
TRIBHUVAN UNIVERSITY
INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

B-12-BME-2018/2023

USING DEAL.II FOR STRUCTURAL ANALYSIS OF A MEDICAL OXYGEN
CYLINDER

BY:
HIMAL KUMAR RANA MAGAR (075BME018)

KHIM BAHADUR BASNET (075BME022)
LILANATH GHIMIRE (075BME024)

A PROJECT REPORT
SUBMITTED TO DEPARTMENT OF MECHANICAL AND AEROSPACE

ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
DEGREE OF BACHELOR IN MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING
LALITPUR, NEPAL

MARCH 2023

COPYRIGHT

The author has agreed that the library, Department of Mechanical and Aerospace Engi-

neering, Central Campus Pulchowk, Institute of Engineering may make this project report

freely available for inspection. Moreover, the author has agreed that permission for exten-

sive copying of this project report for scholarly purpose may be granted by the professor(s)

who supervised the work recorded herein or, in their absence, by the Head of the Depart-

ment wherein the thesis was done. It is understood that the recognition will be given to

the author of this project report and to the Department of Mechanical and Aerospace En-

gineering, Pulchowk Campus, Institute of Engineering in any use of the material of this

project report. Copying or publication or the other use of this project report for finan-

cial gain without approval of the Department of Mechanical and Aerospace Engineering,

Pulchowk Campus, Institute of Engineering and author’s written permission is prohibited.

Request for permission to copy or to make any other use of this project report in whole or

in part should be addressed to:

Associate Prof. Surya Prasad Adhikari, PhD

Head of Department

Department of Mechanical and Aerospace Engineering

Pulchowk Campus, Institute of Engineering

Pulchowk, Lalitpur

Nepal

i

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

The undersigned certify that they have read, and recommended to the Institute of En-

gineering for acceptance, a project report entitled “Using deal.ii for structural analysis

of a Medical Oxygen Cylinder”submitted by Himal Kumar Rana Magar, Khim Bahadur

Basnet and Lilanath Ghimire in partial fulfillment of the requirements for the degree of

Bachelor of Mechanical Engineering.

Supervisor, Dr. Mahesh Chandra Luintel
Professor
Department of Mechanical and Aerospace Engineering

Supervisor, Kamal Darlami
Assistant Professor
Department of Mechanical and Aerospace Engineering

External Examiner, Janak Kumar Tharu
Assistant Professor
Nepal Engineering College

Committee Chairperson, Dr. Surya Prasad Adhakari
Head of Department
Department of Mechanical and Aerospace Engineering

Date

ii

ABSTRACT

Medical Oxygen Cylinders being convenient containers for transportation and storage of
oxygen gas has wide range of applications in industries and hospitals. Storing oxygen at
high pressure in cylinders increases the risk of structural failure. This study aims to de-
velop a program based on open source C++ library for Finite Element Analysis (FEA) in
thin-walled cylinders and to apply the program to perform structural analysis and safety as-
sessment of medical oxygen cylinders operating below their working pressure. To achieve
this goal, a literature review was conducted to identify gaps in the use of open-source soft-
ware for FEA in thin-walled cylinders. Open source FEA library called deal.ii was used
to construct the program. This C++ based program was verified by comparing it with the
hoop stress results from theoretical calculation and ANSYS for a simple hollow cylinder.
The study then proceeded to create a detailed CAD model of the medical oxygen cylinder
for a parametric study for varying wall thickness and material. The model was simpli-
fied and meshed for FEA, with pressure and fixity constraints applied during simulation.
The parametric simulations were run through the developed program which showed that
maximum hoop stress occurs in the region around neck of the cylinder. The methodology
involved verification of the program by comparing the results with that of ANSYS and
theoretical calculations in case of simple hollow cylinder in which maximum error was
found to be 0.875 %. Parametric analysis for variying material and thickness found that
the cylinder with larger thickness i.e., 5.6 mm, and material 37MnSi5 undergoes through
the smallest deformation. The development of the open-source software will provide a
valuable resource for future research and development in this field, as well as contribute
to the enhancement of the safety and reliability of medical oxygen cylinders.

Keywords: Open-source library, Finite Element Analysis, deal.ii, Medical Oxygen Cylin-
der, Structural analysis

iii

ACKNOWLEDGEMENT

We would like to express our deepest gratitude to the Department of Mechanical and
Aerospace Engineering at IOE, Pulchowk Campus, Lalitpur, for providing us with the
invaluable opportunity to work on a project that allowed us to apply and expand upon the
knowledge we gained during our Bachelor’s program in Mechanical Engineering. Our
sincere thanks go to Dr. Surya Prasad Adhikari, Head of Department, Department of Me-
chanical and Aerospace Engineering; Assistant Prof. Lakshman Motra, Deputy Head of
Department, Department of Mechanical and Aerospace Engineering; and Yashoda Ad-
hikari, Administrator, Department of Mechanical and Aerospace Engineering, for their
unwavering support throughout the project. Their guidance, resources, and suggestions
were instrumental in making our project successful and meaningful.

We would also like to express our heartfelt appreciation to our supervisors, Professor Dr.
Mahesh Chandra Luitel and Assistant Professor Kamal Darlami, for their invaluable in-
sights and guidance throughout the project. Their expertise and encouragement helped us
navigate through the various phases of the project, and we learned a great deal from them.
Moreover, we would like to offer our sincere acknowledgement to Mr. Dipak Ghimire
of Sagarmatha Oxygen Pvt. Ltd. and Surendra K.C. of Kantipur Oxygen Pvt. Ltd. for
their invaluable insights on the information needed for our project. Their expertise and
support were critical in helping us to understand the technical aspects of our project, and
we are grateful for their assistance. Finally, we would like to convey our thanks to all the
esteemed teachers, seniors, juniors, and peers who supported us throughout this project.
Their encouragement and assistance were invaluable, and we are deeply grateful for their
contributions to our success.

Himal Kumar Rana Magar (075BME018)
Khim Bahadur Basnet (075BME022)
Lilanath Ghimire (075BME024)

iv

TABLE OF CONTENTS

COPYRIGHT . i

APPROVAL PAGE . ii

ABSTRACT . iii

ACKNOWLEDGEMENT . iv

TABLE OF CONTENTS . v

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF SYMBOLS . ix

LIST OF ACRONYMS AND ABBREVIATIONS x

CHAPTER ONE: INTRODUCTION . 1
1.1 Background . 1
1.2 Problem Statement . 4
1.3 Objectives . 5
1.3.1 Main Objective. 5
1.3.2 Specific Objectives . 5

CHAPTER TWO: LITERATURE REVIEW 6
2.1 Theoretical Background. 6
2.1.1 Mathematical Formulation. 6
2.1.2 Thin-Walled Cylinder . 8
2.2 FEA of Thin-Walled Cylinders . 10
2.3 Deal.ii. 12
2.4 Research gap . 13

CHAPTER THREE: METHODOLOGY . 14
3.1 Literature Review. 16
3.2 Field Visit. 16
3.3 Geometrical and material properties . 20
3.4 CAD Modelling . 23
3.5 Simplification. 24
3.6 FEA in ANSYS . 25

v

3.7 Theoretical Calculation . 25
3.8 FEA using Deal.ii. 25
3.8.1 Meshing . 25
3.8.2 Boundary Id Assignation . 26
3.8.3 Mesh Ordering . 27
3.8.4 Simulation . 27
3.8.5 Visualization . 28
3.9 Parametrization . 28
3.10 Verification and Validation . 28
3.11 Conclusion . 28

CHAPTER FOUR: RESULTS AND DISCUSSION 29
4.1 Hollow Cylinder . 29
4.2 Simplified Cylinder . 31
4.3 Actual Cylinder . 33

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS 35
5.1 Conclusion . 35
5.2 Recommendation . 35

REFERENCES . 38

APPENDIX A: MATHEMATICAL DERIVATION 39

APPENDIX B: CODE FOR SIMULATION . 50

APPENDIX C: SCRIPT FOR GEOMETRY SIMPLIFICATION AND MESHING 76

APPENDIX D: SCRIPT FOR BOUNDARY ID ASSIGNING 80

APPENDIX E: ADDITIONAL FEM RESULTS 81

vi

LIST OF TABLES

Table 3.1: Dimensions of Medical Oxygen cylinder. 20
Table 3.2: Materials and their properties. 20
Table 3.3: Concave Bottom Design Parameters 22

Table 4.1: Comparison of simulation results for Hollow Cylinder 29
Table 4.2: Comparison of max. deformation (in mm) for simplified cylinder . . 31
Table 4.3: Comparison of deformation (in mm) of actual cylinder 33

vii

LIST OF FIGURES

Figure 1.1: Typical Medical Oxygen Cylinder 3
Figure 1.2: Bursted Oxygen Cylinder . 5

Figure 2.1: Thin-walled cylinder . 9

Figure 3.1: Methodology Flowchart . 15
Figure 3.2: Body And Head Profile . 17
Figure 3.3: Picture of Body And Head Profile 18
Figure 3.4: Valve in Head . 19
Figure 3.5: Cylinder Bottom Profile . 19
Figure 3.6: Cylinder Base Profile . 21
Figure 3.7: CAD Model in SOLIDWORKS . 23
Figure 3.8: Simplified geometry in Gmsh. 24
Figure 3.9: Algorithm for FEA in deal.ii . 25
Figure 3.10:Simplified geometry after meshing in Gmsh. 26
Figure 3.11:Actual geometry after meshing in Gmsh. 26

Figure 4.1: Hoop stress vs thickness for hollow cylinder 30
Figure 4.2: Deformation vs thickness for hollow cylinder 30
Figure 4.3: Displacement result from ANSYS(34Mn2V, 5.5mm) 31
Figure 4.4: Displacement result from deal.ii (34Mn2V, 5.5mm) 32
Figure 4.5: Deformation vs thickness for simplified cylinder 32
Figure 4.6: Displacement result from ANSYS (37MnSi5) 33
Figure 4.7: Displacement result from deal.ii (37MnSi5) 33

Figure A.1: Solid Body . 39
Figure A.2: Cuboid element . 39
Figure A.3: Tetrahedral element . 41
Figure E.1: Displacement and Hoop stress with different thickness (37MnSi5) . 81
Figure E.2: Displacement and Hoop stress with different thickness (34Mn2V) . . 82
Figure E.3: Displacement and Hoop stress with different thickness (32CrM04) . 83

viii

LIST OF SYMBOLS

σ stress tensor,
b⃗ body force vector,
t⃗ prescribed traction vector,
d⃗ prescribed displacement vector,
u⃗ displacement vector,
n⃗ normal vector to the surface,
Ω open domain,
Γt boundary surface when traction is prescribed,
Γd boundary surface when displacement is prescribed,
Ω̄ closed domain, i.e. Ω̄ = Ω ∪ Γt ∪ Γd

ϕ shape function
H Hilbert space
λ Lame Modulus,
µ Modulus of Rigidity/Shear Modulus,
ν Poisson’s Ratio,
E Young,s Modulus of Elasticity,
δij Kronecker delta operator

ix

LIST OF ACRONYMS AND ABBREVIATIONS

DEAL Differential Equation Analysis Library
FEA Finite Element Analysis
FEM Finite Element Method
MOC Medical Oxygen Cylinder,
MPI Message Passing Interface

x

CHAPTER ONE: INTRODUCTION

1.1 Background

Oxygen cylinders are high pressure thin-walled container used for various purposes. Mostly,
these cylinders are used in medical sector. Typically, it contains oxygen at a pressure
around 150 bar. Various sizes of oxygen cylinders are available in the market, ranging
from 10 to 50 liters in capacity.

Since the discovery of oxygen, scientists and technicians have been continuously explor-
ing and developing various technologies to produce and transport this essential gas. One
such technology that has proved to be highly effective is the medical oxygen cylinder.
The main function of this cylinder is to safely and affordably transport oxygen from man-
ufacturing plants to hospitals and other medical facilities. In contrast to longer pipelines,
oxygen cylinders provide a more convenient and practical solution for delivering oxygen
where it is needed.

Oxygen cylinders have been designed to meet the specific requirements of medical fa-
cilities and other industries. They are manufactured using high-strength steel alloys or
lightweight aluminum materials, which offer excellent strength and durability. Oxygen
cylinders are available in various sizes and shapes, depending on the specific application,
and can be filled with compressed oxygen gas up to a working pressure of 150Bar.

The initial development of the oxygen cylinder was around 1868 AD. As the use of oxygen
increased in fields such as medicine and industry, modifications were proposed to increase
the cylinder’s capacity to carry oxygen at high pressure, while reducing production costs
and allowing for mass production. Today, there are several types of oxygen cylinders
available with similar physical appearances but varying in dimensions and materials de-
pending on their purpose and use. Typically, oxygen cylinders are constructed using steel
alloys or aluminum.

Oxygen cylinders have several uses, which include:

• Providing respiratory support in medical facilities

• Assisting with breathing in high-altitude environments

• Supporting diving activities

• Administering oxygen therapy

• Facilitating industrial processes like welding, lamp-working, and gas cutting.

On another note, Finite Element Analysis (FEA) is used extensively in engineering and
scientific fields to simulate and analyze the behavior of complex systems and structures

1

Institute of Engineering, Central Campus Pulchowk BE Project Report

under various conditions. These software tools are used to predict how a particular design
will perform under various loads, stresses, and strains, and can help engineers optimize
designs, reduce costs, and improve performance.

The need for open source FEA software has become increasingly important in recent years,
as the cost of proprietary software can be prohibitively high for small businesses, individ-
ual users, and academic institutions. Open source FEA software provides an alternative
that is accessible to a wider range of users, regardless of their financial resources.

In addition to cost considerations, open source FEA software also provides benefits in
terms of transparency and collaboration. With open source software, users can access the
source code and modify it to suit their needs. This level of transparency also promotes
collaboration and sharing among users, leading to a more robust and diverse community
of developers and users.

Moreover, open source FEA software also allows for greater customization and integration
with other software tools, which can improve productivity and workflow efficiency. Users
can develop their own plugins or interfaces to integrate FEA software with other design
or analysis tools, leading to a more streamlined design process.

Overall, the need for open source FEA software is driven by the desire for greater acces-
sibility, transparency, collaboration, and customization in the engineering and scientific
community. By leveraging the power of open source software, users can access powerful
simulation and analysis tools that can help them optimize their designs, reduce costs, and
improve performance.

The aim of this project is to perform a structural analysis of a medical oxygen pressure
cylinder using open source platform called deal.ii. It is a large finite element librarywritten
in C++ that offers numerous capabilities to work in FEA. The goal is to determine the level
of safety when the cylinder is used below its working pressure. Additionally, this project
aims to provide suggestions for minimizing the risk of deformation and failure of the
oxygen cylinder under low-pressure conditions. The study will focus on a typical D-type
46.7L oxygen cylinder with a working pressure of 150 bar. By conducting this analysis,
It was expected to provide valuable insights that can be used to enhance the safety and
reliability of oxygen cylinders in medical and other fields.

2

Institute of Engineering, Central Campus Pulchowk BE Project Report

Figure 1.1: Typical Medical Oxygen Cylinder

Note: The Picture in figure 1.1 was taken in Sagarmatha Oxygen Pvt.Ltd during project
field visit,it is of capacity 46.7L, More about shape, size and dimensions of oxygen cylin-
der is explained in Field Visit section of this report under chapter Methodology. Also, the
terms displacement and deformation are used interchangeably throughout the report.

3

Institute of Engineering, Central Campus Pulchowk BE Project Report

1.2 Problem Statement

Storing oxygen at high pressures in cylinders increases the risk of structural failure. The
pressure can cause the cylinder to explode, leak or crack, and oxygen’s chemical proper-
ties increase the likelihood of corrosion if the cylinder is filled without checking for the
presence of water/humidity or an electrolytic environment on the internal surface of the
cylinder. During a visit to an oxygen filling industry, it was learned that recently a oxygen
cylinder failure resulted in the loss of two lives. Unfortunately, news of oxygen cylinder
explosions resulting in death or serious injury has become increasingly common. There-
fore, to ensure the safety of using oxygen cylinders at their maximum working pressure
and temperature, a safety analysis is necessary. Predicting failure based on general knowl-
edge or common prediction methods is challenging. Hence, this project aims to analyze
the bursting failure of oxygen cylinders due to excessive pressure, determine the safety
state of oxygen cylinders at their working pressure, and analyze the use of different ma-
terials and their resulting safety. The potential hazards of oxygen cylinders require that
safety be a top priority, especially in the medical industry, where patients depend on them
for life support. Understanding the safety limits of oxygen cylinders is essential to avoid
accidents and fatalities. Therefore, this project aims to develop an open-source C++ code
to predict the safety and risk of oxygen cylinders operating below their working pres-
sure. By analyzing the structural integrity of the D-type 46.7L typical oxygen cylinder
with a working pressure of 150 bar, this project aims to provide useful suggestions for
minimizing the deformation and risk of failure of oxygen cylinders below their working
pressure. Furthermore, the project seeks to explore the effectiveness of different mate-
rials in enhancing the safety of oxygen cylinders. Through this analysis,it is hoped that
it contributes to the development of safer and more reliable oxygen cylinders for various
applications.

