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ABSTRACT

Engineering systems such as water turbines, different types of compressors and

similar rotodynamic applications are instances of shaft and disk assembly.

Representation of such systems with shaft-disk assembly can be convenient to

understand their dynamic response. Startup transient is considered as a critical

operation in hydraulic turbines. In this work, vibration response is analyzed for

transient loadings on a cantilever shaft-disk assembly to understand behavior

exhibited by applications such as an overhung Pelton turbine. Mathematical model is

obtained for the cantilever shaft and disk assembly. Water jet force due to impact

during the starting and shutting down of a turbine unit is used as the transient

excitation force. The response representing the vibration due to the impact force is

derived from the governing equations of motion obtained using the mathematical

model, solved and plotted using MATLAB for the first three vibration modes. The

results thus obtained are validated with the results from simulation in ANSYS.
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CHAPTER ONE: INTRODUCTION

1.1 Background

Engineering systems such as water turbines, different types of compressors and

similar rotodynamic applications are instances of shaft and disk assembly. For

instance, the runner of a Pelton turbine with its bucket can be jointly taken as a single

disk unit that is mounted on a simply supported or a cantilever shaft forming a

shaft-disk system. Because of their high speed operation, vibration should be kept

minimum from such application since the resulting cyclic stress and subsequent

material fatigue can lead to failure of the structure or the components of the system.

Vibration analysis in these applications is essential to avoid any undesirable

deformation or structural damage. Representing the complex rotodynamic systems as

a shaft-disk system and performing vibration study on such a system is a simpler

approach to understand the response of the complex rotodynamic systems to any

external excitation.

Any system that has inertia and elasticity can undergo vibration which is initiated

when such a system is displaced from its equilibrium position due to factors like

unbalance, misalignment, friction, external excitation, flow-induced vibration,

earthquakes and wind. The frequency of vibration of a system after an initial

disturbance with no further external excitation is the natural frequency of the system

and is determined by the system’s inertial and elastic properties. Likewise, amplitude

of vibration is the maximum amount of displacement of a given vibrating body with

respect to its nominal or equilibrium position. If this amplitude becomes high so that

the resulting stress is beyond the ultimate strength of the structure of the system, then

the system can fail dramatically and the purpose of vibrational study is to avoid such

amplitudes. Natural frequency is a critical factor that is taken into consideration in

designing these systems for avoiding such high vibration amplitudes during operation.

Vibration of a system due to its inherent property of the system in the absence of

external force is called a free vibration. Initial disturbances in the form of

displacement or velocity or both can initiate free vibration in a system. Vibration in a

system in response to external force or motion is called a forced vibration. Likewise,

vibration of a system in the absence of dissipative forces is known as an undamped

vibration whereas vibration in the presence of dissipative forces is called a damped
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vibration. When a system is excited by harmonic force, the system’s response can be

considered as a superposition of its free and forced response. The free response, under

damped condition, has a negative power exponential term in its solution which causes

it to decay over time whereas the forced response lasts as long as the external

excitation present. On the other hand, when any system is excited by external force

for a very brief interval of time i.e. by a transient input force, depending upon the

duration of the force application, the effects of both the free and forced response of

the system can exist for a longer duration of time than the duration of the transient

force itself.

Startup transient is considered as a critical operation in hydraulic turbines. The speed

of the turbines vary during startup as it goes from rest to the operating speed.

Likewise, during shutdown, the speed varied from operating speed to zero. These

operating conditions mark the cases of transient loading and are the subjects of study

for this thesis for a cantilever shaft-disk system. The response of a shaft-disk system

such as a Pelton turbine depends on the operating parameters as well as its

components. Researchers have modeled rotodynamic systems as shaft-disk systems to

investigate various aspects of those systems.

1.2 Problem Definition

Pelton turbines experience a large magnitude of periodic loads as a result of the

interplay between the impact jet and runner buckets (Coutu et al., 2013). If the

excitation coming from the jets matches the natural frequency of the hydraulic

turbine, resonance occurs which is undesirable. Now, for a turbine operating at

full-load condition, it operates at a near constant speed called the operating speed and

is subjected to a harmonic load from the jet and exhibits a harmonic response.

However, during transient stages of operation such as startup and shutdown, the

turbine is subject to transient loading from the impact jet during which period the

rotating speed of the turbine also varies. Being among the most critical operating

conditions, response of the turbine during startup and shutdown should be studied.

Such study for a cantilever shaft-disk is done here to understand the response of a

more complex turbine system.
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1.3 Objectives

Main Objective

● To obtain the response of a cantilever shaft-disk during transient stages of startup

and shutdown with a mathematical model and to compare the results with

simulation.

Specific Objectives

● To develop a mathematical model and solve for the response of the system during

startup and shutdown for a cantilever shaft-disk system.

● To find numerical solutions of the system during startup and shutdown.

● To compare the responses of the mathematical model with the numerical solution

during startup and shutdown.

1.4 Limitations and Assumptions

The assumptions and limitations of this work are as follows:

● The change in rotational speed of the shaft and jet force acting on the disk is

assumed to be linear for the duration of startup and shutdown.

● Bearings and the disk are assumed as rigid.

● Only a single jet force is considered in the study.
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CHAPTER TWO: LITERATURE REVIEW

2.1 Overview

Most devices that consume or produce power have a disk attached to a shaft. Figure

2.1 shows such a shaft-disk model for a cantilever Pelton turbine. The major

components of a rotodynamic system are the shaft, the equivalent disk and bearings.

During analysis, these components are assumed rigid or flexible based on their

application. A given system can be modeled with different combinations of rigid or

flexible assumptions for each component.

Figure 2.1 Simplified rotodynamic system for a cantilever Pelton turbine

Pelton turbine is one of the most common types of hydraulic turbines used for

electricity generation in power plants. They are high head turbines and can be used for

small or large power generation. These turbines are installed horizontally or vertically

in the power plants and based on the position of the bearings, they can be simply

supported or cantilever. They are restricted to move in the direction of the shaft axis

and are free to rotate about the axis. The working principle of Pelton turbines is such

that they are subject to large magnitudes of periodic loads as a result of the interplay

between the impact jet and runner buckets. These loading can cause vibration in the

system and can cause complete failure if the vibration amplitude goes beyond a

permissible limit, which can happen when there is resonance in the system. For

vibrational analysis of such a system, the shaft can be assumed as a flexible massless

body in which case a discrete model can be used. On the other hand, if mass of the

shaft is taken into consideration, a continuous model with infinite degrees of freedom

should be used. Continuous shaft of any rotodynamic system can be modeled as a

rotating Euler-Bernoulli beam as is done in this thesis.
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2.2 Related Works

Khader et al. (2007) ran an experimental study to obtain the natural frequencies of a

flexible shaft with multiple flexible disks. The approach of single input and single

output was used to find the frequency response. Impact hammer was used to excite

the system and piezoelectric accelerometer was used to record the vibration of the

system. The obtained experimental response is compared with the results of an

analytical approach based on assumed mode method in which free modes of vibration

of the flexible disk and the flexible shaft are taken as the inputs in the assumed mode.

