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ABSTRACT 

 

The project report entitled "Fault Diagnosis of a Broken Rotor Bar in an Induction Motor 

using Motor Current Signature Analysis” reports about Motor Current Signature Analysis 

which is a non-invasive and cost-effective method for the fault diagnosis and classification 

of induction motors. This technique uses the current signals generated by the induction 

motor during its operation to diagnose faults such as rotor and stator winding faults, bearing 

faults, and misalignment faults. The process involves capturing the current waveform of 

the induction motor, processing it using signal processing algorithms, and analyzing it to 

identify the fault. The method is based on the principle that different faults generate 

distinctive current signatures. The current signals generated by the healthy and faulty 

induction motor, loaded with different loads, is captured using a current transformer, which 

is connected to a data acquisition system MyDAQ. The captured data is then processed 

using signal processing algorithms which is then processed to extract relevant features that 

are used to train machine learning models. The result indicates that Naïve Bayes algorithm 

was able to classify health condition of an induction motor with the accuracy of 94.4%. 

The algorithms like SVM and Decision tree also performed well with an accuracy of 88.9% 

and 91.7% respectively. The trained models can then be used to perform real-time fault 

classification on the induction motor, providing valuable information for predictive 

maintenance and condition monitoring. 

 

  



IV 

 

ACKNOWLEDGEMENT 
 

We would like to extend our sincere gratitude to the Department of Mechanical and 

Aerospace Engineering at the Pulchowk Campus, Institute of Engineering in Lalitpur for 

giving us the opportunity to work on this project and gain valuable experience in our field. 

Our heartfelt thanks go to our supervisors, Assistant Professor, Aayush Bhattarai and 

Assistant Professor, Sanjaya Neupane for their continuous guidance and motivation. We 

are deeply grateful for their invaluable advice and support throughout the project. We are 

also grateful for Department of Electrical Engineering for providing the necessary 

resources and guidance in completion of our project. We would also like to convey heartfelt 

regard to Electrical machine Lab in charge, Raju Shrestha & Electrical basic circuit lab 

technician, Anil Kumar Raut for the required guidance about safety protocols and 

procedures. 

Adarsa Acharya (075AER002) 

Shashank Sharma Nepal (075AER040) 

Subodh Pokhrel (075AER044) 

 

 

 

  



V 

 

TABLE OF CONTENTS 
 

COPYRIGHT ....................................................................................................................... I 

ABSTRACT ...................................................................................................................... III 

ACKNOWLEDGEMENT ................................................................................................ IV 

TABLE OF CONTENTS ................................................................................................... V 

LIST OF FIGURES .......................................................................................................... IX 

LIST OF TABLES ............................................................................................................ XI 

LIST OF SYMBOLS ....................................................................................................... XII 

LIST OF ACRONYMS AND ABBREVIATIONS ...................................................... XIV 

CHAPTER ONE: INTRODUCTION ................................................................................. 1 

1.1 Background .......................................................................................................... 1 

1.1.1 The Origin of Ideas ....................................................................................... 1 

1.1.2 Attempts Made so Far by Others to Address the Issues ............................... 1 

1.1.3 Scope of Work .............................................................................................. 3 

1.1.4 Rational ......................................................................................................... 3 

1.2 Problem Statement ............................................................................................... 4 

1.3 Objective .............................................................................................................. 4 

1.3.1 Primary Objective ......................................................................................... 4 

1.3.2 Specific Objective ......................................................................................... 4 

CHAPTER TWO: LITERATURE REVIEW ........................................................................... 6 

2.1 Induction Motor.................................................................................................. 10 

2.2 Unbalanced Force due to Broken Rotor Bar ...................................................... 12 

2.3 Faults in Induction Motors ................................................................................. 12 

2.3.1 Electrical Faults .......................................................................................... 12 



VI 

 

2.3.2 Mechanical Faults ....................................................................................... 13 

2.4 Spectral Analysis: ............................................................................................... 15 

2.4.1 Spectral Components for Broken Rotor Bar ............................................... 16 

2.4.2 FFT .............................................................................................................. 18 

2.4.3 Welch’s Method .......................................................................................... 20 

2.5 Time Domain Features ....................................................................................... 21 

2.5.1 Mean ........................................................................................................... 21 

2.5.2 Signal to Noise Ratio (SNR) ....................................................................... 22 

2.5.3 Root Mean Square (RMS) .......................................................................... 22 

2.5.4 Peak Value .................................................................................................. 22 

2.6 Frequency Domain Features............................................................................... 23 

2.6.1 Peak Frequency ........................................................................................... 23 

2.6.2 Peak Amplitude ........................................................................................... 23 

2.7 Machine Learning .............................................................................................. 23 

2.8 Fault Classification using Machine Learning..................................................... 24 

2.8.1 Supervised Machine Learning .................................................................... 25 

2.8.2 Support Vector Machine (SVM) ................................................................. 27 

2.8.3 Naïve Bayes Algorithm............................................................................... 28 

2.8.4 Decision Tree Algorithm ............................................................................ 29 

2.8.5 Neural Network ........................................................................................... 30 

2.8.6 Confusion Matrix: ....................................................................................... 31 

CHAPTER THREE: MATERIALS AND METHODOLOGY ............................................ 34 

3.1 Materials Requirement ....................................................................................... 34 

3.1.1 Intangible Materials .................................................................................... 34 

3.1.2 Tangible Materials ...................................................................................... 35 



VII 

 

3.2 Methodology ...................................................................................................... 38 

3.2.1 Data Acquisition ......................................................................................... 39 

3.2.2 Experimental Setup ..................................................................................... 40 

3.2.3 Labview Progarmming................................................................................ 41 

3.3 System Description ............................................................................................ 42 

3.3.1 Signal Processing ........................................................................................ 42 

3.3.2 Feature Extraction ....................................................................................... 42 

3.3.3 Feature Selection ......................................................................................... 43 

3.3.4 Machine Learning Model ............................................................................ 43 

CHAPTER FOUR: RESULTS AND DISCUSSION ............................................................. 44 

4.1 Output ................................................................................................................. 44 

4.1.1 Calculation of Unbalanced Force due to Broken Rotor Bar ....................... 44 

4.1.2 Feature Extraction ....................................................................................... 46 

4.1.3 Calculation of Expected Frequencies of Sidebands. ................................... 48 

4.1.4 Current Signal at Different Load Conditions .............................................. 51 

4.1.5 Current Signal at Different Health Conditions ........................................... 52 

4.1.6 Power Spectrum at Same Health Condition but Different load Conditions 53 

4.1.7 Power Spectrum at Same load Conditions but Different Health Condition 54 

4.2 Feature Selection ................................................................................................ 55 

4.3 Feature Ranking ................................................................................................. 56 

4.4 Machine Learning .............................................................................................. 59 

4.5 Limitations ......................................................................................................... 63 

4.6 Problem Encountered ......................................................................................... 63 

4.7 Budget Analysis ................................................................................................. 63 

CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS ............................... 64 



VIII 

 

5.1 Conclusion .......................................................................................................... 64 

5.2 Recommendations .............................................................................................. 65 

5.2.1   Scope for Future Enhancement .......................................................................... 65 

REFERENCES ............................................................................................................................ 66 

APPENDIX ....................................................................................................................... 74 

 

  



IX 

 

LIST OF FIGURES 

 

Figure 2.1 Cylindrical Rotor Bar of an IM ....................................................................... 12 

Figure 2.2 Schematic model of motor rotational under dynamic eccentricity .................. 14 

Figure 2.3 Bearing faults: a) outer race deterioration b) Inner race deterioration c) Cage 

deterioration d) Ball deterioration ..................................................................................... 14 

Figure 2.4 Broken rotor Bar:  a) half- broken rotor bar   b) single broken rotor bar ........ 15 

Figure 2.5 Ideal power spectrum ...................................................................................... 17 

Figure 2.6 Examples of Supervised learning .................................................................... 25 

Figure 2.7 Flowchart depicting supervised ML ................................................................ 26 

Figure 2.8 Decision tree algorithm ................................................................................... 29 

Figure 2.9 Neural network consisting of input, hidden and output layer ......................... 30 

Figure 3.1 MyDAQ ........................................................................................................... 35 

Figure 3.2 Current transformer ......................................................................................... 36 

Figure 3.3 Three phase induction motor ........................................................................... 37 

Figure 3.4 Flowchart representing research methodology ................................................ 38 

Figure 3.5 Block diagram repersenting experimental setup ............................................. 39 

Figure 3.6 Experimental setup for fault diagnosis of broken rotor bar in IM ................... 40 

Figure 3.7 Block diagram to read the current VI .............................................................. 41 

Figure 3.8 Front panel window ......................................................................................... 42 

Figure 4.1 Cylindrical Rotor Bar of an IM ....................................................................... 44 



X 

 

Figure 4.2 Ensemble matrix containing acquired data...................................................... 46 

Figure 4.3 Signal tracing in time domain.......................................................................... 47 

Figure 4.4 Power Spectrum............................................................................................... 48 

Figure 4.5 Current spectrum at 5kg load .......................................................................... 50 

Figure 4.6 Current signals at different load condition ...................................................... 51 

Figure 4.7 Current signals at different health conditions .................................................. 52 

Figure 4.8 Spectrum at same health but different load conditions ................................... 53 

Figure 4.9 Spectrum at same load but different health conditions ................................... 54 

Figure 4.10 Histogram of all features with different health condition ............................. 55 

Figure 4.11 Features ranking using One-way Anova ....................................................... 56 

Figure 4.12 Exported features ........................................................................................... 57 

Figure 4.13 Features for different load conditions............................................................ 58 

Figure 4.14 Confusion matrix for different health conditions and 5kg load .................... 59 

Figure 4.15 Accuracy results for health conditions (i) and load condition (ii) ................. 60 

Figure 4.16 Confusion matrix for different load conditions and 4 broken bar ................. 61 

  



XI 

 

LIST OF TABLES 

 

Table 3.1 Specification of Current Transformer ............................................................... 36 

Table 3.2 Specification of an Induction Motor ................................................................. 37 

Table 4.1 Expected frequencies of sidebands for different harmonics ............................. 49 

Table 4.2 Obtained frequencies of sidebands for different harmonics ............................. 50 

Table 4.3 Accuracy of all algorithms for classification of health & load conditions ....... 62 

Table 4.4 Budget Division ................................................................................................ 63 

  



XII 

 

LIST OF SYMBOLS 

 

N                                                 Actual speed of rotor in rpm 

A                                                 Ampere 

Ω                                                 Angular velocity of rotor 

∈                                                        Belongs to 

I                                                   Current 

ρ                                                  Density of material 

h                                                  Depth of hole 

F                                                  Frequency 

γ                                                  Gamma (kernel parameter) 

