
TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

THESIS NO: 075/MSICE/009

“Design of Stock Trading Agent Using Deep Reinforcement Learning ”

by

Janak Kumar Lal

A THESIS REPORT

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND

COMPUTER ENGINEERING IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

SCIENCE IN INFORMATION AND COMMUNICATION

ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER

ENGINEERING

LALITPUR, NEPAL

September, 2022

Design of Stock Trading Agent Using Deep Reinforcement Learning

by

Janak Kumar Lal

075MSICE009

Thesis Supervisor

Arun K. Timalsina Ph.D

Associate Professor, Department of Electronics and Computer Engineering,

Pulchowk Campus

A final thesis report submitted in partial fulfillment of the requirements for the

degree of Masters of Science in Information and Communication

Engineering

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Tribhuvan University

Lalitpur, Nepal

September, 2022

COPYRIGHT©

The author has agreed that the library, Department of Electronics and Computer

Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis

freely available for inspection. Moreover the author has agreed that the permission

for extensive copying of this thesis work for scholarly purpose may be granted

by the professor(s), who supervised the thesis work recorded herein or, in their

absence, by the Head of the Department, wherein this thesis was done. It is

understood that the recognition will be given to the author of this thesis and to

the Department of Electronics and Computer Engineering, Pulchowk Campus in

any use of the material of this project. Copying of publication or other use of this

thesis for financial gain without approval of the Department of Electronics and

Computer Engineering, Institute of Engineering, Pulchowk Campus and author’s

written permission is prohibited.

Request for permission to copy or to make any use of the material in this thesis in

whole or part should be addressed to:

Head of Department,

Department of Electronics and Computer Engineering,

Institute of Engineering, Pulchowk Campus

Pulchowk, Lalitpur, Nepal

iii

DECLARATION

I declare that the work hereby submitted for Master of Science in Information

and Communication Engineering (MSICE) at IOE, Pulchowk Campus entitled

“Design of Stock Trading Agent Using Deep Reinforcement Learning ” is

my own work and has not been previously submitted by me at any university for

any academic award.

I authorize IOE, Pulchowk Campus to lend this thesis to other institution or

individuals for the purpose of scholarly research.

Janak Kumar Lal

075MSICE009

September, 2022

iv

ACKNOWLEDGEMENT

I would like to thank Arun K. Timalsina, Ph.D. for his encouragement and

precious guidance during this thesis. I would also like to pay my sincere thanks

to our program coordinator Babu R Dawadi, Ph.D. and the Department of

Electronics and Computer Engineering for guiding in this thesis.

Janak Kumar Lal

075MSICE009

vii

ABSTRACT

This study adopts Double Deep Q learning algorithm to design trading strategies

to trade stocks of four commercial banks listed in NEPSE. The reinforcement

learning agent takes discrete actions and gets negative or positive reward from the

environment. CNN is utilized to form the policy network. A target network is

used to mitigate instability due to Deep Q Network. The concept of experience

replay is used to randomly sample the batches of experience from the memory

and train the network. The performance of Double Deep Q learning agent was

compared with various baseline trading strategies in terms of annualised expected

trade return. The maximum annualised expected trade return obtained with

traditional baseline methods was 103% for testing data of NABIL, while for the

same data the reinforcement learning agent using double deep Q learning algorithm

obtained annualized expected trade return of 114.44%. The experiments showed

that, Double Deep Q learning agent with experience replay had higher annualised

expected trade return compared to baseline trading strategies.