Zeng et al. (2012) built the differential equation for shaft vibration based on the

energy of the shaft due to dynamic motion while considering both generator rotor and

turbine runner. Additional forces like bearing reactions, sealing force and so on are

used as inputs to the system.

Rajak et al. (2014) developed a mathematical model to obtain kinetic and potential

energy of a simply supported Pelton turbine assembly. Dynamic analysis of the

system was done using the energy method to obtain the natural frequency. Validation

is done using modal analysis.

Motra & Luintel (2017) modeled a Pelton turbine unit with a centrally located runner

with rigid property and supported simply on rigid bearings. Governing equations were

obtained using the Lagrange equation which were solved with the Rayleigh-Ritz

method analytically. Natural frequency obtained for discrete systems with effective

masses is compared with a continuous model.

Karki et al. (2017) presented the modeling of excitation from a water jet by using the

method of Fourier series. Kinetic as well as the potential energies of shaft and disk

were calculated and a mathematical model was developed for the system. Equations

of motion for forced vibration condition were derived with the methods of Lagrange’s

equation, virtual work and Rayleigh-Ritz method. The methodologies developed were

used to obtain analytical solutions of the response exhibited by the pelton turbine

under study.
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Luintel M. (2019) presented the methodology for finding the response exhibited by

the Pelton turbine shaft. Critical speeds of the unit were determined from the free

vibration analysis. Likewise steady state vibration amplitudes were obtained for

forced vibration due to an impact jet. Mathematical models were obtained for

transverse vibration with the flexible shaft and rigid disk assumption. Shaft was

modeled both as a rotating Euler-Bernoulli beam and Timoshenko beam and

equations of motion were obtained for both. Critical frequencies and response due to

impact jet were determined for both the models and the results were compared with

those from experimental study.

Egusquiza et al. (2019) carried out an experimental study on an existing Pelton

turbine unit. Modal response of the runner was studied for following cases: suspended

runner, runner attached to the shaft and with the machine in operation. Sensors like

acoustic emission sensor and accelerometer were used for the study. Vibration

responses were recorded for transient stages with different loads on the machine.

Finite Element Method based numerical model was developed to better understand

the response of these turbines. Finally, frequencies sensed during machine operation

were compared with those from the numerical model and the effect of various factors

on response of the runner was analyzed.

Bhandari et al. (2019) carried out research to model the forced excitation of impact jet

force as a Fourier series and to obtain corresponding reaction for a cantilever Pelton

turbine by developing a mathematical model. The forced vibration amplitude thus

calculated was verified with the results from simulation in ANSYS. The effect of

change in rotational speed on the vibration amplitude of the shaft was also studied.

Natural modes of vibration and equations of motion were derived with the use of the

Rayleigh-Ritz method followed by Lagrange’s equation. Vibration amplitudes in the

jet direction and in other transverse directions due to a single impact jet were obtained

for the turbine unit and the results were compared with the results obtained from

simulation.

Luintel & Bajracharya (2019) presented a method for studying the dynamic response

exhibited by Pelton turbine shaft in response to water jet force. Lagrange equation of

motion in combination with assumed mode method was used to obtain bending
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vibration of the turbine assembly in transverse directions. The runner was assumed as

a rigid body while the shaft was assumed as Euler-Bernoulli. Fourier series is used to

model the force due to impact from the water jet. Free vibration analysis of the turbine

system was done to obtain critical speeds of the system which is presented in the form

of Campbell diagram and forced response analysis was done to obtain the reaction of

the turbine system to the impact jet; both analysis was done considering the first three

modes of vibration only.

Jirel et al. (2021) researched on modeling the excitation force of the impact of water

jet as a Fourier series to obtain the dynamic reaction of an overhung Pelton turbine

unit by mathematical model development. Vibration amplitude obtained analytically

was compared with the simulated results from ANSYS. Mathematical model was

obtained by evaluating the total energy, kinetic and potential, of the shaft-disk system

including that of the unbalanced mass. Equations of motion representing the

unbalanced shaft-disk system were obtained by applying Lagrange’s equation. The

results that were obtained were validated from the simulation in ANSYS. Runner was

modeled as a disk attached to the free end of a flexible shaft having fixed support

boundary condition at the other end.

Egusquiza et al. (2021) have analyzed the transient phase of start-up of Pelton

turbines. Experimental study was done on a horizontal shaft Pelton turbine prototype.

Natural frequencies and the corresponding mode shapes were acquired from impact

testing with the help of multiple accelerometers on the runner, shaft and the bearings.

It was observed that the initial impact of the jet on the stationary turbine caused larger

amplitudes of vibration. Also, after the turbine started to rotate, vibration levels

increased each time the frequency of excitation matched the natural frequency.

2.3 Research Gap

The researches so far have mostly focused on the steady-state response for a turbine

system with flexible shaft. In the last study mentioned above, a startup transient

response was found using an experimental approach. In this thesis, a mathematical

model will be developed for a shaft-disk system for a cantilever type shaft-disk

assembly and the response of the system for startup and shutdown conditions will be

acquired.
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CHAPTER THREE: METHODOLOGY

3.1 Thesis framework

Figure 3.1 shows the overall framework of the thesis. Mathematical Model is

developed for the cantilever shaft-disk system and solved using MATLAB. The

results are compared with those from ANSYS simulation.

Figure 3.1 Framework of the Thesis

3.2 Literature review

Works done in the field of vibrational analysis of rotodynamic systems as shaft-disk

systems are collected. These studies are used to develop a suitable mathematical

model for the system.
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3.3 Mathematical model development

Energy method is selected as the suitable technique for developing the mathematical

model from the literature. The kinetic and potential energies for the shaft-disk system

are calculated and Lagrange’s equations and method of assumed modes is used to

obtain the governing equations of motion. For this thesis, the disk and the bearings are

taken as rigid and only the shaft is assumed to be flexible.

