

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS DEPARTMENT OF CIVIL ENGINEERING

FINAL YEAR PROJECT REPORT on "EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF MULTIPURPOSE BUILDING"

By:

Prakrit Devkota	075BCE101
Priyanshu Pokhrel	075BCE109
Ram Krishna Kandel	075BCE116
Rijab Ali Miya	075BCE119
Safal Katwal	075BCE129
Sangam Poudel	075BCE142

Supervisor:

Asst. Prof. Aakarsha Khawas

May 2023

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS DEPARTMENT OF CIVIL ENGINEERING

FINAL YEAR PROJECT REPORT on "EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF MULTIPURPOSE BUILDING" IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF BACHELOR'S DEGREE IN CIVIL ENGINEERING (Course Code: CE755)

By:

075BCE101
075BCE109
075BCE116
075BCE119
075BCE129
075BCE142

Supervisor:

Asst. Prof. Aakarsha Khawas

May 2023

COPYRIGHT

The authors have consented that this paper may be inspected for free in the Institute of Engineering's Pulchowk Campus library. Furthermore, the writers have agreed that significant copying of portions of this final year report can only be done with the approval of the authors' project supervisor or, in their absence, the director of the department where the final year project was completed. While replicating the theory, outcomes, and/or any other component of this report, and extending the findings of this project work, correct acknowledgments to the authors and project supervisor should be made. It is forbidden to copy or publish this final year project for profit without the explicit consent of the Department of Civil Engineering, Institute of Engineering, and authors.

Request for permission to copy or to make any other use of findings of this report shall be addressed to:

Head of the Department Department of Civil Engineering Pulchowk Campus Institute of Engineering Lalitpur, Nepal

> Authors: Prakrit Devkota (075BCE101) Priyanshu Pokhrel (075BCE109) Ram Krishna Kandel (075BCE116) Rijab Ali Miya (075BCE119) Safal Katwal (075BCE129) Sangam Poudel (075BCE142)

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS DEPARTMENT OF CIVIL ENGINEERING

CERTIFICATE

This is to certify that this project work entitled "EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF MULTIPURPOSE BUILDING" has been examined and declared successful for the fulfillment of academic requirements towards the completion of a Bachelor's Degree in Civil Engineering.

Project Supervisor Asst. Prof. Aakarsha Khawas

External Examiner Prof. Dr. Hari D. Shrestha

HOD, Department of Civil Engineering Prof. Dr. Gokarna Bahadur Motra

Internal Examiner Asst. Prof. Sunita Ghimire

ACKNOWLEDGEMENT

We would like to convey our sincerest gratitude to our project supervisor, Asst. Prof. Aakarsha Khawas, Department of Civil Engineering, Institute of Engineering, Pulchowk Campus. With her proficient guidance, incisive comments, contingent support, technical expertise, and persistent encouragement, we have been able to complete the project with a certain level of dedication and efficiency. Her experienced approach to any kind of structural analysis and design based on a practical approach has been insightful for us in developing a methodical platform to identify the problem and achieve the best possible solution with regard to available variables. We are truly indebted to her.

We are thankful to the Institute of Engineering in regard to the inclusion of the project work in the final year as an integral part of the curriculum. Furthermore, we would also like to express our gratefulness to the faculty of the Department of Civil Engineering, Pulchowk Campus for their tremendous support and guidance throughout the course of the project. We have attempted to incorporate their comments, suggestions, and bits of advice into our work to the best of our ability.

Finally, we would like to thank all the professors and lecturers of Pulchowk Campus who have directly or indirectly helped us over the duration of our project in different ways, including but not limited to, operating ETABS, and AutoCAD and understanding codes and design practices in the completion of this project work.

Prakrit Devkota (075BCE101) Priyanshu Pokhrel (075BCE109) Ram Krishna Kandel (075BCE116) Rijab Ali Miya (075BCE119) Safal Katwal (075BCE129) Sangam Poudel (075BCE142)

ABSTRACT

In the final semester of the curriculum of Bachelor's in Civil Engineering offered by Tribhuwan University, Institute of Engineering (IoE), an integral part of the course is the project work whereby the students are expected to implement their theoretical knowledge acquired in the span of the four years in Bachelor's, to various practical field. The projects can be along a wide spectrum of areas of Civil Engineering, which may be allocated by the institute or may be selected by the students themselves. Earthquakes have been one of the more significant factors that have a direct impact on the design of multi-storeyed frame buildings in seismically active earthquake-prone zones like Nepal. The aftermath of the Gorkha Earthquake in Baishakh 12, 2072 has created a scenario where more consideration has been given to proper earthquakeresistant design in Nepal. The damage incurred in the earthquake caused unprecedented loss during this time, and an attempt is to be made to minimize the disastrous impacts of such earthquakes in the future through proper design techniques. While it is not feasible to construct a completely earthquake-proof structure, emphasis is to be put on Earthquake Resistant Design. The project Earthquake Resistant Design of Commercial Building is chosen with the hope that the concerned parties are more aware of the concept of earthquake-resistant design in order to ensure adequate safety of both life and property.

This project work has been undertaken for the partial fulfillment of requirements for the Bachelor's Degree in Civil Engineering. This project work contains structural analysis, design, and detailing of a commercial building. All the theoretical knowledge on analysis and design acquired during the course works is utilized with practical application. The main objective of the project work is to acquaint us with the practical aspects of Civil Engineering. This report has been prepared by presenting all the works regarding analysis, design, and structural detailing of RCC framed structure including practically possible seismic considerations in a simple, clear, and concise manner. The advanced software: ETABS and AUTOCAD have been used for the analysis and detailing of structure, respectively. Manually prepared software on MS Excel has been used to design beams and columns. In addition, a step-by-step procedure of the manual has also been used to understand the structural action and it is followed to prepare the report.

TABLE OF CONTENTS

COPYRIGHTi
CERTIFICATEii
ACKNOWLEDGEMENTiii
ABSTRACTiv
LIST OF TABLES
LIST OF FIGURESx
NOTATIONSxi
ABBREVIATIONSxiii
1. INTRODUCTION14
1.1 Background14
1.2 Title and Theme of Project15
1.3 Objectives15
1.4 Salient Features15
1.4.1 Methods of Analysis17
1.4.2 Design
1.5 Limitations of the Project17
2. ASPECTS OF SEISMIC PERFORMANCE AND BUILDING DESCRIPTION
2.1 Seismic Performance of Building
2.2 Structural Layout
2.3 General Principles for the Design
2.4 Terminology20
3. DESIGN METHODS21
3. 1 Understanding and Design Philosophy21
3.2 Design Philosophies
3.3.1 Design loads
Earthquake Resistant Analysis and Design of Multipurpose Building by Prakrit Priyanshu Ram Rijab Safal Sangam V

3.3.2 Load assessment	.25
3.4.1 Lateral Load Assessment	.27
4. PRELIMINARY DESIGN	.31
4.1 Preliminary Design of Slab	.31
4.2 Preliminary Design of Beam	.33
4.2.1 Preliminary design of Primary beam	.33
4.2.2 Preliminary design of Secondary beam	.37
4.3 Preliminary Design of Column	.37
5. MODELING AND ANALYSIS IN ETABS	.42
6. CALCULATIONS	.45
6.1 Seismic Gap Calculation	.45
6.2 Soft Storey Check	.45
6.3 Eccentricity Check	.46
6.4 Calculation of Design Eccentricity	.47
6.5 Storey Drift Check	.50
6.6 Torsional Irregularity Check	.51
6.7 Modal Analysis Results	.52
7. STRUCTURAL DESIGN	.55
7.1 Design of structural elements	.55
7.2 Design of Slab	.55
7.3 Design of Beam	.67
7.4 Design of Columns	.91
7.5 Design of Staircase	107
7.6 Design of Basement Wall	116
7.7 Design of Lift Core Wall	121
7.8 Design of Mat foundation	126
7.9 Design of Ramp Slab	143
Earthquake Resistant Analysis and Design of Multipurpose Building by Prakrit Priyanshu Ram Rijab Safal Sangam	vi

CONCLUSION	146
REFERENCES	147

ANNEX A ANNEX B ANNEX C ANNEX D

LIST OF TABLES

Table 1: Storey Mass of Building 1	28
Table 2: Storey Mass of Building 2	29
Table 3: Storey Shear Calculation for Building 1	29
Table 4: Storey Shear Calculation for Building 2	30
Table 5: Soft Storey Check for Building 1	45
Table 6: Soft Storey Check for Building 2	46
Table 7: Eccentricity Check for Building 1	46
Table 8: Eccentricity Check for Building 2	47
Table 9: Calculation of Design Eccentricity of Building 1 in X direction	47
Table 10: Calculation of Design Eccentricity of Building 1 in Y direction	48
Table 11: Calculation of Design Eccentricity of Building 2 in X direction	48
Table 12: Calculation of Design Eccentricity of Building 2 in Y direction	49
Table 13: Storey Drift Check for Building 1	50
Table 14: Storey Drift Check for Building 2	50
Table 15: Torsional Irregularity Check for Building 1 in X-direction	51
Table 16: Torsional Irregularity Check for Building 1 in Y-direction	51
Table 17: Torsional Irregularity Check for Building 2 in X-direction	52
Table 18: Torsional Irregularity Check for Building 2 in Y-direction	52
Table 19: Modal Analysis Results for Building 1	52
Table 20: Modal Analysis Results for Building 2	53
Table 21: Summary of Flexural Design of Beam	71
Table 22: Summary of Required Reinforcement of Beam	72
Table 23: Summary of Provided Reinforcement for Beam	72
Table 24: General Information of Beam B2-C2	76
Table 25: Reinforcement Requirement for Beam B2-C2	77
Table 26: Provided Reinforcement for Beam B2-C2	77
Table 27: General Information of Beam C2-D2	78
Table 28: Required Reinforcement for Beam C2-D2	79
Table 29: Provided Reinforcement for Beam C2-D2	79
Table 30: Sway Force Calculation for Beam C2-D2	80
Table 31: General Information of Beam A2-B2	81

Table 32: Required Reinforcement for Beam A2-B2	81
Table 33: Provided Reinforcement for Beam A2-B2	82
Table 34: Shear Force From Sway Condition for Beam A2-B2	82
Table 35: General Information of Beam B2-C2	83
Table 36: Reinforcement Required for Beam B2-C2	84
Table 37: Provided Reinforcement for Beam B2-C2	84
Table 38: Shear Force From Sway Condition for Beam B2-C2	85
Table 39: General Information of Beam C2-D2	86
Table 40: Required Reinforcement for Beam C2-D2	86
Table 41: Shear Force From Sway Condition for Beam C2-D2	87
Table 42: General Information of Beam D2-E2	88
Table 43: Required Reinforcement For Beam D2-E2	89
Table 44: Provided Reinforcement for Beam D2-E2	89
Table 45: Shear Force Calculation for Beam D2-E2	90
Table 46: Design of Column for Building 1	91
Table 47: Calculation of Shear Force in Column in Building 1	98
Table 48: Design of Column of Building 2	99
Table 49: Calculation of Shear Force in Column of Building 2	106
Table 50: Design Of Staircase of Building 1	108
Table 51: Design of Staircase of Building 2	112
Table 52: Lateral Force Calculation for Lift Core Design	123
Table 53: Design Stress for Building 1	129
Table 54: Moment Calculation for Foundation Design of Building 1 in X-direction	130
Table 55: Moment Calculation for Foundation Design of Building 1 in Y-direction	130
Table 56: Design Stress Calculation for Building 2	137
Table 57: Moment Calculation for Foundation Design of Building 2 in X-direction	138
Table 58: Moment Calculation for Foundation Design of Building 2 in Y-direction	138

LIST OF FIGURES

Figure 1: Stress-Strain Curve for Concrete and Stress Block Parameters	22
Figure 2: Load Distribution Pattern in Two-way Slab	31
Figure 3: Influence Area for Column Design	38
Figure 4: Influence Area for Column Design	40
Figure 5: Rendered ETABS Model of Building 1	42
Figure 6: Rendered ETABS Model of Building 2	42
Figure 7: Axial Force Diagram of Building 2	
Figure 8: Axial Force Diagram of Building 1	43
Figure 9: Shear Force Diagram in Building	
Figure 10: Shear Force Diagram of Building 1	43
Figure 11: Bending Moment Diagram of Building 2	
Figure 12: Bending Moment Diagram of Building 1	44
Figure 13: Design Strip for Slab	57
Figure 14: L, Rectangular and T Beam	67
Figure 15: Typical Staircase	107
Figure 16: Design of Basement Wall	116
Figure 17: Lift Core	121
Figure 18: Types of Columns Used in Foundation	131
Figure 19: Ramp Dimensions	143

NOTATIONS

Gross Area of Concrete
Horizontal Seismic Coefficient
Area of Steel in Compression
Area of Steel in Tension
Area of Steel Required
Horizontal Seismic Coefficient
Support Width
Width
Effective Depth
Effective Cover
Overall Depth
Modulus of Elasticity
Characteristics Strength of Concrete
Characteristics Strength of Steel
Steel Stress of Service Load
Height of Building
Importance Factor (For Base Shear Calculation)
Moment of Inertia about X and Y-axis respectively
Structural Performance Factor
Stiffness in X-direction
Stiffness in Y-direction
Length of Member
Clear span of slab along shorter and longer direction respectively
Effective span of slab along shorter and longer direction respectively

L _d	Development Length of bar
Μ	Bending Moment
Mu M _{u,max}	Factored Moment Maximum Bending Moment
Pu	Factored Axial Load
Pt	Percentage of Tensile Reinforcement
Pc	Percentage of Compressive Reinforcement
Q	Design Lateral Force
R	Response Reduction Factor
Sa/g	Average Response Acceleration Coefficient
\mathbf{S}_{v}	Spacing
Ta	Fundamental Natural Period of Vibrations
V_b	Design Seismic Base Shear
V_u	Factored Shear Force
W	Seismic Weight of Floor
W_u	Design Load
X_u	Actual Depth of Neutral Axis
Ζ	Zone Factor
$ au_c$	Allowable Shear Stress
$ au_{ m v}$	Nominal Shear Stress
Φ	Diameter of Bar

ABBREVIATIONS

DL	Dead Load
EQ _x	Earthquake Load in X-
	direction
EQy	Earthquake Load in Y-
	direction
LL	Live Load
IS	Indian Standard
RCC	Reinforced Cement Concrete
Cl	Clause

1. INTRODUCTION

1.1 Background

The rapid growth of urbanization in recent decades has spurred the development of multistory structures around the world, particularly in emerging economies. The shortage of land in highly populated areas of the world is a major economic motivation for the rise of tall (especially residential) buildings. The race to create the highest buildings in a city, country, region, or world has fueled the growth of tall buildings all around the world.

In recent decades, the competition to build the tallest buildings has been expanded to include the competition to build the most iconic and aesthetically outstanding structures, which are generally characterized by complex geometrics and leaning/twisting forms. Earthquakes, as one of the most devastating natural disasters, have prompted further consideration in the design of these structures.

The design of the structure has been given special consideration as a result of the earthquake. With a magnitude of 7.8Mw and a maximum Mercalli Intensity of VIII, it struck around 11:56 Nepal Standard Time on April 25, 2015 (severe). The entire damage was estimated to exceed \$5 billion, with 8,959 people killed and 23,447 injured. Its epicenter was in Gorkha's Barpak. It is the deadliest natural disaster to strike Nepal since the earthquake that struck Nepal and Bihar in 1934. Hundreds of thousands of people were displaced, and entire communities were leveled in several parts of the country. At UNESCO World Heritage sites in the Kathmandu Valley, centuries-old structures were demolished. Nepal is located on the southern end of the diffuse collision boundary, which occurs when the Indian Plate pushes into the Eurasian Plate. In central Nepal, the plates are convergent at a rate of around 45 mm (1.8 in) every year.

For the seismic design and analysis of multistory buildings, it is important to consider the earthquake effect (seismic effect), unique loading patterns, and subsurface bearing capacity. Given that our country is located in an active tectonic zone where the Indian plate is thrusting against the Eurasian plate, multistory structure design that ignores seismic forces is unavoidable. For the seismic design and analysis of multistory buildings, it is important to examine the seismic effect, loading pattern, soil bearing capability, and other factors. In response to this, we recommend completing a project on **"Earthquake Resistant Analysis and Design of Multipurpose Building"**

1.2 Title and Theme of Project

The project's title is "Earthquake Resistant Analysis and Design of Multipurpose Building."

The major goal of the project work under this title is to gain knowledge and skills with a focus on application. Aside from the use of analytical methodologies and design approaches, another goal of the project work is to expose and use various accessible codes of practice.

1.3 Objectives

The specific objectives of the project work are:

- Identification of structural arrangement in building plan
- Sectional design of structural components.
- Structural detailing of members.

Scopes of Project Work are

- Identification of the building and the requirement of the space.
- Determination of the structural system of the building to undertake the vertical and horizontal loads.
- Estimation of loads including those due to earthquakes.
- Preliminary design for the geometry of structural elements.
- Determination of fundamental time period by free vibration analysis.
- Calculation of base shear and vertical distribution of equivalent earthquake load.
- Identification of load cases and load combination cases.
- Finite element modelling of the building and input analysis.
- The structural analysis of the building by ETABS 19 for different cases of loads.
- Review of analysis outputs for the design of individual components.
- Design of RC frame members (slabs, beams, and columns), walls, isolated and combined foundation, staircase, and others by limit state method of design
- Detailing of individual members and preparation of drawings as a part of a working construction document.

1.4 Salient Features

1) Name of the Project: Earthquake Resistant Analysis and Design of Multistory Multipurpose Building

2) Location:

a) Province: Lumbini

b) District: Gulmi

3) Type of Building: Multipurpose Building

- 4) Structural System: Special Moment Resisting Frame
- 5) Soil Type: II
- 6) Seismic zone: V
- 7) No of Story:

Building 1: 2 Basements + 7 floors

Building 1: Basement + 7 floors + Staircase Cover

8) Dimension of building:

- a) Length: Building 1 19.5 m Building 2 20.2m
- b) Maximum Breadth: 21.5 m
- 9) Type of Staircase: Dog-legged
- 10) Type of foundation: Raft Foundation

11) Floor Height:

- a) Basement: 3.6 m
- b) Typical: 3.6 m
- c) Staircase cover: 3.6 m
- 12) Infill wall: Brick Masonry
 - a) Main wall: 0.230 m
 - b) Partition wall: 0.110 m
- 13) Design criteria: As per IS code
- 14) Size of structural elements:
 - a) Beam: 650*350 mm, 350*250mm
 - b) Column: 650*650 mm
 - c) Slab thickness: 150 mm
 - d) Depth of footing: 0.925 m

15) No of columns:

- a) Basement: 45
- b) Typical: 45
- c) Staircase cover: 4
- 16) Number of lifts available: 1

Codes followed

The following codes were used for structural analysis and design:

- Indian Standard, Code of Practice for Plain and Reinforced Concrete IS 456:2000.
- Design Aids for Reinforced Concrete to IS 456:2000, SP-16.
- Criteria for Earthquake Resistant Design of Structures IS 1893:2016.
- Ductile Design and Detailing of Reinforced Concrete Structures Subjected to Seismic forces Code of Practice IS 13920:2016.
- Code of practice for Design loads IS 875 part-I (Dead load).
- Code of practice for Design loads IS 875 part- II (Imposed load).

1.4.1 Methods of Analysis

ETABS 19 is adopted as the basic tool for the analysis of the structure and this program is based on the finite element method. The stresses and displacement of various structural elements of the building are obtained using this program which is used for the design of the structural members. Lift walls, Foundation, Slab, and Staircase are analyzed separately. IS 1893-2016 (part 1) is followed for the seismic analysis of the building. The fundamental time period of the structure is calculated as specified in the code.

1.4.2 Design

Limit state method is used for the design of RC elements.

The following materials are adopted for the design of elements:

- Grade of concrete M30 for Beam, Slab, Column & Foundation.
- Grade of reinforced steel Fe500 for longitudinal as well as lateral bar.

1.5 Limitations of the Project

Due to various constrictions prevailing in the course of the project work, the study is limited in the following aspects:

- Early feasibility of the project is assumed to be done.
- Building is modified architecturally.

- Data manipulation is checked manually with underlying concepts but some similar sections are relied solely on software due to time limitations.
- In-plane stiffness of the wall is not considered.

2. ASPECTS OF SEISMIC PERFORMANCE AND BUILDING DESCRIPTION

Nepal has witnessed several major disasters due to earthquakes in the current decade. Earthquakes do not kill people but poorly designed or constructed buildings do. These earthquakes have clearly brought out that we need to have a comprehensive strategy for disaster mitigation which should include planning, design and construction of earthquake resistant buildings through strict compliance of codal provisions for earthquake countermeasures.

The general philosophy of earthquake-resistant building design is that:

- Under minor but frequent shaking, the main members of the building that carry vertical and horizontal forces should not be damaged; however, building parts that do not carry load may sustain repairable damage.
- Under moderate but occasional shaking, the main members may sustain repairable damage while the other parts of the building may be damaged such that they may even have to be replaced after the earthquake.
- Under strong but rare shaking, the main members may sustain severe (even irreparable) damage, but the building should not collapse.

2.1 Seismic Performance of Building

In recent earthquakes, concrete structures have been severely damaged or collapsed, which has raised questions about the seismic adequacy of existing buildings. The behavior or level of performance of a building during earthquakes depends critically on its overall shape, size, and geometry. Generally, it is common that an architect fixes the configuration i.e. shape, size, and geometry of a building and the structural engineer adds the structural design. The conventional approach to the earthquake-resistant design of buildings depends upon providing the building with strength, stiffness, and inelastic deformation capacity which are great enough to withstand a given level of earthquake-generated force. This is generally accomplished through the selection of an appropriate building configuration and the careful detailing of structural members.

2.2 Structural Layout

When creating a frame building, structural member in regard to their stiffness are to be uniformly distributed and these should be well framed up in both orthogonal directions with nearly uniform spans. It is always advisable to provide stiffer elements such as walls or bracings Earthquake Resistant Analysis and Design of Multipurpose Building by Prakrit Priyanshu Ram Rijab Safal Sangam 18 along the perimeter of the building rather than concentrating them in the centre of the building, whatever be the structural system. It results in enhanced torsional resistance of the building giving it additional earthquake protection. It helps to maintain similar stiffness in both directions. An additional force viz. torsion emerges when the Centre of Gravity does not coincide the Centre of Stiffness.

