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ABSTRACT 

Failure of ball bearings is a major cause of rotatory machine failure resulting in large 

economic losses and possible injury to human lives. Correct diagnosis helps to 

identify bearing faults and use the bearings effectively, preventing catastrophic 

failures of rotating machines. Detecting potential problems early, and condition 

monitoring allows for proactive maintenance and reduces the downtime of machines. 

Improved equipment reliability and efficiency lead to lower maintenance costs and 

increased productivity. The study aimed to classify three types of bearing faults: Inner 

Raceway, Outer Raceway and Ball fault. Inner Raceway and Outer Raceway faults 

were introduced in the 608-deep groove ball bearing via an electric grinder making 

1.5mm line cuts through the axis of the bearing. For ball fault, one ball was removed 

out of the 7 present. An accelerometer with sampling frequency of 1000Hz was fixed 

on the drive end of the AC induction motor to acquire the vibration signals. Models 

for Support Vector Machine (SVM), Convolutional Neural Network (CNN) (both 1D 

CNN and 2D CNN) and Long Short Term Memory Network (LSTM) were 

developed. Raw bearing fault data from an open-source database, CWRU was fed into 

the models to check their accuracy. A minimum accuracy of 92.47% was acquired 

from the raw CWRU data, thus validating the models. The acquired fault data from 

the accelerometer was processed through a (20Hz, 500Hz) band pass filter before 

feeding into the machine learning and deep learning models. 70% of the vibration data 

was used for training the models while the remaining 30% was used for testing. Out 

of the 4 models compared, 1D CNN gave a maximum test accuracy of 98.35%. 

Keywords: Fault Diagnosis, Ball Bearing, Machine Learning, Deep Learning, SVM, 

LSTM, CNN 
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Chapter 1 : INTRODUCTION 

1.1 Background 

Bearings are among the most crucial components of almost every rotating machine. 

Failure of bearings can lead to large downtime, and equipment failures and can cause 

injuries to human lives. Lack of lubrication, contamination, fatigue, and misalignment 

are some of the most common causes of bearing failure. Failure of bearing is the 

result of a failure of a specific component or components. When a specific bearing 

component fails, its vibration signature changes. Based on this change in vibration 

signature from the normal condition, the bearing faults can be diagnosed using 

Machine Learning and Deep Learning algorithms. 

1.1.1 Ball Bearings 

 

Figure 1.1: Parts of a Ball Bearing 

Among the various types of bearings, ball bearings are a common type that are able 

to sustain both radial and axial loads [2]. Ball bearings are composed of two layers: 

an inner ring and an outer ring separated by rolling elements. The rolling elements 

allow smooth, high-speed motion and reduce friction. Ball bearings are mainly made 

out of ceramics, stainless steel or chrome steel depending upon the requirement of 

the machinery. They come in sizes ranging from 1mm to 26 mm. These bearings 

may have deep grove radial structure, single-row angular contact with internal 

clearances, raceway grooves, mast guide, v-grooves, etc. as per the required loading 



Institute of Engineering, Central Campus Pulchowk    BE Project Report 

2 
 

conditions [3]. It is important to select proper ball bearings to reduce the risk of 

failure and avoid high maintenance costs. 

Bearing faults are mainly classified on the basis of their parts as: Inner Raceway 

(IR) faults, Outer Raceway (OR) faults and ball faults. 

 

Figure 1. 2: Inner Raceway Fault 

 

Figure 1. 3: Outer Raceway Fault 
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1.1.2 AC Induction Motor 

 

Figure 1. 4: AC Induction Motor 

An AC induction motor, also known as an asynchronous motor, is a type of electric 

motor that operates on the principle of electromagnetic induction. It is the most 

commonly used type of motor in industrial and commercial applications. The AC 

induction motor consists of a stator, which is the stationary part of the motor, and a 

rotor, which is the rotating part. The stator has a series of windings that are connected 

to an AC power source. When the power is turned on, the AC current in the stator 

windings produces a rotating magnetic field. The rotor is made up of a series of 

conductive bars or coils, and when the rotating magnetic field of the stator cuts across 

the rotor, it induces an electric current in the rotor. The interaction between the 

magnetic fields of the stator and the rotor causes the rotor to rotate, and the motor 

shaft turns. The speed of the motor is determined by the frequency of the AC power 

supply and the number of poles in the stator windings. The torque of the motor is 

determined by the strength of the magnetic field and the current in the rotor. AC 

induction motors are widely used in applications such as pumps, fans, compressors, 

conveyors, and machine tools. They are rugged, reliable, and efficient, and they 

require little maintenance. They are also relatively inexpensive to manufacture, 

making them a popular choice for many industrial and commercial applications. 
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1.1.3 Signal Processing 

Signal processing is the process of analyzing, modifying and transforming signals that 

represent some form of information. Signal processing involves wide range of 

techniques for signal processing including filtering, Fourier analysis, spectral 

analysis, time-frequency analysis, digital signal processing and statistical signal 

processing. These techniques can be used to extract useful information from signals, 

remove noise or unwanted components, compress data and prepare signals for further 

analysis or transmission. Signal processing is an important step in preparing vibration 

data for machine learning (ML) and deep learning (DL) algorithms. The goal of signal 

processing is to extract meaningful features from the raw vibration data that can be 

used as inputs to ML/DL models. 

Some of the common signal processing techniques that can be applied to vibration 

data are: 

1. Filtering: This involves removing unwanted noise or frequencies from the signal. 

For example, a high-pass filter can be used to remove low-frequency noise from 

the data, while a low-pass filter can be used to remove high-frequency noise. 

2. Feature extraction: This involves identifying specific characteristics of the signal 

that are relevant to the problem at hand. For example, the amplitude, frequency, 

and phase of specific vibration modes can be extracted from the signal and used as 

input features. 

3. Time-frequency analysis: This involves analyzing the signal in both the time and 

frequency domains to identify patterns that are relevant to the problem at hand. 

For example, a spectrogram can be used to visualize how the frequency content of 

the signal changes over time. 

4. Dimensionality reduction: This involves reducing the number of input features by 

projecting the data onto a lower-dimensional space. For example, principal 

component analysis (PCA) can be used to identify the most important features in 

the data and project the data onto a lower-dimensional space. 
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1.1.4 Machine Learning (ML) 

Machine learning refers to a branch of artificial intelligence that enables systems to 

learn and improve from experience without being explicitly programmed, allowing 

them to automatically make predictions and recognize patterns. It can be mostly 

divided into three categories: unsupervised learning, supervised learning and 

reinforcement learning. Unsupervised learning deals with the clustering of data in a 

certain pattern that the machine learns to be fit. The output isn‟t labeled so most of 

the work the machine does is pattern recognition and division of the data into a 

number of subsets. Clustering, anomaly detection and dimensionality reduction are 

some of the tasks unsupervised learning algorithms are good at. K-means clustering, 

K Nearest Neighbor (KNN), Apriori are some widely used unsupervised learning 

algorithms. In vibration analysis, K-Nearest Neighbor has helped to classify fault via 

interfering vibration source with an accuracy of 98.53% [11]. 

Supervised learning requires algorithm to be trained by labeling the input variables 

and output datas. They are mostly used for regression and classification problems. 

Supervised learning algorithms including Linear regression, random forest and 

Support Vector Machines(SVM) have been used in recent years for ball bearing 

fault diagnosis with accuracy above 97%[12][13] . 

Reinforcement learning implies that machines learn from their own mistakes and 

successes. The punishment-reward approach based on the mistakes and successes 

the machine encounters helps it to learn and unlearn. Robotics and gaming are some 

core fields that use reinforcement learning. 

1.1.5 Deep Learning (DL) 

Deep learning is a category of Machine learning based on Artificial Neural 

Networks(ANN) that use multiple hidden layers to extract features from the input 

signal or image. They are highly used in image processing, vibration analysis, 

computer vision and climate change programs. Recently, Convolutional Neural 

Networks (CNN), Long Short Term Memory Networks (LSTMs), Deep Belief 
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Networks[14], Deep Autoencoders[15] and General Adversarial Networks(GANs) 

are being used in bearing fault detection problems. 

1.1.6 Case Western Reserve University Dataset 

 

Figure 1. 5: CWRU Experimental Setup 

The CWRU Bearing Dataset is a publicly available dataset of vibration signals from 

various fault conditions in bearings. It was created by researchers at Case Western 

Reserve University and is widely used for research purposes in the fields of machine 

learning, signal processing, and condition monitoring. The dataset contains time-

domain vibration signals collected from four different bearing types under different 

fault conditions, including inner race, outer race, ball, and normal conditions. The 

dataset provides a valuable resource for researchers and engineers to develop, test, 

and compare various condition monitoring and fault diagnosis methods for bearings. 

For initial training and testing of algorithms the CWRU dataset has been used. 

1.2 Problem Statement 

Fault diagnosis on a ball bearing using vibration monitoring is crucial for the proper 

functioning and longevity of the engine.[16] The traditional methods of fault 

diagnosis are prone to human error and can lead to inaccurate results. This project 

aims to improve the accuracy and efficiency of fault diagnosis by using Machine 

Learning (ML) and Deep Learning (DL) algorithms to develop an automated 

system. The system will be trained on a dataset of engine vibration data collected 

from various operational scenarios and will be able to classify faults in real-time as 

one of the three types: Outer race fault, Inner race fault, and Ball fault. The goal of 
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this project is to accurately and quickly diagnose faults in engine bearings, reducing 

downtime and maintenance costs and ensuring optimal engine performance. 

1.3 Objectives 

1.3.1 Main Objective 

• To correctly diagnose typical faults induced in ball bearing using vibration 

signature analysis via Machine Learning and Deep Learning. 

1.3.2 Secondary Objectives 

1. To improve the accuracy of fault diagnosis compared to traditional methods, 

reducing the number of false alarms and improving overall reliability. 

2. To develop an experimental setup to obtain vibration signal for fault diagnosis. 

3. To demonstrate the viability and benefits of using ML/DL algorithms for fault 

diagnosis. 

1.4 Applications 

The fault diagnosis system developed for a ball bearing using vibration monitoring 

and ML/DL algorithms has a wide range of applications in various industries. Some 

of the key applications are: 

• Predictive Maintenance: The system can be integrated into the engine monitoring 

system to provide real-time fault diagnosis and allow for proactive maintenance. 

This will help reduce downtime and increase the lifespan of the engine. 

• Quality Control: The system can be used in the manufacturing process of engines 

to perform quality control checks and ensure that the engines are free of faults 

before they are shipped. 
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• Aerospace and Defense: The system can be used in aerospace and defense ap-

plications where the reliability and performance of engines is critical. Real-time 

fault diagnosis will help ensure that the engines are functioning optimally and 

prevent potential failures. 

• Automotive Industry: The system can be used in the automotive industry to diag-

nose faults in vehicles and improve their performance. 

• Energy Generation: The system can be used in power plants and other energy 

generation facilities to diagnose faults in engines used for power generation and 

ensure their optimal performance. 

Overall, the fault diagnosis system has the potential to revolutionize the way 

faults are diagnosed in engines, leading to improved reliability, performance, and 

cost savings across various industries. 

1.5 Features 

The project comes along with the following features: 

• Real-time Fault Diagnosis: The system will be able to diagnose faults in engine 

bearings in real-time, providing immediate feedback to maintenance personnel. 

• Accurate Classification: The system will be trained on a large dataset of engine 

vibration data, ensuring accurate and reliable classification of faults as one of the 

three types: Outer race fault, Inner race fault, and Ball fault. 

• Cost-effective: The system will help reduce maintenance costs by allowing for 

proactive maintenance and reducing the need for manual inspection. 

• Scalable: The system will be scalable, allowing for integration into various types 

of engines and industries. 
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• Continuous Improvement: The system will be continuously improved 

through the use of machine learning algorithms, allowing for improved accuracy and 

performance over time. 