3.4 Research tools

Following tools will be used for the completion of the project:

● MATLAB

● ANSYS Mechanical

3.5 Response of the system using MATLAB

Data for a simply supported Pelton turbine is taken from the model present at the

Department of Mechanical and Aerospace Engineering, Pulchowk Campus, given in

Appendix A. The length of cantilever Pelton turbine for this thesis is obtained by

finding the equivalent length for the same deflection at the end of the cantilever shaft

as that for this simply supported Pelton turbine. Governing equations are solved using

a MATLAB program for startup and shutdown as provided in Appendix B.

Deformation of the shaft with respect to time is plotted as the response of the system

to external excitation.

3.6 Modeling and Analysis in ANSYS

Simulation of the problem is done using ANSYS 2022. The system to be analyzed

will be defined in the relevant module of the software. The software solves the

problem by discretizing the model into finite elements and obtaining the equivalent

system of algebraic equations for the problem. For this thesis work, initially modal

analysis will be done followed by transient structural analysis.

3.6.1 Modal Analysis

The modules for modal analysis in ANSYS is discussed below:
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1. Engineering Data

The Engineering Data section of ANSYS is a database of common engineering

materials with their mechanical properties. For this work, shaft material is added to

the database of Engineering Data defining its isotropic stiffness and density.

2. Geometry

Shaft is defined as a line body with circular cross-section defined for it. The disk is

assumed to be rigid and is modeled as a point mass with mass and mass moment of

inertia defined later in the Model part of the analysis. The point mass is attached to

the free end of the line body of the shaft.

3. Model

Bearing connection is provided at one end of the shaft in this part. In order to model

the bearing as a rigid body, very high stiffness is defined. Meshing is done to

discretize the continuous line body of the shaft into smaller elements. Element size

and order is also defined.

4. Setup

One remote displacement at the bearing end of the shaft is provided for free rotation

about the longitudinal axis of the shaft while restricting axial motion along the same

axis..

5. Solutions

The solver converts governing equations into algebraic equations and computes field

variables. A solver computes the unknown field variables.

6. Results

Natural frequencies of the system are obtained in this section and the corresponding

mode shape or the response is used for transient structural analysis.

3.6.2 Transient Structural Analysis

1. Setup

The force and rotational velocity inputs to the system are defined in this section.

Rotational velocity and impact force are assumed to vary linearly during the

excitation period of startup and shutdown. Time step controls are defined here.

2. Solutions

The governing equations are converted into algebraic equations and solved to obtain

the displacement of nodes.

3. Results

Total deformation of the shaft in the direction of the jet is obtained in the Results.
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3.7 Documentation

Documentation is done for the entire duration of the thesis work from literature

review to final report. There are six chapters in the final report from Introduction to

Conclusions and Recommendations. Introduction, the first chapter, includes

background, problem definition, objectives and limitations of the thesis. In the second

chapter, literature review is included and the research gap is discussed. Third chapter

outlines and discusses the methodology of this work. Chapter four includes the

mathematical model development and simulation setup. Chapter five is on the results

from the mathematical model and simulation. Lastly, Chapter six is the conclusions

and recommendations of this work.
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CHAPTER FOUR: MATHEMATICAL MODEL DEVELOPMENT

4.1 Kinematics of the shaft-disk system

FIgure 4.1 shows a cantilever shaft-disk system with its coordinate axes defined. The

length of the shaft is L, axis X is along the longitudinal axis of the shaft, axis Y is

defined perpendicular to the plane of the paper and axis Z is defined in the vertical

direction. The deflection in the horizontal plane in the direction of Y axis is defined

as v(x,t) and the deflection in the vertical plane in the direction of Z axis is defined as

w(x,t) Water jet impacts the disk in the Y direction.

Figure 4.1 Shaft-disk system

Kinematics of Shaft

Let the angular velocity of the shaft be Ω. In vector form,

ωs = Ω Eq.4.1𝑖
→

Neutral axis position vector is

rs = v ⃗j + w k⃗⃗ Eq.4.2

Velocity vector of typical point on neutral axis of the shaft is

vs = ṙs ⃗⃗ + ωs ⃗⃗⃗⃗⃗ ∗ rs ⃗⃗ Eq.4.3

vs = (v̇ − Ωw) ⃗j + (ẇ + Ωv) k⃗⃗ Eq.4.4

Kinematics of the Disk

Angular velocity vector of the shaft element is

ωd = [(Ω + v ′ẇ ′ )⃗i + (−Ωv ′ − ẇ ′ )⃗j + (−Ωw′ + v̇ ′ )k⃗⃗ ] Eq.4.5

(Khanlo et al., 2011)

4.2 Energy Method

4.2.1 Energy of the components

The shaft is assumed to be a flexible member and thus poses potential energy as well

in addition to the kinetic energy which are given below.

12



Kinetic Energy of Rotating Shaft

Eq.4.6

Where,

Ω = Rotational speed of shaft

ρs = Density of shaft

A = Shaft cross section area

Js = Polar moment of inertia of shaft

Is = Area moment of inertia of shaft about transverse axes

v and w = translational velocity about Y and Z axis respectively

Potential Energy of Rotating Shaft

The potential energy in the shaft due to bending is given by:

Eq.4.7

Where,

E = Shaft modulus of elasticity

Is = Area moment of inertia of shaft about transverse axes

For simplicity of the analysis, the disk is assumed as a rigid body and thus its

potential energy is zero. The total kinetic energy of the disk is the sum of its

translational and rotational kinetic energies.

Kinetic Energy of Disk

Eq.4.8

Where,
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md = Mass of disk

ρd = Density of disk

Js = Area polar moment of inertia of disk about x-x axis Is = Area moment of inertia

of disk about y-y or z-z axis

h = Thickness of runner

Potential Energy of Disk

The potential energy of the disk is zero since it is assumed as a rigid body.

Ud = 0 Eq.4.9

4.2.2 Excitation force

The source of external excitation for a pelton turbine is the impact jet that hits the

bucket of the pelton turbine. During startup, the speed of the turbine goes from zero to

a constant value equal to the operating speed. During this interval the excitation force

is assumed to go from zero to a constant value. Likewise, during shutdown, the

external excitation is assumed to go from a constant value to zero.

Karki et al. (2017) has evaluated the jet force for the pelton turbine system given in

Appendix A as:

Fj = 193 N

Figure 4.2 Startup and shutdown excitation for a pelton turbine

Change in transient input for startup and shutdown both are assumed to be linear as

shown in Figure 4.2.