Keywords: Reinforcement learning, Double Deep Q-Learning, CNN, NEPSE

viii

TABLE OF CONTENTS

COPYRIGHT iii

DECLARATION iv

RECOMMENDATION v

DEPARTMENTAL ACCEPTANCE vi

ACKNOWLEDGEMENT vii

ABSTRACT viii

TABLE OF CONTENTS ix

LIST OF FIGURES xi

LIST OF TABLES xiii

LIST OF ABBREVIATIONS xv

1 INTRODUCTION 1

1.1 Background . 1

1.2 Problem definition . 2

1.3 Objectives . 2

1.4 Scope and limitations . 3

1.5 Organization of the project report 3

2 LITERATURE REVIEW 4

3 THEORETICAL BACKGROUND 7

3.1 Technical Indicators . 7

3.1.1 Stochastic Oscillator . 7

3.1.2 On Balance Volume . 8

3.1.3 Moving Average Convergence Divergence 8

3.1.4 Average Directional Moving Index 9

3.1.5 Japanese Candlestick . 10

3.2 Reinforcement Learning . 12

3.2.1 Q-Learning . 13

3.2.2 Deep Q-Learning . 14

3.2.3 Double Deep Q-Networks 15

4 METHODOLOGY 17

ix

4.1 Framework . 17

4.2 Data samples preparation . 19

4.3 Experimental tools and techniques 20

4.4 Stock Trading Environments . 20

4.5 Double Deep Q Networks . 22

4.5.1 Type I . 22

4.5.2 Type II . 23

4.5.3 Type III . 23

5 RESULTS AND ANALYSIS 24

5.1 ADBL . 24

5.2 CZBIL . 28

5.3 LBL . 31

5.4 NABIL . 35

6 Conclusion and Future Work 39

6.1 Summary . 39

6.2 Conclusion . 40

6.3 Future Work . 40

REFERENCES 43

x

LIST OF FIGURES

3.1 Japanese Candlestick . 10

4.1 Double Deep Q Learning Framework. 17

5.1 Closing price of ADBL stock for training data and test data respec-

tively. 24

5.2 Net worth of deep Q learning agent for ADBL over 1000 episodes in

L CNN 5, L CNN 25 and L CNN 50 experiments for respectively . 26

5.3 Net worth of deep Q learning agent for ADBL over 1000 episodes in

M CNN 5, M CNN 25 and M CNN 50 experiments respectively . . 26

5.4 Net worth of deep Q learning agent for ADBL over 1000 episodes in

S CNN 5, S CNN 25 and S CNN 50 experiments respectively 26

5.5 Closing price of CZBIL stock for training data and test data respec-

tively. 28

5.6 Net worth of deep Q learning agent for CZBIL over 1000 episodes

in L CNN 5, L CNN 25 and L CNN 50 experiments for respectively 29

5.7 Net worth of deep Q learning agent for CZBIL over 1000 episodes

in M CNN 5, M CNN 25 and M CNN 50 experiments respectively . 30

5.8 Net worth of deep Q learning agent for CZBIL over 1000 episodes

in S CNN 5, S CNN 25 and S CNN 50 experiments respectively . . 30

5.9 Closing price of LBL stock for training data and test data respectively. 31

5.10 Net worth of deep Q learning agent for LBL over 1000 episodes in

L CNN 5, L CNN 25 and L CNN 50 experiments for respectively . 33

5.11 Net worth of deep Q learning agent for LBL over 1000 episodes in

M CNN 5, M CNN 25 and M CNN 50 experiments respectively . . 33

5.12 Net worth of deep Q learning agent for LBL over 1000 episodes in

S CNN 5, S CNN 25 and S CNN 50 experiments respectively 33

5.13 Closing price of NABIL stock for training data and test data respec-

tively. 35

xi

5.14 Net worth of deep Q learning agent for NABIL over 1000 episodes

in L CNN 5, L CNN 25 and L CNN 50 experiments for respectively 36

5.15 Net worth of deep Q learning agent for NABIL over 1000 episodes

in M CNN 5, M CNN 25 and M CNN 50 experiments respectively . 37

5.16 Net worth of deep Q learning agent for NABIL over 1000 episodes

in S CNN 5, S CNN 25 and S CNN 50 experiments respectively . . 37

xii

LIST OF TABLES

4.1 Programming language and libraries used in this study. 20

4.2 Architecture of Type I policy networks. 22

4.3 Architecture of Type II policy networks. 23

4.4 Architecture of Type II policy networks. 23

5.1 Summary of the training data of ADBL. 25

5.2 Summary of the test data of ADBL. 25

5.3 Comparison of performance of various trading methods on ADBL

training data. 25

5.4 Comparison of performance of various trading methods on test data

for ADBL. 27

5.5 Comparison of performance of various Double Deep-Q networks on

test data for ADBL in terms of latency. 27

5.6 Summary of the training data of CZBIL. 28

5.7 Summary of the test data of CZBIL. 29

5.8 Comparison of performance of various trading methods on CZBIL

training data. 29

5.9 Comparison of performance of various trading methods on test data

for CZBIL. 30

5.10 Comparison of performance of various Double Deep-Q networks on

test data for CZBIL in terms of latency. 31

5.11 Summary of the training data of LBL. 32

5.12 Summary of the test data of LBL. 32

5.13 Comparison of performance of various trading methods on LBL

training data. 32

5.14 Comparison of performance of various trading methods on test data

for LBL. 33

5.15 Comparison of performance of various Double Deep-Q networks on

test data for LBL in terms of latency. 34

xiii

5.16 Summary of the training data of NABIL. 35

5.17 Summary of the test data of NABIL. 36

5.18 Comparison of performance of various trading methods on NABIL

training data. 36

5.19 Comparison of performance of various trading methods on test data

for NABIL. 37

5.20 Comparison of performance of various Double Deep-Q networks on

test data for NABIL in terms of latency. 38

xiv

LIST OF ABBREVIATIONS

2D :Two Dimensional

ADBL :AGRICULTURE DEVELOPMENT BANK LIMITED

ADX :Average Directional Index

CNN :Convolutional Neural Network

CZBIL :CITIZEN BANK INTERNATIONAL LIMITED

EMA :Exponential Moving Average

GA :Genetic Algorithm

LBL :LAXMI BANK LIMITED

MA :Moving Average

MACD :Moving Average Convergence Divergence

ML :Machine Learning

NABIL :NABIL BANK LIMITED

NEPSE :Nepal Stock Exchange

OBV :On Balance Volume

RL :Reinforcement Learning

SVM :Support Vector Machine

TD :Temporal Difference

VAR :Value at Risk

xv

CHAPTER 1

INTRODUCTION

1.1 Background

Malcom Gladwell in his book “Outliers: The Story of Success” [1] writes that it

takes 10,000 hours of intensive practice to achieve mastery of complex skills. Can

an amature violinist be an expert by playing the same song for 10,000 hours? Does

a person who has tossed an unbiased coin 10,000 times predict the next outcome

more accurately than a person who has not tossed a coin? In case of tossing an

unbiased coin no matter how many times a person has tossed a coin the outcome

of the next toss will be random and unpredictable. In the case of a violinist, after

playing the same song on the violin for 10,000 hours might give the violinist an edge

over the amateur but won’t make him/her an expert. To be an expert violinist,

he/she might need other factors such as regular feedback and deliberate practice.

The regular feedback will help the violinist to know whether he/she is going in

the right direction or not. While practicing different types of songs at different

tempos will help to enhance the skill of a violinist. In general, a normal human

being needs a valid environment, multiple repetitions, timely feedback from an

expert and deliberate practice, to be an expert in a skill. The goal of this research

is to close the knowledge gap between computer science and finance by evaluating

if an RL system using a CNN can outperform standard trading methods that use

a variety of technical indicators and charts. A policy function for each state in the

space of trading parameters is approximated using Q-learning, a sort of temporal

difference reinforcement learning.

1

A valid stock trading environment was created so that agent gets necessary in-

formation and feedback to learn trading strategy. This environment assisted the

agent to learn the patterns embedded inside the data of the stock market. The

agent uses CNN for learning the trading pattern. The agent takes the decisions

regarding the buying, selling and holding stocks after observing the values provided

by the environment. The environment also provides the agent with positive or

negative feedback, so that agent will know whether its action was good or bad.

The concepts of experience replay and target network was used in the experiments

carried out in this work. The experience gained by the agent is stored in the

memory buffer. After the buffer is full, batches of experience are randomly sampled

from the experience and used to train the network. A target network has similar

architecture and parameters as the policy network. The weights of the target

network gets updated after certain number of episodes. This help to maintain

stability in the training process.

1.2 Problem definition

Stock trading is the act of purchasing and selling a company’s stock on a financial

market. The goal is to maximize the return on capital by taking advantage of

market volatility through a series of buy and sell orders.New design of trading

mechanisms will be effective trading mechanisms, only when it generates positive

returns in all market conditions.

1.3 Objectives

The objective of this thesis study is to design a deep reinforcement learning agent

which will take proper actions to maximize portfolio and gain positive returns in

all market conditions with the help of double deep Q-learning.

2

1.4 Scope and limitations

The data of four commercial banks listed in NEPSE are used in this study. Limi-

tations of this study are as follows:

• The commission of the broker has not been considered while trading the

stock.

• All the experiments are under the assumption that there is no delay in buying

a stock and adding it in agent’s portfolio.

• The dividends and stock split are not taken in account while conducting this

experiment.

1.5 Organization of the project report

The report is organized as follow:

Chapter 2: Available literature on application of reinforcement learning across

various domain.

Chapter 3: Theoretical background of technical indicators and reinforcement

learning.

Chapter 4: The framework used to train the agent is discussed in this chapter.

This chapter also includes the design of stock trading environment and double

deep-Q networks.

Chapter 5: The results obtained from experiments conducted on given data set

in stock trading environment designed in Chapter 4 with various double deep-Q

networks are presented in this chapter.

Chapter 6: The last chapter concludes findings of this study and discusses exten-

sions of this work.

3

CHAPTER 2

LITERATURE REVIEW

Signals generated by technical indicators are used traditionally by the stock traders

to take trading decisions. With the advent of technology and the possibility of

online trading several algorithms have been developed to make trading decisions as

well as to design trading bots. Genetic algorithms have been used to formulate stock

trading rules [2] [3] [4] . Support vector machines along with genetic algorithms

were used [5] to optimize investment in foreign markets with high investments.

The SVM categorizes the market into three different types. The GA optimizes an

investment strategy with dynamic approaches.

A framework for stock market trading using data analytics and business intelligence

was proposed by [6], analyzed the intraday trading strategy employing the concept

of Bollinger Bands to identify stocks that generate maximum profit.

Reinforcement learning delivers decisions. By creating a simulation of an entire

business or system, it becomes possible for an intelligent system to test new actions

or approaches. The intelligent agent learns from its failures and successes.Much

in the way human beings can develop a skill as they practice it, reinforcement

learning only becomes more powerful when it’s executed at scale.

One of the early breakthroughs in reinforcement learning was the development of

an off policy TD control algorithm known as Q-learning [7], defined by

Q(St, At)← Q(St, At) + α[Rt+1 + γm
a
axQ(St+1, a)−Q(St, At)] (2.1)

Q-learning has been used in robotics [8] [9] [10]. Fluid dynamics is another field

where Q-learning finds its applications [11].

4

Q-learning has been used by [12] for trading stocks. The value functions subjected

to optimization at each time step employed interval profit, sharpe ratio, and

derivative of sharpe ratio. Their findings imply that choosing the right value

function is critical for achieving a robust learning algorithm in value iteration,

especially when dealing with noisy data.

Multiple Q-learning agents are used by [13], allowing agents to successfully divide

and conquer the stock trading problem by defining appropriate roles for jointly

carrying out stock price and selection judgments. This work also proposes a

representation scheme that may simply explain the history of price movements, in

an attempt to overcome the complexity issue when examining a huge quantity of

data to establish long-term dependence among stock prices. The suggested trading

framework beats those educated by other alternative methodologies in terms of

profit and risk management, according to experimental results on a Korean stock

market.

One of the major developments in reinforcement learning is in the field of gaming.

Using only raw pixels as input, [14] proposed a new deep learning model for

reinforcement learning and demonstrated its capacity to master challenging control

policies for Atari 2600 computer games. This research also demonstrated an online

Q-learning variation that combines stochastic minibatch updates with experience

replay memory to make deep network training for RL easier. With no changes

to the architecture or hyperparameters, this method produced state-of-the-art

outcomes in six of the seven games it was tested on.