1.6 Feasibility 

1.6.1 Economic Feasibility 

The project was found to be economically feasible. The majority of the initial 

investment for our project involved the acquisition of an AC induction motor, ADXL 

335 accelerometer, and DAQ system. Some of these materials were readily available 

within our department, while others were inexpensive to purchase from the market. 

Additionally, the project members themselves constructed the experimental setup 

using locally available materials. To ensure the economic feasibility of our project, 

we utilized an accelerometer with lower sensitivity and an AC induction motor with 

low KV ratings. This allowed for the accelerometer's sampling rate to be sufficient in 

collecting vibration data for fault diagnosis. Moreover, our project did not require 

significant operational costs. 

1.6.2 Technical Feasibility 

The technical feasibility of the project for fault diagnosis of bearings using vibration 

monitoring is positive. The project requires an engine/motor with a bearing to collect 

vibration data, and it was readily available in the Department of Mechanical and 

Aerospace Engineering. Data acquisition (DAQ) systems for logging vibration data 

were also available in the department, and it was easy to procure one for this project. 

Signal processing, machine learning, and deep learning are essential components of 

fault diagnosis using vibration data. Project members had the required knowledge in 

these areas to effectively utilize these techniques to analyze the vibration data and 

diagnose faults. Additionally, computational systems for data analysis and modeling 

are required, and these systems were available with the project members. Given the 

availability of required resources and expertise, it appears that the project is 

technically feasible and has a high likelihood of success in diagnosing faults in 
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bearings using vibration monitoring if someone wants to do similar project in the 

future. 

1.6.3 Operational Feasibility 

Necessary resources, including workspace and equipment, are available. User 

friendly design, integration with existing workflows, and real-time monitoring 

capabilities ensure efficient and effective implementation. 

1.7 System Requirements 

1.7.1 Software Requirements  

For the ADXL 335 accelerometer, a data logger software (LABVIEW) is required to 

output the data along with excel and Matlab for data collection, storage and sorting. 

For Machine learning and Deep Learning along with signal processing, Visual Studio 

Code with Python and Jupyter have been used. The major libraries required are scipy, 

numpy, matplotlib, fft, sklearn, keras and tensorflow. Intel Core i7-9700K processor 

with a clock speed of 3.60 GHz, 16 GB of RAM were the available system 

specifications under which the project was completed. Matlab software is also 

required for data processing and importation. 

1.7.2 Hardware Requirements 

The project is focused upon experimental data collection and diagnosis program 

development. Experimentation is done on a single motor fastened bearing and the 

setup is similar to the CWRU fault bearing setup. The hardware used in the project 

are:  

 AC Induction Motor 

An ac induction motor is a type of electric motor that used electromagnetic 

induction to generate torque. When AC voltage is applied to the stator windings a 

rotating magnetic field is produced that interacts with the rotor to generate torque. 
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The reason behind the use of ac induction motor for the fault diagnosis was that it 

was easy to start the motor and also the vibration produced in the bearing were 

pronounced enough to be detected by accelerometer. 

 ADXL 335 accelerometer 

 

 

Figure 1. 6: ADXL 335 Accelerometer 

 

ADXL 335 accelerometer was used for acquiring vibration data for fault diagnosis 

in bearings. It is a low power, three axis accelerometer that can measure 

acceleration in the range of ±3g. The accelerometer outputs analog voltage signals 

that correspond to the acceleration in each of the three axes. These signals are read 

and processed using an analog to digital converter (ADC) to obtain digital 

vibration data. 

 DAQ system 

Data Acquisition (DAQ) system was used to measure and record vibration data 

from ADXL 335 accelerometer. The accelerometer was connected to DAQ using 

jumper wires. The analog acceleration signal was converted to digital data and the 

digital data was captured and stored at a sampling rate of 1000Hz. myDAQ is a 

data acquisition device which is used to measure and record vibration data from 

bearing through accelerometer. myDAQ has high resolution analog to digital 

converters (ADCs) that can capture vibration signals with high accuracy and 
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precision. This ensures that the acquired data is reliable and accurate, which is 

essential for making informed decisions in fault diagnosis of bearing. This device 

comes with user-friendly software tools such as LabVIEW which allows the user 

to quickly and easily setup acquisition, acquire data and perform various types of 

analysis and visualization. myDAQ is a cost effective solution for vibration data 

acquisition which can be used with wide range of sensors including ADXL 335 

accelerometer. Its features and benefits make it an ideal choice for industrial 

settings where monitoring and analysis of machine health are essential for optimal 

performance and efficiency. 

 

 

Figure 1. 7: NI DAQ System 

 Bearings 

Four 608 deep groove ball bearings were used for the vibration data acquisition 

out of which one was a normal bearing, and three different faults namely inner 

race fault, outer race fault and ball fault were introduced in the remaining three. 

The 608-ball bearing is a standard deep groove ball bearing with an inner diameter 

(ID) of 8 mm, an outer diameter (OD) of 22 mm, and a width (W) of 7 mm. The 

bearing has a pitch (P) of 8.1 mm. 
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 Computer System/PC 

A PC computer equipped with Processor Intel® Core™ i7-8550 U CPU @ 

1.80GHz, 1992 MHz, 4 Core(s), 8 Logical Processor(s), RAM 8GB & HDD 

20GB was used for computation. 

 Tachometer 

 

Figure 1. 8: Tachometer 

A handheld digital photo tachometer was used to measure the rotational speed of 

the AC induction motor. The device uses a laser beam to detect the speed of the 

motor and display it on its LED screen. The tachometer typically comes with 

reflective tape that is attached to the shaft of the motor. The reflective tape reflects 

the laser beam back to the tachometer, allowing for an accurate measurement of 

speed. 
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Chapter 2 : LITERATURE REVIEW 

Among the various elements of a motor i.e., stator, rotor, shaft and bearing, faults in 

bearings accounts for 42% - 50% of unscheduled maintenance [17]. Improper 

installation, handling fault, contaminants, wear and tear, lubricating factors and 

operating environmental condition cause different faults. Based on the specific 

component at fault, bearing defects can be classified as outer race fault, inner race 

fault, roller element fault, etc.  

Condition Based Maintenance (CBM) is a predictive maintenance approach which 

optimizes maintenance strategies to improve efficiency, safety, reliability and 

expenses. In CBM, extracted data from past and present are analyzed to predict 

future consequences and prevent unnecessary maintenance and unforeseen failures 

[18]. Condition based maintenance was first used by Rio Grande Railway Company 

in 1940s. The condition of coolant, oil and fuel leaks were predicted by the 

measurement of change in pressure and temperature. In the recent years, analysis of 

vibration data for fault feature extraction and fault diagnosis has been catching 

speed. 

Fault diagnosis is the process of discovering fault in a component by comparing the 

data of its normal operating condition to its present condition and extracting fault 

features [19]. 

Bearing fault diagnosis has been mainly performed through three following 

methods: 

• Conventional model using motor current and principal component analysis [20]. 

• Machine learning using algorithms such as support vector machine, K-nearest 

neighbor [21]. 

• Deep learning with artificial neural networks (auto-encoder, deep belief, 

generative adversarial, convolutional neural and recurrent neural networks) [22]. 
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Signal processing consists of time, frequency and time frequency domain analysis. 

Out of many signal processing methods STFT was found to be a better fit to deep 

learning algorithm input in fault detection [4]. Among many other machine and deep 

learning algorithms, SVM, LSTM and CNN seem to have an easier implementation 

and produce results with a higher accuracy [4]. Support Vector Machine (SVM) is a 

supervised learning model with strong generalization capacity. It uses structural risk 

minimization concept to train the classifiers which classify the data into positive and 

negative classes. [23] LSTM works on the basis of memory block function where 

gates and memory cells are multiplied to keep the continuous flow of information, 

mainly self-recurrent memory cells keeping the long-term memory error flows being 

truncated when required. LSTM is among the best cost-effective recurrent neural 

network used for monitoring large dataset having large accuracy, short time interval 

for computation with resistance to over fitting [24]. CNN is a first-rate deep learning 

method having a feedforward neural network with major layers as convolutional, 

pooling and connected. It is especially useful to solve problems related to overfitting 

and has a high accuracy when used with preprocessed data [25]. 
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Chapter 3 : RELATED THEORY 

3.1 Support Vector Machine (SVM) 

 

Figure 3. 1: Support Vectors and the Optimal Hyperplane 

SVM is an ML algorithm that provides a linear model for classification and 

regression analysis. It is a supervised learning model. SVM creates a best-decision 

boundary (hyperplane) in an n-dimensional space for category separation thus 

helping with distinct classification. The extreme vectors of a category help to define 

the hyperplane and are called Support Vectors. 

For a given dataset, 

 3.1 

Where xi is the input vector and yi is the label of xi, the hyperplane is given by  
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            3.2 

 Here, w = (a, −1) if the hyperplane is defined as y = ax + b. 

To calculate the point closest to the hyperplane we define the parameter β which is 

calculated as 

              3.3 

   For our required domain D, we get, 

                      3.4 

 Where B is the smallest value of β. If there are s hyperplanes present, each will 

have a specific Bi value, and the hyperplane with the largest Bi value is selected. 

3.1.1 Principal Component Analysis (PCA) 

It is a widely used statistical method used in reducing dimensionality, in data analysis. 

It transforms a set of correlated variables into a new set of uncorrelated variables, 

known as principal components which captures maximum amount of variance in the 

given dataset. 

PCA finds a set of orthogonal axes in the multidimensional space of original 

variables, along which data varies most. The 1
st
 principal component captures 

maximum amount of variance in the data, 2
nd

 captures remaining variance orthogonal 

to first components and so on for other components. The principal components are 

computed using eigenvalue decomposition of the covariance matrix of the original 

data or by singular value decomposition of data matrix. Once the principal 
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components are computed, they can be used to reduce dimensionality of the data as it 

selects a subset of the principal component which captures most of the variance in the 

data. PCA is applicable in: 

 Data (Analysis, Compression, Feature Selection and Visualization),  

 Outliners detection, 

  Identification of patterns 

 Noise removal from data 

The limitation of PCA is that it assumes data are linearly related and variance is 

evenly distributed along each axis also, it is sensitive to outliers, scaling and 

normalization issues in the provided data. 

3.1.2 Parameter Selection 

Parameter selection is an important process in machine learning that involves 

selecting the optimal set of hyperparameters for a given model. Hyperparameters are 

values that are set before training and are not learned from the data. In SVM, several 

hyperparameters are used, including the kernel, C, gamma, and decision function 

shape.  

 „Kernel‟ specifies the type of kernel used in the SVM algorithm, and in the case of 

SVM, three different kernels are used: radial basis function (rbf), polynomial 

(poly), and sigmoid.  

 „C‟ is the regularization parameter that determines the trade-off between achieving 

low training error and low testing error due to overfitting, and two values of C can 

be specified, namely 0.01 and 1. 

 „Gamma‟ is used for non-linear hyperplanes, with higher gamma values defining a 

higher influence of training examples, which can result in overfitting. Two values 

of gamma can be specified, namely 0.01 and 1. 

 „Decision Function Shape‟ parameter specifies the decision function shape for 

multi-class problems, with ovo representing one-vs-one. 
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To select the best combination of hyperparameters for a given model, there are 

hyperparameter tuning methods such as GridSearchCV and RandomizedSearchCV. 

These methods search through the hyperparameters space to identify the optimal set 

of hyperparameters that result in the highest accuracy on the dataset. 

3.1.3 Feature Extraction 

The Diagnostic Feature Designer toolkit was used to extract the features from the 

time-domain vibration signal. The following values were used based on their 

properties to extract the features: 

 Max Value: It is the highest value in a set of data points used to identify the upper 

bound of the range of values in the dataset.  

                          3.5 

 Min Value: It is the lowest value in a set of data points and is used to identify the 

lower bound in a given range of values of a dataset. 