≥                                                  Greater than or equal to 

Hz                                                Hertz 

≤                                                  Less than or equal to 

fo                                                  Line frequency 

P                                                  Number of Poles 

π                                                  Pi 

r                                                   Radius of drill bit 

M                                                 Reduced mass 

fb                                                 Sideband frequency 

s                                                   Slip 



XIII 

 

Σ                                                  Summation 

Ns                                                Synchronous speed 

Θ                                                 Theta (angle) 

T                                                  Torque 

F’                                                 Unbalanced force 

V                                                  Volts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XIV 

 

LIST OF ACRONYMS AND ABBREVIATIONS 

 

AC                                        Alternating current 

AI                                         Artificial Intelligence 

ANN                                     Artificial Neural Network 

BRB                                     Broken Rotor Bar 

CNN                                     Convolutional Neural Network 

DAQ                                     Data Acquisition 

DBN                                     Deep Belief Neural Network 

DL                                        Deep Learning 

DTFT                                   Discrete Time Fourier Transform 

EEMD                                  Ensemble Empirical Mode Decomposition 

FEM                                     Finite Element Method 

FFT                                      Fast Fourier Transform 

FL                                        Federated Learning 

FP                                        False Positive 

FN                                        False Negative 

K-NN                                   K-Nearest Neighbour 

LabVIEW                            Laboratory Virtual Instrument Engineering Workbench 

LSB                                     Lower Side Band 

MATLAB                            Matrix Laboratory 



XV 

 

MCSA                               Motor Current Signature Analysis 

ML                                    Machine Learning 

MLP                                  Multilayer Perceptron Neural Network 

OSELM                             Online Sequential Extreme Learning Machine 

RBF                                   Radial Basis Function 

RNN                                  Recurrent Neural Network 

RPM                                  Revolution Per Minute 

RUL                                  Remaining Useful Life 

PSA                                   Power Spectra Analysis 

PSD                                   Power Spectral Density 

SNR                                   Signal to Noise Ratio 

STFT                                 Short Time Fourier Transform 

SVM                                  Support Vector Machine 

WT                                   Wavelet transform Wavelet Transform 



1 

 

Chapter 1 

1.1 Background 

1.1.1 The Origin of Ideas 

Data analytic and prediction techniques has always been our subject of interest. The genesis 

of an idea began from the engine health monitoring techniques that came across during the 

classes of fault monitoring and diagnosis. Initially, we thought of collecting aircrafts engine 

data from various airlines companies and forecast the Remaining Useful Life (RUL) of an 

aircraft through engine data. But due to private policies of an airline, we were not able to 

do so. Then rapid exploration was done for fault diagnosis of an Induction Motor (IM). 

This seemed to be the best idea upon consultation with our supervisor. As a result, the urge 

and desire to learn about predictive maintenance and fault diagnosis led to the idea of 

current signature analysis with the help of machine learning techniques enabling user to 

diagnose and find out faulty condition of broken rotor bar induced in an induction motor. 

These motors are also used in aviation industries and it was feasible for the project as it 

was technically and economically viable. 

1.1.2 Attempts Made so Far by Others to Address the Issues 

There are numerous attempts and has been successful in fault diagnosis of an IM with the 

help of motor current signature analysis. Various types of faults are present in induction 

motor. Various researchers and scholars have attempted to predict motor faults using 

different prediction, classification and data training techniques. Some of the crucial 

mechanical faults in IM are bearing fault, Broken Rotor Bar (BRB), eccentricity etc. 

Among these faults, bearing faults is the most common fault (Miljković & Dubravko, 

2015). About (40-50%) of failure are due to bearing faults. As it is the common mode of 

failure, researchers have carried out extensive work for diagnosis of fault in an induction 

motor for bearing failure. For bearing failure, researchers had conducted research in 

abundant primitive techniques like thermal monitoring, torque monitoring, noise 

monitoring, and vibration monitoring where there are lots of use of sensors. On comparison 

to these techniques, electrical monitoring or current analysis requires minimum sensors and 

CHAPTER ONE: INTRODUCTION 
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is widely accepted all over the world. Researchers used motor current signature analysis 

techniques along with ANN algorithms for machine learning in order to diagnose bearing 

faults (Dhomad & A, 2020). Among various faults listed above, research and 

experimentation regarding fault diagnosis of a broken rotor bar of an induction motor was 

relatively less compared to other faults. Experimentation of researchers exhibited that 

MCSA was used to determine the frequency components connected to particular faults, 

specifically it was aimed to recognize the frequency components around the fundamental 

component (such as 50 or 60 Hz) that were connected to the BRB fault (Rodriguez & , 

2020). Detailed steps of data acquisition, feature classification, feature extraction and 

interpretation with ML models were done in numerous research. Okwuosa presented 

MCSA at low load condition but taking three different faulty conditions, i.e. rotor 

misalignment, broken rotor bar & inter-turn short circuit winding. Researchers (Ejike 

Akpudo, et al., 2022) classified faults regarding broken rotor bar on the basis of loading 

conditions and was evaluated with the help of ML algorithms. A unified wavelet packet 

signature analysis was also used that identifies the signature of fault in the specific fault-

oriented frequency bands by integrating the capabilities of both time-domain and frequency 

domain computational methodologies. Mehrjou identified that the fault severity during 

motor runtime is provided by the combination of wavelet analysis and a feed-forward 

neural network classifier. (Mehrjou, et al., 2017) Numerous studies has been carried out 

for feature extraction and classification. Various ML diagnostic techniques are 

implemented after fault classification. To decrease the dimension of characteristics feature 

and in order to take out the best features for the classification task, (Achmad & Widodo, 

2009) used independent component analysis, principal component analysis, and their 

kernel to detect and diagnose faulty condition of broken rotor bar, phase unbalance. SVM, 

ANN and FL algorithms were used for vibration analysis. It was observed that SVM 

demonstrated 99.83% among other ML models. SVM is independent to many other 

parameters which influence the percentage of accurate detection. So, Silva cited that this   

was the reason for higher accuracy of SVM algorithms compared to others (Silva, et al., 

2013). Various papers demonstrated detailed review of use of ML algorithms for fault 

detection. Researchers like Kumar and Keeman researched and explained the pros and cons 

of ML models like ANN, KNN, SVM, Decision tree, Deep learning etc. which enabled the 
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user to make correct choices according to the nature of problem and extent of accuracy 

provided by a particular model (Kumar & Shankar Hati, 2021; K, et al., 2018; Kecman & 

Vojislav, 2001). 

1.1.3 Scope of Work 

The main scope is to detect broken rotor bar faults in an induction motor using motor 

current signature analysis and machine learning techniques. Data extraction, 

characterization and fault classification of current signatures of an induction motor through 

Fast Fourier transform, wavelet transform technique is done. Then, with the help of ML 

algorithms, faults are diagnosed. Determining and creating different condition faults within 

the broken rotor bar failure condition is the work that is to be carried out which can possibly 

be beneficial during training as well as testing of data thus assisting in achieving higher 

accuracy. 

1.1.4 Rational 

Rapid increment in industrial and aviation sector is observed these days and will increase 

exponentially in coming future. In capitalist mindset world, saving billions of dollars will 

always be the priority of top industries and companies. Scientific maintenance technique 

like predictive maintenance has reached into multidimensional field. Researchers (Selcuk, 

2017) explained advantages of Predictive maintenance techniques as compared to other 

techniques like corrective and preventive maintenance 

Fault prediction mechanism of machinery components has become vital in today’s context 

and deploying as well integrating these predictive machine learning models to real life 

systems will be advantageous as it saves both time and money (Choudhary, et al., 

2019).The reasons or usefulness of fault diagnosis of an induction motor using ML 

techniques are as follows: 

• It helps in early fault detection before catastrophic failure arises thus assisting user 

in minimizing downtime, repair cost and enhancing reliability of the system. 
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• It enables user to perform condition-based monitoring i.e. maintenance is carried 

out only when needed by observing the condition of the motor. Thus, time and 

money is saved. 

• It improves safety by identifying potential faults that may occur before they cause 

safety hazards. It prevents accidents and boosts safety in the industry. 

1.2 Problem Statement 

Sudden failure of machinery equipment has been considered as serious problem in the 

world today. Among various kinds of faults that might occur in an IM, broken rotor bar 

fault is caused by high temperature, dynamic forces & severe current present in the rotor 

(R. A, et al., 1988). Garcia and his teams explained that these faults result in inefficiencies 

of working of the induction motor causing financial loss to the industries (Garcia, 2018). 

Their experiment suggested that motor becomes highly inefficient, i.e., decrement of 

efficiency to 20% as compared to healthy condition if severe faults are present. Also, if the 

problem is not diagnosed at low stage of severity, it can result to halt in processes and other 

machines attached at the same production line may be at higher risk as there is alteration 

in consumed current and production of new frequency components (Benbouzid, 2000). So, 

it is pivotal for any industry to detect broken rotor bar faults in the earliest stage possible. 

In the world of machine learning and artificial intelligence, trivialities as such should 

always be prevented in order to upscale the economics and business. Here, in the project, 

fault is artificially created in a rotor bar by drilling a hole. Current signals are acquired 

through Data acquisition card and fault is detected using machine learning algorithm. 

1.3 Objective 

1.3.1 Primary Objective 

The main objective of this project is to diagnose and classify fault in an induction motor 

using motor current signature analysis along with supervised machine learning techniques. 

1.3.2 Specific Objective 

• To create experimental workbench for data acquisition from induction motor 
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• To generate datasets containing current signal from the healthy and faulty induction 

motor 

• To test and train the Machine learning model for fault classification & diagnosis 

and select the best possible algorithm having highest accuracy 
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Chapter 2: Literature Review 

Motor Current signature analysis is a non-interfering technique done to recognize and 

isolate the mechanical and electrical faults and to indicate the failure of an induction motor. 

Paper of Thorsen and group suggested that unbalance supply of voltage and current, single 

phasing, earth fault, overload, inter-turn short circuit fault and crawling are electrical 

related faults whereas broken rotor bar, air gap eccentricity, bearing damage, rotor winding 

failure, stator winding failure are mechanical related faults (Motor reliability working 

group, 1985; Thorsen & M, 1995). The most commonly used 3 phase induction motor is 

squirrel cage type induction motor. The 3-phase squirrel cage motor is widely used motor 

in industries as it possesses features like versatility, reliability, low cost and high 

performance. Experiments performed by Babaa were able to validate that the inter-turn 

short circuits may alter or change particular harmonics in stator current which were thought 

to be as a default signature (Babaa, et al., 2021). Also, for the faulty condition of broken 

rotor bar in an induction motor, Didier explained that the presence of side bands around 

supply frequency was the decisive factor in detection of faults or cracks (Didier, et al., 

2006). Various research conducted by Singh explained how IM are susceptible to different 

kinds of electrical and mechanical faults that can lead to unexpected failure and 

unscheduled down time (Singh, et al., 2016). 