A different target network Q’ was used by [15] to mitigate the instability of deep

Q-network where a small change in the Q-network might result in large change

in present Q value. A trading system that can predict the number of shares to

trade was proposed by [16]. An automated method was created that predicts the

number of shares by merging reinforcement learning and a deep neural network

(DNN) regressor to a deep Q-network.

Japanese candlestick images were fed to to CNN which was utilized within Double

Deep Q-network [17]. This paper also demonstrated the use of feature map to

learn what is input images caused the agent to take the particular action.

5

The advantage actor critic trading algorithm has been created by [18] which proves

to be a profitable and attractive method for investment. This algorithm achieved

the maximum profit of 110 % per annum without accounting for commission. The

researchers of [18] concluded that the use of recurrent layer and dropout layer is

fruitful while developing the deep reinforcement learning network.

Inspired by the idea proposed in [14] deep Q learning has also been used in wireless

edge computing [19] and in energy management of hybrid electric vehicles [20] [21].

Various study has been conducted in NEPSE. Most of these studies focuses on

forecasting. [22] used Arima model to predict NEPSE index, geometric brownian

was used to forecast stock market [23], CNN-BGRU method was used to forecast

the stock price of commercial banks listed in NEPSE [24]. The assets of NEPSE

are used to form the portfolio in [25], and the mean-variance framework based on

contemporary portfolio theory is used to determine the ideal weight to be given to

each asset in the portfolio.

6

CHAPTER 3

THEORETICAL BACKGROUND

3.1 Technical Indicators

Technical indicators, which are utilized by traders who follow technical analysis,

are heuristic or pattern-based indications generated by the price, volume, and/or

open interest of an asset or contract.Technical analysts utilize indicators to forecast

future price changes by examining historical data.

3.1.1 Stochastic Oscillator

The Stochastic Oscillator, created by George C. Lane in the late 1950s, is a

momentum indicator that displays where the close falls in relation to the high-low

range over a predetermined number of periods. The stochastic oscillator adheres to

the rate or momentum of price. Typically, the momentum shifts before the price.

The Stochastic Oscillator’s bullish and bearish divergences can therefore be used

to predict reversals. The first and most significant signal that Lane noticed was

this one. Lane additionally used this oscillator to spot bullish and bearish setups

in order to foresee a potential reversal. The Stochastic Oscillator is also helpful

because it is range-bound.

The Formula for the Stochastic Oscillator is

%k =
C − L14

H14− L14
× 100 (3.1)

where: C = The most recent closing price

L14 = The lowest price traded of the 14 previous trading sessions

H14 = The highest price traded during the same 14-day period

%K = The current value of the stochastic indicator

Notably, %K is referred to sometimes as the fast stochastic indicator. The ”slow”

stochastic indicator is taken as %D = 3-period moving average of %K.

7

The overbought signal is generated when the difference between %k and %d is

negative and the highest value of %k is greater than 80. This is the signal for

the agent to sell the stock. The oversold signal is generated when the difference

between %k and %d is positive and the lowest value of %k is less than 20. This is

the signal for the agent to buy the stock.

3.1.2 On Balance Volume

Another metric, OBV [26] is considered as it explain the significant changes in

market based on changes in volume. On-balance volume gives a running total of

the trading activity in an asset and shows whether this activity is coming into or

leaving a certain security or currency pair. The OBV is the sum of all volumes

(positive and negative). There are three rules implemented when calculating the

OBV.

They are:

1. If today’s closing price is higher than yesterday’s closing price, then: Current

OBV = Previous OBV + today’s volume

2. If today’s closing price is lower than yesterday’s closing price, then: Current

OBV = Previous OBV - today’s volume

3. If today’s closing price equals yesterday’s closing price, then: Current OBV

= Previous OBV

The buy signal is generated when the current value of OBV is greater than the

last value of OBV. The sell signal is generated when the current value of OBV is

less than the last value of OBV

3.1.3 Moving Average Convergence Divergence

In the 1960s, Gerald Appel created this indication. The 26-period exponential

moving average (EMA) is subtracted from the 12-period EMA to calculate moving

average convergence divergence (MACD). The 12-period EMA (represented by the

red line on the price chart) has a positive value (represented by the blue line in

the bottom chart) if it is above the 26-period EMA (represented by the blue line

in the price chart), and a negative value (represented by the red line) whenever it

8

is below. The MACD’s greater range above or lower than its baseline denotes a

widening gap between the two EMAs. By taking the MACD’s nine-period moving

average, a signal line, sometimes referred to as the trigger line, is produced. An

agent gets a buy signal when the current difference between MACD and MACD

signal is positive while the previous difference between MACD and MACD signal

is negative. An agent gets a sell signal when the current difference between MACD

and MACD signal is negative while the previous difference between MACD and

MACD signal was positive.

3.1.4 Average Directional Moving Index

A set of directional movement indicators that make up a trading system created

by Welles Wilder include the Average Directional Index (ADX), Minus Directional

Indicator (-DI), and Plus Directional Indicator (+DI).Although Wilder’s Directional

Movement System was created with commodities and daily prices in mind, stocks

can also benefit from similar indicators. The Directional Movement System’s

foundation is made up of positive and negative directional movement.By comparing

the difference between two consecutive lows with the difference between their

corresponding highs, Wilder was able to establish direction of movement. These

disparities’ smoothed averages are used to create the Plus Directional Indicator

(+DI) and Minus Directional Indicator (-DI), which measure trend direction over

time. The Directional Movement Indicator refers to these two indicators taken

together (DMI). The Average Directional Index (ADX) is in turn derived from the

smoothed averages of the difference between +DI and -DI; it measures the strength

of the trend (regardless of direction) over time. A buy signal is generated when

the current difference between +DI and -DI is positive and the previous difference

between +DI and -DI was negative while the average is greater than 20. A sell

signal is generated when the current difference between +DI and -DI is negative

and the previous difference between +DI and -DI was positive while the average is

greater than 20.

9

3.1.5 Japanese Candlestick

A Japanese candlestick is a type of price chart that shows the opening, closing,

high and low price points for each given period. It was invented by Japanese

rice merchants centuries ago, and popularized among Western traders by a broker

called Steve Nison [27]. Today, Japanese candlestick charts are the most popular

way to quickly analyze price action, particularly with technical traders. They offer

much more information visually than traditional line charts, showing a market’s

highest point, lowest point, opening price and closing price at a glance.

Figure 3.1: Japanese Candlestick

If the close is below the open, then a filled candlestick (usually displayed as black)

is drawn. The hollow or filled section of the candlestick is called the “real body” or

body. The thin lines poking above and below the body display the high/low range

and are called shadows. The top of the upper shadow is the “high“. The bottom

of the lower shadow is the “low“. An agent can get different types of signals by

observing the Japanese candlestick chart. Eight such signals used in this study are

described below.

1. Bullish swing : When yesterday’s low is smaller than the lowest value of

today and the lowest value of the day before yesterday.

2. Bearish swing : When yesterday’s high is higher than the highest value of

today and the highest value of the day before yesterday.

10

3. Bullish Pinbar : This signal appear in Japanese candlestick when the following

three conditions are met:

• The body of the candle is less than or equal to one-third of the entire

candle range.

• The minimum value among today’s open or close is greater than the

half of sum of the current maximum and minimum value.

• The current minimum value is lower than the previous minimum value.

4. Bearish Pinbar: his signal appear in Japanese candlestick when the following

three conditions are met:

• The body of the candle is less than or equal to one-third of the entire

candle range.

• The maximum value among today’s open or close is less than half of

the sum of the current maximum and minimum value.

• The current maximum value is greater than the previous maximum

value.

5. Inside Bar: This signal appear in Japanese candlestick when the following

two conditions are met:

• Current maximum is less than the previous maximum.

• Current minimum is greater than the previous minimum.

6. Outside Bar:This signal appear in Japanese candlestick when the following

two conditions are met:

• Current maximum is greater than the previous maximum.

