

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

B-075-BAS-2078/79

FAULT DIAGNOSIS OF A BALL BEARING USING

VIBRATION ANALYSIS

By:

Mikesh Paudel (075AER023)

Sumit Bhatta (075AER045)

Sushil Sapkota (075AER046)

A PROJECT REPORT

SUBMITTED TO THE DEPARTMENT OF MECHANICAL AND AEROSPACE

ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF BACHELOR‟S IN AEROSPACE ENGINEERING

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

LALITPUR, NEPAL

June, 2023

II

COPYRIGHT

The author has agreed that the library, Department of Mechanical and Aerospace

Engineering, Pulchowk Campus, Institute of Engineering may make this project

report freely available for inspection. Moreover, the author has agreed that permission

for extensive copying of this project report for scholarly purpose may be granted by

the professor who supervised the work recorded herein or, in their absence, by the

Head of the Department wherein the thesis was done. It is understood that the

recognition will be given to the author of this project report and to the Department of

Mechanical and Aerospace Engineering, Pulchowk Campus, Institute of Engineering

in any use of the material of this project report. Copying or publication or the other

use of this project report for financial gain without approval of the Department of

Mechanical and Aerospace Engineering, Pulchowk Campus, Institute of Engineering

and author‟s written permission is prohibited.

Request for permission to copy or to make any other use of this project report in

whole or in part should be addressed to:

Head of Department

Department of Mechanical and Aerospace Engineering

Institute of Engineering, Pulchowk Campus

Lalitpur, Kathmandu

Nepal

III

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

The undersigned certify that they have read, and recommended to the Institute of

Engineering for acceptance, a project report entitled “FAULT DIAGNOSIS OF A

BALL BEARING USING VIBRATION ANALYSIS” submitted by Mikesh Paudel,

Sumit Bhatta and Sushil Sapkota in partial fulfillment of the requirements for the

degree of Bachelor of Mechanical and Aerospace Engineering.

Supervisor, Prof. Dr. Mahesh Chandra Luintel

Department of Mechanical and Aerospace

Engineering

Supervisor, Asst. Prof. Aayush Bhattarai

Department of Mechanical and Aerospace

Engineering

External Examiner, Mr. Spad Acharya

Lecturer, Sagarmatha Engineering College

Assoc. Prof Dr. Surya Prasad Adhikari

Head of Department

Department of Mechanical and Aerospace

Engineering

Date:

IV

ABSTRACT

Failure of ball bearings is a major cause of rotatory machine failure resulting in large

economic losses and possible injury to human lives. Correct diagnosis helps to

identify bearing faults and use the bearings effectively, preventing catastrophic

failures of rotating machines. Detecting potential problems early, and condition

monitoring allows for proactive maintenance and reduces the downtime of machines.

Improved equipment reliability and efficiency lead to lower maintenance costs and

increased productivity. The study aimed to classify three types of bearing faults: Inner

Raceway, Outer Raceway and Ball fault. Inner Raceway and Outer Raceway faults

were introduced in the 608-deep groove ball bearing via an electric grinder making

1.5mm line cuts through the axis of the bearing. For ball fault, one ball was removed

out of the 7 present. An accelerometer with sampling frequency of 1000Hz was fixed

on the drive end of the AC induction motor to acquire the vibration signals. Models

for Support Vector Machine (SVM), Convolutional Neural Network (CNN) (both 1D

CNN and 2D CNN) and Long Short Term Memory Network (LSTM) were

developed. Raw bearing fault data from an open-source database, CWRU was fed into

the models to check their accuracy. A minimum accuracy of 92.47% was acquired

from the raw CWRU data, thus validating the models. The acquired fault data from

the accelerometer was processed through a (20Hz, 500Hz) band pass filter before

feeding into the machine learning and deep learning models. 70% of the vibration data

was used for training the models while the remaining 30% was used for testing. Out

of the 4 models compared, 1D CNN gave a maximum test accuracy of 98.35%.

Keywords: Fault Diagnosis, Ball Bearing, Machine Learning, Deep Learning, SVM,

LSTM, CNN

V

ACKNOWLEDGEMENT

We would like to extend our sincerest of gratitude to everyone who helped in the

completion of the project. First of all, we would like to thank the Department of

Mechanical and Aerospace Engineering for providing us with the opportunity,

workspace and helping us with some needed instruments to complete this project. We

would like to thank our supervisors, Assistant Professor Mr. Aayush Bhattarai and

Professor Dr. Mahesh Chandra Luintel for providing us with their constant help and

supervision throughout the entirety of the project.

We would like to thank, Mr. Kamal Darlami, Deputy Head of the Department, for

helping us to with his valuable insights which helped to change the dynamics of the

project. We are also grateful towards Assistant Professor, Dr. Sudip Bhattarai, for his

constant help throughout the project, ranging from his valiant engine startup attempts

to providing insights in signal processing and filtering the acquired data. We would

like to thank Mr. Laxman Motra for providing us with tachometer and 3D Vibration

Tester for our project. Our sincere gratitude towards Assistant Professor, Mr. Aashish

Karki, for providing valuable insights to build the experimental setup.

We would like to express our hearty gratitude towards Mr. Bibek Parajuli for working

as the unofficial fourth member of our project. We would also like to thank Mr.

Ganesh Dhungana, Mr. Sandesh Parajuli and Mr. Sandip Gautam for helping us

during the crucial phases of the project.

VI

TABLE OF CONTENTS

Copyright .. II

Approval Page .. III

Abstract .. IV

Acknowledgement .. V

Table of Contents ... VI

List of Tables .. VIII

List of Figures .. IX

List of Symbols .. XI

List of Acronyms and Abbreviations ... I

Chapter 1 : INTRODUCTION ... 1

1.1 Background .. 1

1.1.1 Ball Bearings ... 1

1.1.2 AC Induction Motor .. 3

1.1.3 Signal Processing .. 4

1.1.4 Machine Learning (ML) .. 5

1.1.5 Deep Learning (DL) .. 5

1.1.6 Case Western Reserve University Dataset .. 6

1.2 Problem Statement ... 6

1.3 Objectives ... 7

1.3.1 Main Objective .. 7

1.3.2 Secondary Objectives .. 7

1.4 Applications ... 7

1.5 Features .. 8

1.6 Feasibility ... 9

1.6.1 Economic Feasibility ... 9

1.6.2 Technical Feasibility ... 9

1.6.3 Operational Feasibility .. 10

1.7 System Requirements ... 10

1.7.1 Software Requirements ... 10

1.7.2 Hardware Requirements .. 10

Chapter 2 : LITERATURE REVIEW ... 14

Chapter 3 : RELATED THEORY ... 16

3.1 Support Vector Machine (SVM) .. 16

3.1.1 Principal Component Analysis (PCA) .. 17

VII

3.1.2 Parameter Selection ... 18

3.1.3 Feature Extraction ... 19

3.2 Convolutional Neural Network (CNN) .. 22

3.2.1 K- Fold Cross- Validation ... 26

3.3 Long-Short Term Memory ... 27

3.4 Fast Fourier Transform (FFT) .. 29

Chapter 4 : METHODOLOGY .. 30

4.1 Flowchart for the BE Project ... 30

4.2 Flowchart for the CWRU Dataset Fault Diagnosis .. 31

4.3 Fault Introduction ... 32

4.4 Experimental Setup .. 33

4.5 Algorithm Development Models ... 35

4.5.1 SVM Architecture ... 35

4.5.2 1D CNN Architecture ... 36

4.5.3 2D CNN Architecture ... 38

4.5.4 LSTM Architecture ... 40

Chapter 5 : RESULTS AND DISCUSSION .. 43

5.1 Bearing Fundamental Defect Frequencies (BFDF) Calculation 43

5.2 Signal Processing ... 44

5.3 Output ... 46

5.3.1 SVM .. 46

5.3.2 1D CNN .. 49

5.3.3 2D CNN .. 51

5.3.4 LSTM .. 53

5.3.5 Overall Models Comparison ... 55

5.4 Model validation for CWRU bearing Dataset .. 57

5.5 Limitations ... 61

5.6 Problems Faced and Recommendations .. 62

5.7 Cost Analysis ... 63

Chapter 6 : CONCLUSION AND FUTURE ENHANCEMENTS 64

6.1 Conclusion ... 64

6.2 Scope for Future Enhancement .. 65

REFERENCES ... 66

APPENDIX 1 ... 70

APPENDIX 2 ... 75

VIII

LIST OF TABLES

Table 4. 1: SVM Model Parameters ... 35

Table 4. 2: 1D CNN Model Parameters ... 37

Table 4. 3: 2D CNN Model Parameters ... 39

Table 4. 4: Layers, Return Sequence and Number of Neurons of LSTM 42
Table 5. 1: Types of Data and Data Size …………………………………………………………………46
Table 5. 2: SVM Test and Train Accuracy .. 46

Table 5. 3: 1D CNN Train and Test Accuracy .. 49

Table 5. 4: 2D CNN Train and Test Accuracy .. 51

Table 5. 5: LSTM Train and Test Accuracy .. 54

Table 5. 6: Test vs Train Accuracy Comparison Between Models 55

Table 5. 7: Train and Test Accuracy for algorithms using CWRU Dataset 57

Table 5. 8: Cost Analysis .. 63

IX

LIST OF FIGURES

Figure 1.1: Parts of a Ball Bearing ... 1

Figure 1. 2: Inner Raceway Fault ... 2

Figure 1. 3: Outer Raceway Fault .. 2

Figure 1. 4: AC Induction Motor ... 3

Figure 1. 5: CWRU Experimental Setup ... 6

Figure 1. 6: ADXL 335 Accelerometer ... 11

Figure 1. 7: NI DAQ System ... 112

Figure 1. 8: Tachometer ... 13
Figure 3. 1: Support Vectors and the Optimal Hyperplane .. 16

Figure 3. 2: Convolutional Neural Network .. 22

Figure 3. 3: K-fold Cross Validation .. 26

Figure 3. 4: LSTM Architechture .. 27
Figure 4. 1: Flowchart for the BE Project .. 30

Figure 4. 2: Flowchart for CWRU Fault Diagnosis ... 31

Figure 4. 3: Inner Raceway Fault ... 32

Figure 4. 4: Ball Fault .. 32

Figure 4. 5: Outer Raceway Fault .. 32

Figure 4. 6: Experimental Setup for the AC Induction Motor 33

Figure 4. 7: AC induction motor, DAQ system and ADXL 335 accelerometer 34
Figure 5. 1: FFT of the Normal Bearing Vibration Data ... 44

Figure 5. 2: FFT of Inner Race Defect ... 44

Figure 5. 3: FFT of Outer Race Defect .. 45

Figure 5. 4: FFT of Ball Defect .. 45

Figure 5. 5: Train vs Test Accuracy for SVM ... 47

Figure 5. 6: Confusion Matrix for SVM- Train & SVM- Test 47

Figure 5. 7: Decision Boundary – SVM .. 48

Figure 5. 8: Train vs Test Accuracy for 1D CNN .. 49

Figure 5. 9: Training Accuracy of 1D CNN at different folds 50

Figure 5. 10: Confusion Matrix for 1D CNN-Test and Train 50

Figure 5. 11: 1D CNN Train vs Validation Accuracies ... 51

Figure 5. 12: Train vs Test Accuracy for 2D CNN .. 52

Figure 5. 13: Train vs Test Accuracy for 2D CNN .. 52

Figure 5. 14: Confusion Matrix for 2D CNN-Test and Train 52

Figure 5. 15: 2D CNN Train vs Validation Accuracies ... 53

Figure 5. 16: Training Accuracy of LSTM at different folds 54

Figure 5. 17: Train vs Test Accuracy for LSTM ... 54

Figure 5. 18: Confusion Matrix for LSTM – Test and Train 55

Figure 5. 19: Model Accuracies for Training in Experimental Setup 56

Figure 5. 20: Model Accuracies for Testing in Experimental Setup 56

Figure 5. 21: Confusion Matrix for Testing Data using SVM 57

Figure 5. 22: CWRU Train vs Test Accuracy for SVM .. 58

Figure 5. 23: CWRU- Decision Boundary for SVM ... 58

Figure 5. 24: CWRU- Confusion Matrix for Test Data via 1D CNN 58

X

Figure 5. 25: CWRU- Test and Train Accuracy via 1D CNN 59

Figure 5. 26: CWRU – Test and Train Confusion Matrices for 2D CNN 59

Figure 5. 27: CWRU- Train and Test Accuracies for 2D CNN 59

Figure 5. 28: CWRU- Test and Train Confusion Matrices in LSTM 60

Figure 5. 29: CWRU – Train and Test Accuracy for LSTM 60

Figure 5. 30: Overall Training and Testing Accuracies ... 60
Figure A2. 1: Accelerometer, attached to the drive end connected with the DAQ

system .. 89

Figure A2. 2: The Project Team and the Experimental Setup 90

XI

LIST OF SYMBOLS

R Real Number

N Number of data points

Exp() Exponential Function

Xn Nth data point

C Hyperparameter in SVM

g Acceleration due to gravity

Xi Input Vector

Yi Label of input vector

I

LIST OF ACRONYMS AND ABBREVIATIONS

SVM Support Vector Machine

CBM Condition Based Monitoring

ML Machine Learning

DL Deep Learning

CNN Convolutional Neural Network

LSTM Long Short Term Memory

GAN Generative Adversarial Network

RMSE Root Mean Square Error

FT Fourier Transform

FFT Fast Fourier Transform

STFT Short Time Fourier Transform

EMD Empirical Mode Decomposition

WPT Wavelet Packet Transformation

IMF Intrinsic Mode Functions

AI Artificial Intelligence

KNN K Nearest Neighbor

ANN Artificial Neural Network

CWRU Case Western Reserve University

HDD Hard Disk Drive

CPU Central Processing Unit

RNN Recurrent Neural Network

MLP Multilayer Perceptron

OR Outer Raceway

IR Inner Raceway

PCA Principle Component Analysis

DE Drive End

Institute of Engineering, Central Campus Pulchowk BE Project Report

1

Chapter 1 : INTRODUCTION

1.1 Background

Bearings are among the most crucial components of almost every rotating machine.

Failure of bearings can lead to large downtime, and equipment failures and can cause

injuries to human lives. Lack of lubrication, contamination, fatigue, and misalignment

are some of the most common causes of bearing failure. Failure of bearing is the

result of a failure of a specific component or components. When a specific bearing

component fails, its vibration signature changes. Based on this change in vibration

signature from the normal condition, the bearing faults can be diagnosed using

Machine Learning and Deep Learning algorithms.

