
TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

Thesis no: M-59-MSMDE-2020-2023

Development of a Neural Network to Predict Path of an Object in a Two

Dimensional Potential Flow

by

Rijan Niraula

A THESIS 

SUBMITTED TO THE DEPARTMENT OF MECHANICAL AND AEROSPACE

ENGINEERING 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE IN

MECHANICAL SYSTEMS DESIGN AND ENGINEERING

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

LALITPUR, NEPAL

APRIL, 2023



COPYRIGHT

The author has agreed that the library, Department of Mechanical and Aerospace

Engineering, Pulchowk Campus, Institute of Engineering may make this thesis

freely available for inspection. Moreover, the author has agreed that permission

for extensive copying of this thesis for scholarly purpose may be granted by the

professor(s) who supervised the work recorded herein or, in their absence, by the

Head of the Department wherein the thesis was done. It is understood that the

recognition will be given to the author of this thesis and to the Department of Me-

chanical and Aerospace Engineering, Pulchowk Campus, Institute of Engineering

in any use of the material of the thesis. Copying or publication or the other use

of this thesis for financial gain without approval of the Department of Mechanical

and Aerospace Engineering, Pulchowk Campus, Institute of Engineering and au-

thor’s written permission is prohibited.

Request for permission to copy or to make any other use of the material in this

thesis in whole or in part should be addressed to:

Head

Department of Mechanical and Aerospace Engineering

Pulchowk Campus, Institute of Engineering

Lalitpur, Kathmandu

Nepal

2



TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF MECHANICAL ENGINEERING

The undersigned certify that they have read, and recommended to the Institute of

Engineering for acceptance, a thesis entitled ”Development of a Neural Network

to Predict Path of an Object in a Two Dimensional Potential Flow” submitted by

Rijan Niraula in partial fulfillment of the requirements for the degree of Master of

Science in Mechanical Systems Design and Engineering.

Supervisor, Dr. Laxman Poudel

Professor/Program coordinator (MSMDE)

Department of Mechanical and Aerospace Engineering

Supervisor, Dr. Rajendra Shrestha

Professor/Assistant Dean

Department of Mechanical and Aerospace Engineering

External Examiner, Er. Madan Timsina

Deputy Managing Director/Generation Directorate

Nepal Electricity Authority (NEA)

Committee Chairperson, Dr. Surya Prasad Adhikari

Assoc. Professor/Head of Department

Department of Mechanical and Aerospace Engineering

Date: April 10, 2023

3



ABSTRACT

Neural networks have been widely used in various fields, including fluid dynamics,

to predict complex phenomena that are difficult to model analytically. In this

research, a neural network is developed to predict the path taken by a circular

body in a two-dimensional fluidic domain. The study involves simulating the

potential flow over a rectangular domain inside which a circular body is placed.

Fluctuations in different parameters such as pressure, forces, and velocity field

during the motion of the body are studied. The Laplace equation is solved at

each time step by applying the techniques of finite element method ( FEM) to

obtain accurate data, which is fed into the neural network. The neural network

comprises of three layers input , middle and output layer. The study is carrried out

using computational methods that relies on open-source software Python and its

modules like NumPy. The results of the neural network’s predictions are compared

with accurate data to analyze the error. Fluctutaion of error with respect to

different hyperparameters of the network is calculated and accordingly suitable

hyperparameters of the network are determined.
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CHAPTER ONE: INTRODUCTION

1.1 Background

Since the time of the great Greek philosophers and scientists, people have been

attempting to answer problems relating to fluid dynamics and its related mech-

anisms. As most problems in engineering deal with solving Partial Differential

Equations (PDE), the first partial differential equation for fluid dynamics was cre-

ated in 1752, by Euler, who focused primarily on inviscid fluids (hence, the name

Euler equation for inviscid fluids). After that, Navier and Stokes independently

added the viscous forces to the equation by using Newton’s description of friction

caused by velocity gradient and fluid viscosity; as a result, the equation is now

known as the Navier-Stokes equation. There are several methods to solve such

differential equations – Analytical, Experimental or Numerical methods. Apart

from some simple flow problems, which can be solved using analytical methods,

most of these problems are complicated and incredibly difficult to solve. In most

cases, these equations cannot be solved analytically. On the other hand, there are

experimental methods which are accurate and used quite often but it’s limited and

very expensive. Specialized facilities are required, that are expensive to develop

and require high level of calibration and meticulous design. So, this method might

not be feasible to explore new possibilities.

A third method involves the use of neural network to solve the PDE, which com-

bines modern numerical techniques and high speed digital computers to solve the

given physical problem. The importance and use of neural network has seen a sub-

stantial increase in different realms of modern technology be it digit recognition,

speech recognition, data analysis and prediction of properties of physical system.

The methods used are easier to set up, at low cost and offers a lot of flexibility.

Computational methods like FEM, FDM transform complex differential equation

into a set of algebraic equation, which then can be solved easily with help of com-

puters. In this research we will be specifically solving laplace equation for a given

set of boundary conditions in a two dimensional rectangular domain.
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On a circular body in a two dimensional fluidic domain, the fluid exerts force and

torque. The nature of the force and torque determine the nature of the path the

body moves in. At any given instant, the presence of the body also contributes

to the nature of flow, since it itself acts as a rigid boundary. Thus we need to

solve the laplacian equation at each time step, since at every instant the nature

of the problem is little bit different from its previous position. This obtained data

is then fed into a neural network which then predicts the path of the body for a

new starting point of the body.

1.2 Problem Statement

The significance of predicting the path the body takes, while interacting with

fluid has been of paramount importance for a long time. Due to the unavailability

of computational power we have today, the computational study of such a phe-

nomenon was not possible a couple of decades ago. Furthermore, the experimental

setup of such interaction also requires a large amount of cost and resources, and

a high level of calibration, which is difficult to attain. A number of researches

have been done in order to study this phenomenon since the development of com-

putational power and advanced algorithms in recent times. However, a complete

development of the system like neural network governing such phenomenon is still

lacking

Consider a rigid circular body in a two dimensional flow in a rectangular domain

as shown below in the figure. The flow is assumed to be incompressible and in-

viscid. If the boundary condition of the rectangular domain is specified, the fluid

exerts a force and torque on the circular object. As a result of which the body

moves in a trajectory within the flow. Also, notice that the presence of the body

itself, is detrimental to the nature of the flow and thus the nature of force and

torque acting on the body at each instant.
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Figure 1.1: Problem statement diagram

1.3 Rationale

The main focus of this research is to increase our understanding of the impacts

of the boundary condition and intial starting point on the potential flow of the

body. The primary emphasis lies on the development of a neural network and

how accurately it can predict when compared against accurate data. The study

shall be done using computational methods that relies heavily in open source

software like python and its module like numpy, matplotlib. This will advance our

understanding of the impacts of different boundary condition and the subsequent

nature of the flow of the body in two dimensional regime. Understanding the

impacts of this phenomenon shall contribute to the design and faster computation

time for similar problems. This is particularly helpful in situation where real time

data is required for critical decision making process like automated driving etc.
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1.4 Objectives

1.4.1 Main objective

The main objective of this research is to study and predict the various point of

the path the body will take given the nature of the flow by developing a neural

network.

1.4.2 Specific objectives

1. To simulate potential flow over a rectangular domain inside which a circular

body is placed.

2. To study fluctuations in different parameters like pressure, forces, velcoity

field during the motion of the body.

3. To figure out and analyze the error between the actual path and predicted

path by the neural network .

1.5 Assumptions and Limitations

The assumptions and limitations of this research are listed as follows:

1. This research is carried out in a two-dimensional flow domain.

2. This research is limited to computational methods.

3. The properties of fluid remain constant.

4. Calculation is carried out under incompressible and inviscid assumptions.

5. The research can be further extended to the realm of three dimension and

viscous flow.

6. Gradient descent algorithm is used for backpropagation purpose.

17



CHAPTER TWO: LITERATURE REVIEW

2.1 Common terminologies related to Fluid Flow

2.1.1 Velocity Field

The common method of describing fluid flow is the Eulerian description of fluid

motion, named after the Swiss mathematician Leonhard Euler (1707–1783). In

the Eulerian description of fluid flow, a finite volume called a flow domain or

control volume is defined, through which fluid flows in and out. Instead of tracking

individual fluid particles, we define field variables, functions of space and time,

within the control volume. The field variable at a particular location at a particular

time is the value of the variable for whichever fluid particle happens to occupy

that location at that time. For example, the pressure field is a scalar field variable;

for general unsteady two-dimensional fluid flow in Cartesian coordinates,

Pressure : p = p(x, y) (2.1)

The velocity field vector is defined in similar fashion,

V elocity : V = ~V (x, y)) (2.2)

Figure 2.1 shows a typical example of two dimensional velocity field.

Figure 2.1: Velocity Field

18



2.1.2 Governing Equations

The basic governing equations that governs basic isothermal inviscid fluid flow are

continuity equation and euler equation.

• Mass conservation

∂ρ

∂t
+∇ · (ρV) = 0 (2.3)

where, for an steady incompressible flow, the equation reduces to,

∇ · (Ṽ) = 0 (2.4)

• Euler Equation

ρ
D~V

Dt
= −∇p + ρg (2.5)

where, D
Dt

is the material derivative operator, ρ is density, p is the pressure

and g is acceleration due to gravity.

2.1.3 Boundary Conditions

The boundary condition assumed in the project is that of wall boundary condi-

tion.The simplest boundary condition is that of a wall. Since, fluid cannot pass

through a wall, the normal component of velocity is set to zero relative to the wall

along a face on which the wall boundary condition is prescribed. Mathematically

speaking,

~V · ~n = 0 (2.6)

where, ~n is the normal vector along the face of the wall

Figure 2.2 shows velocity having no components along the normal direction of the

wall.
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Figure 2.2: Wall Boundary Condition

2.2 Vector Calculus

2.2.1 Potential function and theorem

Any vector function can written as a sum of gradient of a scalar function and curl

of a vector function.In particular, if it is a irrotational field i.e its curl vanishes ,

the the vector function can writtten as a gradient of scalar function.

~V = ∇(φ) +∇×(C̃) (2.7)

In particular, for irrotational flow the equation reduces to,

~V = ∇(φ) (2.8)

2.2.2 Laplace Equation

For an incompressible flow , we also have ∇ · (Ṽ) = 0, thus equation 2.8 reduces

to laplace equation. Mathematically,

∇2φ = 0 (2.9)

2.2.3 Harmonic functions,properties and uniqueness

The solutions of laplace equations are called as harmonic functions. The harmonic

functions have two important properties which are listed down below.

• The value of the potential function φ at a point is the average of those around

the point.
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• Laplace equation toelrates no maximum or minima; extreme values of the φ

occurs at the boundary.

Laplace’s equation doesn not by itself determine φ; in addition, a suitable set of

boundary conditions must be supplied. A proposed set of boundary conditons

will suffice for a particular problem is ensured by uniqueness theorems presented

below.

• First uniqueness theorem: The solution to Laplace’s equation in some region

is uniquesly determined if φ or the normal derivative ∂φ
∂n

is specified on its

boundary.

2.3 Finite Element Method (FEM)

2.3.1 Introduction and Methodology

In all disciplines of science and engineering, the focus is on determining what

will happen when a physical system of interest is subjected to the effects of the

environment, which may in turn lead to a response from the system.The set of

mathematical equations allowing the determination of state variables and, in turn,

the analytical investigation of any physical process, is sometimes referred to as

the mathematical model of a process. In most physical problems of interest, the

mathematical models typically correspond to differential equations. This means

that we can formulate a set of equations involving the derivatives of functions with

respect to spatial variables and/or time. One example differential equation, for

the case that we want to find the spatial distribution of a state variable T(x), is

the following:

dT

dx
+ s(x) = 0 (2.10)

where, s(x) is some given function

For any problem, the use of the FEM can be assumed to consist of four basic

conceptual steps, summarized in figure below. The first step is to formulate the

differential equations that describe the problem. As mentioned above, these differ-

ential equations express the governing physics of the problem at hand and usually
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comprise a mathematical statement of the conservation principle for a quantity

such as mass, energy, or momentum. The differential equations for any problem

are supplemented by boundary conditions, which merely provide statements about

what happens at the boundary of the domain of the problem. For example, if we

have a two-dimensional body, the boundary conditions will provide information

on what happens on the bounding curve of the body.