4

Institute of Engineering, Central Campus Pulchowk BE Project Report

Figure 1.2: Bursted Oxygen Cylinder
(source:safetymattersweekly.com)

1.3 Objectives

1.3.1 Main Objective

To perform structural analysis and safety assessment of medical oxygen cylinder.

1.3.2 Specific Objectives

• To develop C++ code that can accurately predict the safety and risk of medical
oxygen cylinders operating below their working pressure.

• To investigate the effectiveness of different materials and thicknesses in enhancing
the safety of medical oxygen cylinders.

• To Compare and validate the simulation results with theoretical calculations to en-
sure the accuracy and reliability of the model.

5

CHAPTER TWO: LITERATURE REVIEW

2.1 Theoretical Background

Followings are the theories behind the working of the program and the model:

2.1.1 Mathematical Formulation

Strong Form

The strong form for the small displacement three-dimensional linear elasticity problem
with Neumann and Dirichlet boundary conditions is,
Given b⃗ : Ω → R3, d⃗ : Γd → R3, t⃗ : Γt → R3, find u⃗ : Ω̄ → R3 such that,

−div(σ(u⃗)) = b⃗ in Ω

u⃗ = d⃗ on Γd

σ(u⃗) · n⃗ = t⃗ on Γt

Weak Form

Weak form of the problem in bi-linear form is,
Given b⃗ : Ω → R3, d⃗ : Γd → R3, t⃗ : Γt → R3, find u⃗ : Ω̄ → R3 such that for v⃗ ∈ H,

a(u⃗, v⃗) = (⃗t, v⃗)Γt + (⃗b, v⃗) in Ω

where,
a(u⃗, v⃗) =

∫
Ω
σ(u⃗) : ∇v⃗

(⃗t, v⃗)Γt =
∫
Γt
t⃗ · v⃗

(⃗b, v⃗) =
∫
Ω
b⃗ · v⃗

Note:
Stress tensor for isotropic material is given by,

σ(u⃗) = λ (div u⃗) I + 2µε(u⃗)

where,
λ and µ are the Lame parameters, I is the second rank identity tensor, and
ε(•) := {∇(•) +∇(•)T}/2.
The meaning of each symbols are listed on LIST OF SYMBOLS chapter.

6

Institute of Engineering, Central Campus Pulchowk BE Project Report

Finite Element Approximation

Applying finite element approximation, the problem can be expressed as the linear system
of equations and is represented as,

AU=F

where,
A is the global stiffness matrix,
U is the global displacement vector,
F is the global force vector.
Global stiffness matrix is defined as,

Aij =
∑
k,l

{(λ∂l(Φi)l, ∂k(Φj)k)Ω + (µ∂k(Φi)l, ∂k(Φj)l)Ω + (µ∂k(Φi)l, ∂l(Φj)k)Ω}

here, i and j run over the global degrees of freedom while k and l run over the space-
dimension, and Φi represents the vector shape function, which is defined as,

Φi(x) = ϕi(x) ecomp(i)

where, e is the unit vector specified by comp(i) which in turn is defined as,

comp(i) =

0 if i = 0, 3, 6, · · ·

1 if i = 1, 4, 7, · · ·

2 if i = 2, 5, 8, · · ·

The global stiffness matrix is obtained by assembling the local stiffness matrices, where
local stiffness matrix on cellK is expressed as,

AK
ij =

∑
k,l

{(λ∂l(Φi)l, ∂k(Φj)k)K + (µ∂k(Φi)l, ∂k(Φj)l)K + (µ∂k(Φi)l, ∂l(Φj)k)K}

This can be further arranged into,

AK
ij =

(
λ∂comp(i)ϕi, ∂comp(j)ϕj

)
K
+
(
µ∂comp(j)ϕi, ∂comp(i)ϕj

)
K
+(µ∇ϕi,∇ϕj)K δcomp(i),comp(j)

here, now i and j run over local degrees of freedom, and δij is the Kronecker Delta oper-
ator.
Since, integration on computer is difficult to incorporate and sometimes even impossible,
we use Gauss Quadrature formula. For this, we transform the cells from real(physical)
space into parametric space and vice versa using Jacobian transformation, and then apply
Gauss Quadrature formula to compute the integration.

7

Institute of Engineering, Central Campus Pulchowk BE Project Report

Then, final expression becomes,

AK
ij =

∑
q

{λ
(
∂comp(i)ϕi(q)

) (
∂comp(j)ϕj(q)

)
+ µ

(
∂comp(j)ϕi(q)

) (
∂comp(i)ϕj(q)

)
+

µ (∇ϕi(q)) (∇ϕj(q)) δcomp(i),comp(j)}JxW(q)

where, q′s represent quadrature points in parametric space, and ’JxW(q)’ represents the
product of determinant of Jacobian and the weight at the quadrature point q.
Similarly, right-hand-side vector(global force vector) is obtained by assembling the con-
tributions from the local force vectors, which are defined as,

FK
i =

∑
qf

(
tcomp(i)ϕi(qf)

)
JxW(qf) +

∑
q

(
bcomp(i)ϕi(q)

)
JxW(q)

where qf refers to the quadrature points on the face of the cell, since the first term is to be
integrated on the face of the cell, that belongs to the boundary surface Γt.
In the problem, traction is caused by the gas pressure, i.e.,

t⃗ = −P · n⃗

where, P is the pressure acting on the surface and n⃗ is the normal surface vector of the
surface.
Then, ∑

qf

(
tcomp(i)ϕi(qf)

)
JxW(qf) =

∑
qf

(
−P · ncomp(i)ϕi(qf)

)
JxW(qf)

Finally, the rhs vector on a local cell becomes,

FK
i =

∑
qf

(
−P · ncomp(i)ϕi(qf)

)
JxW(qf) +

∑
q

(
bcomp(i)ϕi(q)

)
JxW(q)

The complete derivation to these expressions is present in the Appendix A and is heavily
based on the book by Ioannis Koutromanos and Roy (2018) and Chaves (2013).

2.1.2 Thin-Walled Cylinder

In the case of thin-walled cylinders, the relationship between the wall thickness and diam-
eter is often expressed as D/t » 1, where D/t typically exceeds 20. Due to the radially sym-
metric geometry and loading of cylindrical vessels, the stresses within them do not vary
in the angular direction. The impact of end caps can be ignored at locations far enough
from them. Additionally, as the wall thickness is insignificant, radial stress is considered
absent. The two types of stress that exist in a pressure-filled thin-walled cylinder are hoop

8

Institute of Engineering, Central Campus Pulchowk BE Project Report

stress and longitudinal stress.

Figure 2.1: Thin-walled cylinder

The Hoop stress, σθ and axial stress,σz acting on the cylinder are given by,

σθθ =
P · r
t

σzz =
P · r
2t

thus, hoop stress is twice the axial stress in case of thin wall cylinder in case of closed end
cylinder, i.e., σθθ = 2σzz.

9

Institute of Engineering, Central Campus Pulchowk BE Project Report

2.2 FEA of Thin-Walled Cylinders

Thin-walled cylinders are widely used in various engineering applications, such as pres-
sure vessels, storage tanks, pipelines, and aerospace structures. The structural behavior of
thin-walled cylinders is complex and depends on factors such as the geometry, material
properties, loading conditions, and boundary conditions. Finite Element Analysis (FEA) is
a powerful tool for analyzing the stress, deformation, and failure of thin-walled cylinders.
In recent years, there has been an increasing interest in the FEA of thin-walled cylinders
due to its potential for improving the design, optimization, and safety of engineering struc-
tures. In this literature review, wewill survey and analyze the existing research on the FEA
of thin-walled cylinders, focusing on the key challenges, methodologies, and applications.

In a study done by Abdussalam (2006), FEA of the design andmanufacture of aerosol cans
was done. The author prefers the FEA over traditional “Design-by-test” methods because
of repeatability and rapid re-analysis capacity.

Finite element analysis has also been used to investigate catastrophic failures of thin-
walled cylinders. Mirzaei (2008) discussed the finite element simulations of deformation
and fracture of a gas cylinder that catastrophically failed as a result of an accidental ex-
plosion. The FEA results clearly showed that the stresses caused by the assumed loading
profile were indeed capable of creating local ruptures at the actual crack initiation sites.

Major of the studies involve comparison of FEA result with theoretical calculations and
experimental data. A study performed Finite element analysis of specified thickwall cylin-
der with help of ANSYS software and compared its result with experimental result and
theoretical calculation by Lame’s equation (Macwan et al., 2011). They measured hoop
strain and hoop stress by experimental setup for internal as well as external surface of
cylinder and by numerical and theoretical method they calculated hoop and radial stress
and concluded that there is about one percentage error between results of theoretical cal-
culation and numerical method, 3.33 percentage error between theoretical calculation and
experiment result and, 4 percentage error between result of experiment and numerical so-
lution.

Rangari (2012) performed finite element analysis of LPG cylinder to verify its burst pres-
sure. In this research the researchers assumed an LPG cylinder of material low carbon steel
and calculated maximum shear stress, equivalent shear stress at critical area of failure by
FEA on ANSYS Workbench as well as by using theoretical calculation and compared
results. They concluded the verification of ANSYS result with theoretical result.

Wang et al. (2017) studied the buckling behavior of tori-spherical bottom head of a resi-
dential water heater tank. Both FEA and Hydrostatic test results were correlated to find
that the effect of geometric imperfection has more effect on buckling pressure than contact
imperfection.

10

Institute of Engineering, Central Campus Pulchowk BE Project Report

P. Palanivelu (2017) performed Finite element analysis on a typical pressure vessel with
ellipsoidal head to determined stress distribution and critical points of possible failure and
result compared with theoretical calculation. The research found that equator of head of
pressure vessel is critical point for failure.

Mohamed (2018) showed that the finite element method can give results with good agree-
ment with the criteria of mechanics of material. Nevertheless, the model was of thin-
walled cylinder and simplified geometry, it clearly shows the distribution of hoop and
longitudinal stresses over the cylinder thickness.

Yin et al. (2019) conducted FEA analysis using ANSYS workbench to analyze a 40L in-
dustrial gas cylinder and found the maximum stresses are near to the allowable stresses.
The authors also used equivalent linearization method to optimize the cylinder structure.
It was found that these methods significantly improve the safety of the cylinder transporta-
tion process.

Das and Islam (2019) compared the deformation and stress distribution for continuous,
discontinuous and material interface joint with help of FEA result for a thick wall pressure
vessel and found that effect of geometry discontinuity is quite significant in von-misses
and hoop stress.

Nendra Wibawa et al. (2021) did FEA for thick-walled cylinder for rocket motor case, in
which they performed FE simulation for different wall thickness of thick-walled cylinder
with same length and same outer diameter also for every increasing thickness they in-
creased internal pressure for three different material Aluminum 6061, CFRP, GFRP and
concluded that maximum hoop and longitudinal stress decreases for increase in wall thick-
ness for given reference rocket motor casing.

FEA with nonlinear stabilization techniques and failure criterion can determine the burst
pressures of the thin-walled cylinders accurately, while the conventional elastic-strain
hardening plasticity material model may overestimate the burst pressure of a cylinder com-
posed of plain carbon steel with a yield plateau(Wang et al., 2021).

11

Institute of Engineering, Central Campus Pulchowk BE Project Report

2.3 Deal.ii

Finite Element Analysis (FEA) of thin-walled cylinders involves complex mathematical
models and requires high-performance computing resources. Open-source software pro-
vides a cost-effective and customizable solution for FEA, as it enables users to access and
modify the source code for their specific needs. Deal.ii (Arndt et al., 2022) is a C++ soft-
ware library supporting the creation of finite element codes and an open community of
users and developers. Deal.ii is a powerful open-source finite element software package
that provides a wide range of tools and capabilities for FEA of various types of problems.
It has strong focus on high-performance and parallel computing, which is essential for
efficiently solving large-scale FEA problems.

Bangerth et al. (2007) in their paper, provide an overview of the deal.ii library, including
its design principles, basic usage, and capabilities. It also discusses some of the advanced
features of deal.ii, such as support for adaptive mesh refinement and parallel computing.
This paper (Kronbichler & Kormann, 2012) describes the development of a generic in-
terface for parallel computing in deal.ii. The authors demonstrate the effectiveness of
their approach using a variety of test cases, including the solution of the Navier-Stokes
equations.

This paper (Arndt et al., 2021a) provides an overview of the new features and improve-
ments in deal.ii release 9.0. The authors discuss enhancements to the finite element spaces
supported by deal.ii, improvements in the parallel computing capabilities, and updates to
the interface for mesh generation (Arndt et al., 2021b)provides an overview of the parallel
capabilities of deal.ii and its applications in solving elasticity equations. The authors dis-
cuss the parallel algorithms used in deal.ii, including domain decomposition and shared
memory parallelization, and demonstrate their effectiveness in solving a range of elasticity
problems.

12

Institute of Engineering, Central Campus Pulchowk BE Project Report

2.4 Research gap

The literature review on Finite Element Analysis (FEA) in thin-walled cylinders reveals
that the use of open source software for this application is limited. While there is existing
research on FEA in thin-walled cylinders, the majority of studies have utilized commer-
cial software. Therefore, a research gap exists regarding the application of open source
software for FEA in thin-walled cylinders. Further investigation is required to explore the
potential benefits and limitations of utilizing open source software for this application,
and to determine the accuracy and reliability of results obtained from such software.

13

CHAPTER THREE: METHODOLOGY

This project involved designing and simulating a Medical oxygen cylinder to assess its
safety and strength conditioning under different materials and geometric properties (thick-
ness).The methodological flow chart of this project is shown in figure 3.1 .The project
began with a literature review and field visits to understand the different types and spec-
ifications of oxygen cylinders available in the local as well as global market. Using this
information, a detailed CAD model of the cylinder was created in SOLIDWORKS, in-
cluding multiple versions with varying wall thicknesses for the simulation and analysis.
The model was later simplified and meshed for finite element analysis, with pressure and
fixity constraints applied during simulation. The simulations were run through the deal.ii
library based C++ code and verified using theoretical calculations and ANSYS simula-
tions.furthermore for entire course of this project literature review was conducted on re-
lated topics .

In conclusion, the project showcases the importance of a comprehensive and data-driven
approach to designing, simulating and analyzing engineering systems. By using a range of
methods, including literature reviews, field visits, CAD modeling, meshing, parametriza-
tion, coding and simulations,This project work provided a sound understanding of analysis
under different study parameters.This projects highlighted the value of collaboration be-
tween different engineering disciplines, as this project drew on knowledge from multiple
areas, including mechanical engineering, materials science, and computational modeling.
The resulting oxygen cylinder analysis results are expected to have a significant positive
impact on construction of upcoming oxygen bottles, providing a reliable and safe oxygen
cylinder for patients as well as for industrial purposes.

14

Institute of Engineering, Central Campus Pulchowk BE Project Report

Field Visit

Literature Review

Geometry

CAD modeling

Simplify

Meshing Boundary Id

Rearranging

Simulation

Theoretical
Calculation

Conclusion

Start

End

Verification

Yes

No

P
ar

am
et

riz
at

io
n

Start

Literature Review Field Visit

Geometrical and
material properties

Simplification

CAD modelling

FEA using deal.iiFEA in ANSYS

Do results
agree?

Conclusion

End

Verification and
Validation

NoNo

Yes

Theoretical
Calculation

Figure 3.1: Methodology Flowchart

Each stage of the project work is explained in the respective sections.

15

Institute of Engineering, Central Campus Pulchowk BE Project Report

3.1 Literature Review

Throughout the duration of the project, a comprehensive literature review was conducted
to ensure that, the standard pathway were follower for project. Literature review was
conducted to consult and analyze existing research and theories in order to compare the
output of each step with those of established methods. This process was to ensure that the
project was rigorous, thorough, and aligned with established best practices in the field.
By conducting a careful and thorough literature review, to create a project upon existing
knowledge that was grounded in solid research and theory.