                          3.6 

 Mean Value: It is the average value of a set of data points and measures their 

central tendency.  

               
          

 
 

3.7 

 Variance: It measures the spread of the data points around the mean value. 
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[                                    ]

 
 

3.8 

 Standard Deviation: It is given by the square root of variance and provides a 

measure of the spread of the data points in the same units as the original 

measurements. 

                            
 
   

3.9 

 RMS Value: It is a measure of the average magnitude of the data points and helps 

to understand the overall magnitude of the data. 

                 [
   

     
          

  

 
]

 
 

 

3.10 

 Skewness: It is the measure of asymmetry of the data points. It represents the 

shape of the distribution of data points.  

           
[                                    ]

[           
 ]

   
3.11 

  

 Crest Value: It is the ratio of the maximum value to the rms value. It represents 

the peakness of the signal. 
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3.12 

 Kurtosis Value: It is the measure of tailedness of the data points. It shows how 

clustered the data points are to the mean value.  

              
[                                    ]

[           
 ]    

 
3.13 

  

Here, x1, x2,…,xn are the data points and n represents the number of data points.  
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3.2 Convolutional Neural Network (CNN) 

 

Figure 3. 2: Convolutional Neural Network 

Convolutional Neural Network is an artificial neural network popularly used for 

analyzing images. CNN can also be used for signal analysis and data classification. 

The architecture of CNN consists of an input layer, no of hidden layers and an 

output layer. The activation function masks the inputs and outputs of the middle 

layers due of which the middle layers are called hidden layers. The convolution is 

performed by the hidden layers. A dot product is performed between the input 

matrix of the layer and the convolution kernel. As a result, a feature map is 

generated as the convolution kernel slides along the input matrix. The feature map is 

the input for the next layer of CNN. 

 Input layer 

Input layer is the first layer of CNN which receives the raw one-dimensional 

vibrational data. In case of 2D CNN the 1D vibration data is converted into a 2D 

representation that can be processed by the convolutional layers of the 2D CNN 

network. The 1D vibration data was used to generate spectrogram which is a 2D 

representation of the vibration signal. Convolutional layer performs the operation 

of convolution, activation and pooling on the input data. During the process of 

convolution different filters are employed to extract the features from the 

vibration data. The activation function introduces non-linearity in the CNN model 
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and the pooling process reduces the spatial dimensionality and improve the 

efficiency of the model. 

 Kernel size 

In CNN model, the kernel size is the dimension of filter or window that slides 

over the input data or feature map. During the convolution operation, the kernel 

moves over the input data and at each location, it computes the dot product 

between its own values and the corresponding values in the input. This operation 

produces a single output value that becomes a part of the output feature map. The 

choice of kernel size depends upon the complexity of the input data and the 

desired level of feature extraction. A smaller kernel size captures fine-grained 

details in the input data, while a larger kernel size can capture more global 

features. 

 Stride 

In CNN model, stride refers to the number of pixels the convolution kernel moves 

each time it is applied to the input data. The stride length determines the amount 

of overlap between adjacent regions of the input data that are covered by the 

kernel. For example, a stride of 1 means that the kernel moves one pixel at a time, 

resulting in adjacent regions of the input data overlapping by one pixel. Using a 

larger stride can reduce the size of the output feature map which may be useful in 

downsampling the input data and reducing overfitting. However, use of larger 

stride can result in the loss of important information from the input data. 

 Activation functions 

Activation functions are the component of CNNs that introduce non-linearity into 

the network and help to capture complex patterns in the input data. They allow 

CNNs to model complex relationships between the input features and output 

classes and help to improve the accuracy. Some commonly used activation 

functions in CNN are: 
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1. ReLU (Rectified Linear Unit): ReLU activation function is defined as f(x) = max 

(0,x), which means that it gives the output if the input is positive and sets negative 

input to zero. ReLU function is computationally efficient and helps to overcome 

the vanishing gradient problem. 

2. Tanh (Hyperbolic tangent): The hyperbolic tangent function is defined as f(x) = 

(exp(x) - exp(-x)) / (exp(x) + exp(-x)). It maps the input values to a range of -1 to 

1. 

3. Leaky ReLU: The Leaky ReLU is defined as f(x) = max(ax,x), where a is a small 

positive constant. This function allows a small gradient for negative inputs. 

 

 Pooling 

Pooling is an operation in CNN models to reduce the spatial dimensions of feature 

maps of convolutional layers. Most common types of pooling operation are: 

1. Max pooling: This involves partitioning the feature map into non-overlapping 

rectangular regions (also called pooling regions) and taking the maximum value 

within each region 

2. Average pooling: This operation takes the average value within each pooling 

region. 

By the process of pooling, computational requirements were reduced and as a 

result the efficiency of the model is improved. The problem of overfitting is also 

prevented. 

 Optimizer function 

Optimizer function is a component of CNNs which updates the weights of the 

network during network to minimize the loss function. Selection of optimizer 

function has a significant impact on the training process and the performance of 

the model. Some of the popular optimizer functions used in CNN are: 

1. Adam: Adam optimizer adjust the learning rate dynamically which results in the 

increasing convergence speed of the training and improving overall performance 
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of the CNN model as well. During the training process the learning rate is 

substantial for parameters with small gradients and learning rate is adjusted to 

smaller in case of larger gradient parameters. 

2. Stochastic Gradient Descent (SGD): SGD updates the weights by taking the 

gradient of the loss function with respect to the weights and moving in the 

opposite direction of the gradient. 

3. Adagrad: This optimizer function adapts the learning rate of each weight based on 

the historical gradient information. 

 

 Flatten layer 

Flatten layer is used in CNN model for fault diagnosis after final convolutional 

layer and before dense layer. The purpose behind the use of flatten layer is to 

transform the output of the convolutional layer into a form that can be easily fed 

into a fully connected layer. By flattening the output, the network can learn more 

complex features that capture higher level information about the vibration data. 

Flatten layer maintains balance between complexity and efficiency of network 

architecture during the reduction of dimensionality. 

 Dense layer 

A dense layer or fully connected layer is used in CNN model for extracting high 

level features and making final classification decision. The dense layer takes the 

flattened feature vector as input and applies a linear transformation followed by 

activation function to produce a new set of features. The output of the dense layer 

is then passed to the final layer for classification. 

 Final layer 

In a CNN for fault diagnosis of bearings, final layer is a fully connected layer that 

outputs a vector of probabilities corresponding to the different fault types of the 

bearing. The final layer typically consists of multiple neurons, with each neuron 

corresponding to a specific fault type. Some of the common activation functions 

used in the final layer are: 
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1. Sigmoid: The sigmoid function is defined as f(x) = 1/(1+exp(-x)). It maps the 

input values to a range of 0 to 1. Sigmoid is often used in the output layer of a 

CNN to predict binary outcomes. 

2. Softmax: Softmax activation function is used in case of the output is multiclass. It 

transforms the output of the last convolutional layer into a probability distribution 

over different fault category. 

3.2.1 K- Fold Cross- Validation 

K-fold cross validation is a machine learning technique used to enhance the 

performance of different training models. In this particular technique the complete 

dataset is split into smaller k sets or folds and the k-1 folds are used for training 

purposes. The resulting model is used as a test set to compute a performance 

measure i.e., accuracy. Then the performance measured is the average of values 

computed in the loop. It is however computationally expensive yet doesn‟t waste 

data giving advantage to dataset having number of samples very small. 

 

Figure 3. 3:  K-fold Cross Validation 
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3.3 Long-Short Term Memory 

 

Figure 3. 4: LSTM Architechture 

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) 

that utilizes a gate-oriented mechanism to control cells, taking input from previous 

stages as well as the current stage. It has been extensively used in speech 

recognition, text recognition, natural language processing, and fault detection and 

diagnosis programs. LSTM's unique feature is its use of multiplication of gates and 

memory cells to maintain a long-term flow of information in a sequence. These 

gates perform different functions, such as the input gate x(t), forget gate f(t), output 

gate o(t), input modulation gate g(t), and memory cell c(t). Additional neural 

parameters, including hidden state h(t), current state x(t), previous hidden state h(t-

1), and output labels y(t), are used accordingly. Unlike short term memory which 

can‟t remember the important function in a long chain of network, LSTM 

overcomes it by introducing a memory block. LSTM is designed to overcome the 

limitations of short-term memory by introducing a memory block that can remember 

the essential functions in a long chain of the network. The equations used for LSTM 

are complex, but they enable the network to maintain context and effectively process 

sequential data. The equations for LSTM is given as follows: 
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LSTM equations:  

 Input Gate 

                                 3.14 

  

 Forget Gate 

                             3.15 

  

 Output Gate 

                               3.16 

  

 Memory Cell Candidate 

                            3.17 

  

 Memory Cell 

                      3.18 

 Shadow State 

                  3.19 

 Cell Output 

      3.20 

Here, Wo, Wi and Wf are the weights of output, input and forget gates.  
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3.4 Fast Fourier Transform (FFT) 

The Fast Fourier Transform (FFT) algorithm is a mathematical algorithm that 

computes the Discrete Fourier transform (DFT) of a sequence of data points. The 

DFT is a transformation that converts a time-domain signal into its frequency-domain 

representation. The formula for the DFT is as follows: 

X[k] = ∑_{n=0}^{N-1} x[n] * exp(-2πjkn/N) 3.21 

;where X[k] is the kth frequency component of the signal, x[n] is the nth time-domain 

data point, j is the imaginary unit, and N is the number of data points in the signal. 

The FFT algorithm is a fast algorithm for computing the DFT and is based on a 

divide-and-conquer approach that recursively splits the sequence into smaller sub-

sequences. The formula for the FFT algorithm is derived from the DFT formula and is 

as follows: 

 [ ]                   [ ]             3.22 

Here W_N = exp(-2πj/N) is the Nth root of unity and k is an integer between 0 and N-

1. The FFT algorithm calculates the DFT using a series of butterfly operations that 

combine pairs of sub-sequences to generate the frequency components of the signal. 

The frequency domain signal obtained from FFT can be used to analyze the frequency 

content to identify important features and filter out unwanted noise. FFT is a crucial 

step in the preprocessing of vibration data for machine learning and deep learning 

algorithms. By computing the FFT of the vibration data, it is possible to obtain a more 

detailed understanding of the frequency content of the signal, which can then be used 

to extract relevant features. These features can be used as input to machine learning 

and deep learning algorithms to improve the accuracy and effectiveness of fault 

diagnosis. 

  



Institute of Engineering, Central Campus Pulchowk    BE Project Report 

30 
 

Chapter 4 : METHODOLOGY 

4.1 Flowchart for the BE Project 

 

Figure 4. 1: Flowchart for the BE Project  
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4.2 Flowchart for the CWRU Dataset Fault Diagnosis 

 

Figure 4. 2: Flowchart for CWRU Fault Diagnosis 
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4.3 Fault Introduction 

Three 608 bearings were taken and faults were introduced to the inner race, outer race 

and the ball component of the respective bearings. For outer raceway fault 

introduction, a 1.5mm was made with a grinder till the ball cage was reached. For ball 

fault, out of the 7 balls in the 608 bearing, one was taken out. The bearing was 

dissembled and in the inner raceway, the grinder was used to make a 1.5mm line as a 

part of the inner raceway fault introduction.  

 

Figure 4. 3: Inner Raceway Fault 

 

Figure 4. 4: Ball Fault 

 

Figure 4. 5: Outer Raceway Fault 
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4.4 Experimental Setup 

The following steps were taken to build the experimental setup: 

 First the ac induction motor is setup in a stand and fixed firmly, 

 ADXL 335 accelerometer is mounted on the top of the bearing housing at the 

drive end of motor. 

 The accelerometer is then connected to DAQ system using jumper wires. 

 The DAQ system is then connected to working computer via USB ports. 