• Current minimum is smaller than the previous minimum.

7. Bearish Engulfing: This signal appear in Japanese candlestick when the

following conditions are met:

• There is an outside bar.

• The real body of the candle is greater than eighty percent of the candle.

11

• Current closing price is greater than the current opening price.

8. Bullish Engulfing:This signal appear in Japanese candlestick when the fol-

lowing conditions are met:

• There is an outside bar.

• The real body of the candle is greater than eighty percent of the candle.

• Current closing price is smaller than the current opening price.

3.2 Reinforcement Learning

Reinforcement learning is a type of machine learning that determines the

action within a specific environment in order to maximize a reward.The agent

must continue interacting with the environment in order to find the best

course of action through trial and error, which is one of the hallmarks of

reinforcement learning. The agent can only receive a reward after completing

the activity.

The trade-off between exploration and exploitation is one difficulty that rein-

forcement learning faces that other types of learning do not. A reinforcement

learning agent must favor activities that it has previously attempted and

found to be successful in creating reward in order to receive a lot of reward.

However, it must try acts that it has never chosen before in order to find such

activities. The agent must take advantage of its past experiences in order to

profit, but it must also investigate in order to choose better future courses

of action. The problem is that pursuing either exploration or exploitation

solely would result in failure. The agent must try a variety of actions and

progressively favor those that appear to be best. On a stochastic task, each

action must be tried many times to gain a reliable estimate of its expected

reward. The agent and the environment are RL’s two primary building blocks.

The agent makes decisions and provides a fix for issues. The environment is

a representation of the problem. The agent and environment interact; the

agent tries to affect the environment through actions, and the environment

responds to the agent’s activities.

12

This is one of the key differences between RL and other ML techniques.

There may or may not be a natural conclusion to the problem the agent

is seeking to solve. Episodic tasks are those that have a predetermined

conclusion, like a game. Continuous tasks are those that don’t, like learning

forward motion. An episode is the collection of time steps that make up

an episodic task from start to finish. For agents to learn how to complete

a task, it may take multiple time steps and episodes. A return is the total

benefits accrued throughout a particular episode. Agents are frequently built

to maximize return. Continuous jobs are frequently made into episodic tasks

by adding a time step limit, allowing agents to optimize the return.

3.2.1 Q-Learning

Q-learning is a model-free reinforcement learning algorithm to learn the

value of an action in a particular state. It does not require a model of the

environment (hence ”model-free”), and it can handle problems with stochastic

transitions and rewards without requiring adaptations.

Q-learning identifies an optimal policy for any finite Markov decision process

(FMDP) by maximizing the expected value of the total reward across any

and all subsequent steps, beginning from the current state. Given limitless

exploration time and a somewhat random policy, Q-learning can find the best

action-selection strategy for any FMDP. The function ”Q” that the algorithm

computes is the anticipated rewards for a specific action in a particular state.

Q learning updates the Q function based on the following equation:

Q(s, a) = Q(s, a) + α(r + γmaxa′Q(s′, a′)−Q(s, a)) (3.2)

Here, s’ is the resulting state after taking action, a,in state s; r is the

associated reward; α is the learning rate; and gamma is the discount factor.

Also, maxa′Q(s′, a′) means that the behavior policy is greedy, where the

highest Q-value among those in state s’ is selected to generate learning

data. In Q-learning, actions are taken according to the epsilon-greedy policy.

13

The amount that freshly learned knowledge supersedes previously learned

information depends on the learning rate or step size. When the factor is 0,

the agent learns nothing and solely uses prior knowledge, whereas when the

factor is 1, the agent only takes into account the most recent information

(ignoring prior knowledge to explore possibilities). An ideal learning rate

in fully predictable situations is 1. In stochastic problems, the algorithm

converges under certain technical constraints to the learning rate that calls

for it to fall to zero. In reality, a constant learning rate, like 0.1, is frequently

applied.

The significance of future benefits is determined by the discount factor. A

number close to 1 will cause the agent to seek for a long-term high payoff,

while a value close to 0 will cause it to be ”myopic” (or short-sighted) by

only considering immediate rewards. The action values may diverge if the

discount factor is equal to or greater than 1. All environment histories become

infinitely lengthy for a discount factor of 1 without a terminal state, or if the

agent never achieves one, and utilities with additive, undiscounted rewards

typically become infinite. When the value function is approximated by an

artificial neural network, Q-function learning results in the propagation of

mistakes and instabilities even with a discount factor that is only marginally

less than 1. In that case, starting with a lower discount factor and increasing

it towards its final value accelerates learning.

3.2.2 Deep Q-Learning

Q-learning can be combined with function approximation.This makes it

possible to apply the algorithm to larger problems, even when the state space

is continuous.One solution is to use an (adapted) artificial neural network

as a function approximator. Deep Q-Networks (DQNs) are very similar to

function approximation with neural networks, but they use neural networks

to map the states to action values directly instead of using a set of generated

features as media.

14

In Deep Q-learning, a neural network is trained to output the appropriate

Q(s,a) values for each action given the input state, s. The action, a, of the

agent is chosen based on the output Q(s,a) values following the epsilon-greedy

policy. The deep Q-network learns to minimize the following error term.

δ = r + γmaxa′Q(s′, a′)−Q(s, a) (3.3)

Finding the optimum network model to approximate the state-value function,

Q(s,a), for each potential action is the main objective in deep Q-learning.

The mean squared error between the actual value and the estimated value

serves as the loss function in this scenario, which is similar to that in a

regression problem. It is not very stable to approximate Q-values using

neural networks and one sample at a time. During episodes of a training

session, the agent’s experiences—which are made up of an old state, a new

state, an action, and a reward—are recorded in a memory queue. Batches of

experiences are randomly selected from the memory and utilized to train the

neural network once the agent has accumulated enough experience. Gaining

experience and updating models based on randomly chosen past experiences

are the two steps of learning using experience replay. Otherwise, the neural

network model can become stuck in a local minimum since it will continue

to learn from the most recent experience.

3.2.3 Double Deep Q-Networks

When the same neural network is used to calculate the predicted values and

the target values, divergence occurs as the target values keep on changing and

the prediction has to chase it. In double DQNs, the prediction network is not

used to estimate the target; instead, a different network is used. The structure

of the separate network is identical to that of the prediction network. For

each T-episode, this network’s weights are fixed (T is a hyperparameter that

can be tuned). The update is completed by simply copying the prediction

network’s weights. This approach fixes the goal function for a while, making

the training process more reliable.

15

Mathematically, double DQNs are trained to minimize the following error

term:

δ = r + γmaxa′QT (s
′)−Q(s) (3.4)

Here, s’ is the resulting state after taking action, a, in state s; r is the

associated reward; α is the learning rate; and γ is the discount factor. Also,

QT is the function for the target network, and Q is the function for the

prediction network.

16

CHAPTER 4

METHODOLOGY

4.1 Framework

The basic framework of the methodology used in this study is depicted in the follow-

ing figure.

Figure 4.1: Double Deep Q Learning Framework.

The working mechanism of Double Deep Q learning framework described in Figure

4.1 is as follows.

1. Initialize the replay memory capacity.

2. Initialize the policy network with random weights.

3. Clone the policy network with random weights.

17

4. For each episode:

(a) Initialize the starting state.

(b) For each time step.

i. Select an action.

• Via exploration and exploitation.

ii. Execute selected action in an emulator.

iii. Observe reward and next state.

iv. Store experience in replay memory.

v. Sample random batch from replay.

vi. Preprocess states from batch.

vii. Pass batch of preprocessed states to policy network.

viii. Calculate loss between output Q-values and target Q-values.

• Requires a pass to the target network for the next state.

ix. Gradient descent update weights in the policy network to minimize

loss.

• After ’x’ time steps, weights in the target network are updated

to the weights in the policy network.