2.3 General Principles for the Design

On starring at the overview of structural action, mechanism of damage and modes of failure of buildings, we can come up with following considerations: -

- Structures should not be brittle or collapse suddenly. Rather, they should be tough, able to deflect or deform a considerable amount.
- Resisting elements, such as bracing or shear walls, must be provided evenly throughout the building, in both directions side-to-side, as well as top to bottom.
- All elements, such as walls and the roof, should be tied together so as to act as an integrated unit during earthquake shaking, transferring forces across connections and preventing separation.
- The building must be well connected to a good foundation and the earth.
- Wet, soft soils should be avoided, and the foundation must be well tied together, as well as tied to the wall. Where soft soils cannot be avoided, special strengthening must be provided.
- Care must be taken that all materials used are of good quality, and are protected from rain, sun, insects and other weakening actions, so that their strength lasts.
- Unreinforced earth and masonry have no reliable strength in tension, and are brittle in compression. Generally, they must be suitably reinforced by steel or wood. Adherence to above mentioned simple rules, a designer can give a structure that does not prevent all damage in moderate or large earthquakes, but life-threatening collapses can be prevented, and damage limited to repairable proportions. These principles fall into several broad categories, some of which are listed as under:
 - i. Planning and layout of the building involving consideration of the location of rooms and walls, openings such as doors and windows, the number of stories, etc. At this stage, site and foundation aspects should also be considered.
 - ii. Layout and general design of the structural framing system with special attention to furnishing lateral resistance.
- iii. Consideration of highly loaded and critical sections with provision of reinforcement as required.

2.4 Terminology

Response reduction factor:

The response reduction factor assigned to different types of structural systems reflects design and construction experience, as well as evaluation of performance of structure in major and moderate earthquakes. It endeavors to account for the energy absorption capacity of the structural system by damping (which is normally taken as 5% of critical damping for RCC structures) and inelastic action through several load reversals.

R values reflect the degree of continuity and ductility provided for structural systems. A building with a value of R equal to 1.0 corresponds to a structural system exhibiting little or no ductility and value greater than 1.0 is presumed to be capable of undergoing inelastic cyclic deformation.

The value of R is taken as 5 for RCC moment resisting frame specially designed to provide ductile behaviour and comply with requirements given in IS:13920:2016.

Number of modes:

The number of modes to be considered in the response spectrum analysis should be such that at least 90% of the seismic mass of the structure gets excited in each of the principal horizontal directions.

Closely spaced modes:

Closely spaced modes of structure are those of its natural modes of vibration whose natural frequencies differ from each other by 10 percent or less of the lower frequency i.e.

 $(\omega_j - \omega_i)/\omega_i \le 0.1$ where,

 $\omega j = any$ frequency of mode

 $\omega i =$ lower frequency of the mode.

Modes failing to fulfill the above criteria are widely spaced modes.

Storey drift:

The relative inter-storey horizontal displacement is referred to as storey drift. A limitation on storey drift is necessary to avoid discomfort to occupants of the building and to save non-structural elements from damage .A drift limitation of 0.004 times or (0. 4%) the storey height in the elastic range is imposed by IS 1893(part 1):2016.

Regularity:

The regularity of a building can significantly affects its performance during a strong earthquake. Past earthquakes have repeatedly shown that buildings having irregular configurations suffer greater damage than buildings having regular configuration.

Regular structure have no significant physical discontinuities in plan, vertical configuration or in their lateral force resisting system whereas, irregular structure have significant physical discontinuities in configuration or in their lateral force resisting system. They may have; either plan irregularity or vertical irregularity or mass irregularity.

Dynamic analysis shall be performed in accordance to IS 1893(part 1):2016, clause 7.7.

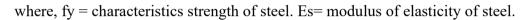
3. DESIGN METHODS

3.1 Understanding and Design Philosophy

The satisfactory performance of the building against all possible worst conditions is the main aim of analyzing and designing the building. So that the buildings fulfill the functions for which they have been built during their intended life. In this project, limit state method of design is used for designing the structural elements. And the structural design of reinforced cement concrete is the main concern.

3.2 Design Philosophies

Basically, there are four design philosophies for RCC structure.


- I. Working stress design
- II. Ultimate load design
- III. Limit state design
- IV. Performance based design

Limit State Design: Limit state design is originally based on ultimate or plastic design. This method is the probabilistic approach. Limit state is a particular condition at which a structure becomes unfit for its intended purpose. It may be also defined as the acceptable limits for the safety and serviceability requirements of the structure before failure occurs. The object of design is to achieve an acceptable probability the structure will not become unserviceable in its life time. The structure is designed to withstand safely all loads liable to act on it; it shall also satisfy the serviceability requirement, such as limitation on deflection, cracking and vibration. This method accommodates both variation in material strength and the variation in loading. Two types of limit states must be examined in design and are given below:

Assumptions for the limit state of collapse in flexure:

- a. The plane section normal to the axis of member remains plane after bending.
- b. The maximum strain in concrete at the outermost compression fiber is 0.0035.

- c. The relationship between the compressive stress distribution in concrete and the strain in the concrete may be assumed to be rectangle, trapezoid, parabola or any other shape. For design purpose, the compressive strength of concrete in the structure shall be assumed to be 0.67 times the characteristic strength. The partial safety factor $\Upsilon m= 1.5$ shall be applied.
- d. The tensile strength of concrete is ignored.
- e. The stresses in the reinforcement are derived from the representative stress-strain curve for the type of steel used. For design purpose the partial safety factor Υm = 1.15 shall be applied.
- f. The maximum strain in the tension reinforcement in the section at failure shall not be less than: $\frac{fy}{1000} + 0.02$
 - 1.15Es

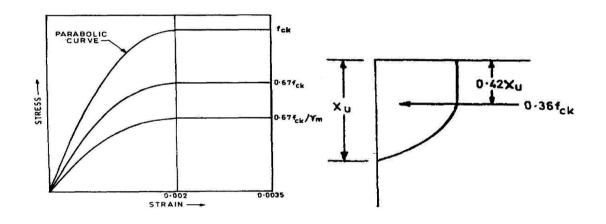


Figure 1: Stress-Strain Curve for Concrete and Stress Block Parameters

Assumptions for the limit state of collapse in compression:

In addition to the assumptions for limit state of collapse in flexure from (a) to (f), the following shall be assumed:

- a. The maximum compressive strain in concrete in axial compression is taken as 0.002.
- b. The maximum compressive strain at the highly compressed extreme fiber in concrete subjected to axial compression and bending and when there is no tension on the section shall be 0.0035 minus 0.75 times the strain at least compressed extreme fiber.

The most important of these limit states which must be examined in design are as follows:

Limit state of collapse

Earthquake Resistant Analysis and Design of Multipurpose Building by Prakrit Priyanshu Ram Rijab Safal Sangam

This state corresponds to the maximum load carrying capacity. Violation of collapse limit state implies failure in sense that a clearly defined limit state of structural usefulness has been exceeded. However, it does not mean a complete collapse. This limit state may correspond to:

- a. Flexure
- b. Compression
- c. Shear
- d. Torsion

Limit state of serviceability

This state corresponds to development of the excessive deformation and is used for checking members in which magnitude of deformation may limit the use of the structure or its components. This state may correspond to:

- a. Deflection
- **b.** Cracking
- **c.** Vibration.

a. Control of deflection

The deflection of a structure shall not adversely affect the appearance or efficiency of the structure or finishes or partitions. Two methods are given in code for checking the deflections. These are:

- Limiting the span/effective depth ratio given in clause 23.2, IS: 456-2000 which should be used in all normal cases, and
- Calculation of deflection given in Appendix C of code to be followed in special cases.

b. Control of cracking

Cracking is a very complex phenomenon. Design considerations for crack control would require the following:

- Expression for crack width and spacing, and (Annex F of IS 456:2000).
- Allowable crack widths under different service conditions with due considerations to corrosion and durability of concrete (Clause 35.3.2 of IS 456:2000).
- Unless the calculation of crack widths shows that a greater spacing is acceptable for the flexural members in normal internal or external conditions of exposure, the maximum distance between bars in tension shall not exceed the value as given in IS 456:2000, Clause 26.3.3.

• Cracks due to bending in compression member subjected to design axial load

>0.2fck×Ac, need not be checked. For flexural members (A member which is subjected to design load <0.2fck×Ac) if greater spacing of reinforcements as given in Clause 26.3.2, IS 456:2000 is required, the expected crack width should be checked by formula given in Annex F of IS 456:2000.

c. Control of Vibration

A dynamic load is any load of which the magnitude, direction or position varies with the time and almost any RCC structural system may be subjected to one form or another loading during its life-time. Similarly structural response i.e. resulting stresses or deflections is also timevarying or dynamic and is expressed in terms of displacements. The limit state concept of design of reinforced concrete structures takes into account the probabilistically and structural variation in the material properties, loads and safety factors.

d. Loads

Basic objective of constructing building or any structure is to support loads. There are different types of loads, which come across and have to be dealt during analysis and design of any structure.

3.3.1 Design loads

The buildings and structures are subjected to a number of loads, forces and effects during their service life. The following loads usually determine the size of structural element:

- a. Dead load (DL)
- b. Imposed load (IL)
- c. Wind load (WL)
- d. Earthquake load (EL)

Beside above-mentioned loads, the effect of other forms of load such as fatigue, construction loads, accidental loads, impact and collision, explosions, fire, etc. should also be considered in design of structure.

Loading Pattern

Dead loads are computed from the dimensions of the structural member such as walls, beams, slabs, etc. and their material densities confirming to IS 875 (Part I). The uniformly distributed dead and live load acting on the slab are transferred to the beams holding the slab. The slab load is distributed on the floor beams as shown in figure below. The smaller beam holds the

triangular load and the longer beams hold the trapezoidal load as shown in figure. The beam element also resists the self-weight and the wall load including all the finish loads on wall. The load from beam is transferred to the column which in turn transfers all the load to the foundation.

Lateral load is transferred through the diaphragms. The diaphragms take lateral forces from the storey at or above their level and transfers them to the frames in the storey immediately below. Shear walls receive lateral forces from diaphragms and transmit them to the foundations.

Load Combinations

Various load cases and combinations are considered in order to obtain the critical loading in the structure. The load combinations taken are as follows:

- 1.2 (DL + IL \pm (EL_X \pm 0.3EL_Y \pm 0.3EL_Z))
- 1.2 (DL + IL \pm (EL_y \pm 0.3EL_x \pm 0.3EL_Z))
- $(DL \pm (EL_x \pm 0.3EL_y \pm 0.3EL_Z))$
- $(DL \pm (EL_Y \pm 0.3EL_X \pm 0.3EL_Z))$
- 0.9 DL ± 1.5 (EL_X ± 0.3 EL_Y ± 0.3 EL_Z))
- 0.9 DL ± 1.5 (EL_Y ± 0.3 EL_X ± 0.3 EL_Z)
- $1.2 (DL + IL + (RS_X + 0.3RS_Y + 0.3RS_Z))$
- $1.2 (DL + IL + (RS_y + 0.3RS_x + 0.3RS_Z))$
- $1.5 (DL + (RS_x + 0.3RS_y + 0.3RS_Z))$
- $1.5 (DL + (RS_Y + 0.3RS_X + 0.3EL_Z))$
- 0.9 DL +1.5 ($RS_X + 0.3RS_Y + 0.3RS_Z$)
- 0.9 DL +1.5 (RS_Y + 0.3 RS_X + 0.3 RS_Z)

3.3.2 Load assessment

The proposed building is a RCC framed structure, located in Kathmandu. Thus wind loads, snow loads, and other special types of loads, as described by IS 875part 5):1987 can be taken as negligible as compared to the dead, live and seismic loads.

a. **Dead Loads**: According to the IS 875(Part 1):1987, the dead load in a building shall comprise the weights of all walls, partitions, beam, column, floors and roofs and shall include the weights of all other permanent features in the building.

b. Live Loads: It means the load assumed or known resulting from the occupancy or use of a building and includes the load on balustrades and loads from movable goods, machinery and plant that are not an integral part of the building. These are to be chosen from IS 875(Part

2):1987 for various occupancies where required. The code permits certain modifications in the load intensities where large contributory areas are involved, or when the building consists of many stories.

c. **Eccentricity of vertical loads**: When transferring the loads from parapets, partition walls, cladding walls and facade walls, etc. to the supporting beams or columns, the eccentricity with these loads should be properly considered in the case of rigid frames of reinforce concrete. Such eccentricities will produce externally-applied joint moments similar to these arising from projecting cantilevers and these should be included in frame design.

d. Seismic Loads: These are the loads resulting from the vibration of the ground underneath the super-structure during an earthquake. Earthquake is an unpredictable natural phenomenon. Nobody knows the exact timing and magnitude of such loads. Seismic loads are to be determined essentially to produce an earthquake resistant design.

Since the probable maximum earthquake occurrence is not frequent, designing building for such earthquake isn't practical as well as economically prudent. Instead, reliance is placed on kinetic dissipation in the structure through plastic deformation of elements and joints and the design forces are reduced accordingly. Thus, the philosophy of seismic design is to obtain a no-collapse structure rather than no-damage structure.

Estimation of Loads

It is one of the most important steps in structural design. Proper recording of them is required for confusion free analysis.

Dead loads:

- a. Calculate the weight of those elements of building whose dimensions are fixed already from functional considerations and can be worked out carefully. These are generally non-structural elements and of parapets, rooftops, railings, etc.
- b. From pre-design, calculate weight of structural elements such as beam, column, slab etc.
- c. Put all loads systematically on sketches, say plan wise, showing their gravity lines with reference to column center-lines.

S.N.	Material Used	Unit Weight	Type of Member
1	Cement Concrete for RCC	25 KN/m ³	Beam, Column, Slab
2	Finishing	1 KN/m ³	All flooring spaces

3 B1	Brick Masonry	19 KN/m ³	Walls
------	---------------	----------------------	-------

Live loads:

The details of imposed loads acting on the floors and roof of the building are also evaluated from the type of building (Commercial) and type of occupancy from IS 875 Part 2.

Seismic or earthquake loads:

Earthquake or seismic load on a building depends upon its geographical location, lateral stiffness and mass, and is reversible.

IS 1893:2016 was followed for the calculation of the earthquake loads, which specifies two methods:

Seismic coefficient method

Response spectrum method

3.4.1 Lateral Load Assessment

3.4.1.1 Base Shear Calculation

According to IS 1983 (Part 1): 2016 Cl. No. 6.4.2 the design horizontal seismic coefficient A_h for a structure shall be determined by the following expression:

$$A_h = \frac{ZIS_a}{2Rg}$$

Where,

Z = zone factor given by IS 1893 (Part 1):2016 Table 2, for zone V, Z = 0.36

I = Importance factor, 1.2

R = Response reduction factor given by IS 1893 (Part 1): 2016 Table 7, R = 5 for SMRF

 $S_a/g =$ Average response acceleration coefficient which depends on the fundamental natural period of vibration (T_a)

According to IS 1893 (Part 1):2016 Clause 7.4.2

 $T_a = 0.075 \ h^{0.75} \ seconds$

Where h is the height of the building above ground level in m.

For Building 1:

h= 28.8 m $T_a = 0.075 * 28.8^{0.75} = 0.932$ $S_a/g = 1.36/T = 1.459$ $A_h = 0.063$ For Building 2: h = 25.2 m
$$\begin{split} T_a &= 0.075 * 25.2^{0.75} = 0.843 \\ S_a/g &= 1.36/T = 1.61 \\ A_h &= 0.0696 \\ \text{According to IS 1893 (Part 1: 2016) Cl. 7.5.3, the total design lateral force of the design seismic base shear (V_B) along any principal direction is given by: \\ V_B &= A_h * W \\ \text{Where W = seismic weight of the building} \\ \text{Base shear of building 1 = } A_h * W = 0.063 * 41742.97 = 2629 \text{ KN} \\ \text{Base shear of building 2 = } A_h * W = 0.0696 * 39682.09 = 2761.87 \text{ KN} \\ \text{According to IS 1893 (Part 1: 2016) Cl. 7.7.1, the design base shear computed as above shall be distributed along the height of the building as per the following expression: \\ \end{bmatrix}$$

$$\mathbf{Q}_{i} = \mathbf{V}_{b} \frac{W_{i}h_{i}^{2}}{\sum_{i=1}^{n} W_{i}h_{i}^{2}}$$

Where,

 Q_i = Design lateral force at floor i

 W_i = Seismic weight at floor i

 H_i = height of floor I measured from base

N= no. of stories in the building

Calculation of Seismic Weight

Building 1

Table : Storey mass summary				
Floor	Ux	Uy		
Тор	387894.14	387894.14		
Sixth	572414.53	572414.53		
Fifth	544975.07	544975.07		
Fourth	497830.74	497830.74		
Third	566073.03	566073.03		
Second	569895.06	569895.06		
First	551633.28	551633.28		
Ground	564428.71	564428.71		
Total	4255144.56			

Total seismic weight (W) = 4255144.56 kg

= 41742.96 KN

Building 2

Table 2: Storey Mass of Building 2

Table: Storey mass summary				
Floor	Ux	Uy		
STAIR				
COVER	69019.14	69019.14		
ТОР	422217.3	422217.3		
6th	514057.09	514057.09		
5th	563753.64	563753.64		
4th	503362.51	503362.51		
3rd	564963.1	564963.1		
2nd	553034.72	553034.72		
1st	567425.21	567425.21		

Total seismic weight(W) = 4045065.24 kg

= 39682.09 KN

3.4.1.2 Story Shear Calculation

Building 1:

Table 3: Storey Shear Calculation for Building 1

Floor	Height	Seismic weight	Wi*hi^2(1)	1/sum(1)	Design lateral load at each storey	Storey shear
Тор	28.8	3805.242	3156219.521	0.244	640.514	640.513628
Sixth	25.2	5615.387	3565995.068	0.275	723.672	1364.18586
Fifth	21.6	5346.205	2494325.609	0.193	506.191	1870.37675
Fourth	18	4883.720	1582325.137	0.122	321.112	2191.48902
Third	14.4	5553.176	1151506.663	0.089	233.683	2425.17229
Second	10.8	5590.671	652095.812	0.050	132.334	2557.50664
First	7.2	5411.522	280533.325	0.022	56.931	2614.43722
Ground	3.6	5537.046	71760.112	0.006	14.563	2629
Total			12954761.25	1		

Building 2:

Floor	Height	Seismic	Wi*hi^2(1)	1/sum(1)	Design lateral load at	Storey
		weight	WI III 2(1)		each storey	shear
STAIR						
COVER	28.8	677.078	561595.38	0.0599972	165.7	165.7046
ТОР	25.2	4141.952	2630305.02	0.2810049	776.1	941.8035
6th	21.6	5042.900	2352815.45	0.2513597	694.2	1636.026
5th	18	5530.423	1791857.12	0.1914305	528.7	2164.732
4th	14.4	4937.986	1023940.82	0.1093913	302.1	2466.857
3rd	10.8	5542.288	646452.474	0.0690628	190.7	2657.599
2nd	7.2	5425.271	281246.028	0.0300465	83.0	2740.584
1st	3.6	5566.441	72141.0794	0.0077071	21.3	2761.87
Total			9360353.37	1		

Table 4: Storey Shear Calculation for Building 2

4. PRELIMINARY DESIGN

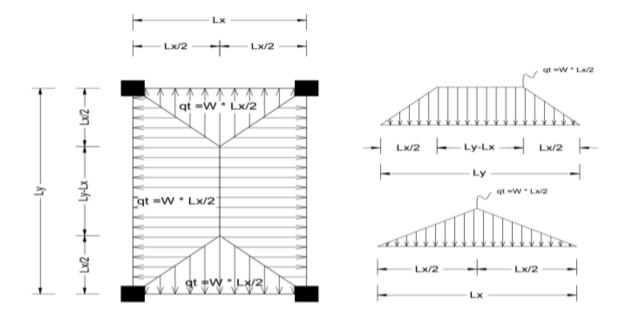


Figure 2: Load Distribution Pattern in Two-way Slab

Preliminary design of structural members is carried out in order to estimate the approximate size of the members. The design is done with limited information regarding imposed loads, dimensions, etc. Preliminary design is essential for initial cost estimations, comparison between different alternatives, initial estimate for computer-based analysis and also for checking the results of detailed design.

4.1 Preliminary Design of Slab

Preliminary sizing of the slabs is worked out as per the limit state of serviceability (deflection) consideration by conforming to IS456:2000 Clause: 23.2.1.

Preliminary design of slab

For the design of slab: DE45

The project building has the largest span of 6000mm X 6000mm.

lx = 6000 mm

ly = 6000 mm

(ly/lx) = (6000/6000)

Hence the slab is two-way continuous slab.

From IS 456:2000 Clause 23.2

Control of Deflection, we can draw out the following methodical steps to get the thickness of slab. Here d represents the thickness of the slab

 $\frac{span(l)}{effective \; depth(d)} \leq \alpha \beta \gamma ld$ Here, 1 = 1x = 6000 mmAssume $\alpha\beta\gamma$ ld=35 So, $d \ge \frac{lx}{\alpha\beta\gamma ld}$ ≥6000/35 ≥171.42(>150)

Since d came out to be greater than 150mm, we need to provide a secondary beam which cuts the longest side into two equal halves.

But other slabs are not as big as the aforementioned slab. So preliminary design of another slab is done.

For design of slab: CD34

lx = 4500 mmly = 5700 mm(1y/1x) = (5700/4500)= 1.27

Hence the slab is two-way continuous slab.

From IS 456:2000 Clause 23.2

Control of Deflection, we can draw out the following methodical steps to get the thickness of slab. Here d represents the thickness of the slab

 $\frac{span(l)}{effective \; depth(d)} \leq \alpha \beta \gamma ld$ Here, l = lx = 4500 mmAssume $\alpha\beta\gamma$ ld=35 $d \ge \frac{lx}{\alpha\beta\gamma ld}$ ≥4500/35 ≥128.57mm

So,

Assuming diameter of bars=10mm

Clear cover =15mm

We get,

 $D=d+(\frac{\emptyset}{2})+15$

=128.57+5+15

=148.57mm

So, the overall depth of slab is adopted as 150mm.

4.2 Preliminary Design of Beam

Preliminary sizing of the beam is worked out as per the limit state of serviceability

(deflection) consideration by conforming to IS456:2000 Clause: 23.2.1 similar to that of slab element.

4.2.1 Preliminary design of Primary beam

For Building 1:

A. By Deflection Criteria

The methodical steps in designing the beam element preliminarily with respect to IS

456:2000, IS 1893, IS13920, IS 4326 are same as the slab element.