Function of startup excitation force:

F = (Fj/t0) t (1-u(t-t0)) + Fju(t-t0) Eq.4.11

The start-up transient period is the period between the opening of the nozzle and the

turbine reaching nominal speed i.e., t0.

Let’s assume, start-up transient period is t0 = 5 s

14



Function of shutdown excitation force:

F =[ Fj−(Fj/ ts )(t − ta)] [u(t - ta) − u(t − (ta + ts )] Eq.4.12

Let us consider shutdown begins at ta = 300 s and completed at tb = 310 s with

shutdown period of ts = 10 s.

Work done by the impact of the jet is:

Wext = F(t)v|x=L Eq.4.13

4.2.3 Equivalent length for cantilever pelton turbine

Data in Appendix A is for the simply supported pelton turbine. The length of the shaft

for the cantilever pelton turbine is obtained by equating deflections in the turbines

while at rest if the same force is applied on both of them.

For simply supported beam,

If force F is applied at the center of the beam, deflection at the center of the beam is:

D1 = FL’3/48EI

Where L’: Length of the simply supported beam

For a cantilever beam,

If force F is applied at the end of the beam, deflection at the end of the beam is:

D2 = FL3/3EI

Where L: Length of the cantilever beam

(Beer et al., 2011)

Now,

Equating D1 and D2,

FL’3/48EI = FL3/3EI

i.e. L = 0.1875 L’

From Appendix A, L’ = 519 mm

Then, L = 97.3125 mm

4.2.4 Assumed Mode Method

Using assumed mode method, the displacement variable is

v = {ϕ(x)T {V(t)} = {ϕ}T {V} Eq.4.14

w = {ϕ(x)}T {W(t)} = {ϕ}T {W} Eq.4.15

Where,

ϕ(x) is the spatial function describing the transverse deflection

V(t) and W(t) are vectors corresponding to the time dependent coordinates.
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4.2.5 Total Energy of the System

Total Kinetic Energy

Expanding Eq.4.6, neglecting small terms and using Eq.4.14 and 4.15, we get,

Kinetic energy of the shaft:

Eq.4.16
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Likewise, expanding Eq.4.8, neglecting small terms and using Eq.4.14 and 4.15, we

get,

Kinetic energy of the disk:

Eq.4.17

Total kinetic energy of the system is:

T = Ts + Td

17



Eq.4.18
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Total Potential Energy of the System

Total potential energy of the system is sum of potential energy of shaft and disk or

rotor which is given by: U = Us + Ud

From Eq.4.7, 4.9, 4.14 and 4.15,

Eq.4.19

Again, from Eq.4.13 and 4.14,

Wext = F(t){V}T{ϕ}|x=L Eq.4.20

4.2.6 Lagrangian Equation of Motion

The equations of motion for the given system can be obtained using Lagrange’s

equation:

Eq.4.21

For 2 DOF system, Eq.4.20 gives two equations as:

Eq.4.22

And,

Eq.4.23

Now, Substituting Eq.4.18, 4.19 and 4.20 in Eq.4.22, we get,
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Eq.4.24
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Likewise, substituting Eq.4.18, 4.19 and 4.20 in Eq.4.22, we get,

Eq.4.25

Eq.4.24 and 4.25 are the governing equations for the rotodynamic system and can be

represented as:

MiV̈ – CiẆ + KiV = Fi Eq.4.26

MiẄ + CiV̇ + KiW = 0 Eq.4.27

Where the equivalent parameters are as follows:
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Eq.4.28

Eq.4.29

Eq.4.30

Fi = F(t){ϕ}d Eq.4.31

Now,

Coupled non-homogenous second order differential equations:

For first mode

M1V̈− C1Ẇ + K1V = F1 Eq.4.32

M1Ẅ + C1V̇ + K1W = 0 Eq.4.33

In matrix form,

Eq.4.34

For second mode

M2V̈− C2Ẇ + K2V = F2
M2Ẅ + C2V̇ + K2W = 0

For third mode

M3V̈− C3Ẇ + K3V = F3 Eq.4.35

M3Ẅ + C3V̇ + K3W = 0 Eq.4.36
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4.3 Response from Mathematical Model

Writing governing second order differential equation in the system of ODE

Assume

V = x1, V̇ = ẋ1 = x2, V̈= ẋ2
W = y1, Ẇ = ẏ1 = y2, Ẅ = ẏ2
System of ODEs are

ẋ1 = x2 Eq.4.37

ẋ2 = − (K/M) x1 + (C/M) y2 + (F/M) Eq.4.38

ẏ1 = y2 Eq.4.39

ẏ2 = − (C/M) x2 − (K/M) y1 Eq.4.40

Solving these four systems of ODE in MATLAB (Appendix B2 for starting and

Appendix B3 for shutdown) we get the response,

Response in the direction of jet:

V = V1ϕ1 + V2ϕ2 + V3ϕ3 Eq.4.41

4.4 Characteristic equation and shape functions

The governing equation of uniform Euler-Bernoulli beam can be written as:

where f(x,t) is the forcing function Eq.4.42

For free vibration, f(x,t) = 0

Then governing equation becomes,

For a uniform beam, it can be written as

where

The solution to free vibration, using method of separation of variables can be written

as:

w(x,t) = W(x)T(t)

Then, the governing equation for uniform beam yields

where a = ω2 is a positive constant

We can write,
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whose solution is given by T(t) = A cos ωt + B sin ωt

Further, the equation with the leftmost and rightmost terms can be written as

Where ; ω = natural frequency of beam

The solution to this equation is assumed as W(x) = Cesx

Then from above equation,

s4 - β4 = 0 which gives the roots s =土β,土iβ

Then solution W(x) can be written as

W(x) = C1eβx + C2e-βx + C3eiβx + C4e-iβx

This can be written as:

W(x) = C1cos βx + C2sin βx + C3cosh βx + C4sinh βx

or,

W(x) = ф(x) = C1(cos βx+cosh βx) + C2(cos βx-cosh βx) + C3(sin βx+sinh βx) +

C4(sin βx-sinh βx) Eq.4.43

For a cantilever beam with end mass, the boundary conditions are:

Eq.4.44

(Rao, 2019)

Then, using w(x,t) = W(x)T(t) in the four boundary condition equations in Eq.4.44,

we obtain a system of equations with unknowns C1, C2,C3 and C4 with C1 = C2 = 0.

For non-trivial solution for C3 and C4, determinants of the coefficients of the

equations must equal zero which leads to the following characteristic:

Eq.4.45
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It’s eigen function is obtained as:

Eq.4.46

4.5 Simulation Setup

Beam material is added to the Engineering Data of the ANSYS analysis. The beam is

modeled as a line body and meshing is done with 1mm elements.