18

4.2 Data samples preparation

Data of four commercial Banks (ADBL, CZBIL, LBL and NABIL) from 2012-01-01

to 2022-07-15 were scrapped from Nepalipaisa.com. This data includes the daily,

open, close, volume, maximum, minimum and number of transactions. The data

was cleaned to delete empty values and values that were other than numbers. This

data was normalized using z-score normalization. The cleaned data was further

processed to obtain the following technical indicator.

1. MACD

2. OBV

3. ADX

4. Stochastic oscillator

The cleaned data is also used to obtain the following signals of the Japanese

candlestick chart.

1. Bullish swing

2. Bearish swing

3. Bullish pinbar

4. Bearish pinbar

5. Inside bar

6. Outside bar

7. Bullish engulfing

8. Bearish engulfing

19

4.3 Experimental tools and techniques

Different hyperparameters that were tuned during the experiments are as follows.

• Replay size

• Target update

• Discount Factor

• Learning Rate

Together with these four hyperparameters, the dynamic exploration rate was also

used. At the beginning of the experiment the exploration rate was set to 0.1, which

means there was a 10 percent chance that the agent will explore. This exploration

rate was decayed in each factor with the decaying factor of 0.99. The exploration

rate was allowed to decay till it reached 0.01. All Double Deep Q networks were

trained with Adam optimizer [28]. The state of the neural network along with

the epsilon and rewards in each episode were saved after every 5 episodes. All the

experiments were conducted using a professional version of Google Colaboratory.

The programming language, libraries and their versions used in this project are

listed below:

Table 4.1: Programming language and libraries used in this study.

SNProgramming Language/LibraryVersion Usage

1 Python 3.7.13 To carry out experiment

2 Pytorch 1.12.0+cu113Modeling neural network

3 Numpy 1.21.6 For mathematical calculation

4 Gym 0.17.3 For creating reinforcement learning environment

5 Pandas 1.3.5 For processing data

6 Scipy 1.7.3 For z-score normalization

7 Talib 0.1.24 Used for calculation of technical indicators

4.4 Stock Trading Environments

This stock trading environment is inherited from the reinforcement learning envi-

ronment provided by the openai gym. Observation space of this environment is

10x6, which includes following information:

• 10 days opening price of the stock

20

• 10 days closing price of the stock

• 10 days maximum stock price

• 10 days minimum stock price

• 10 days volume of stock

• 10 days balance of the trading agent

The action space of this environment is 3, which includes holding stock, buying

stock and selling stock. The agent gets reward of +1 points if the net worth of the

agent is greater than the maximum net worth among baseline methods. The agent

gets reward of -1 points if the net worth of the agent is smaller than the maximum

net worth among baseline methods. Resetting this environment sets the following

parameters to following values:

• Balance = 100,000

• Net worth = 100,000

• Net worth old = 100,000

• Maximum net worth = 100,000

• Shares held = 0

• Cost basis = 0

• Total shares sold = 0

• Total sales value = 0

Rendering this environment prints the value of the following output:

• Current step

• Current balance

• Shares held

• Total shares sold

• Cost basis

• Total sales value

21

• Net worth old

• Current net worth

• Maximum net worth

• Profit

A single episode in this environment is defined by the number of steps which is

equivalent to the number of days in the processed data of the stock.

4.5 Double Deep Q Networks

Deep Q Networks used in this study consists of two networks: policy network

and target network. The target network has same parameters as that of policy

network. The weights of the target network are updated with the weights of the

policy network after certain number of episodes. The discount factor was set to

0.99, the replay size was set to 5 and learning rate was set to 0.001. Three types

of policy networks used in this study are mentioned below.

4.5.1 Type I

Table 4.2: Architecture of Type I policy networks.

NN Function Kernel Size Stride Padding

2D CNN 3x3 1 1

MaxPool 2x2 1 1

2D CNN 3x3 1 1

MaxPool 2x2 1 0

2D CNN 3x3 1 1

MaxPool 2x2 1 0

In Features Out FeaturesActivation Function

Dense 45 50 ReLU

Dense 50 50 ReLU

Dense 50 50 ReLU

Dense 50 3 Softmax

This model was trained with three different values of target update: 5, 25 and 50

and saved with the name L CNN 5 (’L’ indicates Large. As its largest among all

three types of models. CNN: as CNN architecture was used, 5 indicate value of

target update.), L CNN 25 and L CNN 50 for each set of training data.

22

4.5.2 Type II

Table 4.3: Architecture of Type II policy networks.

NN Function Kernel Size Stride Padding

2D CNN 3x3 1 1

MaxPool 2x2 1 1

2D CNN 3x3 1 1

MaxPool 2x2 1 0

In Features Out FeaturesActivation Function

Dense 60 90 ReLU

Dense 90 90 ReLU

Linear 90 3 Softmax

This model was trained with three different values of target update: 5, 25 and 50 and

saved with the name M CNN 5 (’M’ indicates Medium. CNN: as CNN architecture

was used, 5 indicate value of target update), M CNN 25 and M CNN 50 for each

set of training data.

4.5.3 Type III

Table 4.4: Architecture of Type II policy networks.

NN Function Kernel Size Stride Padding

2D CNN 3x3 1 1

MaxPool 2x2 1 1

In Features Out FeaturesActivation Function

Dense 77 90 ReLU

Dense 90 90 ReLU

Linear 90 3 Softmax

This model was trained with three different values of target update: 5, 25 and 50

and saved with the name S CNN 5 (’S’ indicates Small. As its smallest among all

three types of models. CNN: as CNN architecture was used, 5 indicate value of

target update.), S CNN 25 and S CNN 50 for each set of training data.

Total nine Deep Q models were trained and tested for data of each commercial

bank stocks. The performance of these models were compared with each other and

baseline trading strategies in terms of annualised expected trade return described

by the following equation.

E(R) =

(
Net worth at beginning of investment

Net worth at end of investment

) 1
No. of years

− 1 (4.1)

23

CHAPTER 5

RESULTS AND ANALYSIS

Experiments with the stocks of four commercial banks listed in NEPSE has been

conducted in this study. The details of these experiments and results obtatined

from them are described in the following section.

5.1 ADBL

The data of ADBL from 2012-01-01 to 2022-07-15 was scraped from Nepalipaisa.com.

The data was divided into training and test data. Data from 2012-01-01 to 2020-01-

01 (1844 trading days) was used to train the models while the data from 2020-01-02

to 2022-07-15 (548 trading days). The figures showing the fluctuation in close price

of stock in training data and test data and the table describing the training data

and testing data are as follows.

Figure 5.1: Closing price of ADBL stock for training data and test data respec-
tively.

.

24

Table 5.1: Summary of the training data of ADBL.

Close Volume Low High Open
Count 1844 1844 1844 1844 1843
Mean 407.31 11885.23 400.39 412.73 407.338
Std 170.46 16549.98 166.715 173.22 170.51
Min 101.00 41 101 103 101.00
Max 1082 196356 1048 1113 1082

Table 5.2: Summary of the test data of ADBL.

Close Volume Low High Open
Count 548 548 548 548 547
Mean 438.97 63370.88 432.87 446.03 439.16
Std 63.186459 68231.1016 62.108 64.68 63.074
Min 305 90 298 310 305
Max 597 800592 590 620 597

The following table summarizes the performance of various methods on training

data. Here, the starting capital in each case is Nrs. 1,00,000 and the various

methods are compared based on Final Net Worth and Annualized Expected Trade

Return in percentage.

Table 5.3: Comparison of performance of various trading methods on ADBL
training data.

SN Methods Final Net Worth (Nrs) Annualized Expected Trade Return (%)
1 JCS 6,26,560 25.78
2 OBV 9,11,775 31.82
3 Stochastic Oscillator 1,24,986 2.8
4 ADX 2,38,710 11.49
5 MACD 2,46,680 11.95
6 L CNN 5 9,00,502 31.61
7 L CNN 25 9,46,059 32.43
8 L CNN 50 9,43,897 32.4
9 M CNN 5 8,84,556 31.32
10 M CNN 25 9,48,879 32.48
11 M CNN 50 9,48,679 32.47
12 S CNN 5 9,17,303 31.92
13 S CNN 25 9,49,342 32.48
14 S CNN 50 8,97,597 31.56

25

Each deep-Q network were trained for 1000 episodes. The final net-worth for 1000

episodes for each set of experiments is shown by the following figures.

