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ABSTRACT

Partial differential equations (PDEs) are used to mimic a variety of real-world physical issues.

A standard parabolic PDE of the form ut = αuxx, (α > 0) is an 1D heat equation. In a regular

form of domain, the heat equation has an analytical solution. Computing an analytical solution

becomes challenging, if not impossible, any time the domain of such modeled issues has an

uneven shape. In this case, numerical methods can be used to find the numerical solution of

these PDEs. Through the domain’s discretization into a limited number of areas. One of the

numerical techniques used to determine the numerical solutions of PDEs is the finite differ-

ence method (FDM). Here, the FTCSSfor the one-dimensional heat equation and the numerical

computation of its solution using FTCSS are discussed. Furthermore, numerical solution and

analytic solution of heat equation has been compared and analyzed. Additionally, the 1D heat

equation with variable starting conditions (ICs) and numerous initial conditions (ICs)has been

solved numerically using FDMs. Blacksmiths heated the parts at various temperatures and lo-

cations to mold different metals into the necessary shapes. The numerical solution method for

the 1D heat problem given here can be used to solve heat equations used in engineering and

scientific disciplines.
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Chapter 1

INTRODUCTI ON

1.1 Background

When there is a temperature difference between two places, an essential method of transferring

energy is via heat. The term “heat” on the other hand, refers to the energy that is transferred

throughout the procedure. In contrast, ‘temperature’ is a physical attribute of matter that ex-

presses how cold or hot a thing or environment [13, 11]. The physical system between heat

and/or the production, exploitation, conversion, and exchange of thermal energy is the topic of

heat transfer. Heat transfer is divided into several modalities (See, in Fig. 1.1), including con-

Figure 1.1: Various modes (i.e, conduction, convection, radiation) of Heat transfer [1].
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duction, convection, thermal radiation, and energy transfer via phase shifts [6, 11]. Either as a

result of an energy transfer from one molecule to another (without the molecules actually mov-

ing) or as a result of free electron motion if they are present occurs the conduction methods of

heat transmission. As a result, this form of heat transmission is influenced by material qualities

such as the medium’s diffusivity [6, 11].

A differential equation can contain a derivative of an example function of one or more variables.

Because there are always multiple independent variables in a physical setting, a partial differ-

ential equation (PDE) is made up of partial differential coefficients or the partial derivative of a

dependent variable with many independent variables [6, 9, 13, 15]. So, PDEs are important in

many fields of science and engineering. There are very few partial differential equations mainly

linear and few number of nonlinear equations are solved [6, 9, 13, 15].. Only a small number

of PDEs are difficult for us to solve; the majority of our work is dealing with linear and some

nonlinear equations. [6, 9, 13, 15]. The diffusion equation and the heat equation both explain

how the distribution of heat changes over time in a solid medium [3, 9, 13, 15]. In a specific area

over time, the distribution of heat is represented by a type of the parabolic partial differential

equation (PDE) known as the heat equation (or change in temperature) [4]. So, heat equation

is significantly used in the diverse scientific fields [9, 10, 13, 14, 15]. The heat equation, which

is pertinent to the investigation of chemical diffusion and other associated phenomena, is the

source of the diffusion equation. Electricity can flow through geothermal gases with a con-

stant heat or mass flux as well as through walls with a constant temperature or concentration.

[9, 10, 13, 14, 15].

According to Chamkha and Khaled [7], The magnetic field affects heat transmission via mixed

convection when internal heat generation or absorption is present. With the aid of analytical

modeling and accurate solutions, an oscillatory rotating Burgers fluid flow that is limited by a

plate has been studied [10].

Heat or diffusion equation describes how heat changes over time in a solid medium in math-

ematics and physics [9, 13, 15]. As an important PDE equation that illustrates the temporal

dynamics of the heat dispersion in a certain area (Fig. 1.2). The heat equation is widely used

to analyze Brownian motion, the Schrodinger equation for a free particle, thermal diffusivity in

polymers, and particle diffusion. It is also used in the outer surfaces of rockets, bridges, trains,

and freezers, as well as in the cancer model, picture analysis, and spatial ecology model. The

heat equation is therefore essential in a wide range of scientific disciplines. [8, 9, 10, 13, 14, 15].

Suppose that u(x, t) represents the temperature distribution at time t and position x. Then, one

3



Figure 1.2: Heat flow in a rod.

dimensional heat equation is

ut(x, t) = αuxx(x, t), c > 0 (1.1)

with BCs u(0, t) = T1, u(L, t) = T2; t > 0

and IC u(x, 0) = f(x) 0 ≤ x ≤ L

where f(x) is function of length which is the initial quantity of the heat delivered at length x

of the rod, α is called thermal diffusivity, and T1, T2 are boundary temperatures. This is an

illustration of a standard parabolic PDE [6, 8].

Taking the second order linear partial differential equations with regard to the aforementioned

equation (1.1)

Auxx +Buxt + Cutt +Dux + Eut + Fu = G (1.2)

we get, A = α and B = C = 0.

∴ B2 − 4AC = 0

Here is an idea of a parabolic PDE [6]. The heat equation can be solved analytically in the

world of regular shapes [17, 25]. Computing an analytical solution is highly challenging if the

domain has an irregular form. Instead, we compute the solutions of partial differential equa-

tions using numerical methods. The domain is discretized into a finite number of areas, and the

numerical solutions of PDEs are calculated using the finite difference method. The grid points

of the domain are where the solutions are computed [17].