Hence, from Clause 23.2 Control of Deflection of IS 456:2000 we can draw out the following methodical steps to get the depth of beam.

$$\frac{span(l)}{effective \; depth(d)} \leq \alpha \beta \gamma ld$$

where,

Span(1)=6m=6000mm

Assume $\alpha\beta\gamma$ ld=15

 $d \ge \frac{l}{\alpha\beta\gamma ld}$

≥6000/15

≥400mm

A clear cover of 25mm for main bar of diameter 20 mm, we get the overall depth of beam as: Overall Depth of Beam (D) = Effective Depth + 0.5*Dia + Clear cover

```
=deff + 0.5 × Ø + clear cover
=400+ 0.5 × 20 + 25 (Ø is taken 20 mm)
=435mm
```

B. By Moment Criteria Area of influence:

Division of load is done according to yield line theory:

Two portions of a slab are taken as shown in the figure below:

For the beam D4E4,

Influence area= $17.405m^2$

Load calculations for critical beam

Dead Load Due to Slab:

DL =unit weight of concrete*influence area*depth of slab

=25KN/m3 x 17.405m2 x 0.150m

=65.26 KN

Dead load of ceiling plaster 12.5mm thick=20.4 x 0.0125 x 17.405

=4.43 KN

Self-weight of beam = 25*0.435*(0.435/1.5) *6

= 18.93 KN

Total Dead Load=65.26 + 4.43 + 18.93 = 88.61 KN

Live Loads on Beam:

Live Load = $LL = 4 \text{ KN/m}^2$ (Ref. 875 Part II)

Live Load on influence area = $4 \times 17.405 = 69.62$ KN

Wall Loads on Beam:

External Wall Thickness = 230 mm

Wall Load =unit wt. x (floor ht. - depth of slab) x thickness x span

=20 x (3.6-0.15) x 0.23x 6 x 0.85

= 80.93 KN

(15% of load is reduced for openings)

So,

Total Load=88.610 + 69.62 + 80.93

Factored load=1.5*239.16

=358.75 KN

Load intensity = Factored load/span

=358.75/6

=59.79 KN/m

Maximum bending moment = wl2/10

= (59.79*6*6)/10= 215.25 KN-m Assuming balanced section Take d/b=1.5 We have, M(max)=0.133*f_{ck}*b*d² (For Fe500 steel) 189.604=0.133*30*b*1.5b*1.5b On solving, We get b=288.35mm Then, d = 1.5*288.35 = 432.53mm

Adopt D=500mm

B=300mm

The adopted values are subject to change depending upon the prevailing design conditions.

For Building 2:

<u>A. By Deflection Criteria</u> $\frac{span(l)}{effective \ depth(d)} \leq \alpha\beta\gamma ld$ Where,

Span(l)=6.5 m=6500mm(C4D4)

Assume $\alpha\beta\gamma ld=15$

 $d \ge \frac{l}{\alpha\beta\gamma ld}$ $\ge 6500/15$ $\ge 433.33 \text{ mm} = 450 \text{mm}$

A clear cover of 25mm for main bar of diameter 20 mm, we get the overall depth of beam as:

Overall Depth of Beam (D) = Effective Depth + 0.5*Dia + Clear cover

B. By Moment Criteria Area of influence:

Division of load is done according to yield line theory: Influence area=20.625m² Load calculations for critical beam: Dead Load Due to Slab:

DL =unit weight of concrete*influence area*depth of slab =25KN/m3 x 20.625 m2 x 0.150m =77.34 KN Dead load of ceiling plaster 12.5mm thick=20.4 x 0.0125 x 20.625 =5.26 KN Self-weight of beam = 25*0.485*(0.485/1.5)*6.5= 25.48 KN Total Dead Load =77.34 + 5.26 + 25.48 = 108.08 KN Live Loads on Beam: Live Load = $LL = 4 \text{ KN/m}^2$ (Ref. 875 Part II) Live Load on influence area = $4 \times 20.625 = 82.5$ KN Wall Loads on Beam: External Wall Thickness = 230 mm Wall Load =unit wt. x (floor ht. - depth of slab) x thickness x span =20 x (3.6-0.15) x 0.23x 6.5 x 0.85 = 87.68 KN(15% of load is reduced for openings) So, Total Load=108.08 + 82.5 + 87.68 =278.26 KN Factored load=1.5*239.57 =417.39 KN Load intensity = Factored load/span =417.39 /6.5 =64.21 KN/m Maximum bending moment = $wl^2/10$ =(64.21*6.5*6.5)/10= 271.3 KN-m

Assuming balanced section Take d/b=1.5 We have, $M(max)=0.133*f_{ck}*b*d^2$ (For Fe500 steel) 271.3=0.133*30*b*1.5b*1.5bOn solving, We get b=311.5mm Then, d = 1.5*311.5 = 467.25 mmAdopt D=500mm B=300 mm

4.2.2 Preliminary design of Secondary beam

Effective depth = 75% of depth of Primary beam

 $= 0.75 \times 500$

=375mm

Width = 75% of width of Primary beam

 $= 0.75 \times 300$

= 225

Adopt depth=350mm and width=250mm

Section of secondary beam = 250mm × 350mm

4.3 Preliminary Design of Column

In the compression member i.e., columns, the cross section is worked out from the net vertical axial load on the column lying in the ground floor assuming suitable percentage of steel. The net vertical axial load on each column is worked out from the factored dead load and live load on the tributary area, which is taken as half of the slab areas adjacent to the column under consideration. The load is increased by 30% for the earthquake load to give the net vertical load.

Preliminary design of column

For Building 1:

Here, B3 column is considered critical for preliminary design. Height of floor to ceiling = 3.6 - 0.15 = 3.45 m

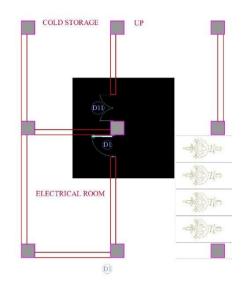


Figure 3: Influence Area for Column Design

```
Influence area for column= 21.25 \text{ m}^2
Load Calculations:
DEAD LOAD
Dead Load (DL) = Area of the section x Specific weight x Depth of section
DL of slab (150 mm)
= 21.25 x 0.15 x 25 = 79.68KN
DL of ceiling plaster (12.5mm thick)
= 20.4 x 0.0125 x 21.25
= 5.418KN
DL of Beam
= 25 \times 0.3 \times (0.5 - 0.15) \times (4/2 + 4.5/2 + 4.5/2 + 5.5/2)
= 24.28 KN
DL of floor finish (vitrified tile 10 mm thick)
= 24 x 0.010 x 21.25
= 5.1 \text{ KN}
DL of the partition wall
= 20 \text{ x} (3.6 - 0.5) \text{ x} [(4+4.5+4.5+5.5)/2] *0.23
= 131.905 KN
```

Assuming deduction for opening as 15%

Total wall load = 0.85×131.905

= 112.12 KN

Total dead load on the one intermediate floor panel

= 79.68 + 5.418 + 24.28 + 5.1 + 112.12

= 226.598 KN

Self-weight of column = $0.50 \times 0.50 \times (3.6-0.15) \times 25 = 21.5625 \text{ KN}$

Total dead load = (226.598 +21.5625) *8 KN = 1985.284 KN

Live Load = 4 KN/m2

Live Load (LL) = 21.25 m 2 x 4

= 85 KN

Applying live load reduction factor in accordance to IS 875 - Part 2 [clause 3.2.1 page12] Total live load = (85×8) x (1-0.4)

= 408KN

Total load on column = 1985.284 + 408

= 2393.284 KN

Providing partial safety factor of 1.5

Total factored load = 1.5 x 2393.284= 3589.926 KN

From IS 456, page 71 clause [39.5]

Axial load on column (Pu) = 0.4 fck x Ac + 0.67 fy x Asc increasing Pu by

25% for earthquake resistance

Assuming 3% of cross- sectional area of column for reinforcement.

So,

1.25x Pu = 0.4x30(Ag-Asc) + 0.67x500x0.03Ag

On solving:

 $Ag = 206888.3126 \text{ mm}^2$

So, we choose the column as,

= sqrt (206888.3126) [square column]

= 454.84 mm

So, let the preliminary size of the column be 500 mm x 500 mm, which is subject to change in the detailed design.

For Building 2:

Height of floor to ceiling = 3.6 - 0.15 = 3.45 m

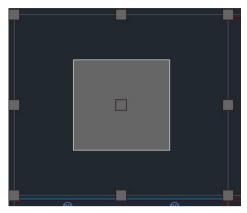


Figure 4: Influence Area for Column Design

Influence area for column= 32.5 m^2 LOAD CALCULATIONS Dead Load (DL) = Area of the section x Specific weight x Depth of section DL of slab (150 mm) = 32.5 x 0.15 x 25 =121.875KN DL of ceiling plaster (12.5mm thick) = 20.4 x 0.0125 x 32.5 = 8.28KN DL of Beam $= 25 \times 0.3 \times (0.5 - 0.15) \times (6.5/2 + 6.5/2 + 5.5/2 + 4.5/2)$ = 30.18 KNDL of floor finish (vitrified tile 10 mm thick) $= 24 \times 0.010 \times 32.5$ = 7.8 KNDL of partition wall = 20 x (3.6 - 0.5) x [(6.5 + 6.5 + 4.5 + 5.5)/2] *0.23= 163.99 KN Assuming deduction for opening as 15% Total wall load = 0.85×163.99 = 139.4 KN Total dead load on the one intermediate floor panel = 121.875 + 8.28 + 30.18 + 7.8 + 139.4

= 307.535 KN

Self-weight of column = $0.50 \times 0.50 \times (3.6-0.15) \times 25 = 21.5625 \text{ KN}$ Total dead load = (307.535 +21.5625) *8 KN = 2632.8 KN Live Load = 4 KN/m2Live Load (LL) = 32.5 m 2 x 4= 130 KNApplying live load reduction factor in accordance to IS 875 – Part 2 [clause 3.2.1 page12] Total live load = $(130 \times 8) \times (1-0.4)$ = 624 KNTotal load on column = 2632.8 + 624= 3256.8 KN Providing partial safety factor of 1.5 Total factored load = 1.5 x 3256.8= 4885.2 KN From IS 456, page 71 clause [39.5] Axial load on column (Pu) = 0.4 fck x Ac + 0.67 fy x Asc increasing Pu by 25% for earthquake resistance Assuming 3% of cross- sectional area of column for reinforcement. So, 1.25x Pu = 0.4x30(Ag-Asc) + 0.67x500x0.03AgOn solving we get $Ag = 281535.27 \text{ mm}^2$

So, we choose the column as,

= sqrt (281535.27) [square column]

= 530.6 mm

So, let the preliminary size of the column be 550 mm x 550 mm, which is subject to change in the detailed design.

5. MODELING AND ANALYSIS IN ETABS

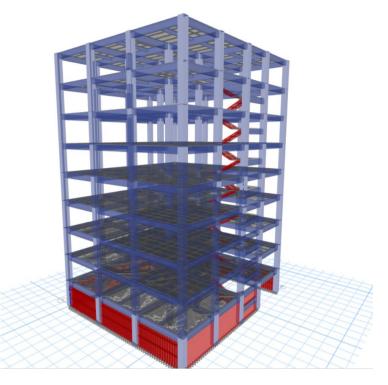


Figure 5: Rendered ETABS Model of Building 1

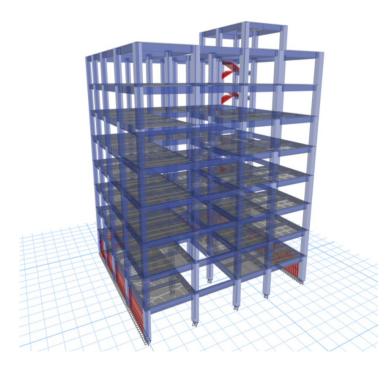
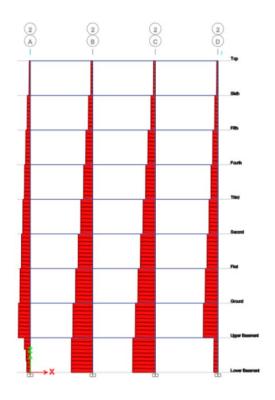



Figure 6: Rendered ETABS Model of Building 2

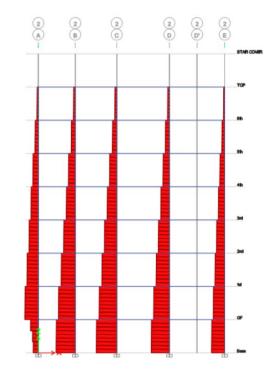


Figure 7: Axial Force Diagram of Building 2

Figure 8: Axial Force Diagram of Building 1

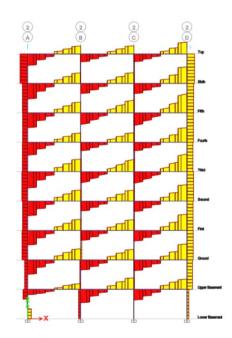
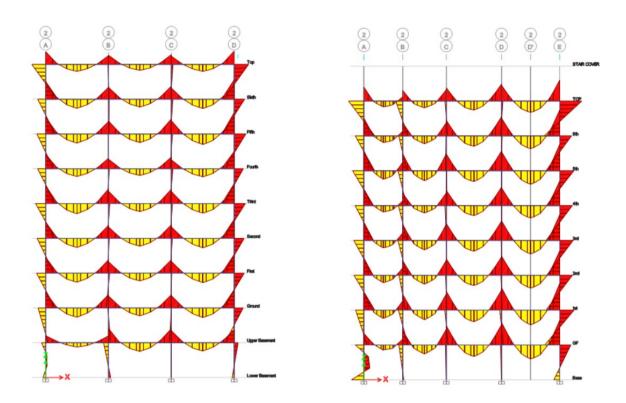



Figure 9: Shear Force Diagram in Building Figure 10: Shear Force Diagram of Building 1

Figure 11: Bending Moment Diagram of Building 2

Figure 12: Bending Moment Diagram of Building 1

The above Axial Force Diagrams, Shear Force Diagrams, and Bending Moment Diagrams are all taken in load combination 1.5*(Dead Load + Live Load).

6. CALCULATIONS

6.1 Seismic Gap Calculation

As per IS 1893:2016, cl. 7.11.3, two adjacent buildings or two adjacent units of the same building with a separation joint in between shall be separated by a distance equal to R times the sum of the calculated story displacements.

In X-direction:

Displacement at top of building 1 = 45 mm

Displacement at top of building 2 = 83.725mm

Provided separation = $R * (\Delta_1 + \Delta_2)$

= 643.25 mm

Provide a separation of 650mm between the adjacent buildings.

6.2 Soft Storey Check

Building 1:

Table 5:	Soft Storey	Check for	Building 1
----------	-------------	-----------	------------

						Lateral Stiffness
			Lateral Stiffness			NOT less than
	Lateral		NOT less than 70%	Lateral		70% of story
Storey	Stiffness	Ki/Ki+1	of story above	Stiffness	Ki/Ki+1	above
Тор	126933.184		Regular	162228.4		
Sixth	165606.272	1.304673	Regular	227898.8	1.404802	Regular
Fifth	178583.452	1.078362	Regular	241286.6	1.058745	Regular
Fourth	180757.164	1.012172	Regular	241736.8	1.001866	Regular
Third	185511.807	1.026304	Regular	245060.8	1.01375	Regular
Second	194335.388	1.047563	Regular	251031.3	1.024363	Regular
First	232668.271	1.197251	Regular	284848.2	1.134712	Regular
Ground	466539.046	2.005168	Regular	531092.3	1.864475	Regular

Upper	3974925.34			7236792		
Basement	5777725.57	8.520027	Regular	1230172	13.62624	Regular

Building 2:

			Lateral Stiffness			Lateral Stiffness
	Lateral		NOT less than	Lateral		NOT less than 70%
Storey	Stiffness	Ki/Ki+1	70% of story above	Stiffness	Ki/Ki+1	of story above
Stair Cover	54528.492		Regular	44016.84		Regular
Тор	246858.914	4.527155	Regular	200335.7	4.551343	Regular
Sixth	323021.786	1.308528	Regular	243602.2	1.21597	Regular
Fifth	340987.847	1.055619	Regular	258434.1	1.060886	Regular
Fourth	343756.154	1.008118	Regular	261823.3	1.013114	Regular
Third	355141.757	1.033121	Regular	266534	1.017992	Regular
Second	403550.404	1.136308	Regular	306912.8	1.151496	Regular
First	804279.503	1.993009	Regular	548992.7	1.788758	Regular
Ground	17729504	22.04396	Regular	6272682	11.4258	Regular

Table 6: Soft Storey Check for Building 2

6.3 Eccentricity Check

Building 1:

Floor	XCCM	YCCCM	Xcr	Ycr	ex	ex(perm)	ey	ey(perm)	Remarks
Тор	10.0806	10.7394	11.0177	10.8299	0.9371	2.925	0.0905	3.225	OK
Sixth	9.9874	10.6505	11.1601	10.8557	1.1727	2.925	0.2052	3.225	OK
Fifth	10.1251	10.6973	11.19	10.8577	1.0649	2.925	0.1604	3.225	OK
Fourth	10.2154	10.7641	11.1959	10.8522	0.9805	2.925	0.0881	3.225	OK
Third	10.2103	10.7897	11.1747	10.8426	0.9644	2.925	0.0529	3.225	OK
Second	10.2117	10.8302	11.1035	10.8246	0.8918	2.925	-0.0056	3.225	OK
First	10.2296	10.8426	10.9411	10.7866	0.7115	2.925	-0.056	3.225	OK
Ground	10.2218	10.8499	10.6167	10.6889	0.3949	2.925	-0.161	3.225	OK

Table 7: Eccentricity Check for Building 1

Upper					-					
Basement	10.27	10.8173	8.7091	10.5441	1.5609	2.925	-0.2732	3.225	OK	

Building 2:

Table 8.	Eccentricity	Check for	Ruilding ?
Tuble 0.	Lecentricity	Check jor	Dunung 2

						ex		ey	
Floor	XCCM	YCCM	Xcr	Ycr	ex	(perm)	ey	(perm)	Remarks
STAIR									
COVER	9.0765	18.4927	8.8597	15.7774	-0.2168	3.03	-2.7153	3.225	Ok
ТОР	9.412	11.7836	8.772	12.5006	-0.64	3.03	0.717	3.225	Ok
6th	9.2863	11.1716	8.7665	12.5024	-0.5198	3.03	1.3308	3.225	Ok
5th	9.296	10.9204	8.7559	12.5117	-0.5401	3.03	1.5913	3.225	Ok
4th	9.2738	10.8304	8.7349	12.4757	-0.5389	3.03	1.6453	3.225	Ok
3rd	9.2729	10.7749	8.692	12.3434	-0.5809	3.03	1.5685	3.225	Ok
2nd	9.2769	10.7471	8.5824	12.0256	-0.6945	3.03	1.2785	3.225	Ok
1st	9.2535	10.7005	8.1221	11.3554	-1.1314	3.03	0.6549	3.225	Ok
GF	9.231	10.6367	0.2447	9.9288	-8.9863	3.03	-0.7079	3.225	Ok

6.4 Calculation of Design Eccentricity

Building 1: X-direction

Table 9: Calculation of Design Eccentricity of Building 1 in X direction

				edi-		edi-			
				x(from		x(from			
Story	XCM	XCR	Esi-x	COR)		COM)		Percentage	
	m	m		Positive	Negative	Positive	Negative	Positive	Negative
Тор	10.0806	11.0177	0.9371	2.38065	-0.0379	1.44355	-0.975	7.402821	-5
Sixth	9.9249	11.1601	1.2352	2.8278	0.2602	1.5926	-0.975	8.167179	-5
Fifth	10.3639	11.19	0.8261	2.21415	-0.1489	1.38805	-0.975	7.118205	-5
Fourth	10.4848	11.1959	0.7111	2.04165	-0.2639	1.33055	-0.975	6.823333	-5
Third	10.1926	11.1747	0.9821	2.44815	0.0071	1.46605	-0.975	7.518205	-5
Second	10.2178	11.1035	0.8857	2.30355	-0.0893	1.41785	-0.975	7.271026	-5
First	10.331	10.9411	0.6101	1.89015	-0.3649	1.28005	-0.975	6.564359	-5

Ground	10.171	10.6167	0.4457	1.64355	-0.5293	1.19785	-0.975	6.142821	-5
Upper			-						
Basement	10.5998	8.7091	1.8907	-0.9157	-3.81105	0.975	-1.92035	5	-9.84795
							Average	7.125994	-5

Y-direction:

Table 10: Calculation of Design Eccentricity of Building 1 in Y direction

				edi-		edi-			
				y(from		x(from			
Story	YCM	YCR	Esi-y	COR)		COM)		Percentage	
	m	m		Positive	Negative	Positive	Negative	Positive	Negative
Тор	10.7394	10.8299	0.0905	1.21075	-0.9845	1.12025	-1.075	5.210465	-5
Sixth	10.5909	10.8557	0.2052	1.3828	-0.8698	1.1776	-1.075	5.477209	-5
Fifth	10.7785	10.8577	0.1604	1.3156	-0.9146	1.1552	-1.075	5.373023	-5
Fourth	10.9636	10.8522	0.0881	1.20715	-0.9869	1.11905	-1.075	5.204884	-5
Third	10.8797	10.8426	0.0529	1.15435	-1.0221	1.10145	-1.075	5.123023	-5
			-						
Second	11.0116	10.8246	0.0056	1.0694	-1.0834	1.075	-1.0778	5	-5.01302
First	10.913	10.7866	-0.056	1.019	-1.159	1.075	-1.103	5	-5.13023
Ground	10.8975	10.6889	-0.161	0.914	-1.3165	1.075	-1.1555	5	-5.37442
Upper			-						
Basement	10.5939	10.5441	0.2732	0.8018	-1.4848	1.075	-1.2116	5	-5.63535
							Average	5.154289	-5.12811

Building 2:

X-direction

Table 11: Calculation	n of Design Eccentricity	of Building 2 in X direction
-----------------------	--------------------------	------------------------------

Story	XCM	XCR	esi-x	percentage	edi-x(from Cor)		edi-x(from com)		percentage	
	m	m			positive	negative	positive	negative	positive	negative
Stair Cover	9.0765	8.8597	0.2168	1.073267	1.3352	-0.7932	1.1184	-1.01	5.536634	-5
ТОР	9.517	8.772	0.745	3.688119	2.1275	-0.265	1.3825	-1.01	6.844059	-5
6th	9.2497	8.7665	0.4832	2.392079	1.7348	-0.5268	1.2516	-1.01	6.19604	-5

5th	9.3902	8.7559	0.6343	3.140099	1.96145	-0.3757	1.32715	-1.01	6.57005	-5
4th	9.2889	8.7349	0.554	2.742574	1.841	-0.456	1.287	-1.01	6.371287	-5
3rd	9.3457	8.692	0.6537	3.236139	1.99055	-0.3563	1.33685	-1.01	6.618069	-5
2nd	9.3745	8.5824	0.7921	3.921287	2.19815	-0.2179	1.40605	-1.01	6.960644	-5
1st	9.1948	8.1221	1.0727	5.310396	2.61905	0.0627	1.54635	-1.01	7.655198	-5
									6.593998	-5

Y-direction:

Table 12: Calculation of Design Eccentricity of Building 2 in Y direction

					edi-		edi-y			
					y(from		(from			
Story	YCM	YCR	esi-y	percentage	COR)		com)		percentage	
	m	m			positive	negative	positive	negative	positive	negative
Stait										
Cover	18.4927	15.7774	2.7153	12.6293	5.14795	1.6403	2.43265	-1.075	11.31465	-5
			-			-		-		-
TOP	10.6459	12.5006	1.8547	-8.62651	-0.7797	3.85705	1.075	2.00235	5	9.31326
			-			-		-		-
6th	10.4253	12.5024	2.0771	-9.66093	-1.0021	4.19065	1.075	2.11355	5	9.83047
			-							-
5th	10.3175	12.5117	2.1942	-10.2056	-1.1192	-4.3663	1.075	-2.1721	5	10.1028
			-			-		-		-
4th	10.3766	12.4757	2.0991	-9.76326	-1.0241	4.22365	1.075	2.12455	5	9.88163
			-			-		-		-
3rd	10.4163	12.3434	1.9271	-8.96326	-0.8521	3.96565	1.075	2.03855	5	9.48163
			-			-		-		-
2nd	10.4565	12.0256	1.5691	-7.29814	-0.4941	3.42865	1.075	1.85955	5	8.64907
			-			-		-		-
1st	10.2817	11.3554	1.0737	-4.99395	0.0013	2.68555	1.075	1.61185	5	7.49698
										-
									5	9.25083

6.5 Storey Drift Check

Building 1:

Table 13: Storey Drift Check for Building 1

Storey	X-direction (Eqx)	Y-direction (Eqy)	Permissible	Remarks
Тор	0.001395	0.001113	0.004	Ok
Sixth	0.002189	0.001801	0.004	Ok
Fifth	0.002909	0.002411	0.004	Ok
Fourth	0.003432	0.002846	0.004	Ok
Third	0.00376	0.003126	0.004	Ok
Second	0.003849	0.003222	0.004	Ok
First	0.003525	0.002996	0.004	Ok
Ground	0.002206	0.001872	0.004	Ok
Upper Basement	0.000305	0.000038	0.004	Ok
Lower Basement	0	0	0.004	Ok

Building 2:

Table 14: Storey Drift Check for Building 2

Floor	X-direction (Eqx)	Y-direction (Eqy)	Permissible	Remarks
Stair Cover	0.00076	0.000946	0.004	OK
Тор	0.00097	0.001233	0.004	OK
6th	0.001473	0.001835	0.004	OK
5th	0.00192	0.002355	0.004	OK
4th	0.002213	0.002692	0.004	OK
3rd	0.002333	0.002843	0.004	OK
2nd	0.002186	0.002717	0.004	OK
1st	0.001392	0.001905	0.004	OK
GF	0.000052	0.00016	0.004	OK
Base	0	0	0.004	OK

6.6 Torsional Irregularity Check

Building 1:

X-direction:

		X-direction(Eqx)		
Floor	Xmax	Xmin	1.5*Xmin	Remarks
Тор	83.726	82.429	123.64	Ok
Sixth	78.713	77.492	116.238	Ok
Fifth	70.842	69.88	104.82	Ok
Fourth	60.375	59.742	89.613	Ok
Third	48.021	47.697	71.545	Ok
Second	34.481	34.421	51.6315	Ok
First	20.618	20.745	31.1175	Ok
Ground	7.92	8.088	12.132	Ok

Table 15: Torsional Irregularity Check for Building 1 in X-direction

Y-direction:

Table 16: Torsional Irregularity Check for Building 1 in Y-direction

Floor	Ymax	Ymin	1.5*Ymin	Remarks
Тор	69.77	58.33	87.495	Ok
Sixth	65.772	54.544	81.816	Ok
Fifth	59.302	48.986	73.479	Ok
Fourth	50.637	41.81	62.715	Ok
Third	40.408	33.439	50.158	Ok
Second	29.173	24.304	36.456	Ok
First	17.591	14.879	22.3185	Ok
Ground	6.818	5.949	8.9235	Ok

Building 2: X-direction:

		X- direction(Eqx)		
Floor	Xmax	Xmin	1.5*Xmin	Remarks
Тор	45.003	37.883	56.8125	Ok
Sixth	41.519	34.463	51.6945	Ok
Fifth	36.231	29.758	44.637	Ok
Fourth	29.334	24.015	36.0225	Ok
Third	21.388	17.65	26.475	Ok
Second	13.01	11.028	16.542	Ok
First	5.161	4.648	6.972	Ok
Ground	0.162	0.189	0.2835	Ok

Table 17: Torsional Irregularity Check for Building 2 in X-direction

Y-direction:

Table 18: Torsional Irregularity Check for Building 2 in Y-direction

Floor	Ymax	Ymin	1.5*Ymin	Remarks
Тор	56.729	52.646	78.969	Ok
Sixth	52.288	48.607	72.9105	Ok
Fifth	45.677	42.508	63.762	Ok
Fourth	37.192	34.609	51.9135	Ok
Third	27.489	25.522	38.283	Ok
Second	17.24	15.879	23.8135	Ok
First	7.446	6.619	9.9285	Ok
Ground	0.578	0.42	0.63	Ok

6.7 Modal Analysis Results

Building 1:

Table 19: Modal Analysis Results for Building 1

Case	Mode	Period	UX	UY	RZ	SumUX	SumUY	SumRZ
		sec						
Modal	1	1.697	0.6879	0.0001	0.0001	0.6879	0.0001	0.0001
Modal	2	1.523	0.0002	0.5317	0.1505	0.6881	0.5317	0.1506
Modal	3	1.359	0.0001	0.1597	0.523	0.6882	0.6914	0.6736
Modal	4	0.535	0.0917	0.00001963	4.25E-05	0.7799	0.6914	0.6736
Modal	5	0.484	0.000002668	0.0747	0.0157	0.7799	0.7661	0.6893
Modal	6	0.436	0.0001	0.0165	0.0726	0.7799	0.7826	0.7619
Modal	7	0.286	0.0364	0.0001	0.0001	0.8164	0.7827	0.762

Modal	8	0.262	0.0000243	0.0329	0.0021	0.8164	0.8156	0.7641
Modal	9	0.242	0.0001	0.0018	0.0331	0.8165	0.8174	0.7972
Modal	10	0.185	0.0213	0.0001	0.0001	0.8378	0.8174	0.7972
Modal	11	0.173	0.00003327	0.0202	0.0002	0.8378	0.8376	0.7975
Modal	12	0.159	0.00004708	0.0002	0.0205	0.8378	0.8379	0.8179
Modal	13	0.128	0.0132	0.00001803	0.0001	0.851	0.8379	0.818
Modal	14	0.122	0.00001006	0.0128	2.12E-05	0.851	0.8507	0.818
Modal	15	0.112	0.00004795	0.00003007	0.013	0.8511	0.8507	0.831
Modal	16	0.097	0.0074	0.000004761	7.97E-06	0.8585	0.8507	0.831
Modal	17	0.093	0.000002687	0.0071	2.76E-06	0.8585	0.8579	0.831
Modal	18	0.085	0.00001384	0.00003116	0.0076	0.8585	0.8579	0.8386
Modal	19	0.077	0.0044	0.000003428	1E-05	0.8629	0.8579	0.8386
Modal	20	0.075	0.000002584	0.0044	2.59E-06	0.8629	0.8622	0.8386
Modal	21	0.069	0.000009847	0	0.0043	0.8629	0.8622	0.8429
Modal	22	0.067	0.0009	0.00000327	0	0.8639	0.8622	0.8429
Modal	23	0.065	0.00000281	0.0009	1.54E-05	0.8639	0.8631	0.8429
Modal	24	0.06	0.000009218	0	0.0009	0.8639	0.8631	0.8439
Modal	25	0.045	0.0043	0.00003015	2.25E-05	0.8681	0.8632	0.8439
Modal	26	0.032	0.0008	0.00001114	4.61E-05	0.8689	0.8632	0.8439
Modal	27	0.032	0.0012	0.00001249	0.0001	0.8701	0.8632	0.844

Building 2:

Table 20: Modal Analysis Results for Building 2

Case	Mode	Period	UX	UY	RZ	SumUX	SumUY	SumRZ
		sec						
Modal	1	1.311	0.002	0.6951	0.0119	0.002	0.6951	0.0119
Modal	2	1.168	0.4909	0.0084	0.1929	0.4929	0.7035	0.2048
Modal	3	1.036	0.2048	0.0034	0.4908	0.6977	0.7069	0.6956
Modal	4	0.417	0.0002	0.0938	0.0009	0.6979	0.8007	0.6965
Modal	5	0.364	0.0739	0.0006	0.0209	0.7718	0.8013	0.7174
Modal	6	0.333	0.0228	0.0002	0.0703	0.7946	0.8015	0.7877

					4.47E-			
Modal	7	0.233	0.0001	0.0361	05	0.7947	0.8376	0.7877
Modal	8	0.2	0.0346	0.0001	0.0001	0.8294	0.8377	0.7878
Modal	9	0.191	0.0001	0.0000016	0.0343	0.8294	0.8377	0.8221
Modal	10	0.159	0.0001	0.0193	0.0001	0.8295	0.8571	0.8222
Modal	11	0.139	0.0129	0.0003	0.0049	0.8424	0.8573	0.8271
Modal	12	0.126	0.003	0.0092	0.0042	0.8454	0.8665	0.8313
Modal	13	0.125	0.0035	0.0033	0.0107	0.8488	0.8698	0.842
					2.41E-			
Modal	14	0.113	0.0061	0.0002	05	0.8549	0.87	0.842
Modal	15	0.105	0.0031	0.000008524	0.0075	0.858	0.87	0.8495
					4.31E-			
Modal	16	0.096	0.00004242	0.0118	05	0.858	0.8818	0.8496
Modal	17	0.085	0.0087	0	0.003	0.8667	0.8818	0.8526
Modal	18	0.082	0.0016	0.0003	0.0077	0.8683	0.8821	0.8603
					1.25E-			
Modal	19	0.076	0.00002351	0.0078	06	0.8683	0.8899	0.8603
Modal	20	0.068	0.0049	0.0002	0.0007	0.8732	0.89	0.8609
Modal	21	0.065	0.0012	0.0012	0.0051	0.8743	0.8912	0.8661
Modal	22	0.064	0.0001	0.0016	0.0008	0.8744	0.8928	0.8668
Modal	23	0.058	0.001	0.0002	0.0005	0.8754	0.893	0.8673
Modal	24	0.055	0.0006	0.0007	0.0016	0.876	0.8937	0.8689
Modal	25	0.05	0.00004382	0.0286	0.0008	0.876	0.9223	0.8697
Modal	26	0.046	0.0001	0.0517	0.0085	0.8761	0.974	0.8782
Modal	27	0.041	0.0001	0.008	0.0024	0.8762	0.982	0.8806
					2.25E-			
Modal	28	0.03	0.1223	0.0005	05	0.9985	0.9825	0.8806
Modal	29	0.022	0.0004	0.0165	0.1155	0.9989	0.9991	0.9961
Modal	30	0.019	0.00000259	0.0008	0.0031	0.9989	0.9999	0.9992

7. STRUCTURAL DESIGN

7.1 Design of structural elements

The design section is the most important part. The design of the structural elements should be done for durability, construction, and use throughout the service life of the structure. The realization of design objectives requires compliance with clearly defined standards for materials, production, workmanship, and maintenance as well.

This chapter includes the design processes for sample elements including slab, beam, column, staircase, basement wall, lift wall, mat foundation, and ramp.

- 1. Design of Slab
- 2. Design of Beam
- 3. Design of Column
- 4. Design of Staircase
- 5. Design of Basement Wall
- 6. Design of Lift Wall
- 7. Design of Mat Foundation
- 8. Design of Ramp

7.2 Design of Slab

RCC slabs are designed on the assumption that they consist of a number of series of beams having a width of one meter, even though it is cast monolithic. They are the plate elements forming floors and roofs of building and carrying distributed loads primarily by flexure. They may be supported by beams or walls or columns and may be used as the flange of T or L-beam. Slab may be simply supported or continuous over one or more supports and is classified according to the manner of support as: one-way slabs spanning in one direction, two-way slab spanning in directions, circular slabs, and grid floor slabs resting directly on columns with no beams and grid floor and ribbed slabs.

Important information regarding the design of slab according to IS456:2000

- 1. Slab is designed for 1m wide strip
- 2. Ast min = 0.12% bD for deformed bars (Cl.26.5.2.1)
- 3. Cover = 15mm
- 4. If Ly/Lx < 2, two way slab is designed

Compression reinforcement is used only in exceptional cases in a slab. Shear stresses are usually very low and shear reinforcements are never provided in slabs. It is preferred to increase the depth of a slab and hence reduce the shear stress rather than provide shear reinforcement. Temperature reinforcement is invariably provided at right angles to the main longitudinal reinforcement in a slab. There are two types of slabs described as follow:

1. One-way slab

These slabs have length more than twice the breadth and may be simply supported or continuous or can be analyzed in a manner similar to that for continuous beams. It consists of main reinforcement spanning between the supports (shorter of the length and breadth) with distribution or temperature reinforcement at right angles to it.

2. Two-way slab

The slab is said to be spanning in two directions, when the length to breadth ratio falls below 2. The deflection and bending moments in a two-way slab are considerably reduced as compared to those in one-way slab. In a square slab, the two-way action is equal in each direction. In such a case, main reinforcement is provided in both directions in the form of a mesh.

Slab Design for Building 2

Critical Slab ID:CD-34

Checking for One way or two-way slab;

$$L = 5.7 \text{ m}, b = 4.5 \text{m}$$

$$\frac{L}{L} = 1.267 \le 2,$$

Hence, Two-way slab.

The indicated slab is type 3 i.e., one long edge discontinuous.

We have,

D = 150 mm $\emptyset = 10 \text{mm}$ Clear cover = 15 mmd = 150 - 15 - 5= 130 mm

Effective Span:

(Short and Long Span)

 $l_x = l_c + d$ or difference between support. Or, $l_x = 4.5 + 0.13$ or (4.5 + 0.35), $l_y = 5.7 + 0.12$ or (5.7 + 0.35)= 4.63 or 4.85 = 5.82. or 6.05

 \therefore l_x = 4.63 m, ly = 5.82 m

Load Calculation:

The two-way slab is designed considering a 1.0 m wide strip along the short and long span.

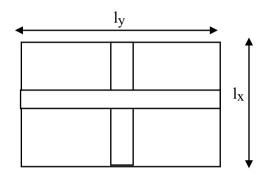


Figure 13: Design Strip for Slab

Dead Load of Slab = 25 * 0.150 * 1 = 3.75 KN/m

Floor Finish = $1 \text{ KN/m}^2 * 1 = 1 \text{ KN/m}$

Partition Wall = $1.67 \text{ KN/m}^2 * 1$

= 1.67 KN/m

Live Load of Slab = $5 \text{ KN/m}^2 * 1$

= 5 KN/m

Total Load = 11.42 KN/m

: Factored Load = 1.5 * 11.42 = 17.13 KN/m

Bending Moment along Short and Long Span:

(ANNEX D IS 456: 2000)

 $\therefore M_x = \alpha_x W l_x^2 \quad \& \quad M_y = \alpha_y W l_x^2$

Where, α_x and α_y are bending moments coefficients along short and long span.

Depends on
$$\frac{lx}{ly}$$
 Table 26.
 $\frac{ly}{lx} = 1.257$

For slab of type 3, one long edge discontinuous.

$$\alpha_x^{+ve} = 0.0418$$

$$\alpha_y^{+ve} = 0.028$$

$$\alpha_x^{-ve} = 0.054$$

$$\alpha_y^{-ve} = 0.037$$
Hence, $M_x^{+ve} = 0.0418 * 17.13 * 4.63^2 = 15.34$ KNm
 $M_x^{-ve} = 0.054 * 17.13 * 4.63^2 = 19.82$ KNm
 $M_y^{+ve} = 0.028 * 17.13 * 4.63^2 = 10.28$ KNm
 $M_y^{-ve} = 0.037 * 17.13 * 4.63^2 = 13.58$ KNm

 \therefore BM_{max} = 19.82 KNm

The effective depth of slab from consideration of Limit State of Collapse, since, slab is designed as singly reinforced balanced section.

For Fe 500,

$$M_{\text{limit}} = 0.133 \text{ } f_{\text{ck}} \text{bd}^2$$

$$d = \sqrt{\frac{19.82 \times 1000000}{0.133 \times 30 \times 1000}}$$

 $= 70.47 \text{ mm} \cong 75 \text{ mm}.$

Overall depth (D) = 75 + 15 + 5

= 95 mm < 150 (adopted depth) OK.

Note: Thickness of RCC slab ≤ 100 mm.

Provide Overall Depth of (D) = 150 mm.

 \therefore d = 150 - 15 - 5 = 130 mm

: Area of steel (tensile reinforcement) along short and long span

We have,

$$M_{x}^{+ve} = 0.87 f_{y} A_{stx}^{+ve} (d - f_{y} A_{stx}^{+ve} / f_{ck}b)$$

15.34 * 10⁶ = 0.87 * 500 * $A_{stx}^{+ve} (130 - \frac{500 * Astx^{+ve}}{30 * 1000})$

: $A_{stx}^{+ve} = 281.41 \text{ mm}^2/\text{m}$

Providing 10 mm bars @ Spacing(S) = $\frac{b*ast}{Ast}$; $a_{st} = \frac{\pi*10^2}{4} = 78.54 \text{ mm}^2$ = $\frac{1000*78.54}{281.41}$

Taking S = 125mm

:. Giving trial
$$A_{stx}^{+ve} = \frac{b*ast}{s} = \frac{1000*78.54}{125}$$

= 628.32 mm²/m > 279mm²/m
OK.

Similarly;

For Astx^{-ve}

 $A_{stx}^{-ve} = 367.83 \text{ mm}^2$

Provide 10 mm dia. bars @ $S = \frac{b*ast}{Ast} = \frac{1000*78.54}{367.83}$ = 213.52 mm

Provide $\approx 125 \text{ mm}$

 A_{stx}^{-ve} provided = $\frac{1000*78.54}{150}$ = 628.32 mm²/m >367.83 mm²/m

OK.

Now,

$$M_{y}^{+ve} = 0.87 \text{ f}_{y} \text{ A}_{sty}^{+ve} (d' - \frac{fy \text{ Asty}^{+ve}}{fck b})$$

d'= d - $\frac{\phi}{2}$ - $\frac{\phi}{2}$ = 130 - 5 - 5 = 120 mm.
∴ A_{sty}^{+ve} = 202.63 mm^{2}/m.

Providing 10 mm dia. bars @ $S = \frac{b*ast}{Ast} = \frac{1000*78.54}{202.63}$ = 387.58 mm

Take S =125mm

:
$$A_{sty}^{+ve} \text{ provided} = \frac{1000*78.54}{125} = 628.32 \text{ mm}^2/\text{m} > 202.63 \text{ mm}^2/\text{m}$$

Again,

$$A_{sty}^{-ve}$$
; d'= 120 mm.
 $A_{sty}^{-ve} = 270.3 \text{mm}^2/\text{m}$

 $\therefore \text{ Providing 10 mm dia. bars } @ \text{ S} = \frac{b*ast}{Ast} = \frac{1000*78.54}{270.3}$

= 290.56 mm

:
$$A_{sty}^{-ve} \text{ provided} = \frac{1000*78.54}{125} = 628.32 \text{ mm}^2/\text{,m} > 270.3 \text{ mm}^2/\text{m}$$

Check for (Ast) min: Clause 26.5.2.1 IS 456: 2000

For HYSD; $(A_{st}) \min \triangleleft 0.12 \%$ of bD

4 180 mm²

The provided Ast along long and short span is greater than 180 mm²

Hence, OK.

Distribution of area of steel (ANNEX D – 1.2):

The two-way continuous slab is divided into middle strip and edge strip along short and long span. The maximum A_{st} is provided on the middle strip and A_{st} min. is provided in edge strip.

 $l_x = 4.63 \text{ m}$

 $l_v = 5.82 \text{ m}$

Check for Deflection:

$$\frac{l}{d} \leq \alpha \beta \gamma \delta \lambda$$
 Where, $\alpha = \frac{20+26}{2} = 23$, $\beta = 1$, $\delta = 1$, $\lambda = 1$,

 γ = modification factor for tensile rebars depending on pt % and fs Table 19 IS 456: 2000.

 $\therefore \qquad \frac{Ast*100\%}{bd} = \text{pt.} = \frac{628.32*100\%}{1000*150}$ pt. = 0.41% $\text{fs} = 0.58 \text{ fy} \frac{Ast \ required}{Ast \ provided}$ $= 0.58 \ * \ 500 \ * \frac{281.41}{628.32}$

From figure 4, IS 456: 2000;

$$\gamma = 2$$

$$\therefore \quad \text{permissible value} = \alpha \beta \gamma \delta \lambda$$

Actual value $= \frac{l}{d} = \frac{4630}{130} = 35.61$ $\therefore \quad \frac{l}{d} \le \alpha \beta \gamma \delta \lambda$ OK.

Check for Shear:

$$\tau_{v} = \frac{Vu}{bd} = \frac{17.13*4.63/2*1000}{1000*130} = 0.305$$

$$V_{u} = \frac{Wu*lx}{2} = \frac{17.13*4.63}{2} = 39.65 \text{KN}$$

$$100 \text{ As/bd} = 100* (0.5*628.32)/ (1000*130)$$

$$= 0.24\%$$
Again, from Table 19,

$$\therefore \tau_{c} = 0.37 \text{ N/mm}^{2}$$

$$\tau_{c} = k* 0.37$$

$$= 1.3 * 0.37$$

$$= 0.481$$

Hence, the slab is safe against shear.

Check for L_D:

At simply supported edge;

$$L_{D} \leq 1.3 \frac{M1}{Vu} + L_{0}$$

$$L_{D} = \frac{0.87 fy Ast Z}{V} = \frac{0.87 fy \emptyset}{\tau bD}$$
For M30, τ bd = 1.5 * 1.6 = 2.4
 $\therefore M_{1} = 0.87 f_{y} A_{st} \left(d - \frac{fy Ast}{fck b} \right)$
 $= 0.87 * 500 * 523.6/2 * (130 - \frac{500*628.32}{2*30*1000})$
 $= 17.05*10^{6} \text{ Nmm} = 17.05 \text{ KNm}$
And, Vu = 39.65 KN
Now,
 $L_{D} = \frac{0.87 fy Ast Z}{V} = \frac{0.87 fy \emptyset}{\tau bD}$
 $= 0.87 * 500 * 10/ (1.5*1.6)$
 $= 453.125 \text{mm}$
 $1.3 \frac{M1}{Vu} = 550.01 \text{mm}$

(> L_d, also, no anchorage required)

Slab Design for Building 1

Critical Slab ID: S1-17

Checking for One way or two-way slab;

L = 4.5 m, b = 3.25m

 $b/(L) = 1.38 \le 2$,

Hence, Two-way slab.

The indicated slab is type 1 i.e. interior panel.