Figure 2.3: FEM Process

The differential equations and the boundary conditions collectively comprise the

strong form of a physical problem. In simple cases, we may be able to solve the

differential equation and obtain the exact solution to the strong form. However,

in most cases (especially for multidimensional problems), it is not possible to

analytically solve the differential equation. This,in turn, necessitates the use of

numerical methods to obtain approximate solutions. The use of the FEM to solve

such problem relies on a different approach, which requires the transformation of

the strong form into an equivalent set of expressions called the weak form. The

weak form of any problem typically involves integral equations. Eventually, we will

plug the finite element approximation into the weak form, which will allow us to

transform the problem from an integral equation, to a system of linear equations

for a set of unknown constant quantities. This set of linear equations can easily

be solved to obtain the numerical solution of given problem at hand.
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2.3.2 FEM and Laplace equation

2.3.2.1 Strong form

The strong form of laplace equation constitutes the equation ∇2φ = 0, augmented

with boundary conditions. There are generally two different type of boundary

condition imposed on the type of problem we are working with, essential boundary

condition and neumann boundary condition.

• Essential boundary conditions:

The value of the field function at hand i.e φ is specified at the boundary T .

φ = φ̄ on Tφ

• Neumann boundary conditions:

The value of the normal derivative of the field is specified at the boundary

T .

~V · ~n on Tq

Thus, the strong form consists of laplace equation augmented with relevant bound-

ary condition.

∇ · (∇φ) = 0 (2.11)

φ = φ̄ on Tφ (2.12)

~V · ~n on Tq (2.13)

2.3.2.2 Weak form

We will now establish the weak form for two dimensional heat conduction. We

consider an arbitrary function, w(x,y), which vanishes on the essential boundary:

w = 0 at Tφ . We multiply the governing differential equation 2.11 by w(x,y) and

then integrate over the two-dimensional domain, Ω:

∫∫
Ω

w(∇ · (∇φ))dV = 0 (2.14)

Using Green’s formula, we have,
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∫
τ

w · (∇φ · ~n)dS −
∫∫

Ω

∇w · ∇φdV = 0 (2.15)

The boundary integral in equation 2.15 can be separated into two parts, one

over Tφ (where we know that w vanishes) and the other over Tq (for which we

have the natural boundary condition):

∫
τ

w · (∇φ · ~n)dS =

∫
τφ

w · (∇φ · ~n)dS +

∫
τq

w · (∇φ · ~n)dS (2.16)

If we also account for the natural boundary condition of 2.13 becomes:∫
τ

w · (∇φ · ~n)dS = −
∫
τq

w · φ̄dS (2.17)

Thus, we finally arrive at required weak form:∫∫
Ω

∇w · ∇φdV = −
∫
τq

w · φ̄dS (2.18)

for all w(x) with w = 0 at essential boundary.

2.3.2.3 Discretization

As shown in figure below, the salient feature of the finite element solution is that

the two dimensional domain Ω is discretized (subdivided) into Ne subdomains,

called elements, and each element consists of nodes. We will rely on a piecewise

approximation, that is, we will stipulate the approximation of the field for each

element separately.

Figure 2.4: FEM Discretization

Consider a three noded traingular element as shown below.
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Figure 2.5: Triangular Element

We now approximate the nature of field function in each element as:

φe(x, y) = ae0 + ae1 · x+ ae2 · y (2.19)

φe(x, y) =
[
1 x y

]
·


ae0

ae1

ae2

 (2.20)

putting values and solving for nodal values of φ, we have,

φe(x, y) =
[
N e

1 (x, y) N e
2 (x, y) N e

3 (x, y)
]
·


φe1

φe2

φe3

 (2.21)

φe(x, y) = [N e] · [φe] (2.22)

where,
[
N e

1 (x, y) N e
2 (x, y) N e

3 (x, y)
]

is given by,

[N e
1 (x, y)] =

1

2 · Ae
· [xe2 · ye3 − xe3 · ye2 + (ye2 − ye3) · x+ (xe3 − xe2) · y] (2.23)

[N e
2 (x, y)] =

1

2 · Ae
· [xe3 · ye1 − xe1 · ye3 + (ye3 − ye2) · x+ (xe1 − xe3) · y] (2.24)

[N e
3 (x, y)] =

1

2 · Ae
· [xe1 · ye2 − xe2 · ye1 + (ye1 − ye2) · x+ (xe2 − xe1) · y] (2.25)

where, Ae represents area of the triangular element.

Similarly, we see that the gradient of the field function φ is given by,
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∇φe =

∂φe

∂x

∂φe

∂y

 = [Be] · [φe] (2.26)

where Be is given by,

[Be] =
1

2 · Ae
·

ye2 − ye3 ye3 − ye1 ye1 − ye2
xe3 − xe2 xe1 − xe3 xe2 − xe1

 (2.27)

Similarly, the arbitrary function is also approximated in similar way.

we(x, y) = [N e] · [we] = [we]T [N e]T (2.28)

∇we = [Be] · [we] (2.29)

[∇we]T = [we]T · [Be]T (2.30)

Where the equations has been transformed into transposed form.

Finally, we plug in the equation 2.30 and 2.26 into weak form of equation 2.18.The

first part of equation is transformed as:

∫∫
Ω

[∇w]T · ∇φdV = ΣNe
e=1(

∫∫
Ωe

[∇w]T · ∇φdV ) (2.31)

where, the term occuring in brackets of second part can be simplified as:

∫∫
Ωe

[∇w]T · ∇φdV =

∫∫
Ωe

[we]T · [Be]T · [Be] · [φe]dV (2.32)

∫∫
Ωe

[we]T · [Be]T · [Be] · [φe]dV = [we]T · (
∫∫

Ωe

[Be]T · [Be]dV ) · [φe] (2.33)

∫∫
Ωe

[we]T · [Be]T · [Be] · [φe]dV = [we]T · [ke] · [φe] (2.34)

wher, ke is called local stiffness matrix given by,

ke =

∫∫
Ωe

[Be]T · [Be]dV (2.35)
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If we write φe and we as:

[φe] = [Le] · [φ] (2.36)

[we] = [Le] · [w] (2.37)

Where, φ and w represents global value matrix for total domain in consideration.

Thus, equation 2.32 looks like :∫∫
Ωe

[∇w]T · ∇φdV = [w]T · [Le]T · ·[ke] · [Le] · [φ] (2.38)

Also the equation 2.31 transforms as :

∫∫
Ω

[∇w]T · ∇φdV = [w]T · [K] · [φ] (2.39)

where [K], also called as global matrix is given by,

[K] = ΣNe
e=1([Le]T · [ke] · [Le]) (2.40)

Similarly, the second part of the equation 2.18 simplifies to :

∫
τq

w · φ̄ · dS = ΣNe
e=1(

∫
τeq

w · φ̄edS) (2.41)

If we write,

[f eτφ ] =

∫
τeq

w · φ̄edS =

∫
τeq

[N e]T · φ̄edS (2.42)

we have,

−
∫
τq

w · φ̄ · dS = ΣNe
e=1 · ([w]T · [Le]T [f eτq ] (2.43)

where, [f eτq ] represents local force matrix.

Finally, equation 2.41 looks like:

−
∫
τq

w · φ̄ · dS = [w]t · [f ] (2.44)

where, [f] represents global force matrix.

Altogether we have then,

[w]T · [K] · [φ] = [w]T · [f ] ∀ w (2.45)

[K] · [φ] = [f ] (2.46)
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Thus obtained matrix equation can be solved for unknown values of the field

function at different nodes to obtain the solution numerically.

2.4 Neural Network

2.4.1 Introduction

Many tasks involving intelligence or pattern recognition are extremely difficult

to automate, but appear to be performed very easily by animals. For instance,

animals recognize various objects and make sense out of the large amount of

visual information in their surroundings, apparently requiring very little effort. It

stands to reason that computing systems that attempt similar tasks will profit

enormously from understanding how animals perform these tasks, and simulating

these processes to the extent allowed by physical limitations. This necessitates

the study and simulation of Neural Networks.

The roots of all work on neural networks are in neurobiological studies that date

back to about a century ago. For many decades, biologists have speculated on

exactly how the nervous system works. The following century old statement by

James (1890) is particularly insightful, and is reflected in the subsequent work of

many researchers. The amount of activity at any given point in the brain cortex is

the sum of the tendencies of all other points to discharge into it, such tendencies

being proportionate to :

• the number of times the excitement of other points may have accompanied

that of the point in question

• to the intensities of such excitements

• to the absence of any rival point functionally disconnected with the first

point, into which the discharges may be diverted.

How do nerves behave when stimulated by different magnitudes of electric cur-

rent? Is there a minimal threshold (quantity of current) needed for nerves to be

activated? Given that no single nerve cell is long enough, how do different nerve

cells communicate electrical currents among one another? How do various nerve
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cells differ in behavior? Although hypotheses could be formulated, reasonable an-

swers to these questions could not be given and verified until the mid twentieth

century, with the advance of neurology as a science.

Hayman (1999) is credited with developing the first mathematical model of a

single neuron. This model has been modified and widely applied in subsequent

work.System-builders are mainly concerned with questions as to whether a neuron

model is sufficiently general to enable learning all kinds of functions, while being

easy to implement, without requiring excessive computation within each neuron.

Biological modelers, on the other hand, must also justify a neuron model by its

biological plausibility.

Most neural network learning rules have their roots in statistical correlation anal-

ysis and in gradient descent search procedures. Hebb (1949) learning rule incre-

mentally modifies connection weights by examining whether two connected nodes

are simultaneously ON or OFF. Such a rule is still widely used, with some modifi-

cations. Rosenblatt (1958) ”perceptron” neural model and the associated learning

rule are based on gradient descent, rewarding or punishing a weight depending

on the satisfactoriness of a neuron’s behavior. The simplicity of this scheme was

also its nemesis; there are certain simple pattern recognition tasks that individual

perceptrons cannot accomplish, as shown by Minsky & Papert (1969). A simi-

lar problem was faced by the Widrow-Hoff (1960, 1962) learning rule, also based

on gradient descent. Despite obvious limitations, accomplishments of these sys-

tems were exaggerated and incredible claims were asserted, saying that intelligent

machines have come to exist. This discredited and discouraged neural network

research among computer scientists and engineers.

In recent years, several other researchers (such as Amari, Grossberg, Hopfield, Ko-

honen, Bienenstock & von der Malsburg (1987), and Willshaw) have made major

contributions to the field of neural networks; such as in self-organizing maps and

in associative memories.
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2.4.2 Perceptron

In this section , an artificial type of neuron called perceptron will be explained.artificial

neuron called a perceptron. Perceptrons were developed in the 1950s and 1960s by

the scientist Frank Rosenblatt, inspired by earlier work by Warren McCulloch and

Walter Pitts. Today, it’s more common to use other models of artificial neurons

in this research, the main neuron model used is one called the sigmoid neuron.So

how do perceptrons work? A perceptron takes several binary inputs, x1, x2, ... ,

and produces a single binary output.

Figure 2.6: Perceptron

In the example shown the perceptron has three inputs,x1, x2 , x3 . In general it

could have more or fewer inputs.A simple rule is proposed to compute the output.

Introduce weights, w1 , w2 , . . . , real numbers expressing the importance of the

respective inputs to the output. The neuron’s output, 0 or 1 , is determined by

whether the weighted sum Σj wj xj is less than or greater than some threshold

value. Just like the weights, the threshold is a real number which is a parameter of

the neuron.By varying the weights and the threshold, we can get different models

of decisionmaking. To put it in more precise algebraic terms:

output = 0 if Σjwj · xj ≤ threshold (2.47)

output = 1 if Σjwj · xj > threshold (2.48)

If we define bias = -threshold, we can rearrange above to arrive at following

equation. The bias can be thought of as a measure how much likely is a particular

neuron likely to fire.

output = 0 if Σjwj · xj + bias ≤ 0 (2.49)
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output = 1 if Σjwj · xj + bias > 0 (2.50)

2.4.3 Sigmoid Neurons

Suppose we have a network of perceptrons that we’d like to use to learn to solve

some problem.And, we’d like the network to learn weights and biases so that

the output from the network correctly classifies the digit. To see how learning

might work, suppose we make a small change in some weight (or bias) in the

network. What we’d like is for this small change in weight to cause only a small

corresponding change in the output from the network. This property is what

makes learning possible.Schematically,

Figure 2.7: Network of Perceptrons

If it were true that a small change in a weight (or bias) causes only a small

change in output, then we could use this fact to modify the weights and biases

to get our network to behave more in the manner we want.”9”. And then we’d

repeat this, changing the weights and biases over and over to produce better and

better output. The network would be learning.The problem is that this isn’t what

happens when our network contains perceptrons. In fact, a small change in the

weights or bias of any single perceptron in the network can sometimes cause the

output of that perceptron to completely flip, say from 0 to 1 . That flip may then
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cause the behaviour of the rest of the network to completely change in some very

complicated way.