Numerical methods are employed to resolve the modeled partial differential equations. To find

numerical solutions for heat transfor problems, the finite difference method (FDM) is used.

Brook Taylor first proposed this approach in 1715, and George Boole (1860), C.M. Milne

Thomson (1933), and Karaly Jordan (1939) have investigated it as abstract, self-standing math-

ematical objects[17, 25].

Using a finite number of regions to discretize the domain, finding the numerical solution to par-
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tial differential equations is easier. At the grid points of the domain, the solutions are calculated

[17, 25].The numerical solutions of a 1D heat equation with IC and BCs do not always converge

to the exact solutions when utilizing finite difference techniques [17, 25]. In finite difference

approaches, it indicates numerical instability.

A blacksmith is a metalworker who creates different items out of steel or iron. Blacksmiths

forge metals into tools, agricultural machinery, ornamental and religious objects, cooking uten-

sils, gates, grilles, railings, light fixtures, furniture, sculpture, and munitions. Blacksmiths heat

the metals as they are at work so that they are malleable and may be molded with hand tools like

hammers, chisels, anvils, etc. They can determine the temperature distribution throughout the

metal parts by looking at the bright hue of the metal pieces. One point on the metal may receive

heat, or there may be numerous points. The location where a blacksmith works is referred to as

a smithy, a forge, or a Blacksmith’s shop, among other titles.

Heat can move from a hotter body to a cooler body, as we are all aware. Heat transfer has a

major effect on temperature change; cooling lowers temperature while heating raises it. We

assume throughout our research that there won’t be any phase shifts and that the system won’t

change in any way. The results of experiments demonstrate that three variables-temperature

change, system mass, and substance phasehave an impact on transmitted heat. One needs to

heat various portions of the metal to various temperatures in order to twist it into the required

shape. [2, 12, 22]. Well-known illustration is a blacksmith using heated iron shown in Fig 1.3.

Figure 1.3: Blacksmith working on hot iron [2].
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1.2 Literature Review

In a linearly stratified stagnation flow, Chamkha and Khaled [7] investigated how its magnetic

field affected mass and coupled convectional heat transmission when internal heat production

or absorption was present. Incompressible Burgers fluid hydro magnetic oscillatory rotational

flows have no proven analytical solutions or theories [10, 21, 22]. The heat equation was cre-

ated in 1987 by Jean Baptise Joseph Fourier (17681830) as a manuscript for the Institute de

France. In 1822, he also released his monograph, “Analytic Theory of Heat” [5, 18]. In the

1600s, scientists changed their minds about the relationship between heat and the mobility of

tiny pieces of matter. But in the 1700s , People used to think of heat as a fluid-like substance[5].

One-dimensional (1D) heat transfer problems have been investigated utilizing finite difference

method. Brook Taylor first presented FDM in 1715, and George Boole, C.M. Milne Thomson,

and Karaly Jordan examined it as an abstraction of separate mathematical concepts [17, 25].

Makhtoumi [16] derived the investigation of heat diffusion in a 1D thin rod using analytical and

numerical solutions. He applied the homotopy perturbation method (HPM) and the finite dif-

ference method(FDM) to the rod PDE system . The outcomes show the efficiency of homotopy

perturbation as a numerical method for resolving partial differential equations.

Olaiju et al. [20] explored the explicit finite difference method (FDM), which was developed

and used by computational software to solve a straightforward 1D heat equation problem. They

discovered that the time step and mesh spacing have an impact on forecast accuracy. Addition-

ally, the 1D heat equation solutions exhibit smooth and bounded temporary performance as they

transition from an initial condition to a non-varying fixed state situation. Olaiju et al. [19] com-

pared FEMs and FDMs for the air pollution problem simulation. According to their simulation

results, FEMs and FDMs are effective at resolving the diffusion problem and are acceptable for

reducing air pollution emissions for a healthier environment. Mebrate [17] presented numerical

solutions using FEMs and FDMs to a 1D heat equation with IC and Dirichlet BCs. When the

B-spline basis functions are taken into consideration, Dabral et al. [8] investigated numerical

solution of the 1D heat equation by B-Spline FEM. Both quadratic and cubic B-splines are used

to create the solution. With the Dirichlet boundary condition (BC), the simulation process was

geometrically represented in three dimensions, taken in a distinct temporal space and different

region of interest.
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Wilson and Nickell [29] pointed out the error that estimates the discrete Galerkin FDMs for a

nonlinear 1D heat equation. The numerical schemes studied were based on a classical trans-

formation of the dependent variables by means of the enthalpy as well as the Kirchhoff trans-

formation. Thomee [28] gives a very thorough overview of numerical analysis of PDEs with

the development of FEMs and subsequently FEMs with a focus on mathematical elements like

stability and convergence analysis.

Using finite difference methods, the one-dimensional heat equation with initial and boundary

conditions has numerical solutions (FDMs).The impact of applying heat to the material at var-

ious sites will first be contrasted and examined. Next, the efficacy of heat applied in various

locations will be studied and evaluated.