Effective Depth of Slab from Control of Deflection Criteria:

 $lx/d = \alpha\beta\gamma\delta\lambda$ α = (20+26)/2 = 23, β = 1, δ = 1, λ = 1, γ = 1.4 for rectangular slab. lx/d = 4.5/d = 23 * 1 *1 *1.4 * 1 ∴ d = 4.5/32.2 d = 0.139 m, ≅ 140 mm.

Provide overall depth (D) = $d + 15 \text{ mm} + \emptyset/2$

= 160 mm (Provide 10 mm bar, provide effective depth = 140 mm)

Effective Span:

(Short and Long Span)

lx = lc + d or difference between support.

Or, lx = 4.5 + 0.14 or (4.5 + 0.65), ly = 3.25 + 0.14 or (3.25 + 0.65)

$$= 4.64 \text{ or } 5.15$$
 $= 3. \text{ or } 3.9$ $\therefore 1x = 4.64 \text{ m}, 1y = 3.39 \text{ m}$

Load Calculation:

The two-way slab is designed with considering a 1.0 m wide strip along the short and long span.

Dead Load of Slab = 25 * 0.160 * 1 = 4 KN/m

Floor Finish = 1 KN/m2 * 1 = 1 KN/m

Partition Wall = 1.67 KN/m2 * 1

= 1.67 KN/m

Live Load of Slab = 5 KN/m2 * 1

= 5 KN/m

Total Load = 11.67 KN/m

∴ Factored Load = 1.5 * 11.67 = 17.505 KN/m

Bending Moment along Short and Long Span:

(ANNEX D IS 456: 2000)

 \therefore Mx = α x W lx 2 & My = α y W lx2

Where, αx and αy are bending moments coefficients along short and long span.

Depends on lx/(ly) Table 26.

lx/(ly) = 1.38

For slab of type 4, two adjacent edge discontinuous.

 $\alpha x + ve = 0.0384$

 $\alpha y + ve = 0.024$

 $\alpha x - ve = 0.0502$

 αy - ve = 0.032

Hence, Mx+ve = 0.0384 * 17.505 * 4.642 = 14.48 KNm

Mx-ve = 0.0502 * 17.505 * 4.642 = 18.92 KNm My+ve = 0.024 * 17.505 * 4.642 = 9.04 KNm

My-ve = 0.032 * 17.505 * 4.642 = 12.06 KNm

 \therefore BMmax = 18.92 KNm

The effective depth of slab from consideration of Limit State of Collapse, since, slab is designed as singly reinforced balanced section.

For Fe 500,

Mlimit = 0.138 fckbd2

 $d = \sqrt{(18.878*100000)/(0.138*30*1000))}$

 $= 67.52 \text{ mm} \cong 75 \text{ mm}.$

Overall depth (D) = 75 + 15 + 5

= 95 mm < 160 (assumed depth) OK.

Note: Thickness of RCC slab < 100mm.

Provide Overall Depth of (D) = 150 mm.

 $\therefore d = 150 - 15 - 5 = 130 \text{ mm}$

: Area of steel (tensile reinforcement) along short and long span

We have,

Mx+ve = 0.87fy Astx+ve (d - fy Astx+ve/ fckb)

14.48 * 106 = 0.87 * 500 * Astx+ve (130 - (500* Astx(+ve))/(30*1000))

 \therefore Astx+ve = 265.06 mm2/m

Providing 10 mm bars @ Spacing(S) = (b*ast)/Ast ; ast = $(\pi^* 10^2)/4 = 78.54 \text{ mm}^2$

= (1000*78.54)/265.06

= 296.3 mm

```
\approx 290 \ mm
```

Taking S = 125mm

:. Giving trial Astx+ve = $(b^*ast)/S = (1000^*78.54)/150$

= 628.32 mm2/m > 265.06 mm2/m OK.

Similarly;

Astx- ve

Astx- $ve = 350.3 mm^2$

Provide 10 mm dia. bars @ $S = (b^*ast)/Ast = (1000^*78.54)/350.3$

= 224.2 mm2/m

Provide $\approx 125 \text{ mm}$

Astx- ve provided = (1000*78.54)/125 = 628.32 mm2/m > 350.3 mm2/m (OK)

Now,

 $My+ve = 0.87 fy Asty+ve (d' -(fy Asty^{+ve}))/(fck b))$

d'= d - $\emptyset/2$ - $\emptyset/2$ = 130 - 5 - 5 = 120 mm.

 \therefore Asty+ve = 177.55 mm2/m.

Providing 10 mm dia. bars @ S = (b*ast)/Ast = (1000*78.54)/177.55

Take S =125mm

:. Asty+ve provided = (1000*78.54)/125 = 628.32 mm2/m > 177.55 mm2/m

Asty- ve ; d'= 120 mm.

Asty- ve = 238.96 mm2/m

: Providing 10 mm dia. bars @ S = (b*ast)/Ast = (1000*78.54)/238.96

 $= 328.67 \text{ mm} \approx 300 \text{ mm}$

Provided spacing = 125mm

: Asty- ve provided = (1000*78.54)/125 = 628.32 mm2 > 238.96 mm2

Check for (Ast) min: Clause 26.5.2.1 IS 456: 2000

For HYSD; (Ast) min < 0.12 % of bD

< 0.12 / 100 * 1000 * 150

< 180 mm2

The provided Ast along long and short span is greater than 180 mm2

Distribution of area of steel (ANNEX D - 1.2):

The two way continuous slab is divided into middle strip and edge strip along short and long span. The maximum Ast is provided on the middle strip and Ast min. is provided in edge strip.

lx = 4.64 m

ly = 3.39 m

Check for Deflection:

 $1/d \le \alpha\beta\gamma\delta\lambda$ Where, $\alpha = (20+26)/2 = 23$, $\beta = 1$, $\delta = 1$, $\lambda = 1$,

 γ = modification factor for tensile rebars depending on pt % and fs Table 19 IS 456: 2000.

:
$$(Ast*100 \%)/(bd) = pt. = (628.32*100\%)/(1000*150)$$

pt. =
$$0.418\%$$

fs = 0.58fy (Ast required)/(Ast provided)

= 0.58 * 500 * 265.06/628.32

= 122.33

From figure 4, IS 456: 2000; $\gamma = 2$

 \therefore permissible value = $\alpha\beta\gamma\delta\lambda$

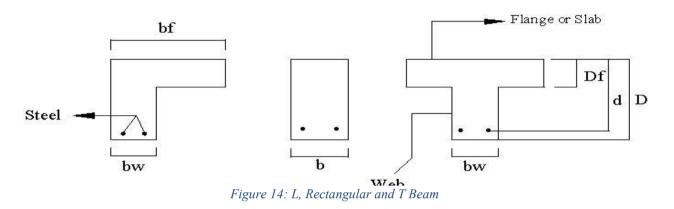
= 23 * 2 * 1 * 1 * 1

= 46Actual value = 1/d = 4640/130 = 35.69 \therefore 1/d $\leq \alpha\beta\gamma\delta\lambda$ (OK) Check for Shear: $\tau v = Vu/bd = (17.505*4.64/2*1000)/(1000*130) = 0.246$ Vu = (Wu*lx)/2 = (17.505*4.64)/2 = 40.61 KN 100 As/bd = 100* (0.5*628.32)/ (1000*130) = 0.24%Again, from Table 19, $\therefore \tau c = 0.37$ N/mm2 $\tau c = k* 0.37$ = 1.3 * 0.37

= 0.481

Hence, the slab is safe against shear.

Check for L_D


At simply supported edge;

$$\begin{split} L_D &\leq 1.3 M1/Vu + L0 \\ L_D &= (0.87 \text{ fy Ast Z})/V = (0.87 \text{ fy } \emptyset)/(\tau \text{ bD}) \\ &\text{For M30, } \tau_{bd} = 1.5 * 1.6 = 2.4 \\ &\therefore M1 = 0.87 \text{ fy Ast (d -(fy Ast)/(fck b))} \\ &= 0.87 * 500 * 628.32/2 * (130 - (500*628.32)/(2*30*1000)) \\ &= 17.05*10^6 \text{ Nmm} = 17.05 \text{ KNm} \\ &\text{And, Vu = } 40.61 \text{ KN} \\ &\text{Now,} \\ &L_D &= (0.87 \text{ fy Ast Z})/V = (0.87 \text{ fy } \emptyset)/(\tau \text{ bD}) \\ &= 0.87 * 500 * 10/(1.5*1.6) \\ &= 453.125 \text{mm} \\ &1.3 M1/Vu = 545.80 \text{mm} \\ &(> Ld, also, no anchorage required) \\ &&OK. \end{split}$$

7.3 Design of Beam

Design Procedure of beam

Beam is a flexural member and supports the imposed load. It carries load by bending action. The beam may be rectangle, L and T section consisting of singly and doubly reinforcement.

Design of beams requires determination of the cross-sectional dimensions and reinforcement details to satisfy both serviceability and strength requirements. The serviceability requirement for deflection is controlled by effective span to effective depth ratio. Generally, the depth of the beam is large and governed by the strength requirement. The spacing of reinforcement controls the serviceability requirement for crack. In beams, spacing of reinforcement bars are small and governed by the minimum spacing requirement than maximum spacing for crack control. The reinforcements are provided to satisfy strength requirements. The detailing of longitudinal and transverse bars should satisfy the bending, shear and bond requirements. The bending moment and shear are determined from the analysis generally based on the elastic theory.

Beams are designed for the worst condition. So, the maximum values from the combination have been used for the design.

here are two types of reinforced concrete beams in our case:

- a. Singly Reinforced Beams
- b. Doubly Reinforced Beams

Singly Reinforced Beams:

In singly reinforced simply supported beams, reinforcing steel bars are placed near the bottom of the beams, which is the position where they are the most effective in resisting the tensile stresses. In singly reinforced cantilever beams, reinforcing bars are placed near the top of the beam for the reason.

If Mu<Mu1, then it is singly reinforced section and the area of steel Ast is determined by:

$$\mathbf{A}_{\mathrm{st}} = \frac{Mu, lim}{0.87 * fy * (d - 0.42 * xu, lim)}$$

Detail Design of Beam Building 1: Primary Beam (A2-B2) Concrete Grade = 25MPaSteel Grade = 30MPa 1. Known Data Overall depth of beam (D) = 650mm Width of Beam (B) = 350mm Effective cover = 42.5mm Effective depth (d) = 607.5mm 2. Check for member size Width of beam (B) = 350mm > 200mm (IS 13920:2016 Clause 6.1.2) Depth of beam (D) = 650 mmB/D = 350/650 = 0.538 > 0.3 (IS 13920:2016 Clause 6.1.1) Hence, ok. Clear Length (L) = 6.5 - 2*0.325 = 5.85mL/D = 5.85/0.65 = 9 > 4(IS 13920:2016 Clause 6.1.3) OK

3. Checking for limiting longitudinal reinforcement

$$A_{st,min} = 0.24 * \frac{\sqrt{fck}}{fy} * B * D$$
(IS 13920:2016 Clause 6.2.1b)
= 0.24 * $\frac{\sqrt{30}}{500}$ * 350 * 607.5 = 559 mm²
$$A_{st,max} = 0.025BD$$

= 5687.5 mm²

4. Design for flexure

$$\begin{split} M_{u,lim} &= 0.1336 \ f_{ck} \ *b*d^2 \\ M_{u,lim} &= 0.1336*30*350*607.5^2 = 517.7 \ KNm \end{split}$$

A. At the left end

For Hogging (Negative) moment:

Hogging moment $(M_u) = -475.56$ KNm

Torsional moment = 0.13

Here, $M_u < M_{u,lim}$, so the design is for a singly reinforced section.

For Ast,req:

$$M_{ul} = 0.87*f_y*A_{st,req}*(d-\frac{fy*Ast,req}{fck*b})$$

Solving,

 $A_{st,req} = 2168 \text{ mm}^2$

The area of steel in compression must be at least 50% of the Area of steel in

tension

From Sagging moment, $A_{st,req} = 654 \text{ mm}^2$

So, $A_{st,req} = 2168 \text{ mm}^2$

Providing 5#25mm rebars

 $A_{st,provided} = 2454 \text{ mm}^2$

For Sagging (Positive) moment:

Sagging moment $(M_u) = 310.6$ KNm

Torsional moment = 0.2

Here, $M_u < M_{u,lim}$, so the design is for a singly reinforced section.

For Ast, req:

 $M_{ul} = 0.87*f_y*A_{st,req}*(d-\frac{fy*Ast,req}{fck*b})$

Solving,

 $A_{st,req} = 1309.8 \text{ mm}^2$

Area of steel in compression must be at least 50% of Area of steel in tension From Sagging moment, $A_{st,req} = 1136 \text{ mm}^2$ So, $A_{st,req} = 1309.8 \text{ mm}^2$ Providing 3#25mm rebars

 $A_{st,provided} = 1472 \text{ mm}^2$

B. For middle part

For Hogging (Negative) moment:

Hogging moment $(M_u) = 117.54$ KNm

Torsional moment = 0.11

Here, $M_u < M_{u,lim}$, so the design is for singly reinforced section.

For Ast, req:

$$M_{ul} = 0.87*f_y*A_{st,req}*(d-\frac{fy*Ast,req}{fck*b})$$

Solving,

 $A_{st,req} = 461.47 \text{ mm}^2$

Area of steel in compression must be at least 50% of Area of steel in tension

From Sagging moment, $A_{st,req} = 330.5 \text{ mm}^2$

So, $A_{st,req} = 559 \text{ mm}^2$ (from minimum area criteria)

Providing 2#25mm rebars

 $A_{st,provided} = 981 \text{ mm}^2$

For Sagging (Positive) moment:

Sagging moment $(M_u) = 661.35$ KNm

Torsional moment = 0.17

Here, $M_u < M_{u,lim}$, so the design is for a singly reinforced section.

For Ast, req:

$$M_{ul} = 0.87*f_y*A_{st,req}*(d-\frac{fy*Ast,req}{fck*b})$$

Solving,

 $A_{st,req} = 661.35 \text{ mm}^2$

Area of steel in compression must be at least 50% of Area of steel in tension

From Sagging moment, $A_{st,req} = 230.5 \text{ mm}^2$

So, $A_{st,req} = 661.35 \text{ mm}^2$

Providing 2#25mm rebars

 $A_{st,provided} = 981 \text{ mm}^2$

C. At the right end

For Hogging (Negative) moment: Hogging moment (M_u) = 452.78 KNm Torsional moment = 0.14

Here, $M_u < M_{u,lim}$, so the design is for singly reinforced section.

For Ast, req:

$$M_{ul} = 0.87*f_y*A_{st,req}*(d-\frac{fy*Ast,req}{fck*b})$$

Solving,

 $A_{st,req} = 2039.3 \text{ mm}^2$

Area of steel in compression must be at least 50% of Area of steel in tension

From Sagging moment, $A_{st,req} = 632 \text{ mm}^2$

So, $A_{st,req} = 2039.3 \text{ mm}^2$

Providing 5#25mm rebars

 $A_{st,provided} = 2454 \text{ mm}^2$

For Sagging (Positive) moment:

Sagging moment $(M_u) = 301.86$ KNm

Torsional moment = 0.16

Here, $M_u < M_{u,lim}$, so the design is for a singly reinforced section.

For Ast,req:

$$M_{ul} = 0.87*f_y*A_{st,req}*(d-\frac{fy*Ast,req}{fck*b})$$

Solving,

Ast,req =1268.4 mm²

Area of steel in compression must be at least 50% of Area of steel in tension

From Sagging moment, $A_{st,req} = 1017 \text{ mm}^2$

So, $A_{st,req} = 1268.4 \text{ mm}^2$

Providing 3#25mm rebars

 $A_{st,provided} = 1472 \text{ mm}^2$

Table 21:	Summary	of Flexural	l Design of Beam	
-----------	---------	-------------	------------------	--

Summary of Flexural Design of Beam					
	Moment (kNM)				
	Left	Mid	Right		
Hogging Moment	475.56	117.54	452.78		

Torsional Moment	0.13	0.11	0.14
wioment			
Ast,req	2168	661.35	2039.3
		Moment (kN	Nm)
Sagging Moment	310.6	165.71	301.86
Torsional	0.2	0.17	0.16
Moment			
Ast,req	1309.8	559	1268.4

Table 22: Summary of Required Reinforcement of Beam

	Summary of	required reinforcen	nent
	Left	Mid	Right
Bottom	1309.8	559	1268.4
Тор	2168	661.35	2039.3

Table 23: Summary of Provided Reinforcement for Beam

	Summary of I	Reinforcement	Bars	
		Bottom		
	Left	Mid	Rig	ht
Bar Diameter	25	25	25	
Number	3	2	3	
Area	1472.62	981.74 1472.6		2.62
Pt	0.69	0.461 0.4)
		Тор		
	Left	Mid	1	Right
Bar Diameter	25	25		25
Number	5	2		5
Area	2454.37	981.74		2454.37
Pc	1.15	0.461		1.15

Check for Shear

From analysis results,

Shear force at left end = -209.63 KN

Shear force at mid span = 114 KN

Shear force at right end = 153.31 KN

Shear force due to formation of plastic hinge at both ends:

For sway to right

$$V_{u,a} = V_a^{D+L} - 1.4* \frac{M_{u,lim}^{AS} + M_{u,lim}^{Bh}}{L_{AB}}$$
$$V_{u,b} = V_b^{D+L} + 1.4* \frac{M_{u,lim}^{AS} + M_{u,lim}^{Bh}}{L_{AB}}$$

For sway to left

$$V_{u,a} = V_a^{D+L} + 1.4* \frac{M_{u,lim}^{Ah} + M_{u,lim}^{BS}}{L_{AB}}$$
$$V_{u,b} = V_b^{D+L} - 1.4* \frac{M_{u,lim}^{Ah} + M_{u,lim}^{BS}}{L_{AB}}$$

Where,

 $M_{u, lim}^{As}$ = sagging moment of resistance at left end $M_{u, lim}^{Bh}$ = hogging moment of resistance at left end $M_{u, lim}^{Ah}$ = hogging moment of resistance at right end $M_{u, lim}^{Bs}$ = sagging moment of resistance at right end V_a^{D+L} = Shear at end A, with a partial safety factor of 1.2 on loads V_b^{D+L} = Shear at end B, with a partial safety factor of 1.2 on loads From SP16,

$$\begin{split} M_{u,lim}{}^{Ah} &= 344.11 \text{ KNm} \\ M_{u,lim}{}^{Bs} &= 523.75 \text{ KNm} \\ M_{u,lim}{}^{As} &= 523.75 \text{ KNm} \\ M_{u,lim}{}^{Bh} &= 344.11 \text{ KNm} \\ V_{a}{}^{D+L} &= -209.63 \text{ KN} \\ V_{b}{}^{D+L} &= 153.31 \text{ KN} \end{split}$$

For sway to right

 $V_{u,a} = V_a^{D+L} - 1.4* \frac{M_{u,lim}^{AS} + M_{u,lim}^{Bh}}{L_{AB}}$ $= -209.63 - 1.4* \frac{523.75 + 344.11}{5.85}$

= -417.32 KN

$$V_{u,b} = V_b^{D+L} + 1.4* \frac{M_{u,lim}^{AS} + M_{u,lim}^{Bh}}{L_{AB}}$$

= 153.31 + 1.4* $\frac{523.75 + 344.11}{5.85}$
= 361 KN
Similarly for sway to left
 $V_{u,a} = -1.94$ KN
 $V_{u,b} = -54.38$ KN

The design shear force to be resisted is taken as the maximum of shear force obtained from analysis and shear force obtained due to the formation of plastic hinges at both ends of the beam plus the factored load on span.

