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ABSTRACT

Identifying different types of ulcer and surgical wounds based on their distinct

features is a complex task in medical imaging. This involves the classification of

ulcer and surgical wound into various labels such as diabetic ulcer, pressure ulcer,

venous ulcer and surgical wounds. In order to make this process more efficient

and cost-effective, there has been different study in this field. A body map based

VGG 16 network is used to implement transfer learning onto two trainable dense

layers for classification of wound images into five labels. The five labels include

the aforementioned four types of wound and another label "Not a wound" which

does not contain any wound image. The study is started with AZHMT dataset

containing 4790 images. These images are classified using pre-trained inceptionV3

and VGG 16 network separately. The performance of VGG 16 was found to be

better than inceptionV3 by almost 4% which was the reason for selecting VGG

16 for further study in this dataset. Also, inceptionV3 is longer and wider than

VGG 16 which will learn unnecessary features from images using higher computing

resources. The main aim of this thesis is to show that performance can be increased

without learning unnecessary features, using fewer computing resources. and by

using body map function. Therefore, VGG 16 is selected for all experiments in

this thesis. The VGG 16 is used to train one dense layer using body map by

varying different parameters whose results are incorporated in this thesis. Then

again, VGG 16 network is used to train two dense layers as well. The optimum

result was found on combination of two dense layers which were trained using

Adam Optimizer using body map. Body map is manually developed with unique

numbering in each image file. This resulted in average precision of 0.93, average

recall of 0.95, F1 score of 0.94, average AUC of 0.97 and accuracy of 94.57%.

Keywords: Transfer Learning, Body Map, Surgical Wounds, Ulcer Wounds, Lo-

cation Labelling.
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CHAPTER 1

INTRODUCTION

1.1 Background

Wound Image Classification is a field of study withing the medical imaging domain

that involves the use of computational algorithms to classify images of wounds

based on their appearance and characteristics[1]. This type of image classification

has been increasingly important in recent years, as the rapid advancements in

medical imaging technology have led to an increase in the number of medical

images being generated.

The primary goal of wound image classification is to assist healthcare professionals

in the accurate and efficient diagnosis of wounds[2]. This can be achieved by

automatically categorizing wounds based on specific attributes, such as impact

of wound, discoloration of wound, color tone of wound and the area of wound.

This classification is vital in order to plan correct and accurate treatment course

for the patient depending upon the type of wound. The process of wound image

classification typically involved the digital acquisition of wounds, which are pre-

processed to remove noise and improve the quality of images. The image is then

augmented to create more dataset from existing dataset. Augmentation includes

rotation, translation, reflection and introduction of white noise to certain extent[3].

The next step is to extract relevant features from the images which is used to

train machine learning algorithms. These algorithms are then used to classify the

wounds into different categories, based on their appearance and characteristics.

The key challenge in wound image classification is the variability of wound ap-

pearance, as wounds can differ in size, shape and severity, and also can be affected

by factors such as stage of healing and the presence of infections[4]. Despite these

challenges, the use of machine learning algorithm and transfer learning has shown

promising results in accurately classifying wounds, and has the potential to greatly

improve patient outcomes by enabling more accurate and timely diagnosis[5]. The
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wound classification task researched for this thesis will be based on classification

of images into five classes of wounds which are Surgical Wound, Venous Ulcer,

Diabetic Ulcer, Pressure Ulcer and Not a wound.

The researched thesis includes the body map categorical input along with the

image in order to effectively classify the type of wound with utmost accuracy.

Body map is created through extensive research by breaking down body parts

into various labels. The labels are assigned to integer values and trained in the

network along with their respective images so that the network understands and

assigns respective labels to respective wound probability in order to classify the

wound with higher accuracy.

1.2 Problem Statement

Wound classification process is the basis of wound treatment. The process of

wound classification includes location of wound and the type of wound associated

with it. Wound classification is a very important aspect in wound healing process

because correct classification of wound helps in planning and developing the correct

course of wound treatment and care plan. However, accurate wound classification

can be challenging as it requires expertise and experience in wound assessment[6].

Another challenge in automated wound classification using deep learning is the

erroneous classification of wound which might lead to wrong treatment. Since

most of the wounds have similar shapes, contours and features, even deep learning

algorithms might fail to correctly classify it. Another challenge is the availability

of fewer dataset and scarcity of complex algorithm processing hardware which

might make training and testing of wound image more sophisticated[7].

The goal of this thesis to eradicate the aforementioned problems by introduction

of categorical body map in order to indicate the location of wound along with the

wound image. For instance, diabetic ulcers generally occur on bottom of the foot

for most of the patients. This result is not only confined to bottom of foot but

may also result in other body parts as well[8]. Similarly, venous ulcers generally

occur below knee upto around ankle and lower leg[9]. There are various deep

learning models which have shown encouraging results for image classification task
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and the same result can be applied with wound image classification task as well.

The proposed system will use wound classifier block and location classifier block

parallely in order to determine the type of wound for proper care and accurate

treatment

1.3 Objective

Image wound analysis is a process of analysing type of wound based on wound

image and body map location. Body map location corresponds to the certain part

of the body where wound is located. The objectives of this thesis work are:

• To develop a transfer learning approach for classifying wound images into

five classes with use of body map.

• To validate the implemented network using a reliable outcome measure that

can be used to assess the type of wound.

• To compare the performance of transfer learning network with state of the

art CNN architectures.

1.4 Contribution of this thesis

The contribution of this work involves the use of 256 neurons dense layers on top

of VGG 16 architecture in order to implement transfer learning for wound image

classification task. The main contributions of this thesis are:

• The wound images related to ulcers and surgical wounds are collected from

various sources forming the wound image dataset which contains 4790 la-

belled image and categorized into five different classes

• The naming convention for implementation of body map is manually per-

formed in each dataset.

• A dense layer containing 256 neurons is trained on top of VGG 16 network

by freezing its top layer along with categorical body map using transfer

learning.
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1.5 Originality of this work

There has been several researches on medical image wound classification using

different pre-trained network such as AlexNet, InceptionV3 and VGG-16/19 ar-

chitectures. However, there are very few researches in medical imaging by using

transfer learning using these pre-trained models. Also, there have been no effective

research on how body location can be used to predict type of wound. Transfer

learning uses pre-trained weights to update new weights on another network within

few epochs, training time and few datasets. This thesis studies about using con-

cept of transfer learning into another dense layer and use of body map in order to

further improve performance of the network by using precise location of wound.

A more detailed list of various contribution is provided below:

• Use of transfer learning through pre-trained VGG-16 network to classify

wounds from images.

• Investigate different learning optimizations and vary number of dense layers

for effective parameter tuning.

• Integrate body map for further improving the performance of model.

1.6 Thesis Outline

The further part of documentation is organized as below:

Chapter 2 describes the state of the art of image wound classification techniques

and pre-trained models.

Chapter 3 describes the theoretical background of this thesis work.

Chapter 4 describes the methodology used in researching this thesis, performance

metrics and tools used and implementation of body map and pre-trained models.

Chapter 5 discusses the results and graphs observed for different parameters of

transfer learning for classifying wounds.

Chapter 6 concludes the thesis with future scopes.
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CHAPTER 2

LITERATURE REVIEW

2.1 Classification of wound image using ensemble-based CNN

Acute and chronic wounds pose challenges to healthcare systems around the world

and affect the lives of many people every year. Wound classification is an im-

portant step in wound diagnosis which helps medical personnel to find the best

treatment procedure. Therefore, a strong classifier can help experts in the field to

classify wounds at less cost and time cost. Various wound classification methods

based on machine learning and deep learning have been proposed at academic

conferences and literatures. The published paper by Mahbod et. al. used an

ensemble deep based convolutional neural network-based classifier for classifying

scars images including multiclass surgery, diabetes, and venous ulcers[10]. The

classification values output from the two classifiers (patchwise and framewise) are

input to a multi-layer perceptron. It provides excellent classification performance.

The proposed method used a 5-fold cross-validation approach which obtained max-

imum and average classification accuracy scores of 84.4% and 84.28% for the binary

and 81.9% and 83.21% for the three-class classification problem[10]. The result

is the proposed method can be effectively used as a decision support tool wound

images or other relevant clinical classification systems application.

2.2 Automatic Wound Segmentation using Deep CNN

Acute and chronic wounds have many causes and place an economic burden on

healthcare systems worldwide. The advanced wound care market is expected to

exceed USD 22 billion by 2024 worldwide[11]. Wound care professionals rely heav-

ily on imaging and imaging documentation for proper diagnosis and treatment.

Unfortunately, lack of expertise can lead to misdiagnosis of wound etiology and

inaccurate wound management and documentation. Fully automated segmenta-

tion of wound areas in natural images is an important part of diagnostic and
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care protocols, as it is important to measure wound area and provide quantita-

tive parameters in treatment[12]. Various deep learning models have been proven

for image analysis, including semantic segmentation. This manuscript proposed

a new convolutional framework to segment wound regions from natural images

based on MobileNetV2[13] and connected component labeling[14]. The advantage

of this model is a lightweight and computationally intensive architecture which is

comparable to deeper neural networks without compromising performance. This

paper created an annotated wound image dataset consisting of 1109 images of leg

ulcers from 889 patients to train and test a deep learning model. The deep CNN

demonstrated the effectiveness and mobility by performing extensive experiments

and analyzes on various neural segmentation networks.