Figure 4.3: Geometry of the model

Rigid bearing is added to one end of the shaft and point mass representing the disk is

attached to the other end.

For the boundary condition, the vertex at the bearing is free to rotate about the

longitudinal axis and free to move in the transverse directions while the remaining

degrees of freedom are constrained.

Modal analysis is done to find the modes of vibration followed by the transient

structural analysis. Time step for the transient analysis is chosen as 0.001s. Transient

impact force is applied in the transverse direction at the free end vertex where the

point mass is located. Transient rotational velocity is also applied to the beam.
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CHAPTER FIVE: RESULTS AND DISCUSSION

5.1 Equivalent Parameters

Solving Eq.4.45 for given system parameters, we obtain values of βL for the first

three modes of vibration as: 0.57680, 1.12511 and 4.74416 respectively.

Then, using Eq.4.46, the shape functions for the first three modes of vibration are:

For first mode,

ϕ1 = cos(0.57680x/L)-cosh(0.57680x/L)-1.27460(sin(0.57680x/L)-sinh(0.57680x/L))

For second mode,

ϕ2 = cos(1.12511x/L)-cosh(1.12511x/L)-2.21274(sin(1.12511x/L)-sinh(1.12511x/L))

For third mode,

ϕ3 = cos(4.74416x/L)-cosh(4.74416x/L)-0.98291(sin(4.74416x/L)-sinh(4.74416x/L))

Equations Eq.4.28 to 4.31 are modeled in MATLAB using the above shape functions

and equivalent mass, damping coefficient, stiffness and forcing vector for modes 1, 2

and 3 are evaluated (see Appendix B1).

Table 5.1 Equivalent parameters

For first mode For second mode For third mode

ϕ1 ϕ2 ϕ3

M1= 0.67585 kg M2= 0.52879 kg M3= 0.66630 kg

C1 = 1.35236Ω Ns/m C2=1.05868Ω Ns/m C3 = 1.43657Ω Ns/m

K1 = 2247630.20231 -

0.67585Ω2 N/m

K2 = 40923956.49522 -

0.52878 N/m

K3 = 5793877930.31206 -

0.66630Ω2 N/m

F1 = -0.25126 F(t) F2 = -0.21901 F(t) F3 = 0.02375 F(t)

5.2 Response during Startup

Figure 5.1 shows the response of a cantilever shaft-disk system during startup for the

first mode of vibration. For the first mode, the maximum deflection is around 5.5μm

in the direction of the jet. The deflection reaches its peak value as the startup is

complete. After completion of the startup operation, the deflection remains constant

26



as full jet impact load is continuously acting on the system. Figure 5.2 shows the

zoomed in view of the response where oscillating deflection represents the vibration.

Figure 5.1 First mode response of cantilever shaft-disk during startup

Figure 5.2 Zoomed-in view of first mode response during startup

Figure 5.3 shows the response of a cantilever shaft-disk system during startup for the

second mode of vibration. Here, the maximum deflection is around 0.3μm in the

direction of the jet.
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Figure 5.3 Second mode response of cantilever shaft-disk during startup

Figure 5.4 shows the response of a cantilever shaft-disk system during startup for the

third mode of vibration.

Figure 5.4 Third mode response of cantilever shaft-disk during startup

As compared to the first and second modes, the deflection in the third mode of

vibration is negligible. So the total response of the system is obtained as the sum of

deflections in the first and second modes of vibration.
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Figure 5.5 Startup response of cantilever shaft-disk from ANSYS simulation

Figure 5.5 shows the response as obtained from the simulation. The maximum

deflection of the shaft-disk system is around 6.1μm during startup at the end of the

startup period. After the starting period, the excitation force is constant and

continuously acting on the system and so is the deflection of the system.

5.3 Response during Shutdown

Figure 5.6 shows the response of a cantilever shaft-disk system during shutdown for

the first mode of vibration. For the first mode, the maximum deflection is around 10.5

μm in the direction of the jet. The deflection has peak value at the beginning of the

shutdown operation. After completion of the shutdown operation, the mean deflection

is zero.
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Figure 5.6 First mode response of cantilever shaft-disk during shutdown

Figure 5.7 shows the response of a cantilever shaft-disk system during shutdown for

the second mode of vibration. For the second mode, the maximum deflection is

around 0.5 μm in the direction of the jet. Again, the deflection has peak value at the

beginning of the shutdown operation. After completion of the shutdown operation, the

mean deflection is zero.

Figure 5.7 Second mode response of cantilever shaft-disk during shutdown
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Figure 5.8 shows the response of a cantilever shaft-disk system during shutdown for

the third mode of vibration.

Figure 5.8 Third mode response of cantilever shaft-disk during shutdown

As compared to the first and second modes, the deflection in the third mode of

vibration is negligible. So the total response of the system is obtained as the sum of

deflections in the first and second modes of vibration for the shutdown as well.

Figure 5.9 shows the shutdown response as obtained from the simulation. The

maximum deflection of the shaft is around 11.5μm during shutdown. After the

shutdown period, the excitation force goes to zero and so does the deflection of the

system.
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Figure 5.9 Shutdown response of cantilever shaft-disk from ANSYS simulation
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CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The transient response of the cantilever shaft-disk system based on the data from the

selected Pelton turbine unit is thus obtained. The maximum deflection that can be

expected during startup and shutdown is obtained by summing the deflections for the

first two modes since the third mode has negligible deflection.

● The maximum deflection obtained from the mathematical model during startup is

around 5.8μm and during shutdown is around 11μm for the given choice of pelton

turbine representing the cantilever shaft-disk system.

● The maximum deflection obtained from the simulation in ANSYS during startup

is around 6.1μm and during shutdown is around 11.5μm.

● The deflection variation between mathematical model and simulated result is

5.2% for startup whereas it is 4.5% for shutdown.

6.2 Recommendations

This work can be expanded following the recommendations given below:

● The force of the impact jet acting on the disk is assumed linear in this work. It

would be best to incorporate actual function representing the force of the jet

during transient periods.

● The simplified disk can be replaced with actual pelton turbine geometry with

buckets for analysis of transient impact response of the pelton turbine.

● Response to multiple impact jets can be studied.