 LabVIEW is setup to acquire the vibration data. In this process we create a new 

virtual environment and necessary DAQ functions are added to the block diagram. 

 Next, LabVIEW is configured to measure the vibration signals which involved 

setting up the sampling rate, selecting the input channels. 

 The 2-phase ac induction motor is started by giving ac voltage through electric 

circuit. 

 The vibration data with a sampling frequency of 1000 Hz was acquired. For each 

bearing condition, 2 minutes of data was acquired which consisted of 120,000 data 

points. The acceleration values for X and Y direction, the two perpendicular radial 

directions were acquired.  

 Once the data for normal condition is taken, the drive end bearing is replaced with 

a faulty bearing. The process is then repeated for all faults & their respective data 

is acquired. 

 

Figure 4. 6: Experimental Setup for the AC Induction Motor 
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Figure 4. 7: AC induction motor, DAQ system and ADXL 335 accelerometer 
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4.5 Algorithm Development Models 

4.5.1 SVM Architecture 

The SVM architecture used in the SVM model imports new data containing features 

extracted from the experimental dataset. The features applied are  an RBF kernel 

SVM model, GridSearchCV with cross-validation, and test set evaluation. 

Preprocessing involves standardization and dimensionality reduction using PCA. The 

optimized hyperparameters include C, gamma, and the decision function shape. The 

following table summarizes the key components and hyperparameters of the support 

vector machine (SVM) architecture used in our SVM model for fault diagnosis. 

Table 4. 1: SVM Model Parameters 

Ste

p 

Technical Term Value 

1. Feature Extraction Standardization (StandardScaler) 

    Dimensionality Reduction (PCA) 

2. SVM Model Radial Basis Function (RBF) Kernel 

    Hyperparameters: 

    C = 0.01, 1 

    Gamma = 0.01, 1 

    Decision function shape = One vs. One (ovo) 

3. Training GridSearchCV 

    Cross-validation (cv) = 5 

4. Evaluation Test accuracy = 81.1515% 
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4.5.2 1D CNN Architecture 

 

Figure 15: 1D CNN architecture with Activation Functions 

The 1-D CNN model is mainly used for image and time-series training. Similarly, the 

data fed into the model has to be of an acceptable size i.e., Enough to train but not 

large enough to be overfitting. The 1-D CNN with its simplified characteristics has 

short computation duration with higher accuracy compared to other models.  

In this 1-D CNN model it consists of shape of data from Input Data as [5486,1936] 

with Y-CNN as [5486,10] and Y as [5486,1]. The data is feed using k-fold cross 

validation with 5 splits and 101 random states. The data is then taken in a reshaped 

form X (-1,1936,1) as 1-D input. The model is split into (X, Y) dimensions for 

training and testing using train_test_split from sklearn library. The data is split into 

70% training and 30% testing data. 
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Table 4. 2: 1D CNN Model Parameters 

S. N Layers Filters Kernal 

size 

Strides Activation Pool 

size 

1 Convolution 

1D 

16 3 2 relu None 

2 MaxPool 1D None None None   2 

3 Convolution 

1D 

32 3 2 relu   

4 MaxPool 1D None None None   2 

5 Convolution 

1D 

64 3 2 relu None 

6 MaxPool 1D None None None   2 

7 Convolution 

1D 

128 3 2 relu None 

8 MaxPool 1D None None None   2 

9 Flatten           

10 InputLayer           

11 Dense (100)       relu   

12 Dense (50)       relu   

13 Dense (10)           

14 Softmax           

  

Here, the model consists of 14 different layers. Finally, the model is compiled using 

„adam „optimizer with defined terms for „loss‟ and „metrics. 

The model runs with 1 verbose and 15 epochs each round. After the model is 

computed it then gives out the accuracy for training and testing with their respective 

confusion matrices. As a safety measure the program was added with the feature to 

test for overfitting by comparison between test and train scores and plotting for 

validation and training curve. 
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4.5.3 2D CNN Architecture 

 

Figure 16: 2D CNN Architecture with Activation Functions 

The 2-D CNN model is also mainly used for image and time-series training. Similarly, 

to 1D the data fed into the model has to be of an acceptable size i.e., Enough to train 

but not large enough to be overfitting. The 2-D CNN is a bit complex than the 1-D 

CNN, so it takes more computation time and has more loss. 

In this 2-D CNN model it consists of shape of data from Input Data as [5486,1936] 

with Y-CNN as [5486,10] and Y as [5486,1]. The data is fed using k-fold cross 

validation with 5 splits and 101 random states. The data is then taken in a reshaped 

form X (-1,44,44,1) as 2-D input or square-root of data feed to 1-D CNN. The model 

is split into (X, Y) dimensions for training and testing using train_test_split from 

sklearn library. The data is split into 70% training and 30% testing data. 
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Table 4. 3: 2D CNN Model Parameters 

S. 

N 

Layers Filters Kernal 

size 

Strides Activatio

n 

Pool 

size 

Paddi

ng 

1 Convolution 

1D 

16 3,3 2,2 relu None Same 

2 MaxPool 1D None None None   2,2 Same 

3 Convolution 

1D 

32 3,3 2,2 relu   Same 

4 MaxPool 1D None None None   2,2 Same 

5 Convolution 

1D 

64 3,3 2,2 relu None Same 

6 MaxPool 1D None None None   2,2 Same 

7 Convolution 

1D 

128 3,3 2,2 relu None Same 

8 MaxPool 1D None None None   2,2 same 

9 Flatten             

10 Input Layer             

11 Dense (100)       relu     

12 Dense (50)       relu     

13 Dense (10)             

14 Softmax             

  

Finally, like in 1D CNN the model is compiled using „adam „optimizer with defined 

terms for „loss‟ and „metrics. 

The model runs with 1 verbose and 15 epochs and „true‟ multiprocessing in each 

round. After the model is computed it then gives out the accuracy for training and 

testing with their respective confusion matrices. As a safety measure the program was 

added with the feature to test for overfitting by comparison between test and train 

scores and plotting for validation and training curve. 
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4.5.4 LSTM Architecture 

 

Figure 17: LSTM Architecture 

The LSTM model is fed with one-dimensional Input Data as [5422, 5184], shape of 

Y_CNN as [5422,10] and shape of Y as [5422,1]. The data is shaped into 1D form [-

1,5184,1]. The training and testing data is split in (X, Y) dimensions in 70% and 30% 

respectively. The LSTM function is inbuilt Python (Jupiter) for Visual Code Studio. 

For layering the same function has been called which consists of activation function 

of tanh with recurrent activation function hard-sigmoid, kernel initializer as „glorot 

uniform‟, recurrent initializer „orthogonal‟ & bias initializer as zeros. Intermediate 

layers are added which consist of flatten layer, Dense layer of batch size 10. The final 

layer consists of a SoftMax activation function.[26] The model is optimized with 

„adam‟ set at a learning rate of 0.001 in Tensorflow and a 0-decay rate in Keras. 

 

 Activation function 

In our LSTM model for fault diagnosis tanh was used as a activation function. 

Tanh maps input values to a range between -1 and 1 which can be useful for 

ensuring that the output values of neurons are bounded. The sigmoid shape of tanh 

function is useful in capturing the non-linearities in the data which made our 

model capable of learning complex patters and relationships between the input 

data and output. 
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 Recurrent activation function 

Hard sigmoid activation function was used as recurrent activation function in our 

LSTM network for fault diagnosis. This activation function maps input to a range 

between 0 and 1 with a linear activation around 0 which make LSTM network to 

easily learn and capture non-linear relationships in the vibration data. 

 Kernel initializer 

Glorot uniform initializer was used as a kernel initializer in our LSTM network for 

fault diagnosis. In an LSTM network for analyzing vibration data, the Glorot 

uniform initializer helped to ensure that the initial weights of the network are 

optimized for learning the patterns and trends in the data. This improved the 

performance of the network and made it more efficient in terms of training time 

and computational resources. 

 Recurrent initializer 

The orthogonal recurrent initializer which was used in our LSTM network is a 

weight initialization method that sets the recurrent weight matrix of an LSTM 

network to an orthogonal matrix. In the context of analyzing vibration data, 

orthogonal recurrent initializer is useful in capturing long-term dependencies 

without losing important information during training process. 

 Bias initializer 

Bias initializer of zeros was used in LSTM network for fault diagnosis of bearing. 

In a neural network, biases are used to shift the activation function to the left or 

right, which can be useful for improving the accuracy of the model. In the context 

of fault diagnosis in vibration data, using a bias initializer of zeros can help to 

ensure that the initial predictions of the LSTM network are unbiased and based 

solely on the input data. This can be important for accurately detecting faults and 

anomalies in the data as biases can potentially mask the important 

information.[27] 
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Table 4. 4: : Layers, Return Sequence and Number of Neurons of LSTM 

S.N Layers Return Sequence No. of Neurons 

1 LSTM True 32 

2 Flatten   

3 Dense  10 

4 Softmax   

5 Adam 

Optimizer 
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Chapter 5 : RESULTS AND DISCUSSION 

5.1 Bearing Fundamental Defect Frequencies (BFDF) Calculation 

To calculate the fundamental bearing defect frequencies for a 608 deep groove ball 

bearing, we need to know the geometry of the bearing and the number of rolling 

elements (balls) in the bearing. The 608 bearing has a bore diameter of 8 mm, an 

outer diameter of 22 mm, and a width of 7 mm. It has 7 balls. 

The fundamental bearing defect frequencies for a 608 bearing can be calculated using 

the following equations: 

Inner race defect frequency (BPFI) = (d/2) * (N/10^6) 

Outer race defect frequency (BPFO) = (D/2) * (N/10^6) 

Ball spin frequency (BSF) = (d/2) * ((1 - d/D) / (1 + d/D)) * (N/10^6) 

;where d is the ball diameter, D is the pitch diameter, N is the bearing speed in 

revolutions per minute (rpm), and BPFI, BPFO, and BSF are in Hertz (Hz). 

For a 608 bearing with a ball diameter of 4.763 mm and a pitch diameter of 18.66 mm 

(assuming a standard 0.5 mm radial clearance), the fundamental defect frequencies 

are: 

BPFI = (8/2) * (10000/10^6) = 0.04 kHz = 40 Hz 

BPFO = (22/2) * (10000/10^6) = 0.11 kHz = 110 Hz 

BSF = (4.763/2) * ((1 - 4.763/18.66) / (1 + 4.763/18.66)) * (10000/10^6) = 0.98 kHz 

= 980 Hz 

Therefore, the fundamental bearing defect frequencies for inner race, outer race, and 

ball fault in a 608 deep groove ball bearing with an rpm of 10000 are 40 Hz, 110 Hz, 

and 980 Hz, respectively.  
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5.2 Signal Processing 

 

Figure 5. 1: FFT of the Normal Bearing Vibration Data 

Performing Fast Fourier Transform (FFT) on the acquired time-series vibration data 

shows that there are distinctly noticeable peaks of frequencies representing the rpm in 

which the motor rotates and the specific bearing faults that have been introduced. The 

normal data shows only one distinct frequency peak in 187Hz representing the 

fundamental frequency in which the motor rotates. The motor rpm can be now 

calculated as: 

187*60 = 11,220 rpm 

During the experiment, for the normal bearing data acquisition, the rpm was held 

between 11,000rpm to 11,500rpm, thus the distinct peak observed at the normal plot 

is validated. For inner defect, outer defect and ball defect data, the motor rpm was 

held at the range of 9500rpm to 10,500 rpm. 

 

Figure 5. 2: FFT of Inner Race Defect 
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Figure 5. 3: FFT of Outer Race Defect 

For the inner race and outer race defect, the bearing fundamental defect frequencies 

and their harmonics can be distinctly observed.  