2.3 Wound Image Classification

Chen et al. used a deep learning approach to segment and classify wounds in

clinical care by proposing a U-Net architecture for wound segmentation and a

CNN for wound classification. The authors evaluated their approach on a dataset

of 320 wound images and achieved an accuracy of 92.5% for wound segmentation

and 91.3% for wound classification[15]. Thurnhofer et. al. proposed a patch based

classifier with CNN to segment diabetic foot ulcer with a dice index of 0.848. They

concluded that CNN based approach is better for foot ulcer segmentation[16].

Liu et al. presented an all-encompassing approach calle WoundSeg for segmenta-

tion of wound images. The authors suggest a three-stage framework for wound

segmentation using deep convolutional networks. In the first stage, image enhance-

ment techniques are employed to enhance the contrast and sharpness of wound

images. In the second stage, a pre-trained VGG-16 network is utilized to extract

important features from the preprocessed wound images. Finally, in the classifi-

cation stage, a fully connected layer with a sigmoid activation function is used to

categorize individual pixels as either wound or non-wound.%[17]..

Huimin et al. used either automated or semi-automated techniques to select the

wound area before performing tissue classification, which involved utilizing one or

more image descriptors and classification. The most commonly employed features
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included color histograms and texture parameters such as entropy, sum of squares

variance, wavelet, and local binary patterns[18]. Venkatesan et al. developed a

new deep convolutional neural network called DFU QUTNet for binary patch clas-

sification of normal skin versus abnormal skin (DFU). The authors created a new

dataset consisting of 754-foot images from a diabetic hospital center in Iraq, which

generated 542 normal skin patches and 1067 DFU patches[19]. They augmented

their dataset by 13 times using flipping, rotating, and scaling transformations.

Their proposed network had 58 layers, with 17 of them being convolutional. The

performance of their proposed method was compared to other deep CNNs like

GoogLeNet, VGG16, and AlexNet, with the maximum reported F1-Score being

94.5% obtained by combining the DFU QUTNet architecture with SVM[19].

Rostami et al. proposed an ensemble DCNN-based classifier to categorize entire

wound images into multiple classes, including surgical, diabetic, and venous ul-

cers[20]. The researchers brought upon a new dataset containing 538 wound images

from four different classes of wounds. The resulting classification metrics of two

classifiers based on patch-wise and image-wise method were fed into a Multi-Layer

Perceptron to improve the classifier’s performance[20]. The maximum and average

classification accuracy values were 91.4% and 90.28% for binary and 91.9% and

87.7% for 3-class classification, respectively. On the other hand, Sarp et al. used

an explainable artificial intelligence approach to classify chronic wounds into four

classes (diabetic, lymphovascular, pressure injury, and surgical)[21] The authors

employed transfer learning on the VGG16 network as the classifier model and aug-

mented the dataset with mirroring, rotation, and horizontal flip techniques. The

dataset was composed of 8690 wound images collected from the eKare, Inc. data

repository. The researchers reported an average F1-score of 0.76 as the test result.

In another research by D.N Anussuzzaman et al. the proposed method consists

of two stages[22]. In the first stage, the researchers used a VGG 19 to extract

features from the wound images. The researchers fine-tuned the pre-trained VGG

19 CNN architecture on their wound image dataset and achieve an accuracy of

88.35% for binary classification and 84.75% for multi-class classification[22]. In the

second stage, the researchers incorporated the wound location information with the
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image features obtained from the first stage. The authors use a LSTM architecture

to combine the location features and image features and achieve an accuracy of

97.34% for binary classification and 93.22% for multi-class classification.

2.4 Research Gap

Researches performed in field of medical wound segmentation included use of CNN

and RNN architectures for classification problem [13] [15] [19]. Recently there have

been increasing researches on use of transfer learning for wound classification[23].

The motivation behind use of transfer learning in wound image classification is

due to the lack of availability of large dataset and no standarization in images

protocol. This can lead to variability in image quality and affect the performance

of classification model. Also, there are few but limited researches in use of trans-

fer learning in wound image classification, the results are promising since use of

transfer learning has increased accuracy and avoided the need for complicated

hardware for training of large dataset[24]. The concept of transfer learning is to

use some pre trained model such as InceptionV3[25] or VGG network[26] which has

already been trained on vast amount of image dataset and apply it some another

classification task.

There has been limited research on applying transfer learning to wound image

classification, which could be a promising avenue for improving the performance

of these models. So this thesis is focused on use of transfer learning and apply

it on top of dense layer to increase classification accuracy and avoid the need of

complicated hardware. Also, there has been limited research on use of body maps

in order to predict and study which part of body are vulnerable to different type of

wound. This thesis also focuses on use of body map and use it to classify wounds

based on location and type of wound.
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CHAPTER 3

THEORETICAL BACKGROUND

3.1 Convolutional Neural Network

CNNs are an optimized and efficient method for processing images, as they are

able to learn and extract key features and abstractions. These networks were

first proposed by Fukushima in 1988, who suggested a hierarchical network called

neocognitron, which used multiple layers of neurons to recognize patterns by learn-

ing[27]. This network’s lower layers extracted local features, while the higher layers

integrated this information to identify more specific and global features. However,

due to computational limitations, neocognitron did not gain much attention un-

til the 1990s, when LeCun et al. used a gradient descent algorithm to achieve

successful results for handwritten digit recognition[28].

In essence, a CNN consists of multiple convolution and pooling layers applied in

sequence to extract important features from input data. Convolution involves

taking the sum of element-wise products between a tensor and a kernel. Two

important operations that are applied before convolution are padding and stride.

Padding is used to ensure that the kernel takes into account corner pixels or

boundary data, while stride refers to the step size taken over an input tensor

during convolution[29]. The larger the stride, the more the input size shrinks. Let

(nH, nW, nC) be the dimension of the input image and (f, f, nK) be the kernel

dimension where f is generally an odd dimension. Let s and p represent the size of

stride and padding then, the dimension of the output after convolution operation

is

output = [(nH + 2pf) = s + 1; (nW + 2pf) = s + 1; nK] (3.1)

The convolutional layer of a CNN has filters that contain weights and biases,

which are learned and updated during the back-propagation phase[30]. An activa-

tion function is applied after the convolutional process. The choice of activation

function depends on the problem at hand, but the ReLU activation function is
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commonly used in hidden layers due to its computational efficiency compared to

sigmoid or tanh functions.. A ReLU activation can be represented mathematically

as

f(z) = max(0; z) (3.2)

Once convolution and activation have been applied, the feature size is reduced

using a pooling operation. Pooling involves moving a filter with no learnable

parameters over a tensor and calculating either the maximum or average value of

the window of the filter. This operation only affects nH and nW . The dimension

of an image after pooling with a fxf filter is given by

output = [(nH + 2pf) = s + 1; (nW + 2pf) = s + 1; nK] (3.3)

where, p and s are padding and stride values for the pooling operation. We apply

convolution and pooling a number of times depending on the requirement of the

feature extraction and then connect the output to a fully connected network which

is essentially a feed-forward neural network with weights and biases[31]. These are

updated during the back propagation phase. The architecture of CNN is shown

as in fig 3.1.

Figure 3.1: Convolutional Neural Network Architecture
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3.2 Stochastic Gradient Descent Optimization

Stochastic gradient descent is a popular optimization algorithm used in machine

learning to find the optimal set of parameters that minimize the cost function.

The main idea behind SGD is to update the model parameters in small batches

using the gradients of the cost function with respect to the parameters, rather

than the entire dataset[32].

The SGD algorithm works by randomly selecting a mini-batch of training examples

from the dataset and computing the gradients of the cost function with respect

to the parameters using the selected mini-batch. SGD is used to minimize neural

network loss function J(θ) which is parameterized by a neural model’s parameter

θ ∈ Rd with respect to the parameters. The learning rate η determines the size

of the steps taken to reach the minimum value[33]. Stochastic gradient descent

performs the optimization by computing the gradient of the loss function with

respect to the parameters θ for each training sample x(i) and y(i) given by the

equation 3.4:

θ = θ − η · ∇θJ(θ; x(i); y(i)) (3.4)

However, one of the drawbacks of SGD is that the learning process can get stuck

in local minima. Another drawback is that SGD can have a slow convergence rate

when the cost function has a large number of flat regions, plateaus, or ridges. In

such cases, the algorithm may take a long time to reach the minimum [33].