1.1.1 Ball Bearings

Figure 1.1: Parts of a Ball Bearing

Among the various types of bearings, ball bearings are a common type that are able

to sustain both radial and axial loads [2]. Ball bearings are composed of two layers:

an inner ring and an outer ring separated by rolling elements. The rolling elements

allow smooth, high-speed motion and reduce friction. Ball bearings are mainly made

out of ceramics, stainless steel or chrome steel depending upon the requirement of

the machinery. They come in sizes ranging from 1mm to 26 mm. These bearings

may have deep grove radial structure, single-row angular contact with internal

clearances, raceway grooves, mast guide, v-grooves, etc. as per the required loading

Institute of Engineering, Central Campus Pulchowk BE Project Report

2

conditions [3]. It is important to select proper ball bearings to reduce the risk of

failure and avoid high maintenance costs.

Bearing faults are mainly classified on the basis of their parts as: Inner Raceway

(IR) faults, Outer Raceway (OR) faults and ball faults.

Figure 1. 2: Inner Raceway Fault

Figure 1. 3: Outer Raceway Fault

Institute of Engineering, Central Campus Pulchowk BE Project Report

3

1.1.2 AC Induction Motor

Figure 1. 4: AC Induction Motor

An AC induction motor, also known as an asynchronous motor, is a type of electric

motor that operates on the principle of electromagnetic induction. It is the most

commonly used type of motor in industrial and commercial applications. The AC

induction motor consists of a stator, which is the stationary part of the motor, and a

rotor, which is the rotating part. The stator has a series of windings that are connected

to an AC power source. When the power is turned on, the AC current in the stator

windings produces a rotating magnetic field. The rotor is made up of a series of

conductive bars or coils, and when the rotating magnetic field of the stator cuts across

the rotor, it induces an electric current in the rotor. The interaction between the

magnetic fields of the stator and the rotor causes the rotor to rotate, and the motor

shaft turns. The speed of the motor is determined by the frequency of the AC power

supply and the number of poles in the stator windings. The torque of the motor is

determined by the strength of the magnetic field and the current in the rotor. AC

induction motors are widely used in applications such as pumps, fans, compressors,

conveyors, and machine tools. They are rugged, reliable, and efficient, and they

require little maintenance. They are also relatively inexpensive to manufacture,

making them a popular choice for many industrial and commercial applications.

Institute of Engineering, Central Campus Pulchowk BE Project Report

4

1.1.3 Signal Processing

Signal processing is the process of analyzing, modifying and transforming signals that

represent some form of information. Signal processing involves wide range of

techniques for signal processing including filtering, Fourier analysis, spectral

analysis, time-frequency analysis, digital signal processing and statistical signal

processing. These techniques can be used to extract useful information from signals,

remove noise or unwanted components, compress data and prepare signals for further

analysis or transmission. Signal processing is an important step in preparing vibration

data for machine learning (ML) and deep learning (DL) algorithms. The goal of signal

processing is to extract meaningful features from the raw vibration data that can be

used as inputs to ML/DL models.

Some of the common signal processing techniques that can be applied to vibration

data are:

1. Filtering: This involves removing unwanted noise or frequencies from the signal.

For example, a high-pass filter can be used to remove low-frequency noise from

the data, while a low-pass filter can be used to remove high-frequency noise.

2. Feature extraction: This involves identifying specific characteristics of the signal

that are relevant to the problem at hand. For example, the amplitude, frequency,

and phase of specific vibration modes can be extracted from the signal and used as

input features.

3. Time-frequency analysis: This involves analyzing the signal in both the time and

frequency domains to identify patterns that are relevant to the problem at hand.

For example, a spectrogram can be used to visualize how the frequency content of

the signal changes over time.

4. Dimensionality reduction: This involves reducing the number of input features by

projecting the data onto a lower-dimensional space. For example, principal

component analysis (PCA) can be used to identify the most important features in

the data and project the data onto a lower-dimensional space.

Institute of Engineering, Central Campus Pulchowk BE Project Report

5

1.1.4 Machine Learning (ML)

Machine learning refers to a branch of artificial intelligence that enables systems to

learn and improve from experience without being explicitly programmed, allowing

them to automatically make predictions and recognize patterns. It can be mostly

divided into three categories: unsupervised learning, supervised learning and

reinforcement learning. Unsupervised learning deals with the clustering of data in a

certain pattern that the machine learns to be fit. The output isn‟t labeled so most of

the work the machine does is pattern recognition and division of the data into a

number of subsets. Clustering, anomaly detection and dimensionality reduction are

some of the tasks unsupervised learning algorithms are good at. K-means clustering,

K Nearest Neighbor (KNN), Apriori are some widely used unsupervised learning

algorithms. In vibration analysis, K-Nearest Neighbor has helped to classify fault via

interfering vibration source with an accuracy of 98.53% [11].

Supervised learning requires algorithm to be trained by labeling the input variables

and output datas. They are mostly used for regression and classification problems.

Supervised learning algorithms including Linear regression, random forest and

Support Vector Machines(SVM) have been used in recent years for ball bearing

fault diagnosis with accuracy above 97%[12][13] .

Reinforcement learning implies that machines learn from their own mistakes and

successes. The punishment-reward approach based on the mistakes and successes

the machine encounters helps it to learn and unlearn. Robotics and gaming are some

core fields that use reinforcement learning.

1.1.5 Deep Learning (DL)

Deep learning is a category of Machine learning based on Artificial Neural

Networks(ANN) that use multiple hidden layers to extract features from the input

signal or image. They are highly used in image processing, vibration analysis,

computer vision and climate change programs. Recently, Convolutional Neural

Networks (CNN), Long Short Term Memory Networks (LSTMs), Deep Belief

Institute of Engineering, Central Campus Pulchowk BE Project Report

6

Networks[14], Deep Autoencoders[15] and General Adversarial Networks(GANs)

are being used in bearing fault detection problems.

1.1.6 Case Western Reserve University Dataset

Figure 1. 5: CWRU Experimental Setup

The CWRU Bearing Dataset is a publicly available dataset of vibration signals from

various fault conditions in bearings. It was created by researchers at Case Western

Reserve University and is widely used for research purposes in the fields of machine

learning, signal processing, and condition monitoring. The dataset contains time-

domain vibration signals collected from four different bearing types under different

fault conditions, including inner race, outer race, ball, and normal conditions. The

dataset provides a valuable resource for researchers and engineers to develop, test,

and compare various condition monitoring and fault diagnosis methods for bearings.

For initial training and testing of algorithms the CWRU dataset has been used.

1.2 Problem Statement

Fault diagnosis on a ball bearing using vibration monitoring is crucial for the proper

functioning and longevity of the engine.[16] The traditional methods of fault

diagnosis are prone to human error and can lead to inaccurate results. This project

aims to improve the accuracy and efficiency of fault diagnosis by using Machine

Learning (ML) and Deep Learning (DL) algorithms to develop an automated

system. The system will be trained on a dataset of engine vibration data collected

from various operational scenarios and will be able to classify faults in real-time as

one of the three types: Outer race fault, Inner race fault, and Ball fault. The goal of

Institute of Engineering, Central Campus Pulchowk BE Project Report

7

this project is to accurately and quickly diagnose faults in engine bearings, reducing

downtime and maintenance costs and ensuring optimal engine performance.

1.3 Objectives

1.3.1 Main Objective

• To correctly diagnose typical faults induced in ball bearing using vibration

signature analysis via Machine Learning and Deep Learning.

1.3.2 Secondary Objectives

1. To improve the accuracy of fault diagnosis compared to traditional methods,

reducing the number of false alarms and improving overall reliability.

2. To develop an experimental setup to obtain vibration signal for fault diagnosis.

3. To demonstrate the viability and benefits of using ML/DL algorithms for fault

diagnosis.

1.4 Applications

The fault diagnosis system developed for a ball bearing using vibration monitoring

and ML/DL algorithms has a wide range of applications in various industries. Some

of the key applications are:

• Predictive Maintenance: The system can be integrated into the engine monitoring

system to provide real-time fault diagnosis and allow for proactive maintenance.

This will help reduce downtime and increase the lifespan of the engine.

• Quality Control: The system can be used in the manufacturing process of engines

to perform quality control checks and ensure that the engines are free of faults

before they are shipped.

Institute of Engineering, Central Campus Pulchowk BE Project Report

8

• Aerospace and Defense: The system can be used in aerospace and defense ap-

plications where the reliability and performance of engines is critical. Real-time

fault diagnosis will help ensure that the engines are functioning optimally and

prevent potential failures.

• Automotive Industry: The system can be used in the automotive industry to diag-

nose faults in vehicles and improve their performance.

• Energy Generation: The system can be used in power plants and other energy

generation facilities to diagnose faults in engines used for power generation and

ensure their optimal performance.

Overall, the fault diagnosis system has the potential to revolutionize the way

faults are diagnosed in engines, leading to improved reliability, performance, and

cost savings across various industries.

1.5 Features

The project comes along with the following features:

• Real-time Fault Diagnosis: The system will be able to diagnose faults in engine

bearings in real-time, providing immediate feedback to maintenance personnel.

• Accurate Classification: The system will be trained on a large dataset of engine

vibration data, ensuring accurate and reliable classification of faults as one of the

three types: Outer race fault, Inner race fault, and Ball fault.

• Cost-effective: The system will help reduce maintenance costs by allowing for

proactive maintenance and reducing the need for manual inspection.

• Scalable: The system will be scalable, allowing for integration into various types

of engines and industries.

Institute of Engineering, Central Campus Pulchowk BE Project Report

9

• Continuous Improvement: The system will be continuously improved

through the use of machine learning algorithms, allowing for improved accuracy and

performance over time.

1.6 Feasibility

1.6.1 Economic Feasibility

The project was found to be economically feasible. The majority of the initial

investment for our project involved the acquisition of an AC induction motor, ADXL

335 accelerometer, and DAQ system. Some of these materials were readily available

within our department, while others were inexpensive to purchase from the market.

Additionally, the project members themselves constructed the experimental setup

using locally available materials. To ensure the economic feasibility of our project,

we utilized an accelerometer with lower sensitivity and an AC induction motor with

low KV ratings. This allowed for the accelerometer's sampling rate to be sufficient in

collecting vibration data for fault diagnosis. Moreover, our project did not require

significant operational costs.

1.6.2 Technical Feasibility

The technical feasibility of the project for fault diagnosis of bearings using vibration

monitoring is positive. The project requires an engine/motor with a bearing to collect

vibration data, and it was readily available in the Department of Mechanical and

Aerospace Engineering. Data acquisition (DAQ) systems for logging vibration data

were also available in the department, and it was easy to procure one for this project.

Signal processing, machine learning, and deep learning are essential components of

fault diagnosis using vibration data. Project members had the required knowledge in

these areas to effectively utilize these techniques to analyze the vibration data and

diagnose faults. Additionally, computational systems for data analysis and modeling

are required, and these systems were available with the project members. Given the

availability of required resources and expertise, it appears that the project is

technically feasible and has a high likelihood of success in diagnosing faults in

Institute of Engineering, Central Campus Pulchowk BE Project Report

10

bearings using vibration monitoring if someone wants to do similar project in the

future.

1.6.3 Operational Feasibility

Necessary resources, including workspace and equipment, are available. User

friendly design, integration with existing workflows, and real-time monitoring

capabilities ensure efficient and effective implementation.

1.7 System Requirements

1.7.1 Software Requirements

For the ADXL 335 accelerometer, a data logger software (LABVIEW) is required to

output the data along with excel and Matlab for data collection, storage and sorting.

For Machine learning and Deep Learning along with signal processing, Visual Studio

Code with Python and Jupyter have been used. The major libraries required are scipy,

numpy, matplotlib, fft, sklearn, keras and tensorflow. Intel Core i7-9700K processor

with a clock speed of 3.60 GHz, 16 GB of RAM were the available system

specifications under which the project was completed. Matlab software is also

required for data processing and importation.

1.7.2 Hardware Requirements

The project is focused upon experimental data collection and diagnosis program

development. Experimentation is done on a single motor fastened bearing and the

setup is similar to the CWRU fault bearing setup. The hardware used in the project

are:

 AC Induction Motor

An ac induction motor is a type of electric motor that used electromagnetic

induction to generate torque. When AC voltage is applied to the stator windings a

rotating magnetic field is produced that interacts with the rotor to generate torque.

Institute of Engineering, Central Campus Pulchowk BE Project Report

11

The reason behind the use of ac induction motor for the fault diagnosis was that it

was easy to start the motor and also the vibration produced in the bearing were

pronounced enough to be detected by accelerometer.

 ADXL 335 accelerometer

Figure 1. 6: ADXL 335 Accelerometer

ADXL 335 accelerometer was used for acquiring vibration data for fault diagnosis

in bearings. It is a low power, three axis accelerometer that can measure

acceleration in the range of ±3g. The accelerometer outputs analog voltage signals

that correspond to the acceleration in each of the three axes. These signals are read

and processed using an analog to digital converter (ADC) to obtain digital

vibration data.

 DAQ system

Data Acquisition (DAQ) system was used to measure and record vibration data

from ADXL 335 accelerometer. The accelerometer was connected to DAQ using

jumper wires. The analog acceleration signal was converted to digital data and the

digital data was captured and stored at a sampling rate of 1000Hz. myDAQ is a

data acquisition device which is used to measure and record vibration data from

bearing through accelerometer. myDAQ has high resolution analog to digital

converters (ADCs) that can capture vibration signals with high accuracy and

Institute of Engineering, Central Campus Pulchowk BE Project Report

12

precision. This ensures that the acquired data is reliable and accurate, which is

essential for making informed decisions in fault diagnosis of bearing. This device

comes with user-friendly software tools such as LabVIEW which allows the user

to quickly and easily setup acquisition, acquire data and perform various types of

analysis and visualization. myDAQ is a cost effective solution for vibration data

acquisition which can be used with wide range of sensors including ADXL 335

accelerometer. Its features and benefits make it an ideal choice for industrial

settings where monitoring and analysis of machine health are essential for optimal

performance and efficiency.

Figure 1. 7: NI DAQ System

 Bearings

Four 608 deep groove ball bearings were used for the vibration data acquisition

out of which one was a normal bearing, and three different faults namely inner

race fault, outer race fault and ball fault were introduced in the remaining three.

The 608-ball bearing is a standard deep groove ball bearing with an inner diameter

(ID) of 8 mm, an outer diameter (OD) of 22 mm, and a width (W) of 7 mm. The

bearing has a pitch (P) of 8.1 mm.

Institute of Engineering, Central Campus Pulchowk BE Project Report

13

 Computer System/PC

A PC computer equipped with Processor Intel® Core™ i7-8550 U CPU @

1.80GHz, 1992 MHz, 4 Core(s), 8 Logical Processor(s), RAM 8GB & HDD

20GB was used for computation.

 Tachometer

Figure 1. 8: Tachometer

A handheld digital photo tachometer was used to measure the rotational speed of

the AC induction motor. The device uses a laser beam to detect the speed of the

motor and display it on its LED screen. The tachometer typically comes with

reflective tape that is attached to the shaft of the motor. The reflective tape reflects

the laser beam back to the tachometer, allowing for an accurate measurement of

speed.