● Analysis can be done for a flexible disk as well as flexible bearing.
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APPENDIX A

Parameters Values

Density of water (ρw) 1000 kg/m3

Pitch Circle Diameter of Runner (DR) 155 mm

Rated RPM (N) 1500 rpm

Diameter of shaft (ds) 32 mm

Cross section area of shaft (A) 0.0008042 m2

Area polar moment of inertia of shaft (Js) 5.1472×10-8 m4

Area moment of inertia of shaft about transverse axes (Is) 1.0294×10-7 m4

Area polar moment of inertia of disk (Jd) 0.5527×10-4 m4

Area moment of inertia of disk about transverse axes (Id) 0.11053×10-3 m4

Length of shaft (L’) 519 mm

Material of shaft Mild steel

Density of shaft material (ρs) 7860 kg/m3

Density of disk material (ρd) 8550 kg/m3

Young’s Modulus of Elasticity of shaft (E) 202 GPa

Mass of rotating runner (md) 10.564 kg

Thickness of runner (h) 0.035 m

Mass polar moment of inertia of disk about x-x axis (Jmd) 0.0334 kgm2

Mass moment of inertia of disk about y-y or z-z axis (Imd) 0.0206 kgm2

Nominal spin speed (Ω = 2πN/60) 157.07 rad/s

(Luintel, 2019)
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APPENDIX B

1. MATLAB program for Equivalent System Parameters

clc

clear

syms x w F; % w is shaft rotational speed

rhoDisk = 8550; % Disk density

widthDisk = 0.035; % Disk thickness

I_Disk = 0.00005527; % Disk area moment of inertia about transverse axes

J_Disk = 0.00011053; % Disk polar moment of inertia

massDisk = 10.564; % Disk mass

rhoShaft = 7860; % Shaft density

E_Shaft = 2.02*10^11; %Shaft Modulus of Elasticity

areaShaft = 0.0008042; % Shaft cross section area

L = 0.097; % Shaft length

I_Shaft = 5.1472*10^-8; % Shaft area moment of inertia about transverse axes

J_Shaft = 1.0284*10^-7; % Shaft polar moment of inertia

% Shape function

phi=cos(1.12511*x/L)-cosh(1.12511*x/L)-2.21274*(sin(1.12511*x/L)-sinh(1.12511*

x/L));

d_phi=(diff(phi,1));

% Shape function for disk

phi_disk=subs(phi,x,L);

d_phi_disk=diff(phi_disk,1);

dd_phi=diff(phi,2);

% Equivalent mass

Meq=vpa(rhoShaft*areaShaft*(int(phi^2,0,L))+rhoShaft*I_Shaft*(int(d_phi^2,0,L))+

massDisk*phi_disk^2+rhoDisk*widthDisk*I_Disk*d_phi_disk^2)

% Equivalent damping coefficient

Ceq=vpa(2*rhoShaft*areaShaft*w*(int(phi^2,0,L))+2*rhoShaft*I_Shaft*w*(int(d_ph

i^2,0,L))+2*massDisk*w*phi_disk^2+2*rhoDisk*widthDisk*I_Disk*w*d_phi_disk^

2+rhoShaft*J_Shaft*w*(int(d_phi^2,0,L))+rhoDisk*widthDisk*J_Disk*w*d_phi_dis

k^2)

% Equivalent stiffness
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Keq=vpa(-rhoShaft*areaShaft*w^2*(int(phi^2,0,L))-rhoShaft*I_Shaft*w^2*(int(d_p

hi^2,0,L))-massDisk*w^2*phi_disk^2-rhoDisk*widthDisk*I_Disk*w^2*d_phi_disk^

2+E_Shaft*I_Shaft*int(dd_phi^2,0,L))

% Equivalent force

Feq=vpa(F*phi_disk)

2. MATLAB program for Startup

clc

clear

duration=[0 20]; % Duration considered for result is 20 sec

Y0=[0 0 0 0]; % Initial conditions for the ODE system

tolerance = odeset('RelTol',1e-5);

[t_out,Y_out] = ode45(@sys_of_ODEs,duration,Y0,tolerance);

v=Y_out(:,1); % deflection in jet direction

% Plot deflection in jet direction

plot(t_out,v,'k');

set(gca,'fontsize', 22)

set(gcf,'color','w');

grid on

title('Third mode deformation in the direction of jet during Startup');

xlabel('time (s)');

ylabel('Deformation (m)');

function ODEs = sys_of_ODEs(t,Y)

x1=Y(1); x2=Y(2); y1=Y(3); y2=Y(4);

% System parameters

M=0.55932; % Equivalent mass of the system

Fj=193*-0.2286; % Equivalent impact force

t0=5; % Duration of complete startup

w_nom=157.07; % Nominal speed of shaft

% Force change during startup

F= Fj/t0*t*(1-heaviside(t-t0)) + Fj* heaviside(t-t0);

% Rotational speed change during startup

w= w_nom/t0*t*(1-heaviside(t-t0))+ w_nom* heaviside(t-t0);
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% Equivalent stiffness

K=1957802.62 - 0.559*w^2;

% Damping coefficient

C= 1.119*w;

% System of second order differential equations

% M1*diff(v,t,2)-C1*diff(w,t)+K1*v=F1 & M1*diff(w,t,2)+C1*diff(v,t)+K1*w=0

% Assume v=x1,dv=x2,w=y1,dw=y2

dx1=x2;

dx2=-K/M*x1+C/M*y2+F/M;

dy1=y2;

dy2=-C/M*x2-K/M*y1;

% System of ODEs

ODEs=[dx1;dx2;dy1;dy2];

end

3. MATLAB program for Shutdown

clc

clear

duration=[300 340]; % Duration considered for result is 40 sec

Y0=[0 0 0 0]; % Initial conditions for the ODE system

tolerance = odeset('RelTol',1e-5);

[t_out,Y_out] = ode45(@sys_of_ODEs,duration,Y0,tolerance);

v=Y_out(:,1); % deflection in jet direction

% Plot deflection in jet direction

plot(t_out,v,'k');

set(gca,'fontsize', 22)

set(gcf,'color','w');

grid on

title('Third mode deformation in the direction of jet during Startup');

xlabel('time (s)');

ylabel('Deformation (m)');

function ODEs = sys_of_ODEs(t,Y)

x1=Y(1); x2=Y(2); y1=Y(3); y2=Y(4);
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% System parameters

M=0.55932; % Equivalent mass of the system

Fj=193*-0.2286; % Equivalent impact force

ta=300; %Shutdown beginning time

ts=10; % Duration of complete shutdown

w_nom=157.07; % Nominal speed of shaft

% Force change during startup

F= -Fj/ts*(t-(ta+ts))*(1-heaviside(t-(ta+ts)));