A different optimization technique, known as Mini-batch gradient descent, com-

bines the advantages of both Batch gradient descent and Stochastic gradient de-

scent by updating the parameters based on a batch of n training examples at a

time. This allows for a more stable convergence of the objective function[34]:

θ = θ − η · ∇θJ(θ; x(i:i+n); y(i:i+n)) (3.5)

However, traditional mini-batch gradient descent has some limitations. Firstly,

it can be difficult to select the best learning rate. A learning rate that is too

small can lead to slow convergence, while a learning rate that is too large can

prevent the best convergence to the minimum. This can result in the loss function

either fluctuating or diverging away. Although a learning rate scheduler can help
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solve this problem, it is pre-defined and does not take into account changes to the

objective function that occur between epochs of training, making it an unadaptive

solution[34]. Furthermore, in traditional mini-batch gradient descent, the same

learning rate is applied to all parameters of the neural model. However, if there

is sparse data with multiple parameters, each parameter can benefit more if an

individual learning rate is applied to it. If the loss function is highly non-convex,

the neural network can get trapped in suboptimal local minima with mini-batch

gradient descent[35].

Momentum approach can help accelerate SGD in the relevant direction by damping

the oscillations of the objective function. To achieve this, it adds a fraction γ of

the update vector of the past time step to the current update vector as shown in

equation 3.6 and 3.7:

vt = γvt−1 + η · ∇θJ(θ) (3.6)

θ = θ − vt (3.7)

Adagrad is a gradient-based optimization algorithm that adjusts the learning rate

of parameters. It updates the parameters with larger values for those that are

associated with infrequent features and smaller values for those associated with

frequently occurring features. Unlike the traditional method where all parameters

of the model use the same learning rate η, Adagrad uses a different learning rate

for each parameter at each time step[36]. The gradient at time step t is denoted

as gt, and the partial derivative of the loss function with respect to the parameter

θi at time step t is denoted as g(t, i).

g(t,i) = ∇θ · J(θt, i) (3.8)

The parameter update for every θi is:

θt+1,i = θt,i − η · gt,i (3.9)

The general learning rate is modified by Adagrad at each time step for every

parameter based on the past gradients that have been computed for:
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θt+1,i = θt,i − η√
Gt,ii + ϵ

gt,i (3.10)

In the given equation, GtϵR
d∗d is a diagonal matrix where each diagonal element i, i

is the sum of squares of the squares of the gradients with respect to θi. RMSprop

resolves the radically diminishing learning rates of Adagrad optimization.

E[g2]t = 0.9E[g2]t−1 + 0.1g2
t (3.11)

θt+1 = θt − η√
E[g2]t + ϵ

gt (3.12)

Adam is a contemporary approach that can calculate adaptive learning rates for

every parameter. It combines the characteristics of momentum and RMSprop by

retaining both an exponentially decaying average of past squared gradients and an

exponentially decaying average of past gradients[37]. To obtain the decaying aver-

ages of past and past squared gradients, we can compute mt and vt, respectively,

using the following method.

mt = β1mt−1 + (1 − β1)gt (3.13)

vt = β2vt−1 + (1 − β2)g2
t (3.14)

where, mt and vt are the mean and variance of the gradients respectively. Then,

to update the parameters.

θt+1 = θt − η√
v̂t + ϵ

m̂t (3.15)

Adam computes individual learning rates for different parameters, which means

that it adapts the learning rate based on the gradient statistics of each parameter.

This feature enables Adam to converge faster and more efficiently than traditional

optimization algorithms. Adam optimizer uses concept of momentum which helps

the optimizer to continue its previous direction of update, which enables it to

move quickly through the flatter regions of the loss landscape and to avoid getting

stuck in local minima. This is the reason adam optimizer is widely used[38].
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3.3 Dropout

Dropout is a regularization technique used in neural networks to prevent overfit-

ting of the model to the training data. It works by randomly dropping out some

of the neurons in a layer during training[39]. This is done with a specified prob-

ability, typically around 0.5, which means that each neuron has a 50% chance of

being dropped out.In process of dropout, the network is forced to learn redundant

representations of the input data, which makes it more robust to noise and helps

prevent overfitting. In essence, dropout can be seen as a way to ensemble different

models, as it trains several different models with subsets of the available neurons,

each of which learns to make predictions on its own[40]. In this thesis, to avoid

overfitting, dropout of 0.7 is used which means randomly dropping out 70% of the

total neurons during learning.

3.4 VGG 16 (Visual Geometry Group)

VGG-16 is a convolutional neural network (CNN) architecture that was developed

by the Visual Geometry Group at the University of Oxford[26]. It is one of the

most popular and widely used deep learning models for image recognition and

classification tasks. The architecture of VGG-16 consists of 16 layers, including

13 convolutional layers and 3 fully connected layers. The convolutional layers use

small 3x3 filters with stride 1 and padding 1, and are followed by max-pooling

layers with 2x2 filters and stride 2. The fully connected layers at the end of the

network are used for classification[26]. The VGG-16 model has achieved state-

of-the-art performance on a number of benchmark datasets, including ImageNet,

which contains millions of labeled images from thousands of categories. It has

also been used as a pre-trained model for transfer learning in various computer

vision applications. Convolutional networks have got a great success in large scale-

image and video recognition which became possible due to the large public image

repositories such as ImageNet and high-performance computing system such as

GPUs or large-scale distributed clusters[41]. Depth of ConvNet architecture and

used of very small (3 × 3) convolutional filters in all layers has been addressed. As

a result, a significant ConvNet architecture (VGG16) has been achieved which got
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the state-of-the-art accuracy on ILSVRC classification and other image recognition

datasets. The model achieved 92.7% top-5 best accuracy in Imagenet, which is a

dataset of over 14 million images belonging to 1000 classes[26]. The architecture

of VGG 16 is shown in fig 3.2.

Figure 3.2: VGG 16 Architecture

The input to VGG16 224*224 RGB image is provided to VGG16. The provided

image is passed to stack of convolutional layers where the image is convolved with

fixed sized filter of 3*3. The convolutional stride performed on convolutional layer

is 1 pixel and padding performed is such that spatial resolution is preserved after

convolution. Spatial pooling is carried out by five max- pooling layers. Max-

pooling is performed over a 2*2 pixel window, with stride 2 pixel[26]. Three

Fully-Connected layers follow a stack of convolutional layers (which has a different

depth in different architectures): the first two have 4096 channels each, the third

performs 1000-way ILSVRC classification and thus contains 1000 channels (one

for each class). The final layer is the soft-max layer where classifications of images

are obtained[26].

The mathematical equation of VGG-16 can be expressed as a series of convolu-

tional and pooling operations followed by fully connected layers for classification.
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Let X be an input image of size W x H x C, where W is the width, H is the height,

and C is the number of channels which is typically 3 for RGB channels.The first

layer applies a 3x3 convolution with 64 filters, followed by a rectified linear acti-

vation function (ReLU):

Z1 = ReLU(X1 ∗ W1 + b1) (3.16)

where W1 is the weight matrix for the first layer, b1 is the bias term, and ∗ repre-

sents the convolution operation. The second layer applies another 3x3 convolution

with 64 filters and a ReLU activation:

Z2 = ReLU(Z1 ∗ W2 + b2) (3.17)

The third layer applies a 2x2 max pooling operation with stride 2:

P1 = maxpool(Z2) (3.18)

The fourth layer applies a 3x3 convolution with 128 filters and a ReLU activation:

Z3 = ReLU(P1 ∗ W3 + b3) (3.19)

And so on, for a total of 13 convolutional layers, followed by 3 fully connected layers

for classification. The final output of the network is a probability distribution over

the possible classes, which can be obtained using a softmax activation function on

the output of the last fully connected layer. However, for the implementation of

transfer learning this layer is frozen and then fed into another dense layer which

contains trainable neurons.

3.5 Evaluation Metrics

In order to determine the consistency and correctness of a classification model,

typical assessment metrics are determine according to:

1. True Positive (TP): A true positive is when the model predicts the positive

class accurately

2. False Positive (FP): A false positive occurs when the model estimates the

positive class inaccurately.
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3. True Negative (TN): A true negative is when the model predicts the negative

class accurately.

4. False Negative (FN): A false negative is when the model predicts the negative

class inaccurately.

3.5.1 Precision

Precision is used to measure the number of right positive predictions among all

positive predicted values. For example, if the model predicts 100 wound images

as diabetic wounds then precision gives the number of correct predicted wounds

as diabetic among predicted values. It is calculated by using formula:

Precision = TP

TP + FP
(3.20)

3.5.2 Recall

Recall is used to measure the number of right positive predictions among all the

true actual class. For example, if the model predicts 100 wound images as diabetic

wound then recall gives us the correct predicted diabetic wound among the true

values. It is calculated by using formula:

Recall = TP

TP + FN
(3.21)

3.5.3 F1 Score

F1 score is used to measure the test accuracy. It is the weighted mean of precision

and recall. This score takes both false positives and false negatives into account.

It is calculated using formula:

F1Score = Precision ∗ Recall

Precision + Recall
(3.22)

3.5.4 Accuracy

Accuracy is used to measure the performance of the model. It is the simple ratio of

the correctly predicted observations to the total observations. It can be calculated

using formula:

Accuracy = TP + TN

TP + TN + FP + FN
(3.23)
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3.5.5 Confusion Matrix

A confusion matrix is a table that shows the results of the prediction model.