1.3 Objectives

The following are the major objectives of this research work:

Objective-I: To develop an understanding of the concept and applications of the partial differ-

ential equation to derive the heat equation.

Objective-II: To gain the insight on the proof of finite difference method (FDM) to compute

the numerical solution of one-dimensional heat equation.

Objective-III: Utilization of FDMs to combine the numerical solutions of the 1D heat equation

for a variety of beginning conditions and varied initial condition positions.

Objective-IV: In the field of science and engineering, to clarify need and the application of

numerical methods for finding the solution of the heat equation.

7



1.4 Structure of Thesis

The first chapter provides a background of the work as well as general introduction of the

work. In Chapter 2, derivation of one dimensional heat equations and its analytical solution by

using variable separation method are presented. We also discuss the formulation of numerical

method’s Forward Time Central Space Scheme (FTCSS) along with consistency and Stability

of the FTCSS. Chapter 3 focuses on the comparison between analytic and numerical solution

along with, detailed discussion on the numerical simulation of 1D heat equation with variation

of positions of the initial conditions and multiple initial conditions. Chapter 4 contains the

summary of the work.
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Chapter 2

Solution of One Dimensional Heat
Equation

2.1 Derivation of One Dimensional Heat Equation

Consider the heat transfer in a one-dimensional homogeneous rod of length L and radius r,

where A = πr2 is the cross-sectional area. Assume u = u(x, t) is the temperature distribution

at time (t) and at position (x) along the rod which is to be determined [9, 13, 15, 26].

For which we make the following assumptions are made:

• Heat can enter and leave the rod only through its ends, that is, the rod is laterally insulated.

• The temperature is constant in all cross sections and heat only flows in the x-direction.

• Initially rod is at zero degree and both ends are held at constant temperature T1 and T2
degrees respectively [9, 13, 15, 26].

Let Cv be the specific heat capacity of the rod at constant volume. Consider the small segment

[x, x+4x] of the rod [9, 13, 15, 26]. Then the amount of heat supplied in the segment [x, x+

4x] is approximately given by

Cvρu(ξ, t)A4x, x ≤ ξ ≤ x+4x.

Figure 2.1: Heat flow in a rod.
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where, mass=volume × density= ρA4x.

Let φ(x, t) denote the heat flux flowing through the face at x, then the energy balanced equation

for the segment [x, x+4x] is,

∂

∂t
(Cvρu(ξ, t)A4x) = φ(x, t)− φ(x+4x, t)

∴ CvρAut(ξ, t) =
φ(x, t)− φ(x+4x, t)

4x
(2.1)

The product of the rate of heat flow into the segment at x minus the rate of heat flow out at

x+4x must match the temporal rate of change of energy in the segment. Therefore from (2.1),

as4x→ 0, ξ → x, we have

CvρAut(x, t) = −φx(x, t) (2.2)

This is the fundamental rule governing energy conservation. By the Fourier law of hea, the

negative of the temperature gradient ux(x, t) in the rod at a particular instant and the cross-

sectional area A determine the heat flux at any location. This is,

φx(x, t) = −kux(x, t)A (2.3)

where, k is proportionality constant called thermal conductivity of the material.

Cvρut(x, t) = kuxx(x, t)

or, ut(x, t) = αuxx(x, t) (2.4)

where,

α =
k

Cvρ

. (α > 0) is called the thermal diffusivity of rod. The equation (2.4) is known as heat or

diffusion equation. The IC is

u(x, 0) = f(x), 0 ≤ x ≤ L

and the BCs are

u(0, t) = T1 u(L, t) = T2, t > 0

2.2 Analytic Solution of Heat Equation Using Separation of

Variable Method

Let us consider the 1D heat equation

∂u

∂t
= α

∂2u

∂x2
; 0 ≤ x ≤ L, t ≥ 0 (2.5)

10



with BCs u(0, t) = T1, u(L, t) = T2; t > 0

and IC u(x, 0) = f(x) 0 ≤ x ≤ L

Let

u(x, t) = X(x).T (t) (2.6)

be the solution [9, 13, 15] of equation (2.5). Substituting (2.6) into (2.5), we get

XṪ = αX ′′T

Therefore,
X ′′

X
=

Ṫ

αT
= k

where k is called separation constant. This gives,

d2X

dx2
− kX = 0 (2.7)

And
dT

dt
− αkT = 0 (2.8)

Case I: If k = λ2 > 0, then (2.5) has solution

u(x, t) = (Aeλx +Be−λx)eαλ
2t (2.9)

where A and B are constants.

Case II: If k = −λ2 < 0,then (2.5) has the solution

u(x, t) = (Ccosλx+Dsinλx)e−αλ
2t (2.10)

where C and D are constants.

Case III: If k = 0,then (2.7) has the solution,

u(x, t) = Ex+ F. (2.11)

where E and F are constants. We reject the solution (2.9), because as t → ∞ the solution

tends to∞, and also reject the solution (2.11), because it is independent of t. Thus the equation

(2.10) gives the solution of (2.5). To use the initial and boundary conditions, the constants in

the solution are obtained [9, 13, 15].