 MCSA is especially used for the early recognition and localization of electricals well as 

mechanical abnormal conditions present in an induction motor that may translate to failure 

of induction motors. It is explained that MCSA utilizes spectral analysis results of stator 

current for detecting faults like broken rotor bars, air gap eccentricity and bearing damage. 

Spectral analysis performed by Kliman explained that the spectral components of current 

will coincide with those caused by fault condition when rotor position varies with load 

torque (Benbouzid & Kliman, 2003). Liang explained that the presence of sideband in the 

fundamental motor current frequency is due to the broken rotor bars which is caused by 

distorted symmetry in the rotor circuit (Edomwandekhoe & Liang, 2018). The magnetic 

field anomaly is induced by broken rotor bars which can be identified by observing the 

current spectral components (Benbouzid, 2000). 

CHAPTER TWO:  LITERATURE REVIEW  
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The signal processing methods for detection of faulty condition fault in an induction motors 

is especially done in frequency domain using frequency domain features for broken rotor 

bars and bearing deformation. The major advantages and limitations of various techniques 

are further discussed which explains about time-frequency and time-scale transformations 

such as wavelets being optimum tool for detection of faulty induction motor rotors. 

Spectral analysis of operational process parameters such as current, temperature, pressure, 

etc. are performed according to the type of problem. Benbouzid suggested that time domain 

analysis and cestrum analysis are used as evaluation tools (Benbouzid, 2000). Fast Fourier 

Transform (FFT), wavelet transform, Hilbert transform, neural network and fuzzy 

inference-based techniques are used for signal processing for fault detection in induction 

motor. FFT is implemented traditionally for fault detections in an IM but processing of 

non-stationary signals cannot be done.SO, Short Time Fourier Transform (STFT) is 

deployed for the motor transient state with the time-frequency representation (Naha, et al., 

2016). The pros of implementing wavelet techniques for fault monitoring of induction 

motors is growing as this method assist user to carry out stator current signal analysis 

during transients. This technique may be used for a localized analysis in the time-frequency 

or time-scale domain. Now, it can be regarded as important tool for performing condition 

monitoring and fault diagnosis (Benbouzid, 2000). STFT also contains its restrictions with 

characteristics of applying a fixed window to all signals, thus introducing the escape clause 

for data loss because of approximation and low resolution. Thompson Multitaper PSD 

estimation and Welch PSD estimation is proposed by (Edomwandekhoe & Liang, 2018) to 

eliminate the limitation of STFT Wavelet transform requires estimation of slip in order to 

localize the fault concerned frequency for diagnosis. The EEMD method is proposed to 

overcome the limitation. Wavelet Transform technique has shown enormous practicality 

in fault diagnosis of any machineries because of the benefits of multi resolution analysis. 

WT have been used in both discrete and continuous form for detection of fault on rotary 

machines where current can be analyzed during no load condition and condition during 

variation of load. (Wang, et al., 2011). 

For other mechanical faults like air-gap flux variation Finite-element approach is used for 

analysis which is caused due to eccentricity in an induction motor. Using FEM based 

simulator, a 2D model is proposed to convert vibration into air gap change. (Hwang, et al., 
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2005) explained that in case of static eccentricity, the rotor breaks down when vibration 

occurs without change in center of rotor and stator. 

Fault diagnosis method involves process of data acquisition, feature extraction, feature 

selection and fault classification (Asghar, et al., 2016).FFT, STFT may not be desirable in 

all cases for processing of extracted data. So, process like wavelet packet analysis may be 

required. Wavelet packet analysis is a type of multi-resolution analysis. A bunch of 

orthogonal wavelet functions composed of subspace, creating a signal in various scale 

expansions are projected onto the signal. As a result, it keeps the signal characteristics at 

same scale in the time domain while extracting the signal characteristics in multiple 

frequency bands. These signals from a wavelet packet decomposition may be orthogonal, 

non-redundant, leak-free, and warrants that the high and low bands have the same high 

frequency resolution (Chao & , 2013).An induction motor defect detection and 

classification using machine learning model solely relies on the three phase voltages and 

current as input signals. As part of the experimental setting,  (Kavana & Neethi, 2018) took 

800 sets of the three phase voltages and currents of the defective motor were collected and 

sent as training data to a linear regression-based algorithm. Difficulties in MCSA was 

found in order to identify bearing defects due to uncertain features on the Fourier spectrum, 

error in reading the data manually without automation. So, an automatic system using 

machine learning based on motor current signature was proposed for induction motor fault 

diagnosis. A prediction model using support vector machine was developed which was 

able to identify defects up to 90% accuracy. SVM is a supervised learning model that 

analyses data for classification and regression analysis. It is concluded that the features 

calculated from wavelets coefficients from MCSA can be used as training data for Support 

Vector Machine (SVM) which can identify four conditions of an induction motor such as 

broken rotor bar, misalignment, bearing defect and healthy motor (Guo & Liu, 2018). 

Convolution Neural Network (CNN) is ML algorithm in detection of broken rotor bars 

considering different levels of severity. It focuses mainly on CNN approach of automatic 

image classification based on pattern recognition. Firstly, signal processing is done by 

STFT as a part of MCSA and the images obtained after this process were used as a training 

data for pattern recognition using CNN (Valtierra-Rodriguez, 2020). The major 

components of fault diagnosis are, (a) fault location identification, (b) faulty part 
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determination, (c) learning causes of failure (d) predicting fault patterns. Machine learning 

algorithms being powerful tools for classification of problems, are widely used for 

conditioning monitoring and fault diagnosis. Different algorithms like K- Nearest 

Neighbor (k-NN), SVM, ANN, Bayesian Classifier, Decision trees, random forest and deep 

learning are widely used. It has focused on application of deep learning as it has a major 

advantage on extraction of feature and selection that ultimately reduce the likelihood of 

occurrence of human error (Kumar, 2021). 

Machine learning based approach for predicting failure of equipment in continuous 

production lines is initially assisted by MCSA. Suppose, one has to find faults in a gear 

box located in a place which is difficult to reach or inspect submersible pump situated 

underground that is run by an induction motor. The current drawn by an induction motor 

that drives the gear box or the submersible pump can be measured and this signature of 

current can be analyzed and fault can be detected using these machine learning models. 

Once these machine learning models are well trained and become robust, this ML models 

can be integrated with sensors that collect the data from the system. Real time monitoring 

is possible which results in early detection of fault thus ultimately reducing downtime. 

Integration of ML models with existing monitoring or control system is also possible which 

is beneficial for the company as it saves both time and money (Muller, et al., 2020). 

Another usefulness of Machine learning technique is remaining useful life (RUL) 

estimation which is done by the industries. Year wise analysis was done based on available 

data set in order to give detailed perspective of research trends in the field of RUL 

estimation. They also focused on existing maintenance method, predictive maintenance 

model, and RUL model. Concern for future and its challenges were also demonstrated. 

Countries like US, China and UK had tremendous research and investigation in field of 

RUL estimation with the help of machine learning as shown by the data base.  (Sayyad, et 

al., 2021) also concluded that hybrid predictive maintenance could have tremendous 

possibility in the future Advanced and highly accurate Deep Learning is also used for RUL 

prediction in smart factories. CNN was used in Aero Propulsion System Dataset to estimate 

the RUL of engines. So, this gives us an idea and assurance of CNN algorithm and proper 

use and training of data can lead to result of high degree of accuracy (Jiang & Kuo, 2017). 

Four major deep learning techniques are extensively studies for the upcoming days. They 
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are: Auto-encoder, DBN, CNN and RNN. Deep learning assisted decision-making leads to 

new dimension into their operation. It also enables them to view real time performances 

using DL. A large data base is always needed and should be compared to observed data 

based on similarity approach in order to estimate RUL with high accuracy. Various 

researcher gave an insight about hybrid-based approach which could be the future of RUL 

estimation (Wang, et al., 2020).Brief explanation of RUL estimation and Deep learning is 

mentioned above as it holds deeper value in the future generation but is beyond the scope 

of this paper. 

2.1 Induction Motor 

One of most prominent type of motor used in industry is an induction motor. Pumps, fans, 

adjustable speed drives, with induction motors operate to translate about 60% of industrial 

electric energy into mechanical energy. (Kaur & Brar, 2016). Asynchronous or induction 

motors are AC electric motors that function in accordance with the faraday law of 

electromagnetic induction. Through electromagnetic induction from the revolving 

magnetic field of the stator winding, the electric current in the rotor required to generate 

torque is obtained. An induction motor's rotor can be categorized as either a wound type 

rotor or a squirrel cage rotor type. Single phase induction motors and three phase induction 

motors are the types of induction motor based on the input supply. Single phase induction 

motors are not self-starting, however three phase induction motors are. 3 phase induction 

motor is widely used in industries than single phase induction motor because of its simple 

and rugged construction. In terms of machine reliability, durability, efficiency, robustness, 

stable output voltage and torque, power factor and ripples, the three-phase motor outshines 

single phase (Kumar, 2018) . 

An induction motor's operation is based on the electromagnetic induction phenomena. A 

rotating magnetic field is produced when an alternating current is supplied to the stator 

winding of the motor which induces an electromotive force in the rotor winding. It makes 

the current in the rotor flow. The rotor rotates as a result of the torque created by the 

magnetic field's interaction with the current in the rotor. 
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Synchronous Speed: 

The synchronous speed of an induction motor is the speed at which the magnetic field 

produced by the stator rotates. It is given by the following equation: 

                                    Ns = (120*f) / P 2.1 

Where Ns is the synchronous speed in revolutions per minute (RPM), f is the frequency 

of the power supply in hertz (Hz), and P is the number of poles in the motor. 

Motor Slip: 

The difference between the synchronous speed and the actual speed of the rotor is called 

slip. Slip (s) is given by the following equation: 

s = (Ns - N) / Ns 2.2 

Where N is the actual speed of the rotor in RPM (Alkadhim, 2020). 

Torque: 

The torque produced by an induction motor is proportional to the square of the current 

flowing through the rotor. The torque (T) produced by an induction motor is given by the 

following equation: 

T = (3 * V2 * R2 * s) / (ωr * (R1
2 + (R2/s)2)) 2.3 

Where, T is the torque generated by the motor, V is the supply voltage to the motor,R1 is 

the stator resistance of the motor, R2 is the rotor resistance of the motor, s is the slip of 

the motor, ωr is the synchronous speed of the motor (Ebadi, 2011). 