3.2 Field Visit

During the starting of this project, field visits were conducted to two of the re-known oxy-
gen gas manufacturing and refilling industries in Nepal to gain a better understanding of
the different dimensions, capacities, andmaterials of oxygen cylinders that are available in
the local market. These visits allowed to observe firsthand the different types of cylinders
that were being used and imported from India and China. The carefully documentation
of findings from these field visits were done and, which are presented in below. This in-
formation includes a summary of the different types of cylinders that were observed, their
respective dimensions and capacities, and the materials used in their construction.

1. Sagarmatha Oxygen Pvt. Ltd (Patan Industrial State, Lalitpur)

• Visited: 2079/04/24

• Available Sizes (10L, 20L, 47L i.e. 46.7L & 50L)

• Outer Diameter (OD)=232mm

• Height(H) =1370mm

• Working Pressure=150bar

• Circumference of Neck: Upper (c’) =25cm, Lower (c”) =35cm

• Upper Neck Height (H1) =20mm

• Lower Neck Height (H2) =45mm

• Height to Head Start (Hn) =1235mm

• Head Profile: Spherical

2. Kantipur Oxygen Limited (Harsiddhi, Lalitpur)

• Visited: 2079/04/24

• OD =232mm

• H= 1350mm

16

Institute of Engineering, Central Campus Pulchowk BE Project Report

• Pressure =150bar

• H1=3cm

• H2=6cm

• C’=25cm

• C’’=35cm

• Hole Dia. =3mm

• Thickness (t)=5.4mm

• Weight (W)=50.7kg

• Head Profile: Spherical

The above geometrical parameters are as shown in figure:

Hn

 OD

Spherical Head

OD"

OD'

H1

H2

H

Figure 3.2: Body And Head Profile

17

Institute of Engineering, Central Campus Pulchowk BE Project Report

3. Model finalized for simulation

• OD=232mm

• H=1365mm

• Thickness(t)=5.6mm/5.5mm/5.4mm

• Material = 32CrMo4/37MnSi5/34Mn2V

Following are some of the pictures taken during our project field:

Figure 3.3: Picture of Body And Head Profile

18

Institute of Engineering, Central Campus Pulchowk BE Project Report

Figure 3.4: Valve in Head

Figure 3.5: Cylinder Bottom Profile

19

Institute of Engineering, Central Campus Pulchowk BE Project Report

3.3 Geometrical and material properties

Based on preliminary field study, literature review, and analysis of design standards and
codes,the necessary design geometry for a Medical oxygen cylinder with a capacity of
46.7L (internal volume) was obtained. This involved carefully considering the appro-
priate dimensions and specifications for the cylinder, including its diameter, height, and
thickness, as well as other critical design elements. With this design geometry in hand,
further calculations, processing ,refinement and simulation were performed and our that
ensured the design met all necessary standards and requirements. This included analyz-
ing the strength and safety of the cylinder, as well as considering factors such as weight,
portability, and ease of use. By using a rigorous and data-driven approach, we were able
to design and analyse a high-quality and effective medical oxygen cylinder that met all
necessary specifications and requirements and which can be used in our deal.ii based sim-
ulation.

In selecting the appropriate geometry for this study, thorough review of the literature and
field visit data was conducted. After careful consideration, the geometry proposed in (Yin
et al., 2019) was chosen based on its suitability for research question of this project and its
demonstrated effectiveness in previous studies. The studied cylinder geometry is of the
following dimensions:

Outer Diameter Wall Thickness Height
5.4 mm

232 mm 5.5 mm 1365 mm
5.6 mm

Table 3.1: Dimensions of Medical Oxygen cylinder.

On literature review, the materials used in manufacture of high pressure gas cylinder are
majorly 34Mn2V (Yin et al., 2019), 34CrMO4 (Bultel & Vogt, 2010; Li et al., 2019) and
37MnSi5. The material properties are shown in the table 3.2:

Material Modulus of Elasticity (GPa) Poisson’s ratio density (Kg/m3)
34Mn2V 185 0.3 7850
34CrMo4 197 0.29 7850
37MnSi5 206 0.3 7850

Table 3.2: Materials and their properties.

20

Institute of Engineering, Central Campus Pulchowk BE Project Report

The formulae to calculate the Lame’s parameters out of E and ν are:

µ = G =
E

2(1 + ν)

λ =
Eν

(1 + ν)(1− 2ν)

The following geometrical design consideration(Yin et al., 2019) were assumed for con-
cave bottom profile:

• t1 = (2.0 ∼ 2.6)t = 2.3t

• t2 = (1.8 ∼ 2.2)t = 2t

• t3 = (2.0 ∼ 2.6)t = 2.3t

• r = (0.07 ∼ 0.09)OD = 0.08OD

• h = (0.13 ∼ 0.16)OD = 0.15OD

• Transition= 2h

Where t is the thickness of the oxygen bottle wall and OD is the outer diameter of the
oxygen bottle.

t
cylinder

transition
t3

r

OD/2

h

t1

Spherical shell

t2

Ring shell

Figure 3.6: Cylinder Base Profile

The geometrical parameters of concave bottom profile, which was used for modelling are:

21

Institute of Engineering, Central Campus Pulchowk BE Project Report

H OD t t1 t2 t3 r h Transition
5.4 12.42 11.88 12.42 18.56 33.64 67.28

1365 232 5.5 12.65 12.1 12.65 18.56 33.64 67.28
5.6 12.88 12.32 12.88 18.56 33.64 67.28

Table 3.3: Concave Bottom Design Parameters

Note: All dimensions in table 3.3are in mm.

22

Institute of Engineering, Central Campus Pulchowk BE Project Report

3.4 CAD Modelling

In order to incorporate the design of an oxygen cylinder into a simulation platform, computer-
aided design (CAD) software was employed to create a highly accurate and detailed 3D
model of the cylinder. This involved the inclusion of all relevant design components and
specifications. A crucial consideration in this modeling process was determining the opti-
mal wall thickness for the cylinder. To enable an analysis of the design during simulation,
multiple versions of the model were generated with varying wall thicknesses. This facil-
itated an evaluation of the cylinder’s strength and safety under different geometrical and
material conditions and uses. Utilizing the SOLIDWORKS software, a precise and com-
prehensive model of the oxygen cylinder was produced. A snapshot of the resulting 3D
model of the full-scale oxygen cylinder created using SOLIDWORKS is displayed below.

Figure 3.7: CAD Model in SOLIDWORKS

23

Institute of Engineering, Central Campus Pulchowk BE Project Report

3.5 Simplification

In order to ensure an efficient and accurate simulation process for stress and deformation
analysis, the original CAD model was simplified while maintaining the overall dimen-
sions. This simplification involved the creation of a computationally streamlined version
of the model that still effectively captured the essential design features and characteris-
tics of the cylinder. The simplification of the CAD model increased the ability to reduce
its complexity and streamline the simulation process, leading to the obtainment of ap-
proximated results for stress and deformation with greater efficiency and accuracy. The
geometry of the simulation was generated in Gmsh, utilizing a combination of CADmod-
els and manual input. The geometry was then partitioned into distinct regions to define the
meshing areas. The meshing process involved the definition of the element size, selection
of the meshing algorithm, and specification of the boundary conditions.

Figure 3.8: Simplified geometry in Gmsh.

24

Institute of Engineering, Central Campus Pulchowk BE Project Report

3.6 FEA in ANSYS

FEA Simulations were also performed using ANSYS software to verify the program based
on deal.ii since it is well-established and reliable FEA software. It enabled the cross-
validation of the accuracy and reliability of the results, and to ensure that the findings
were not specific to any particular software package. The same geometry and boundary
conditions were applied and the corresponding hoop stress and deformations were noted
for every model for each material.

3.7 Theoretical Calculation

Theoretical calculations were done to determine the hoop stress in the midsection of the
cylinder using the theory from solid mechanics as mentioned in the theoretical background
section. Hoop stress for each model of varying thickness was calculated and later com-
pared with the FEA results. It may be noted that throughout the report, theoretical calcu-
lation and analytical calculation were used interchangeably.

3.8 FEA using Deal.ii

To conduct FEA in deal.ii, following steps were incorporated:

Meshing Boundary Id
assignation SimulationMesh ordering

Gmsh .py script tethex deal.ii C++

Visualization

ParaView

Figure 3.9: Algorithm for FEA in deal.ii

3.8.1 Meshing

The meshing stage of our project involved the process of discretizing the CAD model of
the D-Type Medical oxygen cylinder into a finite number elements.In this study, Gmsh
software was used to generate the mesh for the simulation. Gmsh is an open-source 3-D
finite element grid generator with a build-in CAD engine and post-processor (Geuzaine &
Remacle, 2009). It supports a variety of mesh types, including 1D, 2D, and 3D meshes,
as well as structured and unstructured meshes. The .geo script used to create and mesh the
geometry is provided in APPENDIX C.

25

Institute of Engineering, Central Campus Pulchowk BE Project Report

Figure 3.10: Simplified geometry after meshing in Gmsh.

Figure 3.11: Actual geometry after meshing in Gmsh.

3.8.2 Boundary Id Assignation

The boundary id section involved assigning the appropriate boundary id to the solid model,
to apply pressure and fixity constraints to the model during subsequent stages of the study.
Boundary ids were to be applied in the form of physical ids in Gmsh. But the assignment
of physical ids to the model in itself was not successful in this study as it assigned only
geometric ids to the geometrical entities. So, the physical ids needed to be assigned man-
ually. The meshed model being collection of large number of nodes and elements, it was
not possible to do manually. So, a custom python script was made which assigns element
with physical id which is unique for each geometric ids. Later on, Boundary conditions
were applied specifically selecting those physical id’s then taken as boundary id. The
python script used in this step is provided in APPENDIX D.

26

Institute of Engineering, Central Campus Pulchowk BE Project Report

3.8.3 Mesh Ordering

During the meshing process,the generated mesh was unstructured mesh of smaller ele-
ments that accurately represented the behavior of the geometry under different loads and
conditions. However, to effectively perform the calculations using C++ code, it was nec-
essary to rearrange these elements in a specific order generally called structured mesh. So,
a C++ script, tethex (martemyev, 2013) was used to rearrange the mesh and convert tetra-
hedral elements to hexahedral elements that allowed our C++ code to efficiently perform
the necessary calculations for stress and deformation analysis.

3.8.4 Simulation

To obtain displacement and stress, simulations of each CAD model of the Medical oxy-
gen cylinder was run on C++ code, which was based on the deal.ii library. For simple
geometries, simple program utilizing the shared memory system was successful. How-
ever, for actual cylinder CAD model, this program failed to converge due to the lack of
enough memory. To this end,the distributed memory system using MPI into the program
was incorporated. Nevertheless, stress calculation part could not be included into this
code. Thus, only displacement in case of real cylinder was computed. The simulation part
was done for three levels of geometry: Actual cylinder, Simplified cylinder and Hollow
cylinder. For hollow cylinder (only cylindrical section), number of elements being com-
paratively small, both stresses and displacements were calculated. But for simplified and
actual cylinder only displacements were calculated. We simulated our code for following
material properties:

• 34Mn2V (λ = 106.3 GPa, µ = 71.154 GPa)

• 34CrMo4 (λ = 105.44 GPa, µ = 76.356 GPa)

• 37MnSi5 (λ = 118.84 GPa, µ = 79 GPa)

The boundary conditions applied in the simulation model included a fixed bottom sur-
face and a pressure of 150 bar on the internal surfaces. The fixed bottom surface was
implemented to prevent any movement or displacement of the system, while the 150 bar
(15MPa) pressure on the internal surfaces provided a realistic representation of the oper-
ating conditions.

In this way, a number of simulations were conducted in our program. For deflection, C++
codes incorporating both shared memory system and distributed memory were able to be
developed. However, for stress calculation, only shared memory system was used on a
simple code. These simulations allowed to accurately model the behavior of the cylinder
under different loads and conditions, and provided detailed information on its structural
integrity and performance.The code developed for simulation are provided in APPENDIX
B. First section of appendix gives code for stress and deformation calculation using shared

27

Institute of Engineering, Central Campus Pulchowk BE Project Report

memory only and second section of appendix is about calculation of deformation by MPI.

3.8.5 Visualization

In order to visualize the simulation results, an open-source data visualization software,
ParaView was used

3.9 Parametrization

The geometry of model was varied by adjusting the thickness of the cylinder, as well as
testing the impact of different material properties on maximum hoop stress and maximum
deformation. By simulating the model with these varying parameters, ability to better un-
derstanding of how changes in geometry and materials impacted the overall performance
and safety of the Medical oxygen cylinder. These simulations allowed to optimize the de-
sign of the cylinder and ensure that it met all necessary performance and safety standards.

3.10 Verification and Validation

In the verification and validation section, results from the program simulation and theo-
retical calculations were compared and contrasted. In order to compare the results, the
deformation and stress in the mid-section of the cylinder were taken into consideration.
To further ensure the correctness of program, ANSYS simulation was conducted side-by-
side. After a number of iterations and update, the results and the program were verified
and validated.

3.11 Conclusion

After the careful examination of simulation results, conclusions were drawn about the
strength and safety of the MOC for different materials and thicknesses. With this, docu-
mentation of the project was proceeded.

28

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 Hollow Cylinder

Hollow cylinder of different thickness i.e.,5.4, 5.5 and 5.6mm are assigned different ma-
terials and simulated in code as well as in ANSYSMechanical,and following results were
obtained. Further error on Hoop stress was calculated for deal.ii simulation with compar-
ison to analytical calculation.

Table 4.1: Comparison of simulation results for Hollow Cylinder

From the above table, error in Hoop stress is calculated by deal.ii simulation is under one
percent (average error is 0.75 %) in comparison with theoretical calculation. Also the
results from the deal.ii program has a close match with the result obtained with ANSYS
simulations. The analysis revealed that our calculations were within a small margin of
error compared to the commercial software, indicating the reliability of our methodology.
This comparison of results of deal.ii based simulation to analytical calculation and AN-
SYS further provided a rigid belief that the algorithm used in this project work produces
accurate results. It is also expected that the code works for all similar kind of geometrical
interfaces as well as the code can be manipulated to work for different geometries.

Also. the deal.ii based code provided can be accessed and simulated for thin cylindrical
geometries for various materials to understand further about the influence of materials to
the deformation and stress so that a step toward optimization of material can be initiated.
To better understand the relationship between material as well as geometric properties, it
was plotted in figures 4.1 and 4.2.

29

Institute of Engineering, Central Campus Pulchowk BE Project Report

Figure 4.1: Hoop stress vs thickness for hollow cylinder

Figure 4.2: Deformation vs thickness for hollow cylinder

From the plot of thickness and hoop stress, it is clear that the stress is independent of
choice of material and decreases with increase in thickness which perfectly aligned with
theory that the stresses in thin wall cylinder is irrespective of material but is inversely
proportional to thickness of section. Similarly, when the deformation vs thickness plot is
analyzed it was found that the deformation also decreases with increase in thickness of
the wall. When both of plots are generalized explicitly, a idea of relationship between
hoop stress and deformation can be pictured mentally. Simply the relation of stress seems
linearly proportional with deformation, this fact can be used when we have deformation to
compare but no stresses values are provided. From the deformation vs thickness plot 4.2,
the material 34Mn2V suffer from largest deformation whilst 37MnSi5 undergoes through
the smallest deformation for the same thickness, and loading conditions, so the material
37MnSi5 could be more reliable to use for production of thin wall cylinders whose func-
tionality are to provide a high pressure resistant work.

30

Institute of Engineering, Central Campus Pulchowk BE Project Report

4.2 Simplified Cylinder

For the computational ease, simplified oxygen cylinder was simulated under different ma-
terial and geometrical properties. The comparison of maximum deformations obtained
from deal.ii and ANSYS simulation is shown in table 4.2 below:

Table 4.2: Comparison of max. deformation (in mm) for simplified cylinder

It is to be noted that the % difference is obtained from dividing the difference by the
ANSYS result in the table 4.2. It is evident that the results by open source simulation and
ANSYS simulation are in close proximity. Moreover, they also agree on the distribution
of deformation and location of maximum deformation on cylinder body which is inferred
from the figures 4.3 and 4.4. Maximum deformation appears on the region of top head
near the neck section. Thus, it can be concluded that the consideration of neck and head
region is very crucial in designing a oxygen or pressurized gas cylinder.