Institute of Engineering, Central Campus Pulchowk BE Project Report

14

Chapter 2 : LITERATURE REVIEW

Among the various elements of a motor i.e., stator, rotor, shaft and bearing, faults in

bearings accounts for 42% - 50% of unscheduled maintenance [17]. Improper

installation, handling fault, contaminants, wear and tear, lubricating factors and

operating environmental condition cause different faults. Based on the specific

component at fault, bearing defects can be classified as outer race fault, inner race

fault, roller element fault, etc.

Condition Based Maintenance (CBM) is a predictive maintenance approach which

optimizes maintenance strategies to improve efficiency, safety, reliability and

expenses. In CBM, extracted data from past and present are analyzed to predict

future consequences and prevent unnecessary maintenance and unforeseen failures

[18]. Condition based maintenance was first used by Rio Grande Railway Company

in 1940s. The condition of coolant, oil and fuel leaks were predicted by the

measurement of change in pressure and temperature. In the recent years, analysis of

vibration data for fault feature extraction and fault diagnosis has been catching

speed.

Fault diagnosis is the process of discovering fault in a component by comparing the

data of its normal operating condition to its present condition and extracting fault

features [19].

Bearing fault diagnosis has been mainly performed through three following

methods:

• Conventional model using motor current and principal component analysis [20].

• Machine learning using algorithms such as support vector machine, K-nearest

neighbor [21].

• Deep learning with artificial neural networks (auto-encoder, deep belief,

generative adversarial, convolutional neural and recurrent neural networks) [22].

Institute of Engineering, Central Campus Pulchowk BE Project Report

15

Signal processing consists of time, frequency and time frequency domain analysis.

Out of many signal processing methods STFT was found to be a better fit to deep

learning algorithm input in fault detection [4]. Among many other machine and deep

learning algorithms, SVM, LSTM and CNN seem to have an easier implementation

and produce results with a higher accuracy [4]. Support Vector Machine (SVM) is a

supervised learning model with strong generalization capacity. It uses structural risk

minimization concept to train the classifiers which classify the data into positive and

negative classes. [23] LSTM works on the basis of memory block function where

gates and memory cells are multiplied to keep the continuous flow of information,

mainly self-recurrent memory cells keeping the long-term memory error flows being

truncated when required. LSTM is among the best cost-effective recurrent neural

network used for monitoring large dataset having large accuracy, short time interval

for computation with resistance to over fitting [24]. CNN is a first-rate deep learning

method having a feedforward neural network with major layers as convolutional,

pooling and connected. It is especially useful to solve problems related to overfitting

and has a high accuracy when used with preprocessed data [25].

Institute of Engineering, Central Campus Pulchowk BE Project Report

16

Chapter 3 : RELATED THEORY

3.1 Support Vector Machine (SVM)

Figure 3. 1: Support Vectors and the Optimal Hyperplane

SVM is an ML algorithm that provides a linear model for classification and

regression analysis. It is a supervised learning model. SVM creates a best-decision

boundary (hyperplane) in an n-dimensional space for category separation thus

helping with distinct classification. The extreme vectors of a category help to define

the hyperplane and are called Support Vectors.

For a given dataset,

 3.1

Where xi is the input vector and yi is the label of xi, the hyperplane is given by

Institute of Engineering, Central Campus Pulchowk BE Project Report

17

 3.2

 Here, w = (a, −1) if the hyperplane is defined as y = ax + b.

To calculate the point closest to the hyperplane we define the parameter β which is

calculated as

 3.3

 For our required domain D, we get,

 3.4

 Where B is the smallest value of β. If there are s hyperplanes present, each will

have a specific Bi value, and the hyperplane with the largest Bi value is selected.

3.1.1 Principal Component Analysis (PCA)

It is a widely used statistical method used in reducing dimensionality, in data analysis.

It transforms a set of correlated variables into a new set of uncorrelated variables,

known as principal components which captures maximum amount of variance in the

given dataset.

PCA finds a set of orthogonal axes in the multidimensional space of original

variables, along which data varies most. The 1
st
 principal component captures

maximum amount of variance in the data, 2
nd

 captures remaining variance orthogonal

to first components and so on for other components. The principal components are

computed using eigenvalue decomposition of the covariance matrix of the original

data or by singular value decomposition of data matrix. Once the principal

Institute of Engineering, Central Campus Pulchowk BE Project Report

18

components are computed, they can be used to reduce dimensionality of the data as it

selects a subset of the principal component which captures most of the variance in the

data. PCA is applicable in:

 Data (Analysis, Compression, Feature Selection and Visualization),

 Outliners detection,

 Identification of patterns

 Noise removal from data

The limitation of PCA is that it assumes data are linearly related and variance is

evenly distributed along each axis also, it is sensitive to outliers, scaling and

normalization issues in the provided data.

3.1.2 Parameter Selection

Parameter selection is an important process in machine learning that involves

selecting the optimal set of hyperparameters for a given model. Hyperparameters are

values that are set before training and are not learned from the data. In SVM, several

hyperparameters are used, including the kernel, C, gamma, and decision function

shape.

 „Kernel‟ specifies the type of kernel used in the SVM algorithm, and in the case of

SVM, three different kernels are used: radial basis function (rbf), polynomial

(poly), and sigmoid.

 „C‟ is the regularization parameter that determines the trade-off between achieving

low training error and low testing error due to overfitting, and two values of C can

be specified, namely 0.01 and 1.

 „Gamma‟ is used for non-linear hyperplanes, with higher gamma values defining a

higher influence of training examples, which can result in overfitting. Two values

of gamma can be specified, namely 0.01 and 1.

 „Decision Function Shape‟ parameter specifies the decision function shape for

multi-class problems, with ovo representing one-vs-one.

Institute of Engineering, Central Campus Pulchowk BE Project Report

19

To select the best combination of hyperparameters for a given model, there are

hyperparameter tuning methods such as GridSearchCV and RandomizedSearchCV.

These methods search through the hyperparameters space to identify the optimal set

of hyperparameters that result in the highest accuracy on the dataset.

3.1.3 Feature Extraction

The Diagnostic Feature Designer toolkit was used to extract the features from the

time-domain vibration signal. The following values were used based on their

properties to extract the features:

 Max Value: It is the highest value in a set of data points used to identify the upper

bound of the range of values in the dataset.

 3.5

 Min Value: It is the lowest value in a set of data points and is used to identify the

lower bound in a given range of values of a dataset.

 3.6

 Mean Value: It is the average value of a set of data points and measures their

central tendency.

3.7

 Variance: It measures the spread of the data points around the mean value.

Institute of Engineering, Central Campus Pulchowk BE Project Report

20

[]

3.8

 Standard Deviation: It is given by the square root of variance and provides a

measure of the spread of the data points in the same units as the original

measurements.

3.9

 RMS Value: It is a measure of the average magnitude of the data points and helps

to understand the overall magnitude of the data.

 [

]

3.10

 Skewness: It is the measure of asymmetry of the data points. It represents the

shape of the distribution of data points.

[]

[
]

3.11

 Crest Value: It is the ratio of the maximum value to the rms value. It represents

the peakness of the signal.

Institute of Engineering, Central Campus Pulchowk BE Project Report

21

3.12

 Kurtosis Value: It is the measure of tailedness of the data points. It shows how

clustered the data points are to the mean value.

[]

[
]

3.13

Here, x1, x2,…,xn are the data points and n represents the number of data points.

Institute of Engineering, Central Campus Pulchowk BE Project Report

22

3.2 Convolutional Neural Network (CNN)

Figure 3. 2: Convolutional Neural Network

Convolutional Neural Network is an artificial neural network popularly used for

analyzing images. CNN can also be used for signal analysis and data classification.

The architecture of CNN consists of an input layer, no of hidden layers and an

output layer. The activation function masks the inputs and outputs of the middle

layers due of which the middle layers are called hidden layers. The convolution is

performed by the hidden layers. A dot product is performed between the input

matrix of the layer and the convolution kernel. As a result, a feature map is

generated as the convolution kernel slides along the input matrix. The feature map is

the input for the next layer of CNN.

 Input layer

Input layer is the first layer of CNN which receives the raw one-dimensional

vibrational data. In case of 2D CNN the 1D vibration data is converted into a 2D

representation that can be processed by the convolutional layers of the 2D CNN

network. The 1D vibration data was used to generate spectrogram which is a 2D

representation of the vibration signal. Convolutional layer performs the operation

of convolution, activation and pooling on the input data. During the process of

convolution different filters are employed to extract the features from the

vibration data. The activation function introduces non-linearity in the CNN model

Institute of Engineering, Central Campus Pulchowk BE Project Report

23

and the pooling process reduces the spatial dimensionality and improve the

efficiency of the model.

 Kernel size

In CNN model, the kernel size is the dimension of filter or window that slides

over the input data or feature map. During the convolution operation, the kernel

moves over the input data and at each location, it computes the dot product

between its own values and the corresponding values in the input. This operation

produces a single output value that becomes a part of the output feature map. The

choice of kernel size depends upon the complexity of the input data and the

desired level of feature extraction. A smaller kernel size captures fine-grained

details in the input data, while a larger kernel size can capture more global

features.

 Stride

In CNN model, stride refers to the number of pixels the convolution kernel moves

each time it is applied to the input data. The stride length determines the amount

of overlap between adjacent regions of the input data that are covered by the

kernel. For example, a stride of 1 means that the kernel moves one pixel at a time,

resulting in adjacent regions of the input data overlapping by one pixel. Using a

larger stride can reduce the size of the output feature map which may be useful in

downsampling the input data and reducing overfitting. However, use of larger

stride can result in the loss of important information from the input data.

 Activation functions

Activation functions are the component of CNNs that introduce non-linearity into

the network and help to capture complex patterns in the input data. They allow

CNNs to model complex relationships between the input features and output

classes and help to improve the accuracy. Some commonly used activation

functions in CNN are:

Institute of Engineering, Central Campus Pulchowk BE Project Report

24

1. ReLU (Rectified Linear Unit): ReLU activation function is defined as f(x) = max

(0,x), which means that it gives the output if the input is positive and sets negative

input to zero. ReLU function is computationally efficient and helps to overcome

the vanishing gradient problem.

2. Tanh (Hyperbolic tangent): The hyperbolic tangent function is defined as f(x) =

(exp(x) - exp(-x)) / (exp(x) + exp(-x)). It maps the input values to a range of -1 to

1.

3. Leaky ReLU: The Leaky ReLU is defined as f(x) = max(ax,x), where a is a small

positive constant. This function allows a small gradient for negative inputs.

 Pooling

Pooling is an operation in CNN models to reduce the spatial dimensions of feature

maps of convolutional layers. Most common types of pooling operation are:

1. Max pooling: This involves partitioning the feature map into non-overlapping

rectangular regions (also called pooling regions) and taking the maximum value

within each region

2. Average pooling: This operation takes the average value within each pooling

region.

By the process of pooling, computational requirements were reduced and as a

result the efficiency of the model is improved. The problem of overfitting is also

prevented.

 Optimizer function

Optimizer function is a component of CNNs which updates the weights of the

network during network to minimize the loss function. Selection of optimizer

function has a significant impact on the training process and the performance of

the model. Some of the popular optimizer functions used in CNN are:

1. Adam: Adam optimizer adjust the learning rate dynamically which results in the

increasing convergence speed of the training and improving overall performance

Institute of Engineering, Central Campus Pulchowk BE Project Report

25

of the CNN model as well. During the training process the learning rate is

substantial for parameters with small gradients and learning rate is adjusted to

smaller in case of larger gradient parameters.

2. Stochastic Gradient Descent (SGD): SGD updates the weights by taking the

gradient of the loss function with respect to the weights and moving in the

opposite direction of the gradient.

3. Adagrad: This optimizer function adapts the learning rate of each weight based on

the historical gradient information.

 Flatten layer

Flatten layer is used in CNN model for fault diagnosis after final convolutional

layer and before dense layer. The purpose behind the use of flatten layer is to

transform the output of the convolutional layer into a form that can be easily fed

into a fully connected layer. By flattening the output, the network can learn more

complex features that capture higher level information about the vibration data.

Flatten layer maintains balance between complexity and efficiency of network

architecture during the reduction of dimensionality.

 Dense layer

A dense layer or fully connected layer is used in CNN model for extracting high

level features and making final classification decision. The dense layer takes the

flattened feature vector as input and applies a linear transformation followed by

activation function to produce a new set of features. The output of the dense layer

is then passed to the final layer for classification.

 Final layer

In a CNN for fault diagnosis of bearings, final layer is a fully connected layer that

outputs a vector of probabilities corresponding to the different fault types of the

bearing. The final layer typically consists of multiple neurons, with each neuron

corresponding to a specific fault type. Some of the common activation functions

used in the final layer are:

Institute of Engineering, Central Campus Pulchowk BE Project Report

26

1. Sigmoid: The sigmoid function is defined as f(x) = 1/(1+exp(-x)). It maps the

input values to a range of 0 to 1. Sigmoid is often used in the output layer of a

CNN to predict binary outcomes.

2. Softmax: Softmax activation function is used in case of the output is multiclass. It

transforms the output of the last convolutional layer into a probability distribution

over different fault category.

3.2.1 K- Fold Cross- Validation

K-fold cross validation is a machine learning technique used to enhance the

performance of different training models. In this particular technique the complete

dataset is split into smaller k sets or folds and the k-1 folds are used for training

purposes. The resulting model is used as a test set to compute a performance

measure i.e., accuracy. Then the performance measured is the average of values

computed in the loop. It is however computationally expensive yet doesn‟t waste

data giving advantage to dataset having number of samples very small.

Figure 3. 3: K-fold Cross Validation

Institute of Engineering, Central Campus Pulchowk BE Project Report

27

3.3 Long-Short Term Memory

Figure 3. 4: LSTM Architechture

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN)

that utilizes a gate-oriented mechanism to control cells, taking input from previous

stages as well as the current stage. It has been extensively used in speech

recognition, text recognition, natural language processing, and fault detection and

diagnosis programs. LSTM's unique feature is its use of multiplication of gates and

memory cells to maintain a long-term flow of information in a sequence. These

gates perform different functions, such as the input gate x(t), forget gate f(t), output

gate o(t), input modulation gate g(t), and memory cell c(t). Additional neural

parameters, including hidden state h(t), current state x(t), previous hidden state h(t-

1), and output labels y(t), are used accordingly. Unlike short term memory which

can‟t remember the important function in a long chain of network, LSTM

overcomes it by introducing a memory block. LSTM is designed to overcome the

limitations of short-term memory by introducing a memory block that can remember

the essential functions in a long chain of the network. The equations used for LSTM

are complex, but they enable the network to maintain context and effectively process

sequential data. The equations for LSTM is given as follows:

Institute of Engineering, Central Campus Pulchowk BE Project Report

28

LSTM equations:

 Input Gate

 3.14

 Forget Gate

 3.15

 Output Gate

 3.16

 Memory Cell Candidate

 3.17

 Memory Cell

 3.18

 Shadow State

 3.19

 Cell Output

 3.20

Here, Wo, Wi and Wf are the weights of output, input and forget gates.