% Rotational speed change during startup

w= -w_nom/ts*(t-(ta+ts))*(1-heaviside(t-(ta+ts)));

% Equivalent stiffness

K=1957802.62 - 0.559*w^2;

% Damping coefficient

C= 1.119*w;

% System of second order differential equations

% M1*diff(v,t,2)-C1*diff(w,t)+K1*v=F1 & M1*diff(w,t,2)+C1*diff(v,t)+K1*w=0

% Assume v=x1,dv=x2,w=y1,dw=y2

dx1=x2;

dx2=-K/M*x1+C/M*y2+F/M;

dy1=y2;

dy2=-C/M*x2-K/M*y1;

% System of ODEs

ODEs=[dx1;dx2;dy1;dy2];

end
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Abstract
Engineering applications like hydraulic turbine, axial compressor and turbine engine systems are all examples
of Shaft-disk systems. Analysis of simplified shaft-disk systems representing such applications can be
useful in understanding the dynamic response of those applications. Start-up transients are one of the most
critical operating conditions in hydraulic turbines. In this research, transient response analysis is done for a
cantilever shaft-disk system which can be used to understand the behavior of application like a cantilever
Pelton turbine. The study involves developing a mathematical model for the cantilever shaft-disk system.
Excitation force used is based on the transient impact jet force that would act on a Pelton turbine during startup
and shutdown. Vibration response of the excitation force is evaluated by solving the governing equations from
the mathematical model with the defined excitation force. Vibration amplitudes are obtained for the first three
modes of vibration for both cases of startup and shutdown.

Keywords
Transient response, Pelton turbine, Modes of vibration

1. Introduction

Engineering applications like hydraulic turbine, axial
compressor and turbine engine systems are all
examples of Shaft-disk systems. Water impact on the
disk of a cantilever shaft-disk system can represent a
cantilever Pelton turbine and thus analysis on such a
system can be used to estimate performance of a
Pelton turbine. Due to their high operating speed and
high-performance requirements, vibrational analysis
is an important aspect in the design of these
applications. A coupled vibrational study of the
shaft-disk system is essential to get the overall
response of the system which can be used to avoid any
undesirable deformation or structural damage.

Startup transient is considered as a critical operation
in hydraulic turbines. The speed of the turbines vary
during startup as it goes from rest to the operating
speed. Likewise, during shutdown, the speed varied
from operating speed to zero. These operating
conditions mark the cases of transient loading and are
the subjects of study for this thesis for a cantilever
shaft-disk system. The response of a shaft-disk
system such as a Pelton turbine depends on the
operating parameters as well as its components.

Researchers have modeled rotodynamic systems as
shaft-disk systems to investigate various aspects of
those systems. Figure 1 shows a cantilever shaft-disk
system whose vibrational analysis is done in this
work.

Figure 1: Shaft-disk representation of a cantilever
Pelton turbine

2. Mathematical Model Development

Let us consider a rigid disk attached to a flexible shaft
as shown in figure 1. Water will impact the disk in the
y-direction. The transverse displacements of points on
the shaft be v(x,t) and w(x,t) in the horizontal and
vertical directions respectively. The kinematic
equations of the shaft and disk [1] are given below.
Angular velocity of shaft:

ωs = Ω⃗i (1)
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Velocity of points on neutral axis of the shaft:

vs = (v̇−Ωw) j⃗+(ẇ+Ωv)⃗k (2)

Angular velocity of the disk:

ωd = (Ω+v′ẇ′)⃗i+(−Ωv′−ẇ′) j⃗+(−Ωw′+ v̇′)⃗k (3)

2.1 Energy of the System

Kinetic energy of rotating shaft:

Ts =
1
2

ρsA
L∫

0

[(v̇−Ωw)2 +(ẇ+Ωv)2]dx

+
1
2

ρsJs

L∫
0

(Ω+ v′ẇ′)2 dx

+
1
2

ρsIs

L∫
0

[(−Ωv′− ẇ′)2 +(−Ωw′+ v̇′)2]dx

(4)

Potential energy of rotating shaft:

Us =
1
2

EIs

L∫
0

[v′′2 +w′′2]dx (5)

Kinetic energy of the disk:

Ts = [
1
2

Md [(v̇−Ωw)2 +(ẇ+Ωv)2]

+
1
2

ρdhJd(Ω+ v′ẇ′)2

+
1
2

ρdhId [(−Ωv′−ẇ′)2+(−Ωw′+ v̇′)2]]|x=L

(6)

Disk is assumed as a rigid body and hence its potential
energy is zero.

Ud = 0 (7)

2.2 Excitation force

As the excitation force for the shaft-disk system,
impact of water jet on the pelton turbines will be
taken. The speed of the turbine varies during the
startup and shutdown. [2] has evaluated the jet force
for the same pelton turbine system used in this
research as: Fj = 193 N

Figure 2: Startup and shutdown excitation

Excitation force is assumed to be linear during
transient stages as shown in Figure 2. Startup
excitation force:

F = (Fj/t0)t(1−u(t − t0))+Fju(t − t0) (8)

Shutdown excitation force:

F = (Fj −(Fj/ts)(t−ta))(u(t−ta)−u(t−(ta+ts))

(9)

Startup time is taken as 5 seconds and shutdown time
is taken as 10 seconds for this analysis. Work done by
the impact jet:

Wext = F(t)v|x=L (10)

2.3 Equivalent Parameters

From assumed mode method, displacement variables
defined as product of spatial and time dependent
functions are:

v = φ(x)TV (t)

w = φ(x)TW (t)

(11)

Lagrange equation for getting the equations of motion
is:

d
dt
(
∂T
∂ q̇

)− ∂T
∂q

+
∂U
∂ q̇

− ∂Wext

∂ q̇
= 0 (12)

where q represents each degree of freedom.
Combining equations (4) through (11), the governing
equation of rotodynamic system can be written as:

MiV̈ −CiẆ +KiV = Fi (13)

MiẄ +CiV̇ +KiW = 0 (14)

2
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Where

Mi = ρsA
L∫

0

φφ
T dx+ρsIs

L∫
0

φ
′
φ
′T dx

+Md [φdφ
T
d ]+ρdhId [φ

′
dφ

′T
d ] (15)

Ci = 2ρsAΩ

L∫
0

φφ
T dx+2ρsIsΩ

L∫
0

φ
′
φ
′T dx

+2MdΩ[φdφ
T
d ]+2ρdhIdΩ[φ ′

dφ
′T
d ]