Figure 4.3: Displacement result from ANSYS(34Mn2V, 5.5mm)

31

Institute of Engineering, Central Campus Pulchowk BE Project Report

Figure 4.4: Displacement result from deal.ii (34Mn2V, 5.5mm)

Figure 4.5: Deformation vs thickness for simplified cylinder

The maximum deformation vs thickness plot for different materials as shown in figure 4.5
suggest that the maximum deformation decreases for increasing thickness for all materials,
also the correlation between maximum deformation and thickness seems linear as in the
case of hollow cylinder. In sum up, it is found that cylinder made up of material 34Mn04
with thickness 5.6 mm is most safe with least deformation while that of 37MnSi5 with
thickness 5.4 mm is relatively least safe.

32

Institute of Engineering, Central Campus Pulchowk BE Project Report

4.3 Actual Cylinder

Actual model of oxygen cylinder was simulated under different material conditions for
a nominal thickness of 6mm.The comparison for maximum deformation obtained from
deal.ii and ANSYS Simulation is shown in Table below:

Table 4.3: Comparison of deformation (in mm) of actual cylinder

From the table, it is again found that the maximum deformation by deal.ii simulation
and ANSYS simulation are quiet similar(within 6% difference range) as well as also the
distribution of deformation and location of maximum deformation on cylinder body are
similar for both which are shown in figures 4.6 and 4.7.

Figure 4.6: Displacement result from ANSYS (37MnSi5)

Figure 4.7: Displacement result from deal.ii (37MnSi5)

33

Institute of Engineering, Central Campus Pulchowk BE Project Report

The results for other materials are placed in APPENDIX F. In all of the results the maxi-
mum deformation obtained was about 0.5mm which is very insignificant as compared to
overall body dimension. This indicated that MOC is safe in 150 bar pressure . Neverthe-
less, in order to predict further about failure or safety we need to analyse the maximum
and Von-misses stresses. But for actual real model, stress could not be calculated so, this
remains as a part of shortcoming of this project. This was due to limit of computational
power and time available. It also hampered the computation for actual oxygen cylinder
model for different thicknesses. So, simulation was done for only one thickness for de-
formation whilst assigning different material properties.

Although the stress was not calculated in actual MOCmodel and simplified Model, it was
done for hollow cylindermodel which is a section of oxygen cylinder itself i.e., dimensions
of cylinder are similar and just head and bottom profile are removed. From the comparison
of simulation results in case of hollow cylinder, the program was verified. It was evident
that the deformation was quiet similar for simplified and hollow cylinder and a little bit
less in actual MOC. Also, hoop stress for all of them were found to be almost identical
whilst the axial stress is very less in hollow cylinder as compared with that of actual and
simplified MOC. In sum up, hoop stress was in the range of 300-350 Mpa and the axial
stress was in the range of 130-180 Mpa manifesting that for thin-wall cylinder axial stress
is half of the hoop stress. From these analyses, it was concluded that none of the geometry
suffer maximum stress greater than 400 Mpa. Since, all the materials have Yield Stress of
about 450 Mpa, this assured the safety of the vessel. From the results, it was inferred that
MOCs are safe under working pressure of 150 bar.

34

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, this project successfully demonstrated the use of a deal.ii based program
for analyzing stress and deformation on an oxygen cylinder. The methodology involved
verification of the program by comparing the results with that of ANSYS and theoretical
calculations in case of simple hollow cylinder in which maximum error was found to
be 0.875 %. After that, the program was used to simulate the actual cylinder in which
maximum deformation in the cylinder was found to be 0.44395 mm in case of 34Mn2V
material with thickness 5.6 mm. For different materials, the simulation was repeated.

The findings of this project have important implications for the field of engineering and
materials science, particularly for the design of safer and more efficient oxygen cylinders.
The ability to accurately predict the stress and deformation on the cylinder can help en-
gineers better understand the behavior of these cylinders under different conditions, such
as changes in pressure or temperature, and design them accordingly. Additionally, the
use of a deal.ii-based code for such simulations can be a valuable tool for researchers and
engineers in various industries.

However, it is important to note that this project is not without its limitations. The simula-
tions were conducted under certain assumptions and simplifications, and it is possible that
more complex real-world scenarios may yield different results. Furthermore, the use of
different simulation tools and software may also yield different results, and further stud-
ies can be conducted to compare the performance of different simulation tools for this
application.

In conclusion, this project successfully demonstrated the use of a deal.ii-based code for
analyzing stress and deformation on an oxygen cylinder. The results showed that the code
was a reliable tool for simulating stress and deformation on the cylinder, and the findings
have important implications for the field of engineering and materials science. Future
studies can build upon these findings and further investigate the performance of different
simulation tools and software for this application.

5.2 Recommendation

From the perspective of entire project work , concluding remarks and literature review,
some recommendations were put forward to researchers,students or those who are inter-
ested in Finite analysis ,Oxygen Cylinder,Open Source Implementation.These recommen-
dation can encourage readers to further investigate and build upon the findings of this
study, ultimately contributing to a better understanding of the behavior of oxygen cylin-

35

Institute of Engineering, Central Campus Pulchowk BE Project Report

ders and their optimization for use in various industries. The recommendations are:

1. Use of alternative simulation tools:
While the deal.ii-based code was found to be a reliable tool for simulating stress
and deformation on an oxygen cylinder, it may be worthwhile to investigate the use
of other simulation tools and software for this application. This can help validate
the results obtained from the current simulation and provide a more comprehensive
understanding of the behavior of oxygen cylinders under different conditions.

2. Conducting experimental studies:
While simulations can provide valuable insights into the behavior of oxygen cylin-
ders, they may not always accurately represent real-world scenarios. Therefore, it
may be worthwhile to conduct experimental studies to validate the findings obtained
from the simulations and provide more accurate data for future analysis.

3. Optimization of cylinder design:
The insights obtained from this study can be used to optimize the design of oxygen
cylinders, making them safer and more efficient. Future studies can focus on in-
corporating different design features to enhance the performance of these cylinders
under different conditions.

4. Investigation of other cylinder materials:
This study focused on analyzing stress and deformation on an oxygen cylinder made
from a specific set materials. However, it may be worthwhile to investigate the be-
havior of cylinders made from other materials like aluminium alloy , as the findings
may differ depending on the material properties.

5. Further investigation into the effect of environmental conditions:
The simulations conducted in this study assumed certain environmental conditions
(Standard normal temperature and pressure). Future studies can investigate the ef-
fect of changes in environmental conditions such as temperature, humidity, and
pressure on the stress and deformation of oxygen cylinders.

36

REFERENCES

Abdussalam. (2006). Finite element analysis of the design and manufacture of thin-walled
pressure vessels used as aerosol cans.

Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier,
M., Pelteret, J.-P., Turcksin, B., & Wells, D. (2021a). The deal.ii finite element
library: Design, features, and insights [Development and Application of Open-
source Software for Problems with Numerical PDEs]. Computers Mathematics
with Applications, 81, 407–422. https://doi.org/https://doi.org/10.1016/j.camwa.
2020.02.022

Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier, M.,
Pelteret, J.-P., Turcksin, B., &Wells, D. (2021b). The deal.II finite element library:
Design, features, and insights. Computers & Mathematics with Applications,
81, 407–422. https://doi.org/10.1016/j.camwa.2020.02.022

Arndt, D., Bangerth, W., Heltai, K., Maier, M., pelteret, T., &Wells, O. (2022). The deal.ii
finite element library. https://www.dealii.org (accessed: 01.04.2022)

Bangerth, W., Hartmann, R., & Kanschat, G. (2007). Deal.ii—a general-purpose object-
oriented finite element library. ACM Trans. Math. Softw., 33, 24.

Bultel, H., & Vogt, J.-B. (2010). Influence of heat treatment on fatigue behaviour of 4130
aisi steel [Fatigue 2010]. Procedia Engineering, 2(1), 917–924. https://doi.org/
https://doi.org/10.1016/j.proeng.2010.03.099

Chaves, E. W. (2013). Notes on continuum mechanics (1st ed.). International Center for
Numerical Methods in Engineering (CIMNE).

Cinatl, E. (2018). Finite element discretizations for linear elasticity. All Theses. https :
//tigerprints.clemson.edu/all_theses/2977

Das, P., & Islam, M. S. (2019). Structural analysis of a thick-walled pressure vessel using
fem. Journal of Engineering Science, 10(2), 69–78. https://www2.kuet.ac.bd/JES/

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-d finite element mesh generator with
built-in pre- and post-processing facilities. International Journal for Numerical
Methods in Engineering, 79(11), 1309–1331. https://doi.org/https://doi.org/10.
1002/nme.2579

Ioannis Koutromanos, J. M., & Roy, C. (2018). Fundamentals of finite element analysis:
Linear finite element analysis (1st ed.). Wiley.

Kronbichler, M., & Kormann, K. (2012). A generic interface for parallel cell-based finite
element operator application. Computers & Fluids, 63, 135–147.

Li, Y., Fang, W., Lu, C., Gao, Z., Ma, X., Jin, W., Ye, Y., & Wang, F. (2019). Mi-
crostructure and mechanical properties of 34crmo4 steel for gas cylinders formed

37

https://doi.org/https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/10.1016/j.camwa.2020.02.022
https://www.dealii.org
https://doi.org/https://doi.org/10.1016/j.proeng.2010.03.099
https://doi.org/https://doi.org/10.1016/j.proeng.2010.03.099
https://tigerprints.clemson.edu/all_theses/2977
https://tigerprints.clemson.edu/all_theses/2977
https://www2.kuet.ac.bd/JES/
https://doi.org/https://doi.org/10.1002/nme.2579
https://doi.org/https://doi.org/10.1002/nme.2579

Institute of Engineering, Central Campus Pulchowk BE Project Report

by hot drawing and flow forming. Materials, 12, 1351. https://doi.org/10.3390/
ma12081351

Macwan, S. P., Hu, Z., & Delfanian, F. (2011). Experimental verification of model pres-
surized thick-walled cylinder with numerical and theoretical methods. Volume 8:
Mechanics of Solids, Structures and Fluids; Vibration, Acoustics and Wave Prop-
agation, 173–178. https://doi.org/10.1115/IMECE2011-65763

martemyev. (2013). Tethex [January, 2023]. https://github.com/martemyev/tethex
Mirzaei, M. (2008). Failure analysis of an exploded gas cylinder. Enegineering Failure

Analysis, 15(7), 289–305. https://doi.org/https://doi.org/10.1016/j.engfailanal.
2007.11.005

Mohamed, A. (2018). Finite element analysis for stresses in thin-walled pressurized steel
cylinders.

NendraWibawa, L. A., Diharjo, K., Raharjo, W.W., & H. Jihad, B. (2021). Stress analysis
of thick-walled cylinder for rocket motor case under internal pressure. Journal of
Advanced Research in Fluid Mechanics and Thermal Sciences, 70(2), 106–115.
https://akademiabaru.com/submit/index.php/arfmts/article/view/2958

P. Palanivelu, R. S. P. (2017). A paper on design and analysis of pressure vessel. Interna-
tional Journal of Engineering Research & Technology (IJERT), 06. http://dx.doi.
org/10.17577/IJERTV6IS060424

Rangari, L. D. (2012). Finite element analysis of lpg gas cylinder. International Journal
of Applied Research in Mechanical Engineering, 2. https : / /doi .org /10 .47893/
IJARME.2012.1055

Wang, H., Yao, X., Li, L., Sang, Z., & Krakauer, B. W. (2017). Full length article. Thin-
Walled Structures, 113(100), 104–110. https://doi.org/10.1016/j.tws.2017.01.018

Wang, H., Zheng, T., Sang, Z., & Krakauer, B. (2021). Burst pressures of thin-walled
cylinders constructed of steel exhibiting a yield plateau. International Journal of
Pressure Vessels and Piping, 193, 104483. https://doi.org/https://doi.org/10.1016/
j.ijpvp.2021.104483

Yin, Z., Su, T., & He, M. (2019). Gas packaging container based on ansys finite element
analysis and structural optimization design. Journal of Physics: Conference Series,
1187, 032089. https://doi.org/10.1088/1742-6596/1187/3/032089

38

https://doi.org/10.3390/ma12081351
https://doi.org/10.3390/ma12081351
https://doi.org/10.1115/IMECE2011-65763
https://github.com/martemyev/tethex
https://doi.org/https://doi.org/10.1016/j.engfailanal.2007.11.005
https://doi.org/https://doi.org/10.1016/j.engfailanal.2007.11.005
https://akademiabaru.com/submit/index.php/arfmts/article/view/2958
http://dx.doi.org/10.17577/IJERTV6IS060424
http://dx.doi.org/10.17577/IJERTV6IS060424
https://doi.org/10.47893/IJARME.2012.1055
https://doi.org/10.47893/IJARME.2012.1055
https://doi.org/10.1016/j.tws.2017.01.018
https://doi.org/https://doi.org/10.1016/j.ijpvp.2021.104483
https://doi.org/https://doi.org/10.1016/j.ijpvp.2021.104483
https://doi.org/10.1088/1742-6596/1187/3/032089

APPENDIX A: MATHEMATICAL DERIVATION

Strong Form

Suppose we have a three-dimensional solid elastic body. The body is subjected to body
forces b⃗ acting in the domain denoted by Ω and traction t⃗ on the boundary denoted by
Γt with displacements d⃗ assigned on the boundary denoted by Γd as shown in figure A.1
below.

Figure A.1: Solid Body

To derive the governing equation, we consider a small cuboid element inside the domain.
The stresses and body forces on the cuboid are acting as shown in figure A.2.

Stresses Body Forces

Figure A.2: Cuboid element

39

Institute of Engineering, Central Campus Pulchowk BE Project Report

We can obtain three equilibrium equations for the element,

{(σxx +∆σxx)− σxx} ·∆y∆z + {(σxy +∆σxy)− σxy} ·∆x∆z+

{(σxz +∆σxz)−σxz} ·∆x∆y + bx ·∆x∆y∆z = 0

{(σyx +∆σyx)− σyx} ·∆y∆z + {(σyy +∆σyy)− σyy} ·∆x∆z+

{(σyz +∆σyz)−σyz} ·∆x∆y + by ·∆x∆y∆z = 0

{(σzx +∆σzx)− σzx} ·∆y∆z + {(σzy +∆σzy)− σzy} ·∆x∆z+

{(σzz +∆σzz)−σzz} ·∆x∆y + bz ·∆x∆y∆z = 0

Expanding and then dividing each equation by the volume of the element, i.e. ∆x∆y∆z,

∆σxx

∆x
+

∆σxy

∆y
+

∆σxz

∆z
+ bx = 0

∆σyx

∆x
+

∆σyy

∆y
+

∆σyz

∆z
+ by = 0

∆σzx

∆x
+

∆σzy

∆y
+

∆σzz

∆z
+ bz = 0

Now, if we take the limit i.e. lim∆x→0, lim∆y→0, and lim∆z→0, we get,

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
+ bx = 0

∂σyx

∂x
+

∂σyy

∂y
+

∂σyz

∂z
+ by = 0

∂σzx

∂x
+

∂σzy

∂y
+

∂σzz

∂z
+ bz = 0

In vector notation,

∇⃗ · σ⃗x + bx = 0

∇⃗ · σ⃗y + by = 0

∇⃗ · σ⃗z + bz = 0

which can be written as,
div(σ(u⃗)) + b⃗ = 0

This is the governing equation for the domain. We need to get the governing equation for
entire closed domain, i.e. Ω̄ = Ω ∪ Γ.
For the boundary with traction, consider a tetrahedral element with the diagonal face align-
ing with the boundary surface Γt. The stresses and prescribed traction are acting on the
element as shown in figure A.3. Before proceeding with derivation, we consider the vector

40

Institute of Engineering, Central Campus Pulchowk BE Project Report

surface on which traction acts, is ∆S⃗ with direction cosines nx, ny, and nz such that,