The number of observations made by the model where it categorized the groups

correctly or incorrectly is expressed by entry in a confusion matrix. The confusion

matrix has peculiar table organization which helps the output to be visualized,

usually supervised learning. It shows not only a predictive model’s results, but

also which groups are correctly predicted, which are incorrectly predicted, and

what types of errors are being made as shown in fig 3.3.

Figure 3.3: Confusion Matrix

We have five classes of wound namely "Surgical Wound", "Venous Ulcer", "Diabetic

Ulcer", "Pressure Ulcer" and "Not a wound". Each cell in the confusion matrix

corresponds to each respective label. An example of confusion matrix inclusive

of these five labels is shown in figure 3.4. The vertical labels represent the true

label of wound image and the horizontal label represents the predicted label of

wound image by the learning network. The highlighted cell symbolizes for the

true and predictions of each wound images. The confusion matrix is developed

upon comparison with with each labels so it is helpful in calculating evaluation

matrix (Accuracy, Precision, Recall and F1 Score).
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Figure 3.4: Confusion Matrix for five classes

3.5.6 ROC-AUC Curve

The ROC (Receiver Operating Characteristic) curve is a graphical representation

of the performance of a binary classification model. It is a plot of the true positive

rate (TPR) against the false positive rate (FPR) at different threshold settings.

The TPR is also known as sensitivity or recall, and it measures the proportion of

true positives that are correctly classified by the model. The FPR is the proportion

of false positives that are incorrectly classified by the model.ROC-AUC curve helps

to see how the threshold plays out the decision of the model at different threshold

settings[42]. The VGG model will predict the True Positives and Negatives and

all other metrics mentioned above based on the assumption of a threshold that

dictates what output label is considered positive and negative. This value of the

threshold however could have been any random number hence this is an arbitrary

choice and should not affect the decision provided by our model. It provides us

the measure of goodness of fit, summarizes the model output across all thresholds,

and provides a good sense of the discriminative power of a given model[43]. The

ROC curve helps to visualize the trade-off between TPR and FPR at different

classification thresholds. A perfect classifier would have a TPR of 1 and an FPR

of 0, resulting in a point in the upper left corner of the plot. A random classifier

would have a diagonal line, as the TPR and FPR would be equal at all threshold

settings.
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The AUC is a single numerical value used to evaluate the effectiveness of a clas-

sification model. It calculates the area under the ROC curve, and its value varies

between 0 and 1. When the value is 0.5, it indicates a random classification,

whereas a value of 1 represents a perfect classification. Essentially, the AUC mea-

sures the likelihood of a positive example being ranked higher by the model than

a negative example chosen at random[43]. ROC AUC curve is depicted in fig 3.5.

Figure 3.5: ROC-AUC Curve
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CHAPTER 4

METHODOLOGY AND IMPLEMENTATION

4.1 Block Diagram

Figure 4.1: Block Diagram

The block diagram system is as shown in figure 4.1 is for the classification task

which takes wound image as input. The wound image is of size 224*224 in order

to make it compatible for VGG 16. The wound image is labelled as 0,1,2,3,4

for venous ulcer, surgical wound, diabetic ulcer, pressure ulcer and not a wound.

The system contains VGG16 network to extract feature maps from images and

VGG16 has been implemented to test its performance in this dataset and got good

performance. All the layers except the output of VGG16 has been frozen in order

to train Dense layer based on transfer learning. There are two layers of Dense

layer trained based on input dataset which uses ReLU activation. Dense layer

uses dropout after pooling in order to discard random neurons to avoid overfitting

problem. At the same time, another block processes body map in order to identify
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which part of the body contains wound. Body map contains different breakdown

categorical breakdown of the body to build a probabilistic model of where the

wound is likely to take place. For instance, Diabetic ulcer is likely to happen on

the bottom of the feet. Similarly, venous ulcer are like to occur between ankles and

knee cap. However, location map alone does not confirm wound type and is only

used in order to increase accuracy of the system. The categorical value of location

map will be processed using multi layer perceptron and will be concatenated with

the final output of VGG 16 layer and fed into dense layer for training it. The

final output will have softmax function divided into five classes based on their

probabilities.

4.2 Dataset Collection

The datasets are carefully collected from AZHMT and Medetec dataset which

contains images of different categories ulcer and surgical wound. Only relevant

dataset are collected for formulating our problem. These dataset have images

varying from 320 to 700 pixels in width and 240 to 560 pixels in height. The

AZHMT dataset is robust and reliable for our problem. The AZH dataset which we

will be using was gathered during a clinical period of two years at the AZH Wound

and Vascular Center located in Milwaukee, Wisconsin. The dataset comprises

images of four distinct types of wounds, namely venous, diabetic, pressure, and

surgical wounds. The images are captured using an iPad Pro and a Canon SX 620

HS digital camera. The wound specialist at AZH Wound and Vascular Center is

responsible for labeling the images. In the majority of cases, each image is taken

from a different patient. The samples of dataset belonging to five classes are shown

from fig 4.2 to fig 4.6.

Figure 4.2: Diabetic Ulcer Image Data
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Figure 4.3: Venous Ulcer Image Data

Figure 4.4: Surgical Wound Image Data

Figure 4.5: Pressure Ulcer Image Data

Figure 4.6: Not a Wound Image Data

4.3 Body Map

A body map for wound image classification is a graphical representation of the

human body that is used to identify the location of a wound on a patient. The

body map is typically divided into different anatomical regions, such as the head
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and neck, upper extremities, trunk, lower extremities, and genital area[44].Using a

body map can be helpful in organizing and classifying wound images based on their

location, which can be important for clinical and research purposes. For example,

it can help to identify patterns in the occurrence of certain types of wounds in

different anatomical regions, or to monitor the healing process of a wound over

time[45].

A body map has been developed in order to increase accuracy of wound prediction

since there are different cases of ulcers that develop in different part of the body.

For instance, diabetic ulcer generally occurs in lower feet and venous ulcer occur in

ankles area[8] [9]. Surgery generally takes place in joint area such as elbow, chest,

ankles, knee etc[46]. These places are generally susceptible to surgical wound.

Also, pressure ulcer occurs in muscular areas such as gluteus maximus, latissimus

dorsi etc. However, this does not limit the occurrence of wound in specific areas

only. Hence, in order to increase accuracy of prediction, both body map number

and wound image are fed into network for effective classification. The detailed

breakdown of body maps is as shown in figure 4.7, 4.8 and 4.9.

Figure 4.7: Body Map front/back
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Figure 4.8: Body Map Dorsal

Table 4.1: Body map location labelling sample

Hand Location Foot Location Back Location

Right Proximal

Palmer

44 - 45 Right Medial

Plantar First

Toe

276,

281

Right Dorsum 213,

214

Right Hy-

pothenar

43 Left Medial

Plantar First

Toe

301,

302

Right Lumbar 217

Left Distal In-

terphalangeal

71 - 73 Right Dorsal

Proximal Toe

327 Right Gluteal 228

Left Wrist

Crease

65 Right Dorsal

Distal Toe

325 Left Branchial 165,

166
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Figure 4.9: Body Map Plantar

4.4 Pre-processing

The dataset collected were originated from various sources, which is why they

differed in size, resolution and color intensity. Therefore, a detailed pre processing

technique was applied to dataset to maintain uniformity.

• Adaptive Histogram Equalization (AHE): The wound images were

subjected to the AHE transformation technique in order to enhance their

contrast. AHE addresses the problem of overamplifying noise in uniform

areas of an image by limiting the amplification. Initially, a neighborhood

histogram was computed for each pixel in the image. The histograms were

then clipped at a predefined threshold value and the clipped histogram was

redistributed evenly among all the histogram bins. Next, the Cumulative

Distribution Function (CDF) and transformation function were computed

for each pixel based on the clipped histogram. Finally, the transformation

function was applied to each pixel to obtain the equalized image.
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Figure 4.10: Original vs AHE

• Scaling: The variable wound and non wound image size were then converted

to 224*224 size since the VGG 16 network only reads the respective image

size. The mathematical representation of scaling operation can be defined

as follows:

x′ = Sx + x (4.1)

y′ = Sy + y (4.2)

Here,

(x,y) are the two dimensional co-ordinates of image pixels.

(x’,y’) are two dimensional co-ordinates after scaling.

Sx and Sy are scaling factors.