Figure 5.2: Net worth of deep Q learning agent for ADBL over 1000 episodes in
L CNN 5, L CNN 25 and L CNN 50 experiments for respectively

Figure 5.3: Net worth of deep Q learning agent for ADBL over 1000 episodes in
M CNN 5, M CNN 25 and M CNN 50 experiments respectively

Figure 5.4: Net worth of deep Q learning agent for ADBL over 1000 episodes in
S CNN 5, S CNN 25 and S CNN 50 experiments respectively

26

The following table summarizes the performance of various methods on test data.

Here, the starting capital in each case is Nrs. 100000 and the various methods are

compared based on Final Net Worth and Annualized Expected Trade Return in

percentage.

Table 5.4: Comparison of performance of various trading methods on test data
for ADBL.

SN Methods Final Net Worth (Nrs) Annualized Expected Trade Return (%)
1 JCS 64,348 -25.4
2 OBV 2,28,846.5 73.65
3 Stochastic Oscillator 96,192.0 -2.55
4 ADX 86,726 -9.05
5 MACD 98,447 -1.04
6 L CNN 5 2,49,829 84.41
7 L CNN 25 2,28,903 73.68
8 L CNN 50 2,29,159 73.81
9 M CNN 5 2,50,914 84.65
10 M CNN 25 2,29,132 73.80
11 M CNN 50 2,28,980 73.72
12 S CNN 5 2,44,972 81.72
13 S CNN 25 2,23,937 71.165
14 S CNN 50 2,24,092 71.244

The following table summarizes the performance of various double deep-Q networks

on test data in terms of latency. The latency is calculated by averaging the

performance over 100 episodes.

Table 5.5: Comparison of performance of various Double Deep-Q networks on
test data for ADBL in terms of latency.

SN Methods Latency (millisecond/step)
1 L CNN 5 1.31
2 L CNN 25 1.37
3 L CNN 50 1.36
4 M CNN 5 0.67225
5 M CNN 25 0.668
6 M CNN 50 0.67
7 S CNN 5 1.034
8 S CNN 25 1.1337
9 S CNN 50 1.097

27

5.2 CZBIL

The data of CZBIL from 2012-01-01 to 2022-07-15 was scraped from Nepali-

paisa.com. The data was divided into training and test data. Data from 2012-01-01

to 2020-01-01 (1840 trading days) was used to train the models while the data from

2020-01-02 to 2022-07-15 (547 trading days). The figures showing the fluctuation

in close price of stock in training data and test data and the table describing the

training data and testing data are as follows.

Figure 5.5: Closing price of CZBIL stock for training data and test data respec-
tively.

.

Table 5.6: Summary of the training data of CZBIL.

Close Volume Low High Open
Count 1840 1840 1840 1840 1839
Mean 367.25 15513.04 361.40 372.62 367
Std 162.46 19045.96 159.90 165.14 162.44
Min 159.00 10.0 156.0 159.0 159.0
Max 838 324872 832 870 838

28

Table 5.7: Summary of the test data of CZBIL.

Close Volume Low High Open
Count 547 547 547 547 546
Mean 275.13 112045.45 270.917 280.36 275.2
Std 67.29 107730.767 66.30 68.743 67.28
Min 173 23.00 164 173 173.0
Max 442 741066 425 444 442

The following table summarizes the performance of various methods on training

data. Here, the starting capital in each case is Nrs. 1,00,000 and the various

methods are compared based on Final Net Worth and Annualized Expected Trade

Return in percentage.

Table 5.8: Comparison of performance of various trading methods on CZBIL
training data.

SN Methods Final Net Worth (Nrs) Annualized Expected Trade Return (%)
1 JCS 5,28,169 23.125
2 OBV 7,15,538 27.887
3 Stochastic Oscillator 71,301 -4.14
4 ADX 88,257 -1.154
5 MACD 1,32,886 3.61
6 L CNN 5 7,25,550 28.110
7 L CNN 25 7,27,236 28.147
8 L CNN 50 7,30,137 28.21
9 M CNN 5 7,19,431 27.97
10 M CNN 25 7,29,524 28.19
11 M CNN 50 7,15,477 27.886
12 S CNN 5 6,91,825 27.35
13 S CNN 25 7,04,968 27.65
14 S CNN 50 6,95,477 27.434

Each deep-Q network were trained for 1000 episodes. The final net-worth for 1000

episodes for each set of experiments is shown by the following figures.

Figure 5.6: Net worth of deep Q learning agent for CZBIL over 1000 episodes in
L CNN 5, L CNN 25 and L CNN 50 experiments for respectively

29

Figure 5.7: Net worth of deep Q learning agent for CZBIL over 1000 episodes in
M CNN 5, M CNN 25 and M CNN 50 experiments respectively

Figure 5.8: Net worth of deep Q learning agent for CZBIL over 1000 episodes in
S CNN 5, S CNN 25 and S CNN 50 experiments respectively

The following table summarizes the performance of various methods on test data.

Here, the starting capital in each case is Nrs. 100000 and the various methods are

compared based on Final Net Worth and Annualized Expected Trade Return in

percentage.

Table 5.9: Comparison of performance of various trading methods on test data
for CZBIL.

SN Methods Final Net Worth (Nrs) Annualized Expected Trade Return (%)
1 JCS 1,02,224.5 1.47
2 OBV 1,09,282.9 6.09
3 Stochastic Oscillator 1,04,773.2 3.15
4 ADX 76,265 -16.5
5 MACD 83,324 -11.45
6 L CNN 5 1,12,564 8.209
7 L CNN 25 1,12,466 8.14
8 L CNN 50 1,19,982 12.9
9 M CNN 5 1,12,370 8.08
10 M CNN 25 1,07,737 5.09
11 M CNN 50 1,17,589 11.4
12 S CNN 5 1,09,995 6.5
13 S CNN 25 1,07,723 5.08
14 S CNN 50 1,07,507 4.94

The following table summarizes the performance of various double deep-Q networks

on test data in terms of latency. The latency is calculated by averaging the

performance over 100 episodes.

30

Table 5.10: Comparison of performance of various Double Deep-Q networks on
test data for CZBIL in terms of latency.

SN Methods Latency (millisecond/step)
1 L CNN 5 1.155
2 L CNN 25 1.144
3 L CNN 50 1.144
4 M CNN 5 1.21
5 M CNN 25 1.11
6 M CNN 50 1.102
7 S CNN 5 1.02
8 S CNN 25 1.049
9 S CNN 50 1.042

5.3 LBL

The data of LBL from 2012-01-01 to 2022-07-15 was scraped from Nepalipaisa.com.

The data was divided into training and test data. Data from 2012-01-01 to 2020-01-

01 (1816 trading days) was used to train the models while the data from 2020-01-02

to 2022-07-15 (547 trading days). The figures showing the fluctuation in close price

of stock in training data and test data and the table describing the training data

and testing data are as follows.

Figure 5.9: Closing price of LBL stock for training data and test data respectively.

.

31

Table 5.11: Summary of the training data of LBL.

Close Volume Low High Open
Count 1816.0 1816.0 1816.0 1816.0 1815.
Mean 415.0 10630.0 410.0 421.0 415
Std 184.0 36906.0 181.0 186.0 184.0
Min 183.0 12.0 182.0 185.0 183.0
Max 963.0 1402678.0 931.0 972.0 963.0

Table 5.12: Summary of the test data of LBL.

Close Volume Low High Open
Count 547.0 547.0 547.0 547.0 546.0
Mean 282.0 70541.0 278.0 288.0 283.0
Std 158.0 86890.0 57.0 60.0 58.0
Min 189.0 130.0 184.0 191.0 189.0
Max 436.0 826295.0 422.0 447.0 436.0

The following table summarizes the performance of various methods on training

data. Here, the starting capital in each case is Nrs. 1,00,000 and the various

methods are compared based on Final Net Worth and Annualized Expected Trade

Return in percentage.