We can overcome this problem by introducing a new type of artificial neuron called

a sigmoid neuron. Sigmoid neurons are similar to perceptrons, but modified so

that small changes in their weights and bias cause only a small change in their

output. That’s the crucial fact which will allow a network of sigmoid neurons to

learn.

Just like a perceptron, the sigmoid neuron has inputs, x1, x2 ,.. . But instead

of being just 0 or 1 , these inputs can also take on any values between 0 and 1

. So, for instance, 0.638 is a valid input for a sigmoid neuron. Also just like a

perceptron, the sigmoid neuron has weights for each input, w1, w2, and an overall

bias, b. But the output is not 0 or 1 . Instead, its σ ( w.x + b), where σ is called

sigmoid function, and is defined by :

σ(z) =
1

1 + exp(−z)
(2.51)

Plotting the sigmoid function , it looks like :

Figure 2.8: Sigmoid Function

If σ had in fact been a step function, then the sigmoid neuron would be a per-

ceptron, since the output would be 1 or 0 depending on whether w . x + b was

positive or negative. By using the actual σ function we get, as already implied
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above, a smoothed out perceptron. Indeed, it’s the smoothness of the sigma

function that is the crucial fact, not its detailed form. The smoothness of σ means

that small changes ∆wj in the weights and ∆b in the bias will produce a small

change ∆output in the output from the neuron. In fact, calculus tells us that ∆

output is well approximated by:

∆output = Σj
∂output

∂wj
·∆wj +

∂output

∂b
·∆b (2.52)

2.4.4 Architecture of Neural Network

Consider a network of sigmoid neurons as shown below in the figure.Some termi-

nologies of the network will be discussed below.

Figure 2.9: Example of a Network

As mentioned earlier, the leftmost layer in this network is called the input layer,

and the neurons within the layer are called input neurons. The rightmost or

output layer contains the output neurons, or, as in this case, a single output

neuron. The middle layer is called a hidden layer, since the neurons in this layer

are neither inputs nor outputs.The network above has just a single hidden layer,

but some networks have multiple hidden layers. For example, the following four-

layer network has two hidden layers. The actual design of the neural network we

develop will be talked about in detail in next section called research methodology.
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Figure 2.10: Example of a Sophisticated Network

2.4.5 Learning with Gradient Descent

To make a nerwork learn , what we’d like is an algorithm which lets us find weights

and biases so that the output from the network approximates y(x) for all training

inputs x. To quantify how well we’re achieving this goal we define a cost function:

C(w, b) =
1

2n
· Σx ||y(x)− a||2 (2.53)

Here, w denotes the collection of all weights in the network, b all the biases, n is

the total number of training inputs, a is the vector of outputs from the network

when x is input, and the sum is over all training inputs, x.Inspecting the form of

the quadratic cost function, we see that C(w, b) is nonnegative, since every term

in the sum is non negative. Furthermore, the cost C(w, b) becomes small, i.e.,

C(w, b) = 0 , precisely when y(x) is approximately equal to the output, a, for all

training inputs, x. So our training algorithm has done a good job if it can find

weights and biases so that C(w, b) = 0 . By contrast, it’s not doing so well when

C(w, b) is large that would mean that y(x) is not close to the output a for a large

number of inputs. So the aim of our training algorithm will be to minimize the

cost C(w, b) as a function of the weights and biases. In other words, we want to

find a set of weights andbiases which make the cost as small as possible. It’ll be

done using an algorithm known as gradient descent.

let’s suppose we’re trying to minimize some function, C(v) . This could be any
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real valued function of many variables,v = v1 , v2,... To minimize C(v) it helps to

imagine C as a function of just two variables, which we’ll call v1 and v2 :

Figure 2.11: Double Variable Function

If we move a small amount ∆v1 in the v1 direction, and a small amount ∆v2 in

the v2 direction. Calculus tells us that, C changes as follows:

∆C =
∂C

∂v1

·∆v1 +
∂C

∂v2

·∆v2 (2.54)

We need to find a way of choosing ∆v1 and ∆v2 so as to make ∆C negative.We’ll

choose them so that a point is moving towards the valley of the function.To figure

out how to make such a choice it helps to define ∆v to be the vector of changes

in v, ∆v = (∆v1,∆v2)T ,where T is again the transpose operation, turning row

vectors into column vectors. We’ll also define the gradient of C to be the vector

of partial derivatives,( ∂C
∂v1
, ∂C
∂v2

)T . We denote the gradient vector by ∇C, i.e.:

∇C = (
∂C

∂v1

,
∂C

∂v2

)T (2.55)

Thus equation 2.54 looks like :

∆C = ∇C ·∆v (2.56)

If we choose, ∆v as :

∆v = −η · ∇C (2.57)

Where, η is a small positive parameter called as learning rate.
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Then, equation 2.56 will transforms as :

∆C = −η∇C · ∇C = −η ||∇C||2 (2.58)

Because ||∇C||2 ≥ 0, this guarantees that ∆C ≤ 0, i.e., C will always decrease,

never increase if we change v according to prescription in equation 2.57.Mathematically,

v → v′ = v − η∇C (2.59)

Then we’ll use this update rule again, to make another move. If we keep doing

this, over and over, we’ll keep decreasing C until we hope we reach a global

minimum. g.Above section explains gradient descent when C is a function of

just two variables. But, in fact, everything works just as well even when C is a

function of many more variables. Suppose in particular that C is a function of m

variables, v1,..., vm . Then the change ∆C in C produced by a small change ∆v

= (∆v1, ...,∆vm)T is: Thus equation 2.54 looks like :

∆C = ∇C ·∆v (2.60)

Where, the ∇C is the vector :

∇C = (
∂C

∂v1

, ...,
∂C

∂vm
)T (2.61)

Just as for the two variable case, we can choose,

∆v = −η · ∇C (2.62)

and we’re guaranteed that our expression 2.60 for ∆C will be negative. This gives

us a way of following the gradient to a minimum, even when C is a function of

many variables, by repeatedly applying the update rule

v → v′ = v − η∇C (2.63)

One can think of this update rule as defining the gradient descent algorithm. It

gives us a way of repeatedly changing the position v in order to find a minimum

of the function C .

2.5 Related Researches

The main focus of this research is to increase our understanding of the impacts

of the boundary condition and intial starting point on the potential flow of the

body.Understanding the impacts of this phenomenon shall contribute to the de-
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sign and faster computation time for similar problems.

Cheng (2022) has given a technique of solving the poisson equation where both

type of boundary conditions be it Dirchlet or Neumann boundary condition is

specified on the domain of interest. The author introduces ghost points beyond

the boundary domain which is neccesary to solve the poisson equation where neu-

mann type of boundary condition is specified.

Koutromanos (2018) has given the fundamental details of solving laplace equa-

tion with neumann or dirchlet boundary conditon by using the technique of finite

element method (FEM). The author clearly explains how the process of solving

a laplace eqaution eveolves from strong form to weak form to discretization and

finally solving the obtained algebraically constrained equations.

Nielsen (2015) has developed an neural network algorithm for accurately classi-

fying and recognizing digits. Here the author talks about the basics of neural

network which includes the idea from perceptrons to sigmoid neurons to gradient

descent algorithm. The author also talks about how can an efficiency of such net-

works can be enhanced.

Santos et al. (2020) have developed a 3D Neural network that provides fast and ac-

curate fluid flow prediction for three dimensional rock images. They trained their

network to extract spatial relationships between the porous medium morphology

and the fluid velocity field.Their results show that the extracted information is

sufficient to obtain accurate flow field predictions in less than a second, without

performing expensive numerical simulations providing a speed-up of several orders

of magnitude.

Bishop (1994) has discussed about basic two type of models of neural network in

use today. They describe these models in detail and explains about various tech-

niques used to train them. They also discuss about various key issues that must

be addressed when applying neural networks to practical problems. Finally, they

survey various classes of problem which may be addressed using neural networks

and illustrate variety of examples drawn from a range of fields.
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2.6 Software Environment

2.6.1 Python

Python is a open source, high-level, general-purpose programming language. Its

design philosophy emphasizes code readability with the use of significant inden-

tation.Python is dynamically-typed and garbage-collected. It supports multiple

programming paradigms, including structured (particularly procedural), object-

oriented and functional programming. Guido van Rossum began working on

Python in the late 1980s as a successor to the ABC programming language and

first released it in 1991 as Python 0.9.0. Python 2.0 was released in 2000 and

introduced new features such as list comprehensions, cycle-detecting garbage col-

lection, reference counting, and Unicode support. Current version of Python 3.0,

was released in 2008.

Rather than building all of its functionality into its core, Python was designed to

be highly extensible via modules. This compact modularity has made it particu-

larly popular as a means of adding programmable interfaces to existing applica-

tions.Python strives for a simpler, less-cluttered syntax and grammar while giving

developers a choice in their coding methodology.Python’s large standard library

provides tools suited to many tasks and is commonly cited as one of its greatest

strengths.

2.6.2 Python Modules

2.6.2.1 NumPy

NumPy is a library for the Python programming language, adding support for

large, multi-dimensional arrays and matrices, along with a large collection of high-

level mathematical functions to operate on these arrays. It also has functions for

working in domain of linear algebra, fourier transform, and matrices..The ancestor

of NumPy, Numeric, was originally created by Jim Hugunin with contributions

from several other developers. In 2005, Travis Oliphant created NumPy by in-

corporating features of the competing Numarray into Numeric, with extensive

modifications. NumPy is open-source software and has many contributors.

38



NumPy aims to provide an array object that is up to 50x faster than traditional

Python lists.The array object in NumPy is called ndarray, it provides a lot of

supporting functions that make working with ndarray very easy.Arrays are very

frequently used in data science, where speed and resources are very important.The

major advantages of using NumPy over traditional lists are:

• Compact storage

• Fast array loops

• Slicing without copying

• Array operations

• Compatibility

• Memory and Execution efficiency

2.6.2.2 Matplotlib

Data visualization is key to understanding complex pattern in the data. It helps

reveal underlying trends and patterns in data so the the end-users, including data

scientists or analysts, make an informed decision based on it. Matplootlib is one

of Python’s most effective visualization libraries for data visualization.

Matplotlib is an open-source data visualization and graph plotting library built

over Numpy arrays.John Hunter presented it in the year 2002. It is a two di-

mensional visualization library, but some extensions also allow it to plot three

dimensional graphs. It provides several plotting functions to modify and fine-tune

the graphs. Additionally, it supports various plots like scatter plots, bar charts,

histograms, box plots, line charts, pie charts, etc. The major advantages of using

Matplotlib are:

• It supports various kinds of graphs like Bar, histograms, Line-plots, Scatter-

plots, etc.

• It can be used and accessed through Python Scripts, iPython shells and

Jupyter Notebook.
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• It can also allow us to create three dimensional plots.
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CHAPTER THREE: RESEARCH METHODOLOGY

The research will primarily focus on developing a neural network capable of pre-

dicting path of a body in a potential flow. The result predicted by the network

will be compared against the experimental data to reach a proper conclusion.

Table 3.1: Methodology.

Literature Review • Review related researches

Take Inputs and

Generate Mesh

• Take input boundary conditions

• Create the rectangular flow domain

• Generate thie mesh

Case Setup

Solution and Calculations

• Apply boundary conditions

• Solve using FEM

• Store the result

Development of Neural Network

• Divide into feed and test data

• Construct the neural network

• Predict result for given input point

Post Processing

• Plot the predicted path

• Compare against actual path

• Analyze the observed errors

Documentation and

Conclusion
• Draw proper conclusions.

3.1 Literature Review

The research works on the related topic of developing a neural network are col-

lected from various sources. These researches are then reviewed to identify the

problem statement. Other literary research papers are reviewed in order to find a

suitable solution to the research gap identified.
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3.2 Inputs and Mesh generation

The development of a neural network capable of predicting the path of a body in

two dimensional potential flow will be the main focus of the research.The domain

is considered to be rectangular so the inital step will be to take dimension of this

domain. The platform to enter this variables will be provided in jupyter notebook.

3.2.1 Boundary Conditions and Initial Point

In this section, the user will input lenght(l) and breadth(b) of the rectangular do-

main. Furthermore, the boundary conditions imposed will be also taken as input.