Power: 

The power output of a three-phase induction motor is given by: 

P = (1.732 * V * I * cos (θ)) / 1000 2.4 

Where V is the voltage supplied to the motor in volts (V), I is the current drawn by the 

motor in amperes (A), cos (θ) is the power factor of the motor (Soe, 2008). 
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2.2 Unbalanced Force due to Broken Rotor Bar 

 

Figure 2.1 Cylindrical Rotor Bar of an IM 

 

Let m be the reduced mass due to hole created in the cylindrical rotor bars. 

m = V *ρ 2.5 

And,  

V = 1/2 * π * r2 * h 2.6 

Where, r is radius of drill bit, h is depth of hole, ρ is density of material 

Now,  

Angular velocity (w) = 2 π N / 60 
 

2.7 

Where, N is the rpm 

Finally, 

Unbalanced force (F’) = m w2 r’ = m w2 (r/ sinθ) 2.8 

 

2.3 Faults in Induction Motors 

The common faults in induction motors can be classified into two groups, 

2.3.1 Electrical Faults 

The electrical faults are mainly classified into 4 types (Hammo & Rama, 2014). They are: 



13 

 

Overloading: It arises when mechanical torque crosses the threshold limit by applying 

mechanical load to the motor greater that rating at full load condition. This results in 

overheating, thus giving rise to the magnitude of phase current. 

Short turn faults: A symmetrical three-phase AC machine with a short turn fault produces 

heat in the shorted turns by causing a large circulating current to flow. In accordance to a 

survey, stator winding insulation failures account for (35–40%) of IM failures. 

Single phasing: Single phasing takes place when any one line among three lines are open. 

More current flows in remaining two line and excessive heat is generated in stator winding. 

Phase reversal: Here, motors rotates in reverse direction as two phases are reversed from 

the normal sequence. For safety, in order to prevent phase reversal reverse phase relays 

and negative sequence relays are deployed. 

2.3.2 Mechanical Faults 

Mechanical faults are classified as; 

Air gap eccentricity: It is a common rotor fault which produces problems such as vibration 

and noise in induction machines. The centre of rotation of rotor is perfectly aligned with 

the centre of stator bore in a healthy motor. When there is misalignment, it causes air gap 

eccentricity which can be the reason for failure of induction motor. Air gap eccentricity 

occur due to several causes like shaft deflection, bearing wear, wrong positioning of rotor 

with respect to stator, stator core movement etc. 
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Figure 2.2 Schematic model of motor rotational under dynamic eccentricity (Zhang, et 

al., 2018) 

Bearing faults: Bearings are common elements which are employed to permit rotary motion 

of the shafts. Continued stress on bearing can cause fatigue failures. Some sources of 

bearing faults are contamination, improper lubrication, improper installation, corrosion etc. 

(Riddle, 1955). 

 

Figure 2.3 Bearing faults: a) outer race deterioration b) Inner race deterioration c) Cage 

deterioration d) Ball deterioration (Yilmaz & , 2008) 
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Load faults: Motors are sometimes connected to mechanical loads and gears which results 

to occurrence of faulty conditions. Misaligned couplings and defective gear systems that 

connect a load to the motor are a handful of examples (Dalpiaz & Meneghetti, 1991). 

Broken rotor bar: An electrical fault such as broken rotor bar does not necessarily cause 

broken rotor bar to fail in the initial stage but can cause serious hazards over a period of 

time. It can cause mechanical damage when broken parts of rotor bar strikes to the rear 

winding of stator core with high velocity of high voltage motor (Bonnett & Soukup, 1986). 

 

Figure 2.4 Broken rotor Bar:  a) half- broken rotor bar   b) single broken rotor bar  

2.4 Spectral Analysis: 

When there is concentration of signal’s energy for a given finite amount of time interval, 

power spectral density (power spectrum) can be computed. Power Spectral Analysis (PSA) 

is a technique used to analyze the power of frequency content of a signal taken for a finite 

time interval. The power spectrum diagram, also known as a periodograms, is a graphical 

representation of the PSD results and provides insight into the energy content in a 

frequency component of a signal. The idea behind PSA in case of this project is to find the 

power distribution in a specific range of frequency. Also, it gives variation in periodograms 

as the broken rotor bar faults is detected. PSD are based on square of absolute value of 

Fourier coefficients if FFT is deployed. But, (Romeral, et al., 2008) suggested that FFT 

may not be suitable for feature extraction process as transitory characteristics like trends, 

drift, abrupt changes which is most crucial part of signal are undetected. So, coefficient 
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from wavelet transform can also give PSD using wavelet transform. In this case, PSD helps 

in identifying faulty frequency bands and no single specific harmonic which was used 

previously. Without problem of slip variation, different bands can be analyzed using PSD 

along with wavelet transform. PSD along with wavelet transform is most widely used today 

because of its ability in fault diagnosis in any point during the operation. Another benefit 

is both constant and non-constant load torque condition results can be well analyzed with 

the help of PSD along with wavelet transform (Myung, et al., 2003). 

The power spectrum diagram can be used for a variety of applications, including fault 

diagnosis, signal processing, and control systems design. For example, PSA can be used to 

analyze the current and voltage waveforms of an induction motor and detect any anomalies 

or faults in the system (Mitra, 2001). The power spectrum diagram can reveal the presence 

of harmonic components in the current and voltage waveforms, which can be used to 

diagnose faults such as broken rotor bars or stator windings. There are several methods for 

computing the power spectrum, including the fast Fourier transform (FFT) and the Welch 

method (Press, 2001). 

2.4.1 Spectral Components for Broken Rotor Bar 

The sideband components are examined around the provided current fundamental 

frequency i.e. line frequency, fo, to find broken rotor bar faults. 

 
 fb= (1± 2s) fo, 

2.9 

Where, 

fb are the sideband frequencies related with broken rotor bar, 

s is per unit motor slip.  

The slip s is defined as the relative mechanical speed of the motor, nm with respect to the 

motor synchronous speed, ns, as  

 
s=(ns-nm)/ns 

2.10 

The motor synchronous speed ns is defined as: 
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 ns=(120fo)/P 

 

2.11 

Where, P is the number of poles of the motor. 

The lower sideband frequency component is specifically due to broken rotor bar 

 fb= (1-2s) fo 

 

2.12 

And, the upper sideband frequency component is due to consequent speed oscillation. 

 fb= (1+2s) fo 

 

2.13 

If there are numerous damaged rotor bar, the frequency components in the frequency 

spectrum of the stator current, in addition to the fundamental one, are provided by 

 

Where,k=1,2,3…kn 

fb= (1+2ks) fo 

 

 

2.14 

.  

Figure 2.5 Ideal power spectrum 
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2.4.2 FFT 

FFT is an algorithm that decomposes a signal into its constituent frequencies. It works by 

transforming the time domain representation of a signal into its frequency domain 

representation, which provides a representation of the signal in terms of its constituent 

frequencies. In the case of an induction motor, the FFT is applied to the current waveform 

to obtain the current spectrum. The algorithm works by dividing the input signal into 

smaller segments, and then performing a series of mathematical operations on each 

segment to obtain the frequency components of the signal. The results from each segment 

are then combined to obtain the final frequency domain representation of the signal. The 

FFT is a powerful tool for PSD estimation, but its results can be sensitive to the choice of 

window function and the length of the data segment used for the computation. In addition, 

the FFT provides a PSD estimate that can be biased by the presence of noise, leading to 

inaccurate results. 

A discrete time series function's discrete Fourier Transform (DFT) can be calculated using 

the FFT algorithm with the least amount of computational work. Publication of Cooley and 

Tukey's paper received great response for FFT spectrum analysis. (James, et al., 1965)The 

DFT ofthe supplied time series is calculated by FFI's algorithms by breaking down the 

Npoint DFT computation into smaller computations. If these decompositions are done 

correctly, they significantly reduce the difficulties of computation. Consider a set of N 

evenly spaced samples of a finite discrete time series signal, x[n], specified for 0 <n< N - 

1 to revisit DTFT) of x[n], represents the sequence in terms of a complex exponential 

sequence {e-jwn}, w is the real frequency the fundamentals of the DFT. The representation 

of the Discrete-Time Fourier Transform (variable and is depicted as     X(ejw). X (ejw) is 

defined as: (Trussell, et al., 2003) 

∑   x[n]

N−1

n=0

e−jwn 

2.15 

By sampling in uniform manner, the value of X (ejw) on w- axis between 0 ≤ w ≤ 2π at     

wk = 2πk/N, 0 ≤ k ≤ N-1: we get relation between x[n] and it’s DTFT, 

At w = 2πk/N,   
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| X (ejw)| = ∑ x[n]N−1
n=0  e−jwn 2.16 

Where,0 ≤ k ≤ N-1; 

The discrete Fourier transform of x[n], X[k], will be finite sequence from  

X[k] = |X (ejw) | at w = 2πk/N 2.17 

Where 0 ≤ k ≤ N-1 

The price of computation gets significantly reduce by selecting composite number N in 

FFT algorithm. The PSD is also formulated from FFT function. FFT gives complex form 

two-sided spectrum. This needs to be converted to polar form for calculation of magnitude 

and phase. The relation for amplitude and phase vs frequency is given by FFT which is 

expressed as: 

Amplitude spectrum in quantity peak=
Magnitude[FFT(B)] 

N
               

=√real[FFT(B)]2+imag[FFT(B)]2

N
 

2.18 

Phase spectrum in radians = Phase [FFT (B)] =arctangent[
𝑖𝑚𝑎𝑔[𝐹𝐹𝑇(𝐵)]

𝑟𝑒𝑎𝑙[𝐹𝐹𝑇(𝐵)]
] 2.19 

Where arctangent function gives value between – π and + π. Power spectrum and 

amplitude spectrum are related to each other. When squaring single sided rms 

amplitude spectrum single sided PSD is obtained (G & Lyons, 1997). Amplitude 

spectrum in rms is calculated as: 

Amplitude spectrum in rms =√2. 
Magnitude[FFT(𝐵)] 

N
  for i = 1 to N/2-1 2.20 

                                = 
 Magnitude[FFT(𝐵)]

N
         for i = 0                                  2.21 

Where i stands for frequency line number of Fast Fourier Transform of B. 
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2.4.3 Welch’s Method 

After data acquisition, FFT method illustrates irregularities in the frequency spectra during 

data processing. Thus, Welch method is used. Implementation of Welch method is a 

preprocessing step after which it is implemented in the ML model. The most important part 

of welch method is extract feature to compress data without deteriorating any of its 

information. It is also called low level feature extraction. In Welch’s method, data is 

transformed to frequency domain from time domain. Though this seems similar to the task 

as performed by FFT but has significant difference. Welch’s method assists user in 

subtracting associated noise components from the signal which is not possible via FFT 

method. Welch method acts as a combination of FFT & use of low pass filter as Welch 

method breaks signal into segments and averages the total segments thus acting like a low 

pass filter. Hence, power spectrum of these signals are estimated after preprocessing of 

data using Welch method is completed. It provides an estimate of the PSD that is more 

accurate and reliable than other techniques. This is because the Welch method uses 

overlapping data segments, which reduces the variance of the PSD estimate (Johannessen, 

et al., 2019). In addition, the Welch method provides a robust estimate of the PSD even in 

the presence of noise, making it an ideal choice for many applications, including induction 

motor analysis where signals may be noisy due to conditions like non-uniform loading 

condition or any other factors. (Vaidyanathan, 2006). 