Table 5.13: Comparison of performance of various trading methods on LBL
training data.

SN Methods Final Net Worth (Nrs) Annualized Expected Trade Return (%)
1 JCS 1,66,980 6.61
2 OBV 1,05,290 0.64
3 Stochastic Oscillator 73,389 -3.7
4 ADX 50,508 -8.1
5 MACD 82,882 -2.3
6 L CNN 5 1,63,902 6.3
7 L CNN 25 1,65,728 6.5
8 L CNN 50 1,70,819 6.9
9 M CNN 5 1,70,229 6.8
10 M CNN 25 1,67,188 6.6
11 M CNN 50 1,58,251 5.9
12 S CNN 5 1,61,738 6.1
13 S CNN 25 1,52,530 5.4
14 S CNN 50 1,47,658 4.9

Each deep-Q network were trained for 1000 episodes. The final net-worth for 1000

episodes for each set of experiments is shown by the following figures.

32

Figure 5.10: Net worth of deep Q learning agent for LBL over 1000 episodes in
L CNN 5, L CNN 25 and L CNN 50 experiments for respectively

Figure 5.11: Net worth of deep Q learning agent for LBL over 1000 episodes in
M CNN 5, M CNN 25 and M CNN 50 experiments respectively

Figure 5.12: Net worth of deep Q learning agent for LBL over 1000 episodes in
S CNN 5, S CNN 25 and S CNN 50 experiments respectively

The following table summarizes the performance of various methods on test data.

Here, the starting capital in each case is Nrs. 100000 and the various methods are

compared based on Final Net Worth and Annualized Expected Trade Return in

percentage.

Table 5.14: Comparison of performance of various trading methods on test data
for LBL.

SN Methods Final Net Worth (Nrs) Annualized Expected Trade Return (%)
1 JCS 45,904 -40.5
2 OBV 1,16,498 10.71
3 Stochastic Oscillator 90,730 -6.2
4 ADX 1,15,571 10.12
5 MACD 71,270 -20.21
6 L CNN 5 1,07,694 5.06
7 L CNN 25 1,17,535 11.37
8 L CNN 50 1,22,791 14.668
9 M CNN 5 1,15,078 9.81
10 M CNN 25 1,12,394 8.1
11 M CNN 50 1,17,613 11.42
12 S CNN 5 96,289 -2.4
13 S CNN 25 92,756 -4.8
14 S CNN 50 87,475 -8.5

33

The following table summarizes the performance of various double deep-Q networks

on test data in terms of latency. The latency is calculated by averaging the

performance over 100 episodes.

Table 5.15: Comparison of performance of various Double Deep-Q networks on
test data for LBL in terms of latency.

SN Methods Latency (millisecond/step)
1 L CNN 5 1.25
2 L CNN 25 1.12
3 L CNN 50 1.23
4 M CNN 5 1.11
5 M CNN 25 1.11
6 M CNN 50 1.13
7 S CNN 5 1.06
8 S CNN 25 1.05
9 S CNN 50 1.05

34

5.4 NABIL

The data of NABIL from 2012-01-01 to 2022-07-15 was scraped from Nepali-

paisa.com. The data was divided into training and test data. Data from 2012-01-01

to 2020-01-01 (1835 trading days) was used to train the models while the data from

2020-01-02 to 2022-07-15 (548 trading days). The figures showing the fluctuation

in close price of stock in training data and test data and the table describing the

training data and testing data are as follows.

Figure 5.13: Closing price of NABIL stock for training data and test data
respectively.

.

Table 5.16: Summary of the training data of NABIL.

Close Volume Low High Open
Count 1835.0 1835.0 1835.0 1835.0 1834.0
Mean 1560.0 5697.0 1543.0 1576.0 1561.0
Std 554.0 6256.0 546.0 561.0 554.0
Min 667.0 26.0 660.0 669.0 667.0
Max 2750.0 75157.0 2700.0 2800.0 2750.0

35

Table 5.17: Summary of the test data of NABIL.

Close Volume Low High Open
Count 548.0 548.0 548.0 548.0 547.0
Mean 1107.0 86509.0 1092.0 1126.0 1107.0
Std 263.0 73814.0 260.0 268.0 263.0
Min 660.0 435.0 594.0 667.0 660.0
Max 1653.0 705430.0 1640.0 1740.0 1653.0

The following table summarizes the performance of various methods on training

data. Here, the starting capital in each case is Nrs. 1,00,000 and the various

methods are compared based on Final Net Worth and Annualized Expected Trade

Return in percentage.

Table 5.18: Comparison of performance of various trading methods on NABIL
training data.

SN Methods Final Net Worth (Nrs) Annualized Expected Trade Return (%)
1 JCS 5,65,897 24.19
2 OBV 7,88,252 29.44
3 Stochastic Oscillator 73,106 -3.84
4 ADX 51,600 -7.9
5 MACD 84,672 -2.0
6 L CNN 5 8,03,902 29.76
7 L CNN 25 8,05,728 29.79
8 L CNN 50 8,10,819 29.9
9 M CNN 5 7,40,229 28.43
10 M CNN 25 7,69,188 29.04
11 M CNN 50 7,28,251 28.16
12 S CNN 5 7,71,738 29.10
13 S CNN 25 7,82,681 29.30
14 S CNN 50 7,83,701 29.35

Each deep-Q network were trained for 1000 episodes. The final net-worth for 1000

episodes for each set of experiments is shown by the following figures.

Figure 5.14: Net worth of deep Q learning agent for NABIL over 1000 episodes
in L CNN 5, L CNN 25 and L CNN 50 experiments for respectively

36

Figure 5.15: Net worth of deep Q learning agent for NABIL over 1000 episodes
in M CNN 5, M CNN 25 and M CNN 50 experiments respectively

Figure 5.16: Net worth of deep Q learning agent for NABIL over 1000 episodes
in S CNN 5, S CNN 25 and S CNN 50 experiments respectively

The following table summarizes the performance of various methods on test data.

Here, the starting capital in each case is Nrs. 1,00,000 and the various methods

are compared based on Final Net Worth and Annualized Expected Trade Return

in percentage.

Table 5.19: Comparison of performance of various trading methods on test data
for NABIL.

SN Methods Final Net Worth (Nrs) Annualized Expected Trade Return (%)
1 JCS 1,08,785.9 5.7
2 OBV 2,89,670 103.2
3 Stochastic Oscillator 1,89,520 53.14
4 ADX 76,934 -16.038
5 MACD 1,02,812 1.86
6 L CNN 5 1,65,435 39.87
7 L CNN 25 3,07,470 111.44
8 L CNN 50 3,05,055 110.33
9 M CNN 5 2,65,724 91.846
10 M CNN 25 2,79,890 98.605
11 M CNN 50 2,93,614 105.046
12 S CNN 5 2,83,840 100.4
13 S CNN 25 2,59,109 88.64
14 S CNN 50 2,64,030 91.03

37

The following table summarizes the performance of various double deep-Q networks

on test data in terms of latency. The latency is calculated by averaging the

performance over 100 episodes.

Table 5.20: Comparison of performance of various Double Deep-Q networks on
test data for NABIL in terms of latency.

SN Methods Latency (millisecond/step)
1 L CNN 5 1.45
2 L CNN 25 1.43
3 L CNN 50 1.33
4 M CNN 5 1.21
5 M CNN 25 1.21
6 M CNN 50 1.23
7 S CNN 5 1.09
8 S CNN 25 1.08
9 S CNN 50 1.02

38

CHAPTER 6

Conclusion and Future Work

6.1 Summary

The data of four different commercial banks listed in NEPSE were used in this

study to develop the trading strategy using double deep Q-learining where the

CNN was used to build a policy Q network and target Q network. By observing

the plot of closing price of stocks of four banks used in this study, a rise in price of

stocks in year 2016 can be seen. This was due to low interest rate, high liquidity

and implementation of paperless transaction system. In case of the ADBL training

data the model S CNN 25 had highest annualized expected trade return of 32.48 %.