Design shear force:

At left end = -417.32 KN

At mid-span = 114 KN

At right end = 361 KN

i. At left end

Tensile steel provided = 1472.62 mm^2 Percentage of steel = 0.69% $T_c = 0.57 \text{ N/mm}^2$ $T_v = 1.96 \text{ N/mm}^2 (> T_c)$ Thus, shear reinforcement is designed as: $V_{us} = V_u - T_c * bd$ = 296.12 KN $A_{sv} = \frac{v_u s_v}{2.5d_1(0.87fy)}$ Using 10mm dia, 2 legged stirrups of Fe415 $S_v = 116.35 \text{ mm}$ ii. At mid span Tensile steel provided = 981.747 mm^2 Percentage of steel = 0.46% $T_c = 0.48 \text{ N/mm}^2$ $T_v = 0.53 \text{ N/mm}^2 (> T_c)$ Thus, shear reinforcement is designed as:

$$V_{us} = V_u - T_c * bd$$

= 11.93 KN
$$A_{sv} = \frac{v_u s_v}{2.5d_1(0^{87}f_y)}$$

Using 10mm dia, 2 legged stirrups of Fe415
$$S_v = 2885.56 \text{ mm}$$

Provide $S_v = 300 \text{ mm}$

iii. At right end

Tensile steel provided = 1472.62 mm^2

Percentage of steel = 0.69%

 $T_c = 0.57 \ N/mm^2$

$$T_v = 1.69 \text{ N/mm}^2 (> T_c)$$

Thus, shear reinforcement is designed as:

$$V_{us} = V_u - \int_c^{c} * bd$$

= 239.8 KN
 $A_{sv} = \frac{v_u s_v}{2.5 d_1 (0^{87f} y)}$

Using 10mm dia, 2 legged stirrups of Fe415

 $S_v = 143.67 \ mm$

Check for spacing

 $S_{\boldsymbol{v}}$ should not exceed the least of:

i.	X_1 = short dimension of stirrups = $350 - 2*40 - 2*10/2 = 260$ mm
	$Y_1 = long dimension of stirrups = 650 - 2*40 - 2*10/2 = 560mm$

ii. 300mm

iii. (x1 + y1)/4 = 205mm

The spacing of stirrups as confining reinforcement over a length of 2d = 2*607.5 =

1215mm shall be least of the following:

i. d/4 = 305mm

ii. 8 times the maximum diameter of longitudinal bar = 8*25 = 200mm

iii. 100mm

Provision of shear reinforcement:

At left end: Provide 10mm 2 legged vertical stirrups @ 110mm c/c up to a length of 2d At mid span: Provide 10mm 2 legged vertical stirrups @ 300mm c/c

At right end: Provide 10mm 2legged vertical stirrups @ 140mm c/c up to a length of 2d **Check for deflection**

$$\begin{split} L/D &= \alpha^*\beta^*\gamma^*l^*d \\ \alpha &= 26 \\ \beta &= 1 \\ \gamma &= 2 \\ L/D &= 52 \\ Actual L/D &= 9.62 \ (<\!52) \ ok \\ \textbf{Check for development length} \\ L_D &= 1.3M1/Vu + L_0 \\ L_D &= 0.87 \ fy \ \emptyset/4\tau_{bD} \\ For M30, \ \tau_{bd} &= 1.5 \ * 1.6 = 2.4 \\ L_D &= 1132.8125mm \\ M1 &= 344.23 \ kNm \\ V_u &= 296.12 \ kN \\ Maximum L_D &= 1.3 \ M1/V = 1511.22mm \ (>L_d, ok) \end{split}$$

Primary Beam (B2-C2)

General Information

Table 24:	General	Information	of Beam	<i>B2-C2</i>
-----------	---------	-------------	---------	--------------

Concrete	Strength of	Width of	Depth of	Beam	Effective cover
Grade (fck)	steel (fy)	Beam (B)	beam (D)	Length (L)	
30 N/mm ²	500 N/mm ²	350mm	650mm	6.5m	30 mm
Bar	Effective	d'	B/D	L/D ratio	Remarks
Diameter	depth				
25mm	607.5 mm	42.5 mm	0.538 (ok)	10 (ok)	IS 13920:2016
					clause 6.1.1 and
					6.1.3

Maximum	Minimum	Limiting	Remarks
reinforcement	reinforcement	moment	
5687.5 mm ²	559 mm ²	517.7 KNm	IS 13920:206
			Clause 6.2.1 and 6.2.2

Table 25: Reinforcement Requirement for Beam B2-C2

	Left top	Left	Centre	Centre	Right top	Right
		bottom	top	bottom		bottom
Mu	-431.48	312.5	-110.08	140.53	-454.34	300
(KNm)						
Ast, req	1922.47	1318	431.12	556.08	2048.06	1259.6
	steel in comp e greater than			% of area of s	teel in tensior	h. Also, the
Ast, req (mm ²)	1922.47	1318	559	559	2048.06	1259.6

Table 26: Provided Reinforcement for Beam B2-C2

	Summary of	Reinforcement B	Bars			
		Bottom				
	Left	Mid	Right			
Bar Diameter	25	25	25			
Number	3	2	3			
Area	1472.62	981.747	1472.62			
Pt	0.69	0.461	0.69			
		Тор				
	Left	Mid	Right			
Bar 2 Diameter	25	25	25			
Diameter						

5	2	5
2454.36	981.747	2454.36
1.15	0.461	1.15
	2454.36	2454.36 981.747

V _a ^{D+L}	Vm	V _b ^{D+L}	
-133 KN	104.23 KN	147.73 KN	V _a ^{D+L} (Shear due to plastic hinge)

Design Shear Force:

At left end	At mid-span	At right end
-340.69 KN	104.23 KN	355.42 KN

Provision of shear reinforcement:

At left end: Provide 10mm 2 legged vertical stirrups @ 150mm c/c up to a length of 2d

At mid span: Provide 10mm 2 legged vertical stirrups @ 300mm c/c

At right end: Provide 10mm 2legged vertical stirrups @ 1450mm c/c up to a length of 2d

Primary Beam (C2-D2)

General Information

Concrete	Strength of	Width	Vidth of Depth of			Beam	Effective cover
Grade (fck)	steel (fy)	Beam	Beam (B) beam (D			Length (L)	
30 N/mm ²	500 N/mm ²	350mi	n	650mm	50mm 6.5m		30 mm
Bar	Effective	d'		B/D		L/D ratio	Remarks
Diameter	depth	h					
25mm	607.5 mm	42.5 n	nm	0.538 (ok)		10 ok	IS 13920:2016
							clause 6.1.1 and
							6.1.3
Maximum	Minimum		Limitin	ng Rer		marks	
reinforcement	reinforcer	nent	momen	ent			
5687.5 mm ²	5687.5 mm^2 559 mm^2 517.7 KN			KNm	IS	13920:206 Cla	use 6.2.1 and 6.2.2

	Left	Left top	Centre	Centre	Right	Right top		
	bottom		bottom	top	bottom			
Mu	314.84	-437.2	165.41	-117.4	293.92	-507.21		
(KNm)								
Ast, req	1330.05	1953.6	660.08	460.9	1231.01	2353.52		
The area of steel in compression must be at least 50% of area of steel in tension. Also, the area must be greater than minimum area.								
Ast, req	1330.05	1953.6	660.08	559	1231.01	2353.52		
(mm ²)								

Table 28: Required Reinforcement for Beam C2-D2

Table 29: Provided Reinforcement for Beam C2-D2

	Summary of Reinforcement Bars							
	Bottom							
	Left	Mid	Right					
Bar Diameter	25	25	25					
Number	3	2	3					
Area	1472.62	981.747	1472.62					
Pt	0.69	0.461	0.69					
	Тор							
	Left	Mid	Right					
Bar Diameter	25	25	25					
Number	5	2	5					
Area	2454.36	981.747	2454.36					
Pc	1.15	0.461	1.15					

V _a ^{D+L}	V _m	V_b^{D+L}	
-138.14 KN	110.8 KN	236.05 KN	V_a^{D+L} (Shear due to plastic hinge)

Table 30: Sway Force Calculation for Beam C2-D2

M _{u,lim} ^{Ah}	344.11 KNm	Sagging moment of
		resistance at left end
$M_{u,lim}^{As}$	523.75 KNm	Hogging moment of
		resistance at left end
$M_{u,lim}^{Bh}$	344.11 KNm	Sagging moment of
		resistance at right end
$M_{u,lim}^{\rm Bs}$	523.75 KNm	Hogging moment of
		resistance at right end
$V_{u,a} = V_a^{D+L} - 1.4* \frac{M_{u,lim}^{AS} + M_{u,lim}^{B}}{L_{AB}}$	h lim	Sway to right
$V_{u,b} = V_b^{D+L} + 1.4 * \frac{M_{u,lim}^{AS} + M_{u,lim}}{L_{AB}}$	Bh u,lim	Sway to right
$V_{u,a} = V_a^{D+L} + 1.4 * \frac{M_{u,lim}^{Ah} + M_{u,lim}}{L_{AB}}$	Bs u,lim	Sway to left
$V_{u,b} = V_b^{D+L} - 1.4* \frac{M_{u,lim}^{Ah} + M_u^{I}}{L_{AB}}$	Bs 1,lim	Sway to left

Design Shear Force:

At left end	At mid-span	At right end
-345.03 KN	110.8 KN	443.74 KN

Provision of shear reinforcement:

At left end: Provide 10mm 2 legged vertical stirrups @ 150mm c/c up to a length of 2d

At mid span: Provide 10mm 2 legged vertical stirrups @ 300mm c/c

At right end: Provide 10mm 2legged vertical stirrups @ 100mm c/c up to a length of 2d

Building 2:

Primary Beam (A2-B2)

General Information

Concrete	Stı	rength of	Width	of	Depth of	B	eam	Effective
Grade (fck)	ste	el (fy)	Beam	(B)	beam (D)	Length (L)		cover
30 N/mm ²	50	0 N/mm ²	350mr	n	650mm	4	m	30 mm
Bar	Ef	fective	d'		B/D	L	/D ratio	Remarks
Diameter	de	pth						
25mm	607.5 mm		42.5 mm		0.538 (ok)	6.15 (ok)		IS
								13920:2016
								clause 6.1.1
								and 6.1.3
Maximum		Minimum		Limiti	ng moment		Remarks	
reinforcement		reinforcement						
5687.5 mm ²	559 mm ²		517.7 KNm		IS 13920:206			
							Clause 6.2	.1 and 6.2.2

Table 31: General Information of Beam A2-B2

Table 32: Required Reinforcement for Beam A2-B2 Page 100 (200)

	Left	Left top	Centre	Centre	Right	Right top	
	bottom		bottom	top	bottom		
Mu	331.8596	-437.745	86.7148	-62.6015	345.3804	-374.1932	
(KNm)							
Ast, req	1412	1957	337	241	1478	1622	
The area of steel in compression must be at least 50% of area of steel in tension. Also, the area must be greater than minimum area.							
Ast, req	1412	1957	559	559	1478	1622	
(mm ²)							

	Summary	of Rei	nforcem	ient Bars	8	
			Bot	tom		
	Left		Mid		Rig	ht
Bar Diameter	25		25 2		25 4 1963.49	
Number	3					
Area	1472.62	981.74				
Pt	0.69		0.461		0.92	
				Тор		
		I	Left	Mie	d	Right
Bar Diameter		25		25		25
Number		4		2		4
Area		1963.49		981.74		1963.49
Pc		0.92		0.461		0.92

Table 33: Provided Reinforcement for Beam A2-B2

Design for Shear

V _a ^{D+L}	Vm	V _b ^{D+L}	
-80.45 KN	-164.66 KN	41.76 KN	V _a ^{D+L} (Shear due to plastic hinge)

Table 34: Shear Force From Sway Condition for Beam A2-B2

M _{u,lim} ^{Ah}	438.92 KNm	Hogging moment of resistance at
		left end
M _{u,lim} ^{As}	344.23 KNm	Sagging moment of resistance at
		left end
M _{u,lim} ^{Bh}	438.92 KNm	Hogging moment of resistance at
		right end

$M_{u,lim}^{Bs}$	438.92 KNm	Sagging moment of resistance at
		right end
$V_{u,a} = V_a^{D+L} - 1.4* \frac{M_{u,lim}^{AS} + M_{u,lim}^{Bh}}{L_{AB}}$		Sway to right
$V_{u,b} = V_b^{D+L} + 1.4* \frac{M_{u,lim}^{AS} + M_{u,lim}^{Bh}}{L_{AB}}$		Sway to right
$V_{u,a} = V_a^{D+L} + 1.4^* \frac{M_{u,\text{lim}}^{Ah} + M_{u,\text{lim}}^{Bs}}{L_{AB}}$		Sway to left

Design Shear Force:

At left end	At mid-span	At right end
-447.308 KN	-164.66 KN	408.62 KN

Provision of shear reinforcement:

At left end: Provide 10mm 2 legged vertical stirrups @ 100mm c/c up to a length of 2d

At mid span: Provide 10mm 2 legged vertical stirrups @ 300mm c/c

At right end: Provide 10mm 2legged vertical stirrups @ 125 mm c/c up to a length of 2d

Primary Beam (B2-C2)

General Information

Table 35:	General	Information	of Beam	<i>B2-C2</i>
-----------	---------	-------------	---------	--------------

Concrete	Stı	rength of	Width	of	Depth of		Beam	Effective cover
Grade (fck)	ste	el (fy)	Beam	(B)	beam (D)		Length (L)	
30 N/mm ²	50	0 N/mm ²	350m	n	650mm		4.5 m	30 mm
Bar	Ef	fective	d'		B/D		L/D ratio	Remarks
Diameter	de	pth						
25mm	60	7.5 mm	42.5 m	nm	0.538 (ok)		6.92 (ok)	IS 13920:2016
								clause 6.1.1 and
								6.1.3
Maximum	ı	Minimum Limit		Limiti	ng	Re	marks	1
reinforcement		reinforcem	ent	momen	nt			

5687.5 mm ²	559 mm ²	517.7 KNm	IS 13920:206
			Clause 6.2.1 and 6.2.2

Table 36: Reinforcement Required for Beam B2-C2

	Left	Left top	Centre	Centre	Right	Right top
	bottom		bottom	top	bottom	
Mu	238.85	-310.97	52.76	-43.16	230.91	-310.25
(KNm)						
Ast, req	979	1312	203	165	944	1308
The area of steel in compression must be at least 50% of area of steel in tension. Also, the area must be greater than minimum area.						
Ast, req	979	1312	561.33	561.33	944	1308
(mm ²)						

Table 37: Provided Reinforcement for Beam B2-C2

	Summar	y of Re	inforcem	ent Bar	5	
			Bot	tom		
	Left		Mid		Rigl	nt
Bar Diameter	25		25		25	
Number	2		2		2	
Area	981.74		981.74		981.74	
Pt	0.69		0.461		0.69	
				Тор		
		L	.eft	Mi	d	Right
Bar Diameter		25		25		25

Number	3	2	3
Area	1472.62	981.74	1472.62
Pc	0.69	0.461	0.69

Va ^{D+L}	V _m	V _b ^{D+L}	
-35.28 KN	-76.285 KN	33.305 KN	V _a ^{D+L} (Shear due to plastic hinge)

Table 38: Shear Force From Sway Condition for Beam B2-C2

$M_{u,lim}{}^{Ah}$	344.23 KNm	Hogging moment of
		resistance at left end
$M_{u,lim}^{As}$	239.47 KNm	Sagging moment of
		resistance at left end
$M_{u,lim}^{Bh}$	344.23 KNm	Hogging moment of
		resistance at right end
$M_{u,lim}^{Bs}$	239.47 KNm	Sagging moment of
		resistance at right end
$V_{u,a} = V_a^{D+L} - 1.4 * \frac{M_{u,lim}^{AS} + M_{u,lim}^{Bh}}{L_{AB}}$		Sway to right
$V_{u,b} = V_b^{D+L} + 1.4* \frac{M_{u,\text{lim}}^{AS} + M_{u,\text{lim}}^{Bh}}{L_{AB}}$		Sway to right
$V_{u,a} = V_a^{D+L} + 1.4 * \frac{M_{u,lim}^{Ah} + M_{u,lim}^{Bs}}{L_{AB}}$		Sway to left
$V_{u,b} = V_b^{D+L} - 1.4* \frac{M_{u,lim}^{Ah} + M_{u,lim}^{Bs}}{L_{AB}}$		Sway to left
Design Shear Force:		

Design Shear Force:

At left end	At mid-span	At right end
-269.346 KN	-76.285 KN	267.371 KN

Provision of shear reinforcement:

At left end: Provide 10mm 2 legged vertical stirrups @ 200mm c/c up to a length of 2d

At mid span: Provide 10mm 2 legged vertical stirrups @ 300mm c/c

At right end: Provide 10mm 2legged vertical stirrups @ 200mm c/c up to a length of 2d

Primary Beam (C2-D2)

General Information

Concrete	Stı	rength of	Width	of	Depth of		Beam Length (L)	Effective
Grade (fck)	ste	el (fy)	Beam	(B)	beam (D))		cover
30 N/mm ²	50	0 N/mm ²	350mi	m	650mm		5.7 m	30 mm
Bar	Ef	fective	d'		B/D		L/D ratio	Remarks
Diameter	de	pth						
25mm	60	7.5 mm	42.5 n	nm	0.538 (ok	()	8.77 (ok)	IS
								13920:2016
								clause 6.1.1
								and 6.1.3
Maximum		Minimum		Limit	ing	Re	emarks	
reinforcemen	t	reinforcer	nent	mom	ent			
5687.5 mm ²	mm^2 559 mm^2 517.		517.7	KNm	IS	13920:206		
						Cl	ause 6.2.1 and 6.2.2	

Table 39: General Information of Beam C2-D2

Table 40: Required Reinforcement for Beam C2-D2

	Left	Left top	Centre	Centre	Right	Right top	
	bottom		bottom	top	bottom		
Mu	241.88	-358.48	94.93	-48.1678	219.69	-348.13	
(KNm)							
Ast, req	993	1543	370	185	894	1492	
The area of steel in compression must be at least 50% of area of steel in tension. Also, the							
area must be greater than minimum area.							

Ast, req	993	1543	559		559		894	1492
(mm²)								
		Summary	of Rei	nforcer	nent Ba	rs		
		Bottom						
		Left		Mid		Rig	ht	_
	Bar Diameter	25		25		25		-
	Number	3		2		3		-
	Area	1472.62	.62 981.74		1472.62		_	
	Pt	0.69		0.461		0.69)	_
					Тор)		
			I	left	M	id	Right	
	Bar Diameter		25		25		25	-
	Number		4		2		4	
	Area		1963.	.49	981.74	.74 19	1963.49	49
	Pc		0.923	2	0.461		0.923	-

V_a^{D+L}	V _m	V_b^{D+L}	
-86.9078 KN	70.56 KN	83.87 KN	V _a ^{D+L} (Shear due to plastic hinge)

Table 41: Shear Force From Sway Condition for Beam C2-D2

M _{u,lim} ^{Ah}	439.01 KNm	Hogging moment of
		resistance at left end
M _{u,lim} ^{As}	344.23 KNm	Sagging moment of
		resistance at left end
$M_{u,lim}^{Bh}$	439.01 KNm	Hogging moment of
		resistance at right end

M _{u,lim} ^{Bs}	344.23 KNm	Sagging moment of
		resistance at right end
$V_{u,a} = V_a^{D+L} - 1.4* \frac{M_{u,lim}^{AS} + M_{u,lim}^{Bh}}{L_{AB}}$		Sway to right
$V_{u,b} = V_b^{D+L} + 1.4 * \frac{M_{u,lim}^{AS} + M_{u,lim}^{Bh}}{L_{AB}}$		Sway to right
$V_{u,a} = V_a^{D+L} + 1.4 * \frac{M_{u,lim}^{Ah} + M_{u,lim}^{Bs}}{L_{AB}}$		Sway to left
$V_{u,b} = V_b^{D+L} - 1.4^* \frac{M_{u,\text{lim}}^{Ah} + M_{u,\text{lim}}^{Bs}}{L_{AB}}$		Sway to left

Design Shear Force:

At left end	At mid-span	At right end
-304.06 KN	70.56 KN	301.02 KN

Provision of shear reinforcement:

At left end: Provide 10mm 2 legged vertical stirrups @ 180mm c/c up to a length of 2d

At mid span: Provide 10mm 2 legged vertical stirrups @ 300mm c/c

At right end: Provide 10mm 2legged vertical stirrups @ 180mm c/c up to a length of 2d Primary Beam (D2-E2)

General Information

Table 42:	General	Information	of Beam	D2-E2
-----------	---------	-------------	---------	-------

Concrete	Strength of	Width of	Depth of	Beam Length (L)	Effective cover
Grade (fck)	steel (fy)	Beam (B)	beam (D)		
30 N/mm ²	500 N/mm ²	350mm	650mm	6 m	30 mm
Bar	Effective	d'	B/D	L/D ratio	Remarks
Diameter	depth				
25mm	607.5 mm	42.5 mm	0.538 (ok)	8.77 (ok)	IS 13920:2016
					clause 6.1.1 and
					6.1.3

Maximum	Minimum	Limiting moment	Remarks
reinforcement	reinforcement		
5687.5 mm ²	559 mm ²	517.7 KNm	IS 13920:206
			Clause 6.2.1
			and 6.2.2

Table 43: Required Reinforcement For Beam D2-E2

	Left	Left top	Centre	Centre	Right	Right top	
	bottom		bottom	top	bottom		
Mu	188.12	-338.95	104.61	-47.66	174.78	-391.2	
(KNm)							
Ast, req	757	1447	409	183	700	1709	
The area of steel in compression must be at least 50% of area of steel in tension. Also, the area must be greater than minimum area.							
Ast, req	757	1447	559	559	854.5	1709	
(mm ²)							

Table 44: Provided Reinforcement for Beam D2-E2

	Summary o	f Reinforcen	nent Bar	5	
	Bottom				
	Left	Mid		Righ	nt
Bar Diameter	25	25		25	
Number	2	2		2	
Area	981.74	981.74	ļ	981.	74
Pt	0.46	0.461		0.46	
		Тор			
	Left		Mi	d	Right
Bar Diameter		25	25		25

Number	4	2	4
Area	1963.49	981.74	1963
Pc	0.92	0.461	0.92

Table 45: Shear Force Calculation for Beam D2-E2

V _a ^{D+L}	Vm	V _b ^{D+L}			
-115.43 KN	80.91 KN	157.1	KN	V_a^{D+L} (Shear	
				due to plastic	
				hinge)	
M _{u,lim} ^{Ah}	ł		439.02	KNm	Hogging moment of
					resistance at left end
M _{u,lim} As			239.47	KNm	Sagging moment of
					resistance at left end
$M_{u,lim}^{Bh}$			439.02	KNm	Hogging moment of
					resistance at right end
M _{u,lim} ^{Bs}			239.47	KNm	Sagging moment of
					resistance at right end
$V_{u,a} = V_a^{D+L}$ -	$1.4* \frac{M_{u,\text{lim}}^{AS} + M_{u,\text{lin}}^{Bh}}{L}$	<u>m</u>	I		Sway to right
	L_{AB}				
$V_{u,b} = V_b^{D+L} +$	$-1.4* \frac{M_{u,\text{lim}}^{AS} + M_{u}^{B}}{L_{AB}}$	h lim			Sway to right
$V_{u,a} = V_a^{D+L} + 1.4* \frac{M_{u,\text{lim}}^{Ah} + M_{u,\text{lim}}^{Bs}}{L_{AB}}$				Sway to left	
$V_{u,b} = V_b^{D+L} - 1.4* \frac{M_{u,lim}^{Ah} + M_{u,lim}^{Bs}}{L_{AB}}$					Sway to left

Design Shear Force:

At left end	At mid-span	At right end
-292.98 KN	80.91 KN	334.65 KN

Provision of shear reinforcement:

At left end: Provide 10mm 2 legged vertical stirrups @ 175 mm c/c up to a length of 2d

At mid span: Provide 10mm 2 legged vertical stirrups @ 300 mm c/c

At right end: Provide 10mm 2legged vertical stirrups @ 145 mm c/c up to a length of 2d

7.4 Design of Columns

Columns are the vertical members that transfer axial as well as lateral loads and moments from the upper structure. Columns support the beams and slabs, and transfer the forces from beams to the foundation.

Depending upon the slenderness ratio, column is divided into short column (*slenderness* $ratio \le 12$) and long column (*slenderness* ratio > 12) which fails predominantly by compression and buckling respectively. The slenderness ratio of a column is given by the ratio of effective length to dimension of the column. Based on loading criteria, the columns can be axially loaded, uniaxially loaded or biaxially loaded columns, which is classified according to the eccentricity ratio of the column in two orthogonal directions.