In the PSD estimation using Welch method, the data sequence x[n], x[0],x[1],…x[N-1] is 

first divided into k number of segments. The length of L samples &each segment can be 

overlapping on each other with (L-S) overlapping samples, where S is the number of points 

to shift between segments. 

Segment 1: x[0],x[1]….x[L-1] 

Segment 2: x[s],x[s+1],…..x[L+s-1] 

Segment K: x[N-L],x[N-L+1],….x[N-1] 

The weighted kth segment will of the samples, 
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Xk[n]=w[n]x[n+ks],        for 0<n<L-1, 0<k<K-1 2.22 

Where w[n] is the window function applied to the data at each segment before the 

computation of the segment periodograms. The sample spectrum of the weighted 

kthsegment is show in the frequency ranging as -1/2T ≤ f ≤ 1/2T is given by 

Pk (f) = 
1

𝑈𝐿𝑇
 XP (f) [Xp (f)] = 

1

𝑈𝐿𝑇
 |Xp (f)|2 2.23 

Where U is the discrete time window energy,  

U = T ∑ 𝑤2[𝑛]𝐿−1
𝑛=0  2.24 

And, Xp (f) is the DTFT of the kth segment, 

Xp (f) = T ∑ 𝑥(𝑘)𝐿−1
𝑛=0 [𝑛]𝑒−𝑗2πfnT 2.25 

Now, on averaging periodograms values of k segments, Welch PSD can be obtained. 

(Marple Jr, et al., 1989) 

Pw (f) = 
1

𝐾
∑ 𝑃𝑘𝐾−1

𝑘=0  (𝑓) 2.26 

Thus, in this way, Welch PSD can be estimated. 

2.5 Time Domain Features 

Time domain features are features that describe the characteristics of signals in the time 

domain. They are often used in feature extraction in MATLAB to describe the signal's 

amplitude, frequency, and phase information. Some common time domain features include 

mean, standard deviation, root mean square, zero-crossing rate, energy, and power. These 

features can be extracted using built-in functions in MATLAB, such as mean(), std(), rms(), 

and others. The choice of features and the method of extraction depends on the type of 

signal being analyzed and the goals of the analysis. 

Some of the time domain features that are used for feature extraction are; 

2.5.1 Mean 

The mean feature is a time domain feature that describes the average amplitude of a signal 

over a specified window of time. It is calculated by taking the sum of the signal's values 
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over the window and dividing it by the number of samples in the window. Mathematically, 

the mean is defined as 

 mean = 1/N * ∑(x) 

, 

2.27 

where x is the signal, N is the number of samples in the window, and the sum is taken over 

the window. 

2.5.2 Signal to Noise Ratio (SNR) 

Signal-to-noise ratio (SNR) is a time domain feature that describes the ratio of the signal 

power to the noise power in a signal. It is calculated by dividing the power of the signal by 

the power of the noise. Mathematically, SNR is defined as:  

 SNR = 10 * log10(P signal / P noise) 

, 

2.28 

Where P signal is the power of the signal and P noise is the power of the noise. 

2.5.3 Root Mean Square (RMS) 

Root mean square (RMS) is a time domain feature that describes the amplitude of a signal. 

It is calculated by taking the square root of the mean of the squares of the signal's values 

over a specified window of time. Mathematically, RMS is defined as: 

 
RMS = √(

1

N
∗  ∑(𝑥2)), 

2.29 

where x is the signal, N is the number of samples in the window, and the sum is taken over 

the window. 

2.5.4 Peak Value 

Peak value is a time domain feature that describes the maximum amplitude of a signal. It 

is a measure of the strength or intensity of the signal. 
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2.6 Frequency Domain Features 

Frequency domain features are features that describe the frequency content of a signal. 

These characteristics are computed in the frequency domain, which is created by applying 

a Fourier transform to the signal to convert it from the time domain to the frequency 

domain. 

2.6.1 Peak Frequency 

Peak frequency is a frequency domain feature that describes the frequency with the highest 

amplitude in a signal. It is a measure of the dominant frequency content of the signal. To 

calculate peak frequency, the signal is typically transformed from the time domain to the 

frequency domain using a Fourier transform. The amplitude spectrum of the signal is then 

calculated and the frequency with the highest amplitude is identified as the peak frequency. 

2.6.2 Peak Amplitude 

Spectral peak amplitude is a frequency domain feature that describes the maximum 

amplitude of a specific frequency component in a signal. It is a measure of the strength or 

intensity of a particular frequency in the signal. To calculate spectral peak amplitude, the 

signal is typically transformed from the time domain to the frequency domain using a 

Fourier transform. The amplitude spectrum of the signal is then calculated and the 

maximum amplitude is identified as the spectral peak amplitude. 

2.7 Machine Learning 

The area of artificial intelligence known as machine learning is concerned with creating 

algorithms that can learn from data and predict the future. These algorithms build models 

from incoming data to make predictions or judgments, even though they are not particularly 

trained to do so. Machine learning algorithms are mathematical models and statistical 

methods used to create systems that can learn from data and make predictions or judgments. 

There are several types of machine learning algorithms including  (Ayodele & Oladipupo, 

2010); 
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• Supervised learning: The algorithm creates a function which maps inputs to get the 

required outputs. This algorithm learns from labeled training data to make 

predictions about unseen data.   

• Unsupervised learning: The algorithms only models input data and learn from 

unlabeled data to identify patterns or groupings in the data.  

• Reinforcement learning: The algorithms that learn a system in order to interact with 

an environment to maximize a reward signal.   

• Semi-supervised learning: The algorithms that uses a mix element of supervised 

and unsupervised learning to work with partially labeled data generating suitable 

classifier. 

• Deep learning: A subfield of machine learning which uses multi-layer neural 

networks to learn complex patterns in large amounts of data. 

• Transduction: It does not readily construct any function as supervised learning but 

it forecast new outcomes which is based on training inputs, training output, and 

new input. 

Among these ML algorithms, we used supervised learning as it fulfilled our requirement 

and was accurate for our purpose. 

2.8 Fault Classification using Machine Learning 

Machine learning techniques are used in fault classification to automatically classify faults 

or failures into several groups. A set of qualities or characteristics of the data gathered from 

sensors or other sources are used to determine the failure's primary cause. For instance, 

real-time temperature, vibration, and current data may be gathered by sensors in a 

manufacturing facility. 

A machine learning system can forecast the possibility of a fault, such as a motor failure 

or bearing wear, by analyzing this data. The program can then categorize the defect as 

"mechanical failure," "electrical failure," or "thermal failure," among other categories. The 
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type of data that is available, the difficulty of the classification task, and the desired 

accuracy all influence the machine learning techniques that is chosen for fault 

classification. Several supervised learning methods, such decision trees, random forests, 

and support vector machines are used. 

2.8.1 Supervised Machine Learning 

Supervised learning is mostly used for classification type of problem. The problem is 

solved by the supervision of the user. These processes are dependent on knowledge given 

by pre-determined classification. The observations or output are found by the nature and 

magnitude of the input fed into the machine learning model. Here, is an example of how 

supervised learning is operated. 

 

Figure 2.6 Examples of Supervised learning 

Supervised learning algorithm mainly deals with classification. The types of these 

algorithms based on classification techniques are as follows: 

• Linear classifier 

✓ Logical regression 

✓ Naïve Bayes Classifier 

✓ Perceptron 

✓ Support Vector Machine (SVM) 

• Quadratic Classifier 

• Decision Tree 
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• Neural networks 

• Bayesian Networks 

Here is the flowchart illustrating the process of supervised machine learning. 

 

Figure 2.7 Flowchart depicting supervised ML 
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2.8.2 Support Vector Machine (SVM) 

A supervised learning approach called Support Vector Machine (SVM) is employed for 

classification and regression analysis. Here, machine learning model learns from training 

data in order to find a particular class from variety of data. Support vector are pivotal in 

this model as they define the hyperplane. It is basically solution of problem optimization 

by selecting best hyperplane for a given datasets (Widodo & Achmad, 2007). It operates 

by locating a hyperplane that optimizes the distance between the nearest data points of two 

classes, or "support vectors." The support vectors are the data points that are closest to the 

hyperplane, and the margin is the separation between the two. Finding the hyperplane with 

the largest margin that best distinguishes the classes is the main goal of SVM. The side of 

the hyperplane that a new data point lies on determines the class in which it lies. SVM uses 

a technique called as the kernel trick to transform non-linearly separable data into a higher-

dimensional space. 

The steps illustrating how SVM works are: 

Data Preparation: The first step in using the SVM algorithm is to prepare the data. In 

order to do this, the data must be cleaned, the features must be normalized, and the data 

must be divided into training and testing sets. The training set equation is given by: 

(X1,y1)….(Xn, yn), Xi ∈ Rn 2.30 

Where, yi∈ {-1,1} 

Select a kernel function: SVM can transform data into a higher-dimensional space where 

it can be split by a hyperplane using either linear or non-linear kernels. Linear, polynomial, 

radial basis function (RBF), and sigmoid kernels are extensively applied (Lee , et al., 2005). 

Some kernel function are explained as: 

• Linear: K (Xi, Xj) = (Xi )
TXj 3.27 

• Polynomial: K (Xi, Xj) = (γ. (Xi)
TXj + r)d, γ > 0 3.28 

• Sigmoid: K (Xi, Xj) = tanh (γ. (Xi)
TXj + r)                                                2.31 

 



28 

 

Where r, d and γ are kernel parameters. 

Model Training: The SVM algorithm discovers the hyperplane that optimizes the margin 

between the closest data points of two classes in order to train a model on the training data. 

By minimizing an objective function that penalizes points that are situated on the wrong 

side of the hyperplane, this is attained. 

Hyperplane Selection: The SVM algorithm chooses the hyperplane with the largest margin 

once the model has been trained. The classes are effectively separated using this 

hyperplane. To distinguish multiple classes, “one vs one” and “one vs rest” various plans 

are implemented by researchers (Wang, et al., 2013). 

Prediction: By determining which side of the hyperplane the data points fall, the SVM 

algorithm uses the trained model to forecast the class of fresh data points. One class is 

assigned to points on one side of the hyperplane, and another class is assigned to points on 

the opposite side. 