Various models were trainied with this data and later was tested with ADBL test

data. M CNN 25 model had highest annualized expected trade return of 84.65% for

test data of ADBL. In case of the CZBIL training data the model L CNN 50 had

highest annualized expected trade return of 28.21%. Various models were trained

with this data and later was tested with CZBIL test data. L CNN 50 model had

highest annualized expected trade return of 12.9% for test data of CZBIL.

In case of the LBL training data the model L CNN 50 had highest annualized

expected trade return of 6.9%. Various models were trained with this data and

later was tested with LBL test data. L CNN 50 model had highest annualized

expected trade return of 14.68% for test data of LBL. L CNN 50 had highest

annualized expected trade return of 29.9% and for training data of NABIL. Various

models were trained with this data and later was tested with NABIL test data.

L CNN 25 model had highest annualized expected trade return of 111.44% for test

data of NABIL.

39

6.2 Conclusion

In this study Double Deep Q learning agent was designed. This agent was trained

in the environment where it is fed basic stocks data and its learns by observing the

performance of various baseline models. In all eight cases, double deep Q learning

agent was able to outperform the baseline models. The CNN used in the policy

network learns patterns inside the 10 days data of stock prices in each sample.

Based on these patterns the agent takes trading decisions and get either positive

or negative reward. Unlike supervised learning, there is no fixed target to shoot at

in case of reinforcement learning, this is the main reason of getting noisy output

while training the agent.

6.3 Future Work

This work was conducted under the assumption listed in section 1.4. With the

data from diverse source regarding stock split, dividend, broker’s commission etc.

a double deep Q learning agent can be trained which can learn trading strategies

and gain positive returns. The deep Q learning agent in this study deals with only

one stock at a time, this can be upgraded to the agent who deals with multiple

stocks at a time. Using Advantage Actor Critic method [29] an reinforcement

learning agent can be trained to take continuous action so that it can buy or sell

certain percentage of stocks.The noise and instability faced during the training of

Double Deep Q learning can be reduced using weight averaging [30] and prioritized

experience replay [31].

40

REFERENCES

[1] M. Gladwell, Outliers: The Story of Success. New York, NY: Back Bay

Books, 2009.

[2] F. Allen and R. Karjalainen, “Using genetic algorithms to find technical

trading rules,” Journal of financial Economics, vol. 51, no. 2, pp. 245–271,

1999.

[3] J. Straßburg, C. Gonzàlez-Martel, and V. Alexandrov, “Parallel genetic algo-

rithms for stock market trading rules,” Procedia Computer Science, vol. 9, pp.

1306–1313, 2012.

[4] C.-H. Chen, Y.-H. Chen, J. C.-W. Lin, and M.-E. Wu, “An effective ap-

proach for obtaining a group trading strategy portfolio using grouping genetic

algorithm,” IEEE Access, vol. 7, pp. 7313–7325, 2019.

[5] B. J. de Almeida, R. F. Neves, and N. Horta, “Combining support vector

machine with genetic algorithms to optimize investments in forex markets

with high leverage,” Applied Soft Computing, vol. 64, pp. 596–613, 2018.

[6] B. AlArmouty and S. Fraihat, “Data analytics and business intelligence

framework for stock market trading,” in 2019 2nd International Conference

on new Trends in Computing Sciences (ICTCS). IEEE, 2019, pp. 1–6.

[7] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3,

pp. 279–292, 1992.

[8] C. Gaskett et al., “Q-learning for robot control,” 2002.

[9] E. S. Low, P. Ong, and K. C. Cheah, “Solving the optimal path planning of a

mobile robot using improved q-learning,” Robotics and Autonomous Systems,

vol. 115, pp. 143–161, 2019.

[10] K.-H. Park, Y.-J. Kim, and J.-H. Kim, “Modular q-learning based multi-agent

cooperation for robot soccer,” Robotics and Autonomous systems, vol. 35,

no. 2, pp. 109–122, 2001.

41

[11] R. Vinuesa and S. L. Brunton, “The potential of machine learning to enhance

computational fluid dynamics,” arXiv preprint arXiv:2110.02085, 2021.

[12] X. Du, J. Zhai, and K. Lv, “Algorithm trading using q-learning and recurrent

reinforcement learning,” positions, vol. 1, no. 1, 2016.

[13] J. W. Lee, J. Park, O. Jangmin, J. Lee, and E. Hong, “A multiagent approach

to q-learning for daily stock trading,” IEEE Transactions on Systems, Man,

and Cybernetics-Part A: Systems and Humans, vol. 37, no. 6, pp. 864–877,

2007.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv

preprint arXiv:1312.5602, 2013.

[15] Y. Wang, D. Wang, S. Zhang, Y. Feng, S. Li, and Q. Zhou, “Deep q-trading,”

cslt. riit. tsinghua. edu. cn, 2017.

[16] G. Jeong and H. Y. Kim, “Improving financial trading decisions using deep

q-learning: Predicting the number of shares, action strategies, and transfer

learning,” Expert Systems with Applications, vol. 117, pp. 125–138, 2019.

[17] A. Brim and N. S. Flann, “Deep reinforcement learning stock market trading,

utilizing a cnn with candlestick images,” Plos one, vol. 17, no. 2, p. e0263181,

2022.

[18] E. Ponomarev, I. V. Oseledets, and A. Cichocki, “Using reinforcement learning

in the algorithmic trading problem,” Journal of Communications Technology

and Electronics, vol. 64, no. 12, pp. 1450–1457, 2019.

[19] M. S. Elbamby, C. Perfecto, C.-F. Liu, J. Park, S. Samarakoon, X. Chen, and

M. Bennis, “Wireless edge computing with latency and reliability guarantees,”

Proceedings of the IEEE, vol. 107, no. 8, pp. 1717–1737, 2019.

[20] Y. Hu, W. Li, K. Xu, T. Zahid, F. Qin, and C. Li, “Energy management

strategy for a hybrid electric vehicle based on deep reinforcement learning,”

Applied Sciences, vol. 8, no. 2, p. 187, 2018.

[21] W. Li, H. Cui, T. Nemeth, J. Jansen, C. Ünlübayir, Z. Wei, L. Zhang, Z. Wang,

42

J. Ruan, H. Dai et al., “Deep reinforcement learning-based energy management

of hybrid battery systems in electric vehicles,” Journal of Energy Storage,

vol. 36, p. 102355, 2021.

[22] A. Maskey, “Predicting nepse index using arima model,” 2022.

[23] P. Thapa and B. Aryal, “Use of geometric brownian motion to forecast stock

market scenario using post covid-19 nepse index,” BIBECHANA, vol. 18,

no. 2, pp. 50–60, 2021.

[24] J. K. Lal and A. K. Timalsina, “A CNN-BGRU Method for Stock Price Pre-

diction,” in Proceedings of 11th IOE Graduate Conference, vol. 11. Institute

of Engineering, Tribhuvan University, Nepal, March 2022, pp. 28 – 35.

[25] P. C. Prasad, A. Jaiswal, S. Shakya, and S. Singh, “Portfolio optimization: A

study of nepal stock exchange,” in Proceedings of International Conference on

Sustainable Expert Systems. Springer, 2021, pp. 659–672.

[26] J. E. Granville, Granville’s New Key to Stock Market Profits. Pickle Partners

Publishing, 2018.

[27] S. Nison, Japanese Candlestick Charting Techniques. Penguin, 2001.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

[29] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”

in International conference on machine learning. PMLR, 2016, pp. 1928–1937.

[30] E. Nikishin, P. Izmailov, B. Athiwaratkun, D. Podoprikhin, T. Garipov,

P. Shvechikov, D. Vetrov, and A. G. Wilson, “Improving stability in deep

reinforcement learning with weight averaging,” in Uncertainty in artificial

intelligence workshop on uncertainty in Deep learning, 2018.

[31] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience

replay,” arXiv preprint arXiv:1511.05952, 2015.

43