The following steps are involved in the design of columns:

- 1. Preliminary Design
- 2. Slenderness Check
- 3. Check for Eccentricity
- 4. Design of Longitudinal Reinforcement
- 5. Design of Lateral Reinforcement

The sample calculation for the manual design of a typical column is shown below in the table:

Building 1:

Design	Reference	Calculations	Output/remarks
steps			
		Member dimensions	
1		Width=650mm	D=650mm
		Length=650mm	B= 650mm

Table 46: Design of Column for Building 1

		Height of floor=3.6m	L= 3.6m
		Unsupported length=3.6-0.65=2.95 m	d'=52.5mm
		Assume,	
		Clear cover= 40mm	
		Ø _{max} =25mm	
		So,	
		Effective cover= $40+25/2$	
		= 40+12.5	
		= 52.5mm	
2	IS 13920:2016	Check for maximum axial stress	
	Cl.7.1		
		Maximum factored load=4367.763 KN	
		Maximum stress= $\frac{4367.76*1000}{650*650}$	σ(max)
		=10.33 N/mm ² <0.4fck=12N/mm ²	=10.33
			<0.4fck
		Since, the maximum stress due to	
		maximum load combination relating to	
		seismic load is under 0.4fck,	
		it is safe under compressive stress.	
3	IS13920:2016	Check for minimum member size	
	Cl 7.1.1		
		Width of column= 650mm	
		Depth of column = 650 mm	
		Minimum dimension = $20xd_b$	
		=20*25	
		= 500mm	
		B/D = 650/650	
	Cl 7.1.2	=1>0.45(OK)	
4		Check for slenderness	
		$\beta_{1=}\beta_{2=}\frac{\Sigma Kc}{\Sigma Kc+\Sigma Kb}$	

	MOI of column = 0.01041 m^3	
	Kc=Ic/Lc	
	= (0.01041/2.95)	
	= 0.00352	
	For x direction:	
	MOI of beam = 0.008 m^3	
	Kb=1/2*Ib/Lb	
	=(0.008/6.5)	
	= 0.000616	
	$\beta_{1=}\beta_{2} = \frac{2*0.00352}{2*0.00352+0.000215}$	
	=0.97	
	For y direction:	
	MOI of beam = 0.008 m^3	
	$K_b = I_b / L_b$	
	=(0.008/4.5*2)+(0.008/5.5*2)	
	= 0.000565	
	$\beta_{1=}\beta_{2} = \frac{2*0.00352}{2*0.00352+0.000565}$	
	= 0.92	
ETABS	From ETABS,	
LINDS	Q value = 0.028	
	Since the Q value is less than 0.4, the	
	frame structure is taken as frame	
	restraint against sway	
ANNEX E IS456	$K_x = 0.97$	
MULLA L 19490	$K_y = 0.92$	
	For x- direction,	
	$L_{eff} = 0.97 * 2.95 = 2.8615 m$	
IS 456:2000	$L_{eff}/D = 2.8614/0.65$	
Cl 25.1.2	= 4.4<12	
C1 2J.1.2	For y- direction	
	$L_{eff} = 0.92 * 2.95 = 2.714 m$	

		$L_{eff}/B = 2.714/0.65$
		= 4.17<12
		So, the column is treated as a short
		column in both directions.
5	IS 456:2000	Limiting longitudinal reinforcement
	Cl. 25.5.3.1 (a)	
		Min. Reinforcement = 0.8% of bd
		= 0.008*650*650
		$= 3380 \text{mm}^2$
		Max reinforcement = 6% of bd
		= 0.06*650*650
		$= 25350 \text{ mm}^2$
6	ETABS	P=4367.76 KN
		$M_{u2} = 813.29 \text{ KN-m}$
		$M_{u3} = 110.32 \text{ KN-m}$
		$V_u = 420.43 \text{ KN}$
		Shear force due to plastic hinge in
		beam:
		Sagging moment capacity of beam, Ms
		=379.26 KN-m
		Hogging moment capacity of beam,
		Mh
		=208.11 KN-m
		Height of story, $hs = 3.6m$
		So shear force due to plastic failure in
		beam = $\frac{MS+Mh}{HS}$ *1.4
		we get,
		Vu= 411.86 KN (Detailed calculation
		is shown at the end)
		So design shear force in the column is
		420.43 KN.
		420.43 NIN.

7	IS 456:2000	Check for eccentricity	
	Cl 25.4	$e_{\min} = \frac{l}{500} + \frac{D}{30}$	
		= (3000/500) + (650/30)	$E_{act} > 0.05D$
		= 27.67 mm > 20 mm	
		Actual eccentricity(e _{act})	
		$e_{actual, x} = Mu_3/P$	
		= 110.32*1000/4367.76	
		= 25.25 mm	
		$e_{actual, y} = M_{u2}/P$	
		= 813.29*1000/4367.76	
		= 186.2 mm	
		Since actual eccentricity in Y	
		directions is more than 0.05D, the	
		column shall be treated as a uni-axially	
		loaded column.	
8		$M_{u,design} = 813.29 \text{ KNm}$	
		$P_u = 4367.76 \text{ KN}$	
		d' = 52.5mm	
		d/D = 0.081	
		$Pu/f_{ck}*bd = 0.346$	
		$Mu/f_{ck}*bd^2 = 0.098$	
		Assuming reinforcement is distributed	
		equally in four sides	
	From SP 16, Chart	$P/f_{ck} = 0.055$	
	48	P% = 0.055 * 30	
		= 1.65%	
9		Provided reinforcement	
		Ast required = 6971.25 mm ²	

		Provide 20 reinforcements of 25mm	
		diameter, 6 bars equally on all 4 sides.	
		So,	9817.48>Min
		Ast provided = 9817.48 mm^2	9817.48 <max< td=""></max<>
10	IS 456:2000	Design of lateral ties	
	Cl 26.5.3.2.c	Ø _t >6mm	
	0120.0.0.0.2.0		$Q_t = 8mm$
			$S_v = 200 \text{mm}$
		So adopt lateral ties of 8mm diameter.	$S_v = 200$ mm
		Minimum spacing of lateral ties	
		\leq least lateral dimension(650mm)	
		$\leq 16*\emptyset = 16*25 = 400$ mm	
		≤300mm	
		So, provide 4 closed rectangular	
		transverse reinforcements at spacing of	
		200mm center to center.	
11	IS13920:2016	Special confining reinforcements	
	Cl 8.1	a. Confining zone length l ₀ is taken	
		maximum of	
		i. Larger lateral dimension of column	
		i.e., 650mm	
		ii. 1/6 of clear span i.e., 975mm	
		iii. 450mm	
		So provide l ₀ =1000mm	
		b. Spacing is taken a minimum of	
		i. 1/4th of min lateral dimension of	
		column and beam i.e.,75mm	
		ii. 6 times min. longitudinal diameter	
		i.e.,150mm	
		iii. 100mm	

So, provide spacing of 75mm in	
confining region.	
Spacing check from area consideration	
$A_{sh} = Maximum of$	
$0.18 \text{ S}_{v} \text{ h} \frac{fck}{fy} \left(\frac{Ag}{Ak} - 1\right)$	
$0.05 \operatorname{S_v} \mathrm{h} \frac{fck}{fy}$	
$= 0.18 * S_{v} * 142.5 * \frac{30}{500} * (\frac{422500}{324900} - 1)$	
$= 0.462 \mathrm{S_v}$	
$= 0.05^* \mathrm{S_v}^* 142.5^* \frac{30}{500}$	
$= 0.4275 \ S_V$	
So,	
$S_V = 108.79$ mm	
Design of shear reinforcement	
Area of steel provided = 9817.48 mm^2	
Area of tension steel = $0.5*9817.48$	
$= 4908.74 \text{ mm}^2$	
$T_c = 0.692 \text{ N/mm}^2$	
For columns subjected to axial	
compression the shear stress should be	
increased by δ which is given by	
$\delta = 1 + 3*Pu/Area*fck$	
$= 1 + (3*4367.76)/650^2*30$	
= 2.03<1.5	
So, Tc = 1.5*0.692	
= 1.038N/mm ²	
Shear capacity of concrete	
= 1.068*650*650	

		= 451.23 KN	
		Provide minimum shear reinforcement	
		$A_{sv} = \pi * 8^2 / 4 * 4$	
		= 201.06mm	
		$V_{us} = 0.87*415*201.06*597.5/Sv$	
		Sv = 300mm	
12	IS 456:2000	Splicing of vertical bars	
	Cl 26.2.1	Maximum of 50% bars should be	
		spliced at a section and the clear	
		overlap of the spliced section should	
		be more than development length of	
		the largest bars.	
		$L_{d.} = \frac{0.87*500*25}{4*1.6*1.25*1.5}$	
		= 906.25mm	
		Therefore, provide the overlap of	
		1000mm in spliced section.	

Calculation of shear force due to plastic failure of beam:

Table 47: Calculation of Shear Force in Column in Building 1

Beam	A _{st} (top)	A _{st} (bottom)	MOR _h	MOR _s
Left	2454.36	1472.62	523.75	344.11
Right	0	0	0	0
Up	2454.36	1472.62	523.75	344.11
Down	2454.36	1472.62	523.75	344.11

Sway Direction	V _u (KN)
To right	163.306
To left	248.56
To up	411.86
To down	411.86

Building 2:

Desi	gn	Reference	2	Calculations		Output/remarks
steps	5					
			Member dimensions			
1				Width=650mm		D= 650mm
				Length=650mm		B= 650mm
				Height of floor=3.6m		L= 3.6m
				Unsupported length=3.6-0.65=2.95m		d'=52.5mm
				Assume,		
				Clear cover= 40mm		
				Ø _{max} =25mm		
				So,		
				Effective cover= $40+25/2$		
				= 40+12.5		
				= 52.5mm		
2	IS 1392	20:2016	Check	c for maximum axial stress		
				mum factored load=4360.301KN		
	Maxin		Maxii	ximum stress $= \frac{4360.301 \times 1000}{650 \times 650}$		(max)
				=10.31N/mm ² <0.4fck=12N/mm ²		=10.31
						<0.4fck
			Since	, the maximum stress due to maximum		
	load combination relating to seismic load is					
			under	0.4 fck, it is safe under compressive		
			stress			
3	IS1392	20:2016	Check	c for minimum member size		
	Cl 7.1.1 Width		Width	n of column= 650mm		
			Depth	n of column = 650 mm		
			Minin	num dimension = 20xd_{b}		
				=20*25		
				= 500mm		

Table 48: Design of Column of Building 2

	Cl 7.1.2	B/D = 650/650
		=1>0.45(OK)
4		Check for slenderness
		$\beta_{1=}\beta_{2=}\frac{\Sigma Kc}{\Sigma Kc+\Sigma Kb}$
		MOI of column = 0.0148 m^3
		Kc=Ic/Lc
		=(0.0148/2.95)
		= 0.00501
		For y direction:
		MOI of beam = 0.00809 m^3
		Kb=Ib/Lb
		=(0.00809/6)
		= 0.000674
		$\beta_{1=}\beta_{2} = \frac{2*0.00501}{2*0.00501+0.000674}$
		=0.93
		For y direction:
		MOI of beam = 0.00809 m^3
		$K_b = I_b / L_b$
		=(0.00809/5.7*2)+(0.00809/4.5*2)
		= 0.00160
		$\beta_{1=}\beta_{2} = \frac{2*0.00501}{2*0.00501+0.00160}$
		= 0.86
		From ETABS,
	ETABS	Q value = 0.022
		Since Q value is less than 0.4, frame structure
		is taken as frame restraint against sway
	ANNEX E	$K_x = 0.88$
	IS456	$K_y = 0.94$
	1	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{bmatrix} IS 456:2000 \\ Cl 25.1.2 \end{bmatrix} = 4 < 12 \\ For y- direction \\ L_{eff} = 0.94*2.95=2.77m \\ L_{eff}/B = 2.77/0.65 \\ = 4.26 < 12 \\ So, the column is treated as a short column in both directions. \end{bmatrix}$ $\begin{bmatrix} 5 & IS 456:2000 \\ Cl. 25.5.3.1 (a) \end{bmatrix}$ $\begin{bmatrix} Limiting longitudinal reinforcement \\ Min. Reinforcement = 0.8\% of bd \\ = 0.008*650*650 \end{bmatrix}$	
Cl 25.1.2For y- direction $L_{eff} = 0.94*2.95=2.77m$ $L_{eff}/B = 2.77/0.65$ $= 4.26<12$ So, the column is treated as a short column in both directions.5IS 456:2000 Cl. 25.5.3.1 (a)Limiting longitudinal reinforcement Min. Reinforcement = 0.8% of bd $= 0.008*650*650$	
$ \begin{array}{ c c c c c c } \hline For y- direction \\ L_{eff} = 0.94*2.95 = 2.77m \\ L_{eff}/B = 2.77/0.65 \\ &= 4.26 < 12 \\ So, the column is treated as a short column in both directions. \\ \hline 5 & IS 456:2000 \\ Cl. 25.5.3.1 (a) \\ \hline & Min. Reinforcement = 0.8\% of bd \\ &= 0.008*650*650 \\ \hline \end{array} $	
$\begin{array}{ c c c c c } & L_{eff} = 0.94*2.95=2.77m \\ L_{eff}/B = 2.77/0.65 \\ &= 4.26{<}12 \\ & \text{So, the column is treated as a short column in both directions.} \\ \hline 5 & \text{IS 456:2000} \\ & \text{Cl. 25.5.3.1 (a)} & \text{Limiting longitudinal reinforcement} \\ & \text{Min. Reinforcement} = 0.8\% \text{ of bd} \\ &= 0.008*650*650 \\ \hline \end{array}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
= 4.26<12So, the column is treated as a short column in both directions.5IS 456:2000Cl. 25.5.3.1 (a)Limiting longitudinal reinforcement Min. Reinforcement = 0.8% of bd = 0.008*650*650	
So, the column is treated as a short column in both directions.5IS 456:2000Cl. 25.5.3.1 (a)Limiting longitudinal reinforcement 0.8% of bd = 0.008*650*650	
both directions.5IS 456:2000Cl. 25.5.3.1 (a)Limiting longitudinal reinforcement0.008*650*650	
5IS 456:2000Limiting longitudinal reinforcementCl. 25.5.3.1 (a)Min. Reinforcement = 0.8% of bd= $0.008*650*650$	
C1. 25.5.3.1 (a) Min. Reinforcement = 0.8% of bd = $0.008*650*650$	
= 0.008*650*650	
$= 3380 \text{mm}^2$	
Max reinforcement = 6% of bd	
= 0.06*650*650	
$= 25350 \text{ mm}^2$	
6 ETABS P= 1243.21 KN	
$M_{u2} = 209.401 \text{ KN-m}$	
$M_{u3} = 846.84 \text{ KN-m}$	
Shear force due to plastic hinge in beam	
Sagging moment capacity of beam, Ms	
=379.26 KN-m	
Hogging moment capacity of beam, Mh	
=208.11 KN-m	
Height of story, $hs = 3.6m$	
So shear force due to plastic failure in beam	
$=\frac{MS+Mh}{HS}$ *1.4	
we get,	
Vu= 227 KN (Detailed calculation is shown at	
the end)	

		Design shear force from ETABS	
		$V_{u2} = 478.67 \text{ KN}$	
		$V_{u3} = 451.052 \text{ KN}$	
		So design shear force in column is 478.67KN	
7	IS 456:2000	Check for eccentricity	
	Cl 25.4	$e_{\min} = \frac{l}{500} + \frac{D}{30}$	
		= (3000/500) + (650/30)	E _{act} >0.05D
		= 27.67 mm > 20 mm	
		Actual eccentricity(e _{act})	
		$e_{actual, x} = Mu_3/P$	
		= 846.84 * 1000/1243.21	
		= 681.17mm	
		$e_{actual, y} = M_{u2}/P$	
		= 209.401*1000/1243.21	
		= 168.43mm	
		Since actual eccentricity in both directions are	
		more than 0.05D, the column shall be treated	
		as biaxially loaded column.	
8	IS 456:2000	First trial 2%	p%=2%
		$f_y = 500 N/mm^2$	
		$f_{ck} = 30 N/mm^2$	
		$\frac{P}{fckbd} = \frac{1241.31}{30 * 650 * 650} = 0.098$	
		$\frac{p}{fck} = \frac{2}{30} = 0.067$	
		d/D=0.08	
		Assume reinforcement distributed equally on	
		all four sides	
	SP 16, Chart 48	Referring to interaction diagrams from	
		$SP16, \frac{Mul}{fckbd2} = 0.13$	
		,	

		So,	
		$M_{ul} = 1071.035 \text{ KN-m}$	
		$A_{sc} = 8450 \text{mm}^2$	
			M _{ul} =1071.035kN-m
		$P_{uz} = (0.45* \text{ fck} * 650*650) +$	
		(0.75*500*8450)	
		= 8872.5 KN	
		$\frac{Pu}{Puz} = \frac{1243.21}{8872.5} = 0.14$	Puz=8872.5KN
		Puz 8872.5	
		For 0.14,	
		$\alpha = 1$	
		а I	
	IS 456:2000	For biaxially loaded column,	
	Cl 39.6		
		$\left(\frac{Mu2}{Mul}\right)^{\alpha} + \left(\frac{Mu3}{Mul}\right)^{\alpha}$	
		$= 0.1955 \pm 0.794$	
		= 0.986 < 1(OK)	
		Hence the column is safe.	
9		Provided reinforcement	
		Ast required = 8450 mm ²	
		Provide 20 reinforcements, 6 bars equally on	
		all 4 sides.	
		So,	9817.48>Min
		Ast provided = 9817.48 mm^2	9817.48 <max< th=""></max<>
10	IS 456:2000	Design of lateral ties	
	Cl 26.5.3.2.c		
		Ø _t >6mm	$Ø_t = 8mm$
		$Q_t > \frac{25}{4} = 6.25 \text{mm}$	$S_v = 200 mm$
		So adopt lateral ties of 8mm diameter.	
		Minimum spacing of lateral ties	
		1 0	

	\leq least lateral dimension(650mm)
	$\leq 16*\emptyset = 16*25 = 400$ mm
	≤300mm
	So, provide 4 closed rectangular transverse
	reinforcement at spacing of 200mm center to
	center.
	Design of shear reinforcement
	Area of steel provided = 9817.48 mm^2
IS 456:2000	Area of tension steel = $0.5*9817.48$
Cl 40.2.1	$= 4908.74 \text{ mm}^2$
	$T_c = 0.712 \text{ N/mm}^2$
	For columns subjected to axial compression
	the shear stress should be increased by $\boldsymbol{\delta}$
	which is given by
	$\delta = 1 + \frac{3 * Pu}{Area * fck}$
IS 456:2000	= 1.29<1.5
Cl 40.2.2	
	So, Tc = 1.29*0.712
	$= 0.92 \text{N/mm}^2$
	Shear capacity of concrete
	= 0.92*650*650
	=388.7 KN
	Required shear capacity of stirrups
	= 89.9 KN
	$A_{sv} = \pi * \frac{8*8}{4} * 4$
	= 201.06mm
IS 456-2000	
IS 456:2000 40.4.c.a	$V_{\rm us} = \frac{0.87*415*201.06*597.5}{Sv}$
40.4.C.a	
	On solving,

		We get Sv= 482.47mm
11	IS13920:2016	Special confining reinforcements
	Cl 8.1	
		a. Confining zone length l_0 is taken maximum
		of
		i. Larger lateral dimension of column i.e.,
		650mm
		ii. 1/6 of clear span i.e., 975mm
		iii. 450mm
		So provide l ₀ =1000mm
		b. Spacing is taken minimum of
		i. 1/4th of min lateral dimension of column
		and beam i.e.,75mm
		ii. 6 times min. longitudinal diameter
		i.e.,150mm
		iii. 100mm
		So, provide spacing of 75mm in confining
		region.
		Spacing check from area consideration
		$A_{sh} = Maximum of$
		$0.18 \text{ S}_{v} \text{ h} \frac{fck}{fy} \left(\frac{Ag}{Ak} - 1\right)$
		$0.05 \operatorname{S_v} h \frac{f c k}{f y}$
		$= 0.18*75*114*\frac{30}{500}*(\frac{422500}{324900}-1)$
		= 27.73
		$= 0.05*\ 75*114*\frac{30}{500}$
		= 25.65

		So,	
		$A_{sh} = 27.73$	
12	IS 456:2000	Splicing of vertical bars	
	Cl 26.2.1	Maximum of 50% bars should be spliced at a	
		section and the clear overlap of the spliced	
		section should be more than development	
		length of the largest bars.	
		$L_{d.} = \frac{0.87*500*25}{4*1.6*1.25*1.5}$	
		= 906.25mm	
		Therefore, provide the overlap of 1000mm in	
		spliced section.	

Calculation of shear force due to plastic failure of beam:

Table 49: Calculation of Shear Force in Column of Buildin	ıg 2

Beam	Beam (Ast) _{to}		(Ast) _{bottom}	(MOR)h	(MOR)s
Left	1472.62		981.74	344.23	239.47
Right	1472.	62	981.74	344.23	239.47
Up	0		0	0	0
Down	1472.62		981.74	344.23	239.47
Sway direction		Vu(KN)		
To right		226.	99444		
To left		226.	99444		
To up		93.1	27222		
To down		133.	86722		

7.5 Design of Staircase

Stairs, along with elevators are the only means of providing access between the adjacent floor of the buildings. Stairs consist of flight and landing. Flight is the inclined slab consisting of risers and treads whereas the landing is the horizontal slab. The design of the flight is similar to a one-way slab.

Generally, the stairs are found to be isolated from the building while modeling the RC buildings but in practice, stairs are built integrally with the structural system of the building. Thus, the elements of the stairs such as flight and landing slabs act as the diagonal braces and attract large lateral forces during an earthquake, thereby incurring great damage. The beam supporting the landing slab of the dog-legged stair will also cause the secondary effect of short column effects, in addition to causing the twist of the building due to stiffness irregularity in the plan, if they are not located centrally. This effect results in enhanced shear demand and thus should be designed accordingly.

In both of our buildings, there is only one type of staircase, the dog-legged staircase, located at the edge of both buildings. In this type of staircase, the landing is supported on landing beams at the middle of each floor level, so, the stairs are designed as longitudinally spanning.