∆Sx = ∆S · nx

∆Sy = ∆S · ny

∆Sz = ∆S · nz,where, ∆S = |∆S⃗|

Stresses Tractions

Figure A.3: Tetrahedral element

Now, for tetrahedral element, three equilibrium equations are as follows,

−σxx ·∆Sx − σxy ·∆Sy − σxz ·∆Sz + tx ·∆S = 0

−σyx ·∆Sx − σyy ·∆Sy − σyz ·∆Sz + ty ·∆S = 0

−σzx ·∆Sx − σzy ·∆Sy − σzz ·∆Sz + tz ·∆S = 0

Dividing each term by ∆S, we get,

−σxx ·
∆Sx

∆S
− σxy ·

∆Sy

∆S
− σxz ·

∆Sz

∆S
+ tx· = 0

−σyx ·
∆Sx

∆S
− σyy ·

∆Sy

∆S
− σyz ·

∆Sz

∆S
+ ty· = 0

−σzx ·
∆Sx

∆S
− σzy ·

∆Sy

∆S
− σzz ·

∆Sz

∆S
+ tz· = 0

Substituting the expressions of direction cosines, we get,

−σxx · nx − σxy · ny − σxz · nz + tx = 0

−σyx · nx − σyy · ny − σyz · nz + ty = 0

−σzx · nx − σzy · ny − σzz · nz + tz = 0

41

Institute of Engineering, Central Campus Pulchowk BE Project Report

Now, rearranging and writing each equation in vector notation,

σ⃗x · n⃗ = tx

σ⃗y · n⃗ = ty

σ⃗z · n⃗ = tz

In more compact form,
σ(u⃗) · n⃗ = t⃗

Finally, for boundary Γd, where displacements are specified, following relation can be
written,

ux = dx

uy = dy

uz = dz

In vector notation,
u⃗ = d⃗

Finally, the strong form for the small displacement three-dimensional linear elasticity
problem with Neumann and Dirichlet boundary conditions is,
Given b⃗ : Ω → R3, d⃗ : Γd → R3, t⃗ : Γt → R3, find u⃗ : Ω̄ → R3 such that,

−div(σ(u⃗)) = b⃗ in Ω

u⃗ = d⃗ on Γd

σ(u⃗) · n⃗ = t⃗ on Γt

42

Institute of Engineering, Central Campus Pulchowk BE Project Report

Weak Form

In order to be able to work with Finite Element Method, we need to obtain the weak form
of the governing equations derived. We take the vector product of strong formwith the test
function vector v⃗ belonging to the Hilbert Space H and integrate the equation for entire
domain, we get,

−
∫
Ω

div(σ(u⃗)) · v⃗ =

∫
Ω

b⃗ · v⃗∫
Ω

σ(u⃗) : ∇v⃗ −
∫
Γ

(σ(u⃗) · n⃗) · v⃗ =

∫
Ω

b⃗ · v⃗∫
Ω

σ(u⃗) : ∇v⃗ −
∫
Γd

(σ(u⃗) · n⃗) · v⃗ −
∫
Γt

(σ(u⃗) · n⃗) · v⃗ =

∫
Ω

b⃗ · v⃗∫
Ω

σ(u⃗) : ∇v⃗ −
∫
Γt

t⃗ · v⃗ =

∫
Ω

b⃗ · v⃗∫
Ω

σ(u⃗) : ∇v⃗ =

∫
Γt

t⃗ · v⃗ +
∫
Ω

b⃗ · v⃗

In bi-linear form,
a(u⃗, v⃗) = (⃗t, v⃗)Γt + (⃗b, v⃗)

In this way, weak form of the problem is,
Given b⃗ : Ω → R3, d⃗ : Γd → R3, t⃗ : Γt → R3, find u⃗ : Ω̄ → R3 such that for v⃗ ∈ H,

a(u⃗, v⃗) = (⃗t, v⃗)Γt + (⃗b, v⃗) in Ω

Note:

a(u⃗, v⃗) =

∫
Ω

σ(u⃗) : ∇v⃗

=

∫
Ω

σ(u⃗) : ε(v⃗)

=

∫
Ω

(λ (div u⃗) I + 2µε(u⃗)) : ε(v⃗)

=

∫
Ω

λ (div u⃗) I : ε(v⃗) + 2µε(u⃗) : ε(v⃗)

=

∫
Ω

λ (div u⃗) (div v⃗) + 2µε(u⃗) : ε(v⃗) (Cinatl, 2018)

43

Institute of Engineering, Central Campus Pulchowk BE Project Report

Finite Element Approximation

Since, workingwith infinite-dimensional solution is difficult and not feasible and so on, we
take the subset of the infinite-dimensional Hilbert space, i.e., we consider finite numbers
of nodes. The domain is discretized into small finite numbers of elements. This discretized
domain is called mesh. Thus, considering N nodes, vector-valued approximated solution
and test function (global) are re-written as,

u⃗ ≈ u⃗h =

uh
x =

∑N
i=0 Uixϕi(x)

uh
y =

∑N
j=0 Ujyϕj(y)

uh
z =

∑N
k=0 Ukyϕk(z)

 and v⃗ ≈ v⃗h =

vhx =

∑N
i=0 Vixϕi(x)

vhy =
∑N

j=0 Vjyϕj(y)
vhz =

∑N
k=0 Vkzϕk(z)

In deal.ii, this is achieved in following manner„
We express vector-valued basis function as,

Φi(x) = ϕi(x) ecomp(i)

Thus, vector-valued test function can be represented as,

v⃗h =

ϕ0 0 0 ϕ3 0 0 ϕ6 0 · · · 0

0 ϕ1 0 0 ϕ4 0 0 ϕ7 · · · 0

0 0 ϕ2 0 0 ϕ5 0 0 · · · ϕ3N−1

 ∗

V0

V1

V2

...
V3N−3

V3N−2

V3N−1

Similarly, solution vector can be represented as,

u⃗h =

ϕ0 0 0 ϕ3 0 0 ϕ6 0 · · · 0

0 ϕ1 0 0 ϕ4 0 0 ϕ7 · · · 0

0 0 ϕ2 0 0 ϕ5 0 0 · · · ϕ3N−1

 ∗

U0

U1

U2

...
U3N−3

U3N−2

U3N−1

where,N is the number of nodes. It is to be noted that each consecutive set of three values

44

Institute of Engineering, Central Campus Pulchowk BE Project Report

in the coefficient column vector represents vector displacement at the corresponding node.
For example, the set (U0, U1, U2) represents vector displacement at node 0.
In sum up, the solution in deal.ii is approximated as ,

u⃗(x) ≈ u⃗h(x) =
∑
j

Φj(x) Uj

Also, the test function is approximated as,

v⃗(x) ≈ v⃗h(x) =
∑
i

Φi(x) Vi

Substituting these expressions, we get,

a(u⃗, v⃗) ≈ a(u⃗h, v⃗h)

=

∫
Ω

λ
(
div u⃗h

)(
div v⃗h

)
+ 2µε(u⃗h) : ε(v⃗h)

= λ

∫
Ω

div

(∑
j

ΦjUj

)
div

(∑
i

ΦiVi

)
+ 2µ

∫
Ω

ε

(∑
j

ΦjUj

)
ε

(∑
i

ΦiVi

)

=
∑
i

∑
j

[
λ

∫
Ω

(div Φi)(div Φj) + 2µ

∫
Ω

ε (Φi) : ε (Φj)

]
UjVi

And,

(⃗t, v⃗)Γt ≈ (⃗t, v⃗h)Γt

=

∫
Γt

t⃗ ·
∑
i

ΦiVi

=
∑
i

[∫
Γt

t⃗ · Φi

]
Vi

Also,

(⃗b, v⃗) ≈ (⃗b, v⃗h)

=

∫
Ω

b⃗ ·
∑
i

ΦiVi

=
∑
i

[∫
Ω

b⃗ · Φi

]
Vi

45

Institute of Engineering, Central Campus Pulchowk BE Project Report

Finally, the approximated weak form becomes,

a(~uh, ~vh) = (~t, ~vh)Γt
+ (~b, ~vh)∑

i

∑
j

[
λ

∫
Ω

(div Φi)(div Φj) + 2µ

∫
Ω

ε (Φi) : ε (Φj)

]
UjVi =

∑
i

[∫
Γt

~t · Φi

]
Vi +

∑
i

[∫
Ω

~b · Φi

]
Vi

∑
i

∑
j

[
λ

∫
Ω

(div Φi)(div Φj) + 2µ

∫
Ω

ε (Φi) : ε (Φj)

]
Uj

Vi =
∑
i

[[∫
Γt

~t · Φi

]
+

[∫
Ω

~b · Φi

]]
Vi

∑
i

[∑
j

[
λ

∫
Ω

(div Φi)(div Φj) + 2µ

∫
Ω

ε (Φi) : ε (Φj)

]
Uj =

[∫
Γt

~t · Φi

]
+

[∫
Ω

~b · Φi

]]
Vi

By definition, Vi cannot be zero for all j from 0 to 3N-1, thus column vector {V } cannot
be zero. Therefore, for i = 0 to 3N − 1, the expression inside the big brackets must be
valid, i.e.,
for i = 0 to 3N − 1, ∑

j

AijUj = Fi

In matrix form ,
AU = F

Where,

Aij = λ

∫
Ω

(div Φi)(div Φj) + 2µ

∫
Ω

ε (Φi) : ε (Φj)

= λ
∑
k,l

(∂l(Φi)l, ∂k(Φj)k)Ω + 2µ ∗

(
1

2

(∑
k,l

(∂k(Φi)l, ∂k(Φj)l)Ω +
∑
k,l

(∂k(Φi)l, ∂l(Φj)k)Ω

))

= λ
∑
k,l

(∂l(Φi)l, ∂k(Φj)k)Ω + µ

(∑
k,l

(∂k(Φi)l, ∂k(Φj)l)Ω +
∑
k,l

(∂k(Φi)l, ∂l(Φj)k)Ω

)
=

∑
k,l

(λ∂l(Φi)l, ∂k(Φj)k)Ω +
∑
k,l

(µ∂k(Φi)l, ∂k(Φj)l)Ω +
∑
k,l

(µ∂k(Φi)l, ∂l(Φj)k)Ω

=
∑
k,l

{(λ∂l(Φi)l, ∂k(Φj)k)Ω + (µ∂k(Φi)l, ∂k(Φj)l)Ω + (µ∂k(Φi)l, ∂l(Φj)k)Ω}

here, l and k run through 0 to dim-1.
Similarly,

Fi =

∫
Γt

t⃗ · Φi +

∫
Ω

b⃗ · Φi

=
∑
l

(tl, (Φi)l)Γt
+
∑
l

(bl, (Φi)l)Ω

=
∑
l

{(tl, (Φi)l)Γt
+ (bl, (Φi)l)Ω}

46

Institute of Engineering, Central Campus Pulchowk BE Project Report

Now, for each cell K ∈ T ≈ Ω and the cell face X ∈ Tb ≈ Γt, local cell matrix and
right hand side vectors are given by,

AK
ij =

∑
k,l

{(λ∂l(Φi)l, ∂k(Φj)k)K + (µ∂k(Φi)l, ∂k(Φj)l)K + (µ∂k(Φi)l, ∂l(Φj)k)K}

=
(
λ∂comp(i)ϕi, ∂comp(j)ϕj

)
K
+
∑
l

(µ∂lϕi, ∂lϕj)K δcomp(i),comp(j) +
(
µ∂comp(j)ϕi, ∂comp(i)ϕj

)
K

=
(
λ∂comp(i)ϕi, ∂comp(j)ϕj

)
K
+ (µ∇ϕi,∇ϕj)K δcomp(i),comp(j) +

(
µ∂comp(j)ϕi, ∂comp(i)ϕj

)
K

=
(
λ∂comp(i)ϕi, ∂comp(j)ϕj

)
K
+
(
µ∂comp(j)ϕi, ∂comp(i)ϕj

)
K
+ (µ∇ϕi,∇ϕj)K δcomp(i),comp(j)

It should be noted that for local cell matrix, i and j run through 0 to 3 · n − 1 where n is
the no. of nodes on the cell.
And,

FK
i =

∑
l

{(tl, (Φi)l)X + (bl, (Φi)l)K}

=
∑
l

(tl, (Φi)l)X +
∑
l

(
bl, ϕiδl,comp(i)

)
K

=
(
tcomp(i), ϕi

)
X
+
(
bcomp(i), ϕi

)
K

Quadrature

Since integration on real cell is difficult, we use mapping to compute the integration. In
this, we map the real cell to the reference cell using Jacobian,
Reference (parent) cell is just tri-unit cube. Since, the integral limits are from -1 to 1, now
we can use Gauss Quadrature formula to calculate the integration numerically.

(
λ∂comp(i)ϕi, ∂comp(j)ϕj

)
K

≈
∑
q

λ
(
∂comp(i)ϕi(q)

) (
∂comp(j)ϕj(q)

)
JxW(q)

µ
(
∂comp(j)ϕi, ∂comp(i)ϕj

)
K

≈
∑
q

µ
(
∂comp(j)ϕi(q)

) (
∂comp(i)ϕj(q)

)
JxW(q)

(µ∇ϕi,∇ϕj)K δcomp(i),comp(j) ≈
∑
q

µ (∇ϕi(q)∇ϕj(q))K δcomp(i),comp(j)JxW(q)

(
tcomp(i), ϕi

)
X

≈
∑
qf

(
tcomp(i)ϕi(qf)

)
JxW(qf)

(
bcomp(i), ϕi

)
K

≈
∑
q

(
bcomp(i)ϕi(q)

)
JxW(q)

where, JxW(q) is the product of determinant of Jacobian and the weights corresponding
to the quadrature point q.

47

Institute of Engineering, Central Campus Pulchowk BE Project Report

In the problem, traction is that of pressure, i.e.,

t⃗ = −P · n⃗

where, P is the pressure acting on the surface and n⃗ is the normal surface vector of the
surface. Thus, traction is the pressure acting on the surface normally.
Then, ∑

qf

(
tcomp(i)ϕi(qf)

)
JxW(q) =

∑
qf

(
−P · ncomp(i)ϕi(qf)

)
JxW(q)

Substituting the expressions,

AK
ij =

∑
q

{λ
(
∂comp(i)ϕi(q)

) (
∂comp(j)ϕj(q)

)
+ µ

(
∂comp(j)ϕi(q)

) (
∂comp(i)ϕj(q)

)
+

µ (∇ϕi(q)) (∇ϕj(q)) δcomp(i),comp(j)}JxW(q)

Also,

FK
i =

∑
qf

(
−P · ncomp(i)ϕi(qf)

)
JxW(qf) +

∑
q

(
bcomp(i)ϕi(q)

)
JxW(q)

where qf refers to the quadrature points on the face of the cell.

Stress Calculation

The constitutive relation between the stress and strain is,

σ(u⃗) = C : ε(u⃗)

where, C is rank-4 coefficient(stress-strain) tensor, and ε(u⃗) is strain.
For isotropic material, elements of coefficient tensor are given by,

cijkl = λδijδkl + µ (δikδjl + δilδjk)

where, δij’s are Kronecker delta functions. And the strain is given by,

ϵ(u⃗)kl =
1

2
(∂ku⃗l + ∂lu⃗k)

In tensorial notation:
ε(u⃗) =

1

2

(
∇u⃗+ (∇u⃗)T

)

48

Institute of Engineering, Central Campus Pulchowk BE Project Report

Stress transformation

Since, the formulation is worked on cartesian coordinate system, we need to transform the
stress into polar coordinate system to obtain hoop and radial stresses.
For this, a transformation matrix is constructed,

P =

 cosθ sinθ 0

−sinθ cosθ 0

0 0 1

where, θ = arctan y

x
.

Therefore, if the stress in cartesian coordinate system is,

σC =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

and stress in polar coordinate system is,

σP =

σrr σrθ σrz

σθr σθθ σθz

σzr σzθ σzz

then, the transformation relation is given by,

σP = [P][σC][P]T

Accessing the diagonal elements of σP gives the radial stress, hoop stress and axial stress
respectively.