11



2.3 Numerical Methods

Consider the IVP obtained above

∂u

∂t
= α

∂2u

∂x2
, 0 < x < 1, t > 0 (2.12)

BC: u(0, t) = T1, u(1, t) = T2

IC: u(x, 0) = f(x)

. To discover the solution of time-dependent PDEs like the heat equation, a number of approx-

imations have been investigated. Numerical analysis is the study of various approximations

in terms of accuracy, convergence, and stability. Making time as a constant while discretiz-

ing space is one method of numerically solving time-dependent partial differential equations

[14, 23]. Here, we take into account the Forward Time Central Space Scheme (FTCSS), This is

helpful for finding the approximate numerical solution of 1D heat equation.

2.3.1 Forward Time Central Space Scheme

In FTCSS, it is taken forward difference for time where as central difference for space.

Forward difference in time:

u(x, t+4t) = u(x, t) +4t∂u(x, t)
∂t

+
(4t)2

2!

∂2u(x, t)

∂t2
+ ...

After simplification
u(x, t+4t)− u(x, t)

4t
=
∂u(x, t)

∂t
+O(4t) (2.13)

Central difference in space:

u(x+4x, t) = u(x, t) +4x∂u(x, t)
∂x

+
(4x)2

2!

∂2u(x, t)

∂x2
+

(4x)3

3!

∂3u(x, t)

∂x3
+ ...

u(x−4x, t) = u(x, t)−4x∂u(x, t)
∂x

+
(4x)2

2!

∂2u(x, t)

∂x2
− (4x)3

3!

∂3u(x, t)

∂x3
+ ...

Adding above expressions, we get

u(x+4x, t)− 2u(x, t) + u(x−4x, t)
(4x)2

=
∂2u(x, t)

∂x2
+O(4x)2 (2.14)

Substituting the expression from the of equation (2.13) and equation (2.14) in equation (2.12),
we have

u(x, t+4t)− u(x, t)
4t

= α

(
u(x+4x, t)− 2u(x, t) + u(x−4x, t)

(4x)2

)
+O(4t, (4x)2)

12



The above equation can be written as

u(x, t+4t) ≈ u(x, t) + α

(
4t

(4x)2

){
u(x+4x, t)− 2u(x, t) + u(x−4x, t)

}
(2.15)

The spatial interval [0, L] has been sub-divided into M + 1 equally spaced sample points

Figure 2.2: Grid points of space-time plane [24].

xm = m.4x = m.h. The time interval [0, T ] has been sub-divided into N + 1 equal time level

tn = n.4t = n.k. We introduce approximations u(xm, tn) ≈ vnm for at each of these space-time

points. Therefore,the equation (2.15) can be reducedin to

vn+1
m = vnm + c(vnm+1 − 2vnm + vnm−1) (2.16)

where

c = α

(
4t

(4x)2

)
= α,

k

h2

which is the required FTCSS [23, 24] for (2.12).

2.3.2 Consistency of FTCS Scheme

Let φ be a smooth function [27], then we have

Pk,hφ =
φn+1
m − φnm

k
− α

φnm+1 − 2φnm + φnm−1
h2

And,

Pφ = φt − αφxx

13



Now,
φn+1
m = φ(tn + k, xm)

= φnm + kφt +O(k2)

∴ φn+1
m −φnm

k
= φt +O(k)

Again,

φnm+1 = φnm + hφx +
h2

2!
φxx +

h3

3!
φxxx +O(h4)

And,
φnm−1 = φnm − hφx + h2

2!
φxx − h3

3!
φxxx +O(h4)

∴ φnm+1 + φnm−1 = 2φnm + 2h
2

2!
φxx +O(h4)

∴
φnm+1 − 2φnm + φnm−1

h2
= φxx +O(h2)

∴ Pk,hφ = φt − αφxx +O(k) +O(h2)

= Pφ+O(K) +O(h2)

∴ Pk,hφ− Pφ = O(k) +O(h2)→ 0 as h, k → 0

Therefore, the FTCSS of equation (2.16) is in accordance with the degree of accuracy (1, 2).

2.3.3 Stability of the FTCS Scheme

Putting vnm = gneimθ, we get

g(θ) = 1 + c(eiθ − 2 + e−iθ)

= 1 + c(2cosθ − 2)

= 1 + 2c(cosθ − 1)

∴ g(θ) = 1− 4c sin2 θ
2

Now the scheme is stable iff,

|g(θ)| ≤ 1

=⇒ −1 ≤ g(θ) ≤ 1

=⇒ −1 ≤ 1− 4c sin2 θ
2
≤ 1

=⇒ −2 ≤ −4c sin2 θ
2
≤ 0

=⇒ 0 ≤ 4c sin2 θ
2

≤ 2

Since this holds for all values of θ, in particular, take θ = π to get,

4c.1 ≤ 2

=⇒ c ≤ 1
2

Again, if c ≤ 1
2
, then,

4c sin2 θ

2
≤ 4.

1

2
.1 = 2

14



∴ 4c sin2 θ

2
≤ 2

Thus, the scheme (2.16) is stable [23, 27] iff c ≤ 1
2
. Therefore, the numerical solution of 1D heat

equation (2.12) with IC and BCs can be found to the FTCS scheme (2.16). By using FTCSS,

the value of c = α k
h2

which is less than or equal to 0.5. By adjusting the time and space interval

sizes, we can keep this state in place. To find the approximation that is more accurate, we must

double the number of space and time divides.