 

Figure 5. 4: FFT of Ball Defect  

For ball fault, the FFT plot wasn‟t able to show the distinct fault frequency. As the 

ball spin frequency (BSF) (980Hz) is higher than the Nyquist frequency (500Hz), 

FFT was unable to show frequency above 500Hz, the frequency above the Nyquist 

frequency aliased in the 0 to 500 Hz range.  

The FFT study of the vibration signal showed that the noises had to be filtered out 

before subjecting the vibration data into the models. The low frequency noises below 

20Hz and the aliased frequencies above 500Hz had to be accounted for. To filter in 

such a range, a bandpass filter with the range of 20-500Hz was used. The FFT was 

only used to visualize the spectrum and the filtered time-series data was input into the 

ML and DL models. 
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5.3 Output  

 A Python (Jupyter Notebook) program was developed for the importation of data, 

proper segmentation and model development. The data imported was imported from 

MATLAB as column vectors i.e. 

Table 5. 1: Types of Data and Data Size 

S.N Types of data Data Size 

1 Normal Data 120,000  

2 Inner Race Fault Data 328,000 

3 Outer Race Fault Data 258,000 

4 Ball fault Data 400,000 

 Total Datas 1,106,000 

According to the type of model, the number of data interval length and samples per 

block were applied. The data are represented in terms of number I.e., normal data (0), 

inner fault (1), outer fault (2) and ball fault (3). 

5.3.1 SVM 

In the case of SVM model from the original dataset, the shape of Input Data Shape 

was [5498, 1444], shape of Y_CNN was [5498,10] and the Shape of Label was 

[5498,1]. The X_feature imported from the Features data contained of sample size 

[5498,8]. The data was split into 70% for training and 30% for testing. From the 

model the best parameters obtained were {C': 1,'decision_function_shape': 'ovo', 

'gamma': 1, 'kernel': 'rbf'}. The model took computation time of 3min 7.5 seconds 

with accuracies as I.e.  

Table 5. 2: SVM Test and Train Accuracy 

SVM Train Accuracy  80.64% 

SVM Test Accuracy 81.15% 
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Figure 5. 5: Train vs Test Accuracy for SVM 

Also, the confusion matrix obtained i.e. 

 

 

Figure 5. 6: Confusion Matrix for SVM- Train & SVM- Test 

The confusion matrix shows the normal data, inner fault data and outer fault (0,1,2) 

data are easily predicted with high accuracy whereas the ball fault data (3) is not 

being recognized properly during training and testing.  
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Figure 5. 7: Decision Boundary – SVM 

Also, the decision boundary confirms the result obtained in confusion matrix, the 

features are being separated well enough for normal, inner and outer but the ball fault 

data feature is trying to interact with other data. Overall, with the data given the 

model was found to be acceptable. 
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5.3.2 1D CNN 

For the 1D CNN model, the shape of input data was [5486,1936] while shape of label 

Y_CNN was [5486,10]. Similarly shape of label Y was [5486,1]. The data was split 

into 70% for training and 30% for testing. The overall computation time for executing 

the 1D CNN model was 2 minutes and 10 seconds.   

Table 5. 3: 1D CNN Train and Test Accuracy 

1D CNN Train Accuracy 90.078125% 

1D CNN Test Accuracy 98.3596623% 

 

 

Figure 5. 8: Train vs Test Accuracy for 1D CNN  
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Figure 5. 9: Training Accuracy of 1D CNN at different folds 

 

The accuracy of 1D CNN model can also be visualized through confusion matrix of training 

and test. 

 

 

Figure 5. 10: Confusion Matrix for 1D CNN-Test and Train 

The performance of the 1D CNN model across different classes can be known by analyzing 

the above confusion matrix. The diagonal elements representing the number of correctly 

classified examples are in higher numbers, compared to non-diagonal elements representing 

the number of misclassified examples which are in very small numbers. Although the ball 

fault data (3) has higher losses it is still acceptable. 
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Comparing the training and test accuracy, test accuracy is greater than train accuracy with the 

standard deviation for 1D CNN training just 4.2. From these results we can say that the model 

is not overfitting the data which is shown by the following validation graph as well. 

 

Figure 5. 11: 1D CNN Train vs Validation Accuracies 

 

 

5.3.3 2D CNN 

In the case of 2D CNN model, the shape of input data taken was [5486, 44, 44, 1] as 

two-dimensional array while shape of label Y_CNN was [5486,10]. Similarly shape 

of label Y was [5486,1]. The data was split into 70% for training and 30% for testing. 

The overall time for execution of the 2D CNN model was 1 minute and 23 seconds. 

Accuracies obtained are as follows: 

Table 5. 4: 2D CNN Train and Test Accuracy 

2D CNN Train Accuracy 86.744791% 

2D CNN Test Accuracy 87.181043% 
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Figure 5. 12: Train vs Test Accuracy for 2D CNN 

 

Figure 5. 13: Train vs Test Accuracy for 2D CNN 

 

The accuracy of 2D CNN model can also be visualized through confusion matrix of 

training and test. 

 

Figure 5. 14: Confusion Matrix for 2D CNN-Test and Train 



Institute of Engineering, Central Campus Pulchowk    BE Project Report 

53 
 

The performance of the 2D CNN model across different classes can be known by 

analyzing the above confusion matrix. The diagonal elements representing the 

number of correctly classified examples are in higher numbers, compared to non-

diagonal elements representing the number of misclassified examples which are in 

very small numbers. Also, like the previous model, major loss occurs in ball fault 

data. 

Comparing the training and test accuracy for overfitting, test accuracy is greater than 

train accuracy.  The standard deviation for 2D CNN training was found to be just 

1.5612. From these results we can say that the model is not overfitting the data which 

is also verified by the following validation graph. 

 

Figure 5. 15: 2D CNN Train vs Validation Accuracies 

 

5.3.4 LSTM 

In the LSTM model as per requirement of the model, the data sample taken was 

larger. From the dataset the shape of Input Data was [5422, 5184], the shape of 

Y_CNN was [5422, 10] and shape of Y was [5422,1]. K fold validation with 5 splits 

and 101 random states were applied. The dataset was split into 70% training set and 

30% testing set. The model took the longest computation time of 216mins 55.2 secs. 

The obtained accuracies i.e. 
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Table 5. 5: LSTM Train and Test Accuracy 

LSTM Train Accuracy 77.57% 

LSTM Test Accuracy 77.25% 

 

  

Figure 5. 16: Training Accuracy of LSTM at different folds 

 

 

Figure 5. 17: Train vs Test Accuracy for LSTM 
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Figure 5. 18: Confusion Matrix for LSTM – Test and Train 

Since LSTM is a recurrent neural network and specializes in text and arrays, a clearer 

idea of the dataset can be obtained from the confusion matrix. As mentioned in other 

models the normal data (0), inner fault data (1) and even outer fault data (2) have 

some unique parameters, but the ball fault (3) tries to overlap with others showing 

problems within the obtained data.    

5.3.5 Overall Models Comparison 

The overall accuracies obtained from the different deep learning and machine 

learning models are as: 

Table 5. 6: Test vs Train Accuracy Comparison Between Models 

S.N. Models in Experimental Setup Train Accuracy 

(%) 

Test Accuracy (%) 

1 1D CNN 90.07 98.35 

2 2D CNN 86.74 87.18 

3 LSTM 77.57 77.25 

4 SVM 80.64 81.15 
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Figure 5. 19: Model Accuracies for Training in Experimental Setup 

  

 

 

Figure 5. 20: Model Accuracies for Testing in Experimental Setup 
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5.4 Model validation for CWRU bearing Dataset 

The above-mentioned models were tested for 10 sample data using CWRU bearing 

dataset. The shape of Input Data was [24276, 1681], shape of Y_CNN was [24276, 

10] and shape of Y was [24276,1]. For each model the dataset was divided into 65% 

training data and 35% testing data.  

The accuracies obtained were as follows: 

Table 5. 7: Train and Test Accuracy for algorithms using CWRU Dataset 

S.N. Models Train Accuracy 

(%) 

Test Accuracy (%) 

1 1D CNN 98.14 98.52 

2 2D CNN 96.11 93.92 

3 LSTM 94.58 96.09 

4 SVM 92.73 92.47 

 

 Results for SVM: 

 

Figure 5. 21: Confusion Matrix for Testing Data using SVM 
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Figure 5. 22: CWRU Train vs Test Accuracy for SVM 

 

Figure 5. 23: CWRU- Decision Boundary for SVM 

 Results for 1D CNN: 

 

Figure 5. 24: CWRU- Confusion Matrix for Test Data via 1D CNN 
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Figure 5. 25: CWRU- Test and Train Accuracy via 1D CNN 

 Results for 2D CNN: 

 

Figure 5. 26: CWRU – Test and Train Confusion Matrices for 2D CNN 

 

 

Figure 5. 27: CWRU- Train and Test Accuracies for 2D CNN 
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 Results in LSTM: 

 

Figure 5. 28: CWRU- Test and Train Confusion Matrices in LSTM 

 

Figure 5. 29: CWRU – Train and Test Accuracy for LSTM 

Overall results: 

 

Figure 5. 30: Overall Training and Testing Accuracies 
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5.5 Limitations 

The following are the limitations faced in this project: 

• Unavailability of the data logger software for the 3D Vibration Tester. 

• High sensitivity and high sampling frequency accelerometer was unavailable and 

beyond the scope of our budget.  

• Due to the lack of instruments for standard fault introduction such as Electrical 

Discharge Machining, precise faults could not be introduced. 

• Damping effects have been neglected. 

• Variations in rpm and loading conditions have not been considered.  
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5.6 Problems Faced and Recommendations 

 Starting the DLE engine: Manually starting the DLE55 Piston Engine is a labor 

intensive task. Despite numerous attempts to start the engine manually, the 

engine only started a handful of times. An electric starter is recommended to 

start the engine.  

 Configuring the 3D vibration tester: The 3D vibration tester available was not 

equipped with its own data logger due to which the data could not be acquired 

according to the required sampling frequency. A high sensitivity accelerometer 

with the required sampling frequency along with the DAQ system shall be a 

suitable alternative to the 3D Vibration tester. 
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5.7 Cost Analysis 

Table 5.8:  Cost Analysis 

S.N. Instruments Quantity Price(Rs.) 

1 AC Induction Motor 1 2200 

2 Arduino Uno 1 1500 

3 TTL Connector 1 500 

4 Ball Bearings 3 450 

5 ADXL 335 Accelerometer 1 350 

6  Fuel 3 liters 550 

7 USB to RS-232 connector 1 400 

8 12V LiPo Battery 1 4200 

9 Engine Workbench 1 3000 

10 Miscellaneous  5000 

 Total  18,150 
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Chapter 6 : CONCLUSION AND FUTURE 

ENHANCEMENTS 

6.1 Conclusion 

In conclusion, the project aimed to diagnose faulty bearings using vibration data and 

deep learning models, with an emphasis on real-life experimentation. The 

experimental setup collected vibration data in time-series. The obtained dataset was 

tested on a developed program consisting of 1-D CNN, 2D CNN, LSTM, and SVM 

models, which yielded accuracies of (82.328,81.155), (90.78,98.359), (86.744, 

87.181), and (77.575,77.258), respectively. The results showed that the developed 

program had high accuracies for all models tested, indicating the potential of the 

program for practical applications in predictive maintenance and fault diagnosis in 

various industries. The experimental setup provided a real-world simulation of a 

faulty bearing, enhancing the accuracy and reliability of the developed program. This 

highlights the importance of acquiring accurate and reliable data for developing a 

robust model for fault diagnosis in industrial applications.  

Overall, the project provided a good understanding of vibration analysis and deep 

learning programs with an acceptable level of accuracy. However, the project can be 

further developed by using better sensing devices and advanced models to improve 

the accuracy levels even further. In summary, the project demonstrated the potential 

of using deep learning models and machine learning for fault diagnosis of faulty 

bearings and highlighted the significance of experimentation in model development 

and fault diagnosis in industrial applications. 
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6.2 Scope for Future Enhancement 

The potential areas for future enhancement are: 

 Variations in loading conditions, rpm and fault severity can be considered. 