49

APPENDIX B: CODE FOR SIMULATION

Code For Deformation and Stress

1 #include <deal.II/base/symmetric_tensor.h>
2 #include <deal.II/base/tensor.h>
3 #include<deal.II/base/timer.h>
4 #include <deal.II/base/quadrature_lib.h>
5 #include <deal.II/base/function.h>
6 #include <deal.II/base/tensor.h>
7 #include<deal.II/physics/transformations.h>
8 #include <deal.II/lac/vector.h>
9 #include <deal.II/lac/full_matrix.h>
10 #include <deal.II/lac/sparse_matrix.h>
11 #include <deal.II/lac/dynamic_sparsity_pattern.h>
12 #include <deal.II/lac/solver_cg.h>
13 #include <deal.II/lac/precondition.h>
14 #include <deal.II/lac/affine_constraints.h>
15 #include <deal.II/grid/tria.h>
16 #include <deal.II/grid/grid_generator.h>
17 #include <deal.II/grid/grid_refinement.h>
18 #include <deal.II/dofs/dof_handler.h>
19 #include <deal.II/dofs/dof_tools.h>
20 #include <deal.II/fe/fe_values.h>
21 #include <deal.II/numerics/vector_tools.h>
22 #include <deal.II/numerics/matrix_tools.h>
23 #include <deal.II/numerics/data_out.h>
24 #include <deal.II/numerics/error_estimator.h>
25 #include <deal.II/fe/fe_system.h>
26 #include <deal.II/fe/fe_q.h>
27 #include <fstream>
28 #include <iostream>
29 #include <vector>
30 #include <algorithm>
31

32 namespace Program
33 {
34 using namespace dealii;
35

36 template <int dim>
37 SymmetricTensor<4, dim> get_stress_strain_tensor(const double lambda,
38 const double mu)
39 {
40 SymmetricTensor<4, dim> tmp;
41 for (unsigned int i = 0; i < dim; ++i)
42 for (unsigned int j = 0; j < dim; ++j)

50

Institute of Engineering, Central Campus Pulchowk BE Project Report

43 for (unsigned int k = 0; k < dim; ++k)
44 for (unsigned int l = 0; l < dim; ++l)
45 tmp[i][j][k][l] = (((i == k) && (j == l) ? mu : 0.0) +
46 ((i == l) && (j == k) ? mu : 0.0) +
47 ((i == j) && (k == l) ? lambda : 0.0));
48 return tmp;
49 }
50

51 template <int dim>
52 inline SymmetricTensor<2, dim>
53 get_strain(const std::vector<Tensor<1, dim>> &grad)
54 {
55 Assert(grad.size() == dim, ExcInternalError());
56

57 SymmetricTensor<2, dim> strain;
58 for (unsigned int i = 0; i < dim; ++i)
59 strain[i][i] = grad[i][i];
60

61 for (unsigned int i = 0; i < dim; ++i)
62 for (unsigned int j = i + 1; j < dim; ++j)
63 strain[i][j] = (grad[i][j] + grad[j][i]) / 2;
64

65 return strain;
66 }
67 // to transform stress from cartesian to polar coordinate system
68 template <int dim>
69 inline SymmetricTensor<2,dim>
70 cart_to_polar(const Point<dim> &point,
71 const SymmetricTensor<2,dim> &stressC)
72 {
73 const double theta = atan(point[1]/point[0]);
74 const double sintheta = sin(theta);
75 const double costheta = cos(theta);
76

77 Tensor<2,dim> lambda({{ costheta, sintheta, 0},
78 { -sintheta, costheta, 0},
79 { 0, 0, 1}});
80 SymmetricTensor<2,dim> stressP;
81 for (unsigned int i = 0; i < 3; ++i) {
82 for (unsigned int k = 0; k < 3; ++k) {
83 double tmp2=0;
84 for (unsigned int j = 0; j < 3; ++j) {
85 double tmp = 0;
86 for (unsigned int l = 0; l <3; ++l)
87 tmp += stressC[j][l]*lambda[k][l];
88 tmp2 += lambda[i][j]*tmp;
89 }

51

Institute of Engineering, Central Campus Pulchowk BE Project Report

90 stressP[i][k] = tmp2;
91 }
92 }
93 return stressP;
94 }
95

96 template <int dim>
97 class ElasticProblem
98 {
99 public:
100 ElasticProblem();
101 void run();
102

103 private:
104 void setup_system();
105 void assemble_system();
106 void solve();
107 void stressCalc();
108 void refine_grid();
109 void output_results(const unsigned int cycle) const;
110

111 Triangulation<dim> triangulation;
112 DoFHandler<dim> dof_handler;
113

114 FESystem<dim> fe;
115

116 AffineConstraints<double> constraints;
117

118 SparsityPattern sparsity_pattern;
119 SparseMatrix<double> system_matrix;
120

121 Vector<double> solution;
122 Vector<double> system_rhs;
123 std::vector<SymmetricTensor<2,dim>> stress;
124 Vector<double> norm_of_stress;
125

126 Vector<double> radial_stress;
127 Vector<double> hoop_stress;
128 Vector<double> axial_stress;
129

130 Vector<double> residual;
131 static const SymmetricTensor<4, dim> stress_strain_tensor;
132 const QGauss<dim> quadrature_formula;
133 };
134

135 template <int dim>
136 const SymmetricTensor<4, dim> ElasticProblem<dim>::stress_strain_tensor =

52

Institute of Engineering, Central Campus Pulchowk BE Project Report

137 get_stress_strain_tensor<dim>(/*lambda = */ 12.232e10,
138 /*mu = */ 7.e10);
139 template <int dim>
140 class BOdyForceValues : public Function<dim>
141 {
142 public:
143 BOdyForceValues();
144

145 virtual void vector_value(const Point<dim> &p,
146 Vector<double> & values) const override;
147

148 virtual void
149 vector_value_list(const std::vector<Point<dim>> &points,
150 std::vector<Vector<double>> & value_list) const override;
151 };
152

153

154 template <int dim>
155 BOdyForceValues<dim>::BOdyForceValues()
156 : Function<dim>(dim)
157 {}
158

159

160 template <int dim>
161 inline void BOdyForceValues<dim>::vector_value(const Point<dim> & /*p*/,
162 Vector<double> &values) const
163 {
164 Assert(values.size() == dim, ExcDimensionMismatch(values.size(), dim));
165

166 const double g = 9.81;
167 const double rho = 7850;
168

169 values = 0;
170 values(dim - 1) = -rho * g;
171 }
172

173

174

175 template <int dim>
176 void BOdyForceValues<dim>::vector_value_list(
177 const std::vector<Point<dim>> &points,
178 std::vector<Vector<double>> & value_list) const
179 {
180 const unsigned int n_points = points.size();
181

182 Assert(value_list.size() == n_points,
183 ExcDimensionMismatch(value_list.size(), n_points));

53

Institute of Engineering, Central Campus Pulchowk BE Project Report

184

185 for (unsigned int p = 0; p < n_points; ++p)
186 BOdyForceValues<dim>::vector_value(points[p], value_list[p]);
187 }
188

189 template<int dim>
190 class PressureBoundaryValues : public Function<dim>
191 {
192 public:
193 PressureBoundaryValues(): Function<dim>(1)
194 {}
195

196 virtual double value(const Point<dim> & p,const unsigned int component = 0)
197 const override;
198

199 };
200

201 template <int dim>
202 double PressureBoundaryValues<dim>::value(const Point<dim> & /*p*/,
203 const unsigned int /*component*/) const
204 {
205 return -1.5e07;
206 }
207

208

209 template <int dim>
210 ElasticProblem<dim>::ElasticProblem()
211 : dof_handler(triangulation)
212 , fe(FE_Q<dim>(1), dim),quadrature_formula(fe.degree + 1)
213 {}
214

215

216

217 template <int dim>
218 void ElasticProblem<dim>::setup_system()
219 {
220 dof_handler.distribute_dofs(fe);
221 solution.reinit(dof_handler.n_dofs());
222 system_rhs.reinit(dof_handler.n_dofs());
223

224 constraints.clear();
225 DoFTools::make_hanging_node_constraints(dof_handler, constraints);
226 VectorTools::interpolate_boundary_values(dof_handler,
227 0,
228 Functions::ZeroFunction<dim>(dim),
229 constraints);
230 constraints.close();

54

Institute of Engineering, Central Campus Pulchowk BE Project Report

231

232 DynamicSparsityPattern dsp(dof_handler.n_dofs(), dof_handler.n_dofs());
233 DoFTools::make_sparsity_pattern(dof_handler,
234 dsp,
235 constraints,
236 /*keep_constrained_dofs = */ false);
237 sparsity_pattern.copy_from(dsp);
238

239 system_matrix.reinit(sparsity_pattern);
240 }
241

242

243

244 template <int dim>
245 void ElasticProblem<dim>::assemble_system()
246 {
247 QGauss<dim> quadrature_formula(fe.degree + 1);
248

249 QGauss<dim-1> face_quadrature_formula(fe.degree +1);
250

251 FEFaceValues<dim> fe_face_values(fe,
252 face_quadrature_formula,
253 update_values | update_normal_vectors|
254 update_quadrature_points | update_JxW_values);
255

256 const unsigned int n_face_q_points = face_quadrature_formula.size();
257

258 FEValues<dim> fe_values(fe,
259 quadrature_formula,
260 update_values | update_gradients |
261 update_quadrature_points | update_JxW_values);
262

263 const unsigned int dofs_per_cell = fe.n_dofs_per_cell();
264 const unsigned int n_q_points = quadrature_formula.size();
265

266 FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);
267 Vector<double> cell_rhs(dofs_per_cell);
268

269 std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
270

271 std::vector<double> lambda_values(n_q_points);
272 std::vector<double> mu_values(n_q_points);
273 std::vector<double> pressure_values(n_face_q_points);
274

275 Functions::ConstantFunction<dim> lambda(12.232e10), mu(7.9e10);
276

277 BOdyForceValues<dim> gravity;

55

Institute of Engineering, Central Campus Pulchowk BE Project Report

278 PressureBoundaryValues<dim> pressure_boundary;
279

280 std::vector<Vector<double>> rhs_values(n_q_points,Vector<double>(dim));
281

282 for (const auto &cell : dof_handler.active_cell_iterators())
283 {
284 cell_matrix = 0;
285 cell_rhs = 0;
286

287 fe_values.reinit(cell);
288

289 lambda.value_list(fe_values.get_quadrature_points(), lambda_values);
290 mu.value_list(fe_values.get_quadrature_points(), mu_values);
291

292 gravity.vector_value_list(fe_values.get_quadrature_points(), rhs_values);
293

294 for (const unsigned int i : fe_values.dof_indices())
295 {
296 const unsigned int component_i =
297 fe.system_to_component_index(i).first;
298

299 for (const unsigned int j : fe_values.dof_indices())
300 {
301 const unsigned int component_j =
302 fe.system_to_component_index(j).first;
303

304 for (const unsigned int q_point :
305 fe_values.quadrature_point_indices())
306 {
307 cell_matrix(i, j) +=
308 (
309 (fe_values.shape_grad(i, q_point)[component_i] * //d_comp(i)(phi_i(

↪→ q))
310 fe_values.shape_grad(j, q_point)[component_j] * //d_comp(j)(phi_j(q

↪→))
311 lambda_values[q_point]) //lambda
312 +
313 (fe_values.shape_grad(i, q_point)[component_j] * //d_comp(i)(phi_j(

↪→ q))
314 fe_values.shape_grad(j, q_point)[component_i] * //d_comp(j)(phi_i(q

↪→))
315 mu_values[q_point]) //mu
316 + //
317 ((component_i == component_j) ? //for Kronecker delta
318 (fe_values.shape_grad(i, q_point) * //grad(phi_i(q))
319 fe_values.shape_grad(j, q_point) * //grad(phi_i(q))
320 mu_values[q_point]) : //mu

56

Institute of Engineering, Central Campus Pulchowk BE Project Report

321 0)
322) *
323 fe_values.JxW(q_point); //JxW(q)
324 }
325 }
326 }
327

328 for (const unsigned int i : fe_values.dof_indices())
329 {
330 const unsigned int component_i =
331 fe.system_to_component_index(i).first;
332

333 for (const unsigned int q_point :
334 fe_values.quadrature_point_indices())
335 cell_rhs(i) += rhs_values[q_point][component_i]* //b_comp(i)
336 fe_values.shape_value(i, q_point)* //phi_i(q)
337 fe_values.JxW(q_point); //JxW(q)
338 }
339

340 for(unsigned int face_number =0;
341 face_number < GeometryInfo<dim> :: faces_per_cell;
342 ++face_number)
343 {
344 if((cell->face(face_number)->at_boundary()) &&
345 (cell->face(face_number)->boundary_id()== 2))
346 {
347 fe_face_values.reinit(cell,face_number);
348 pressure_boundary.value_list(fe_face_values.get_quadrature_points(),
349 pressure_values);
350

351 for(unsigned int i=0; i<dofs_per_cell; ++i)
352 {
353 const unsigned int component_i =
354 fe.system_to_component_index(i).first;
355 for(const unsigned int q_index : fe_face_values.quadrature_point_indices

↪→ ())
356 {
357 cell_rhs(i) += (pressure_values[q_index] *
358 fe_face_values.normal_vector(q_index)[component_i]) * //p*

↪→ vec(n)
359 fe_face_values.shape_value(i,q_index) * //phi_i(q)
360 fe_face_values.JxW(q_index); //JxW(q)
361 }
362 }
363 }
364 }
365

57

Institute of Engineering, Central Campus Pulchowk BE Project Report

366 cell->get_dof_indices(local_dof_indices);
367 constraints.distribute_local_to_global(
368 cell_matrix, cell_rhs, local_dof_indices, system_matrix, system_rhs);
369 }
370 }
371

372

373

374

375 template <int dim>
376 void ElasticProblem<dim>::solve()
377 {
378 SolverControl solver_control(3e3, 1e-2);
379 SolverCG<Vector<double>> cg(solver_control);
380

381 PreconditionJacobi<SparseMatrix<double>> preconditioner;
382 preconditioner.initialize(system_matrix);
383

384 cg.solve(system_matrix, solution, system_rhs, preconditioner);
385 stressCalc();
386

387 residual.reinit(dof_handler.n_dofs());
388 system_matrix.vmult(residual, solution);
389 residual -= system_rhs;
390 std::cout << "Iterations required : "
391 << solver_control.last_step() << '\n'
392 << "Max norm of residual: "
393 << residual.linfty_norm() << '\n';
394 constraints.distribute(solution);
395 }
396

397 template<int dim>
398 void ElasticProblem<dim>::stressCalc()
399 {
400 FEValues<dim> fe_values(fe,
401 quadrature_formula,
402 update_values|update_gradients);
403 std::vector<std::vector<Tensor<1,dim>>> solution_grads(
404 quadrature_formula.size(),
405 std::vector<Tensor<1,dim>>(dim));
406

407 radial_stress.reinit(triangulation.n_active_cells());
408 hoop_stress.reinit(triangulation.n_active_cells());
409 axial_stress.reinit(triangulation.n_active_cells());
410

411

58

Institute of Engineering, Central Campus Pulchowk BE Project Report

412 std::vector<SymmetricTensor<2,dim>> stress_local(triangulation.n_active_cells()
↪→);

413 std::vector<SymmetricTensor<2,dim>> stress_local_polar(triangulation.
↪→ n_active_cells());

414 Vector<double> norm_of_stress_local(triangulation.n_active_cells());
415 {
416 for(auto &cell : dof_handler.active_cell_iterators())
417 {
418 fe_values.reinit(cell);
419 fe_values.get_function_gradients(solution,solution_grads);
420

421 const unsigned int cell_index = cell->active_cell_index();
422 const Point<dim> cell_center = cell->center();
423 SymmetricTensor<2,dim> accumulated_stress ;
424 accumulated_stress = 0;
425 for(unsigned int q = 0; q < quadrature_formula.size(); ++q)
426 {
427 const SymmetricTensor<2,dim> quad_stress = (stress_strain_tensor *
428 get_strain(solution_grads[q]));
429 accumulated_stress += quad_stress;
430 }
431 stress_local[cell_index] = accumulated_stress/quadrature_formula.size();
432 norm_of_stress_local(cell_index)= accumulated_stress.norm();
433

434 const SymmetricTensor<2,dim> tmp = stress_local[cell_index];
435

436 stress_local_polar[cell_index] = cart_to_polar<dim>(cell_center,tmp);
437

438 radial_stress[cell_index] = stress_local_polar[cell_index][0][0];
439 hoop_stress[cell_index] = stress_local_polar[cell_index][1][1];
440 axial_stress[cell_index] = stress_local_polar[cell_index][2][2];
441 }
442 }
443 stress = stress_local;
444 norm_of_stress = norm_of_stress_local;
445 }
446

447

448 template <int dim>
449 void ElasticProblem<dim>::refine_grid()
450 {
451 Vector<float> estimated_error_per_cell(triangulation.n_active_cells());
452

453 KellyErrorEstimator<dim>::estimate(dof_handler,
454 QGauss<dim - 1>(fe.degree + 1),
455 {},
456 solution,

59

Institute of Engineering, Central Campus Pulchowk BE Project Report

457 estimated_error_per_cell);
458

459 GridRefinement::refine_and_coarsen_fixed_number(triangulation,
460 estimated_error_per_cell,
461 0.3,
462 0.03);
463

464 triangulation.execute_coarsening_and_refinement();
465 }
466

467

468

469 template <int dim>
470 void ElasticProblem<dim>::output_results(const unsigned int cycle) const
471 {
472 std::vector<std::string> solution_names(dim, "Displacement");
473