Sx = New width of rescaled image
Actual width of the original image (4.3)

Sy = New height of rescaled image
Actual height of the original image (4.4)

Figure 4.11: Original image vs Scale by 0.4
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4.5 Data Augmentation

After the pre-processing step, in order to prevent the model from the problem

of overfitting, different techniques of data augmentations were used to introduce

variation in images of dataset. Some of the methods of augmentations were:

• Lateral Inversion: The wound images were horizontally flipped. The

mathematical expression of lateral inversion is given as:

x′ = −1 ∗ x (4.5)

y′ = y (4.6)

• Rotation: The wound images were randomly rotated upto ±45°. The math-

ematical expression of rotation is given as:

x′ = cos θ ∗ x + sin θ ∗ y (4.7)

y′ = − sin θ ∗ x + cos θ ∗ y (4.8)

Here, the angle θ varies from -45°to +45°

• Translation: The wound image were shiften in lateral and vertical direc-

tion with shift range interval of [-0.4,+0.4] of the total width and height,

respectively.

x′ = x + tx (4.9)

y′ = y + ty (4.10)

Here,tx and ty are the translational factors in horizontal and vertical direc-

tions, respectively

Figure 4.12: Rotation by 45°and Horizontal Shift

28



Figure 4.13: Flip and Rotation + Shift

4.6 Wound Classifier Block (VGG 16)

Figure 4.14: VGG Image Modality

The VGG16 network for wound image classification has been successfully com-

pleted using dense layer and transfer learning. The block for VGG16 training is

named as wound classifier block since it classifies type of wound based on input as

shown in fig 4.14. The output of the VGG 16 will be fed into dense layer in form

of flattened and 0.5 dropout with dense layer containing 256 neurons. Paralelly,

there is another simple MLP block which encodes the location maps of wound and

merge with output of VGG 16 in order to improve accuracy of the system. The
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performance of VGG 16 was highest as compared to other deep networks such as

inceptionV3. 4165 numbers of annotated images for five different categories were

used to train the VGG16 model. The evaluation of performance of the models on

the image dataset concluded that transfer learning model using VGG16 returned

the best accuracy. The dataset consists 4790 numbers of wound image with five

different classes with training and for validation 625 number of wound images were

taken.

In order to categorize the images into different classes, the pretrained deep con-

volutional network was first downloaded where were able to reuse the weights of

VGG16 by providing the weights parameter as ‘imagenet’ and can be fine-tuned

by removing the first and last layers of VGG16 and compute the performance of

the classifier according to our task. Here, simple supervised learning method im-

plemented to train the model with our available dataset to perform our required

task. This CNN model consists of 13 convolutional layers, 5 max pooling layers

with RELU activation functions and 3 fully connected layers. The last layer of

VGG16 is of 1000 categories and we have the problem of classifying the images

into 5 categories, so another dense layer with 256 neurons with ReLU activation

will be added in the output with softmax activation function to classify the output

into 5 classes. Next, another dense layer of 256 neurons will be added and dropout

of 0.5 in order to train the network more accurately.
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4.7 Location Classifier Block (Multi-Layer Perceptron)

Figure 4.15: MLP Location Classifier

The figure 4.15 depicts the location classifier block used to encode the body maps

location. Each of the image dataset contains its respective body map number

after the underscore sign which have been embedded manually for each images.

For example, a wound image of diabetic ulcer in left medial plantar first toe will

have the body map number of 301. The filename for this image will have a format

of <filename>_301 so that the program will automatically clip off the number

after _ sign to extract the location number of that particular image. The MLP

contains 9 input layers with four hidden layers in between. The four hidden layers

consists of 12,10,12,10 neurons and one neuron on output layer. The network is

trained at the same time as that of dense layer of wound classifier block. All the

neighbouring body maps are parallelly fed into the 9 neurons at the same time for

proper training so that wound at the nearest areas will have the same encoding

to avoid any conflicts.

For example, the neighbour of 301 body map is 302 and 306. So, 301, 302 and
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306 will be fed to three input neurons will rest of the input being zero. 9 neurons

are preferred in the input since one body map can have maximum of 9 neighbors.

The table of neighbors in developed and maintained as shown in table 4.2.

Table 4.2: Table depicting latent neighbors of each body map

Body Map Number Neighbors

334 332, 333, 335, 341

286 283, 285, 290

213 208, 209, 210, 212, 214, 216, 217, 218

260 258, 259, 261, 262, 263

4.8 Dataset Split

A total of 4790 dataset belonging to five classes are available for training and

testing the VGG 16 transfer learning block. The dataset will be split in 85% -

15% train and test split. That means out of 4790 images, 4165 images belonging

to five classes will be used for training and rest 625 images of 5 classes will be

used for validating the network as shown in table 4.3.

Table 4.3: Dataset Description

Wound Class Training Set Test Set Total

Diabetic Ulcer 831 125 956

Pressure Ulcer 836 125 961

Surgical Wound 829 125 954

Venous Ulcer 833 125 958

Not a Wound 836 125 961

Total 4165 625 4790
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4.9 Tools and resources used

The entire experiment was done on google colaboratory since it offers 12GB RAM

free with NVIDIA K80 GPU processor. The main programming tool used was

python with its numerical libraries. The python libraries used for the study are

listed below:

• Keras: Keras is a high-level open-source neural network library written

in Python. It is designed to enable fast experimentation with deep neural

networks and to provide an easy-to-use and modular interface for building

and training neural networks.

• Tensorflow: TensorFlow is an open-source software library for numerical

computation and machine learning developed by the Google Brain team. It

is designed to be a flexible and scalable platform for building and deploying

machine learning models, from research to production.

• matplotlib: Matplotlib is a data visualization library for Python that allows

users to create a wide variety of static, animated, and interactive visualiza-

tions in Python.

• Scikit Learn: Scikit-learn, also known as sklearn, is a Python library for

machine learning. It provides a wide range of tools for machine learning tasks

such as classification, regression, clustering, and dimensionality reduction,

as well as tools for data preprocessing, model selection, and evaluation.

• Open CV: OpenCV provides a wide range of tools and algorithms for pro-

cessing images and video data, including functions for image and video cap-

ture, image and video manipulation, object detection and recognition, and

machine learning.
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CHAPTER 5

Results and Discussion

The VGG16 network for wound image classification is successfully completed using

dense layer and transfer learning. The block for VGG16 training is named as

wound classifier block since it classifies type of wound based on input. The second

block is called location classifier block which will encode the location data to be

concatenated with output of VGG 16. The purpose of location classifier is to

encode the location maps accordingly and merge into final Dense layer’s output

in order to improve accuracy of the system. The performance of VGG 16 was

highest as compared to other deep networks such as inceptionV3. 4165 numbers of

annotated images for five different categories were used to train the VGG16 model.

The evaluation of performance of the models on the image dataset concluded that

transfer learning model using VGG16 returned the best accuracy. The dataset

consists 4165 numbers of wound image with five different classes with training

and for validation 625 number of wound images and non wound images are taken.

For the initial study, both networks VGG 16 and inceptionv3 were run for upto 15

epochs only. This was done to check which network would perform better for our

given dataset. It was evident from study that VGG 16 outperformed inceptionV3.

Even though inceptionV3 is wider and longer than VGG 16, for small dataset in

order to avoid unnecessary feature learning, VGG 16 is preferred over inceptionV3.

Therefor We had decided to move on with VGG 16 for task at hand since we will

be using body map as well for improving performance of network and there will

be no need to learn unnecessary features of wound images.

5.1 Comparison of baseline VGG 16 model and final VGG 16 model

to decide optimal number of epochs

The reason of comparing accuracy and loss vs epoch depicted in figure 5.1 and

5.2 respectively is to decide the optimal number of epochs for further study due

to limitations of computing resources. The figures contains accuracy and loss of
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baseline and final models and it reveals that the network saturates after 15 epochs

of training and does not increase or decrease significantly after that. This study

was performed earlier than the ablation study between various tuned parameter

to show that training the network upto 15 epochs or upto 40 epochs shows similar

result. In order to avoid huge training time, the ablation study will be later

performed at 15 epochs since it reveals result similar to that at 40 epochs.

Figure 5.1: Accuracy and Loss of baseline VGG 16 model upto 40 epochs

Figure 5.2: Accuracy and Loss of final VGG 16 model with dense layer upto 40 epochs

5.2 Baseline Model with VGG 16 and five softmax

The baseline model for the wound image classification task is a VGG 16 archi-

tecture containing five softmax function at the output as shown in fig 5.3. The

purpose of five softmax function is to classify the wound images into five classes

based on their probability. In baseline implementation, all the layers of VGG 16
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are frozen and non-trainable and there is no use of dense layer or body map. The

VGG 16 used is already pre trained on imagenet database which contains over 1.2

million dataset over 1000 object categories. However, it is emperical to note that

since the VGG 16 is non trainable with all the layers frozen, is does not result in

significant improvement of accuracy for variying dataset.

Figure 5.3: Baseline Model for wound image classification

The VGG16 network was trained and validated using the same 4165 train datasets

of five classes and 625 validation dataset for validation of result. In order to

maintain fair comparison, the hyperparameters for training the network will be

maintained constant for next experiments as well.. I have used Adam optimizer for

adaptive learning rate of 10−4 with batch size of 32 for 15 epochs. This resulted in

VGG 16 to return the accuracy of 62.23% and loss of 0.95. The average precision

in VGG 16 was found to be 0.62 and the average recall was found to be 0.62. The

reason for selecting 15 epochs is because of high training time for each epoch and

that most of the saturation had occurred within 15 epochs of training. The graphs

related to this study is shown in figure 5.4 and 5.5 respectively.
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(a) Accuracy vs Epoch (b) Loss vs Epoch

Figure 5.4: Baseline VGG 16 without Dense layer and without Body Map

Figure 5.5: VGG 16 Confusion Matrix without Dense layer and without Body Map

The results of the experiment can be summarized in the table 5.1.
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Table 5.1: Performance Metrics for VGG 16 without Dense layer and without Body map

Wound type Precision Recall F1 Score

Venous Ulcer 0.62 0.59 0.61

Surgical Wound 0.96 0.90 0.93

Diabetic Ulcer 0.47 0.4 0.43

Pressure Ulcer 0.55 0.42 0.48

Not a Wound 0.51 0.78 0.62

Accuracy 62.23%

5.3 Baseline Model with InceptionV3 and five softmax

In order to compare the baseline model of VGG 16, I have experimented the same

dataset using inception V3 as well. This was done to ensure which of the model

outperformed on the given wound dataset. From the experiment it was evident

that VGG 16 outperformed inception V3 in terms of accuracy and loss as well.

