false){
job[i][jobNo]=chain[i].charAt(l);
jobDemand[i][jobNo]=1;
jobNo++;
numberOfJobAtChain[i]++;

}
}

}
}

}catch(Exception e){
e.printStackTrace();

}

for(int i=0;i<totalChain;i++){
n+=numberOfJobAtChain[i];
D+=totalDemand[i];

}

int jobId=0;
for(int i=0;i<totalChain;i++){

for(int j=0;j<numberOfJobAtChain[i];j++){
d[jobId]=jobDemand[i][j];
jobChar[jobId]=job[i][j];
r[jobId]=((double)jobDemand[i][j])/((double)D);
jobId++;

}
}

//calculate window
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this.Datamodel.setMatrix(this.totalDemand,4);
String []s={"Chain Id","Job Name","Earliest Due Date","Late Due Date"};
Datamodel.setColName(s);

int jobIndex=0;
for(int i=0;i<totalChain;i++){

for(int k=0;k<numberOfJobAtChain[i];k++){
for(int j=1;j<=jobDemand[i][k];j++){

int jobAtVector=getJobPositionInVec(jobChar[jobIndex],i,j);
cat.elementAt(jobAtVector).setE(DoubleUtil.getRoundDouble(Math.ceil((j-B)/r[k]),2));

cat.elementAt(jobAtVector).setL(DoubleUtil.getRoundDouble(Math.floor(((j-
1.0+B)/r[k])+1.0),2));

}
jobIndex++;
}

}

for(int i=0;i<cat.size();i++){
Job j=cat.elementAt(i);
Datamodel.setValueAt(i,0,""+j.getChainId());
Datamodel.setValueAt(i,1,""+j.getJobChar());
Datamodel.setValueAt(i,2,""+j.getE());
Datamodel.setValueAt(i,3,""+j.getL());

}

new ShowSchedule(Datamodel,"Calculation of Window Value","");
/*
* modify due date
* (i, j)-> (i', j') then L(i,j)=min{L(i,j),L(i',j')-1}
* in the vector the jobs are saved saving their precedence just check
* either they fall on same chain or not

*/
for(int i=cat.size()-1;i>0;i--){

Job j=cat.elementAt(i);
Job j_prev=cat.elementAt(i-1);
if(j.getChainId()==j_prev.getChainId()){

if(j_prev.getL()>j.getL()-1){
cat.elementAt(i-1).setL(j.getL());
}

}
}

/* Table Model to show data in window */
for(int i=0;i<cat.size();i++){

Job j=cat.elementAt(i);
Datamodel.setValueAt(i,0,""+j.getChainId());
Datamodel.setValueAt(i,1,""+j.getJobChar());
Datamodel.setValueAt(i,2,""+j.getE());
Datamodel.setValueAt(i,3,""+j.getL());
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}

// Combine Chain
try{

while(cat.size()>0){
EDD_Algorithm();

}
}catch(Exception e){

e.printStackTrace();
}

this.combinedChain=this.getCombinedChain();
new ShowSchedule(Datamodel,"Modified Due Date","<html>Schedule
:<br>"+this.combinedChain+"</html>");

}

public Vector <Job>getModifiedDueDate(){
return this.cat;

}
public int getJobPositionInVec(char jobChar ,int chainId,int pjobOrder){

int jobOrder=0;

for(int i=0;i<cat.size();i++){
Job j=cat.elementAt(i);
if(j.getChainId()==chainId && j.getJobChar()==jobChar){
jobOrder++;
if(jobOrder==pjobOrder)

return i;
}

}
return -1;
}

private void EDD_Algorithm(){
Vector E=new Vector();
int A1;
A1=minAvalilableTime();
E=getJobsAvailableAt(A1);
Job j=getEarliestDueDateJob(E);

cat.remove(j);
this.jobSchedule.add(j);
System.out.println("EDD ALgorithm");

}

public String getCombinedChain(){
this.combinedChain=""+this.jobSchedule.elementAt(0).getJobChar()+this.jobSchedule.e

lementAt(0).getChainId()+" ";
for(int i=1;i<this.jobSchedule.size();i++){
this.combinedChain+=jobSchedule.elementAt(i).getJobChar()+""+this.jobSchedule.ele

mentAt(i).getChainId()+" ";
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}
return this.combinedChain;