474 std::vector<DataComponentInterpretation::DataComponentInterpretation>
475 solution_component_interpretation(
476 dim, DataComponentInterpretation::component_is_part_of_vector);
477 DataOut<dim> data_out;
478 data_out.attach_dof_handler(dof_handler);
479 data_out.add_data_vector(solution,
480 solution_names,
481 DataOut<dim>::type_dof_data,
482 solution_component_interpretation);
483 // printing component stresses
484 data_out.add_data_vector(radial_stress,"radial_stress",DataOut<dim>::

↪→ type_cell_data);
485 data_out.add_data_vector(hoop_stress,"hoop_stress", DataOut<dim>::

↪→ type_cell_data);
486 data_out.add_data_vector(axial_stress,"axial_stress", DataOut<dim>::

↪→ type_cell_data);
487 //printing norm of stresses
488 data_out.add_data_vector(norm_of_stress,"norm_of_stress",DataOut<dim>::

↪→ type_cell_data);
489

490 data_out.build_patches();
491

492 std::ofstream output("37MnSi5 5.4mm simple hollow-" + std::to_string(cycle) +
↪→ ".vtk");

493 data_out.write_vtk(output);
494 }
495

496

497

498

60

Institute of Engineering, Central Campus Pulchowk BE Project Report

499 template <int dim>
500 void ElasticProblem<dim>::run()
501 {
502 Timer timer;
503 for (unsigned int cycle = 0; cycle < 1; ++cycle)
504 {
505 std::cout << "Cycle "<< cycle << ':' << std::endl;
506

507 if (cycle == 0)
508 {
509 // mesh generation for simple hollow cylinder
510 const double OD =232, THK = 5.4, Height = 1200, scale =1;
511 const double outer_radius = scale *OD/2,
512 inner_radius = (outer_radius - scale * THK);
513 GridGenerator::cylinder_shell(triangulation,
514 scale*Height,
515 inner_radius,
516 outer_radius);
517 for(const auto &cell : triangulation.active_cell_iterators())
518 for (const auto &face : cell->face_iterators())
519 if(face->at_boundary())
520 {
521 const Point<dim> face_center = face->center();
522 if(std::fabs(face_center[2]) <1e-12)
523 face->set_boundary_id(0);
524 else if (std:: fabs(face_center[2] - (scale * Height)) <1e-12)
525 face-> set_boundary_id(1);
526 else if (std::sqrt(face_center[0] * face_center[0] +
527 face_center[1]*face_center[1]) <
528 (inner_radius + outer_radius)/2)
529 face->set_boundary_id(2);
530 else
531 face->set_boundary_id(3);
532 }
533 }
534 else
535 {
536 std::cout << "Refining.... "<< std::endl;
537 refine_grid();
538 std::cout << "...complete! "<< std::endl;
539 }
540 std::cout<< "time Elapsed: "<< timer.cpu_time() << "sec." << std:: endl;
541

542 std::cout << "Number of active cells: "
543 << triangulation.n_active_cells() << std::endl;
544

545 std::cout << "Setting up.... "<< std::endl;

61

Institute of Engineering, Central Campus Pulchowk BE Project Report

546 setup_system();
547 std::cout << "...complete! "<< std::endl;
548 std::cout<< "time Elapsed: "<< timer.cpu_time() << "sec." << std:: endl;
549

550

551 std::cout << "Number of degrees of freedom: "<< dof_handler.n_dofs()
552 << std::endl;
553 std::cout << "Assembling.... "<< std::endl;
554 assemble_system();
555 std::cout << "...complete! "<< std::endl;
556 std::cout<< "time Elapsed: "<< timer.cpu_time() << "sec." << std:: endl;
557

558 std::cout << "Solving.... "<< std::endl;
559 solve();
560 std::cout << "...complete! "<< std::endl;
561 std::cout<< "time Elapsed: "<< timer.cpu_time() << "sec." << std:: endl;
562

563 std::cout << "Outputting.... "<< std::endl;
564 output_results(cycle);
565 std::cout << "...complete! "<< std::endl;
566

567

568 std::cout<< "Total time: "<< timer.cpu_time() << "sec." << std:: endl;
569 }
570 }
571 } // namespace Program
572

573

574 int main()
575 {
576 try
577 {
578 Program::ElasticProblem<3> elastic_problem_3d;
579 elastic_problem_3d.run();
580 }
581 catch (std::exception &exc)
582 {
583 std::cerr << std::endl
584 << std::endl
585 << "--"
586 << std::endl;
587 std::cerr << "Exception on processing: "<< std::endl
588 << exc.what() << std::endl
589 << "Aborting!" << std::endl
590 << "--"
591 << std::endl;
592

62

Institute of Engineering, Central Campus Pulchowk BE Project Report

593 return 1;
594 }
595 catch (...)
596 {
597 std::cerr << std::endl
598 << std::endl
599 << "--"
600 << std::endl;
601 std::cerr << "Unknown exception!" << std::endl
602 << "Aborting!" << std::endl
603 << "--"
604 << std::endl;
605 return 1;
606 }
607

608 return 0;
609 }
610

611 }

63

Institute of Engineering, Central Campus Pulchowk BE Project Report

Code For Deformation using MPI

1 #include <deal.II/base/timer.h>
2 #include <deal.II/base/quadrature_lib.h>
3 #include <deal.II/base/function.h>
4 #include <deal.II/base/logstream.h>
5 #include <deal.II/base/multithread_info.h>
6 #include <deal.II/lac/vector.h>
7 #include <deal.II/lac/full_matrix.h>
8 #include <deal.II/lac/affine_constraints.h>
9 #include <deal.II/lac/dynamic_sparsity_pattern.h>
10 #include <deal.II/lac/sparsity_tools.h>
11 #include <deal.II/grid/grid_in.h>
12 #include <deal.II/grid/grid_out.h>
13 #include <deal.II/grid/tria.h>
14 #include <deal.II/grid/grid_generator.h>
15 #include <deal.II/grid/grid_refinement.h>
16 #include <deal.II/dofs/dof_handler.h>
17 #include <deal.II/dofs/dof_tools.h>
18 #include <deal.II/fe/fe_values.h>
19 #include <deal.II/fe/fe_system.h>
20 #include <deal.II/fe/fe_q.h>
21 #include <deal.II/numerics/vector_tools.h>
22 #include <deal.II/numerics/matrix_tools.h>
23 #include <deal.II/numerics/data_out.h>
24 #include <deal.II/numerics/error_estimator.h>
25 #include <deal.II/base/conditional_ostream.h>
26 #include <deal.II/base/mpi.h>
27 #include <deal.II/lac/petsc_vector.h>
28 #include <deal.II/lac/petsc_sparse_matrix.h>
29 #include <deal.II/lac/petsc_solver.h>
30 #include <deal.II/lac/petsc_precondition.h>
31 #include <deal.II/grid/grid_tools.h>
32 #include <deal.II/dofs/dof_renumbering.h>
33 #include <fstream>
34 #include <iostream>
35

36 namespace ProgramMPI
37 {
38 using namespace dealii;
39

40 template <int dim>
41 class ElasticProblem
42 {
43 public:
44 ElasticProblem();
45 void run();

64

Institute of Engineering, Central Campus Pulchowk BE Project Report

46

47 private:
48 void setup_system();
49 void assemble_system();
50 unsigned int solve();
51 void calculate_stress();
52 void refine_grid();
53 void output_results(const unsigned int cycle) const;
54

55 MPI_Comm mpi_communicator;
56

57 const unsigned int n_mpi_processes;
58 const unsigned int this_mpi_process;
59

60 ConditionalOStream pcout;
61

62 GridIn<dim> gridin;
63 Triangulation<dim> triangulation;
64 FESystem<dim> fe;
65 DoFHandler<dim> dof_handler;
66

67 AffineConstraints<double> hanging_node_constraints;
68

69 PETScWrappers::MPI::SparseMatrix system_matrix;
70

71 PETScWrappers::MPI::Vector solution;
72 PETScWrappers::MPI::Vector system_rhs;
73

74 const QGauss<dim> quadrature_formula;
75 };
76

77 template <int dim>
78 const SymmetricTensor<4, dim> ElasticProblem<dim>::stress_strain_tensor =
79 get_stress_strain_tensor<dim>(/*lambda = */ 10.54448e10,
80 /*mu = */ 7.6356e10);
81

82 template <int dim>
83 class BodyForceValues : public Function<dim>
84 {
85 public:
86 BodyForceValues();
87

88 virtual void vector_value(const Point<dim> &p,
89 Vector<double> & values) const override;
90

91 virtual void
92 vector_value_list(const std::vector<Point<dim>> &points,

65

Institute of Engineering, Central Campus Pulchowk BE Project Report

93 std::vector<Vector<double>> & value_list) const override;
94 };
95

96

97 template <int dim>
98 BodyForceValues<dim>::BodyForceValues()
99 : Function<dim>(dim)
100 {}
101

102

103 template <int dim>
104 inline void BodyForceValues<dim>::vector_value(const Point<dim> & /*p*/,
105 Vector<double> &values) const
106 {
107 Assert(values.size() == dim, ExcDimensionMismatch(values.size(), dim));
108

109 const double g = 9.81;
110 const double rho = 7850;
111

112 values = 0;
113 values(dim - 2) = -rho * g;
114 }
115

116

117

118 template <int dim>
119 void BodyForceValues<dim>::vector_value_list(
120 const std::vector<Point<dim>> &points,
121 std::vector<Vector<double>> & value_list) const
122 {
123 const unsigned int n_points = points.size();
124

125 Assert(value_list.size() == n_points,
126 ExcDimensionMismatch(value_list.size(), n_points));
127

128 for (unsigned int p = 0; p < n_points; ++p)
129 BodyForceValues<dim>::vector_value(points[p], value_list[p]);
130 }
131

132 template<int dim>
133 class PressureBoundaryValues : public Function<dim>
134 {
135 public:
136 PressureBoundaryValues(): Function<dim>(1)
137 {}
138

66

Institute of Engineering, Central Campus Pulchowk BE Project Report

139 virtual double value(const Point<dim> & p,const unsigned int component = 0)
↪→ const override;

140

141 };
142

143 template <int dim>
144 double PressureBoundaryValues<dim>::value(const Point<dim> & /*p*/, const

↪→ unsigned int /*component*/) const
145 {
146 return -1.5e07;//pressure value here
147 }
148

149 template <int dim>
150 ElasticProblem<dim>::ElasticProblem()
151 : mpi_communicator(MPI_COMM_WORLD)
152 , n_mpi_processes(Utilities::MPI::n_mpi_processes(mpi_communicator))
153 , this_mpi_process(Utilities::MPI::this_mpi_process(mpi_communicator))
154 , pcout(std::cout, (this_mpi_process == 0))
155 , fe(FE_Q<dim>(1), dim)
156 , dof_handler(triangulation)
157 , quadrature_formula(fe.degree + 1)
158 {}
159

160 template <int dim>
161 void ElasticProblem<dim>::setup_system()
162 {
163

164 pcout << "setting up... ";
165 GridTools::partition_triangulation(n_mpi_processes, triangulation);
166

167 dof_handler.distribute_dofs(fe);
168 DoFRenumbering::subdomain_wise(dof_handler);
169

170 hanging_node_constraints.clear();
171 DoFTools::make_hanging_node_constraints(dof_handler,
172 hanging_node_constraints);
173 hanging_node_constraints.close();
174

175 DynamicSparsityPattern dsp(dof_handler.n_dofs(), dof_handler.n_dofs());
176 DoFTools::make_sparsity_pattern(dof_handler,
177 dsp,
178 hanging_node_constraints,
179 false);
180

181 const std::vector<IndexSet> locally_owned_dofs_per_proc =
182 DoFTools::locally_owned_dofs_per_subdomain(dof_handler);
183 const IndexSet locally_owned_dofs =

67

Institute of Engineering, Central Campus Pulchowk BE Project Report

184 locally_owned_dofs_per_proc[this_mpi_process];
185

186 system_matrix.reinit(locally_owned_dofs,
187 locally_owned_dofs,
188 dsp,
189 mpi_communicator);
190

191 solution.reinit(locally_owned_dofs, mpi_communicator);
192 system_rhs.reinit(locally_owned_dofs, mpi_communicator);
193 }
194

195 template <int dim>
196 void ElasticProblem<dim>::assemble_system()
197 {
198 QGauss<dim> quadrature_formula(fe.degree + 1);
199 FEValues<dim> fe_values(fe,
200 quadrature_formula,
201 update_values | update_gradients |
202 update_quadrature_points | update_JxW_values);
203 QGauss<dim-1> face_quadrature_formula(fe.degree +1);
204 FEFaceValues<dim> fe_face_values(fe,
205 face_quadrature_formula,
206 update_values | update_normal_vectors|
207 update_quadrature_points | update_JxW_values);
208

209

210 const unsigned int dofs_per_cell = fe.n_dofs_per_cell();
211 const unsigned int n_q_points = quadrature_formula.size();
212 const unsigned int n_face_q_points = face_quadrature_formula.size();
213

214 FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);
215 Vector<double> cell_rhs(dofs_per_cell);
216

217 std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
218

219 std::vector<double> lambda_values(n_q_points);
220 std::vector<double> mu_values(n_q_points);
221 std::vector<double> pressure_values(n_face_q_points);
222 std::vector<Vector<double>> rhs_values(n_q_points, Vector<double>(dim));
223

224 Functions::ConstantFunction<dim> lambda(7.923e10), mu(11.885e10);
225

226 BodyForceValues<dim> gravity;
227 PressureBoundaryValues<dim> pressure_boundary;
228

229 // store the boundary ids of the surfaces where pressure to be applied

68

Institute of Engineering, Central Campus Pulchowk BE Project Report

230 std::vector<int> pressure_boundary_ids =
↪→ {1,3,4,20,21,22,23,24,25,26,27,28,46,47};

231 // value to be added after physical tag assignation
232 const int add_value = 100;
233 std::transform(pressure_boundary_ids.begin(), pressure_boundary_ids.end(),
234 pressure_boundary_ids.begin(), [add_value](int i) { return i + add_value;

↪→ });
235

236 for (const auto &cell : dof_handler.active_cell_iterators())
237 if (cell->subdomain_id() == this_mpi_process)
238 {
239 cell_matrix = 0;
240 cell_rhs = 0;
241

242 fe_values.reinit(cell);
243

244 lambda.value_list(fe_values.get_quadrature_points(), lambda_values);
245 mu.value_list(fe_values.get_quadrature_points(), mu_values);
246

247 for (unsigned int i = 0; i < dofs_per_cell; ++i)
248 {
249 const unsigned int component_i =
250 fe.system_to_component_index(i).first;
251

252 for (unsigned int j = 0; j < dofs_per_cell; ++j)
253 {
254 const unsigned int component_j =
255 fe.system_to_component_index(j).first;
256

257 for (unsigned int q_point = 0; q_point < n_q_points;
258 ++q_point)
259 {
260 cell_matrix(i, j) +=
261 ((fe_values.shape_grad(i, q_point)[component_i] *
262 fe_values.shape_grad(j, q_point)[component_j] *
263 lambda_values[q_point]) +
264 (fe_values.shape_grad(i, q_point)[component_j] *
265 fe_values.shape_grad(j, q_point)[component_i] *
266 mu_values[q_point]) +
267 ((component_i == component_j) ?
268 (fe_values.shape_grad(i, q_point) *
269 fe_values.shape_grad(j, q_point) *
270 mu_values[q_point]) :
271 0)) *
272 fe_values.JxW(q_point);
273 }
274 }

69

Institute of Engineering, Central Campus Pulchowk BE Project Report

275 }
276 gravity.vector_value_list(fe_values.get_quadrature_points(), rhs_values)

↪→ ;
277

278 for (unsigned int i = 0; i < dofs_per_cell; ++i)
279 {
280 const unsigned int component_i =
281 fe.system_to_component_index(i).first;
282

283 for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
284 cell_rhs(i) += fe_values.shape_value(i, q_point) *
285 rhs_values[q_point](component_i) *
286 fe_values.JxW(q_point);
287 }
288

289

290

291

292 for(unsigned int face_number =0; face_number < GeometryInfo<dim> ::
↪→ faces_per_cell;

293 ++face_number)
294 {
295 if (cell->face(face_number)->at_boundary() &&
296 std::find(pressure_boundary_ids.begin(), pressure_boundary_ids.end(),
297 cell->face(face_number)->boundary_id()) != pressure_boundary_ids.

↪→ end())
298 {
299 fe_face_values.reinit(cell,face_number);
300 pressure_boundary.value_list(fe_face_values.get_quadrature_points(),
301 pressure_values);
302 for(unsigned int i=0; i<dofs_per_cell; ++i)
303 {
304 const unsigned int component_i =
305 fe.system_to_component_index(i).first;
306 for(const unsigned int q_index : fe_face_values.