Implementation of inceptionv3 was done after converting the input images to size

of 299 * 299 since the input of inceptionv3 only accepts the aforementioned format.

One of the key differences between VGG-16 and Inception-v3 is their architecture.

VGG-16 has a relatively simple architecture with many layers of 3x3 convolutional

filters followed by max-pooling layers. In contrast, Inception-v3 employs a more

complex architecture that uses a combination of convolutional filters of different

sizes and pooling operations, and also incorporates a technique called "inception

modules" to enable efficient and effective feature extraction. However, this complex

architecture does not always guarantee better results. The results are entirely

dependent on specific dataset and task at hand and shown as in fig 5.6.
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(a) Accuracy vs Epoch (b) Loss vs Epoch

Figure 5.6: Baseline InceptionV3 without Dense layer and without Body Map

The results of the experiment with Inceptionv3 are summarized in the table 5.2.

Table 5.2: Performance Metrics for InceptionV3 without Dense layer and without Body map

Wound type Precision Recall F1 Score

Venous Ulcer 0.56 0.68 0.62

Surgical Wound 0.5 0.56 0.53

Diabetic Ulcer 0.68 0.36 0.47

Pressure Ulcer 0.64 0.77 0.7

Not a Wound 0.47 0.4 0.43

Accuracy 58.3%

The baseline comparison resulted in VGG 16 outperforming inceptionV3 in terms

of accuracy and loss. The average accuracy in inceptionv3 was found to be 58.3%

which was 4% lower than that of VGG 16 with accuracy of 62.23%. In case of

loss as well, the inceptionv3 resulted in loss of 1.03 whereas VGG 16 had returned

loss of 0.95. It was evident that the difference in loss of inceptionv3 was higher

by margin of 0.08 than that of VGG 16. This was the motivation of this thesis to

move ahead with VGG 16 for further experiments since baseline model of VGG

16 outperformed inceptionv3 on the same dataset and with same parameters. The

training parameters used in inception v3 was Adam optimizer of learning rate

10−4, Batch size of 32 and 15 epoch. Even though inceptionv3 is longer than

wider than VGG 16 network, for our study, we don’t need to learn unnecessary

39



features from image for wound classification task. Also, use of body map is done so

that less computing resources will be used in order to achieve better performance.

Since, VGG 16 network uses less resources and does not learn unnecessary features

than inceptionV3, the further experiment will be performed using VGG 16 so that

better performance will be achieved using fewer resources.

5.4 VGG 16 with one added dense layer, 0.5 dropout, five softmax

and SGD optimizer (Overfitting)

The results of VGG16 with only 62.23% accuracy was still unsatisfactory. So

in order to perform transfer learning to one dense layer, a dense layer with 256

neurons and dropout of 0.5 with ReLU activation was added at end of the network.

The optimizer used was SGD optimizer. However, it was noticed that that there

was sudden surge increase in model training accuracy but the validation accuracy

did not increase accordingly rather decreased at last moment. So it was obvious

that model had overfitted. The validation accuracy had dropped to 50% when

training accuracy stayed at 97%. Overfitting occurs when the network tries to

fit each and every training data but fails to do so for validation data. The cause

of overfitting in this case was because of low dropout of neurons at 50%. So, for

the next experiment this dropout was increased to 0.7, which means 70% of the

neurons are randomly dropped out or set to 0. The result of overfitting in shown

in figure 5.7.

(a) Accuracy vs Epoch (b) Loss vs Epoch

Figure 5.7: VGG 16 accuracy with one dense layer and dropout of 0.5 and SGD (Overfitting)
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The model had overfitted for dropout of 0.5 in 256 neuron dense layer. This

had occured because of significantly higher value of dropout. Hence, for the next

experiment, regularization value of drop out was increased to 0.7 so that the

network does not learn unnecessary features and unnecessary noises.

5.5 VGG 16 with one added dense layer, 0.7 dropout, five softmax

and SGD optimizer (Overfitting Removed):

After addition of one dense layer and dropout of 0.5, the graph depicted that

the algorithm had overfitted. The options were either to increase training data

through further augmentations or to increase the value of regularization. But since

the training time for one epoch is around 300ms it was evident that increasing

training data will be time consuming. So, I chose the latter and increased the

dropout of fully connected 256 neurons dense layer from 0.5 to 0.7. The observed

accuracy was 76.08% with precision and recall of 0.79 and 0.78 respectively. This

increment in accuracy, precision and recall was due to the fact that the unnecessary

features were not learnt by the network because of increase in dropout value. The

dense layer are trainable and this trainable layer resulted in increased accuracy.

To validate the results, the training was initially performed with SGD optimizer

of learning rate 10−3.The observed result was as follows in figure 5.8 and 5.9:

(a) Accuracy vs Epoch (b) Loss vs Epoch

Figure 5.8: VGG 16 with one dense layer and dropout of 0.7 and SGD
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Figure 5.9: VGG 16 Confusion Matrix with one dense layer and dropout of 0.7 (SGD)

The values of performance metrics of the network are depicted in table 5.3.

Table 5.3: VGG 16 metrics with one dense layer and dropout of 0.7 (SGD)

Wound type Precision Recall F1 Score

Venous Ulcer 0.77 0.71 0.74

Surgical Wound 0.96 0.97 0.97

Diabetic Ulcer 0.80 0.45 0.58

Pressure Ulcer 0.55 0.96 0.7

Not a Wound 0.88 0.78 0.82

Accuracy 76.08%

The accuracy of the wound classification was found to be at 76.08% using SGD

Optimizer. Now we will check the change in accuracy by using Adam Optimizer

instead of SGD Optimizer.

42



5.6 VGG 16 with one added dense layer, 0.7 dropout, five softmax

and Adam optimizer

The use of Adam optimizer with learning rate 10−4 resulted in accuracy of 81.39%

which was 5% higher than that of SGD. Adam is more accurate than SGD in

wound image classification is because it adapts the learning rate for each parameter

based on the estimate of the first and second moments of the gradients. This

allows Adam to converge faster and more accurately than SGD. In wound image

classification, there are large number of parameters and features that need to be

learned. In such cases, Adam’s adaptive learning rate can help in fine-tuning the

model’s parameters, making it better suited to the specific task of wound image

classification. This increment can be seen after increment of accuracy by almost

5% after using Adam Optimizer as shown in fig 5.10.

(a) Accuracy vs Epoch (b) Loss vs Epoch

Figure 5.10: VGG 16 with one dense layer and dropout of 0.7 and Adam
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Figure 5.11: VGG 16 Confusion Matrix with one dense layer and dropout of 0.7 (Adam)

Table 5.4: VGG 16 metrics with two dense layer and dropout of 0.7 (SGD)

Wound type Precision Recall F1 Score

Venous Ulcer 0.88 0.67 0.76

Surgical Wound 0.97 0.95 0.96

Diabetic Ulcer 0.87 0.64 0.74

Pressure Ulcer 0.72 0.85 0.78

Not a Wound 0.69 0.96 0.81

Accuracy 81.39%

5.7 VGG 16 with two added dense layer, 0.7 dropout, five softmax

and SGD optimizer

After addition of dense layer with 256 neurons on top of previous dense layer

with Relu activation and 0.7 dropout, there was significant increase in training

time for the algorithm. However, the validation accuracy had now reached upto

85.4% which is 4% higher than that of previous one dense layer layer. Hence, it

is evident that adding another dense layer in another dense layer increased the
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overall accuracy of the system. The overall value of precision and recall is found

to be 0.85 and 0.87 respectively which is higher than that of one dense layer only.

Two dense layers in a neural network was found to be more accurate than one dense

layer because they allowed for more complex representations of the input data to

be learned. Each layer in a neural network learns to extract different features

and representations of the data, and adding more layers allows for increasingly

abstract and complex representations to be learned. Addition of another dense

layer is done by cascade connection with previous dense layer. With just one dense

layer, the model may not be able to capture all the relevant features and patterns

in the data. However, by adding a second dense layer, the model has the ability to

learn more complex representations that can better discriminate between different

classes of wound.