Similarly, the initial point where the body initally is present in domain is provided.

This is important because later on, the neural network will take this point as an

input and provide us with the plot of appropriate predicted path. A screen shot

of Sublime Text platform where users can input such data is shown below:

Figure 3.1: Platform for Input Condition in Sublime Text

Figure 3.1 shows the input platform in jupyter notebook.On close inspection, we

see that we have to specify the co-ordinates of the two points in the particular

part of the recttangular domain with magnitude and direction (angle in degrees)

of the flow in between these points.
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3.2.2 Create the flow domain

Once the input for the boundary condition as well as parameter of flow domain is

obtained the program creates the recatnagular flow domain as shown below.

Figure 3.2: Flow domain

Figure 3.2 shows the rectangular flow domain with an object inserted in a position

specified by the user. Infact, the program will have to create numerous such flow

domains with the location of object placed at different point through out the

domain. This is important because the solution of φ at this various point in the

domain is required to calculate the actual trajectory of the object for given initial

point.

Infact, numerous such domains will be created by the program where the initial

point is present at different location within the domain. This is needed because

we need to calculate the actual trajectory for given initial point.Some samples of

the generated flow domains are shown below:
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Figure 3.3: Many flow domains

3.2.3 Generation of Mesh

Once the flow domain is established the next step is to generate mesh over it.This

process is performed by a module called setup which is written in numpy, which

can be seen in appendix. The mesh is created in the grayed out domain between

circle and the rectangle.

Figure 3.4: Mesh Region

Figure 3.3 shows the region wehere mesh structure of the rectangular flow domain

with an object inserted in a position specified by the user is to be drawn.
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3.3 Case Setup, Solution and Calculations

3.3.1 Case Setup and Solution

After the users inputs all the required information and after program prepares the

mesh structure, the program applies the boundary condition to solve the problem

at hand. As already mentioned, the solution of φ(x, y) is calculated by putting

the value of the location of the object throught out this domain. This problem as

already mentioned is solved by the techniques of FEM.

The code to solve this problem is attached in the appendix section of this report.

After the solution is obtained, the obtained solutions are stored, which will be

further used be used to calculate actual trajecory and later by a neural network

for correcting its weights and biases for prediction purpose.

3.3.2 Calculations

3.3.2.1 Velocity Field Calculation

After obtaining the solution of laplace equation we apply equation 2.8 i.e ~V = ∇φ

to obtain the field information. The techniques of FDM ( Second Order) method

is used to calculate this deirivatives. Specifically, the x and y component can be

obtained as:

vx =
∂φ

∂x
(3.1)

vy =
∂φ

∂y
(3.2)

3.3.2.2 Pressure Calculation

After obtaining the velocity field, we need to calculate the distribution of pressure

through out the domain. This is done via the euler equation 2.5. Expanding out

this equation and neglecting the time components we have :

ρ · ( vx ·
∂vx
∂x

+ vy ·
∂vx
∂y

) = −∂p
∂x

(3.3)
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ρ · ( vx ·
∂vy
∂x

+ vy ·
∂vy
∂y

) = −∂p
∂y

(3.4)

With the initial condition of the pressure specified as well this equations are used

to calculate the distribution of pressure through out the domain.

3.3.2.3 Force Calculation

Now that the information of pressure distibution is known throught out the do-

main, we proceed to calculate the force experienced by this object. To do this

we note the value of pressure through out the perimeter of the body. The force

experienced by this body is compressive directed along the center. A Schematic

figure of the force experienced by the body is shown below:

Figure 3.5: Forces on the Body

The net force experienced by the body is then given by vector sum of all this forces

acting at its center.

46



Figure 3.6: Force Diagram

Figure 3.7: Net Force Diagram

Above figure shows the net force (magnitude and direction) experienced by the

body. The amount of force and acceleration experienced by the body when placed

at different location through out the domain is calculated and stored. This infor-

mation is used to calculate the trajectory of the body with a given starting point

in the next section.

3.3.2.4 Trajectory Calculation

Once we know the force experienced by the body at different location through out

the body, we can now calculate the trajectory given the initial location. Suppose
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(x0, y0) is the initial location with initial velocity (vx0 = 0, vy0 = 0), then we can

use following kinematics equation to know about its next location. We pick the

travel time ∆t to be very small.

x1 = x0 + vx0 ·∆t+
1

2
· ax · (∆t)2 (3.5)

y1 = y0 + vy0 ·∆t+
1

2
· ay · (∆t)2 (3.6)

Where, (x1, y1) represents the next point of the travelling body

Calculation of velocity at this location is caaried out via following equations:

vx1 = vx0 + ax ·∆t (3.7)

vy1 = vy0 + ay ·∆t (3.8)

where, (vx1 , vy1) represents velocity of the body at this new location.

Since we also know the acceleration experienced by this body at this new location,

we can use equation 3.5, 3.6, 3.7, 3.8 again to calulate new position of the body.

In this way, we calculate trajectory of the body.

3.3.3 Store the Result

After velocity, pressure field and trajectory information is obtained using Python

and Numpy, the data is processed to get accurate results, and then stored in a

CSV file. CSV files are commonly used in data analysis and data science due to

their ease of transfer between different software systems.

In the next phase, the data stored in the CSV file will be used to train a neural

network. By training the neural network on the velocity,pressure field and trjectory

information, it will be able to predict the behavior of path of an object in fluid

flow in different scenarios.
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3.4 Development of Neural Network

We will develop a neural network with 3 layers to solve the problem at hand. The

input layer will have 2 neurons, which will receive the input data as a tuple of two

values (x, y). The middle layer will have 30 neurons, which will extract features

from the input data and pass it to the output layer. The output layer will have

10 neurons, representing 5 tuples (x, y), which will make predictions about the

target values. To train the network, we will use the gradient descent algorithm

and set the learning rate (eta) to 3. During each iteration of the training process,

the network will compute the error between the predicted values and the actual

values and adjust the weights and biases to minimize the error. This process will

continue until the error is reduced to an acceptable level, or a specified number

of iterations is reached. The final result of the training process will be a set

of optimized weights and biases that produce accurate predictions for the target

values.

Finally, after the training process is completed, the weights and biases of the

neural network will be stored in either a CSV or NPY file for future use. This

allows us to use the trained model for new, unseen input data. To compute the

output for a special user input tuple (x, y), we will simply pass it through the

network, using the stored weights and biases, to produce the prediction. The

network will apply the activation function to the weighted sum of the inputs for

each neuron in the middle layer and finally produce the output at the prediction

layer. This output will be our prediction for the target values corresponding to the

user input tuple (x, y). With this, we will have a trained neural network that can

perform prediction tasks effectively, with a high degree of accuracy. Additionally,

the computed output from the neural network will be compared against the actual

data to evaluate the performance of the network. This will give us an idea of how

well the network has learned the underlying relationship between the input and

target values during the training process.
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3.5 Post Processing

The results obtained from the network needs to be interpreted and visualized.

To visualize and analyze the results, Matplotlib is used. Matplotlib is a free,

cross-platform program for data analysis and visualization. It may be applied to

generate visualizations for both qualitative and quantitative data analysis. Differ-

ent types of plots like scatter plot, bar chart, graphs, mesh plot, contour plot will

be used through out the visualisation process.

3.6 Documentation/Conclusion

Finally, with all the necessary simulations and analysis of the results, a conclusion

shall be drawn and documented.
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CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 Development of the mesh

The mesh region will be meshed using triangular meshes, which can be represented

in Python by a list of lists of three tuples. For example, each sublist can contain

the vertices of a single triangle, specified as tuples of (x, y) coordinates. These

meshes can be drawn at different locations for objects throughout the domain,

allowing for more complex and accurate modeling of geometric shapes and their

interactions.

In addition, the objects within the domain will be placed at different locations,

and meshes will be created for each of these as well. This is necessary in order to

accurately calculate the trajectory of each object, taking into account its position

and movement within the meshed domain. By representing the domain and ob-

jects with triangular meshes, complex motions and interactions can be modeled

and simulated with high accuracy.

Figure 4.1: Triangular meshes drawn in the region
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Figure 4.2: Different meshes drawn in the region

Figure 4.2 shows different mesh diagram developed and stored by placing objects

through at differnet points throughout the rectangular domain.

52



4.2 Potential Solution

The FEM solution for the Laplace equation is implemented in a Python program,

which generates a scatter plot of the solution. This plot provides a visual rep-

resentation of the solution and can help in identifying any patterns or trends in

the data. By analyzing the scatter plot, one can gain valuable insights into the

Laplace equation solution and its behavior in different situations.

Figure 4.3: Scatter plot of the solution
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Figure 4.4: Scatter plot at various points

Figure 4.4 shows different scatter plot solution by placing object at various points

throughout the rectangular domain.
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4.3 Velocity Field

After applying the gradient to the obtained solution of laplace equation we get

velocity field information.

Figure 4.5: Velocity vector field
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Figure 4.6: Velocity field at different object location

Figure 4.6 shows different velocity field of vector by placing object at various

points throughout the rectangular domain.
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4.4 Path Trajectory

4.4.1 Via Calculation

The path of the object is calculated using kinematic equation mentioned in pre-

vious section.

Figure 4.7: Path trajectory of the body

Figure 4.6 shows different path trajectory of the body at various starting points

throughout the rectangular domain.
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4.4.2 Via Neural Network

The predicted path of the object is calculated by feeding the initial point to the

network and monitoring its output. For different initial points, we see following

path predicted by the network.

Figure 4.8: Path tajectory of the body by Network

Figure 4.6 shows different path trajectory of the body at various starting points

throughout the rectangular domain.
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4.5 Error Analysis and Comparison

4.5.1 Mean Square Error (MSE)

In neural networks, Mean Squared Error (MSE) is a commonly used metric to

evaluate the performance of the model. It measures the average squared differ-

ence between the predicted output and the actual output over all the examples in

the dataset. MSE is calculated by taking the sum of squared differences between

the predicted and actual values and dividing it by the total number of examples.

In our neural network with two input nodes and six output nodes, the MSE will

be calculated by comparing the predicted values for each of the six output nodes

with their corresponding actual values. The predicted values will be obtained by

feeding the input values through the network and obtaining the output values at

the six output nodes. The actual values will be the known values from the dataset

that correspond to the input values.

Once the predicted and actual values are obtained, the MSE can be calculated

by taking the squared difference between each predicted and actual value, sum-

ming and averaging them up across all six output nodes, and dividing by the total

number of examples. This will give us a measure of how well our neural network

is performing on the given dataset, with lower MSE indicating better performance.

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (4.1)

where,N represents the number of samples in the dataset yi represents the actual

value for the ith sample, and ŷi represents the predicted value for the ith sample.
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4.5.2 MSE vs Learning rate

Once the algorithm for calculating error is defined we need to see how MSE varies

when we change the learning rate in our network. The learning rate determines

the step size the optimization algorithm takes to update the weights of the net-

work during training. Changing the learning rate can have a significant impact

on the convergence of the network and its overall performance.

By monitoring the MSE during training with different learning rates, we can de-

termine an optimal learning rate that leads to the best performance on the given

dataset. This is an essential step in tuning the hyperparameters of the network to

achieve the best results. We will also randomly shuffle the the entire dataset to

figure out best learning rate range for our network.

Figure 4.9: MSE vs Learning Rate

Figure 4.9 shows that MSE stabilizes for values of η around the region of 0.3 to 1.

To confirm such is the case, we shuffle our dataset and see how MSE varies with

learning rate for various set of shuffled dataset.
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Figure 4.10: MSE vs Learning Rate

Figure 4.10 indeed confirms that the region of stability for learning rate η is around

0.3-1 for most of the dataset. Beyond this region, it can be seen that mean square

error fluctuate too much and thus choosing learning rate from this region would

imply that there is chance of occurrence of high value for mse for any random

dataset.

61



4.5.3 MSE vs No of Neurons

To understand the impact of the number of neurons in the middle layer on model

performance, we can examine how the MSE varies with different numbers of neu-

rons. By monitoring the MSE while changing the number of neurons in the middle

layer, we can determine the optimal number of neurons for the given problem.

Once again we will randomly shuffle our data to figure out best range for number

of neurons in our middle layer.