↪→ quadrature_point_indices())
307 {
308 cell_rhs(i) += (pressure_values[q_index] *
309 fe_face_values.normal_vector(q_index)[component_i])

↪→ *
310 fe_face_values.shape_value(i,q_index) *
311 fe_face_values.JxW(q_index);
312 }
313 }
314

315 }
316 }

70

Institute of Engineering, Central Campus Pulchowk BE Project Report

317 cell->get_dof_indices(local_dof_indices);
318 hanging_node_constraints.distribute_local_to_global(cell_matrix,
319 cell_rhs,
320 local_dof_indices,
321 system_matrix,
322 system_rhs);
323 }
324

325 system_matrix.compress(VectorOperation::add);
326 system_rhs.compress(VectorOperation::add);
327 FEValuesExtractors::Scalar z_component(dim - 1);
328 std::map<types::global_dof_index, double> boundary_values;
329

330 // store boundary ids of surfaces which are fixed
331 std::vector<int> fixed_boundary_ids = {18,31};
332 // to add this value
333 std::transform(fixed_boundary_ids.begin(), fixed_boundary_ids.end(),
334 fixed_boundary_ids.begin(), [add_value](int i) { return i + add_value;

↪→ });
335

336 const auto zero_function = Functions::ZeroFunction<dim>(dim);
337

338 for (const auto& boundary_id : fixed_boundary_ids) {
339 VectorTools::interpolate_boundary_values(dof_handler,
340 boundary_id, zero_function,
341 boundary_values);
342 }
343 MatrixTools::apply_boundary_values(
344 boundary_values, system_matrix, solution, system_rhs, false);
345 }
346

347 template <int dim>
348 unsigned int ElasticProblem<dim>::solve()
349 {
350 SolverControl solver_control(2e3, 1e-2);
351 PETScWrappers::SolverCG cg(solver_control, mpi_communicator);
352

353 PETScWrappers::PreconditionBlockJacobi preconditioner(system_matrix);
354

355 cg.solve(system_matrix, solution, system_rhs, preconditioner);
356 Vector<double> localized_solution(solution);
357

358 hanging_node_constraints.distribute(localized_solution);
359 return solver_control.last_step();
360 }
361

362 template <int dim>

71

Institute of Engineering, Central Campus Pulchowk BE Project Report

363 void ElasticProblem<dim>::refine_grid()
364 {
365 const Vector<double> localized_solution(solution);
366

367 Vector<float> local_error_per_cell(triangulation.n_active_cells());
368 KellyErrorEstimator<dim>::estimate(dof_handler,
369 QGauss<dim - 1>(fe.degree + 1),
370 {},
371 localized_solution,
372 local_error_per_cell,
373 ComponentMask(),
374 nullptr,
375 MultithreadInfo::n_threads(),
376 this_mpi_process);
377

378 const unsigned int n_local_cells =
379 GridTools::count_cells_with_subdomain_association(triangulation,
380 this_mpi_process);
381 PETScWrappers::MPI::Vector distributed_all_errors(
382 mpi_communicator, triangulation.n_active_cells(), n_local_cells);
383

384 for (unsigned int i = 0; i < local_error_per_cell.size(); ++i)
385 if (local_error_per_cell(i) != 0)
386 distributed_all_errors(i) = local_error_per_cell(i);
387 distributed_all_errors.compress(VectorOperation::insert);
388

389

390 const Vector<float> localized_all_errors(distributed_all_errors);
391

392 GridRefinement::refine_and_coarsen_fixed_number(triangulation,
393 localized_all_errors,
394 0.3,
395 0.03);
396 triangulation.execute_coarsening_and_refinement();
397 }
398

399

400 template <int dim>
401 void ElasticProblem<dim>::output_results(const unsigned int cycle) const
402 {
403 const Vector<double> localized_solution(solution);
404

405 if (this_mpi_process == 0)
406 {
407 std::ofstream output("37MnSi7 yo ho -" + std::to_string(cycle) + ".vtk");
408 std::vector<DataComponentInterpretation::DataComponentInterpretation>
409 data_component_interpretation(

72

Institute of Engineering, Central Campus Pulchowk BE Project Report

410 dim, DataComponentInterpretation::component_is_part_of_vector);
411 DataOut<dim> data_out;
412 data_out.attach_dof_handler(dof_handler);
413

414 std::vector<std::string> solution_names(dim, "Displacement");
415 data_out.add_data_vector(localized_solution,
416 solution_names,
417 DataOut<dim>::type_dof_data,
418 data_component_interpretation);
419

420 std::vector<unsigned int> partition_int(triangulation.n_active_cells());
421 GridTools::get_subdomain_association(triangulation, partition_int);
422

423 const Vector<double> partitioning(partition_int.begin(),
424 partition_int.end());
425

426 data_out.add_data_vector(partitioning, "partitioning");
427 data_out.build_patches();
428 data_out.write_vtk(output);
429 }
430 }
431

432 template <int dim>
433 void ElasticProblem<dim>::run()
434 {
435 Timer timer;
436 for (unsigned int cycle = 0; cycle < 1; ++cycle)
437 {
438 pcout << "Cycle "<< cycle << ':' << std::endl;
439

440 if (cycle == 0)
441 {
442 // import the mesh file generated by Gmesh
443 gridin.attach_triangulation(triangulation);
444 std::ifstream f("Mesh.msh");
445 gridin.read_msh(f);
446 }
447 else
448 refine_grid();
449

450 pcout << "Number of active cells: "
451 << triangulation.n_active_cells() << std::endl;
452

453 setup_system();
454

455 pcout << "Number of degrees of freedom:" << dof_handler.n_dofs()
456 << "(by_partition:";

73

Institute of Engineering, Central Campus Pulchowk BE Project Report

457 for (unsigned int p = 0; p < n_mpi_processes; ++p)
458 pcout << (p == 0 ? '': '+')
459 << (DoFTools::count_dofs_with_subdomain_association(dof_handler,
460 p));
461 pcout << ')' << std::endl;
462

463 assemble_system();
464 const unsigned int n_iterations = solve();
465

466 pcout << "Solver converged in "<< n_iterations << "iterations."
467 << std::endl;
468

469 output_results(cycle);
470 pcout<< "Time:" << timer.cpu_time() << "sec." << std:: endl;
471 }
472 }
473 } // namespace ProgramMPI
474

475

476

477 int main(int argc, char **argv)
478 {
479 try
480 {
481 using namespace dealii;
482 using namespace ProgramMPI;
483

484 Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv, 1);
485

486 ElasticProblem<3> elastic_problem;
487 elastic_problem.run();
488 }
489 catch (std::exception &exc)
490 {
491 std::cerr << std::endl
492 << std::endl
493 << "--"
494 << std::endl;
495 std::cerr << "Exception on processing: "<< std::endl
496 << exc.what() << std::endl
497 << "Aborting!" << std::endl
498 << "--"
499 << std::endl;
500

501 return 1;
502 }
503 catch (...)

74

Institute of Engineering, Central Campus Pulchowk BE Project Report

504 {
505 std::cerr << std::endl
506 << std::endl
507 << "--"
508 << std::endl;
509 std::cerr << "Unknown exception!" << std::endl
510 << "Aborting!" << std::endl
511 << "--"
512 << std::endl;
513 return 1;
514 }
515

516 return 0;
517 }

75

APPENDIX C: SCRIPT FOR GEOMETRY SIMPLIFICATION AND MESHING

1 // This script creates simplified cylinder model and mesh it.
2 //lc means target mesh size
3 lc = 1e-2;
4

5 //defining points
6

7 Point(20) = {0, 0, 0, lc};
8 Point(2) = {0, 5.6, 0, lc};
9 Point(3) = {86, 0, 0, lc};
10 Point(4) = {86, 5.6, 0, lc};
11 Point(5) = {86, 30, 0, lc};
12 Point(6) = {110.4, 30, 0, lc};
13 Point(7) = {116, 30, 0, lc};
14 Point(8) = {110.4, 1220, 0, lc};
15 Point(9) = {116, 1220, 0, lc};
16 Point(10) = { 0, 1220, 0, lc};
17 Point(11) = {15, 1329.38, 0, lc};
18 Point(12) = {15, 1335.03, 0, lc};
19 Point(13) = {65.05, 1309.2, 0, lc};
20

21 //lines
22

23 Line(1) = {2, 20};
24 Line(2) = {3, 20};
25 Line(3) = {2, 4};
26 Line(4) = {6, 8};
27 Line(5) = {7, 9};
28 Line(6) = {11, 12};
29

30 //Circles
31

32 //+
33 Circle(8) = {11, 10, 8};
34 //+
35 Circle(9) = {12, 10, 9};
36 //+
37 Circle(10) = {4, 5, 6};
38 //+
39 Circle(11) = {3, 5, 7};
40

41 //curve loop
42

43 Physical Curve("1", 12) = {1, 3, 10, 4, 8, 6, 9, 5, 11, 2};
44 Curve Loop(1) = {4, -8, 6, 9, -5, -11, 2, -1, 3, 10};

76

Institute of Engineering, Central Campus Pulchowk BE Project Report

45 Plane Surface(1) = {1};
46

47 //Transfinite Surface {1};
48 //Recombine Surface {1};
49

50 Extrude {{0, 1, 0}, {0, 5.6,0}, 0.5*Pi} {
51 Surface{1}; Layers{6};
52 Recombine;
53 }
54

55 //+
56 Extrude {{0, 1, 0}, {0, 0, 0}, Pi/2} {
57 Surface{59}; Layers{8}; Recombine;
58 }
59 //+
60 Extrude {{0, 1, 0}, {0, 0, 0}, Pi/2} {
61 Surface{106}; Layers{8}; Recombine;
62 }
63 //+
64 Extrude {{0, 1, 0}, {0, 0, 0}, Pi/2} {
65 Surface{153}; Layers{8}; Recombine;
66 }
67

68

69 Mesh.Algorithm = 6;
70 Mesh.ElementOrder = 1;
71 Mesh 3;
72 Coherence Mesh;

77

Institute of Engineering, Central Campus Pulchowk BE Project Report

1 //This code take step file as input and takes
2 its cross section first and revolve that
3 cros section with extruding mesh
4 SetFactory("OpenCASCADE");
5 v() = ShapeFromFile("file.STEP");
6 // Get the bounding box of the volume:
7 bbox() = BoundingBox Volume{v()};
8 xmin = bbox(0);
9 ymin = bbox(1);
10 zmin = bbox(2);
11 xmax = bbox(3);
12 ymax = bbox(4);
13 zmax = bbox(5);
14

15 //Defining Necessary Parameter
16 dx = (xmax - xmin);
17 dy = (ymax - ymin);
18 dz = (zmax - zmin);
19 L =dz/2 ;
20 H = dy;
21

22 //Define Cutting Surface
23 s() = {news};
24 Rectangle(s(0)) = {xmin, ymin, zmin, L, H};
25 Rotate{ {0, 1, 0}, {xmin, ymin, zmin}, -Pi/2 }
26 { Surface{s(0)}; }
27 tx = dx / 2;
28 ty =0;
29 tz=0;
30 Translate{tx, ty, tz} { Surface{s(0)}; }
31

32

33 //Delete Everything of surface out of object
34 i.e keeping cutting surface inside material domain only
35 BooleanFragments{ Volume{v()}; Delete; }
36 { Surface{s()}; Delete; }
37 Recursive Delete { Surface{:}; }
38

39 //Deleting everything except the surface of cut
40 eps = 1e-4;
41 s() = {};
42 xx = xmin;
43 yy = ymax;
44 zz = zmax;
45 s() += Surface In BoundingBox
46 {xmin - eps + tx, ymin - eps +ty, zmin - eps + tz,

78

Institute of Engineering, Central Campus Pulchowk BE Project Report

47 xx + eps + tx, yy + eps + ty, zz + eps +tz};
48 dels = Surface{:};
49 dels -= s();
50 Delete { Volume{:}; Surface{dels()};
51 Curve{:}; Point{:}; }
52

53 //+
54 Extrude {{0, 1, 0}, {0, 0, 0}, Pi/2} {
55 Surface{2}; Layers{8}; Recombine;
56 }
57 //+
58 Extrude {{0, 1, 0}, {0, 0, 0}, Pi/2} {
59 Surface{12}; Layers{8}; Recombine;
60 }
61 //+
62 Extrude {{0, 1, 0}, {0, 0, 0}, Pi/2} {
63 Surface{22}; Layers{8}; Recombine;
64 }
65 //+
66

67 Extrude {{0, 1, 0}, {0, 0, 0}, Pi/2} {
68 Surface{32}; Layers{8}; Recombine;
69 }
70 Coherence;
71 Coherence Mesh;
72 //+
73 //+

79

APPENDIX D: SCRIPT FOR BOUNDARY ID ASSIGNING

1 with open('inputmesh.txt','r') as infile,
2 open('outputmesh.txt','w') as outfile:
3 switch = 0
4 turn = 0
5 for line in infile:
6 # Code to modify line
7 columns = line.split(' ')
8 # store the data in columns as strings
9 if columns[0] == '$Elements\n':
10 # when elements are found
11 switch = 1 # turn on this switch
12 print(columns)
13 if switch == 1:
14 # start reading the lines after Elements are found
15 if len(columns)>1 and columns[1] != '15':
16 # when the line starts containing other than 15
17 turn = 1
18 switch = 0
19 # no need of this section after assigning turn is 1
20 if turn == 1 and columns[0] != '$EndElements\n':
21 # before reaching the endelement section
22 tmp = int(columns[4]) + 100
23 # assign the physical ids
24 columns[3] = str(tmp)
25 new_line = (' ').join(columns)
26 # create new line after the manipulation
27 else:
28 new_line = line
29 outfile.write(new_line)
30 #write the line in new file
31 # print(columns)

80

APPENDIX E: ADDITIONAL FEM RESULTS

Simulation results for hollow cylinder from deal.ii

Material : 37MnSi5

(a) Displacement, Thickness=5.4 (b) Hoop stress, Thickness=5.4

(c) Displacement, Thickness=5.5 (d) Hoop stress, Thickness=5.5

(e) Displacement, Thickness=5.6 (f) Hoop stress, Thickness=5.6

Figure E.1: Displacement and Hoop stress with different thickness (37MnSi5)

81

Institute of Engineering, Central Campus Pulchowk BE Project Report

Material : 34Mn2V

(a) Displacement, Thickness=5.4 (b) Hoop stress, Thickness=5.4

(c) Displacement, Thickness=5.5 (d) Hoop stress, Thickness=5.5

(e) Displacement, Thickness=5.6 (f) Hoop stress, Thickness=5.6

Figure E.2: Displacement and Hoop stress with different thickness (34Mn2V)

82

Institute of Engineering, Central Campus Pulchowk BE Project Report

Material : 32CrMo4

(a) Displacement, Thickness=5.4 (b) Hoop stress, Thickness=5.4

(c) Displacement, Thickness=5.5 (d) Hoop stress, Thickness=5.5

(e) Displacement, Thickness=5.6 (f) Hoop stress, Thickness=5.6

Figure E.3: Displacement and Hoop stress with different thickness (32CrM04)

83

	COPYRIGHT
	APPROVAL PAGE
	ABSTRACT
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	LIST OF ACRONYMS AND ABBREVIATIONS
	INTRODUCTION
	Background
	Problem Statement
	Objectives
	Main Objective
	Specific Objectives

	LITERATURE REVIEW
	 Theoretical Background
	Mathematical Formulation
	Thin-Walled Cylinder

	FEA of Thin-Walled Cylinders
	Deal.ii
	Research gap

	METHODOLOGY
	Literature Review
	Field Visit
	Geometrical and material properties
	CAD Modelling
	Simplification
	FEA in ANSYS
	Theoretical Calculation
	FEA using Deal.ii
	Meshing
	Boundary Id Assignation
	Mesh Ordering
	Simulation
	Visualization

	Parametrization
	Verification and Validation
	Conclusion

	RESULTS AND DISCUSSION
	 Hollow Cylinder
	Simplified Cylinder
	Actual Cylinder

	CONCLUSIONS AND RECOMMENDATIONS
	Conclusion
	Recommendation

	REFERENCES
	APPENDIX A: MATHEMATICAL DERIVATION
	APPENDIX B: CODE FOR SIMULATION
	APPENDIX C: SCRIPT FOR GEOMETRY SIMPLIFICATION AND MESHING
	APPENDIX D: SCRIPT FOR BOUNDARY ID ASSIGNING
	APPENDIX E: ADDITIONAL FEM RESULTS