15



Chapter 3

Comparison Between Analytical and
Numerical Solution

3.1 Material having diffusivity 0.05

Let’s use the heat equation as an example [11].

ut = 0.05uxx 0 ≤ x ≤ 1, t ≥ 0 (3.1)

BCs: u(0, t) = u(1, t) = 0; t > 0 IC: u(x, 0) = sinπx; 0 ≤ x ≤ 1

3.1.1 Analytical Solution

From equation (2.10) the 1D heat equation 3.1 has the following solution [9, 13, 15]:

u(x, t) = (Acosλx+Bsinλx)e−0.05λ
2t

Using the superposition principle and boundary conditions,we get

u(x, t) =
∞∑
n=1

Bnsin(nπx)e
−0.05(nπ)2t

Again, by using the IC,

u(x, t) = sin(πx)e−0.05π
2t

Now, we are eager to determine the rod’s distant temperature at distance x = 0.8 m from the

rod’s starting position over time t = 0.8 hr. That is, we are interested to find u(0.8, 0.8). From

above solution we get,

u(0.8, 0.8) = 0.3961
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Figure 3.1: Top: analytic approach, Bottom: numerical approach of one dimensional heat

equation 3.2.

3.1.2 Heat Equation is Numerically Solved Using the Finite Difference
Method

The 1D heat equation 3.1has the following FTCS scheme:

vn+1
m = vnm + c(vnm+1 − 2vnm + vnm−1)

17



with vn0 = vnM = 0, v0m = sinπx and c = 0.05k
h2

.

Consider the length of time be k = 0.2 and space intervals be h = 0.2. Then,

c =
0.05× 0.2

0.22
= 0.25

Since FTCS scheme is stable if and only if c ≤ 0.5. Therefore, For the aforementioned issue,

FTCS is stable. Also, we have v0m = sinπx

Then,

v00 = 0 v01 = 0.5878 v02 = 0.9511 v03 = 0.9511 v04 = 0.5878 v05 = 0

For m = 1 and n = 0, we get v11 = v01 + 0.25(v02 − 2× v01 + v00)

v11 = 0.5878 + 0.25(0.9511− 2× 0.5878 + 0) = 0.5317

Similarly, we have

v00 = 0 v01 = 0.5878 v02 = 0.9511 v03 = 0.9511 v04 = 0.5878 v05 = 0

v10 = 0 v11 = 0.5317 v12 = 0.8602 v13 = 0.8602 v14 = 0.5317 v15 = 0

v20 = 0 v21 = 0.4809 v22 = 0.7781 v23 = 0.7781 v24 = 0.4809 v25 = 0

v30 = 0 v31 = 0.4350 v32 = 0.7038 v33 = 0.7038 v34 = 0.4350 v35 = 0

v40 = 0 v41 = 0.3934 v42 = 0.6366 v43 = 0.6366 v44 = 0.3934 v45 = 0

v50 = 0 v51 = 0.3559 v52 = 0.5758 v53 = 0.5758 v54 = 0.3559 v55 = 0

Now, we find the error at particular case x = 0.8m and t = 0.8hr

From analytic solution we get uexact = u(0.8, 0.8) = 0.3961

Form FTCS approximate solution is uapprox = v44 = 0.3934

Thus,

Error = |uexact − uapprox| = 0.0027.

Therefore,

%Error =
0.0027

0.3961
× 100% = 0.68%

3.2 Various Initial Conditions with Numerical Solutions

Let’s have a look at an illustration of a one-dimensional heat equation using an iron rod whose

thermal diffusivity is 0.23cm2/s = 0.000023m2/s at 26.85◦C temperature [29] as follows

ut = 0.000023uxx 0 ≤ x ≤ 1, t ≥ 0 (3.2)

BCs: u(0, t) = u(1, t) = 0; t > 0

And for the various trials, we use the following three initial conditions:

18



The above heat equation’s FTCS scheme is [11]

vn+1
m = vnm + c(vnm+1 − 2vnm + vnm−1)

with vn0 = vnm = 0. This FTCSS corresponds to the degree of accuracy (1, 2) which is stable

if and only if c ≤ 1
2

[11, 27]. By shortening the gaps of time and space, we can keep the

stability.The number of time and space divisions should be increased in order to discover the

approximate value that is more accurate [11, 27]. Let the length space of the and time intervals’

lengths be h = 0.1 and k = 0.2. So,

c =
0.000023× k

h2
=

0.000023× 0.2

(0.1)2
= 0.00046 ≤ 0.5

The FTCS scheme is stable if and only if c ≤ 0.5, In the foregoing, our FTCS scheme is stable.

3.2.1 Positional variation of the initial condition:

Blacksmiths in Nepali culture use to heat to iron in various places to make it repairable. First,

using the aforementioned heat equation 3.1 and the left end, center as well as the rod’s right

ends, we explore the variation position of the beginning condition. Here, we first apply tem-

peratures of 1500◦C progressively to the rod’s left, center, and right ends. The following initial

circumstances are as a result:

IC1: u(0.1, 0) = 1500

IC2: u(0.5, 0) = 1500

IC3: u(0.9, 0) = 1500

A description of heat transport for the rod is then studied. The three’s temperature distribution

scenarios mentioned above is depicted in Fig. 3.2.