}

private Job getEarliestDueDateJob(Vector E){
int minTime=Integer.MAX_VALUE;
Job j=null;
Job temp=null;
for(int i=0;i<E.size();i++){

temp=(Job)E.elementAt(i);
if(temp.getL()<minTime){

j=(Job)E.elementAt(i);
minTime=(int)j.getL();

}
}

return j;
}

private int minAvalilableTime(){
int minTime=Integer.MAX_VALUE;
for(int i=0;i<cat.size();i++){

Job j=(Job)cat.elementAt(i);
if(j.getE()<minTime)

minTime=(int)j.getE();
}
return minTime;

}

private Vector getJobsAvailableAt(int avlTime){
Vector <Job>v=new Vector<Job>();
for(int i=0;i<cat.size();i++){

if(cat.elementAt(i).getE()==avlTime){
v.addElement((Job)cat.elementAt(i));

}
}
return v;

}

}

2 Package: MinMaxAbsoluteChain.GUI

2.1 File: InputChain.java

package MinMaxAbsoluteChain.GUI;
import java.awt.BorderLayout;
import java.awt.FlowLayout;
import java.awt.GridLayout;
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import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import javax.swing.JButton;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTable;
import javax.swing.JTextField;
import javax.swing.JFrame;
import MinMaxAbsoluteChain.POJO.Chain;
import MinMaxAbsoluteChain.com.RunCombineChain;
import MinMaxAbsoluteChain.model.TabelModelForChain;

public class InputChain extends JFrame implements ActionListener{
JTable table=new JTable();
TabelModelForChain model=new TabelModelForChain();
JButton jbtAdd=new JButton("Add New Job");
JButton jbtSave=new JButton("Save");
JButton jbtEdit=new JButton("Edit");
JButton jbtCombineChain=new JButton("Combine Job");
JTextField jtfChainString=new JTextField(15);
JTextField jtfChainId=new JTextField(5);

public static void main(String abc[]){
InputChain mf=new InputChain();
mf.setSize(400,400);
mf.setVisible(true);
mf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

public InputChain(){
JPanel jpCenter=new JPanel();
jpCenter.setLayout(new FlowLayout());
JScrollPane jspTable=new JScrollPane(this.table);
this.table.setModel(this.model);
jpCenter.add(jspTable);
JPanel jpButton =new JPanel();
jpButton.setLayout(new FlowLayout());
jpButton.add(this.jbtAdd);
jpButton.add(this.jbtSave);
jpButton.add(this.jbtEdit);
jpButton.add(this.jbtCombineChain);

JPanel jpData=new JPanel();
jpData.setLayout(new FlowLayout());
jpData.add(new JLabel("Chain Id:"));
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jpData.add(this.jtfChainId);
jpData.add(new JLabel("Chain String:"));
jpData.add(this.jtfChainString);
this.jtfChainId.setEditable(false);
this.setLayout(new BorderLayout());
JPanel jpDownHolder=new JPanel();
jpDownHolder.setLayout(new GridLayout(2,1,5,5));
jpDownHolder.add(jpData);
jpDownHolder.add(jpButton);
JPanel jpDown=new JPanel();
jpDown.setLayout(new FlowLayout());
jpDown.add(jpDownHolder);

this.add(jpDown,BorderLayout.SOUTH);
this.add(jpCenter,BorderLayout.CENTER);
this.jbtSave.addActionListener(this);
this.jbtAdd.addActionListener(this);
this.jbtEdit.addActionListener(this);
this.jbtCombineChain.addActionListener(this);
this.setTitle("Mix-max-absolute-chain problem");

this.table.addMouseListener(new MouseAdapter(){
public void mouseClicked(MouseEvent arg0) {

int i=InputChain.this.table.getSelectedRow();
Chain c=InputChain.this.model.getChainAt(i);
InputChain.this.jtfChainId.setText(""+c.getChain_Id());
InputChain.this.jtfChainString.setText(c.getChain_String());
}

});
}

public void actionPerformed(ActionEvent ae) {
if(ae.getSource().equals(this.jbtAdd)){

clearBox();
}
if(ae.getSource().equals(this.jbtSave)){

Chain c=new Chain();
c.setChain_String(this.jtfChainString.getText());
this.model.addChain(c);
this.table.updateUI();
clearBox();

}

if(ae.getSource().equals(this.jbtEdit)){
Chain c=new Chain();
c.setChain_String(this.jtfChainString.getText());
c.setChain_Id(Integer.parseInt(this.jtfChainId.getText()));
this.model.editChain(c);
this.table.updateUI();