 A variety of other signal processing methods, especially STFT can be used to 

preprocess the data. 

 Faults can be precisely introduced and accurately measured using Electrical 

Discharge Machining or other techniques.  

 Effects of variations in vibration signature caused due to different types of 

lubricants, lubrication conditions and presence of contaminants can be explored. 

 Accelerometer with a higher sensitivity along with a high sampling rate could be 

used.  

 Comparison studies can be done against other different methods such as Motor 

Current Signature Analysis, acoustics and image processing to compare with the 

accelerometer vibration analysis.  

 Other different advanced Deep Learning models such as GAN (Generative 

Adversarial Network) and Variational Autoencoders can be used to generate 

better diagnosis models.  
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APPENDIX 1 

Python Codes for FFT Plot 

 import numpy as np 

 import matplotlib.pyplot as plt 

 import pandas as pd 

 import openpyxl 

  

# Set file location 

 file_location = r'C:\Desktop\py files\mikesh\excel files' 

  

# Import csv file 

 df = pd.read_excel(file_location + r'\normal2.xlsx',  header=None, names=['acc_x', 

'acc_y'], skiprows=1) 

  

# Select specific section of data 

 start = 20000 

 end = start + 4096 

 df_section = df[start:end] 

  

# Plot data 

 plt.figure(figsize=(12,4)) 

 plt.plot(df_section.index, df_section['acc_x'], label='Acc_X') 

 plt.plot(df_section.index, df_section['acc_y'], label='Acc_Y') 

 plt.xlabel('Time') 

 plt.ylabel('Acceleration') 

 plt.legend() 

 plt.show() 

  

# FFT 

 # Number of sample points 

 N = len(df_section) 

 # Sampling frequency of signal 

 fs = 1000 

 # Time interval between samples 

 T = 1 / fs 

 # Perform FFT on signal 

 yf_x = np.fft.fft(df_section['acc_x']) 

 yf_y = np.fft.fft(df_section['acc_y']) 

 # Create new x-axis: frequency from signal 

 xf = np.linspace(0.0, fs/2, N//2) 

  

# Plot results for entire frequency range 

 plt.figure(figsize=(12,4)) 

 plt.plot(xf, 2.0/N * np.abs(yf_x[:N//2]), label='Acc_X') 

 plt.plot(xf, 2.0/N * np.abs(yf_y[:N//2]), label='Acc_Y') 

 plt.xlabel('Frequency') 
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 plt.ylabel('Amplitude') 

 plt.legend() 

 plt.grid() 

 plt.show() 

  

# Plot specific frequency range 

 lower = 50 

 medium = 250 

 upper = 500 

 plt.figure(figsize=(12,4)) 

 plt.plot(xf, 2.0/N * np.abs(yf_x[:N//2]), label='Acc_X') 

 plt.plot(xf, 2.0/N * np.abs(yf_y[:N//2]), label='Acc_Y') 

 plt.xlim(lower, upper) 

 plt.ylim(0,0.1) 

 plt.xlabel('Frequency') 

 plt.ylabel('Amplitude') 

 plt.legend() 

 plt.grid() 

 plt.show() 

 

Python Codes for Bandpass Filter 

import numpy as np 

 import pandas as pd 

 from scipy import signal 

 import matplotlib.pyplot as plt 

 import openpyxl 

  

# Set file location 

 file_location = r'C:\Desktop\py files\mikesh\excel files' 

  

# Import excel file 

 # Import excel file, skipping first row 

 df = pd.read_excel(file_location + r'\normal2.xlsx', header=None, skiprows=1, 

names=['acc_x', 'acc_y']) 

  

# Sampling frequency of signal 

 fs = 1000 

 # Time interval between samples 

 T = 1 / fs 

  

# Filter design 

 fc = [20, 500] # Band pass cutoff frequency range 

 b, a = signal.butter(4, [f / (fs/2) for f in fc], 'bandpass') # 4th order Butterworth 

bandpass filter 

  

# Apply filters 
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 df['acc_x_bandpass'] = signal.filtfilt(b, a, df['acc_x']) 

 df['acc_y_bandpass'] = signal.filtfilt(b, a, df['acc_y']) 

  

# Reset index to a single level 

 df.reset_index(drop=True, inplace=True) 

  

# Plot filtered data 

 fig, axs = plt.subplots(2, 1, figsize=(8, 6)) 

 axs[0].plot(df.index*T, df['acc_x_bandpass']) 

 axs[0].set_xlabel('Time (s)') 

 axs[0].set_ylabel('Acceleration (m/s^2)') 

 axs[0].set_title('X-axis filtered data') 

 axs[1].plot(df.index*T, df['acc_y_bandpass']) 

 axs[1].set_xlabel('Time (s)') 

 axs[1].set_ylabel('Acceleration (m/s^2)') 

 axs[1].set_title('Y-axis filtered data') 

 plt.tight_layout() 

 plt.show() 

  

# Write filtered data to excel file 

 df.to_excel(file_location + r'\filtered_normal_2_20hz_500hz.xlsx', index=False) 

  

# FFT plot of filtered data 

 n = len(df)  # length of the signal 

 f = np.linspace(0, fs, n)  # frequency range 

 xf = np.fft.fft(df['acc_x_bandpass'])/n  # fft of x-axis filtered data 

 yf = np.fft.fft(df['acc_y_bandpass'])/n  # fft of y-axis filtered data 

  

fig, axs = plt.subplots(2, 1, figsize=(8, 6)) 

 axs[0].plot(f[:n//2], 2*np.abs(xf[:n//2])) 

 axs[0].set_xlabel('Frequency (Hz)') 

 axs[0].set_ylabel('Magnitude') 

 axs[0].set_title('X-axis filtered data') 

 axs[1].plot(f[:n//2], 2*np.abs(yf[:n//2])) 

 axs[1].set_xlabel('Frequency (Hz)') 

 axs[1].set_ylabel('Magnitude') 

 axs[1].set_title('Y-axis filtered data') 

 plt.tight_layout() 

 plt.show() 
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Matlab Program For Feature Extraction 

% Load the data from the TotalData.mat file 

load('M:\Python\Classification_of_bearing_faults_using_ML-

main\BearingData_CaseWestern\TotalData.mat'); 

  

% Define the number of features you want to extract 

num_features = 6; 

  

% Define the number of data points you want per column 

num_data_points = 201; 

  

% Reshape the data into a matrix with the desired number of columns 

data_matrix = reshape(TotalData, num_data_points, [])'; 

  

% Extract the features from the data 

max_val = max(data_matrix, [], 2); 

min_val = min(data_matrix, [], 2); 

mean_val = mean(data_matrix, 2); 

var_val = var(data_matrix, [], 2); 

std_val = std(data_matrix, [], 2); 

rms_val = rms(data_matrix,[], 2); 

skew_val = skewness(data_matrix, [], 2); 

crest_val = crestFactor(data_matrix, 1); 

kurt_val = kurtosis(data_matrix, [], 2); 

amp_val = max(abs(data_matrix), [], 2); 

  

% Combine the features into a single matrix 

feature_matrix = [max_val, min_val, mean_val, var_val, std_val, rms_val, skew_val, 

crest_val, kurt_val, amp_val]; 
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% Transpose the feature matrix to get the desired shape 

feature_matrix = feature_matrix'; 

  

% Display the feature matrix 

disp(feature_matrix); 

 

% Combine the features into a matrix 

data_matrix = [max_val; min_val; peak_to_peak; mean_val; var_val; std_val; 

rms_val; skew_val; crest_val; kurt_val; amp_val]'; 

  

% Display the matrix 

disp(data_matrix); 
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APPENDIX 2 

Program for 'Fault Diagnosis on a Ball Bearing Using Vibration 

Analysis' 

# Importation of all the required Libraries: 

 import scipy.io  

import numpy as np 

 from sklearn.model_selection import train_test_split, KFold 

 from sklearn.metrics import confusion_matrix 

 import tensorflow as tf 

 from keras import layers, models 

 import matplotlib.pyplot as plt 

 import seaborn as sns  

import pandas as pd 

 from keras.layers import Dense, Conv2D, Flatten, MaxPooling2D, Dropout 

 from keras.utils import to_categorical 

 from sklearn.metrics import confusion_matrix, classification_report 

 from keras.models import Sequential 

 import numpy as np 

 import scipy.io 

 from sklearn.model_selection import train_test_split 

 from keras.models import Sequential 

 from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout 

 from keras.callbacks import EarlyStopping 

Data Import 

# Importing the required dataset in matlab/excel format: 

  

def ImportData():              

    X111_normal1_007 = 

scipy.io.loadmat('BearingData_CaseWestern/NORMAL1.mat')['X099_DE_time'] 

     X176_InnerRace_014 = 

scipy.io.loadmat('BearingData_CaseWestern/INNER.mat')['X111_DE_time'] 

     X203_Outer_014 = 

scipy.io.loadmat('BearingData_CaseWestern/OUTER.mat')['X203_DE_time'] 

     X191_Ball_014 = 

scipy.io.loadmat('BearingData_CaseWestern/BALL.mat')['X191_DE_time'] 

     return 
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[X176_InnerRace_014,X191_Ball_014,X203_Outer_014,X111_normal1_007] 

  

# Similarly other datas can be imported as per requirements. Here we have taken the 

major dataset containg 1,106,000 datas. 

 # The data contains mainly normal,inner faults, outer faults and ball fault. 

  

def Sampling(Data, interval_length, samples_per_block): 

     # Calculate the number of blocks that can be sampled based on the interval length  

    No_of_blocks = (round(len(Data)/interval_length) - 

round(samples_per_block/interval_length)-1) 

     SplitData = np.zeros([No_of_blocks, samples_per_block]) 

     for i in range(No_of_blocks): 

         SplitData[i,:] = 

(Data[i*interval_length:(i*interval_length)+samples_per_block]).T 

     return SplitData 

  

def DataPreparation(Data, interval_length, samples_per_block): 

     for count,i in enumerate(Data): 

         SplitData = Sampling(i, interval_length, samples_per_block) 

         y = np.zeros([len(SplitData),10]) 

         y[:,count] = 1 

         y1 = np.zeros([len(SplitData),1]) 

         y1[:,0] = count 

         # Stack up and label the data    

        if count==0: 

             X = SplitData 

             LabelPositional = y 

             Label = y1 

         else: 

             X = np.append(X, SplitData, axis=0) 

             LabelPositional = np.append(LabelPositional,y,axis=0) 

             Label = np.append(Label,y1,axis=0) 

     return X, LabelPositional, Label 

  

# Here, the data interval length is set as per requirement of different training 

models.An example: 

 # For 1D CNN and 2D CNN the samples per block= 1936 so that the two 

dimensional data can be in [44,44] form. 