According to 3.2, the graph showing IC1 and IC3 only permits heat to move in right and left

sides of one direction, respectively. In contrast, heat follows IC2 in either direction. Below in

Fig. 3.3 is an area of x against distribution of temperatures.

The iron rod as displayed to be approximately 600 degree Celsius after 250 seconds of heating,

while during the first and third situations, the rod is the sole about 500 ◦C. The BC, with the

intention of 0 degrees Celsius from both ends, are the cause of this variation. The identical

effect is produced by applying heat both close to the left and close to the right. However, if

the content wasn’t homogeneous or if the left and right ends have BC were different, the result

would be more intriguing.
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Figure 3.2: Temperature range that corresponds to Top: IC1, Middle: IC2 and Botton: IC3
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Figure 3.3: x vs u plot following 250 seconds

3.2.2 Initial situation at multiple positions

The aforementioned idea has been expanded in this case to account for various initial condi-

tions. The first initial condition (IC1) is now available.

v0m =

1200 for m = 5

0 otherwise

Similar to this, we have the initial conditions IC2 and IC3 respectively.

v0m =

1200 for m = 3, 7

0 otherwise

and
v0m =

1200 for m = 2, 5, 8

0 otherwise

Figure 3.4 depicts the temperature distribution under various beginning conditions, including

ICs 1, 2, and 3, maximum 300 seconds after the material was heated. The temperature of the

material, in this case an iron rod, progressively decreases after it has been heated up, as seen in

21



Figure 3.4: Different initial conditions for the numerical solution.

3.2
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Figure 3.5: x vs u plot following 250 seconds

Fig. 3.4. The rod went from 1500 degrees Celsius to about 500 degrees Celsius in a short period

of time.

As mentioned above, we heated the road at three distinct spots with IC1, IC2, and IC3: one

position in IC1, two points in IC2, and three points in IC3. The numerical solution with IC3 in

Fig. 3.4has a darker and browner front edge. This reveals that the rod’s temperature distribution

is more uniform in comparison to ICs 1 and 2. This happens as an outcome of the increase in

the number of areas receiving heat. One of the iron road heating methods used by blacksmiths

is seen in Figure 1.3. Blacksmiths and goldsmiths among other metal trades used this technique

to heat iron rods and other materials.

The average temperature of the iron rod after 250 seconds of heating is around 590 degrees

Celsius, as shown in Fig. 3.5.As a result of providing greater heat locations than ICs 1 and 2,

the figure demonstrates that the average rod’s internal temperature is higher more IC3 than it is

with ICs 2 and 1. The result, we draw the conclusion that different metal businesses, such as

blacksmiths and goldsmiths, have found that the iron rod’s normal range is related the quantity

of heat applied sites.
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Chapter 4

SUMMARY

Partial differential equations (PDEs) utilized to simulate a number of physical issues, including

wave and heat transmission, in the real world. Here, we first introduced the one-dimensional

heat equation and provided a little history before modeling the equation and utilizing the ap-

proach of variable separation to find the analytic answer. Then, we discussed the FTCSS for

the 1D heat equation, talked about its consistency and stability, and used it to get a numerical

solution. Finally, we compared the analytical and numerical methods using an example.

Finally we discuss the corresponding computational software to solve heat equation for FTCSS

and also analytic and numerical solution were plotted. Then, we discuss the temperature distri-

bution with variation of positions of initial conditions, that is, the rod’s left, middle, and right

ends each are heated. Initially, we apply the 1500◦C. The rod of 1 m length’s temperature at

its far left, far center, and far right ends. A description of heat transport then in the rod studied.

The real life situation of iron rod heating technique used by one of the blacksmith is shown.

This type of iron rod and other resources heating technique also made use of different mental

industry, used by blacksmiths and by goldsmiths too. Thus, we draw the conclusion that the

typical temperature of iron rod is directly correlate with the locations where heat is apply.
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ABSTRACT 

Many physical problems, such as heat transfer and wave transfer, are modeled in the real world 

using partial differential equations (PDEs). When the domain of such modeled problems is 

irregular in shape, computing analytic solution becomes difficult, if not impossible. In such a 

case, numerical methods can be used to compute the solution of such PDEs. The Finite 

difference method (FDM) is one of the numerical methods used to compute the solutions of 

PDEs by discretizing the domain into a finite number of regions. We used FDMs to compute 

the numerical solutions of the one dimensional heat equation with different position initial 

conditions and multiple initial conditions. Blacksmiths fashioned different metals into the 

desired shape by heating the objects with different temperatures and at different position. The 

numerical technique applied here can be used to solve heat equations observed in the field of 

science and engineering. 

 

Keywords: Partial differential equation, Heat equations, Parabolic equations, Finite difference 

methods, Numerical solutions, Metal Heating, Blacksmithing. 