2.8.3 Naïve Bayes Algorithm 

Naïve Bayes algorithm based on Bayes theorem is a statistical classification algorithm that 

explains the probability of occurrence of an event based on the previous knowledge of 

conditions which may be in relation to the event. It is considered as “naïve” because its 

unique feature of assuming all the features in the given dataset are independent of one 

another. Its simplistic feature makes it highly effective in classification techniques. 

Bayes theorem is based on Bayes rule which is explained mathematically as: 

P (A/B) = P (B/A) * P (A) / P (B) 
2.32 

Where P(A/B) is the probability of event A occurring given that event B has occurred, 

P(B/A) is the probability of event B occurring given that event A has occurred, P(A) is the 

prior probability of event A and P(B) is the prior probability of event B. 

It works on two phases: Training phase and prediction phase 
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During training, it identifies the likelihood of every feature occurring in class label. Here, 

prior probabilities at each class label is calculated which is also called probability of 

occurrence of each label in training dataset. After completion of training phase, naïve 

Bayes algorithm uses probabilities calculated during training period in order to classify 

new data. Finally, the evaluation of performance is done (Berrar, 2018). 

2.8.4 Decision Tree Algorithm 

It is a machine learning algorithm which builds a tree model of decision and forecast 

consequences. It is also supervised learning technique which fundamentally uses 

classification and regression analysis. It recursively splits the dataset into its subsets which 

looks branch like in order to make further decisions. There are three main components of 

decision tree algorithm. They are root node, decision node and leaf node. 

Root node: It is the topmost node of tree representing entire dataset. 

Decision node: It is used to split the data based on the values of input features. Each node 

has specific input features and this feature determines the specific input feature. 

Leaf node: It represents the output of model. Each leaf node belongs to specific value of 

target variable. 

 

Figure 2.8 Decision tree algorithm (Janikow, 1998) 

Firstly, it identifies input and output variables of entire dataset. Then it selects the best 

feature which is used to split data. The best feature is defined as those features having 

maximum information gain. It is a measure of decrement in entropy or uncertainty of data 

after split. Splitting of dataset into its subset is done based on chosen feature. Now, class 
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or value is assigned to each and every leaf node which based on majority or average value 

of target variable in is given subset. Now, new data points can be used to predict class (Jijo, 

2021). 

2.8.5 Neural Network 

It is a machine learning model derived from the concept of human brain. It has a series of 

interconnected nodes which is called neurons, therefore performing complex tasks such as 

classification and regression. The components of neural network is explained below: 

Input layer: It receives input data. Every input feature is indicated by a neuron in input 

layer. 

Hidden layer: This is the middle layer between input and output layer. It contains multiple 

or single neuron for calculation. 

Output layer: This produces output of the model. The nature of task indicates the number 

of neurons present in the output layer. 

 

Figure 2.9 Neural network consisting of input, hidden and output layer 
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Weights and Biases: Every neuron in every layer is assigned respective weight and biases. 

Weight denotes the strength of connectivity between neurons and biases determine the 

output of the neuron for a given input. 

Initially, weights and biases are assigned randomly. The input data is fed into input layer.  

By the application of nonlinear activation function to the weighted sum of input, the input 

is transferred to hidden layers. Finally, output of the model is computed by propagating 

output of hidden layer into output layer. The resulted output is compared with true output 

and error is calculated. With the help of backpropagation of error, the error is minimized 

by changing the values of weights and biases. In this way, neural network algorithm works. 

2.8.6 Confusion Matrix: 

Confusion matrix also known as error matrix, is used for description of a classifier or 

classification model. It tells the user how well the classifier is performing on a given 

machine learning model. It depicts which is the confused classifier by illustrating confusion 

matrix. Here, summary of correct and incorrect prediction is given. It evaluates a set of 

data points' actual class labels with the predicted class labels the model produced. 

The confusion matrix offers a number of metrics to evaluate the model's correctness, such 

as: 

True Positives (TP): The number of times the model correctly predicted the positive class 

and that class really contained positive individuals. 

False Positive (FP):The number of times the model predicted the positive class but the 

actual class was negative. 

True Negatives (TN): The number of times the model correctly predicted the negative class 

when the actual class also fit the description. 

False Negatives (FN): The number of instances where the model predicted the negative 

class but the actual class was positive.   
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The values in the confusion matrix can be used to construct a number of performance 

metrics, including accuracy, precision, and recall. These metrics offer a thorough analysis 

of the model's performance, enabling the observer to identify the model's benefits and 

drawbacks and decide whether to make any more adjustments or enhancements. 

A confusion matrix can be used to calculate the accuracy of a machine learning model by 

comparing the actual class labels of a set of data points to the predicted class labels 

generated by the model. The accuracy of a model can be calculated as the proportion of 

correct predictions made by the model.  

This can be expressed as:   

Accuracy = (TP + TN ) / Total Instances 

Where:   

True Positives (TP) are the number of instances where the model correctly predicted the 

positive class.   

True Negatives (TN) are the number of instances where the model correctly predicted the 

negative class.   

Total Instances is the number of instances in the dataset.  

 By using the values in the confusion matrix, the accuracy of the model can be calculated 

and used as a single measure of the model's performance. 

Precision measures the model's accuracy in predicting instances that belong to the positive 

class. It is determined as the percentage of occasions out of all instances that were expected 

to be positive that really were positive. 

Precision is calculated as follows:  

Precision = True Positives / (True Positives + False Positives) 

Where, 
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True Positives (TP) represent the number of times the model correctly predicted the 

positive class & 

 False Positives (FP) represent the number of times the model correctly predicted the 

positive class but the actual class was negative.  
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Chapter 3: Materials and Methodology 

 

3.1 Materials Requirement 

The materials required to setup the experimental workbench is described below: 

3.1.1 Intangible Materials 

• MATLAB 

 

A high-performance language for technical computing is called MATLAB. In a simple-

to-use interface, it mixes computation, visualization, and programming while 

expressing issues and solutions using well-known mathematical language. Math and 

computing, algorithm creation, simulation, exploration, and visualization of scientific 

and engineering visuals, application development, including graphical interface 

construction, are some of its usual uses. 

MATLAB is a powerful tool for machine learning that provides a rich set of functions 

and tools for building, training, and evaluating machine learning models, as well as 

integrating with other tools and technologies. It is particularly well suited for tasks that 

involve data preprocessing, model selection, and performance evaluation (Moore, 

2005). 

 

• LabVIEW 

 

LabVIEW is a user-friendly visual programming language. It is a framework platform 

and building environment that was created to make it possible to create any type of 

system. It was created as a workbench for managing test instruments by National 

Instruments. It provides a comprehensive suite of tools for data acquisition, signal 

processing, and control, making it a powerful tool for applications in industry, 

academia, and research in graphical programming environment. Data acquisition 

device such as a data acquisition board or a data acquisition module is used to receive 

current signals from an IM in LabVIEW. It also provides a variety of functions and 
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tools for visualization, allowing you to view and analyze the signals in real-time (Higa, 

2002). 

3.1.2 Tangible Materials 

• MyDAQ 

 

Figure 3.1 MyDAQ 

 

MyDAQ is a data acquisition device developed by National Instruments. Students may 

measure, produce, and manipulate signals in real-time with this small, portable 

equipment for electrical engineering and science education. It doesn't require extra 

power because it connects to a computer through USB and is powered by the computer. 

Students can carry out a variety of experiments and projects in fields including circuit 

design, control systems, and data acquisition due to the oscilloscope, multimeter, 

function generator, and digital I/O lines that are included into the device. The tool is 

compatible with LabVIEW, a graphical programming environment from National 

Instruments that makes it simple for students to create and carry out experiments. 

MyDAQ can be used for uses beyond education, including professional settings for 

data acquisition, instrument control, and automation tasks. MyDAQ is an economical, 

practical option for engineers and scientists that need to gather data or conduct tests 

outdoors thanks to its compact size and USB connectivity (Chesnutt, 2011). 
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• Current Transformer 

 

 

Figure 3.2 Current transformer 

A current transformer (CT) is a type of transformer used to increase or decrease an 

alternating current (AC). It generates a secondary current proportional to the primary 

current. The current ratio from primary to secondary is how CTs are identified. Typically, 

the rated secondary current is standardized at 1 or 5 amps. For instance, when the primary 

winding current is 1000 amperes, a secondary winding with a 1000:1 CT ratio will provide 

an output current of 1. 

Table 3.1 Specification of Current Transformer 

Model ZMCT103C 

Rated Input Current 5 A 

Rated Output Current 5 mA 

Turn Ratio 10000:1 

Accuracy Class 2 

Insulation Voltage 3000V 

Operating Temperature -40-70- Degrees 
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• Induction Motor 

 

 

Figure 3.3 Three phase induction motor 

A three-phase induction motor is a type of electric motor that uses a three-phase AC power 

source to run. It is made up of a stator and a rotor, and the three-phase power supply 

energizes the stator to create a revolving magnetic field. The rotor rotates as a result of the 

magnetic field's induction of a current, which results in mechanical output. Due to their 

effectiveness, dependability, and minimal maintenance requirements, three-phase 

induction motors are frequently utilized in industrial and commercial applications. 

Table 3.2 Specification of an Induction Motor 

Power 1 hp 

Frequency 50 hz 

Phase 3 Phase 

Speed 1390 r.p.m 

Voltage 380 V 

Current 2.01 Amp 

No. of rotor slots 22 

No of pole pair  4 
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3.2 Methodology 

 

 

Figure 3.4 Flowchart representing research methodology 
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3.2.1 Data Acquisition 

 

 

Figure 3.5 Block diagram repersenting experimental setup 

The 3-phase induction motor is employed for testing the offered technique to detect the 

broken rotor bar fault. Various loading conditions were used in order to observe the 

variation in stator current. Stator current from single phase of induction motor is measured 

using current transformer using NI data acquisition card MyDAQ. To simulate the failure 

of broken rotors bars in the squirrel cage rotor of the three-phase induction motor it is 

necessary to drill the rotor. A rotor without a hole is to be tested first, that is, a healthy 

rotor, and then it will be successively replaced in order to obtain a database of monitored 

variables. The received signal is then fed to LabVIEW program for the detection and 

diagnosis of failures for healthy machines and machines with rotors consisting 2 and 4 bars 

broken adjacent to one another. 
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3.2.2 Experimental Setup 

 

 

Figure 3.6 Experimental setup for fault diagnosis of broken rotor bar in IM 

The experiment was conducted in order to detect faults in a broken rotor bar in a 3-phase 

induction motor. The induction motor (Type: Y-802-4 & model: 202111170) consists of 

22 rotor bars, has a nominal power of 1 hp, and supply frequency is 50 Hz at 220V. The 

power factor of IM was 0.76 with efficiency of 73%. Various loading condition were given 

to an induction motor in order to analyse the current signatures. Load of 2, 5 and 8 kg was 

given to an induction motor. Digital multimeters were used in order to check the supply 

current and voltage. Current transformer of turn ratio 1: 1000 was used in order to decrease 

the magnitude of a current so that it becomes feasible to feed the measured current in the 

data acquisition card. MyDAQ was used as an interface between measured current drawn 

by the motor and PC user. The data acquisition system based on MyDAQ from National 

instruments was used. With the help of LabVIEW software, the DAQ was configured to 

sampling frequency of 10000 samples/ sec. The data was taken for a duration of 10 seconds. 