Institute of Engineering, Central Campus Pulchowk BE Project Report

29

3.4 Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) algorithm is a mathematical algorithm that

computes the Discrete Fourier transform (DFT) of a sequence of data points. The

DFT is a transformation that converts a time-domain signal into its frequency-domain

representation. The formula for the DFT is as follows:

X[k] = ∑_{n=0}^{N-1} x[n] * exp(-2πjkn/N) 3.21

;where X[k] is the kth frequency component of the signal, x[n] is the nth time-domain

data point, j is the imaginary unit, and N is the number of data points in the signal.

The FFT algorithm is a fast algorithm for computing the DFT and is based on a

divide-and-conquer approach that recursively splits the sequence into smaller sub-

sequences. The formula for the FFT algorithm is derived from the DFT formula and is

as follows:

 [] [] 3.22

Here W_N = exp(-2πj/N) is the Nth root of unity and k is an integer between 0 and N-

1. The FFT algorithm calculates the DFT using a series of butterfly operations that

combine pairs of sub-sequences to generate the frequency components of the signal.

The frequency domain signal obtained from FFT can be used to analyze the frequency

content to identify important features and filter out unwanted noise. FFT is a crucial

step in the preprocessing of vibration data for machine learning and deep learning

algorithms. By computing the FFT of the vibration data, it is possible to obtain a more

detailed understanding of the frequency content of the signal, which can then be used

to extract relevant features. These features can be used as input to machine learning

and deep learning algorithms to improve the accuracy and effectiveness of fault

diagnosis.

Institute of Engineering, Central Campus Pulchowk BE Project Report

30

Chapter 4 : METHODOLOGY

4.1 Flowchart for the BE Project

Figure 4. 1: Flowchart for the BE Project

Institute of Engineering, Central Campus Pulchowk BE Project Report

31

4.2 Flowchart for the CWRU Dataset Fault Diagnosis

Figure 4. 2: Flowchart for CWRU Fault Diagnosis

Institute of Engineering, Central Campus Pulchowk BE Project Report

32

4.3 Fault Introduction

Three 608 bearings were taken and faults were introduced to the inner race, outer race

and the ball component of the respective bearings. For outer raceway fault

introduction, a 1.5mm was made with a grinder till the ball cage was reached. For ball

fault, out of the 7 balls in the 608 bearing, one was taken out. The bearing was

dissembled and in the inner raceway, the grinder was used to make a 1.5mm line as a

part of the inner raceway fault introduction.

Figure 4. 3: Inner Raceway Fault

Figure 4. 4: Ball Fault

Figure 4. 5: Outer Raceway Fault

Institute of Engineering, Central Campus Pulchowk BE Project Report

33

4.4 Experimental Setup

The following steps were taken to build the experimental setup:

 First the ac induction motor is setup in a stand and fixed firmly,

 ADXL 335 accelerometer is mounted on the top of the bearing housing at the

drive end of motor.

 The accelerometer is then connected to DAQ system using jumper wires.

 The DAQ system is then connected to working computer via USB ports.

 LabVIEW is setup to acquire the vibration data. In this process we create a new

virtual environment and necessary DAQ functions are added to the block diagram.

 Next, LabVIEW is configured to measure the vibration signals which involved

setting up the sampling rate, selecting the input channels.

 The 2-phase ac induction motor is started by giving ac voltage through electric

circuit.

 The vibration data with a sampling frequency of 1000 Hz was acquired. For each

bearing condition, 2 minutes of data was acquired which consisted of 120,000 data

points. The acceleration values for X and Y direction, the two perpendicular radial

directions were acquired.

 Once the data for normal condition is taken, the drive end bearing is replaced with

a faulty bearing. The process is then repeated for all faults & their respective data

is acquired.

Figure 4. 6: Experimental Setup for the AC Induction Motor

Institute of Engineering, Central Campus Pulchowk BE Project Report

34

Figure 4. 7: AC induction motor, DAQ system and ADXL 335 accelerometer

Institute of Engineering, Central Campus Pulchowk BE Project Report

35

4.5 Algorithm Development Models

4.5.1 SVM Architecture

The SVM architecture used in the SVM model imports new data containing features

extracted from the experimental dataset. The features applied are an RBF kernel

SVM model, GridSearchCV with cross-validation, and test set evaluation.

Preprocessing involves standardization and dimensionality reduction using PCA. The

optimized hyperparameters include C, gamma, and the decision function shape. The

following table summarizes the key components and hyperparameters of the support

vector machine (SVM) architecture used in our SVM model for fault diagnosis.

Table 4. 1: SVM Model Parameters

Ste

p

Technical Term Value

1. Feature Extraction Standardization (StandardScaler)

 Dimensionality Reduction (PCA)

2. SVM Model Radial Basis Function (RBF) Kernel

 Hyperparameters:

 C = 0.01, 1

 Gamma = 0.01, 1

 Decision function shape = One vs. One (ovo)

3. Training GridSearchCV

 Cross-validation (cv) = 5

4. Evaluation Test accuracy = 81.1515%

Institute of Engineering, Central Campus Pulchowk BE Project Report

36

4.5.2 1D CNN Architecture

Figure 15: 1D CNN architecture with Activation Functions

The 1-D CNN model is mainly used for image and time-series training. Similarly, the

data fed into the model has to be of an acceptable size i.e., Enough to train but not

large enough to be overfitting. The 1-D CNN with its simplified characteristics has

short computation duration with higher accuracy compared to other models.

In this 1-D CNN model it consists of shape of data from Input Data as [5486,1936]

with Y-CNN as [5486,10] and Y as [5486,1]. The data is feed using k-fold cross

validation with 5 splits and 101 random states. The data is then taken in a reshaped

form X (-1,1936,1) as 1-D input. The model is split into (X, Y) dimensions for

training and testing using train_test_split from sklearn library. The data is split into

70% training and 30% testing data.

Institute of Engineering, Central Campus Pulchowk BE Project Report

37

Table 4. 2: 1D CNN Model Parameters

S. N Layers Filters Kernal

size

Strides Activation Pool

size

1 Convolution

1D

16 3 2 relu None

2 MaxPool 1D None None None 2

3 Convolution

1D

32 3 2 relu

4 MaxPool 1D None None None 2

5 Convolution

1D

64 3 2 relu None

6 MaxPool 1D None None None 2

7 Convolution

1D

128 3 2 relu None

8 MaxPool 1D None None None 2

9 Flatten

10 InputLayer

11 Dense (100) relu

12 Dense (50) relu

13 Dense (10)

14 Softmax

Here, the model consists of 14 different layers. Finally, the model is compiled using

„adam „optimizer with defined terms for „loss‟ and „metrics.

The model runs with 1 verbose and 15 epochs each round. After the model is

computed it then gives out the accuracy for training and testing with their respective

confusion matrices. As a safety measure the program was added with the feature to

test for overfitting by comparison between test and train scores and plotting for

validation and training curve.

Institute of Engineering, Central Campus Pulchowk BE Project Report

38

4.5.3 2D CNN Architecture

Figure 16: 2D CNN Architecture with Activation Functions

The 2-D CNN model is also mainly used for image and time-series training. Similarly,

to 1D the data fed into the model has to be of an acceptable size i.e., Enough to train

but not large enough to be overfitting. The 2-D CNN is a bit complex than the 1-D

CNN, so it takes more computation time and has more loss.

In this 2-D CNN model it consists of shape of data from Input Data as [5486,1936]

with Y-CNN as [5486,10] and Y as [5486,1]. The data is fed using k-fold cross

validation with 5 splits and 101 random states. The data is then taken in a reshaped

form X (-1,44,44,1) as 2-D input or square-root of data feed to 1-D CNN. The model

is split into (X, Y) dimensions for training and testing using train_test_split from

sklearn library. The data is split into 70% training and 30% testing data.

Institute of Engineering, Central Campus Pulchowk BE Project Report

39

Table 4. 3: 2D CNN Model Parameters

S.

N

Layers Filters Kernal

size

Strides Activatio

n

Pool

size

Paddi

ng

1 Convolution

1D

16 3,3 2,2 relu None Same

2 MaxPool 1D None None None 2,2 Same

3 Convolution

1D

32 3,3 2,2 relu Same

4 MaxPool 1D None None None 2,2 Same

5 Convolution

1D

64 3,3 2,2 relu None Same

6 MaxPool 1D None None None 2,2 Same

7 Convolution

1D

128 3,3 2,2 relu None Same

8 MaxPool 1D None None None 2,2 same

9 Flatten

10 Input Layer

11 Dense (100) relu

12 Dense (50) relu

13 Dense (10)

14 Softmax

Finally, like in 1D CNN the model is compiled using „adam „optimizer with defined

terms for „loss‟ and „metrics.

The model runs with 1 verbose and 15 epochs and „true‟ multiprocessing in each

round. After the model is computed it then gives out the accuracy for training and

testing with their respective confusion matrices. As a safety measure the program was

added with the feature to test for overfitting by comparison between test and train

scores and plotting for validation and training curve.

Institute of Engineering, Central Campus Pulchowk BE Project Report

40

4.5.4 LSTM Architecture

Figure 17: LSTM Architecture

The LSTM model is fed with one-dimensional Input Data as [5422, 5184], shape of

Y_CNN as [5422,10] and shape of Y as [5422,1]. The data is shaped into 1D form [-

1,5184,1]. The training and testing data is split in (X, Y) dimensions in 70% and 30%

respectively. The LSTM function is inbuilt Python (Jupiter) for Visual Code Studio.

For layering the same function has been called which consists of activation function

of tanh with recurrent activation function hard-sigmoid, kernel initializer as „glorot

uniform‟, recurrent initializer „orthogonal‟ & bias initializer as zeros. Intermediate

layers are added which consist of flatten layer, Dense layer of batch size 10. The final

layer consists of a SoftMax activation function.[26] The model is optimized with

„adam‟ set at a learning rate of 0.001 in Tensorflow and a 0-decay rate in Keras.

 Activation function

In our LSTM model for fault diagnosis tanh was used as a activation function.

Tanh maps input values to a range between -1 and 1 which can be useful for

ensuring that the output values of neurons are bounded. The sigmoid shape of tanh

function is useful in capturing the non-linearities in the data which made our

model capable of learning complex patters and relationships between the input

data and output.

Institute of Engineering, Central Campus Pulchowk BE Project Report

41

 Recurrent activation function

Hard sigmoid activation function was used as recurrent activation function in our

LSTM network for fault diagnosis. This activation function maps input to a range

between 0 and 1 with a linear activation around 0 which make LSTM network to

easily learn and capture non-linear relationships in the vibration data.

 Kernel initializer

Glorot uniform initializer was used as a kernel initializer in our LSTM network for

fault diagnosis. In an LSTM network for analyzing vibration data, the Glorot

uniform initializer helped to ensure that the initial weights of the network are

optimized for learning the patterns and trends in the data. This improved the

performance of the network and made it more efficient in terms of training time

and computational resources.

 Recurrent initializer

The orthogonal recurrent initializer which was used in our LSTM network is a

weight initialization method that sets the recurrent weight matrix of an LSTM

network to an orthogonal matrix. In the context of analyzing vibration data,

orthogonal recurrent initializer is useful in capturing long-term dependencies

without losing important information during training process.

 Bias initializer

Bias initializer of zeros was used in LSTM network for fault diagnosis of bearing.

In a neural network, biases are used to shift the activation function to the left or

right, which can be useful for improving the accuracy of the model. In the context

of fault diagnosis in vibration data, using a bias initializer of zeros can help to

ensure that the initial predictions of the LSTM network are unbiased and based

solely on the input data. This can be important for accurately detecting faults and

anomalies in the data as biases can potentially mask the important

information.[27]

Institute of Engineering, Central Campus Pulchowk BE Project Report

42

Table 4. 4: : Layers, Return Sequence and Number of Neurons of LSTM

S.N Layers Return Sequence No. of Neurons

1 LSTM True 32

2 Flatten

3 Dense 10

4 Softmax

5 Adam

Optimizer

Institute of Engineering, Central Campus Pulchowk BE Project Report

43

Chapter 5 : RESULTS AND DISCUSSION

5.1 Bearing Fundamental Defect Frequencies (BFDF) Calculation

To calculate the fundamental bearing defect frequencies for a 608 deep groove ball

bearing, we need to know the geometry of the bearing and the number of rolling

elements (balls) in the bearing. The 608 bearing has a bore diameter of 8 mm, an

outer diameter of 22 mm, and a width of 7 mm. It has 7 balls.

The fundamental bearing defect frequencies for a 608 bearing can be calculated using

the following equations:

Inner race defect frequency (BPFI) = (d/2) * (N/10^6)

Outer race defect frequency (BPFO) = (D/2) * (N/10^6)

Ball spin frequency (BSF) = (d/2) * ((1 - d/D) / (1 + d/D)) * (N/10^6)

;where d is the ball diameter, D is the pitch diameter, N is the bearing speed in

revolutions per minute (rpm), and BPFI, BPFO, and BSF are in Hertz (Hz).

For a 608 bearing with a ball diameter of 4.763 mm and a pitch diameter of 18.66 mm

(assuming a standard 0.5 mm radial clearance), the fundamental defect frequencies

are:

BPFI = (8/2) * (10000/10^6) = 0.04 kHz = 40 Hz

BPFO = (22/2) * (10000/10^6) = 0.11 kHz = 110 Hz

BSF = (4.763/2) * ((1 - 4.763/18.66) / (1 + 4.763/18.66)) * (10000/10^6) = 0.98 kHz

= 980 Hz

Therefore, the fundamental bearing defect frequencies for inner race, outer race, and

ball fault in a 608 deep groove ball bearing with an rpm of 10000 are 40 Hz, 110 Hz,

and 980 Hz, respectively.

Institute of Engineering, Central Campus Pulchowk BE Project Report

44

5.2 Signal Processing

Figure 5. 1: FFT of the Normal Bearing Vibration Data

Performing Fast Fourier Transform (FFT) on the acquired time-series vibration data

shows that there are distinctly noticeable peaks of frequencies representing the rpm in

which the motor rotates and the specific bearing faults that have been introduced. The

normal data shows only one distinct frequency peak in 187Hz representing the

fundamental frequency in which the motor rotates. The motor rpm can be now

calculated as:

187*60 = 11,220 rpm

During the experiment, for the normal bearing data acquisition, the rpm was held

between 11,000rpm to 11,500rpm, thus the distinct peak observed at the normal plot

is validated. For inner defect, outer defect and ball defect data, the motor rpm was

held at the range of 9500rpm to 10,500 rpm.

Figure 5. 2: FFT of Inner Race Defect

Institute of Engineering, Central Campus Pulchowk BE Project Report

45

Figure 5. 3: FFT of Outer Race Defect

For the inner race and outer race defect, the bearing fundamental defect frequencies

and their harmonics can be distinctly observed.