Figure 4.11: MSE vs No of Neurons

Figure 4.11 shows that MSE is stable for number of neurons in the region of

5-12. To confirm such is the case, we shuffle our dataset and see how MSE varies

with number of neurons in middle layer for various set of shuffled dataset.
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Figure 4.12: MSE vs No of Neurons

Figure 4.12 indeed confirms that the region of minimum MSE for number of neu-

rons for most of the dataset occurs in between 5-12.It can also be seen that beyond

this region, mean square error fluctuates too much.
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4.5.4 MSE vs No of Dataset

To analyze the impact of dataset size on model performance, we can examine

how the MSE varies with different numbers of data samples. By monitoring the

MSE while changing the number of data samples, we can determine the minimum

amount of data required for the model to achieve acceptable performance, as well

as the effect of increasing dataset size beyond this minimum.

Figure 4.13: MSE vs No of Dataset

Figure 4.13 shows that MSE stabilises whent there is at least 1700 number of data

in our dataset. We confirm such prediction by shuffling and see how MSE varies

with number of data for various set of shuffled dataset.

64



Figure 4.14: MSE vs No of Dataset

Figure 4.14 also shows that for most of the dataset,more than 1700 number of

data is required so that mean square error doesn’t fluctuate too much.
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CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Following conclusions can be drawn from this research.

1. A neural network capable of predicting path in potential flow has been de-

veloped.

2. Through this research, we were able to determine the optimal values for

key hyperparameters in our neural network model. Specifically, we found

that a learning rate in the range of 0.3 to 1, a middle layer consisting of 7-10

neurons were necessary for achieving effective performance in our model. By

systematically varying these hyperparameters and monitoring the resulting

MSE values, we were able to identify these optimal values and refine our

model for better results. These findings can be used to guide the design of

future neural network models for similar problems.

3. The development of the neural network to predict the path of an object in a

potential flow required numerical computation of the velocity and pressure

fields, which provide information about the forces acting on the body and

thus determine its path. These fields were then used as input features to the

neural network, enabling it to learn the complex relationship between the

object’s motion and the fluid dynamics of the potential flow.

4. Using a neural network for such problems offers faster results compared to

numerically solving the governing equations. This makes neural networks a

valuable tool for accelerating the design and optimization of fluid dynamic

systems.
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5.2 Recommendations

The following suggestions are made for further research in this area:

1. The study could be extended to incorporate three dimensional potential flow

systems.

2. An experimental setup to study such paths of body in potential flow is

recommended .

3. A complicated and difficult extension of the study can be to incorporate

viscosity and compressibility effects i.e Non potential flows.

4. It is recommended to develop a network with more than one middle layer,

and see if performance of the network improves or declines.
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Appendix

main.py

l,b,=1,1

del_x ,del_y ,r=0.1,0.1,0.1

M=int(l/del_x)

N=int(b/del_y)

vel_left=[2/100 ,3/100]

vel_right=[3/100 ,6/100]

P=100000

loc=(0.5,0.5)

from setup.setup import setup

force_dict=setup(l,b,del_x ,del_y ,r,vel_left ,vel_right ,P,loc)

#print(force_dict)

from path import path

dict_for_NN=path(force_dict ,1,3,3)

#saving to pickle file

import pickle

with open(’dict_for_NN.pickle ’, ’wb’) as f:

pickle.dump(dict_for_NN , f)
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setup.py

import math

import numpy as np

def points_on_circle(center , radius):

points = []

for i in range(0,360 ,30):

angle = 2 * math.pi * i / 360

x = round(center[0] + radius * math.cos(angle),3)

y = round(center[1] + radius * math.sin(angle),3)

points.append ((x, y))

return points

def setup(l,b,del_x ,del_y ,r,v_left ,v_right ,P,loc):

from setup.extras import int_points ,mesh_1 ,mesh_2 ,mesh_3 ,

mesh_4 ,mesh_5 ,mesh_6 ,mesh_7 ,

mesh_8

from setup.solution_k import global_dict ,k_global

from setup.solution_f import f_global ,val_dict

from setup.csv_codes import dictionary_to_csv ,force_to_csv

from setup.solution_fdm import f_x ,f_y ,dp_dx ,dp_dy ,pressure ,

force

from plots import plot_triangles ,combine ,velo_plot

force_dict={}

interior_pts=int_points(l,b,del_x ,del_y ,r)

for obj in interior_pts:

print(obj)

bndry_circle_pts=points_on_circle(obj ,r)

bndry_circle_pts_y_cord=list(set([i[1] for i in

bndry_circle_pts ]))

bndry_circle_pts_y_cord.sort()

bndry_circle_pts_x_cord=list(set([i[0] for i in

bndry_circle_pts ]))
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bndry_circle_pts_x_cord.sort()

mesh_lst_1=mesh_1(obj ,l,b,del_x ,del_y ,r,

bndry_circle_pts_y_cord)

mesh_lst_2=mesh_2(obj ,l,b,del_x ,del_y ,r,

bndry_circle_pts_x_cord)

mesh_lst_3=mesh_3(obj ,l,b,del_x ,del_y ,r,

bndry_circle_pts_y_cord)

mesh_lst_4=mesh_4(obj ,l,b,del_x ,del_y ,r,

bndry_circle_pts_x_cord)

mesh_lst_5=mesh_5(obj ,l,b,del_x ,del_y ,r,

bndry_circle_pts_x_cord ,

bndry_circle_pts_y_cord)

mesh_lst_6=mesh_6(obj ,l,b,del_x ,del_y ,r,

bndry_circle_pts_x_cord ,

bndry_circle_pts_y_cord)

mesh_lst_7=mesh_7(obj ,l,b,del_x ,del_y ,r,

bndry_circle_pts_x_cord ,

bndry_circle_pts_y_cord)

mesh_lst_8=mesh_8(obj ,l,b,del_x ,del_y ,r,

bndry_circle_pts_x_cord ,

bndry_circle_pts_y_cord)

mesh=mesh_lst_1+mesh_lst_2+mesh_lst_3+mesh_lst_4+

mesh_lst_5+mesh_lst_6+

mesh_lst_7+mesh_lst_8

plot_triangles(mesh , filename=’mesh_png/’+’mesh_’+str(obj)

+’.png’)

# print(mesh)

glob_dict=global_dict(mesh) # {():1}

# print(len(mesh))

K_glob=k_global(mesh ,glob_dict)

np.savetxt(’K_csv/’+’K_’+str(obj)+’.csv’,K_glob ,delimiter=

’,’)
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F_glob=f_global(mesh ,glob_dict ,v_left ,v_right ,l)

np.savetxt(’F_csv/’+’F_’+str(obj)+’.csv’,F_glob ,delimiter=

’,’)

try:

u=np.linalg.solve(K_glob ,F_glob)

except: # K might be singular matrix , in that cas error so

skip if error happens

continue

value_dict= val_dict(u,glob_dict)

dictionary_to_csv(value_dict ,’u_csv/’+’u_’+str(obj)+’.csv’

)

# print(value_dict)

v_x_dict=f_x(obj ,l,b,del_x ,del_y ,value_dict ,

bndry_circle_pts_y_cord)

dictionary_to_csv(v_x_dict ,’v_x_csv/’+’v_x_’+str(obj)+’.

csv’)

v_y_dict=f_y(obj ,l,b,del_x ,del_y ,value_dict ,

bndry_circle_pts_x_cord)

dictionary_to_csv(v_y_dict ,’v_y_csv/’+’v_y_’+str(obj)+’.

csv’)

combine_v_dict=combine(v_x_dict ,v_y_dict)

velo_plot(combine_v_dict ,obj ,l,b)

dv_x_dx_dict=f_x(obj ,l,b,del_x ,del_y ,v_x_dict ,

bndry_circle_pts_y_cord)

dictionary_to_csv(dv_x_dx_dict ,’dv_x_dx_csv/’+’dv_x_dx_ ’+

str(obj)+’.csv’)

dv_x_dy_dict=f_y(obj ,l,b,del_x ,del_y ,v_x_dict ,

bndry_circle_pts_x_cord)

dictionary_to_csv(dv_x_dy_dict ,’dv_x_dy_csv/’+’dv_x_dy_ ’+

str(obj)+’.csv’)

dv_y_dx_dict=f_x(obj ,l,b,del_x ,del_y ,v_y_dict ,
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bndry_circle_pts_y_cord)

dictionary_to_csv(dv_y_dx_dict ,’dv_y_dx_csv/’+’dv_y_dx_ ’+

str(obj)+’.csv’)

dv_y_dy_dict=f_y(obj ,l,b,del_x ,del_y ,v_y_dict ,

bndry_circle_pts_x_cord)

dictionary_to_csv(dv_y_dy_dict ,’dv_y_dy_csv/’+’dv_y_dy_ ’+

str(obj)+’.csv’)

dp_dx_dict=dp_dx(v_x_dict ,v_y_dict ,dv_x_dx_dict ,

dv_x_dy_dict)

dictionary_to_csv(dp_dx_dict ,’dp_dx_csv/’+’dp_dx_ ’+str(obj

)+’.csv’)

dp_dy_dict=dp_dy(v_x_dict ,v_y_dict ,dv_y_dx_dict ,

dv_y_dy_dict)

dictionary_to_csv(dp_dy_dict ,’dp_dy_csv/’+’dp_dy_ ’+str(obj

)+’.csv’)

press_dict=pressure(obj ,l,b,del_x ,del_y ,dp_dx_dict ,

dp_dy_dict ,

bndry_circle_pts ,P)

dictionary_to_csv(press_dict ,’pressure_csv/’+’pressure_ ’+

str(obj)+’.csv’)

force_lst=force(press_dict ,r)

force_to_csv(obj ,force_lst ,’force_csv/’+’force.csv’)

force_dict[obj]=force_lst

# appending to force_dict {obj:[f_x ,f_y]}

return force_dict
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mesh.py

import numpy as np

def int_points(l,b,del_x ,del_y ,r):

M=int(l/del_x)

N=int(b/del_y)

interior_pts=[]

for i in range (2,M-1):

for j in range (2,N-1):

interior_pts.append (( round(i*del_x ,1),round(j*del_y ,1)

))

return interior_pts

def mesh_1(obj ,l,b,del_x ,del_y ,r,bndry_circle_pts_y_cord):

x_list=[round(i/10 ,1) for i in range(0,int(round(10*obj[0])),

int(round(10*del_x)))]

y_1=[round(i/10 ,1) for i in range(0,int(round(10*obj[1])),int(

round(10*del_y)))]

y_2=bndry_circle_pts_y_cord

y_3=[round(i/10 ,1) for i in range(int(round(10*(obj[1]+del_y))

),int(10*(b+del_y)),int(round

(10*del_y)))]

y_list=list(set(y_1+y_2+y_3))

y_list.sort()

my_lst=[]

for i in range(len(y_list) - 1):

for j in range(len(x_list) - 1):

tri1 = [(x_list[j], y_list[i]), (x_list[j+1], y_list[i

]), (x_list[j],

y_list[i+1])]

tri2 = [(x_list[j+1], y_list[i]), (x_list[j+1], y_list

[i+1]), (x_list[j],

y_list[i+1])]

my_lst.append(tri1)

my_lst.append(tri2)
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return my_lst

def mesh_2(obj ,l,b,del_x ,del_y ,r,bndry_circle_pts_x_cord):

x_list=bndry_circle_pts_x_cord

y_list=[round(i/10 ,1) for i in range(0,int(round(10*obj[1])),

int(round(10*del_y)))]

my_lst=[]

for i in range(len(y_list) - 1):

for j in range(len(x_list) - 1):

tri1 = [(x_list[j], y_list[i]), (x_list[j+1], y_list[i

]), (x_list[j],

y_list[i+1])]

tri2 = [(x_list[j+1], y_list[i]), (x_list[j+1], y_list

[i+1]), (x_list[j],

y_list[i+1])]

my_lst.append(tri1)

my_lst.append(tri2)

return my_lst

def mesh_3(obj ,l,b,del_x ,del_y ,r,bndry_circle_pts_y_cord):

x_list=[round(i/10 ,1) for i in range(int(round(10*(obj[0]+

del_x))),int(round(10*(l+

del_x))),int(round(10*del_x))

)]

y_1=[round(i/10 ,1) for i in range(0,int(round(10*obj[1])),int(

round(10*del_y)))]

y_2=bndry_circle_pts_y_cord

y_3=[round(i/10 ,1) for i in range(int(round(10*(obj[1]+del_y))