 # Similarly for LSTM which requires higher data number, the sample per block= 

5184 

 # For SVM the data samples per block is kept= 1444 

  

Data = ImportData() 

 interval_length = 200  

samples_per_block = 1936 

  

# Y_CNN is of shape (n, 10) representing 10 classes as 10 columns. In each sample, 

the data has been divided in these columns for easier computation,  
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# the corresponding column value is marked 1 and the rest as 0, facilitating Softmax 

implementation in CNN  

# Y is of shape (m, 1) where column values are between 0 and 4 representing the 

classes directly. - 1-hot encoding 

  

X, Y_CNN, Y = DataPreparation(Data, interval_length, samples_per_block)  

 

print('Shape of Input Data =', X.shape) 

 print('Shape of Label Y_CNN =', Y_CNN.shape) 

 print('Shape of Label Y =', Y.shape) 

1D-CNN 

# Saving the provided data for future use 

 XX = {'X':X} 

 scipy.io.savemat('Data.mat', XX) 

# Applying k-fold cross validation for easier computation of CNN 

 kSplits = 5 

 kfold = KFold(n_splits=5, random_state=101, shuffle=True) 

# Reshaping the given data into - 1 dimensional feed  

Input_1D = X.reshape([-1,1936,1]) 

  

# Splitting of Testing data-Training data for 1D CNN   

X_1D_train, X_1D_test, y_1D_train, y_1D_test = train_test_split(Input_1D, Y_CNN, 

train_size=0.7,test_size=0.3, random_state=101) 

 print(type(X_1D_test)) 

  

# Defination of the CNN Classification model for 1D CNN 

 class CNN_1D(): 

   def __init__(self): 

     self.model = self.CreateModel() 

  

  def CreateModel(self): 

     model = models.Sequential([ 

         layers.Conv1D(filters=16, kernel_size=3, strides=2, activation='relu'), 

         layers.MaxPool1D(pool_size=2), 

         layers.Conv1D(filters=32, kernel_size=3, strides=2, activation='relu'), 

         layers.MaxPool1D(pool_size=2), 

         layers.Conv1D(filters=64, kernel_size=3, strides=2, activation='relu'), 

         layers.MaxPool1D(pool_size=2), 

         layers.Conv1D(filters=128, kernel_size=3, strides=2, activation='relu'), 

         layers.MaxPool1D(pool_size=2), 

         layers.Flatten(), 

         layers.InputLayer(), 

         layers.Dense(100,activation='relu'), 

         layers.Dense(50,activation='relu'), 

         layers.Dense(10), 

         layers.Softmax() 
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         ]) 

     model.compile(optimizer='adam', 

               loss=tf.keras.losses.CategoricalCrossentropy(), 

               metrics=['accuracy']) 

     return model 

  

accuracy_1D = [] 

  

# Training the 1D CNN model acoording to required conditions  

for train, test in kfold.split(X_1D_train,y_1D_train): 

   Classification_1D = CNN_1D() 

   history = Classification_1D.model.fit(X_1D_train[train], y_1D_train[train], 

verbose=1, epochs=15) 

  

  # Evaluation of accuracy of the model on the training set  

  kf_loss, kf_accuracy = Classification_1D.model.evaluate(X_1D_train[test], 

y_1D_train[test])  

  accuracy_1D.append(kf_accuracy) 

  

CNN_1D_train_accuracy = np.average(accuracy_1D)*100 

 print('CNN 1D train accuracy =', CNN_1D_train_accuracy) 

  

# Evaluation of accuracy of the 1D-CNN model on the test set 

 CNN_1D_test_loss, CNN_1D_test_accuracy = 

Classification_1D.model.evaluate(X_1D_test, y_1D_test) 

 CNN_1D_test_accuracy*=100 

 print('CNN 1D test accuracy =', CNN_1D_test_accuracy) 

  

# Saving the given model for future use 

 Classification_1D.model.save('Classification_1D.model.h5') 

# Defination of the confusion matrix for future plotting  

def ConfusionMatrix(Model, X, y): 

       y_pred = np.argmax(Model.model.predict(X), axis=1) 

   ConfusionMat = confusion_matrix(np.argmax(y, axis=1), y_pred) 

   return ConfusionMat 

# Plotting Confusion matrix for 1D CNN. Train, Test. Also plotting bar graph for 

Training and Testing accuracies 

 plt.figure(1) 

 plt.title('Confusion Matrix - CNN 1D Train')  

sns.heatmap(ConfusionMatrix(Classification_1D, X_1D_train, y_1D_train) , 

annot=True, fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu") 

 plt.show() 

  

plt.figure(2) 

 plt.title('Confusion Matrix - CNN 1D Test')  

sns.heatmap(ConfusionMatrix(Classification_1D, X_1D_test, y_1D_test) , 

annot=True, fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu") 
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 plt.show() 

  

plt.figure(3) 

 plt.title('Train - Accuracy - CNN 1D') 

 plt.bar(np.arange(1,kSplits+1),[i*100 for i in accuracy_1D]) 

 plt.ylabel('accuracy') 

 plt.xlabel('folds') 

 plt.ylim([50,100]) 

 plt.show() 

  

plt.figure(4) 

 plt.title('Train vs Test Accuracy - CNN 1D') 

 plt.bar([1,2],[CNN_1D_train_accuracy,CNN_1D_test_accuracy]) 

 plt.ylabel('accuracy') 

 plt.xlabel('folds') 

 plt.xticks([1,2],['Train', 'Test']) 

 plt.ylim([50,100]) 

 plt.show() 

# Calculation and printing the average accuracy and standard deviation 

 CNN_1D_train_accuracy = np.average(accuracy_1D)*100 

 CNN_1D_train_std = np.std(accuracy_1D)*100 

 print('CNN 1D train accuracy =', CNN_1D_train_accuracy) 

 print('CNN 1D train std deviation =', CNN_1D_train_std) 

  

# Evaluation of the accuracy of the model on the test set 

 CNN_1D_test_loss, CNN_1D_test_accuracy = 

Classification_1D.model.evaluate(X_1D_test, y_1D_test) 

 CNN_1D_test_accuracy *= 100 

 print('CNN 1D test accuracy =', CNN_1D_test_accuracy) 

  

# Checking the data for overfitting 

 if CNN_1D_test_accuracy < CNN_1D_train_accuracy: 

     print('Model is overfitting the data') 

 else: 

     print('Model is not overfitting the data') 

# Training the model 1D CNN  

history = Classification_1D.model.fit(X_1D_train, y_1D_train, validation_split=0.3, 

verbose=1, epochs=10) 

  

# Plotting the training and validation accuracy/loss curves 

 plt.figure(figsize=(10,5)) 

 plt.subplot(1,2,1) 

 plt.plot(history.history['accuracy'], label='Training Accuracy') 

 plt.plot(history.history['val_accuracy'], label='Validation Accuracy') 

 plt.title('Accuracy') 

 plt.xlabel('Epoch') 

 plt.ylabel('Accuracy') 
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 plt.legend() 

 plt.subplot(1,2,2) 

 plt.plot(history.history['loss'], label='Training Loss') 

 plt.plot(history.history['val_loss'], label='Validation Loss') 

 plt.title('Loss') 

 plt.xlabel('Epoch') 

 plt.ylabel('Loss') 

 plt.legend() 

 plt.show() 

2D-CNN 

# Assuming data is stored in a variable named `X`For 2D CNN 

 X_2D = X.reshape((-1, 44, 44, 1)) 

  

# Printing the shape of the reshaped array 

 print(X_2D.shape) 

# Reshaping the data for - 2 dimensional feed  

Input_2D = X.reshape((-1, 44, 44, 1)) 

  

# Splitting of Testing data-Training data for 2D CNN  

X_2D_train, X_2D_test, y_2D_train, y_2D_test = train_test_split(Input_2D, Y_CNN, 

train_size=0.7,test_size=0.3, random_state=101) 

  

# Defination of the 2D CNN Classification model 

 class CNN_2D(): 

   def __init__(self): 

     self.model = self.CreateModel() 

  

  def CreateModel(self): 

     model = models.Sequential([ 

         layers.Conv2D(filters=16, kernel_size=(3,3), strides=(2,2), padding 

='same',activation='relu'), 

         layers.MaxPool2D(pool_size=(2,2), padding='same'), 

         layers.Conv2D(filters=32, kernel_size=(3,3),strides=(2,2), padding 

='same',activation='relu'), 

         layers.MaxPool2D(pool_size=(2,2), padding='same'), 

         layers.Conv2D(filters=64, kernel_size=(3,3),strides=(2,2),padding ='same', 

activation='relu'), 

         layers.MaxPool2D(pool_size=(2,2), padding='same'), 

         layers.Conv2D(filters=128, kernel_size=(3,3),strides=(2,2),padding ='same', 

activation='relu'), 

         layers.MaxPool2D(pool_size=(2,2), padding='same'), 

         layers.Flatten(), 

         layers.InputLayer(), 

         layers.Dense(100,activation='relu'), 

         layers.Dense(50,activation='relu'), 

         layers.Dense(10), 

         layers.Softmax() 
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         ]) 

     model.compile(optimizer='adam', 

               loss=tf.keras.losses.CategoricalCrossentropy(), 

               metrics=['accuracy']) 

     return model 

  

# Training the model  

accuracy_2D = [] 

 for train, test in kfold.split(X_2D_train,y_2D_train): 

   Classification_2D = CNN_2D() 

   history = Classification_2D.model.fit(X_2D_train[train], y_2D_train[train], 

verbose=1, epochs=15, use_multiprocessing=True) 

  

  # Evaluation of accuracy of the model on the training set  

  CNN2D_loss, CNN2D_accuracy = 

Classification_2D.model.evaluate(X_2D_train[test], y_2D_train[test])  

  accuracy_2D.append(CNN2D_accuracy) 

  

CNN_2D_train_accuracy = np.average(accuracy_2D)*100 

 print('CNN 2D train accuracy =', CNN_2D_train_accuracy) 

  

 

# Evaluation of the accuracy of the model on the test set 

 CNN_2D_test_loss, CNN_2D_test_accuracy = 

Classification_2D.model.evaluate(X_2D_test, y_2D_test) 

 CNN_2D_test_accuracy*=100 

 print('CNN 2D test accuracy =', CNN_2D_test_accuracy) 

  

# Saving the model for future use 

 Classification_2D.model.save('models/classification_2D.model.h5') 

# Plotting Confusion matrix for 2D CNN. Train, Test. Also, plotting bar graph for 

Training and Testing accuracies 

  

plt.figure(5) 

 plt.title('Confusion Matrix - CNN 2D Train')  

sns.heatmap(ConfusionMatrix(Classification_2D, X_2D_train, y_2D_train) , 

annot=True, fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu") 

 plt.show() 

  

plt.figure(6) 

 plt.title('Confusion Matrix - CNN 2D Test')  

sns.heatmap(ConfusionMatrix(Classification_2D, X_2D_test, y_2D_test) , 

annot=True, fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu") 

 plt.show() 

  

plt.figure(7) 

 plt.title('Train - Accuracy - CNN 2D') 

 plt.bar(np.arange(1,kSplits+1),[i*100 for i in accuracy_2D]) 
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 plt.ylabel('accuracy') 

 plt.xlabel('folds') 

 plt.ylim([50,100]) 

 plt.show() 

  

plt.figure(8) 

 plt.title('Train vs Test Accuracy - CNN 2D') 

 plt.bar([1,2],[CNN_2D_train_accuracy,CNN_2D_test_accuracy]) 

 plt.ylabel('accuracy') 

 plt.xlabel('folds') 

 plt.xticks([1,2],['Train', 'Test']) 

 plt.ylim([50,100]) 

 plt.show() 

# Calculation and printing of the average accuracy and standard deviation 

 CNN_2D_train_accuracy = np.average(accuracy_2D)*100 

 CNN_2D_train_std = np.std(accuracy_2D)*100 

 print('CNN 2D train accuracy =', CNN_2D_train_accuracy) 

 print('CNN 2D train std deviation =', CNN_2D_train_std) 

  

# Evaluation of the accuracy of the model on the test set 

 CNN_2D_test_loss, CNN_2D_test_accuracy = 

Classification_2D.model.evaluate(X_2D_test, y_2D_test) 

 CNN_2D_test_accuracy *= 100 

 print('CNN 2D test accuracy =', CNN_2D_test_accuracy) 

  

# Checking for any overfitting 

 if CNN_2D_test_accuracy < CNN_2D_train_accuracy: 

     print('Model is overfitting the data') 

 else: 

     print('Model is not overfitting the data') 

# Training the model  

history = Classification_2D.model.fit(X_2D_train, y_2D_train, validation_split=0.3, 

verbose=1, epochs=15) 

  