Figure 5. 4: FFT of Ball Defect

For ball fault, the FFT plot wasn‟t able to show the distinct fault frequency. As the

ball spin frequency (BSF) (980Hz) is higher than the Nyquist frequency (500Hz),

FFT was unable to show frequency above 500Hz, the frequency above the Nyquist

frequency aliased in the 0 to 500 Hz range.

The FFT study of the vibration signal showed that the noises had to be filtered out

before subjecting the vibration data into the models. The low frequency noises below

20Hz and the aliased frequencies above 500Hz had to be accounted for. To filter in

such a range, a bandpass filter with the range of 20-500Hz was used. The FFT was

only used to visualize the spectrum and the filtered time-series data was input into the

ML and DL models.

Institute of Engineering, Central Campus Pulchowk BE Project Report

46

5.3 Output

 A Python (Jupyter Notebook) program was developed for the importation of data,

proper segmentation and model development. The data imported was imported from

MATLAB as column vectors i.e.

Table 5. 1: Types of Data and Data Size

S.N Types of data Data Size

1 Normal Data 120,000

2 Inner Race Fault Data 328,000

3 Outer Race Fault Data 258,000

4 Ball fault Data 400,000

 Total Datas 1,106,000

According to the type of model, the number of data interval length and samples per

block were applied. The data are represented in terms of number I.e., normal data (0),

inner fault (1), outer fault (2) and ball fault (3).

5.3.1 SVM

In the case of SVM model from the original dataset, the shape of Input Data Shape

was [5498, 1444], shape of Y_CNN was [5498,10] and the Shape of Label was

[5498,1]. The X_feature imported from the Features data contained of sample size

[5498,8]. The data was split into 70% for training and 30% for testing. From the

model the best parameters obtained were {C': 1,'decision_function_shape': 'ovo',

'gamma': 1, 'kernel': 'rbf'}. The model took computation time of 3min 7.5 seconds

with accuracies as I.e.

Table 5. 2: SVM Test and Train Accuracy

SVM Train Accuracy 80.64%

SVM Test Accuracy 81.15%

Institute of Engineering, Central Campus Pulchowk BE Project Report

47

Figure 5. 5: Train vs Test Accuracy for SVM

Also, the confusion matrix obtained i.e.

Figure 5. 6: Confusion Matrix for SVM- Train & SVM- Test

The confusion matrix shows the normal data, inner fault data and outer fault (0,1,2)

data are easily predicted with high accuracy whereas the ball fault data (3) is not

being recognized properly during training and testing.

Institute of Engineering, Central Campus Pulchowk BE Project Report

48

Figure 5. 7: Decision Boundary – SVM

Also, the decision boundary confirms the result obtained in confusion matrix, the

features are being separated well enough for normal, inner and outer but the ball fault

data feature is trying to interact with other data. Overall, with the data given the

model was found to be acceptable.

Institute of Engineering, Central Campus Pulchowk BE Project Report

49

5.3.2 1D CNN

For the 1D CNN model, the shape of input data was [5486,1936] while shape of label

Y_CNN was [5486,10]. Similarly shape of label Y was [5486,1]. The data was split

into 70% for training and 30% for testing. The overall computation time for executing

the 1D CNN model was 2 minutes and 10 seconds.

Table 5. 3: 1D CNN Train and Test Accuracy

1D CNN Train Accuracy 90.078125%

1D CNN Test Accuracy 98.3596623%

Figure 5. 8: Train vs Test Accuracy for 1D CNN

Institute of Engineering, Central Campus Pulchowk BE Project Report

50

Figure 5. 9: Training Accuracy of 1D CNN at different folds

The accuracy of 1D CNN model can also be visualized through confusion matrix of training

and test.

Figure 5. 10: Confusion Matrix for 1D CNN-Test and Train

The performance of the 1D CNN model across different classes can be known by analyzing

the above confusion matrix. The diagonal elements representing the number of correctly

classified examples are in higher numbers, compared to non-diagonal elements representing

the number of misclassified examples which are in very small numbers. Although the ball

fault data (3) has higher losses it is still acceptable.

Institute of Engineering, Central Campus Pulchowk BE Project Report

51

Comparing the training and test accuracy, test accuracy is greater than train accuracy with the

standard deviation for 1D CNN training just 4.2. From these results we can say that the model

is not overfitting the data which is shown by the following validation graph as well.

Figure 5. 11: 1D CNN Train vs Validation Accuracies

5.3.3 2D CNN

In the case of 2D CNN model, the shape of input data taken was [5486, 44, 44, 1] as

two-dimensional array while shape of label Y_CNN was [5486,10]. Similarly shape

of label Y was [5486,1]. The data was split into 70% for training and 30% for testing.

The overall time for execution of the 2D CNN model was 1 minute and 23 seconds.

Accuracies obtained are as follows:

Table 5. 4: 2D CNN Train and Test Accuracy

2D CNN Train Accuracy 86.744791%

2D CNN Test Accuracy 87.181043%

Institute of Engineering, Central Campus Pulchowk BE Project Report

52

Figure 5. 12: Train vs Test Accuracy for 2D CNN

Figure 5. 13: Train vs Test Accuracy for 2D CNN

The accuracy of 2D CNN model can also be visualized through confusion matrix of

training and test.

Figure 5. 14: Confusion Matrix for 2D CNN-Test and Train

Institute of Engineering, Central Campus Pulchowk BE Project Report

53

The performance of the 2D CNN model across different classes can be known by

analyzing the above confusion matrix. The diagonal elements representing the

number of correctly classified examples are in higher numbers, compared to non-

diagonal elements representing the number of misclassified examples which are in

very small numbers. Also, like the previous model, major loss occurs in ball fault

data.

Comparing the training and test accuracy for overfitting, test accuracy is greater than

train accuracy. The standard deviation for 2D CNN training was found to be just

1.5612. From these results we can say that the model is not overfitting the data which

is also verified by the following validation graph.

Figure 5. 15: 2D CNN Train vs Validation Accuracies

5.3.4 LSTM

In the LSTM model as per requirement of the model, the data sample taken was

larger. From the dataset the shape of Input Data was [5422, 5184], the shape of

Y_CNN was [5422, 10] and shape of Y was [5422,1]. K fold validation with 5 splits

and 101 random states were applied. The dataset was split into 70% training set and

30% testing set. The model took the longest computation time of 216mins 55.2 secs.

The obtained accuracies i.e.

Institute of Engineering, Central Campus Pulchowk BE Project Report

54

Table 5. 5: LSTM Train and Test Accuracy

LSTM Train Accuracy 77.57%

LSTM Test Accuracy 77.25%

Figure 5. 16: Training Accuracy of LSTM at different folds

Figure 5. 17: Train vs Test Accuracy for LSTM

Institute of Engineering, Central Campus Pulchowk BE Project Report

55

Figure 5. 18: Confusion Matrix for LSTM – Test and Train

Since LSTM is a recurrent neural network and specializes in text and arrays, a clearer

idea of the dataset can be obtained from the confusion matrix. As mentioned in other

models the normal data (0), inner fault data (1) and even outer fault data (2) have

some unique parameters, but the ball fault (3) tries to overlap with others showing

problems within the obtained data.

5.3.5 Overall Models Comparison

The overall accuracies obtained from the different deep learning and machine

learning models are as:

Table 5. 6: Test vs Train Accuracy Comparison Between Models

S.N. Models in Experimental Setup Train Accuracy

(%)

Test Accuracy (%)

1 1D CNN 90.07 98.35

2 2D CNN 86.74 87.18

3 LSTM 77.57 77.25

4 SVM 80.64 81.15

Institute of Engineering, Central Campus Pulchowk BE Project Report

56

Figure 5. 19: Model Accuracies for Training in Experimental Setup

Figure 5. 20: Model Accuracies for Testing in Experimental Setup

Institute of Engineering, Central Campus Pulchowk BE Project Report

57

5.4 Model validation for CWRU bearing Dataset

The above-mentioned models were tested for 10 sample data using CWRU bearing

dataset. The shape of Input Data was [24276, 1681], shape of Y_CNN was [24276,

10] and shape of Y was [24276,1]. For each model the dataset was divided into 65%

training data and 35% testing data.

The accuracies obtained were as follows:

Table 5. 7: Train and Test Accuracy for algorithms using CWRU Dataset

S.N. Models Train Accuracy

(%)

Test Accuracy (%)

1 1D CNN 98.14 98.52

2 2D CNN 96.11 93.92

3 LSTM 94.58 96.09

4 SVM 92.73 92.47

 Results for SVM:

Figure 5. 21: Confusion Matrix for Testing Data using SVM

Institute of Engineering, Central Campus Pulchowk BE Project Report

58

Figure 5. 22: CWRU Train vs Test Accuracy for SVM

Figure 5. 23: CWRU- Decision Boundary for SVM

 Results for 1D CNN:

Figure 5. 24: CWRU- Confusion Matrix for Test Data via 1D CNN

Institute of Engineering, Central Campus Pulchowk BE Project Report

59

Figure 5. 25: CWRU- Test and Train Accuracy via 1D CNN

 Results for 2D CNN:

Figure 5. 26: CWRU – Test and Train Confusion Matrices for 2D CNN

Figure 5. 27: CWRU- Train and Test Accuracies for 2D CNN

Institute of Engineering, Central Campus Pulchowk BE Project Report

60

 Results in LSTM:

Figure 5. 28: CWRU- Test and Train Confusion Matrices in LSTM

Figure 5. 29: CWRU – Train and Test Accuracy for LSTM

Overall results:

Figure 5. 30: Overall Training and Testing Accuracies

Institute of Engineering, Central Campus Pulchowk BE Project Report

61

5.5 Limitations

The following are the limitations faced in this project:

• Unavailability of the data logger software for the 3D Vibration Tester.

• High sensitivity and high sampling frequency accelerometer was unavailable and

beyond the scope of our budget.

• Due to the lack of instruments for standard fault introduction such as Electrical

Discharge Machining, precise faults could not be introduced.

• Damping effects have been neglected.

• Variations in rpm and loading conditions have not been considered.

Institute of Engineering, Central Campus Pulchowk BE Project Report

62

5.6 Problems Faced and Recommendations

 Starting the DLE engine: Manually starting the DLE55 Piston Engine is a labor

intensive task. Despite numerous attempts to start the engine manually, the

engine only started a handful of times. An electric starter is recommended to

start the engine.

 Configuring the 3D vibration tester: The 3D vibration tester available was not

equipped with its own data logger due to which the data could not be acquired

according to the required sampling frequency. A high sensitivity accelerometer

with the required sampling frequency along with the DAQ system shall be a

suitable alternative to the 3D Vibration tester.

Institute of Engineering, Central Campus Pulchowk BE Project Report

63

5.7 Cost Analysis

Table 5.8: Cost Analysis

S.N. Instruments Quantity Price(Rs.)

1 AC Induction Motor 1 2200

2 Arduino Uno 1 1500

3 TTL Connector 1 500

4 Ball Bearings 3 450

5 ADXL 335 Accelerometer 1 350

6 Fuel 3 liters 550

7 USB to RS-232 connector 1 400

8 12V LiPo Battery 1 4200

9 Engine Workbench 1 3000

10 Miscellaneous 5000

 Total 18,150

Institute of Engineering, Central Campus Pulchowk BE Project Report

64

Chapter 6 : CONCLUSION AND FUTURE

ENHANCEMENTS

6.1 Conclusion

In conclusion, the project aimed to diagnose faulty bearings using vibration data and

deep learning models, with an emphasis on real-life experimentation. The

experimental setup collected vibration data in time-series. The obtained dataset was

tested on a developed program consisting of 1-D CNN, 2D CNN, LSTM, and SVM

models, which yielded accuracies of (82.328,81.155), (90.78,98.359), (86.744,

87.181), and (77.575,77.258), respectively. The results showed that the developed

program had high accuracies for all models tested, indicating the potential of the

program for practical applications in predictive maintenance and fault diagnosis in

various industries. The experimental setup provided a real-world simulation of a

faulty bearing, enhancing the accuracy and reliability of the developed program. This

highlights the importance of acquiring accurate and reliable data for developing a

robust model for fault diagnosis in industrial applications.

Overall, the project provided a good understanding of vibration analysis and deep

learning programs with an acceptable level of accuracy. However, the project can be

further developed by using better sensing devices and advanced models to improve

the accuracy levels even further. In summary, the project demonstrated the potential

of using deep learning models and machine learning for fault diagnosis of faulty

bearings and highlighted the significance of experimentation in model development

and fault diagnosis in industrial applications.

Institute of Engineering, Central Campus Pulchowk BE Project Report

65

6.2 Scope for Future Enhancement

The potential areas for future enhancement are:

 Variations in loading conditions, rpm and fault severity can be considered.

 A variety of other signal processing methods, especially STFT can be used to

preprocess the data.

 Faults can be precisely introduced and accurately measured using Electrical

Discharge Machining or other techniques.

 Effects of variations in vibration signature caused due to different types of

lubricants, lubrication conditions and presence of contaminants can be explored.

 Accelerometer with a higher sensitivity along with a high sampling rate could be

used.

 Comparison studies can be done against other different methods such as Motor

Current Signature Analysis, acoustics and image processing to compare with the

accelerometer vibration analysis.

 Other different advanced Deep Learning models such as GAN (Generative

Adversarial Network) and Variational Autoencoders can be used to generate

better diagnosis models.

Institute of Engineering, Central Campus Pulchowk BE Project Report

66

REFERENCES

[1] Fan Feilong, Cao Ming, and Liu Qian. “Naturally-induced Early Aviation

Bearing Fault Test and Early Bearing Fault Detection”. In: 2021 Global

Reliability and Prognostics and Health Management (PHM-Nanjing). 2021,

pp. 1–6. DOI:10.1109/PHM-Nanjing52125.2021.9612980.

[2] Tatjana Lazovic, Mileta Ristivojevic, and Radivoje Mitrovic. “Mathematical

Model of Load Distribution in Rolling Bearing”. In: FME Transactions 36

(Jan. 2008).

[3] Chetan Chaudhari et al. “A STUDY OF BEARING AND ITS TYPES”. In:

Apr.2015.

[4] Yuanyang Cai. “BEARING FAULT DIAGNOSIS USING DEEP

LEARNING NEURAL NETWORKS WITH INPUT PROCESSING”. In:

(Dec. 2021). DOI: 10.25394/PGS.17162480.v1. URL: https://hammer.purdue.

edu/articles/thesis/BEARING_FAULT_DIAGNOSIS_USING_

DEEP_LEARNING_NEURAL_NETWORKS_WITH_INPUT_PROCESSIN

G/ 17162480.

[5] Adnan Althubaiti, Faris Elasha, and Joao Amaral Teixeira. “Fault diagnosis

and health management of bearings in rotating equipment based on vibration

analysis– a review”. In: Journal of Vibroengineering 24.1 (Nov. 2021), pp.