+ρsJsΩ

L∫
0

φ
′
φ
′T dx+ρdhJdΩ[φ ′

dφ
′T
d ] (16)

Ki =−ρsAΩ
2

L∫
0

φφ
T dx−ρsIsΩ

2
L∫

0

φ
′
φ
′T dx

+−MdΩ
2[φdφ

T
d ]−ρdhIdΩ

2[φ ′
dφ

′T
d ]

+EIs

L∫
0

φ
′′
φ
′′T dx (17)

Fi = F(t)φd (18)

Rewriting second order differential equations (13) and
(14) in the system of ordinary differential equations,
assume,

V = x1,V̇ = ẋ1 = x2,V̈ = ẋ2

W = y1,Ẇ = ẏ1 = y2,Ẅ = ẏ2

System of ordinary differential equations:

ẋ1 = x2

ẋ2 =−(K/M)x1 +(C/M)y2 +(F/M)

ẏ1 = y2

ẏ =−(C/M)x2 − (K/M)y1 (19)

Solving these equations, we get the response in the
direction of jet considering three modes of vibration
as:

V =V1φ1 + v2φ2 +V3φ3

2.4 Characteristic equation and shape
functions

The governing equation of uniform Euler-Bernoulli
beam can be written as:

∂ 2

∂x2 (EIs
∂ 2v
∂x2 )+ρsAs

∂ 2v
∂ t2 = f (x, t) (20)

For a cantilever beam with end mass, the boundary
conditions are:

v(0, t) = 0,
dv
dt

(L, t) = 0

EIs
∂ 2v
∂x2 (L, t)+ Imd

∂ 3v
∂x∂ t2 (L, t) = 0

EIs
∂ 3v
∂x3 (L, t)−Md

∂ 2v
∂ t2 (L, t) = 0 (21)

[3] Solving the boundary value problem Equations
(20) and (21), characteristic equation of different eigen
value problem for the cantilever uniform beam with
end mass is derived as:

1+ cosβLcoshβL+
βMd

ρsAs
(cosβLsinhβL

− sinβLcoshβL)− β 3Imd

ρsAs
(coshβLsinβL

+ sinhβLcosβL)+
β 4MdImd

ρ2
s A2

s
(1−

cosβLcoshβL) = 0 (22)

where

β
4 =

ρsAsω
2

EIs
;ω = natural f requency

The obtained eigen function is:

φ(x) = (cosβx− coshβx)

+
sinβL− sinhβL+ βMd

ρsAs
(cosβL− coshβL)

cosβL+ coshβL− βMd
ρsAs

(sinβL− sinhβL)
X

(sinβx− sinhβx) (23)

Table 1 shows the parameters of a simply supported
pelton turbine used as the reference for this work. The
length of the equivalent cantilever pelton turbine is
obtained by equating the static deflection functions [4]
a simply supported and a cantilever shaft with equal
load and the length obtained is 97mm.

3
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Table 1: Parameters for the shaft-disk model

3. Results

3.1 Shape functions and Equivalent
Parameters

Solving Equation (22) for given system parameters,
values of βL for the first three modes of vibration are
obtained as shown in Table 2.

Table 2: Values of β L

First Mode 0.57680
Second Mode 1.12511
Third Mode 4.74416

Now, using Equation (23), the shape functions
obtained are:

φ1 = cos(0.57680
x
L
)− cosh(0.57680

x
L
)

−1.27460(sin(0.57680
x
L
)−sinh(0.57680

x
L
))

φ2 = cos(1.12511
x
L
)− cosh(1.12511

x
L
)

−2.21274(sin(1.12511
x
L
)−sinh(1.12511

x
L
))

φ3 = cos(4.74416
x
L
)− cosh(4.74416

x
L
)

−0.98291(sin(4.74416
x
L
)−sinh(4.74416

x
L
))

Equations (15) to (18) are solved in Matrix
Laboratory (MATLAB) using the above shape
functions and equivalent parameters are obtained as
shown in Table 3.
Table 3:Equivalent parameters

3.2 Vibration Response

The equivalent parameters from Table 3 are used in
equations (19) and solved using MATLAB to obtain
the response of the cantilever shaft-disk system during
startup and shutdown.

Figure 3: First mode response during startup

Figure 4: Second mode response during startup

Figures 3 and 4 show the response of a cantilever
shaft-disk system during startup for the first two
modes respectively. For the first mode, the maximum

4
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deflection is around 5.5e-6m and for the second mode,
it is around 0.3e-6m. The deflection in the third mode
is negligibly low (order of 0.003e-6m) and thus not
shown. The deflection is biased in direction opposite
to the direction of water jet. A total deflection of
around 5.8e-6m is expected during startup. It is also
observed that the amplitude of vibration is minimal
and the deflection stays constant at once the excitation
force is steady i.e. no longer varying.

Figure 5: First mode response during shutdown

Figure 6: Second mode response during shutdown

Likewise, figures 5 and 6 show the response of a
cantilever shaft-disk system during shutdown for the
first two modes respectively. For the first mode, the
maximum deflection is around 10.5e-6m and for the
second mode, it is around 0.5e-6m only. Again, the
deflection in the third mode is negligibly low (order of
0.02e-6m) and thus not shown. So a total deflection of
around 11e-6m is expected during shutdown. Unlike
startup condition, the amplitude of vibration is
significant (around 5e-6m) during shutdown and once
the water jet completely stops i.e. excitation force
goes to zero, the amplitude starts decreasing with
mean deformation of zero as expected for complete
shutdown. The dark region after 310 seconds
represents the steady state response of the system.

4. Conclusion

The characteristic equation for the cantilever
Euler-Bernoulli beam with tip mass is derived and the
shape functions for the first three modes of vibration
are obtained analytically. The shape functions thus
obtained are used to obtain equivalent mass, stiffness,
damping and forcing functions for different modes of
vibration. Finally, the governing second order
differential equations are converted into a system of
ordinary differential equations and solved with
MATLAB. The maximum deflection that can be
expected during startup and shutdown can be obtained
by summing the deflections for the first two modes
since the third mode has negligible deflection. Thus,
for given system parameters, the expected maximum
deflection during starting is around 5.8e-6m and
during shutdown is around 11e-6m for the given
choice of Pelton turbine. [5] did a similar study for a
simply supported Pelton turbine and obtained similar
order of deflection with peak shutdown deflection
almost twice as that during startup. Results of this
analysis show similar feature. This paper thus gives
an insight on the transient response analysis of
cantilever shaft-disk system.
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