So, the total sample was 100000 samples. These samples were taken for no load condition 

as well as loading condition. The fault was artificially induced in the rotor bar by drilling 

the rotor bar with a drill bit having diameter of 6mm. The first fault condition was taken as 

2 broken rotor bars. All current samples for loading and unloading condition was taken. 

Again, the condition for 4 broken rotor bar was analysed by drilling holes in 4 rotor bars. 

All the current data obtained in a LabVIEW software was exported to Matlab for further 

analysis. 
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3.2.3 Labview Progarmming 

The block diagram contians current indicator, current waveform genartor, DAQ assistant, 

write to measurement and while loop. The DAQ assiatnt is an automated feature in labview 

which is going to ease the process of collecting current measurements from our instrument.  

The write to measurement function allows us to save data file and allows us to configue 

how the data file is saved. The data will flow though the system only once. Continous 

measurement can be done by adding while loop. The stop condition is added so that while 

loop does not run continously. The real time current vlaue and current wavefrom can be 

seen in front panel. 

 

Figure 3.7 Block diagram to read the current VI 
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Figure 3.8 Front panel window 

 

3.3 System Description 

3.3.1 Signal Processing 

The power spectrogram, or the power of a signal's frequency content over time, gives 

details about the signal's spectral energy content and is frequently used in a variety of 

applications, including signal processing. To quickly calculate the power spectrogram of a 

signal in MATLAB, use the spectrogram function in the Signal Processing Toolbox. Along 

with the corresponding time and frequency vectors, the function also returns the signal's 

power-frequency representation. The window function, window length, and window 

overlap parameters can all be set using the spectrogram function. 

3.3.2 Feature Extraction 

Feature extraction is a key step in the process of building a machine learning model. It is 

the process of transforming raw data into a set of meaningful and informative features that 

can be used as inputs to the model. The goal of feature extraction is to capture the most 
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important information in the data while reducing the dimensionality and removing any 

redundant or irrelevant information. Welch method is a widely used technique for feature 

extraction from spectral data in MATLAB. It provides a robust estimate of the frequency 

content of a signal and is particularly useful for signals with low SNR. MATLAB provides 

functions for the Welch method in the Signal Processing Toolbox. The pwelch function in 

MATLAB provides a convenient way to perform the Welch method and provides options 

for specifying the window function, the length of the segments, and the overlap between 

the segments. The function returns the estimate of the PSD, as well as the corresponding 

frequencies. 

3.3.3 Feature Selection 

Choosing relevant features from a wide set of attributes is a crucial step in the machine 

learning process that. The feature selection aims to strengthen the performance of the 

model by reducing the dimensionality of the data, eliminating unnecessary features, and 

enhancing the model's interpretability. The feature selection can be carried out in 

MATLAB using a subset of the features that are most important for creating the predictive 

model after the power spectrogram has been computed. The T-test and One Way Anova 

are two feature selection techniques that can be applied in this situation. 

3.3.4 Machine Learning Model 

Building a Machine Learning Model involves selecting an appropriate algorithm, such as 

linear regression, logistic regression, decision trees, or neural networks, and training the 

model on the data. MATLAB provides a number of functions and tools for building 

machine learning models. MATLAB also provides a number of functions and tools to 

evaluate its performance such as confusion matrix. 
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Chapter 4:  and Discussion 

 

4.1 Output 

The experimental workbench was setup to acquire the current signal from induction motor. 

The displaced material of the rotor bar caused due to fault injection was calculated 

theoretically. Then, the features were extracted from faulty and healthy cases. Finally, 

machine learning model was developed for computation of accuracy. 

4.1.1 Calculation of Unbalanced Force due to Broken Rotor Bar 

 

 

Figure 4.1 Cylindrical Rotor Bar of an IM 

Consider squirrel cage rotor as cylindrical object having radius r and length L. 

Radius of drill bit (a) = 6 mm = 0.006 m 

Depth of hole (h) = 5 mm = 0.05 m  

Now,  

 
Volume of reduced material (V) = 0.5π a2 h                                                                                 

 

4.1 

                                 = 2.82 * 10-7  m3 

                       Density of aluminum (ρ ) = 2710 kg/m3 

So,  
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Mass of reduced material (m) = V * ρ 

                                  4.2 

                                                                               = 7.66 * 10-4 kg  

The speed of motor after drilling (N) = 900 rpm 

Then,  

 
Angular velocity (w) =    2 π N / 60 = 94.2 rad/s 

 

4.3 

We have,  

 

 

Radius of rotor (R) = 4 cm = 0.04m 

Distance of hole from center (d) = 0.023 m 

Then,  

Θ =  tan-1(R / d) = 60° 

Now,  

Unbalanced force due to broken rotor bar 

 
F’ = m w2 r’ 

       = m w2 (R / Sin Θ) = 0.313 N. 
 4.4 

  Therefore, unbalanced force due to two and four broken bar is calculated as 0.627N and 

1.253 N respectively. 

Now, how these magnitude of mechanical unbalanced force results into variation in current 

signal and power spectrum is demonstrated below. 
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4.1.2 Feature Extraction 

The entire signal processing is done on MATLAB. For this, the acquired experimental data 

is stored in an ensemble matrix form using a MATLAB code. The data is stored in order 

by assigning them with condition variables like health conditions and load conditions. Each 

sample of data contains 100000 values of current signals. The data were obtained for three 

different health conditions like healthy, 2 broken bar and 4 broken bars respectively and 

four load conditions like no load, 2 kg, 5 kg and 8 kg respectively. These nonlinear loads 

were used to simulate the real-life conditions for training ML algorithm.   For each case 3 

different samples were taken resulting 36 different samples in total. 

 

 

 

Figure 4.2 Ensemble matrix containing acquired data 
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Figure 4.3 Signal tracing in time domain 

Signal processing is done using diagnostic feature designer toolbox in MATLAB. For this, 

the time domain signal is converted into frequency domain signal using welch method to 

plot the power spectrum of the given data. Welch method is used because it is based on 

fast Fourier transformation and converts time domain signal into frequency domain signal. 

Also, the graphical view of this signal is quite large with a lot of noise containing frequency 

from 0.3 Hz to 5000 Hz. So, it is trimmed within a range of 10 to 90 Hz because the 

fundamental frequencies are present between this range. 
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Figure 4.4 Power Spectrum 

Peak frequency, peak amplitudes and band power are selected as frequency domain 

features because they carry characteristic information of the signal. 

4.1.3 Calculation of Expected Frequencies of Sidebands. 

The synchronous speed of rotor can be defined as 

 
n1 = 120*f1/p 

4.5 

Where, pole (p)= 4 and f1= 50 Hz 

n1= 1500 rpm 

Also, nominal speed of the motor (n)=1315 rpm 

 
slip(s)= (n1-n) /n1 

 4.6 

s = 0.123 
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This is the slip at maximum load condition. 

When k=1, 

 
fb=(1±2ks) 

, 

4.7 

f1 =37.7Hz and 62.3 Hz are the frequencies for first harmonics. 

when k=2, 

f1 = 25.4Hz and 74.6Hz are the frequencies for second harmonics. 

And, when k=3, 

f1 = 13.1Hz and 86.9 Hz the frequencies for third harmonics. 

 

Table 4.1 Expected frequencies of sidebands for different harmonics 

Load 

conditions 

Speed

(rpm) 

slip       

K=1 

       

 K=2 

       

K=3 

 

   LSB

(Hz) 

USB

(Hz) 

LSB

(Hz) 

USB

(Hz) 

LSB

(Hz) 

USB

(Hz) 

No load 1315 0.123 37.7 62.3 25.4 74.6 13.1 86.9 
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Figure 4.5 Current spectrum at 5kg load 

Table 4.2 Obtained frequencies of sidebands for different harmonics 

Load 

conditions 

Speed(rpm) slip       K=1        K=2  

   LSB(Hz) USB(Hz) LSB(Hz) USB(Hz) 

No load 1315 0.123 37 63 26 73 

 

The expected and obtained values were very close within an error tolerance of <5%. 
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4.1.4 Current Signal at Different Load Conditions 

 

Figure 4.6 Current signals at different load condition 

The graph above represents the signal tracing of current values at different load conditions 

indicated by different color codes. We can see that the peak values range from 2mA and 

3.5mA for no load condition up to 8 kg load. So, the increase in peak values is directly 

proportional to the increase in load condition. 

It is because when mechanical loads are applied to the shaft of the motor, speed of the 

motor decreases which reduces the back EMF. So additional current is drawn from the 

source to carry the increased load at a reduced speed. 

 

 

 

 

 

directly proportional to the increase in load condition. It is because when the mechanical 

loads are applied to the shaft of the motor, speed of the motor decreases which reduces the 

back EMF. So additional current is drawn from the source to carry the increased load at a 

reduced speed. 
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4.1.5 Current Signal at Different Health Conditions 

 

Figure 4.7 Current signals at different health conditions 

The graph above represents the current signal in time domain at different health conditions 

indicated by different color codes. All of these signals are taken at 5 kg loading condition. 

We can observe that with increase in broken bar of the rotor, the peak values of current 

increases. 
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4.1.6 Power Spectrum at Same Health Condition but Different Load 

Conditions 

 

Figure 4.8 Spectrum at same health but different load conditions 

The graph above shows the power spectrum of different samples which are of same health 

condition but different load conditions that are represented by different color code. We can 

see that the frequency of sidebands increases when loads are increased. We can also see 

that the amplitudes are relatively equal when loads are applied whereas the amplitude is 

lower at the no load condition. It is because the rpm of motor decreases with increasing 

load which also increases slip resulting in increased frequency. 
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4.1.7 Power Spectrum at Same Load Conditions but Different Health 

Condition 

 

Figure 4.9 Spectrum at same load but different health conditions 

The graph above shows the power spectrum of different samples which are of different 

health condition but same load condition that are represented by different color code. We 

can see that the amplitudes of sidebands increased when broken rotor bars are increased 

with frequency remaining relatively similar. 
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4.2 Feature Selection 

For this, all the possible features of frequency domain like band power, peak frequency 

and peak amplitudes are calculated and shown in histogram as probability diagram 

below:

 

 

Figure 4.10 Histogram of all features with different health condition 
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The histogram shown above contains all the time domain features like mean, SNR, peak 

value etc. and frequency domain features like peak frequency, peak amplitude and band 

power. We can visually inspect that mean, SNR (time domain) and band power, 

peakamplitude5 (frequency domain) have separate value ranges for healthy and faulty 

condition which has two distinguished color code. 