),int(10*(b+del_y)),int(round

(10*del_y)))]

y_list=list(set(y_1+y_2+y_3))

y_list.sort()

my_lst=[]

for i in range(len(y_list) - 1):
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for j in range(len(x_list) - 1):

tri1 = [(x_list[j], y_list[i]), (x_list[j+1], y_list[i

]), (x_list[j],

y_list[i+1])]

tri2 = [(x_list[j+1], y_list[i]), (x_list[j+1], y_list

[i+1]), (x_list[j],

y_list[i+1])]

my_lst.append(tri1)

my_lst.append(tri2)

return my_lst

def mesh_4(obj ,l,b,del_x ,del_y ,r,bndry_circle_pts_x_cord):

x_list=bndry_circle_pts_x_cord

y_list=[round(i/10 ,1) for i in range(int(round(10*(obj[1]+

del_y))),int(round(10*(b+

del_y))),int(round(10*del_y))

)]

my_lst=[]

for i in range(len(y_list) - 1):

for j in range(len(x_list) - 1):

tri1 = [(x_list[j], y_list[i]), (x_list[j+1], y_list[i

]), (x_list[j],

y_list[i+1])]

tri2 = [(x_list[j+1], y_list[i]), (x_list[j+1], y_list

[i+1]), (x_list[j],

y_list[i+1])]

my_lst.append(tri1)

my_lst.append(tri2)

return my_lst

def mesh_5(obj ,l,b,del_x ,del_y ,r,bndry_circle_pts_x_cord ,

bndry_circle_pts_y_cord):

x_list=bndry_circle_pts_x_cord[0:4]

y_list=bndry_circle_pts_y_cord[0:4]
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my_lst=[]

k=0

for i in range(len(y_list) - 1):

for j in range(len(x_list)-1-k):

if j == range(len(x_list)-1-k)[-1]:

tri1 = [(x_list[j], y_list[i]), (x_list[j+1],

y_list[i]), (

x_list[j], y_list

[i+1])]

my_lst.append(tri1)

else:

tri1 = [(x_list[j], y_list[i]), (x_list[j+1],

y_list[i]), (

x_list[j], y_list

[i+1])]

my_lst.append(tri1)

tri2 = [(x_list[j+1], y_list[i]), (x_list[j+1],

y_list[i+1]), (

x_list[j], y_list

[i+1])]

my_lst.append(tri2)

k=k+1

return my_lst

def mesh_6(obj ,l,b,del_x ,del_y ,r,bndry_circle_pts_x_cord ,

bndry_circle_pts_y_cord):

x_list=bndry_circle_pts_x_cord[3:7]

x_list.reverse ()

y_list=bndry_circle_pts_y_cord[0:4]

my_lst=[]

k=0

for i in range(len(y_list) - 1):

for j in range(len(x_list)-1-k):

if j == range(len(x_list)-1-k)[-1]:

tri1 = [(x_list[j], y_list[i]), (x_list[j+1],

y_list[i]), (

x_list[j], y_list
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[i+1])]

my_lst.append(tri1)

else:

tri1 = [(x_list[j], y_list[i]), (x_list[j+1],

y_list[i]), (

x_list[j], y_list

[i+1])]

my_lst.append(tri1)

tri2 = [(x_list[j+1], y_list[i]), (x_list[j+1],

y_list[i+1]), (

x_list[j], y_list

[i+1])]

my_lst.append(tri2)

k=k+1

return my_lst

def mesh_7(obj ,l,b,del_x ,del_y ,r,bndry_circle_pts_x_cord ,

bndry_circle_pts_y_cord):

x_list=bndry_circle_pts_x_cord[0:4]

# x_list.reverse ()

y_list=bndry_circle_pts_y_cord[3:7]

y_list.reverse ()

my_lst=[]

k=0

for i in range(len(y_list) - 1):

for j in range(len(x_list)-1-k):

if j == range(len(x_list)-1-k)[-1]:

tri1 = [(x_list[j], y_list[i]), (x_list[j+1],

y_list[i]), (

x_list[j], y_list

[i+1])]

my_lst.append(tri1)

else:

tri1 = [(x_list[j], y_list[i]), (x_list[j+1],

y_list[i]), (

x_list[j], y_list

[i+1])]

my_lst.append(tri1)
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tri2 = [(x_list[j+1], y_list[i]), (x_list[j+1],

y_list[i+1]), (

x_list[j], y_list

[i+1])]

my_lst.append(tri2)

k=k+1

return my_lst

def mesh_8(obj ,l,b,del_x ,del_y ,r,bndry_circle_pts_x_cord ,

bndry_circle_pts_y_cord):

x_list=bndry_circle_pts_x_cord[3:7]

x_list.reverse ()

y_list=bndry_circle_pts_y_cord[3:7]

y_list.reverse ()

my_lst=[]

k=0

for i in range(len(y_list) - 1):

for j in range(len(x_list)-1-k):

if j == range(len(x_list)-1-k)[-1]:

tri1 = [(x_list[j], y_list[i]), (x_list[j+1],

y_list[i]), (

x_list[j], y_list

[i+1])]

my_lst.append(tri1)

else:

tri1 = [(x_list[j], y_list[i]), (x_list[j+1],

y_list[i]), (

x_list[j], y_list

[i+1])]

my_lst.append(tri1)

tri2 = [(x_list[j+1], y_list[i]), (x_list[j+1],

y_list[i+1]), (

x_list[j], y_list

[i+1])]

my_lst.append(tri2)

k=k+1

return my_lst
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solutionK.py

import numpy as np

def global_dict(mesh):

my_dict={}

my_lst=list(set([item for lst in mesh for item in lst]))

k=1

for obj in my_lst:

my_dict[obj]=k

k=k+1

return my_dict

def area_of_triangle(lst): # input :[() ,() ,()] output:area

n_array=np.array([[lst[0][0],lst[0][1],1],[lst[1][0],lst[1][1]

,1],[lst[2][0],lst[2][1],1]])

det = np.linalg.det(n_array)

area=0.5*det

return area

def B_elemental(lst): # input :[() ,() ,()] output: B elemental

matrix of order (2*3)

n_array=np.array([[lst[1][1]-lst[2][1],lst[2][1]-lst[0][1],lst

[0][1]-lst[1][1]],[lst[2][0]-

lst[1][0],lst[0][0]-lst[2][0]

,lst[1][0]-lst[0][0]]])

div=2*area_of_triangle(lst)

n_array=n_array/div

return n_array

def k_elemental(lst): # input :[() ,() ,()] output: local k elemental

matrix of order (3*3)

array_1=B_elemental(lst)

array_2=np.transpose(array_1)

array_3=np.matmul(array_2 ,array_1)

area=area_of_triangle(lst)

array_3=area*array_3
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return array_3

def Le_elemental(lst ,glob_dict):# input :[() ,() ,()] output: local

Le elemental matrix of order (3*

338)

a=np.zeros ((3,len(glob_dict)))

for i in range(0,3):

u=glob_dict[lst[i]]

a[i,u-1]=1

return a

def k_global(mesh ,glob_dict):

k=np.zeros ((len(glob_dict),len(glob_dict)))

for obj in mesh:

le=Le_elemental(obj ,glob_dict)

le_trans=np.transpose(le)

ke=k_elemental(obj)

k=k+np.matmul(le_trans ,np.matmul(ke,le))

return k
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solutionF.py

import numpy as np

import math

def val_dict(col_vector , input_dict):

keys = list(input_dict.keys())

values = col_vector.flatten ().tolist ()

return {keys[i]: values[i] for i in range(len(keys))}

def Me_elemental(lst):

new_array=[[1,lst[0][0],lst[0][1]],[1,lst[1][0],lst[1][1]],[1,

lst[2][0],lst[2][1]]]

return new_array

def Le_elemental(lst ,glob_dict):# input :[() ,() ,()] output: local

Le elemental matrix of order (3*

len(glob_dict))

a=np.zeros ((3,len(glob_dict)))

for i in range(0,3):

u=glob_dict[lst[i]]

a[i,u-1]=1

return a

def f_global(mesh ,glob_dict ,v_left ,v_right ,l):

f=np.zeros ((len(glob_dict),1))

new_lst=[]

for obj in mesh:

a=[ele[0] for ele in obj]

if a.count(0) == 2:

new_lst.append(obj)

for obj in new_lst:

a_1=obj[2][1]-obj[0][1]

a_2=0.5*(obj[2][1]-obj[0][1])*(obj[2][1]+obj[0][1])

arr=np.array([[a_1],[0],[a_2]])

minus_q_bar=(1)*np.dot(np.array(v_left),np.array([-1,0]))

me=Me_elemental(obj)

me_inverse=np.linalg.inv(me)
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me_inverse_trans=np.transpose(me_inverse)

le=Le_elemental(obj ,glob_dict)

le_trans=np.transpose(le)

arr=minus_q_bar*arr

f=f+np.matmul(le_trans ,np.matmul(me_inverse_trans ,arr))

new_lst=[]

for obj in mesh:

a=[ele[0] for ele in obj]

if a.count(l) == 2:

new_lst.append(obj)

for obj in new_lst:

a_1=obj[1][1]-obj[0][1]

a_2=0.5*(obj[1][1]-obj[0][1])*(obj[1][1]+obj[0][1])

arr=np.array([[a_1],[l*a_1],[a_2]])

minus_q_bar=(1)*np.dot(np.array(v_right),np.array([1,0]))

me=Me_elemental(obj)

me_inverse=np.linalg.inv(me)

me_inverse_trans=np.transpose(me_inverse)

le=Le_elemental(obj ,glob_dict)

le_trans=np.transpose(le)

arr=minus_q_bar*arr

f=f+np.matmul(le_trans ,np.matmul(me_inverse_trans ,arr))

return f
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solutionFDM.py

import numpy as np

import math

def f_x(obj ,l,b,del_x ,del_y ,value_dict ,bndry_circle_pts_y_cord):

bndry_circle_pts_y_cord_copy=bndry_circle_pts_y_cord.copy()

my_dict={}

y_1=[round(i/10 ,1) for i in range(0,int(round(10*obj[1])),int(

round(10*del_y)))]

y_3=[round(i/10 ,1) for i in range(int(round(10*(obj[1]+del_y))

),int(10*(b+del_y)),int(round

(10*del_y)))]

y=y_1+y_3

for ele in y:

new_dict={key[0]:value for key ,value in value_dict.items ()

if key[1] == ele}

sorted_dict = {k: v for k, v in sorted(new_dict.items ())}

x_list=np.array(list(sorted_dict.keys()))

z_list=np.array(list(sorted_dict.values ()))

dz_dx=np.gradient(z_list ,x_list)

my_dict.update({(x,ele):z for x,z in zip(x_list ,dz_dx)})

bndry_circle_pts_y_cord_copy.pop(-1)

bndry_circle_pts_y_cord_copy.pop(0)

for ele in bndry_circle_pts_y_cord_copy:

new_dict={key[0]:value for key ,value in value_dict.items ()

if key[1] == ele and key

[0] < obj[0] }

sorted_dict = {k: v for k, v in sorted(new_dict.items ())}

x_list=np.array(list(sorted_dict.keys()))

z_list=np.array(list(sorted_dict.values ()))

dz_dx=np.gradient(z_list ,x_list)

my_dict.update({(x,ele):z for x,z in zip(x_list ,dz_dx)})

for ele in bndry_circle_pts_y_cord_copy:

new_dict={key[0]:value for key ,value in value_dict.items ()
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if key[1] == ele and key

[0] > obj[0] }

sorted_dict = {k: v for k, v in sorted(new_dict.items ())}

x_list=np.array(list(sorted_dict.keys()))

z_list=np.array(list(sorted_dict.values ()))

dz_dx=np.gradient(z_list ,x_list)

my_dict.update({(x,ele):z for x,z in zip(x_list ,dz_dx)})

return my_dict

def f_y(obj ,l,b,del_x ,del_y ,value_dict ,bndry_circle_pts_x_cord):

my_dict={}

bndry_circle_pts_x_cord_copy=bndry_circle_pts_x_cord.copy()

x_1=[round(i/10 ,1) for i in range(0,int(round(10*obj[0])),int(

round(10*del_x)))]

x_3=[round(i/10 ,1) for i in range(int(round(10*(obj[0]+del_x))