# Ploting the training and validation accuracy/loss curves for 2D CNN 

 plt.figure(figsize=(10,5)) 

 plt.subplot(1,2,1) 

 plt.plot(history.history['accuracy'], label='Training Accuracy') 

 plt.plot(history.history['val_accuracy'], label='Validation Accuracy') 

 plt.title('Accuracy') 

 plt.xlabel('Epoch') 

 plt.ylabel('Accuracy') 

 plt.legend() 

 plt.subplot(1,2,2) 

 plt.plot(history.history['loss'], label='Training Loss') 

 plt.plot(history.history['val_loss'], label='Validation Loss') 

 plt.title('Loss') 
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 plt.xlabel('Epoch') 

 plt.ylabel('Loss') 

 plt.legend() 

 plt.show() 

LSTM Model 

# Checking for any value error 

 if len(X.shape) == 2: 

     num_samples, num_features = X.shape 

 elif len(X.shape) == 3: 

     num_samples, num_rows, num_cols = X.shape 

     num_features = num_rows * num_cols 

 else: 

     raise ValueError("Unexpected shape of X") 

# Reshaping the data -1 dimensional feed for LSTM 

 Input = X.reshape([-1,5184,1]) 

  

# Splitting of Testing data-Training data for LSTM 

 X_train, X_test, y_train, y_test = train_test_split(Input, Y_CNN, 

train_size=0.7,test_size=0.3, random_state=101) 

  

# Defining the LSTM Classification model 

 class LSTM_Model(): 

   def __init__(self): 

     self.model = self.CreateModel() 

  

  def CreateModel(self): 

     model = models.Sequential([ 

         layers.LSTM(32, return_sequences=True), 

         layers.Flatten(), 

         layers.Dense(10), 

         layers.Softmax() 

         ]) 

     model.compile(optimizer='adam', 

               loss=tf.keras.losses.CategoricalCrossentropy(), 

               metrics=['accuracy']) 

     return model 

  

accuracy = [] 

  

# Training the model  

for train, test in kfold.split(X_train,y_train): 

   Classification = LSTM_Model() 

   history = Classification.model.fit(X_train[train], y_train[train], verbose=1, 

epochs=15, use_multiprocessing=True) 

  

  # Evaluating the accuracy of the model on the training set  

  kf_loss, kf_accuracy = Classification.model.evaluate(X_train[test], y_train[test])  
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  accuracy.append(kf_accuracy) 

  

LSTM_train_accuracy = np.average(accuracy)*100 

 print('LSTM train accuracy =', LSTM_train_accuracy) 

  

# Evaluating the accuracy of the model on the test set 

 LSTM_test_loss, LSTM_test_accuracy = Classification.model.evaluate(X_test, 

y_test) 

 LSTM_test_accuracy*=100 

 print('LSTM test accuracy =', LSTM_test_accuracy) 

# Plotting Confusion matrix for LSTM. Train, Test. Also plotting bar graph for 

Training and Testing accuracies 

  

plt.figure(9) 

 plt.title('Confusion Matrix - LSTM Train')  

sns.heatmap(ConfusionMatrix(Classification, X_train, y_train) , annot=True, 

fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu") 

 plt.show() 

  

plt.figure(10) 

 plt.title('Confusion Matrix - LSTM Test')  

sns.heatmap(ConfusionMatrix(Classification, X_test, y_test) , annot=True, 

fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu") 

 plt.show() 

  

plt.figure(11) 

 plt.title('Train - Accuracy - LSTM') 

 plt.bar(np.arange(1,kSplits+1),[i*100 for i in accuracy]) 

 plt.ylabel('accuracy') 

 plt.xlabel('folds') 

 plt.ylim([50,100]) 

 plt.show() 

  

plt.figure(12) 

 plt.title('Train vs Test Accuracy - LSTM') 

 plt.bar([1,2],[LSTM_train_accuracy,LSTM_test_accuracy]) 

 plt.ylabel('accuracy') 

 plt.xlabel('folds') 

 plt.xticks([1,2],['Train', 'Test']) 

 plt.ylim([50,100]) 

 plt.show() 

# Checking Model Loss on LSTM 

  

X_train, X_test, y_train, y_test = train_test_split(Input, Y_CNN, 

train_size=0.7,test_size=0.3, random_state=101) 

 history = Classification.model.fit(X_train, y_train, validation_data=(X_test, y_test), 

epochs=15, verbose=1) 
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 plt.plot(history.history['loss']) 

 plt.plot(history.history['val_loss']) 

 plt.title('Model loss') 

 plt.ylabel('Loss') 

 plt.xlabel('Epoch') 

 plt.legend(['Train', 'Validation'], loc='upper right') 

 plt.show() 

# Training the model LSTM  

history = Classification.model.fit(X_train, y_train, validation_data=(X_test, y_test), 

epochs=15, verbose=1) 

  

# Plotting of training and validation accuracy/loss curves 

 plt.figure(figsize=(10,5)) 

 plt.subplot(1,2,1) 

 plt.plot(history.history['accuracy'], label='Training Accuracy') 

 plt.plot(history.history['val_accuracy'], label='Validation Accuracy') 

 plt.title('Accuracy') 

 plt.xlabel('Epoch') 

 plt.ylabel('Accuracy') 

 plt.legend() 

 plt.subplot(1,2,2) 

 plt.plot(history.history['loss'], label='Training Loss') 

 plt.plot(history.history['val_loss'], label='Validation Loss') 

 plt.title('Loss') 

 plt.xlabel('Epoch') 

 plt.ylabel('Loss') 

 plt.legend() 

 plt.show() 

# Calculation and printing the average accuracy and standard deviation 

 LSTM_train_accuracy = np.average(accuracy)*100 

 LSTM_train_std = np.std(accuracy)*100 

 print('LSTM train accuracy =',  LSTM_train_accuracy) 

 print('LSTM train std deviation =', LSTM_train_std) 

  

# Evaluation of the accuracy of the model on the test set 

 LSTM_test_loss, LSTM_test_accuracy = Classification.model.evaluate(X_test, 

y_test) 

 LSTM_test_accuracy*= 100 

 print('LSTM 2D test accuracy =', LSTM_test_accuracy) 

  

# Checking for overfitting of the data 

 if LSTM_test_accuracy <  LSTM_train_accuracy: 

     print('Model is overfitting the data') 

 else: 

     print('Model is not overfitting the data') 

SUPPORT VECTOR MACHINE MODEL 
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IMPORT FEATURE DATA INCLUDES: max value, min value, mean, 

variance,standard deviation,rms,skewness, ,kurtosis 

# Importation of data for SVM 

 X_Features = 

scipy.io.loadmat('BearingData_CaseWestern/X_Features.mat')['Feature_Data'] 

  

# Feature data shape (no. of samples, no. of features) 

 X_Features.shape 

# Importation of nececcary libraries for SVM 

 from sklearn.decomposition import PCA 

 from sklearn.svm import SVC 

 from sklearn.pipeline import Pipeline  

from sklearn.model_selection import GridSearchCV 

 from sklearn.preprocessing import StandardScaler 

 from sklearn.decomposition import PCA 

 from tqdm import tqdm_notebook as tqdm  

import warnings  

warnings.filterwarnings('ignore') 

# Fitting the given set of data 

 X_Norm = StandardScaler().fit_transform(X_Features) 

  

# Determination of shape for Y 

 print(Y.shape) 

# Application of PCA for smooth computation and dimensionality reduction 

 pca = PCA(n_components=5) 

 Input_SVM_np = pca.fit_transform(X_Norm) 

 Input_SVM = pd.DataFrame(data = Input_SVM_np) 

 Label_SVM = pd.DataFrame(Y, columns=['target']) 

# Setup of required parameters for SVM 

 parameters = {'kernel':('rbf','poly','sigmoid'), 

               'C': [0.01, 1], 

               'gamma' : [0.01, 1], 

               'decision_function_shape' : ['ovo']} 

  

# Support vector Machine   

svm = SVC() 

# Test-Train Split for SVM Model 

 X_train_SVM, X_test_SVM, y_train_SVM, y_test_SVM = 

train_test_split(Input_SVM_np, Y, train_size=0.7,test_size=0.3, random_state=101) 

  

# Traing of the model to obtain the best parameters 

 svm_cv = GridSearchCV(svm, parameters, cv=5) 

 svm_cv.fit(X_train_SVM, y_train_SVM) 

  

print("Best parameters = ",svm_cv.best_params_) 
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SVM_train_accuracy = svm_cv.best_score_*100 

 print('SVM train accuracy =', SVM_train_accuracy) 

  

# Evaluation of the accuracy of the model on the test set 

 SVM_test_accuracy = svm_cv.score(X_test_SVM, y_test_SVM)  

SVM_test_accuracy*=100 

 print('SVM test accuracy =', SVM_test_accuracy) 

# Definition of the confusion matrix for plotting 

 def ConfusionMatrix_SVM(Model, X, y): 

      y_pred = Model.predict(X) 

  ConfusionMat = confusion_matrix(y, y_pred) 

  return ConfusionMat 

  

print(svm_cv.score(X_train_SVM, y_train_SVM)) 

  

# Plotting of different confusion matrix, bars for test,train accuracy, SVM 

 plt.figure(13) 

 plt.title('Confusion Matrix - SVM Train')  

sns.heatmap(ConfusionMatrix_SVM(svm_cv, X_train_SVM, y_train_SVM) , 

annot=True, fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu") 

 plt.show() 

  

plt.figure(14) 

 plt.title('Confusion Matrix - SVM Test')  

sns.heatmap(ConfusionMatrix_SVM(svm_cv, X_test_SVM, y_test_SVM) , 

annot=True, fmt='d',annot_kws={"fontsize":8},cmap="YlGnBu") 

 plt.show() 

  

plt.figure(16) 

 plt.title('Train vs Test Accuracy - SVM') 

 plt.bar([1,2],[SVM_train_accuracy,SVM_test_accuracy]) 

 plt.ylabel('accuracy') 

 plt.xlabel('folds') 

 plt.xticks([1,2],['Train', 'Test']) 

 plt.ylim([40,100]) 

 plt.show() 

# Plotting of Decision Boundary 

 from mlxtend.plotting import plot_decision_regions 

 value = 0 

 width = 1 

 plt.figure(17) 

 plt.figure(figsize=(10.4,8.8)) 

 plt.title('Decision Boundary - SVM') 

 plot_decision_regions(X_test_SVM, (y_test_SVM.astype(np.integer)).flatten(), 

clf=svm_cv, legend=2, 

                   feature_index=[0,1], 
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                   filler_feature_values={2:value, 3:value, 4:value}, 

                   filler_feature_ranges={2:width, 3:width, 4:width},) 

Models Comparision 

# Comparison of Models 

 plt.figure(18) 

 plt.title('Accuracy in Training data') 

 plt.bar([1,2,3,4],[CNN_1D_train_accuracy, CNN_2D_train_accuracy, 

LSTM_train_accuracy, SVM_train_accuracy]) 

 plt.ylabel('accuracy') 

 plt.xlabel('folds') 

 plt.xticks([1,2,3,4],['CNN-1D', 'CNN-2D' , 'LSTM', 'SVM']) 

 plt.ylim([70,100]) 

 plt.show() 

  

 

plt.figure(19) 

 plt.title('Accuracy in Test data') 

 plt.bar([1,2,3,4],[CNN_1D_test_accuracy, CNN_2D_test_accuracy, 

LSTM_test_accuracy, SVM_test_accuracy]) 

 plt.ylabel('accuracy') 

 plt.xlabel('folds') 

 plt.xticks([1,2,3,4],['CNN-1D', 'CNN-2D' , 'LSTM', 'SVM']) 

 plt.ylim([70,100]) 

 plt.show() 
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Figure A2. 1: Accelerometer, attached to the drive end connected with the DAQ 

system 

 

 

 



Institute of Engineering, Central Campus Pulchowk    BE Project Report 

90 
 

 

Figure A2. 2: The Project Team and the Experimental Setup 

 