46–74. DOI: 10.21595/jve.2021.22100. URL: https://doi.org/10.21595%

2Fjve.2021.22100.

[6] S Vishwakarma et al. “Analyzing Vibrations through Fast Fourier Transform

(FFT) for Machine Health Monitoring: A Review of Fundamentals and

Applied Methods”. In: (Jan. 2022).

[7] N.T. van der Merwe and A.J. Hoffman. “A modified cepstrum analysis

applied to vibrational signals”. In: 2002 14th International Conference on

https://doi.org/10.1109/PHM-Nanjing52125.2021.9612980
https://doi.org/10.1109/PHM-Nanjing52125.2021.9612980
https://doi.org/10.25394/PGS.17162480.v1
https://doi.org/10.25394/PGS.17162480.v1
https://hammer.purdue.edu/articles/thesis/BEARING_FAULT_DIAGNOSIS_USING_DEEP_LEARNING_NEURAL_NETWORKS_WITH_INPUT_PROCESSING/17162480
https://hammer.purdue.edu/articles/thesis/BEARING_FAULT_DIAGNOSIS_USING_DEEP_LEARNING_NEURAL_NETWORKS_WITH_INPUT_PROCESSING/17162480
https://hammer.purdue.edu/articles/thesis/BEARING_FAULT_DIAGNOSIS_USING_DEEP_LEARNING_NEURAL_NETWORKS_WITH_INPUT_PROCESSING/17162480
https://hammer.purdue.edu/articles/thesis/BEARING_FAULT_DIAGNOSIS_USING_DEEP_LEARNING_NEURAL_NETWORKS_WITH_INPUT_PROCESSING/17162480
https://hammer.purdue.edu/articles/thesis/BEARING_FAULT_DIAGNOSIS_USING_DEEP_LEARNING_NEURAL_NETWORKS_WITH_INPUT_PROCESSING/17162480
https://hammer.purdue.edu/articles/thesis/BEARING_FAULT_DIAGNOSIS_USING_DEEP_LEARNING_NEURAL_NETWORKS_WITH_INPUT_PROCESSING/17162480
https://hammer.purdue.edu/articles/thesis/BEARING_FAULT_DIAGNOSIS_USING_DEEP_LEARNING_NEURAL_NETWORKS_WITH_INPUT_PROCESSING/17162480
https://hammer.purdue.edu/articles/thesis/BEARING_FAULT_DIAGNOSIS_USING_DEEP_LEARNING_NEURAL_NETWORKS_WITH_INPUT_PROCESSING/17162480
https://doi.org/10.21595/jve.2021.22100
https://doi.org/10.21595/jve.2021.22100
https://doi.org/10.21595%2Fjve.2021.22100
https://doi.org/10.21595%2Fjve.2021.22100
https://doi.org/10.21595%2Fjve.2021.22100
https://doi.org/10.21595%2Fjve.2021.22100

Institute of Engineering, Central Campus Pulchowk BE Project Report

67

Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628). Vol.

2. 2002, 873–876 vol.2. DOI: 10.1109/ICDSP.2002.1028229.

[8] G.G. Yen and K.-C. Lin. “Wavelet packet feature extraction for vibration

monitoring”. In: IEEE Transactions on Industrial Electronics 47.3 (2000), pp.

650– 667. DOI: 10.1109/41.847906.

[9] Qiuhua Du and Shunian Yang. “Application of the EMD method in the

vibration analysis of ball bearings”. In: Mechanical Systems and Signal

Processing 21 (Aug. 2007), pp. 2634–2644. DOI:

10.1016/j.ymssp.2007.01.006.

[10] M. Safizadeh, A. Lakis, and Marc Thomas. “USING SHORT-TIME

FOURIER TRANSFORM IN MACHINERY DIAGNOSIS”. In: 3 (Jan.

2005).

[11] Jing Tian et al. “Motor Bearing Fault Detection Using Spectral Kurtosis-

Based Feature Extraction Coupled With K-Nearest Neighbor Distance

Analysis”. In: IEEE Transactions on Industrial Electronics 63.3 (2016), pp.

1793–1803. DOI: 10.1109/TIE.2015.2509913.

[12] Farzin Piltan and Jong-Myon Kim. “Bearing Fault Identification Using

Machine Learning and Adaptive Cascade Fault Observer”. In: Applied

Sciences 10.17 (Aug. 2020), p. 5827. ISSN: 2076-3417. DOI:

10.3390/app10175827. URL: http://dx.doi.org/10.3390/app10175827.

[13] Shuang Lu, Fujin Yu, and Jing Liu. “Bearing Fault Diagnosis Based on K-L

Transform and Support Vector Machine”. In: Third International Conference

on Natural Computation (ICNC 2007). Vol. 1. 2007, pp. 522–527. DOI:

10.1109/ ICNC.2007.282.

[14] Haidong Shao et al. “Electric Locomotive Bearing Fault Diagnosis Using a

Novel Convolutional Deep Belief Network”. In: IEEE Transactions on

https://doi.org/10.1109/ICDSP.2002.1028229
https://doi.org/10.1109/ICDSP.2002.1028229
https://doi.org/10.1109/41.847906
https://doi.org/10.1109/41.847906
https://doi.org/10.1016/j.ymssp.2007.01.006
https://doi.org/10.1016/j.ymssp.2007.01.006
https://doi.org/10.1109/TIE.2015.2509913
https://doi.org/10.1109/TIE.2015.2509913
https://doi.org/10.3390/app10175827
https://doi.org/10.3390/app10175827
http://dx.doi.org/10.3390/app10175827
http://dx.doi.org/10.3390/app10175827
https://doi.org/10.1109/ICNC.2007.282
https://doi.org/10.1109/ICNC.2007.282
https://doi.org/10.1109/ICNC.2007.282

Institute of Engineering, Central Campus Pulchowk BE Project Report

68

Industrial Electronics 65.3 (2018), pp. 2727–2736. DOI:

10.1109/TIE.2017.2745473.

[15] Emanuele Principi et al. “Unsupervised electric motor fault detection by using

deep autoencoders”. In: IEEE/CAA Journal of Automatica Sinica 6.2 (2019),

pp. 441–451. DOI: 10.1109/JAS.2019.1911393.

[16] OpenAI. Fault Diagnosis in a Ball Bearing. AI language model. 2023.URL:

https://openai.com.

[17] Jinane Harmouche, Claude Delpha, and Demba Diallo. “Improved Fault

Diagnosis of Ball Bearings Based on the Global Spectrum of Vibration

Signals”. In: IEEE Transactions on Energy Conversion 30.1 (2015), pp. 376–

383. DOI: 10.1109/TEC.2014.2341620.

[18] Basim Al-Najjar. “Condition-based maintenance : Selection and improvement

of a cost-effective vibration-based policy in rolling element bearings”. In:

1997.

[19] Dubravko Miljkovic. “Detecting Aircraft Ball Problems by Analysis of´

Engine Parameters”. In: 2019 42nd International Convention on Information

and Communication Technology, Electronics and Microelectronics (MIPRO).

2019, pp. 937–942. DOI: 10.23919/MIPRO.2019.8757079.

[20] Donald Gray et al. “A neural network based approach for the detection of

faults in the brushless excitation of a synchronous motor”. In: 2009 IEEE

International Conference on Electro/Information Technology. 2009, pp. 423–

428. DOI: 10.1109/EIT.2009.5189654.

[21] Pavan Kankar, Satish Chandra Sharma, and SURAJ HARSHA. “Fault

diagnosis of ball bearings using machine learning methods”. In: Expert Syst.

Appl. 38 (Mar.2011), pp. 1876–1886. DOI: 10.1016/j.eswa.2010.07.119.

[22] Wang Fuan et al. “An adaptive deep convolutional neural network for rolling

bearing fault diagnosis”. In: Measurement Science and Technology 28.9

https://doi.org/10.1109/TIE.2017.2745473
https://doi.org/10.1109/TIE.2017.2745473
https://doi.org/10.1109/JAS.2019.1911393
https://doi.org/10.1109/JAS.2019.1911393
https://openai.com/
https://openai.com/
https://doi.org/10.1109/TEC.2014.2341620
https://doi.org/10.1109/TEC.2014.2341620
https://doi.org/10.23919/MIPRO.2019.8757079
https://doi.org/10.23919/MIPRO.2019.8757079
https://doi.org/10.1109/EIT.2009.5189654
https://doi.org/10.1109/EIT.2009.5189654
https://doi.org/10.1109/EIT.2009.5189654
https://doi.org/10.1016/j.eswa.2010.07.119
https://doi.org/10.1016/j.eswa.2010.07.119

Institute of Engineering, Central Campus Pulchowk BE Project Report

69

(Aug.2017), p. 095005. DOI: 10.1088/1361-6501/aa6e22. URL:

https://doi.org/10.1088/1361-6501/aa6e22.

[23] Lane Maria Rabelo Baccarini et al. “SVM practical industrial application for

mechanical faults diagnostic”. In: Expert Systems with Applications 38.6

(2011), pp. 6980–6984. ISSN: 0957-4174. DOI: https://doi.org/10.1016/j.

eswa.2010.12.017.URL:https://www.sciencedirect.com/

science/article/pii/S0957417410013801.

[24] Amin Khorram, Mohammad Khalooei, and Mansoor Rezghi. “End-to-end

CNN + LSTM deep learning approach for bearing fault diagnosis”. In:

Applied Intelligence 51 (Feb. 2021), pp. 1–16. DOI: 10.1007/s10489-020-

01859-1.

[25] Pengfei Liang et al. “Intelligent Fault Diagnosis of Rolling Element Bearing

Based on Convolutional Neural Network and Frequency Spectrograms”. In:

2019 IEEE International Conference on Prognostics and Health Management

(ICPHM). 2019, pp. 1–5. DOI: 10.1109/ICPHM.2019.8819444.

[26] Alpha-Quantum, "Long Short-Term Memory (LSTM) with Python,"

AlphaQuantum Blog, 2021. [Online]. Available:

https://www.alphaquantum.com/blog/long-short-term-memory-lstm-with-

python/. [Accessed: Mar. 11, 2023].

[27] GeeksforGeeks, "Long Short-Term Memory Networks - Explanation,"

GeeksforGeeks, 2021. [Online]. Available:

https://www.geeksforgeeks.org/long-short-term-memory-

networksexplanation/. [Accessed: Mar. 11, 2023].

https://doi.org/10.1088/1361-6501/aa6e22
https://doi.org/10.1088/1361-6501/aa6e22
https://doi.org/10.1088/1361-6501/aa6e22
https://doi.org/10.1088/1361-6501/aa6e22
https://doi.org/10.1088/1361-6501/aa6e22
https://doi.org/https:/doi.org/10.1016/j.eswa.2010.12.017
https://doi.org/https:/doi.org/10.1016/j.eswa.2010.12.017
https://doi.org/https:/doi.org/10.1016/j.eswa.2010.12.017
https://doi.org/https:/doi.org/10.1016/j.eswa.2010.12.017
https://www.sciencedirect.com/science/article/pii/S0957417410013801
https://www.sciencedirect.com/science/article/pii/S0957417410013801
https://www.sciencedirect.com/science/article/pii/S0957417410013801
https://www.sciencedirect.com/science/article/pii/S0957417410013801
https://doi.org/10.1007/s10489-020-01859-1
https://doi.org/10.1007/s10489-020-01859-1
https://doi.org/10.1007/s10489-020-01859-1
https://doi.org/10.1109/ICPHM.2019.8819444
https://doi.org/10.1109/ICPHM.2019.8819444

Institute of Engineering, Central Campus Pulchowk BE Project Report

70

APPENDIX 1

Python Codes for FFT Plot

 import numpy as np

 import matplotlib.pyplot as plt

 import pandas as pd

 import openpyxl

Set file location

 file_location = r'C:\Desktop\py files\mikesh\excel files'

Import csv file

 df = pd.read_excel(file_location + r'\normal2.xlsx', header=None, names=['acc_x',

'acc_y'], skiprows=1)

Select specific section of data

 start = 20000

 end = start + 4096

 df_section = df[start:end]

Plot data

 plt.figure(figsize=(12,4))

 plt.plot(df_section.index, df_section['acc_x'], label='Acc_X')

 plt.plot(df_section.index, df_section['acc_y'], label='Acc_Y')

 plt.xlabel('Time')

 plt.ylabel('Acceleration')

 plt.legend()

 plt.show()

FFT

 # Number of sample points

 N = len(df_section)

 # Sampling frequency of signal

 fs = 1000

 # Time interval between samples

 T = 1 / fs

 # Perform FFT on signal

 yf_x = np.fft.fft(df_section['acc_x'])

 yf_y = np.fft.fft(df_section['acc_y'])

 # Create new x-axis: frequency from signal

 xf = np.linspace(0.0, fs/2, N//2)

Plot results for entire frequency range

 plt.figure(figsize=(12,4))

 plt.plot(xf, 2.0/N * np.abs(yf_x[:N//2]), label='Acc_X')

 plt.plot(xf, 2.0/N * np.abs(yf_y[:N//2]), label='Acc_Y')

 plt.xlabel('Frequency')

Institute of Engineering, Central Campus Pulchowk BE Project Report

71

 plt.ylabel('Amplitude')

 plt.legend()

 plt.grid()

 plt.show()

Plot specific frequency range

 lower = 50

 medium = 250

 upper = 500

 plt.figure(figsize=(12,4))

 plt.plot(xf, 2.0/N * np.abs(yf_x[:N//2]), label='Acc_X')

 plt.plot(xf, 2.0/N * np.abs(yf_y[:N//2]), label='Acc_Y')

 plt.xlim(lower, upper)

 plt.ylim(0,0.1)

 plt.xlabel('Frequency')

 plt.ylabel('Amplitude')

 plt.legend()

 plt.grid()

 plt.show()

Python Codes for Bandpass Filter

import numpy as np

 import pandas as pd

 from scipy import signal

 import matplotlib.pyplot as plt

 import openpyxl

Set file location

 file_location = r'C:\Desktop\py files\mikesh\excel files'

Import excel file

 # Import excel file, skipping first row

 df = pd.read_excel(file_location + r'\normal2.xlsx', header=None, skiprows=1,

names=['acc_x', 'acc_y'])

Sampling frequency of signal

 fs = 1000

 # Time interval between samples

 T = 1 / fs

Filter design

 fc = [20, 500] # Band pass cutoff frequency range

 b, a = signal.butter(4, [f / (fs/2) for f in fc], 'bandpass') # 4th order Butterworth

bandpass filter

Apply filters

Institute of Engineering, Central Campus Pulchowk BE Project Report

72

 df['acc_x_bandpass'] = signal.filtfilt(b, a, df['acc_x'])

 df['acc_y_bandpass'] = signal.filtfilt(b, a, df['acc_y'])

Reset index to a single level

 df.reset_index(drop=True, inplace=True)