),int(10*(l+del_x)),int(round

(10*del_x)))]

x=x_1+x_3

for ele in x:

new_dict={key[1]:value for key ,value in value_dict.items ()

if key[0] == ele}

sorted_dict = {k: v for k, v in sorted(new_dict.items ())}

y_list=np.array(list(sorted_dict.keys()))

z_list=np.array(list(sorted_dict.values ()))

dz_dy=np.gradient(z_list ,y_list)

my_dict.update({(ele ,y):z for y,z in zip(y_list ,dz_dy)})

bndry_circle_pts_x_cord_copy.pop(-1)

bndry_circle_pts_x_cord_copy.pop(0)

for ele in bndry_circle_pts_x_cord_copy:

new_dict={key[1]:value for key ,value in value_dict.items ()

if key[0] == ele and key

[1] < obj[1] }

sorted_dict = {k: v for k, v in sorted(new_dict.items ())}

y_list=np.array(list(sorted_dict.keys()))
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z_list=np.array(list(sorted_dict.values ()))

dz_dy=np.gradient(z_list ,y_list)

my_dict.update({(ele ,y):z for y,z in zip(y_list ,dz_dy)})

for ele in bndry_circle_pts_x_cord_copy:

new_dict={key[1]:value for key ,value in value_dict.items ()

if key[0] == ele and key

[1] > obj[1] }

sorted_dict = {k: v for k, v in sorted(new_dict.items ())}

y_list=np.array(list(sorted_dict.keys()))

z_list=np.array(list(sorted_dict.values ()))

dz_dy=np.gradient(z_list ,y_list)

my_dict.update({(ele ,y):z for y,z in zip(y_list ,dz_dy)})

return my_dict

def dp_dx(v_x ,v_y ,dv_x_dx ,dv_x_dy):

rho=100

my_dict={}

for key in v_x.keys():

val=(-1)*rho*((v_x[key]*dv_x_dx[key])+(v_y[key]*dv_x_dy[

key]))

my_dict[key]=val

return my_dict

def dp_dy(v_x ,v_y ,dv_y_dx ,dv_y_dy):

rho=100

my_dict={}

for key in v_x.keys():

val=(-1)*rho*((v_x[key]*dv_y_dx[key])+(v_y[key]*dv_y_dy[

key]))

my_dict[key]=val

return my_dict

def pressure(obj ,l,b,del_x ,del_y ,dp_dx_dict ,dp_dy_dict ,
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bndry_circle_pts ,P):

my_dict={}

new_dict={key[0]:value for key ,value in dp_dx_dict.items () if

key[1] == obj[1] and key[0] >

obj[0]}

sorted_dict = {k: v for k, v in sorted(new_dict.items ())}

sorted_dict.popitem ()

# print(sorted_dict)

for key in reversed(sorted_dict.keys()):

P=P-(sorted_dict[key]*del_x)

# print(P)

for i in range(len(bndry_circle_pts)):

if i==0:

my_dict.update({bndry_circle_pts[i]:P})

else:

P=P-(( dp_dx_dict[bndry_circle_pts[i]]*del_x)+(

dp_dy_dict[

bndry_circle_pts[i]]*

del_y))

my_dict.update({bndry_circle_pts[i]:P})

return my_dict

def force(press_dict ,r):

length=(r*math.pi)/6

force_arr=np.array([0,0])

theta=0

for key ,value in press_dict.items():

F = value*length

force_arr=force_arr+np.array([1*F*math.cos(theta),-1*F*

math.sin(theta)])

theta=theta+((math.pi)/6)

return force_arr.tolist ()
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csvCodes.py

import csv

def dictionary_to_csv(d, filename):

with open(filename , ’w’, newline=’’) as csvfile:

writer = csv.writer(csvfile)

writer.writerow([’x’, ’y’, ’value’])

for key , value in d.items():

x, y = key

writer.writerow([x, y, value])

def force_to_csv(xy_tuple , ab_list ,file_name):

with open(file_name , ’a’, newline=’’) as file:

writer = csv.writer(file)

writer.writerow(list(xy_tuple) + ab_list)
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plots.py

import matplotlib.pyplot as plt

import numpy as np

import random

def combine(dict_1 ,dict_2):

my_dict={}

for key in dict_1.keys():

my_dict[key]=(dict_1[key],dict_2[key])

return my_dict

def plot_triangles(triangles , filename):

plt.clf()

for triangle in triangles:

x = [point[0] for point in triangle]

y = [point[1] for point in triangle]

plt.plot(x + [x[0]], y + [y[0]], ’k-’)

plt.axis(’equal’) # ensures that x and y scales are equal

plt.savefig(filename , dpi=150 , bbox_inches=’tight’)

# print(f"Plot saved as {filename}")

# example dictionary

def velo_plot(velocity_dict ,obj ,l,b):

plt.clf()

# calculate 20% of the total number of keys in the dictionary

n = len(velocity_dict)

n_20_percent = int(n * 1)

# randomly select that many keys from the dictionary

selected_keys = random.sample(list(velocity_dict.keys()),

n_20_percent)

# create the plot

plt.xlabel(’x (meter)’)

plt.ylabel(’y (meter)’)

plt.xlim(0, l)

plt.ylim(0, b)
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# create a list of colors for the arrows

colors = plt.cm.rainbow(np.linspace(0, 1, len(selected_keys)))

# iterate over the selected keys and plot the velocity vectors

for i, key in enumerate(selected_keys):

vx , vy = velocity_dict[key]

scaling_factor = 0.00005

color = colors[i]

plt.arrow(key[0], key[1], vx*scaling_factor , vy*

scaling_factor ,

head_width=0.01,

head_length=0.05, fc=

color , ec=color)

plt.savefig(’velo_plot_png/’+’vel_’+str(obj)+’.png’)
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path.py

def eliminate(dictionary):

new_dictionary = {}

for key , value in dictionary.items():

if len(value) >= 2: # 2 if no of output points is 2

new_dictionary[key] = value

return new_dictionary

def eliminate_key_value_pairs(d, l, b):

new_dict = {}

for key , value in d.items():

# Check if any tuple in the value list violates the

conditions

if any(x > l or y > b for x, y in value):

continue

else:

new_dict[key] = value

return new_dict

def eliminate_duplicates(dictionary):

new_dict = {}

for key , value in dictionary.items():

new_list = [key] + value

i = 0

while i < len(new_list) - 1:

if new_list[i] == new_list[i+1]:

break

i += 1

else:

new_dict[key] = value

return new_dict

def path(force_dict ,m,l,b):

# m=mass

acc_dict={(x, y): [f_x/m, f_y/m] for (x, y), [f_x , f_y] in

force_dict.items ()}

my_dict={}
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for key ,value in acc_dict.items():

del_t=0.9 # 1 sec

v_x ,v_y=0,0

x_initial ,y_initial=key[0],key[1]

accn_x=value[0]

accn_y=value[1]

my_lst=[]

for i in range(2): # output no of points = 2

x_new=x_initial+(v_x*del_t)+(0.5*(accn_x*del_t **2))

y_new=y_initial+(v_y*del_t)+(0.5*(accn_y*del_t **2))

v_x_new=v_x+(accn_x*del_t)

v_y_new=v_x+(accn_y*del_t)

tple=(round(x_new ,1),round(y_new ,1))

tple_new=tple

my_lst.append(tple_new)

v_x=v_x_new

v_y=v_y_new

x_initial=tple_new[0]

y_initial=tple_new[1]

try:

accn_x=acc_dict[(x_initial ,y_initial)][0]

accn_y=acc_dict[(x_initial ,y_initial)][1]

except:

break

my_dict[key]=my_lst

my_dict=eliminate(my_dict) # if less than 2 elements in value

list , eliminate that key ,

value pair

print(len(my_dict))

my_dict=eliminate_key_value_pairs(my_dict ,l,b) # if any value

in list is greater than l or

b eliminate that key ,value

pair

print(len(my_dict))
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my_dict=eliminate_duplicates(my_dict)

print(len(my_dict))

return my_dict
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loadData.py

import numpy as np

import random

def load_data(my_dict):

list_keys=list(my_dict.keys())

rndm_list_keys=random.sample(list_keys , int(0.8*len(list_keys)

)) # 80 % represents amount

of data objects you want in

training phase

other_list_keys=list(set(list_keys)-set(rndm_list_keys))

training_dict={k:my_dict[k] for k in rndm_list_keys}

test_dict={k:my_dict[k] for k in other_list_keys}

training_inputs=[np.array(x).reshape(2,1) for x in

training_dict.keys()]

training_results=[np.array(y).reshape(2*len(y),1) for y in

training_dict.values ()]

training_data=list(zip(training_inputs ,training_results))

test_inputs=[np.array(x).reshape(2,1) for x in test_dict.keys

()]

test_results=[np.array(y).reshape(2*len(y),1) for y in

test_dict.values ()]

test_data=list(zip(test_inputs ,test_results))

return (training_data ,test_data ,test_dict)

if __name__==’__main__ ’:

load_data(my_dict ,l,b)
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network.py

import numpy as np

import random

import os.path

class Network(object):

def __init__(self ,sizes):

self.num_layers=len(sizes)

self.sizes = sizes

if os.path.exists(’neural_net/biases.npy’):

self.biases=[]

with open(’neural_net/biases.npy’, ’rb’) as f:

self.biases.append(np.load(f))

self.biases.append(np.load(f))

else:

self.biases = [np.random.randn(y, 1) for y in sizes[1:

]]

if os.path.exists(’neural_net/weights.npy’):

self.weights=[]

with open(’neural_net/weights.npy’, ’rb’) as f:

self.weights.append(np.load(f))

self.weights.append(np.load(f))

else:

self.weights = [np.random.randn(y, x)

for x, y in zip(sizes[:-1], sizes[1:])]

def SGD(self , training_data , epochs , mini_batch_size , eta ,

test_data=None):

if test_data: n_test = len(test_data)

n = len(training_data)

for j in range(epochs):

random.shuffle(training_data)

mini_batches = [

training_data[k:k+mini_batch_size]

for k in range(0, n, mini_batch_size)]

for mini_batch in mini_batches:
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self.update_mini_batch(mini_batch , eta)

if test_data:

print("Epoch {0}: {1} / {2}".format(

j, self.evaluate(test_data), n_test))

else:

print("Epoch {0} complete".format(j))

# saving last biases and weights in file

if j==epochs-1:

with open(’neural_net/biases.npy’, ’wb’) as f:

for obj in self.biases:

np.save(f,obj)

with open(’neural_net/weights.npy’, ’wb’) as f:

for obj in self.weights:

np.save(f,obj)

def update_mini_batch(self , mini_batch , eta):

""" Update the network ’s weights and biases by applying

gradient descent using backpropagation to a single mini

batch.

The ‘‘mini_batch ‘‘ is a list of tuples ‘‘(x, y)‘‘, and ‘‘

eta ‘‘

is the learning rate."""

nabla_b = [np.zeros(b.shape) for b in self.biases]

nabla_w = [np.zeros(w.shape) for w in self.weights]

for x, y in mini_batch:

delta_nabla_b , delta_nabla_w = self.backprop(x, y)

nabla_b = [nb+dnb for nb , dnb in zip(nabla_b ,

delta_nabla_b)]

nabla_w = [nw+dnw for nw , dnw in zip(nabla_w ,

delta_nabla_w)]

self.weights = [w-(eta/len(mini_batch))*nw

for w, nw in zip(self.weights , nabla_w)]

self.biases = [b-(eta/len(mini_batch))*nb

for b, nb in zip(self.biases , nabla_b)]

def backprop(self , x, y):

""" Return a tuple ‘‘(nabla_b , nabla_w)‘‘ representing the
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gradient for the cost function C_x. ‘‘nabla_b ‘‘ and

‘‘nabla_w ‘‘ are layer -by -layer lists of numpy arrays ,

similar

to ‘‘self.biases ‘‘ and ‘‘self.weights ‘‘."""

nabla_b = [np.zeros(b.shape) for b in self.biases]

nabla_w = [np.zeros(w.shape) for w in self.weights]

# feedforward

activation = x

activations = [x] # list to store all the activations ,

layer by layer

zs = [] # list to store all the z vectors , layer by layer

for b, w in zip(self.biases , self.weights):

z = np.dot(w, activation)+b

zs.append(z)

activation = sigmoid(z)

activations.append(activation)

# backward pass

delta = self.cost_derivative(activations[-1], y) * \

sigmoid_prime(zs[-1])

nabla_b[-1] = delta

nabla_w[-1] = np.dot(delta , activations[-2].transpose ())

# Note that the variable l in the loop below is used a

little

# differently to the notation in Chapter 2 of the book.

Here ,

# l = 1 means the last layer of neurons , l = 2 is the

# second -last layer , and so on. It’s a renumbering of the

# scheme in the book , used here to take advantage of the

fact

# that Python can use negative indices in lists.

for l in range(2, self.num_layers):

z = zs[-l]

sp = sigmoid_prime(z)

delta = np.dot(self.weights[-l+1].transpose (), delta)