(a) Accuracy vs Epoch (b) Loss vs Epoch

Figure 5.12: VGG 16 with two dense layer and dropout of 0.7 and SGD
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Figure 5.13: VGG 16 Confusion Matrix with two dense layer and dropout of 0.7 (SGD)

Table 5.5: VGG 16 metrics with two dense layer and dropout of 0.7 (SGD)

Wound type Precision Recall F1 Score

Venous Ulcer 1.0 0.64 0.78

Surgical Wound 0.97 0.97 0.97

Diabetic Ulcer 0.84 0.83 0.84

Pressure Ulcer 0.68 0.96 0.79

Not a Wound 0.85 0.86 0.86

Accuracy 85.4%

5.8 VGG 16 with two added dense layer, 0.7 dropout, five softmax

and Adam optimizer

The experiment conducted by using Adam optimizer with learning rate of 10−4

resulted in increased accuracy by 2% at 87.44% than when using SGD optimizer.

The precision increased by 1% and recall increased by 2% and reached 0.88 and

0.87 respectively.
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(a) Accuracy vs Epoch (b) Loss vs Epoch

Figure 5.14: VGG 16 with two dense layer and dropout of 0.7 and Adam

Figure 5.15: VGG 16 confusion matrix with two dense layer and dropout of 0.7 (Adam)
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Table 5.6: VGG 16 metrics with two dense layer and dropout of 0.7 (Adam)

Wound type Precision Recall F1 Score

Venous Ulcer 0.91 0.82 0.86

Surgical Wound 0.99 0.92 0.96

Diabetic Ulcer 0.86 0.80 0.83

Pressure Ulcer 0.88 0.84 0.86

Not a Wound 0.76 0.97 0.85

Accuracy 87.44%

5.9 VGG16 with one dense layer and body map, 0.7 dropout, 5 soft-

max and SGD Optimizer

The experiment with VGG16 was implemented now with body map using multi-

layer perceptron but keeping the other parameters as constant since the compar-

ison framework should be constant. Initially, the experiment was conducted by

using SGD optimizer with learning rate of 10−3 and one dense layer. The body

map number of wound location was initially fed into a multi-layer perceptron. The

output of the perceptron was appended into that of VGG 16 to feed them both

in dense layer. It was observed that the implementation of body map increased

the accuracy upto 90.82% in 15 epochs which was even higher than that of two

dense layer without body map. The introduction of body map improved accuracy

by 3% in the single dense layer. The metrics and charts are shown in figure 5.16

and 5.17 respectively:
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(a) Accuracy vs Epoch (b) Loss vs Epoch

Figure 5.16: VGG 16 with one dense layer, bodymap and dropout of 0.7 and SGD

Figure 5.17: VGG 16 Confusion Matrix with one dense layer, bodymap and dropout of 0.7

(SGD)
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Table 5.7: VGG 16 metrics with two dense layer and dropout of 0.7 (Adam)

Wound type Precision Recall F1 Score

Venous Ulcer 1.0 0.69 0.82

Surgical Wound 0.96 0.99 0.98

Diabetic Ulcer 0.81 0.98 0.89

Pressure Ulcer 0.85 0.98 0.91

Not a Wound 0.96 0.88 0.92

Accuracy 90.82%

5.10 VGG16 with one dense layer and body map, 0.7 dropout, 5 soft-

max and Adam Optimizer

The above experiment was repeated with Adam optimizer with learning rate of

10−4 and all the other parameters were constant. It was then observed that the

learning curve was smooth and 1% better than that of SGD optimizer. That

means the total accuracy of the network was improved to 91.02%. The reason

why Adam has a smoother learning curve than SGD is that Adam incorporates a

momentum term and adapts the learning rate for each weight based on the history

of gradients. The momentum term helps Adam to dampen oscillations and noise

in the gradients, allowing the optimization process to converge more smoothly

towards the optimal solution. Additionally, Adam can adjust the learning rate

separately for each weight, making it more adaptive and flexible than SGD, which

uses a fixed learning rate for all weights.
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(a) Accuracy vs Epoch (b) Loss vs Epoch

Figure 5.18: VGG 16 with one dense layer, body map, dropout of 0.7 and Adam

Figure 5.19: Confusion Matrix of VGG 16, one dense layer, body map, dropout of 0.7 and

Adam Optimizer
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Table 5.8: Performance metrics of VGG 16, one dense layer, body map and Adam Optimizer

Wound type Precision Recall F1 Score

Venous Ulcer 0.95 0.83 0.89

Surgical Wound 1.0 0.95 0.97

Diabetic Ulcer 0.87 0.93 0.9

Pressure Ulcer 0.94 0.87 0.91

Not a Wound 0.84 0.98 0.9

Accuracy 91.02%

5.11 VGG16 with two dense layer and body map, 0.7 dropout, 5 soft-

max and SGD Optimizer

The experiment included two dense layers for better learning and implementation

of body map. The denselayer contains 256 neurons each and the network was

trained upto 15 epochs. Implementation of two dense layers improved the accuracy

by 2% than previous learning with one dense layer. The dense layer are added

using sequential model and the output of first dense layer is input into second

layers. Both of the dense layer are trainable with dropout of 0.7 each and initial

training is done using SGD optimizer of learning rate 10−3. The overall accuracy

of the network is 93.25%.

(a) Accuracy vs Epoch (b) Loss vs Epoch

Figure 5.20: VGG16 with two dense layer, body map, dropout of 0.7 and SGD
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Figure 5.21: VGG16 confusion matrix with two dense layer, body map, dropout of 0.7 and

SGD

Table 5.9: Performance metrics of VGG 16, two dense layer, body map and SGD Optimizer

Wound type Precision Recall F1 Score

Venous Ulcer 0.99 0.81 0.89

Surgical Wound 0.97 0.96 0.97

Diabetic Ulcer 0.90 0.96 0.93

Pressure Ulcer 0.87 0.98 0.92

Not a Wound 0.92 0.95 0.94

Accuracy 93.25%

5.12 VGG16 with two dense layer and body map, 0.7 dropout, 5 soft-

max and RMSProp Optimizer

The experiment was conducted using RMSprop in order to check whether the ac-

curacy improves or degrades using RMSprop Optimizer. The RMSprop optimizer

increased the accuracy by 1% but the learning curve was too fluctuated. The main

idea behind RMSProp is to divide the learning rate by a running average of the

root mean squared (RMS) of the past gradients for each weight. This allows the
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algorithm to adjust the learning rate for each weight based on the history of the

gradients, which helps to prevent the learning rate from being too large or too

small. The learning curve is fluctuated because RMSProp is designed to adjust

the learning rate for each weight based on the magnitude of the gradients.Another

reason for fluctuation is because RMSProp optimization is sensitive to hyperpa-

rameters. The batch size for this experiment is 32 for 15 epochs and the resulting

accuracy is 94.09%.

(a) Accuracy vs Epoch (b) Loss vs Epoch

Figure 5.22: VGG16 with Body map, dropout of 0.7, two dense layer and RMSprop

Figure 5.23: VGG16 confusion matrix, Body map, dropout of 0.7, two dense layer and

RMSprop
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Table 5.10: Performance metrics of VGG16 with two dense layer and body map and RMSProp

Optimizer

Wound type Precision Recall F1 Score

Venous Ulcer 0.98 0.86 0.92

Surgical Wound 0.99 0.94 0.97

Diabetic Ulcer 0.98 0.91 0.94

Pressure Ulcer 0.81 1.0 0.89

Not a Wound 0.94 0.98 0.96

Accuracy 94.09%

5.13 VGG16 with two dense layer and body map, 0.7 dropout, 5 soft-

max and Adam Optimizer

The final study was conducted using body map and two dense layer using Adam

optimizer. The accuracy was only 0.57% more than RMSProp but the learning

curve was smoothened out. The final accuracy observed was found to be 94.57%

with 15 epochs. The parameters used for this study is batch size of 32, categorical

cross entropy loss and dropout of 0.7. The graphs related to the study are depicted

in fig 5.24 and 5.25:

(a) Accuracy vs Epoch (b) Loss vs Epoch

Figure 5.24: VGG16 performance with Body map, dropout of 0.7, two dense layer and Adam
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Figure 5.25: VGG16 confusion matrix, Body map, dropout of 0.7, two dense layer and Adam

Table 5.11: Performance metrics of VGG16 with two dense layer and body map and RMSProp

Optimizer

Wound type Precision Recall F1 Score

Venous Ulcer 0.95 0.91 0.93

Surgical Wound 0.99 0.97 0.98

Diabetic Ulcer 0.90 0.97 0.93

Pressure Ulcer 0.9 0.9 0.93

Not a Wound 0.93 0.95 0.94

Accuracy 94.57%

5.14 Quantitative Analysis

The performance of transfer learning using two dense layer of 256 neurons and

body map was evaluated by varying the optimization hyperparameter by using

Adam optimizer, SGD optimizer and RMSprop optimizer. Table 5.12 depicts

the macro average precision and recall and weighted average precision and recall

along with accuracy for these three optimization parameters. The test dataset is

shuffled to calculate weighted precision and recall for imbalanced class whereas
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same number of test dataset are used in macro average precision and recall.