Plot filtered data

 fig, axs = plt.subplots(2, 1, figsize=(8, 6))

 axs[0].plot(df.index*T, df['acc_x_bandpass'])

 axs[0].set_xlabel('Time (s)')

 axs[0].set_ylabel('Acceleration (m/s^2)')

 axs[0].set_title('X-axis filtered data')

 axs[1].plot(df.index*T, df['acc_y_bandpass'])

 axs[1].set_xlabel('Time (s)')

 axs[1].set_ylabel('Acceleration (m/s^2)')

 axs[1].set_title('Y-axis filtered data')

 plt.tight_layout()

 plt.show()

Write filtered data to excel file

 df.to_excel(file_location + r'\filtered_normal_2_20hz_500hz.xlsx', index=False)

FFT plot of filtered data

 n = len(df) # length of the signal

 f = np.linspace(0, fs, n) # frequency range

 xf = np.fft.fft(df['acc_x_bandpass'])/n # fft of x-axis filtered data

 yf = np.fft.fft(df['acc_y_bandpass'])/n # fft of y-axis filtered data

fig, axs = plt.subplots(2, 1, figsize=(8, 6))

 axs[0].plot(f[:n//2], 2*np.abs(xf[:n//2]))

 axs[0].set_xlabel('Frequency (Hz)')

 axs[0].set_ylabel('Magnitude')

 axs[0].set_title('X-axis filtered data')

 axs[1].plot(f[:n//2], 2*np.abs(yf[:n//2]))

 axs[1].set_xlabel('Frequency (Hz)')

 axs[1].set_ylabel('Magnitude')

 axs[1].set_title('Y-axis filtered data')

 plt.tight_layout()

 plt.show()

Institute of Engineering, Central Campus Pulchowk BE Project Report

73

Matlab Program For Feature Extraction

% Load the data from the TotalData.mat file

load('M:\Python\Classification_of_bearing_faults_using_ML-

main\BearingData_CaseWestern\TotalData.mat');

% Define the number of features you want to extract

num_features = 6;

% Define the number of data points you want per column

num_data_points = 201;

% Reshape the data into a matrix with the desired number of columns

data_matrix = reshape(TotalData, num_data_points, [])';

% Extract the features from the data

max_val = max(data_matrix, [], 2);

min_val = min(data_matrix, [], 2);

mean_val = mean(data_matrix, 2);

var_val = var(data_matrix, [], 2);

std_val = std(data_matrix, [], 2);

rms_val = rms(data_matrix,[], 2);

skew_val = skewness(data_matrix, [], 2);

crest_val = crestFactor(data_matrix, 1);

kurt_val = kurtosis(data_matrix, [], 2);

amp_val = max(abs(data_matrix), [], 2);

% Combine the features into a single matrix

feature_matrix = [max_val, min_val, mean_val, var_val, std_val, rms_val, skew_val,

crest_val, kurt_val, amp_val];

Institute of Engineering, Central Campus Pulchowk BE Project Report

74

% Transpose the feature matrix to get the desired shape

feature_matrix = feature_matrix';

% Display the feature matrix

disp(feature_matrix);

% Combine the features into a matrix

data_matrix = [max_val; min_val; peak_to_peak; mean_val; var_val; std_val;

rms_val; skew_val; crest_val; kurt_val; amp_val]';

% Display the matrix

disp(data_matrix);

Institute of Engineering, Central Campus Pulchowk BE Project Report

75

APPENDIX 2

Program for 'Fault Diagnosis on a Ball Bearing Using Vibration

Analysis'

Importation of all the required Libraries:

 import scipy.io

import numpy as np

 from sklearn.model_selection import train_test_split, KFold

 from sklearn.metrics import confusion_matrix

 import tensorflow as tf

 from keras import layers, models

 import matplotlib.pyplot as plt

 import seaborn as sns

import pandas as pd

 from keras.layers import Dense, Conv2D, Flatten, MaxPooling2D, Dropout

 from keras.utils import to_categorical

 from sklearn.metrics import confusion_matrix, classification_report

 from keras.models import Sequential

 import numpy as np

 import scipy.io

 from sklearn.model_selection import train_test_split

 from keras.models import Sequential

 from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout

 from keras.callbacks import EarlyStopping

Data Import

Importing the required dataset in matlab/excel format:

def ImportData():

 X111_normal1_007 =

scipy.io.loadmat('BearingData_CaseWestern/NORMAL1.mat')['X099_DE_time']

 X176_InnerRace_014 =

scipy.io.loadmat('BearingData_CaseWestern/INNER.mat')['X111_DE_time']

 X203_Outer_014 =

scipy.io.loadmat('BearingData_CaseWestern/OUTER.mat')['X203_DE_time']

 X191_Ball_014 =

scipy.io.loadmat('BearingData_CaseWestern/BALL.mat')['X191_DE_time']

 return

Institute of Engineering, Central Campus Pulchowk BE Project Report

76

[X176_InnerRace_014,X191_Ball_014,X203_Outer_014,X111_normal1_007]

Similarly other datas can be imported as per requirements. Here we have taken the

major dataset containg 1,106,000 datas.

 # The data contains mainly normal,inner faults, outer faults and ball fault.

def Sampling(Data, interval_length, samples_per_block):

 # Calculate the number of blocks that can be sampled based on the interval length

 No_of_blocks = (round(len(Data)/interval_length) -

round(samples_per_block/interval_length)-1)

 SplitData = np.zeros([No_of_blocks, samples_per_block])

 for i in range(No_of_blocks):

 SplitData[i,:] =

(Data[i*interval_length:(i*interval_length)+samples_per_block]).T

 return SplitData

def DataPreparation(Data, interval_length, samples_per_block):

 for count,i in enumerate(Data):

 SplitData = Sampling(i, interval_length, samples_per_block)

 y = np.zeros([len(SplitData),10])

 y[:,count] = 1

 y1 = np.zeros([len(SplitData),1])

 y1[:,0] = count

 # Stack up and label the data

 if count==0:

 X = SplitData

 LabelPositional = y

 Label = y1

 else:

 X = np.append(X, SplitData, axis=0)

 LabelPositional = np.append(LabelPositional,y,axis=0)

 Label = np.append(Label,y1,axis=0)

 return X, LabelPositional, Label

Here, the data interval length is set as per requirement of different training

models.An example:

 # For 1D CNN and 2D CNN the samples per block= 1936 so that the two

dimensional data can be in [44,44] form.

 # Similarly for LSTM which requires higher data number, the sample per block=

5184

 # For SVM the data samples per block is kept= 1444

Data = ImportData()

 interval_length = 200

samples_per_block = 1936

Y_CNN is of shape (n, 10) representing 10 classes as 10 columns. In each sample,

the data has been divided in these columns for easier computation,

Institute of Engineering, Central Campus Pulchowk BE Project Report

77

the corresponding column value is marked 1 and the rest as 0, facilitating Softmax

implementation in CNN

Y is of shape (m, 1) where column values are between 0 and 4 representing the

classes directly. - 1-hot encoding

X, Y_CNN, Y = DataPreparation(Data, interval_length, samples_per_block)

print('Shape of Input Data =', X.shape)

 print('Shape of Label Y_CNN =', Y_CNN.shape)

 print('Shape of Label Y =', Y.shape)

1D-CNN

Saving the provided data for future use

 XX = {'X':X}

 scipy.io.savemat('Data.mat', XX)

Applying k-fold cross validation for easier computation of CNN

 kSplits = 5

 kfold = KFold(n_splits=5, random_state=101, shuffle=True)

Reshaping the given data into - 1 dimensional feed

Input_1D = X.reshape([-1,1936,1])

Splitting of Testing data-Training data for 1D CNN

X_1D_train, X_1D_test, y_1D_train, y_1D_test = train_test_split(Input_1D, Y_CNN,

train_size=0.7,test_size=0.3, random_state=101)

 print(type(X_1D_test))

Defination of the CNN Classification model for 1D CNN

 class CNN_1D():

 def __init__(self):

 self.model = self.CreateModel()

 def CreateModel(self):

 model = models.Sequential([

 layers.Conv1D(filters=16, kernel_size=3, strides=2, activation='relu'),

 layers.MaxPool1D(pool_size=2),

 layers.Conv1D(filters=32, kernel_size=3, strides=2, activation='relu'),

 layers.MaxPool1D(pool_size=2),

 layers.Conv1D(filters=64, kernel_size=3, strides=2, activation='relu'),

 layers.MaxPool1D(pool_size=2),

 layers.Conv1D(filters=128, kernel_size=3, strides=2, activation='relu'),

 layers.MaxPool1D(pool_size=2),

 layers.Flatten(),

 layers.InputLayer(),

 layers.Dense(100,activation='relu'),

 layers.Dense(50,activation='relu'),

 layers.Dense(10),

 layers.Softmax()

Institute of Engineering, Central Campus Pulchowk BE Project Report

78

])

 model.compile(optimizer='adam',

 loss=tf.keras.losses.CategoricalCrossentropy(),

 metrics=['accuracy'])

 return model

accuracy_1D = []

Training the 1D CNN model acoording to required conditions

for train, test in kfold.split(X_1D_train,y_1D_train):

 Classification_1D = CNN_1D()

 history = Classification_1D.model.fit(X_1D_train[train], y_1D_train[train],

verbose=1, epochs=15)

 # Evaluation of accuracy of the model on the training set

 kf_loss, kf_accuracy = Classification_1D.model.evaluate(X_1D_train[test],

y_1D_train[test])

 accuracy_1D.append(kf_accuracy)

CNN_1D_train_accuracy = np.average(accuracy_1D)*100

 print('CNN 1D train accuracy =', CNN_1D_train_accuracy)

Evaluation of accuracy of the 1D-CNN model on the test set

 CNN_1D_test_loss, CNN_1D_test_accuracy =

Classification_1D.model.evaluate(X_1D_test, y_1D_test)

 CNN_1D_test_accuracy*=100

 print('CNN 1D test accuracy =', CNN_1D_test_accuracy)

Saving the given model for future use

 Classification_1D.model.save('Classification_1D.model.h5')

Defination of the confusion matrix for future plotting

def ConfusionMatrix(Model, X, y):

 y_pred = np.argmax(Model.model.predict(X), axis=1)

 ConfusionMat = confusion_matrix(np.argmax(y, axis=1), y_pred)

 return ConfusionMat

Plotting Confusion matrix for 1D CNN. Train, Test. Also plotting bar graph for

Training and Testing accuracies

 plt.figure(1)

 plt.title('Confusion Matrix - CNN 1D Train')

sns.heatmap(ConfusionMatrix(Classification_1D, X_1D_train, y_1D_train) ,

annot=True, fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu")

 plt.show()

plt.figure(2)

 plt.title('Confusion Matrix - CNN 1D Test')

sns.heatmap(ConfusionMatrix(Classification_1D, X_1D_test, y_1D_test) ,

annot=True, fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu")

Institute of Engineering, Central Campus Pulchowk BE Project Report

79

 plt.show()

plt.figure(3)

 plt.title('Train - Accuracy - CNN 1D')

 plt.bar(np.arange(1,kSplits+1),[i*100 for i in accuracy_1D])

 plt.ylabel('accuracy')

 plt.xlabel('folds')

 plt.ylim([50,100])

 plt.show()

plt.figure(4)

 plt.title('Train vs Test Accuracy - CNN 1D')

 plt.bar([1,2],[CNN_1D_train_accuracy,CNN_1D_test_accuracy])

 plt.ylabel('accuracy')

 plt.xlabel('folds')

 plt.xticks([1,2],['Train', 'Test'])

 plt.ylim([50,100])

 plt.show()

Calculation and printing the average accuracy and standard deviation

 CNN_1D_train_accuracy = np.average(accuracy_1D)*100

 CNN_1D_train_std = np.std(accuracy_1D)*100

 print('CNN 1D train accuracy =', CNN_1D_train_accuracy)

 print('CNN 1D train std deviation =', CNN_1D_train_std)

Evaluation of the accuracy of the model on the test set

 CNN_1D_test_loss, CNN_1D_test_accuracy =

Classification_1D.model.evaluate(X_1D_test, y_1D_test)

 CNN_1D_test_accuracy *= 100

 print('CNN 1D test accuracy =', CNN_1D_test_accuracy)

Checking the data for overfitting

 if CNN_1D_test_accuracy < CNN_1D_train_accuracy:

 print('Model is overfitting the data')

 else:

 print('Model is not overfitting the data')

Training the model 1D CNN

history = Classification_1D.model.fit(X_1D_train, y_1D_train, validation_split=0.3,

verbose=1, epochs=10)

Plotting the training and validation accuracy/loss curves

 plt.figure(figsize=(10,5))

 plt.subplot(1,2,1)

 plt.plot(history.history['accuracy'], label='Training Accuracy')

 plt.plot(history.history['val_accuracy'], label='Validation Accuracy')

 plt.title('Accuracy')

 plt.xlabel('Epoch')

 plt.ylabel('Accuracy')

Institute of Engineering, Central Campus Pulchowk BE Project Report

80

 plt.legend()

 plt.subplot(1,2,2)

 plt.plot(history.history['loss'], label='Training Loss')

 plt.plot(history.history['val_loss'], label='Validation Loss')

 plt.title('Loss')

 plt.xlabel('Epoch')

 plt.ylabel('Loss')

 plt.legend()

 plt.show()

2D-CNN

Assuming data is stored in a variable named `X`For 2D CNN

 X_2D = X.reshape((-1, 44, 44, 1))

Printing the shape of the reshaped array

 print(X_2D.shape)

Reshaping the data for - 2 dimensional feed

Input_2D = X.reshape((-1, 44, 44, 1))

Splitting of Testing data-Training data for 2D CNN

X_2D_train, X_2D_test, y_2D_train, y_2D_test = train_test_split(Input_2D, Y_CNN,

train_size=0.7,test_size=0.3, random_state=101)

Defination of the 2D CNN Classification model

 class CNN_2D():

 def __init__(self):

 self.model = self.CreateModel()

 def CreateModel(self):

 model = models.Sequential([

 layers.Conv2D(filters=16, kernel_size=(3,3), strides=(2,2), padding

='same',activation='relu'),

 layers.MaxPool2D(pool_size=(2,2), padding='same'),

 layers.Conv2D(filters=32, kernel_size=(3,3),strides=(2,2), padding

='same',activation='relu'),

 layers.MaxPool2D(pool_size=(2,2), padding='same'),

 layers.Conv2D(filters=64, kernel_size=(3,3),strides=(2,2),padding ='same',

activation='relu'),

 layers.MaxPool2D(pool_size=(2,2), padding='same'),

 layers.Conv2D(filters=128, kernel_size=(3,3),strides=(2,2),padding ='same',

activation='relu'),

 layers.MaxPool2D(pool_size=(2,2), padding='same'),

 layers.Flatten(),

 layers.InputLayer(),

 layers.Dense(100,activation='relu'),

 layers.Dense(50,activation='relu'),

 layers.Dense(10),

 layers.Softmax()