 

1. INTRODUCTION 

A partial differential equation (PDE) involves 

partial differential coefficients, i.e., the partial 

derivative of a dependent variable with more than 

one independent variable. As there is always more 

than one independent variable in a physical 

problem. PDEs are important in many branches of 

science and engineering. We can solve only a few 

PDEs, mostly linear equations and some nonlinear 

equations [1, 2, 8, 10]. The heat equation, also 

known as the diffusion equation in mathematics and 

physics, is a partial differential equation (PDE) that 

describes the distribution of heat evolution over 

time in a solid medium [2, 8, 10].  The heat 

equation is an important PDE which describes the 

variation in temperature (or distribution of heat) in 

a given region over time (Fig. 1). The heat equation 

(Diffusion equation) is widely used in particle 

diffusion, Brownian motion, Schrodinger equation 

for a free particle and thermal diffusivity in 

polymers. It’s also used in metal processing 

industry, the outer surface of rockets, railway tracks 

and bridges, refrigerators, image analysis, cancer 

modeling and spatial ecological modeling. As a 

result, the heat equation is extremely important in a 

variety of scientific fields [2, 4, 5, 8, 9, 10, 24].  

Let              then the partial differential 

equation of the form  

                      ... (1.1) 

where c is called thermal diffusivity, is one 

dimensional heat equation (diffusion equation). It is 

an example of a prototypical parabolic partial 

differential equation [1, 4]. 

In the regular shape domain, the heat equation has an 

analytic solution, whereas in the irregular shape 

domain, computing analytic solution of such 

equations is very difficult [12, 19]. As a result, we use 

numerical methods to compute the solution of the 

modeled partial differential equations. We use the 

finite difference method (FDM) to find numerical 

solutions to heat transfer problems, which was 
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introduced by Brook Taylor in 1715 and has been 

studied as abstract self-standing mathematical objects 

in works by George Boole (1860), C.M. Milne 

Thomson (1933), and Karaly Jordan (1939) [12, 19]. 

 

 
 

Fig. 1: Heat flow in a rod. Source…. 

 

By discretizing the domain into a finite number of 

regions, we can compute the numerical solution of 

partial differential equations. The solutions are 

computed at the domain's grid points [12, 19]. The 

numerical solutions of a one dimensional heat 

equation together with an initial condition and 

boundary conditions using finite difference 

methods does not always converge to the exact 

solutions [12, 19]. It denotes numerical instability 

in finite difference methods. 

A blacksmith is a metalworker who fashions 

various objects out of iron or steel. By heating, 

hitting, twisting, and cutting metals, blacksmiths 

create objects such as gates, grilles, railings, light 

fixtures, furniture, sculpture, tools, agricultural 

implements, decorative and religious items, 

cooking utensils, and weapons. During their work, 

blacksmiths heat the metals to soften them so that 

they can be shaped with hand tools such as 

hammers, chisels, anvils, and so on. They estimate 

the temperature distribution on their metal pieces 

by looking at the glowing color on them. Heat may 

be applied to single or multiple locations on the 

metal [22]. 

We are all aware that heat transfers from a hotter 

body to a colder body. Temperature change is a 

major effect of heat transfer: heating raises the 

temperature while cooling lowers it. We assume 

that there is no phase change and that no work is 

done on or by the system throughout our work. 

Experiments show that the transferred heat is 

affected by three factors: temperature change, 

system mass, and substance phase [7, 17, 23]. In 

practice, we must apply different amounts of heat to 

different parts of the material in order to change the 

metals into the desired shape. One of the prominent 

examples is a blacksmith working on hot iron 

which is shown in Fig. 2. 

Chamkha and Khaled [3] investigated the effect of 

magnetic field on coupled heat and mass transfer by 

mixed convection in a linearly stratified stagnation 

flow in the presence of internal heat generation or 

absorption. Exact analytic solutions and modeling for 

hydro magnetic oscillatory rotating flows of an 

incompressible Burgers fluid bounded by a plate [5, 

16, 18]. Jean Baptise Joseph Fourier (1768-1830) 

invented the heat equation, which he presented as a 

manuscript to the Institute de France in 1807 AD and 

published in his monograph, Analytic Theory of Heat, 

in 1822 AD [13]. Scientists in the 1600s appeared to 

have been correct in their belief that heat is related to 

the motion of microscopic constituents of matter. 

However, in the 1700s, it was thought that heat was a 

separate fluid-like substance [25]. 
 

 
 

Fig. 2: Blacksmith working on hot iron [23]. 

 

We use the finite difference method (FDM) to find 

numerical solutions to heat transfer problems, which 

was introduced by Brook Taylor in 1715 and had 

been studied as abstract self-standing mathematical 

objects in works by George Boole (1860), C.M. Milne 

Thomson (1933) and Karaly Jordan (1939) [12, 19]. 

Makhtoumi [11] developed analytical and numerical 

solutions for studying heat diffusion investigating in a 

1D thin rod. He used the rod PDE system to apply the 

homotopy perturbation method (HPM) and the finite 

difference method (FDM). Olaiju et al. [14, 15] 

investigated the explicit finite difference scheme and 

applied it to a simple 1D heat equation problem. 

Finite difference methods are used to compute the 

numerical solutions of a one dimensional heat 

equation with initial and boundary conditions. To 

begin, the effect of heat supplied to the material at 

various positions will be investigated and compared. 

Finally, the effect of heat supplied in various positions 

will be investigated and compared. 