Table 5.12: Performance result of VGG 16 + Dense Layers + Body Map for varying optimiza-

tion techniques

Macro Average Weighted Average

Optimizer Precision Recall Precision Recall Accuracy

SGD 0.934 0.931 0.934 0.932 93.25%

RMSProp 0.947 0.944 0.948 0.946 94.09%

Adam 0.951 0.947 0.945 0.944 94.57%

The quantitative analysis of the three optimization techniques used in VGG 16

with two dense layer and body map showed that the best result was returned by

use of Adam optimizer. Even thought there was increment of only 0.57% which is

not visible in two decimal places, overall macro and weighted precision and recall

have higher values for Adam optimizer than the rest of two optimizer.

The ROC curve obtained for VGG 16 network classification with two dense layer

and use of body map is depicted in figure 5.26. The experimental settings done

for the final study is as follows:

• Image Size: 244 * 244

• Batch Size = 32

• Loss = Categorical Cross entropy loss

• Epoch = 15

• Optimization= Adam optimizer 10−4

• Regularisation = Dropout of 0.7
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Figure 5.26: ROC Curve for five class classification

The value of Area under the curve (AUC) for class surgical wound was found to

be highest at 0.99. The next greater value of AUC was found to be of class "Not a

wound" 0.98. The next corresponding values of AUC for class "Pressure Ulcer" and

"Venous Ulcer" were found to be at 0.97 whereas the AUC for the class "Diabetic

Ulcer" was found to be at 0.96. The reason behind surgical wound having the

highest AUC was because the surgical wound has different image texture when

compared to other wounds. For example, A surgical wound has an elongated

texture with no significant blood or red colors which makes it distinguishable

from other wound types. Also, since surgical wound are generally located in joints

of body, the use of body map has increased its true positive rate when compared

to others because pressure, venous and diabetic ulcer only occur in rare cases in

locations where surgical wound are most likely to happen.

Similarly, The class "Not a wound" has AUC of 0.97 because there was no body

map used for training the dataset of corresponding label. Even though, "Not a

Wound" label is highly distinguishable in terms of features and texture from other

wound images, its AUC is comparatively low than that of surgical wound because

during training there was no use of body map in the Multi layer perceptron and

all the values were initialized to zero. This concludes that use of body map has

significant positive impact on network in context of wound classification. The

value of FPR in "not a wound" indicates that there are some wound images which
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as identified as non- wound by the network. This happens when wound images

are very small or the texture is similar to healed wound.

5.15 Ablation Study

The study with various changes and introduction of dense layer involves ablation

study of the thesis. The ablation study of VGG 16 model for wound classification

was performed using different values of dropouts and change in network param-

eters. The evaluation metrics used for ablation study are precision, recall, F1

score and accuracy for different cases. Table 5.13 shows the performance results

of the network with integration of trainable dense layer and body map into the

pre-trained VGG 16 network and inceptionv3 network.

Table 5.13: Ablation Study

Network Type Precision Recall Accuracy F1-Score

InceptionV3 0.57 0.56 58.3% 0.56

VGG 16 0.62 0.62 62.23% 0.61

VGG 16 + one dense layer(SGD) 0.79 0.78 76.08% 0.76

VGG 16 + one dense layer(Adam) 0.83 0.82 81.39% 0.81

VGG 16 + two dense layer(SGD) 0.87 0.85 85.4% 0.85

VGG 16 + two dense layer(Adam) 0.88 0.87 87.44% 0.87

VGG 16 + one dense layer + body map

(SGD)

0.92 0.91 90.82% 0.90

VGG 16 + one dense layer + body map

(Adam)

0.92 0.91 91.02% 0.91

VGG 16 + two dense layer + body map

(SGD)

0.93 0.93 93.25% 0.93

VGG 16 + two dense layer + body map

(RMSProp)

0.94 0.94 94.09% 0.94

VGG 16 + two dense layer + body

map (Adam)

0.95 0.94 94.57% 0.94

The analytical study of VGG 16 with different integration showed that the network
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improved its performance whenever the trainable dense layer was added. This

is because although VGG 16 is a pre-trained model on 1.2 million images and

it avoids the need to build a training model from scratch, it does not perform

well for different datasets as per our needs. Initial study of VGG 16 showed

accuracy of only 62.23% which was very low. So the need to transfer learning

was then realized by adding some extra dense layer on top of VGG 16 to improve

its performance. Initial study with inceptionV3 and VGG 16 showed that VGG

16 was more effective for our study since it returned accuracy of 4% higher than

inceptionV3. So, rest of the study was conducted with help of VGG 16. In the

next study, after body map was introduced in VGG 16, the performance improved

significantly. Even one dense layer with body map outperformed the VGG 16 with

two dense layer and no body. The best performance was returned by VGG 16 with

use of two dense layer and a body map using Adam optimizer at 94.57%. In order

to maintain fairness in ablation study, all the networks have are trained with

same parameters. The parameters include 4165 train dataset, 625 test dataset, 15

epoch, 32 batch size and categorical cross entropy loss.

Figure 5.27: Bar diagram of overall result
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The figure 5.38 is the overall depiction of each type of networks used for studying

the behaviour of transfer learning. It is evident from diagram that the overall

performance of the system increases as we introduce different relevant parameters

such as body map, optimization and dense layer in the network. The study is also

performed for each wound type which is shown in figure 5.28, 5.29 and 5.30.

Figure 5.28: Diabetic Vs Pressure metrics for all networks
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Figure 5.29: Surgical vs Venous metrics for all networks

Figure 5.30: Not a wound label metrics of all metrics
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5.16 Comparative Analysis

The comparative analysis study on AZHMT dataset is done in order to relate

this study with some past works. The study is performed on three other state of

the art CNN models with same number of epochs. Table 5.14 shows performance

results of different network architectures that were considered in the study

Table 5.14: Comparison study of wound image classifier with SOTA CNN architectures

Network Type Precision Recall Accuracy F1-Score

Ensembled DCNN[20] 0.92 0.91 91.9% 0.91

VGG19 + LSTM[22] 0.88 0.91 93.22% 0.89

VGG 16 + Dense Layers 0.95 0.94 94.57% 0.94

From the comparative study, it can be inferred that the pre-trained model performs

better when the output of these models are used for transferring knowledge to

another network. Even through the pre-trained models are trained for millions of

images, the network might not perform well for specific dataset if the trainable

layers are frozen. Hence, it is evident that the use of transfer learning to train any

other trainable network outperforms any other network built from scratch with

few epochs and low dataset as well. In table 5.14, VGG 16 is the base of transfer

learning to dense layer and has outperformed VGG 19 even though VGG 19 is

longer network than VGG 16.

Second result to note is that the use of body map along with VGG 16 has outper-

formed ensembled based DCNN within lesser number of epochs. The ensembled

based DCNN[20] used 20 epochs whereas our network uses only 15 epochs. It

concludes that use of body map plays significant role in improving performance

of the network.

5.17 Observed output classifications

Figure 5.31 shows the VGG 16 with dense layers and body map classifying ten

types of images correctly according to their labels. Similarly, some samples of
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incorrectly classified examples are shown as well in figure 5.32. Their predicted

label are shown on top of images whereas actual labels are shown on side of images.

Figure 5.31: Correct Classification of wounds
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Figure 5.32: Incorrect Classification of wounds
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CHAPTER 6

CONCLUSION

6.1 Conclusion

A VGG 16 pre-trained architecture is effectively implemented for the multi-class

classification of wound images which are labelled as "Diabetic Ulcer", "Venous

Ulcer", "Pressure Ulcer", "Surgical Wound" and "Not a wound". The study consists

of use of frozen paramters for VGG 16 initially which returned low accuracy of only

62.23% only. So it was realized that transfer learning must be implemented on this

network in order to improve performance. Transfer learning was implemented in

VGG 16 by adding two trainable dense layers with ReLU activation on top of VGG

16 and using body map to further enhance performance. Through multiple study

with different optimization techniques and body maps, the performance gradually

increased in each case and finally the best accuracy was achieved at 94.57%. This

result was compared to other implementations of VGG 19 and Ensembled DCNN.

These implementations did not add different trainable layers but instead modified

the internal layers to be trainable. It was evident from the results that adding

extra trainable layers on top will be more effective than making internal layers

trainable. This was concluded because even though VGG 16 is only 16 layers

deep, adding only two trainable layer on top outperforms VGG 19 which is 19

layers deep for the same AZHMT dataset. Automated wound classification of

wound images is potentially applicable for use in real medical environment. The

study suggests that this network can be used for practical application as well in

order to correctly classify the type of wound. This helps medical personnel to

identify type of wound correctly and plan the course of treatment accordingly.

6.2 Challenges

The most challenging part in the study was to manually label the body maps in

each image dataset. It took approximately 2 months to collect dataset from various
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sources and label the body map accordingly. The collected dataset was validated

with help of medical officer and the body map value was assigned to each images.

Another challenging part to this study was implementation of transfer learning to

train a dense layer from pre-trained model.

6.3 Future Works

The study is limited to classification of wound images through transfer learning

and body map only. For the future scope, with advanced hardware, the study can

be continued in order to predict the healing rate of ulcers as well. Similarly for

surgical wound, the study can be extended to check whether any infections has

occured or not through image. These extensions can be done by collecting large

amount of dataset and through advanced hardware for future purpose.
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