Institute of Engineering, Central Campus Pulchowk BE Project Report

81

])

 model.compile(optimizer='adam',

 loss=tf.keras.losses.CategoricalCrossentropy(),

 metrics=['accuracy'])

 return model

Training the model

accuracy_2D = []

 for train, test in kfold.split(X_2D_train,y_2D_train):

 Classification_2D = CNN_2D()

 history = Classification_2D.model.fit(X_2D_train[train], y_2D_train[train],

verbose=1, epochs=15, use_multiprocessing=True)

 # Evaluation of accuracy of the model on the training set

 CNN2D_loss, CNN2D_accuracy =

Classification_2D.model.evaluate(X_2D_train[test], y_2D_train[test])

 accuracy_2D.append(CNN2D_accuracy)

CNN_2D_train_accuracy = np.average(accuracy_2D)*100

 print('CNN 2D train accuracy =', CNN_2D_train_accuracy)

Evaluation of the accuracy of the model on the test set

 CNN_2D_test_loss, CNN_2D_test_accuracy =

Classification_2D.model.evaluate(X_2D_test, y_2D_test)

 CNN_2D_test_accuracy*=100

 print('CNN 2D test accuracy =', CNN_2D_test_accuracy)

Saving the model for future use

 Classification_2D.model.save('models/classification_2D.model.h5')

Plotting Confusion matrix for 2D CNN. Train, Test. Also, plotting bar graph for

Training and Testing accuracies

plt.figure(5)

 plt.title('Confusion Matrix - CNN 2D Train')

sns.heatmap(ConfusionMatrix(Classification_2D, X_2D_train, y_2D_train) ,

annot=True, fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu")

 plt.show()

plt.figure(6)

 plt.title('Confusion Matrix - CNN 2D Test')

sns.heatmap(ConfusionMatrix(Classification_2D, X_2D_test, y_2D_test) ,

annot=True, fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu")

 plt.show()

plt.figure(7)

 plt.title('Train - Accuracy - CNN 2D')

 plt.bar(np.arange(1,kSplits+1),[i*100 for i in accuracy_2D])

Institute of Engineering, Central Campus Pulchowk BE Project Report

82

 plt.ylabel('accuracy')

 plt.xlabel('folds')

 plt.ylim([50,100])

 plt.show()

plt.figure(8)

 plt.title('Train vs Test Accuracy - CNN 2D')

 plt.bar([1,2],[CNN_2D_train_accuracy,CNN_2D_test_accuracy])

 plt.ylabel('accuracy')

 plt.xlabel('folds')

 plt.xticks([1,2],['Train', 'Test'])

 plt.ylim([50,100])

 plt.show()

Calculation and printing of the average accuracy and standard deviation

 CNN_2D_train_accuracy = np.average(accuracy_2D)*100

 CNN_2D_train_std = np.std(accuracy_2D)*100

 print('CNN 2D train accuracy =', CNN_2D_train_accuracy)

 print('CNN 2D train std deviation =', CNN_2D_train_std)

Evaluation of the accuracy of the model on the test set

 CNN_2D_test_loss, CNN_2D_test_accuracy =

Classification_2D.model.evaluate(X_2D_test, y_2D_test)

 CNN_2D_test_accuracy *= 100

 print('CNN 2D test accuracy =', CNN_2D_test_accuracy)

Checking for any overfitting

 if CNN_2D_test_accuracy < CNN_2D_train_accuracy:

 print('Model is overfitting the data')

 else:

 print('Model is not overfitting the data')

Training the model

history = Classification_2D.model.fit(X_2D_train, y_2D_train, validation_split=0.3,

verbose=1, epochs=15)

Ploting the training and validation accuracy/loss curves for 2D CNN

 plt.figure(figsize=(10,5))

 plt.subplot(1,2,1)

 plt.plot(history.history['accuracy'], label='Training Accuracy')

 plt.plot(history.history['val_accuracy'], label='Validation Accuracy')

 plt.title('Accuracy')

 plt.xlabel('Epoch')

 plt.ylabel('Accuracy')

 plt.legend()

 plt.subplot(1,2,2)

 plt.plot(history.history['loss'], label='Training Loss')

 plt.plot(history.history['val_loss'], label='Validation Loss')

 plt.title('Loss')

Institute of Engineering, Central Campus Pulchowk BE Project Report

83

 plt.xlabel('Epoch')

 plt.ylabel('Loss')

 plt.legend()

 plt.show()

LSTM Model

Checking for any value error

 if len(X.shape) == 2:

 num_samples, num_features = X.shape

 elif len(X.shape) == 3:

 num_samples, num_rows, num_cols = X.shape

 num_features = num_rows * num_cols

 else:

 raise ValueError("Unexpected shape of X")

Reshaping the data -1 dimensional feed for LSTM

 Input = X.reshape([-1,5184,1])

Splitting of Testing data-Training data for LSTM

 X_train, X_test, y_train, y_test = train_test_split(Input, Y_CNN,

train_size=0.7,test_size=0.3, random_state=101)

Defining the LSTM Classification model

 class LSTM_Model():

 def __init__(self):

 self.model = self.CreateModel()

 def CreateModel(self):

 model = models.Sequential([

 layers.LSTM(32, return_sequences=True),

 layers.Flatten(),

 layers.Dense(10),

 layers.Softmax()

])

 model.compile(optimizer='adam',

 loss=tf.keras.losses.CategoricalCrossentropy(),

 metrics=['accuracy'])

 return model

accuracy = []

Training the model

for train, test in kfold.split(X_train,y_train):

 Classification = LSTM_Model()

 history = Classification.model.fit(X_train[train], y_train[train], verbose=1,

epochs=15, use_multiprocessing=True)

 # Evaluating the accuracy of the model on the training set

 kf_loss, kf_accuracy = Classification.model.evaluate(X_train[test], y_train[test])

Institute of Engineering, Central Campus Pulchowk BE Project Report

84

 accuracy.append(kf_accuracy)

LSTM_train_accuracy = np.average(accuracy)*100

 print('LSTM train accuracy =', LSTM_train_accuracy)

Evaluating the accuracy of the model on the test set

 LSTM_test_loss, LSTM_test_accuracy = Classification.model.evaluate(X_test,

y_test)

 LSTM_test_accuracy*=100

 print('LSTM test accuracy =', LSTM_test_accuracy)

Plotting Confusion matrix for LSTM. Train, Test. Also plotting bar graph for

Training and Testing accuracies

plt.figure(9)

 plt.title('Confusion Matrix - LSTM Train')

sns.heatmap(ConfusionMatrix(Classification, X_train, y_train) , annot=True,

fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu")

 plt.show()

plt.figure(10)

 plt.title('Confusion Matrix - LSTM Test')

sns.heatmap(ConfusionMatrix(Classification, X_test, y_test) , annot=True,

fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu")

 plt.show()

plt.figure(11)

 plt.title('Train - Accuracy - LSTM')

 plt.bar(np.arange(1,kSplits+1),[i*100 for i in accuracy])

 plt.ylabel('accuracy')

 plt.xlabel('folds')

 plt.ylim([50,100])

 plt.show()

plt.figure(12)

 plt.title('Train vs Test Accuracy - LSTM')

 plt.bar([1,2],[LSTM_train_accuracy,LSTM_test_accuracy])

 plt.ylabel('accuracy')

 plt.xlabel('folds')

 plt.xticks([1,2],['Train', 'Test'])

 plt.ylim([50,100])

 plt.show()

Checking Model Loss on LSTM

X_train, X_test, y_train, y_test = train_test_split(Input, Y_CNN,

train_size=0.7,test_size=0.3, random_state=101)

 history = Classification.model.fit(X_train, y_train, validation_data=(X_test, y_test),

epochs=15, verbose=1)

Institute of Engineering, Central Campus Pulchowk BE Project Report

85

 plt.plot(history.history['loss'])

 plt.plot(history.history['val_loss'])

 plt.title('Model loss')

 plt.ylabel('Loss')

 plt.xlabel('Epoch')

 plt.legend(['Train', 'Validation'], loc='upper right')

 plt.show()

Training the model LSTM

history = Classification.model.fit(X_train, y_train, validation_data=(X_test, y_test),

epochs=15, verbose=1)

Plotting of training and validation accuracy/loss curves

 plt.figure(figsize=(10,5))

 plt.subplot(1,2,1)

 plt.plot(history.history['accuracy'], label='Training Accuracy')

 plt.plot(history.history['val_accuracy'], label='Validation Accuracy')

 plt.title('Accuracy')

 plt.xlabel('Epoch')

 plt.ylabel('Accuracy')

 plt.legend()

 plt.subplot(1,2,2)

 plt.plot(history.history['loss'], label='Training Loss')

 plt.plot(history.history['val_loss'], label='Validation Loss')

 plt.title('Loss')

 plt.xlabel('Epoch')

 plt.ylabel('Loss')

 plt.legend()

 plt.show()

Calculation and printing the average accuracy and standard deviation

 LSTM_train_accuracy = np.average(accuracy)*100

 LSTM_train_std = np.std(accuracy)*100

 print('LSTM train accuracy =', LSTM_train_accuracy)

 print('LSTM train std deviation =', LSTM_train_std)

Evaluation of the accuracy of the model on the test set

 LSTM_test_loss, LSTM_test_accuracy = Classification.model.evaluate(X_test,

y_test)

 LSTM_test_accuracy*= 100

 print('LSTM 2D test accuracy =', LSTM_test_accuracy)

Checking for overfitting of the data

 if LSTM_test_accuracy < LSTM_train_accuracy:

 print('Model is overfitting the data')

 else:

 print('Model is not overfitting the data')

SUPPORT VECTOR MACHINE MODEL

Institute of Engineering, Central Campus Pulchowk BE Project Report

86

IMPORT FEATURE DATA INCLUDES: max value, min value, mean,

variance,standard deviation,rms,skewness, ,kurtosis

Importation of data for SVM

 X_Features =

scipy.io.loadmat('BearingData_CaseWestern/X_Features.mat')['Feature_Data']

Feature data shape (no. of samples, no. of features)

 X_Features.shape

Importation of nececcary libraries for SVM

 from sklearn.decomposition import PCA

 from sklearn.svm import SVC

 from sklearn.pipeline import Pipeline

from sklearn.model_selection import GridSearchCV

 from sklearn.preprocessing import StandardScaler

 from sklearn.decomposition import PCA

 from tqdm import tqdm_notebook as tqdm

import warnings

warnings.filterwarnings('ignore')

Fitting the given set of data

 X_Norm = StandardScaler().fit_transform(X_Features)

Determination of shape for Y

 print(Y.shape)

Application of PCA for smooth computation and dimensionality reduction

 pca = PCA(n_components=5)

 Input_SVM_np = pca.fit_transform(X_Norm)

 Input_SVM = pd.DataFrame(data = Input_SVM_np)

 Label_SVM = pd.DataFrame(Y, columns=['target'])

Setup of required parameters for SVM

 parameters = {'kernel':('rbf','poly','sigmoid'),

 'C': [0.01, 1],

 'gamma' : [0.01, 1],

 'decision_function_shape' : ['ovo']}

Support vector Machine

svm = SVC()

Test-Train Split for SVM Model

 X_train_SVM, X_test_SVM, y_train_SVM, y_test_SVM =

train_test_split(Input_SVM_np, Y, train_size=0.7,test_size=0.3, random_state=101)

Traing of the model to obtain the best parameters

 svm_cv = GridSearchCV(svm, parameters, cv=5)

 svm_cv.fit(X_train_SVM, y_train_SVM)

print("Best parameters = ",svm_cv.best_params_)

Institute of Engineering, Central Campus Pulchowk BE Project Report

87

SVM_train_accuracy = svm_cv.best_score_*100

 print('SVM train accuracy =', SVM_train_accuracy)

Evaluation of the accuracy of the model on the test set

 SVM_test_accuracy = svm_cv.score(X_test_SVM, y_test_SVM)

SVM_test_accuracy*=100

 print('SVM test accuracy =', SVM_test_accuracy)

Definition of the confusion matrix for plotting

 def ConfusionMatrix_SVM(Model, X, y):

 y_pred = Model.predict(X)

 ConfusionMat = confusion_matrix(y, y_pred)

 return ConfusionMat

print(svm_cv.score(X_train_SVM, y_train_SVM))

Plotting of different confusion matrix, bars for test,train accuracy, SVM

 plt.figure(13)

 plt.title('Confusion Matrix - SVM Train')

sns.heatmap(ConfusionMatrix_SVM(svm_cv, X_train_SVM, y_train_SVM) ,

annot=True, fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu")

 plt.show()

plt.figure(14)

 plt.title('Confusion Matrix - SVM Test')

sns.heatmap(ConfusionMatrix_SVM(svm_cv, X_test_SVM, y_test_SVM) ,

annot=True, fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu")

 plt.show()

plt.figure(16)

 plt.title('Train vs Test Accuracy - SVM')

 plt.bar([1,2],[SVM_train_accuracy,SVM_test_accuracy])

 plt.ylabel('accuracy')

 plt.xlabel('folds')

 plt.xticks([1,2],['Train', 'Test'])

 plt.ylim([40,100])

 plt.show()

Plotting of Decision Boundary

 from mlxtend.plotting import plot_decision_regions

 value = 0

 width = 1

 plt.figure(17)

 plt.figure(figsize=(10.4,8.8))

 plt.title('Decision Boundary - SVM')

 plot_decision_regions(X_test_SVM, (y_test_SVM.astype(np.integer)).flatten(),

clf=svm_cv, legend=2,

 feature_index=[0,1],

Institute of Engineering, Central Campus Pulchowk BE Project Report

88

 filler_feature_values={2:value, 3:value, 4:value},

 filler_feature_ranges={2:width, 3:width, 4:width},)

Models Comparision

Comparison of Models

 plt.figure(18)

 plt.title('Accuracy in Training data')

 plt.bar([1,2,3,4],[CNN_1D_train_accuracy, CNN_2D_train_accuracy,

LSTM_train_accuracy, SVM_train_accuracy])

 plt.ylabel('accuracy')

 plt.xlabel('folds')

 plt.xticks([1,2,3,4],['CNN-1D', 'CNN-2D' , 'LSTM', 'SVM'])

 plt.ylim([70,100])

 plt.show()

plt.figure(19)

 plt.title('Accuracy in Test data')

 plt.bar([1,2,3,4],[CNN_1D_test_accuracy, CNN_2D_test_accuracy,

LSTM_test_accuracy, SVM_test_accuracy])

 plt.ylabel('accuracy')

 plt.xlabel('folds')

 plt.xticks([1,2,3,4],['CNN-1D', 'CNN-2D' , 'LSTM', 'SVM'])

 plt.ylim([70,100])

 plt.show()

Institute of Engineering, Central Campus Pulchowk BE Project Report

89

Figure A2. 1: Accelerometer, attached to the drive end connected with the DAQ

system

Institute of Engineering, Central Campus Pulchowk BE Project Report

90

Figure A2. 2: The Project Team and the Experimental Setup