* sp

nabla_b[-l] = delta

nabla_w[-l] = np.dot(delta , activations[-l-1].

transpose ())

return (nabla_b , nabla_w)
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def cost_derivative(self , output_activations , y):

""" Return the vector of partial derivatives \partial C_x /

\partial a for the output activations."""

return (output_activations-y)

def evaluate(self , test_data):

test_results = [(self.feedforward(x), y)

for (x, y) in test_data]

j=0

for x,y in test_results:

if np.array_equal(x,y):

j=j+1

return j

# changes to be made wrt to allowd thresold for each

noumber in output column ,

right now it should be

equal

def feedforward(self , a):

""" Return the output of the network if ‘‘a‘‘ is input."""

for b, w in zip(self.biases , self.weights):

a = sigmoid(np.dot(w, a)+b)

return a

#miscalllenous function

def sigmoid(z):

"""The sigmoid function."""

return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):

""" Derivative of the sigmoid function."""

return sigmoid(z)*(1-sigmoid(z))
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constrained.py

def constrain_dict(dictionary):

# Find the minimum and maximum values for the keys and values

all_coords = []

for key , tuple_list in dictionary.items():

all_coords.append(key[0])

all_coords.append(key[1])

for original_tuple in tuple_list:

all_coords.append(original_tuple[0])

all_coords.append(original_tuple[1])

minimum = min(all_coords)

maximum = max(all_coords)

# Constrain the keys and values using the minimum and maximum

values

constrained_dict = {}

for key , tuple_list in dictionary.items():

constrained_key = ((key[0] - minimum) / (maximum - minimum

), (key[1] - minimum) / (

maximum - minimum))

constrained_tuple_list = []

for original_tuple in tuple_list:

constrained_x = (original_tuple[0] - minimum) / (

maximum - minimum)

constrained_y = (original_tuple[1] - minimum) / (

maximum - minimum)

constrained_tuple_list.append (( constrained_x ,

constrained_y))

constrained_dict[constrained_key] = constrained_tuple_list

return (constrained_dict ,minimum ,maximum)

def unconstrain_dict(constrained_dict , minimum , maximum):

original_dict = {}

for constrained_key , constrained_tuple_list in

constrained_dict.items():

original_key_x = constrained_key[0] * (maximum - minimum)

+ minimum

original_key_y = constrained_key[1] * (maximum - minimum)
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+ minimum

original_key = (original_key_x , original_key_y)

original_tuple_list = []

for constrained_tuple in constrained_tuple_list:

original_x = constrained_tuple[0] * (maximum - minimum

) + minimum

original_y = constrained_tuple[1] * (maximum - minimum

) + minimum

original_tuple_list.append (( original_x , original_y))

original_dict[original_key] = original_tuple_list

return original_dict
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runNetwork.py

# Always delete weights.npy and biases.npy , before running every

program

import pickle

with open(’dict_for_NN_3.pickle ’, ’rb’) as f:

dict_for_NN = pickle.load(f)

print(’No of dataset:’,len(dict_for_NN))

from constraint_and_unconstrain_dict import constrain_dict ,

unconstrain_dict

dict_for_NN_constrained ,minimum ,maximum=constrain_dict(dict_for_NN

)

from neural_net import data_loader

from neural_net import network

from neural_net import in_out

training_data ,test_data ,test_dict = data_loader.load_data(

dict_for_NN_constrained)

print(’No of training data’,len(training_data))

net=network.Network([2,30 ,4]) # input: a tuple =2; , middle layer=

30; output: 5 tuples=2*5 points =

10

net.SGD(training_data ,30 ,10 ,1.1)# epochs , mini_batch_size ,

learning rate

dict_by_NN_On_test_data_constrained=in_out.in_out(test_dict)

dict_by_NN_On_test_data_unconstrained=unconstrain_dict(

dict_by_NN_On_test_data_constrained

,minimum ,maximum)

test_dict_unconstrained=unconstrain_dict(test_dict ,minimum ,maximum

)

print(test_dict_unconstrained)

print(dict_by_NN_On_test_data_unconstrained)
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from plot import create_plots ,create_animations

create_plots(test_dict_unconstrained ,3,1,1) # 3 for 3 by 3 picture

, l=1,b=1 for x lim an y lim
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Abstract
Neural networks have been widely used in various fields, including fluid dynamics, to predict complex
phenomena that are difficult to model analytically. In this research, a neural network is developed to predict the
path taken by a circular body in a two-dimensional fluidic domain. The study involves simulating the potential
flow over a rectangular domain inside which a circular body is placed. Fluctuations in different parameters
such as pressure, forces, and velocity field during the motion of the body are studied. The Laplace equation is
solved at each time step by applying the techniques of finite element method ( FEM) to obtain accurate data,
which is fed into the neural network. The neural network comprises of three layers input , middle and output
layer. The study is carrried out using computational methods that relies on open-source software Python and
its modules like NumPy. The results of the neural network’s predictions are compared with accurate data to
analyze the error. Fluctutaion of error with respect to different hyperparameters of the network is calculated
and accordingly suitable hyperparameters of the network are determined.

Keywords
Neural Network, FEM, Potential Flow, Trajectory

1. Introduction

Fluid dynamics field involves solving set of Partial
Differential Equations (PDE) for understanding the
behavior of fluids. Most of the problems in fluid
dynamics are complicated and difficult to solve. In
most cases, these equations cannot be solved
analytically. While experimental methods can be used
for accurate results, they are expensive and require
specialized facilities. As a result, computational
methods have become popular, such as Finite Element
Method (FEM) and Finite Difference Method (FDM).
These methods transform complex differential
equations into algebraic equations, which can be
solved with the help of computers [1]. A newer
method that combines modern numerical techniques
and high-speed digital computers is the use of neural
networks to solve PDEs. [2]

In this research, the focus is on development and use
of neural networks to predict the path of a circular
body in a fluidic domain by solving the Laplace
equation at each time step and feeding the obtained
data into a neural network . The two dimensional fluid
domain is assumed to be inviscid, incompressible and

irrotational. The neural network is based on gradient
descent algorithm and is able to predict the path of the
body given its initial location in two dimensional
domain [3] . Data is generated by numerically solving
laplace equation [4] using the techniques of finite
element method (FEM), thus simulating a potential
flow over the rectangular domain and analyzing
fluctuations in different parameters during motion of
the body. Evaluation of the error between the actual
and predicted path by the network is also carried out
and finally, hyperparameters of the network are
tweaked accordingly to minimise error in the network.

2. Research Methodology

The study was divided into two parts: Calculation of
field information using finite element method (FEM)
and development of the neural network. Both analysis
are carried out in Python [5] using python module like
Numpy [6]. In FEM, strong form and weak form of
the governing equations are developed and are applied
to each cell of the mesh tranforming the PDE into the
set of algebraic linear equations. For incompressible,
inviscid, and steady state irrotational flow, governing
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equations [7] for fluid flow are given by equation 1 and
equation 2.

∇
2
φ = 0 with ~V = ∇φ (1)

ρ(~V .∇)~V =−∇p+ρg (2)

Figure 1: Methodology chart

Once the input parameter of the problem are specified
in the program, the program creates a rectangular flow
domain, and a mesh is generated over it. After the
users input all the required information, like boundary
and wall condition, the program prepares the mesh
structure, applies the wall and boundary condition to
solve the problem and obtain solution of the potential
function φ(x,y). The technique of finite element
method (FEM) is used to obtain this solution [8].
Such solution of the potential fucntion φ (x, y) is
calculated by varying the location of the object
throughout the domain. After obtaining the solution
of the Laplace equation, the gradient ∇ is applied to
potential fucntion φ(x,y) to obtain the velocity field
information. The techniques of the Finite Difference
Method (FDM) (Second Order) method are used to
calculate the involved derivatives [9]. From the
velocity field, the distribution of pressure is calculated
throughout the domain using equation 2. The obtained
data are stored, which will be further used to calculate
actual trajectory of the body and later by a neural
network for correcting its weights and biases for
prediction purpose.

The next section involves the development of the three
layered neural network i.e input, output and middle
layer [10]. The stored data is divided into feed and
test data, and the neural network is constructed by
using the gradient descent algorithm. The predicted
result for a given set of test data by the trained neural
network is computed. Finally, the predicted path is
compared against the actual path, and the observed
errors are analyzed by varying various parameters of
the neural network like learning rate, number of
neurons in middle layer and number of data in the
dataset.

3. Results

3.1 Development of the mesh

The region between the circle and the rectangular
domain are meshed using triangular meshes, where
each mesh cell can be represented in Python by a list
of three tuples [11]. In addition, the object within the
domain is placed at different locations, and meshes
are created for each of these as well. This is necessary
in order to accurately calculate the trajectory of each
object, taking into account its position and movement
within the meshed domain. The length and breadth of
the rectangular domain is taken to be 1m each and
radius of the body is taken as 0.1m. Such meshes are
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shown in figure 2.

Figure 2: Mesh for different locations

3.2 Velocity Field

After applying the weak form of the governing
equation to each cell in the mesh, one obtains the
algebraic linear equation for the potential φ(x,y)
function. Solving the linear equation gives the
solution of potential function φ(x,y) over the whole
domain. Taking its gradient, the velocity field
information is obtained. One such velocity field graph
is shown for a specific location.

Figure 3: Velocity Field

3.3 Force and Path Trajectory

The pressure around the perimeter of the circular body
is calculated via equation 2. The initial condition of
the pressure is assumed to be at atmospheric pressure
at the outlet. Integrating this pressure values along the
perimeter of the body gives the force and accelaration
experienced by the body at a specific location. Basic
kinematic equations are used recursively to obtain the
path co-ordinates of the body.

S.N Start Position Path Co-ordinates
1 (0.2,0.2) (0.25,0.28),(0.31,0.5),(0.41,0.68)
2 (0.5,0.3) (0.56,0.72),(0.83,0.53),(0.94,0.64)
3 (0.6,0.4) (0.61,0.43),(0.64,0.50),(0.67,0.58)

Table 1: Path Co-ordinate table

3.4 Mean Square Error (MSE)

In neural networks, Mean Squared Error (MSE) [12]
is a commonly used metric to evaluate the
performance of the model. It measures the average
squared difference between the predicted output and
the actual output over all the samples in the dataset.

3.4.1 MSE vs Learning rate

The key step in optimizing the performance of the
network is by seeing how MSE varies with different
learning rate for the network. Learning rate is a
hyperparameter of the network that determines the
step size taken in the direction of the negative gradient
during neural network training. By monitoring the
MSE during training with different learning rates, one
can determine an optimal learning rate that leads to
the best performance on the given dataset.

Figure 4: MSE vs Learning Rate

Figure 4 shows that MSE is minimum and stable
when learning rate is in the range of 1.6-3.5. Thus
learning rate of 2 is employed in the network.
Learning rate fluctuates beyond the value of 3.5 which
implies selection of learning rate from this region has
chances of incurring high MSE for a random sample
dataset.
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3.4.2 MSE vs Number of Neurons

To understand the impact of the number of neurons
present in the middle layer on the network
performance, an examination of how the MSE varies
with different numbers of neurons is carried out. A
random shuffle of the dataset is done by selecting 80
percent of the data and calculating MSE vs number of
neurons in middle layer for various dataset.

Figure 5: MSE vs Number of Neurons

Figure 5 shows that MSE is minimum, when number
of neurons in middle layer is in the region of 10.
Minimum of MSE also occurs at other values but
higher number of neuron will imply higher
computational time by the network. Thus, number of
neurons in the middle layer is selected to be in the
range of 8-12.

3.4.3 MSE vs Number of Dataset

An analysis on the impact of dataset size on model
performance is calculated by noting how MSE varies
for different numbers of data samples through which
one can determine the minimum amount of data
required for the model to achieve acceptable
performance.

Figure 6: MSE vs Number of Data samples

Figure 6 shows that this number is in range of 2000
for the network.

4. Conclusion

Based on the numerical calculation of the research, a
neural network capable of predicting path of an object
in potential flow has been developed. Additionally,
the optimal values for hyperparameters of the network
are calculated. This hyperparameters range can guide
guide the design of future neural network models for
similar problems. The development of the neural
network required numerical computation of the
velocity and pressure fields, and the resulting model
provides faster results compared to numerically
solving the governing equations. These findings
suggest that neural networks can be a valuable tool for
accelerating the design and optimization of fluid
dynamic systems. Overall, this research has
demonstrated the potential of neural networks in
predicting the path of an object in a potential flow, and
provides a foundation for future research in this area.
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