}
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if(ae.getSource().equals(this.jbtCombineChain)){

long l1=System.currentTimeMillis();
RunCombineChain r=new RunCombineChain(this.model.getChain());
RunCyclicChain(this.model.getChain(),noOfCycle);
long l2=System.currentTimeMillis();
JOptionPane.showMessageDialog(this,"Total Run Time :"+(l2-l1)+"

milisecond");
}

}

public void clearBox(){
this.jtfChainString.setText("");
this.jtfChainId.setText("");

}

}

3 Package: MinMaxAbsoluteChain.model

3.1 File: ChainDataModel.java

package MinMaxAbsoluteChain.model;
import java.util.Vector;
import MinMaxAbsoluteChain.POJO.Chain;
import MinMaxAbsoluteChain.POJO.Job;

public class ChainDataModel {
static private Vector <Chain>cat=new Vector<Chain>();
public void addChain(Chain c){

this.cat.add(c);
}

public Vector getChain(){
return cat;

}

public Chain getChain(int chainId){
try{

Chain c=cat.elementAt(chainId);
return c;

}catch(Exception e){
return null;

}
}

public void upDateChain(Chain c){
for(int i=0;i<cat.size();i++){

if(cat.elementAt(i).equals(c)){
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cat.elementAt(i).setChain_String(c.getChain_String());
}

}
}

}

3.2 File: TabelModelForChain.java

package MinMaxAbsoluteChain.model;
import java.util.Vector;
import javax.swing.table.AbstractTableModel;
import MinMaxAbsoluteChain.POJO.Chain;

public class TabelModelForChain extends AbstractTableModel{
Vector <Chain>cat=new Vector<Chain>();
ChainDataModel dataModel=new ChainDataModel();

public Vector getChain(){
return this.cat;

}

public TabelModelForChain(){
upDate();

}

@Override
public String getColumnName(int colNo) {

switch(colNo){
case 0:

return "Chain Id";
case 1:

return "Chain String";

}
return null;

}

public int getColumnCount() {
return 2;

}

public int getRowCount() {
return  cat.size();

}

public Object getValueAt(int rowIndex, int columnIndex) {
Chain c= cat.elementAt(rowIndex);
switch(columnIndex){
case 0:

return c.getChain_Id();
case 1:

return c.getChain_String();
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}
return null;

}

public void addChain(Chain c){
c.setChain_Id(dataModel.getChain().size());
dataModel.addChain(c);
upDate();

}

public void editChain(Chain c){
dataModel.upDateChain(c);
upDate();

}

public Chain getChainAt(int index){
return cat.elementAt(index);

}
@SuppressWarnings("unchecked")

public void upDate(){
this.cat=new ChainDataModel().getChain();

}

}

4 Package: MinMaxAbsoluteChain.POJO

4.1 File: Chain.java

package MinMaxAbsoluteChain.POJO;
import java.util.Vector;
public class Chain {

private  int Chain_Id;
private String Chain_String;

public int getChain_Id() {
return Chain_Id;

}
public void setChain_Id(int chain_Id) {

Chain_Id = chain_Id;
}
public String getChain_String() {

return Chain_String;
}
public void setChain_String(String chain_String) {

Chain_String = chain_String;
}
@Override
public boolean equals(Object c) {

try{



74

Chain temp=(Chain)c;
return this.Chain_Id==temp.Chain_Id?true:false;

}catch(Exception e){
return false;

}
}

}

4.2 File: Job.java

package MinMaxAbsoluteChain.POJO;
public class Job {

private int chainId;
private int jobPosition;
private double e;
private double l;
private char jobChar;
private boolean isScheduled;

public Job(){
this.isScheduled=false;

}
public boolean isScheduled() {

return isScheduled;
}
public void setScheduled(boolean isScheduled) {

this.isScheduled = isScheduled;
}
public int getChainId() {

return chainId;
}
public void setChainId(int chainId) {

this.chainId = chainId;
}
public double getE() {

return e;
}
public void setE(double e) {

this.e = e;
}

public int getJobPosition() {
return jobPosition;

}
public void setJobPosition(int jobPosition) {

this.jobPosition = jobPosition;
}
public double getL() {
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return l;
}
public void setL(double l) {

this.l = l;
}
public char getJobChar() {

return jobChar;
}
public void setJobChar(char jobChar) {

this.jobChar = jobChar;
}

}