 

2. NUMERICAL SOLUTIONS FOR VARIATION OF 

INITIAL CONDITIONS 

2.1    Heat Equation for 1D Iron Rod     

Let us consider an example of a one dimensional 

heat equation in the case of iron rod, whose thermal 
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diffusivity is                          at 

        temperature [21] as follows 

                                 ... (2.1) 

BCs:                           
 

And for the different experiments we apply three 

different initial conditions. 

2.1.1 Numerical Solution by Using FDM 

The FTCS scheme of the above heat equation is [6] 
 

  
      

        
     

      
   

 

where,    
    

    

This FTCSS   is consistent with the order   of 

accuracy (1, 2) and is stable iff      
 

 
  [6, 20]. We 

can maintain the condition of stability by resizing 

the lengths of space and time intervals. To find the 

more accurate approximation we have to increase 

the number of space and time partitions [6, 20]. Let 

the length of space and time intervals be       

and       respectively. Then, 

  
          

  
 

            

    
         

 

We know that, the FTCS scheme is stable iff   

        , so our FTCS is stable for above problem. 

A: Variation of position of initial condition:  

In Nepali culture, blacksmith supplied heat at 

different position on the iron to make it fixable. 

Firstly, we discuss the variation position of initial 

condition, i.e., left end, middle and right end of the 

rod with heat equation (2.1) as above. Consider, a 

blacksmith applies the 1500Cº temperature near left 

end, at middle and near right end of the rod of 1m 

length successively. Thus, the corresponding initial 

conditions are: 

IC1                  

IC2                  

IC3:                   

After then we study the nature of heat transfer in 

the rod. The temperature distribution corresponding 

to the above three cases are shown in Fig. 3. 

 

         
 

Fig. 3: Temperature distribution corresponding to Top: IC1, Middle: IC2 and Bottom: IC3. 

 

From Fig. 3 we observe that, the figure with IC1 

and IC3 allows heat to transfer in only one 

direction, to the right and left sides respectively. 

Heat, on the other hand, follows in either direction 

with IC2. A plot of the x versus temperature 

distribution is also shown below in Fig. 4. 

This plot shows that after 250 sec. of heat, the iron 

rod is around 600 degrees Celsius, but in the first 

and third cases, the rod is only around 500 degrees 

Celsius. This variation is caused by the boundary 

conditions, which are set to 0°C at both ends. Heat 

applied to both the near left and near right produces 

the same result. However, the outcome would be 

more interesting if the material was non-

homogeneous or if the boundary conditions on the 

left and right ends differed. 

 
 

Fig. 4: Plot of x versus u after 250 sec. of heat supplied 
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B: Initial condition in Multiple Position: Here, 

the above concept has been generalized for the 

multiple initial conditions. Now for the first initial 

condition (IC1), we have 

  
   

              
     t     s 

  

 

Similarly, for the initial conditions IC2 and IC3 

respectively, we have 

                   
   

               
        t     s 

          and 

 

  
   

                 
     t     s 

  

 

Fig. 5 depicts the temperature distribution with 

different initial conditions, namely IC1, IC2 and 

IC3, up to 300 sec. from the instant of heating the 

material. According to Fig. 5, the temperature of 

the material, i.e., iron rod, gradually goes on 

decreasing from the time of heating. Over time, the 

rod cooled down to around 500◦C from 1500◦C in 

just 300 sec. 

In IC1, we heated the road at one point, in IC2, we 

heated it at two points and in IC3, we heated at 

three different points, as stated above. The front 

edge of the numerical solution with IC3 in Fig. 5 is 

browner and darker red. This demonstrates that the 

rod has a more even temperature distribution than 

IC1 and IC2. This is because the number of heat-

supplied locations has increased. Figure 2 depicts a 

real-world application of one of the blacksmiths' 

iron road heating techniques. This method of 

heating iron rods and other materials was also used 

by various metal industries, including blacksmiths 

and goldsmiths. 

 

       
 

Fig. 5: Numerical solution of (2.1) with different initial conditions. 

 

 

Fig. 6: Plot of x versus u after 250 sec. of heat supplied. 

 

According to Fig. 6, the average temperature after 

250 sec. of heating the iron rod is around 590ºC. 

The figure shows that the amount of average 

temperature on the rod is greater with IC3 than that 

of IC2 and IC1 as a consequence of applying heat 

in more places than that of IC1 and IC2. As a result, 

we conclude that, the average temperature of the 

iron rod is proportional to the number of heat 

applied locations. 

 

3. CONCLUSION 

Using FDMs, we compute the numerical solution of 

one dimensional heat equation. To begin, we 

consider a one dimensional heat equation and 

consider the variety of positions of initial 

conditions, that is, heat is applied at the left, 

middle, and right ends of the rod. Initially, we 

applied the 1500◦C temperature to the 

aforementioned positions of the 1m long rod in 

succession. The nature of the heat transfer in the 

rod is then investigated. We discovered that when 

the temperature is applied to the center of the rod, it 

lasts longer. The outcome is due to the boundary 

conditions we used. Similarly, we applied 1500°C 
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temperature to one position, then two positions, and 

finally three positions of the one dimensional iron 

rod. We conclude from this experiment that the 

average temperature of the iron rod is directly 

proportional to the number of heat applied 

locations. This method of heating iron rods and 

other materials was used by various metal 

industries, including blacksmiths and goldsmiths. 
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