4.3 Feature Ranking 

One-way ANOVA test is used for feature ranking. 

 

Figure 4.11 Features ranking using One-way Anova 

From the above feature ranking table, we can see that the time domain features like SNR 

and SINAD has highest scores of 47.41 and 23.36 respectively followed by other time 

domain features like THD, shape factor, clearance factor etc. Also, we have frequency 

domain features like peak amplitude and peak frequency with scores 1.19 and 0.777 
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respectively. One-way ANOVA test is done because it is a versatile method to demonstrate 

the extent of comparative differences between more than two groups. 

Out of all these features, top ten features were then selected and extracted into numerical 

values for classification training using ML algorithm. 

The exported features as numerical value is shown as: 

 

Figure 4.12 Exported features 
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The same process was repeated for selecting features when the sample was grouped into 

different load conditions as shown below,  

 

Figure 4.13 Features for different load conditions 

From the feature ranking table, we can see that Peak value and RMS of time domain 

features have high scores for One-way ANOVA test with scores 62.03 and 58.07 

respectively followed by peak amplitude and band power with scores 45.20 and 43.72 

respectively which are frequency domain features. All these features are ranked taking load 

as condition variable. 

Similarly, top 10 features are selected and exported as numerical values which will be used 

on for training ML algorithm. 
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4.4 Machine Learning 

All the exported features were then used in classification learner app which is an inbuilt 

toolbox in MATLAB for training. For the training process all the available algorithms like 

SVM, KNN, naïve baise, tree, neural network etc. were used and based on the accuracy the 

algorithm will be selected as a trained model. 

After the training process is completed, a confusion matrix is obtained as shown below: 

 

Figure 4.14 Confusion matrix for different health conditions and 5kg load  

The above figure shows the confusion matrix obtained after training data for different 

health conditions with various ML algorithms. The observations can be discussed as 

following; 

1) The overall classification accuracy turned out to be 94.4% accurate. The algorithm 

used for training with this accuracy was Naïve Bayes. Similarly, other algorithms 
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like Tree and neural network also classified the faults with accuracy more than 90% 

which is considered excellent for any machine learning model (Oviously.ai, 2022). 

2) We can see that the predicted class were 100% accurate for healthy and 4 broken 

bar case whereas the accuracy reduced to 83.3% for 2 broken bar case. 

Various similar studies have demonstrated accuracy of 80-99% and is considered as 

suitable machine learning models. (Esakimuthu Pandarakone, 2019). So, it also gives us 

an indication that this project is suitable for integrating machine learning model into real 

industries.  The precision and recall value of this model is 0.8756 and 0.861. Also, the F- 

score of this model is 0.8683 which indicates it averts the possibility of false positive and 

false negative cases to higher extent which is beneficial for our problem (El Menzhi, 2022). 

 

                        (i)                                                                        (ii)  

Figure 4.15 Accuracy results for health conditions (i) and load condition (ii) 
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In the same way, the extracted features for a different number of load conditions were 

trained using all the available ML algorithms and the confusion matrix obtained is shown. 

 

Figure 4.16 Confusion matrix for different load conditions and 4 broken bar 
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Table 4.3 Accuracy of all algorithms for classification of health & load conditions 

 

S.no 

 

Classification 

Method 

 

Sub-groups 

Classification 

accuracy for 

health 

condition (%) 

Classification 

accuracy for 

load condition 

(%) 

1 Naïve Bayes Kernel 94.4 50 

  Gaussian - - 

2 SVM Linear 88.9 63.9 

  Quadratic 83.3 61.1 

  Cubic 75 66.7 

  Medium 

Gaussian 

75 63.9 

  Fine Gaussian 61.1 61.1 

  Coarse 

Gaussian 

47.2 41.7 

3 Decision tree Fine 91.7 77.8 

  Medium 91.7 77.8 

  Coarse 91.7 77.8 

4 Ensemble Bagged trees 88.9 86.1 

  RUSBoosted 

Trees 

41.7 30.6 

  Boosted Trees 27.8 16.7 

5 Neural network Medium 86.1 69.4 

  Wide 86.1 69.4 

  Bilayered 86.1 80.6 

  Narrow 83.3 75 

  Trilayered 75 63.9 

 

The above figure shows the confusion matrix obtained after training data for different load 

conditions with various ML algorithms. The observations can be discussed as following; 

1)  The overall classification accuracy turned out to be 86.1% accurate and the 

algorithm used for training is Ensemble.  

2) For 8 kg load, model was able to predict the fault with no error. It is because at 

higher load conditions the sidebands are clearer with greater amplitude and there is 

less noise. 

3)  On the other hand, the classification accuracy decreased to 77.8% for no load 

condition. It is because at no load condition, the sidebands are very small (almost 
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negligible) as the current in the rotor bars is minimal which makes them harder to 

detect for user by observation. 

4.5 Limitations 

• The other IM faults like air gap eccentricity, bearing faults etc. were not created in 

IM during data acquisition.  

• Higher loading conditions (greater than 10 kg) in IM were not explored. 

4.6 Problem Encountered 

The problem faced during the task are enlisted below: 

• Three phase supply for the induction motor was difficult to find. 

• Difficulties in finding the current transformer as it is not easily available. 

• Extensive iterations were required during machine learning process as desired 

accuracy was not easily achievable. 

4.7 Budget Analysis 

Table 4.4 Budget Division 

          

          S. N 

 

Particular 

 

        Amount (NRs) 

 

    Remarks 

 

1 

 

Induction motor 

 

9,000 

 

 

2 

 

Current 

transducer 

 

500 

 

 

3 

 

Documentation 

 

1500 

 

 

 

 

Grand total 

 

11000 
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Chapter 5: Conclusion and Future Enhanc 

 

5.1 Conclusion 

The experimental workbench was successfully setup to acquire stator current signal from 

three phase induction motor.  The data acquisition system MyDAQ was used to acquire 

current signals from single phase of the motor using current transformer. The current 

transformer of turn ratio 1000:1 was clamped to one of the supply line wires of induction 

motor. The motor was loaded with 2kg, 5kg and 8 kg load. The LabVIEW software was 

used to configure the MyDAQ to sampling frequency of 10000 samples/sec. The data was 

taken for a duration of 10 seconds. So, the total sample was 100000 samples. The samples 

were taken for no load condition as well as loading condition. The fault was artificially 

induced in the rotor bar by drilling the rotor bar 5mm deep with a drill bit having diameter 

of 6mm. The first fault condition was taken as 2 broken rotor bar and later the condition of 

4 broken bar was taken into consideration. All current samples for loading and unloading 

condition was taken. 

During the experiment, the healthy and faulty condition data were collected and 

preprocessing of data was done. The data were obtained for three different health 

conditions i.e., healthy, 2 broken bar and 4 broken bars respectively. Four load conditions 

were taken i.e., no load, 2 kg, 5 kg and 8 kg respectively. For each case 3 different samples 

were taken resulting 36 different samples in total.  

Finally, various supervised machine learning algorithms like SVM, Naïve Bayes, Tree, and 

Ensemble were used for fault classification of broken rotor bar in an induction motor. The 

result indicated that Naïve Bayes algorithm was the most suitable among other algorithms 

with an accuracy of 94.4%. Similarly, other algorithms like SVM and Decision tree also 

performed well with an accuracy of 88.9% and 91.7%. Hence, it can be concluded that 

Naïve Bayes ML model can possibly be reliable in order to integrate into real life systems 

for the prediction of faults and condition monitoring of the induction motor in industries. 

 

CHAPTER SIX:  CONCLUSION AND RECOMMENDATIONS 
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5.2 Recommendations 

5.2.1 Scope for Future Enhancement 

• The advanced machine learning algorithm techniques like deep learning can be 

deployed for the fault detection of induction motor in case of broken rotor bar. 

• All the cases of electrical and mechanical defects can be studied and robust machine 

learning model can be developed which can be integrated to real life industries. 
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APPENDIX 
 

Code: To store data in ensemble matrix in MATLAB 

Fs_elec = 10000; % Sampling frequency of electrical signals in Hz. 

 

folder = 'data_files'; 

if~exist(folder, 'dir') 

mkdir(folder); 

end 

 

% Iterate over the number of broken rotor bars. 

fori = 1:numel(health) 

fprintf('Processing data file %s\n', files(i)) 

 

% Load the original data set stored as a struct. 

  S = load(files(i)); 

fields = fieldnames(S); 

dataset = S.(fields{1}); 

 

loadLevels = fieldnames(dataset); 

% Iterate over load (torque) levels in each data set. 

forj = 1:numel(loadLevels) 

experiments = dataset.(loadLevels{j}); 

data = struct; 

 

% Iterate over the given number of experiments for each load level. 

fork = 1:numExperiments 

signalNames = fieldnames(experiments(k)); 

% Iterate over the signals in each experimental data set. 

forl = 1:numel(signalNames) 
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% Experimental (electrical) data 

        data.(signalNames{l}) = experiments(k).(signalNames{l}); 

end 

 

% Operating conditions 

data.Health = health(i); 

data.Load = string(loadLevels{j}); 

 

% Constant parameters 

data.Fs_elec = Fs_elec; 

 

% Save memberwise data. 

name = sprintf('rotor%db_%s_experiment%02d',  i-1, loadLevels{j}, k); 

fprintf('\tCreating the member data file %s.mat\n', name) 

filename = fullfile(pwd, folder, name); 

save(filename, '-v7.3', '-struct', 'data'); % Save fields as individual variables. 

end 

end 

end 

 

location = fullfile(pwd, folder); 

ens = fileEnsembleDatastore(location,'.mat'); 

 

ens.ReadFcn = @readData; 

ens.WriteToMemberFcn = @writeData; 

 

ens.DataVariables = [ "Ia"]; 

ens.ConditionVariables = ["Health"; "Load"]; 

ens.SelectedVariables = ["Ia"; "Health"; "Load"]; 

 

ens 
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T = readall(ens) 

 

cm = confusionmat(actual, predicted); 

cmt = cm' 

 

diagonal = diag(cmt) 

sum_of_rows = sum(cmt, 2) 

 

precision = diagonal ./ sum_of_rows 

overall_precision = mean(precision) 

 

sum_of_columns = sum(cmt, 1) 

 

recall = diagonal ./ sum_of_columns' 

overall_recall = mean(recall) 

 

f1_score = 2*((overall_precision*overall_recall)/(overall_precision+overall_recall)) 
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Figures: 

 

 

Figure: Broken Rotor Bar 