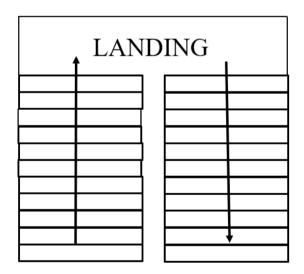
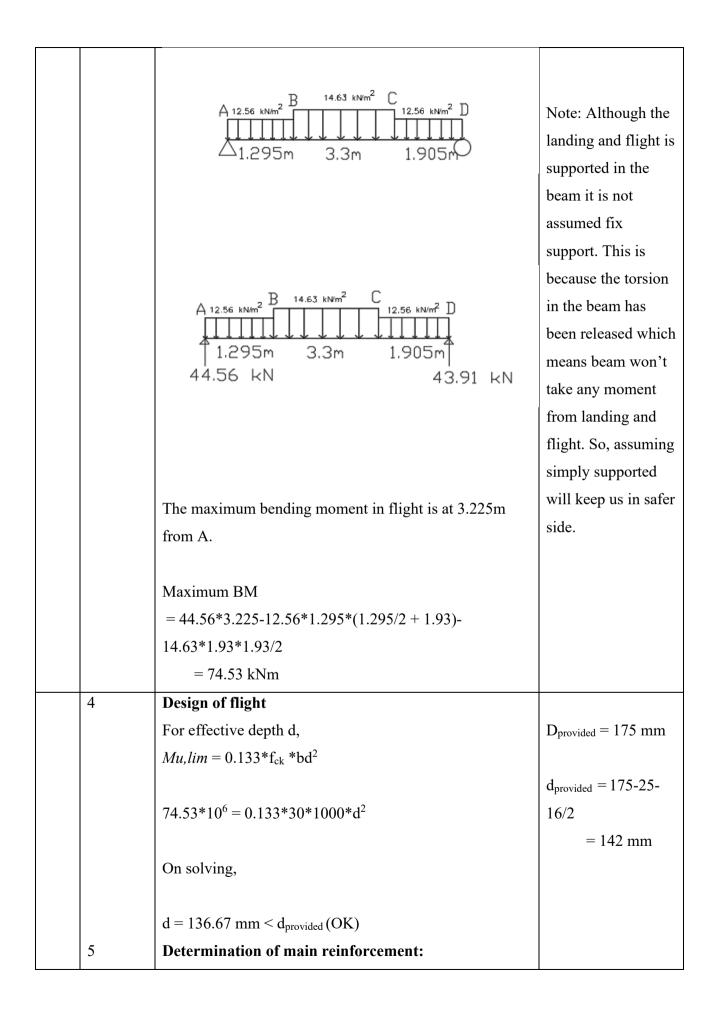


Figure 15: Typical Staircase

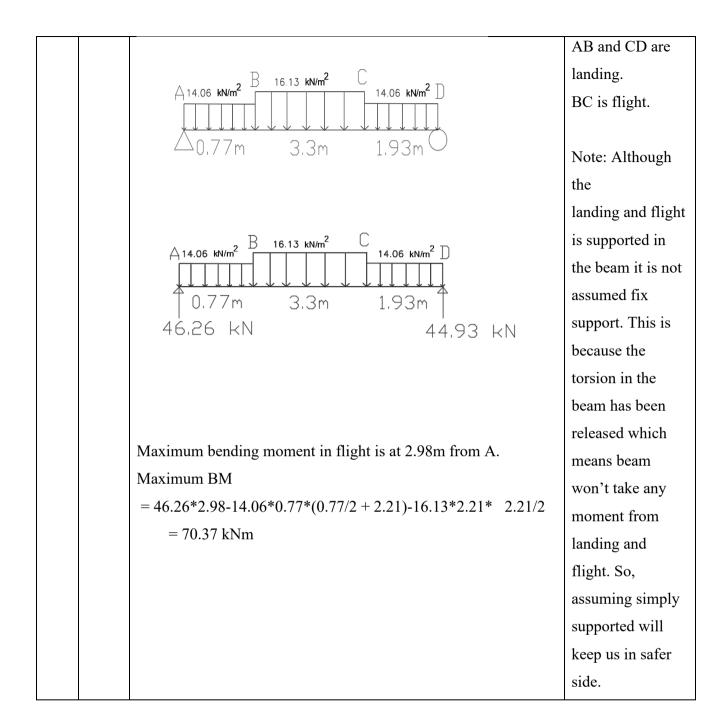

Design of Dog-legged staircase:

Building 1:

Table 5	0: Design	Of Staircase	of Building 1
I doit of	0. Design	of staticuse	of Dunung 1

Ref.	Steps	Calculation	Output/Remarks
	1	Known data:	
		• Floor height=3.6m	
		• Tread width=300mm	
		• Riser height=150mm	
		• Number of risers=2*12=24	
		• Number of treads=2*11=22	
		• Length of flight on each floor=3300mm	
		• Width of flight = 1 m	3.3 m is the going
		• $cos\theta = \frac{3.3}{(3.3^2 + 1.8^2)}$	length.
		= 0.878	
		Some assumed data:	1.8 m is the height
		• Depth of waist slab be (D) = 175mm	of the single flight.
		• Clear cover (cc) = 25mm	
		• Diameter of bar $(\phi) = 16$ mm	
	2	Load Calculation:	
	2.1.1	Load calculation for landing 1	
		Self weight of landing = $0.175*25$	
		$= 4.375 \text{ kN/m}^2$	
		Imposed load = 3 kN/m^2	

	Floor finish = 1 kN/m^2	
	Total factored load on landing = $1.5*(4.375+3+1)$	
	$=12.56 \text{ kN/m}^2$	
	Load calculation for landing 2	
2.1.2	Self weight of landing = $0.175*25$	
	$= 4.375 \text{ kN/m}^2$	
	Imposed load = 3 kN/m^2	
	Floor finish = 1 kN/m^2	
	Total factored load on landing = $1.5*(4.375+3+1)$	
	$=12.56 \text{ kN/m}^2$	
2.2	Load calculation for flight	
	Self weight of waist slab = $4.375*(0.335/0.3)$	
	$= 4.88 \text{ kN/m}^2$	
	Self weight of waist steps = $0.5 * \frac{0.15 * 0.3 * 25}{0.3}$	
	$=1.875 \text{ kN/m}^2$	
	Imposed load = 3 kN/m^2	
	Total factored load = $1.5*(4.88+1.875+3)$	
	$= 14.63 \text{ kN/m}^2$	
3	Analysis	
	UDL on landing $1 = 12.56 \text{ kN/m}^2$	
	UDL on landing $2 = 12.56 \text{ kN/m}^2$	
		AB and CD are
	UDL on flight = 14.63 kN/m^2	landing.
		BC is flight.


	$M_{\rm U} = 0.87 * f_{\rm y} * A_{\rm st} * d * (1 - \frac{fy*Ast}{fck*b*d})$ $74.53*10^{6} = 0.87*500*A_{\rm st}*142*(1 - \frac{500*Ast}{30*1000*142})$ $A_{\rm st} = 1455.07 \text{ mm}^{2}$	
	Required spacing of 16mm bars, c/c spacing = $1000*64*\pi/1455.07 = 138.18$ mm	
	Provide 16 mm dia. bars @ 135mm c/c	
	$A_{st, provided} = 1489.34 \text{ mm}^2$	
6	Development Length Check	
	$L_d = \Phi^* f_s / 4T$	
	= 725 mm	
	M1 = 41.97 KNm	
	V = 44.56 KN	
	M1/V = 941 mm	
	So, it is safe in development length	
7	Distribution Reinforcement:	
	$A_{st min} = 0.12\%$ of bD	
	$= 210 \text{ mm}^2$	
	Provide 10 mm bars as distribution reinforcement	
	Spacing = $1000*25*\pi/210 = 374$ mm	
	Provide 10 mm dia. bars @ 300 mm c/c.	

Building 2:

Ref.	Steps	Calculation	Output/Remarks
	1	Known data:	
		• Floor height=3.6m	
		• Tread width=300mm	
		• Riser height=150mm	
		• Number of risers=2*12=24	3.3 m is the going
		• Number of treads=2*11=22	length.
		• Length of flight on each floor=3300mm	
		• Width of flight = 1 m	1.8 m is the
		• $cos\theta = \frac{3.3}{(3.3^2 + 1.8^2)}$	height of the
		$(3.3^2 + 1.8^2)$ = 0.878	single flight.
		Some assumed data:	
		• Depth of waist slab be (D) = 175mm	
		• Clear cover (cc) = 25mm	
		• Diameter of bar $(\phi) = 16$ mm	

Table 51: Design of Staircase of Building 2

2	Load Calculation:
2.1.1	Load calculation for landing 1
	Self weight of landing = $0.175*25$
	$= 4.375 \text{ kN/m}^2$
	Imposed load = 4 kN/m^2
	Floor finish = 1 kN/m^2
	Total factored load on landing = $1.5*(4.375+4+1)$
	$=14.06 \text{ kN/m}^2$
2.1.2	Load calculation for landing 2
	Self weight of landing = $0.175*25$
	$= 4.375 \text{ kN/m}^2$
	Imposed load = 4 kN/m^2
	Floor finish = 1 kN/m^2
	Total factored load on landing = $1.5*(4.375+4+1)$
	$=14.06 \text{ kN/m}^2$
2.2	Load calculation for flight
	Self weight of waist slab = $4.375*(0.335/0.3)$
	$= 4.88 \text{ kN/m}^2$
	Self weight of waist steps = $0.5 * \frac{0.15*0.3*25}{0.3}$
	$=1.875 \text{ kN/m}^2$
	Imposed load = 4 kN/m^2
	Total factored load = $1.5*(4.88+1.875+4)$
	$= 16.13 \text{ kN/m}^2$
3	Analysis
	UDL on landing $1 = 14.06 \text{ kN/m}^2$
	UDL on landing $2 = 14.06 \text{ kN/m}^2$
	UDL on flight = 16.13 kN/m^2

4	Design of flight	
	For effective depth d,	$D_{\text{provided}} = 175$
	$Mu, lim = 0.133 * f_{ck} * bd^2$	mm
	$70.37*10^6 = 0.133*30*1000*d^2$	
	On solving,	$d_{provided} = 175-25-$
	$d = 132.8 \text{mm} < d_{\text{provided}} (\text{OK})$	16/2
	Determination of main reinforcement:	= 142 mm
	$M_{\rm U} = 0.87 * f_{\rm y} * A_{\rm st} * d * (1 - \frac{fy * A_{\rm st}}{fck * b * d})$	
	$70.37*10^{6} = 0.87*500*A_{st}*142*(1-\frac{500*Ast}{30*1000*142})$	
5	$A_{st} = 1354.6 \text{ mm}^2$	
	Required spacing of 16mm bars,	
	c/c spacing = 1000*64* $\pi/1354.6 = 148.4$ mm	
	Provide 16 mm dia. bars @ 145mm c/c	
	$A_{st, provided} = 1386.63 \text{mm}^2$	
	Development Length Check	
	$L_d = \Phi^* f_{s'} 4T$	
	= 725 mm	
	M1 = 39.34 KNm	
	V = 46.26 KN	
6	M1/V = 850 mm	
	So, it is safe in development length	
	Distribution Reinforcement:	
	$A_{st min} = 0.12\%$ of bD	
	$= 210 \text{ mm}^2$	
	Provide 10 mm bars as distribution reinforcement	
7		
	Spacing = $1000*25*\pi/210 = 374$ mm	
	Provide 10 mm dia. bars @ 300 mm c/c.	

7.6 Design of Basement Wall

Basement wall is constructed to retain the earth and to prevent moisture from seeping into the building. Since the basement wall is supported by the mat foundation, the stability is ensured and the design of the basement wall is limited to the safe design of vertical stem.

Basement walls are exterior walls of underground structures (tunnels and other earth sheltered buildings), or retaining walls must resist lateral earth pressure as well as additional pressure due to other type of loading. Basement walls carry lateral earth pressure generally as vertical slabs supported by floor framing at the basement level and upper floor level. The axial forces in the floor structures are, in turn, either resisted by shear walls or balanced by the lateral earth pressure coming from the opposite side of the building.

Although basement walls act as vertical slabs supported by the horizontal floor framing, keep in mind that during the early construction stage when the upper floor has not yet been built the wall may have to be designed as a cantilever.

The design is based on the assumption that the backfilling of soil is done after the construction of the ground floor. This allows for the economy in design considering the wallto be supported by both the mat foundation as a cantilever action. The design for both buildings is the same.

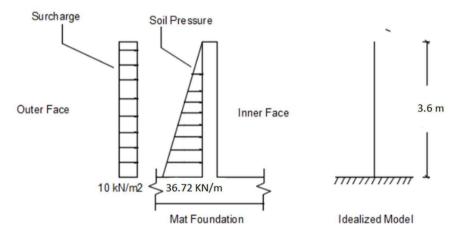


Figure 16: Design of Basement Wall

Known Data

Concrete Grade = M30 Steel Grade = Fe500 1. Design Constants Floor to floor height, basement height, h = 3.6m Unit weight of soil, $\gamma = 17$ KN/m³ Angle of internal friction of soil, $\theta = 30$ Surcharge produced due to vehicular movement, $W_s = 10 \text{KN/m}^3$ Safe bearing capacity of soil, $q_s = 140 \text{KN/m}^3$

2. Moment calculation

Coefficient of earth pressure, $K_a = \frac{1-\sin\theta}{1+\sin\theta} = \frac{1-\sin30}{1+\sin30} = 0.333$ Lateral load due to soil pressure, $P_a = \frac{1}{2} K_a \gamma^* h^2$ $= \frac{1}{2} 0.33 \times 17 \times 3.6^2$ = 36.72 KN/m width of wall.

Lateral load due to surcharge load, $P_s = K_a * W_s * h$

= 0.333*10*3.6

= 12 KN/m width of wall.

Characteristics bending moment of wall is calculated as given below. Since the weight of wall gives insignificant moment, it can be neglected in the design.

$$M_{c} = \frac{Pa*h}{3} + \frac{Ps*h}{2}$$
$$= \frac{36.72*3.6}{3} + \frac{12*3.6}{2}$$

= 65.66 KN-m/m width of wall.

Design moment, $M = 1.5*M_c$

= 1.5*65.66 = 98.5 KNm/m

3. Approximate design of section

Let effective depth of wall = d.

For Fe500,

 $M = 0.133 * fck * b * d^2$

 $98.5^{*}10^{6} = 0.133^{*}30^{*}1000^{*}d^{2}$

On solving,

We get d = 157.12 mm

Let the clear cover be 30mm and bar size Ø is 16mm.

Overall depth of wall = 157.12 + 30 + 8

= 195.12mm

Take D = 210mm

d= 200-30-8

(IS 456:2000 Cl 32.5.1)

Two curtain of reinforcement need to be provided.

4. Calculation of main steel reinforcement

 $M = 0.87^* f_y^* A_{st}^* d^* (1 - \frac{Ast * fy}{b * d * f ck})$ $98.5^* 10^6 = 0.87^* 500^* A_{st}^* 162^* (1 - \frac{Ast * 500}{1000 * 162 * 30})$ On solving, We get A_{st} = 1692.45 mm² A_{st, min} = 0.0012^* b^* D (IS 456:2000 Cl 32.5.a.1) = 240 mm² Maximum diameter of bar = D/8 = 25 mm>16 mm (IS 13920) Area of one bar = 201.06 mm² Spacing of bars = $\frac{1000 * 201.06}{1692.45}$ = 118.79 mm Provide 16mm Ø bars at 100mm c/c.

Maximum spacing = 3*D or 450mm

= 450 mm > 100 mm(OK)

(IS 456:2000 Cl 32.5.b)

So,

 A_{st} provided = 2010.6 mm²

5. Check for shear

The critical section for shear is taken at distance "d" from the face of support. Thus the critical section is at d=0.162m from the top of mat foundation, i.e. 3.438m below the top edge of wall.

Shear force at critical section is

$$V_{u} = (3.33*3.438 + \frac{1}{2}*\frac{20.38}{3.6}*3.438^{2})$$

= 11.448 + 33.456
= 44.9 KN
$$V = 1.5*V_{u}$$

= 1.5*44.9
= 67.35 KN
Nominal shear stress, $T_{v} = \frac{V}{V_{v}}$

b*d

$$=\frac{67.65*1000}{1000*162}$$

= 0.4177 N/mm²
100As/bd = 1.24
For M30, from table 19 (IS 456:2000)
Tc = 0.7 N/mm²
From Table 20 (IS 456:2000)
T_{c, max} = 3.5 N/mm²
Here,

T_c, max >Tc>T_v (Hence, safe in shear)

6. Check for deflection $L_{eff} = Clear span + d$ = (3.6-0.6) + 0.162 = 3.162mAllowable deflection = $\frac{Leff}{250}$ = (3.162*1000/250) = 12.648 mm(IS 456:2000 Cl 23.2.a) Actual deflection = $\frac{Ps*(Leff)3}{8EI} + \frac{Pa*(Leff)3}{30EI}$ = 0.002590 + 0.00211

= 4.709 mm <12.648 mm (**Safe**)

7. Calculation of horizontal reinforcement steel bar Min reinforcement = 0.002*b*D (IS 456:2000 Cl 32.5.c.1) = 0.002*1000*200= 400 mm²

As the temperature change occurs at the front face of the basement wall,

2/3rd of horizontal reinforcement is provided at the front face and

 $1/3^{rd}$ of horizontal reinforcement is provided at the inner face.

Temp reinforcement at the front face = (2/3) *400

 $= 266.7 \text{ mm}^2$

Provide 10 mm bars.

Area of one bar = 78.53 mm^2

Spacing = $\frac{1000*78.53}{266.7}$ = 294.45mm

Maximum spacing = (3*D or 450 mm)

= 450 mm > 294.45(OK) (IS 4.

(IS 456:2000 Cl 32.5.d)

So provide 10mm Ø bars at 250mm c/c at front face.

Temp reinforcement at inner face = (1/3) * 400

 $= 133.33 \text{ mm}^2$

Spacing = $\frac{1000*78.53}{133.33}$ = 588.98 mm

So provide 10 mm Ø bars at 450 mm c/c at inner face.

8. Curtailment of reinforcement

No bars can be curtailed in less than Ld distance from the bottom of stem.

 $L_{d} = \frac{\emptyset * \sigma}{4 * Tbd}$ (IS 456:2000 Cl 26.2.1) = $\frac{16 * 0.87 * 500}{4 * 1.6 * 1.5}$ = 725mm

The curtailment of bars can be done in two layers, 1/3 and 2/3 heights of stem above the base.

Let us curtail bars only at 1/3 i.e. 1.054m from base (2.108 m from top)

Lateral load at 2.108 m due to soil pressure, Pa

$$=\frac{1}{2}*11.93*2.108$$

=12.57KN/m width of wall.

Lateral load at 2.108m due to surcharge load, Ps

= 3.33 * 2.108

=7.02 KN/m width of wall.

Characteristics bending moment at 2.108 m

$$M = 1.5*\left(\frac{12.57*2.108}{3} + \frac{7.02*2.108}{2}\right)$$
$$= 1.5*(8.83 + 7.39)$$

= 24.34 Kn-m per unit width of wall.

Since the moment is less than half the moment at the base of the wall, spacing of the vertical reinforcement is doubled from 1054 mm from the base of the wall.

Provide 16mm Ø bars at 200mm c/c from 1054mm.

7.7 Design of Lift Core Wall

The design of lift wall has been designed as the reinforced wall monolithic to the other structural members which is subjected to the direct compression. They are designed as per the empirical procedure given in the **IS-13920**, **clause 9.1.2** The minimum thickness of the wall should be 150 mm. The design of a wall shall account of the actual eccentricity of the vertical force subjected to the minimum value of 0.05t. The vertical load transmitted to a wall by a discontinuous concrete floor or roof shall be assumed to act at one-third the depth of the bearing area measured from the span face of the wall. Where there is an in-situ continuous concrete floor over the wall, the load shall be assumed to act the center of the wall. The resultant eccentricity of the total vertical load on a braced wall at any level between horizontal lateral supports, shall be calculated on the assumption that the resultant eccentricity of all the vertical loads above the upper support is zero.

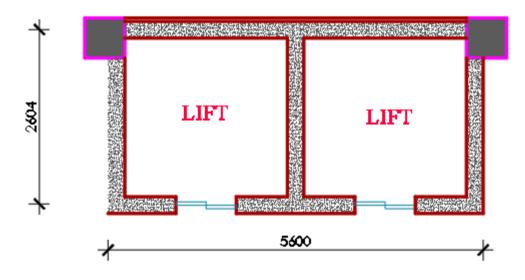


Figure 17: Lift Core

Design: Known Data: Total length of wall = 17.45m Height of wall = 3.6m Assume, Wall thickness (t) = 300mm

Check for the slenderness ratio Effective height of wall (h_E) = 0.75*H = 2.7 mSlenderness ratio = $\frac{h_e}{t}$ = 9 < 30 (OK) IS 456:2000 Cl 32.2.3 Minimum eccentricity : e(min) = 0.05 * tIS 456:2000 Cl 32.2.3 = 15mm Lift wall : Length = 17.45mCharacteristics load = 17.45*0.3*3.6*25 = 507.87 KN Weight of lift equipment = 3700kg Weight of passengers = 800 kgTotal weight = 4500kg Applying impact factor of 100% Total weight = 900kg = 90 KNTotal design load per each floor = 1.5*[507.87+10]= 776.805 KN Load of roof slab : Dead load = 2*[0.15*25*2.17*2.55]= 41.50 KNLive load = 2*[2.17*2.55*1.75]= 17.36 KN Total seismic load (W) = $[776.805*8] + \frac{776.805}{2} + 60.16$ = 6663 KN h = 32.4m $A_{h} = \frac{Z * I * Sa}{2 * R * g}$ IS 1893:2016 $T_{\rm X} = \frac{0.075 * h^{0.75}}{\sqrt{A_{\omega}}}$ (For RC structural walls, IS 1893:2016) Where,

$$A_{w} = \Sigma [A_{wi}^{*} \{ 0.2 + (\frac{Lwi}{h})^{2} \}]$$

We get,

$$A_w = 0.665$$

So, $T_X = 1.24$
Similarly, $T_y = 1.8$ sec.
In X-direction:
 $Sa/g = \frac{1.36}{T}$
 $= 1.096$
 $A_h = \frac{0.36 \times 1.2 \times 1.096}{2 \times 5}$

Base shear $(V_b) = 315.47$ KN

In Y-direction:

$$Sa/g = \frac{1.36}{T}$$

= 0.755
$$A_{h} = \frac{0.36*1.2*0.755}{2*5}$$

= 0.0326

Base shear $(V_b) = 217.3247 \text{ KN}$

Table 52: Latere	al Force Calculatio	n for Lift Core Design
------------------	---------------------	------------------------

Floor level	Wi(KN)	hi(m)	Wi*hi2	Wi*hi2/ΣWi*hi2	Lateral force a lev	· · ·	Cumulative	lateral force	Mome	nt along
					Along X	Along Y	Along X	Along Y	x	Y
Roof	449.26	32.4	471615.1776	0.1868	58.9152	40.5848	58.9152	40.5848	1908.8530	1314.94810
Top floor	776.805	28.8	644313.1392	0.2551	80.4890	55.4463	139.4042	96.0311	2318.0840	1596.85435
Sixth floor	776.805	25.2	493302.2472	0.1953	61.6244	42.4511	201.0287	138.4822	1552.9352	1069.76766
Fifth floor	776.805	21.6	362426.1408	0.1435	45.2751	31.1886	246.3037	169.6708	977.94171	673.672928
Fourth floor	776.805	18	251684.82	0.0997	31.4410	21.6587	277.7448	191.3295	565.93849	389.857019
Third floor	776.805	14.4	161078.2848	0.0638	20.1223	13.8616	297.8670	205.1911	289.76050	199.606793
Second floor	776.805	10.8	90606.5352	0.0359	11.3188	7.7971	309.1858	212.9883	122.24271	84.2091161
First floor	776.805	7.2	40269.5712	0.0159	5.0306	3.4654	314.2164	216.4537	36.220063	24.9508492
Ground floor	776.805	3.6	10067.3928	0.0040	1.2576	0.8663	315.4740	217.3200	4.5275079	3.11885615
	6663.7	<u> </u>	2525363.309						7776.5033	5356.98567

Using 16mm Ø bars:

Calculation of vertical steel reinforcement:

When lateral load is acting along x direction:

M = 7776.503/2 = 3888.28 KN-m

V = 315.46/2 = 157.735 KN

P = 6663.7/2 = 3331.85 KN

d'= 44 So d'/D = 0.007 < 0.05

Hence for this case we have to use SP-16 chart 35,

$$\frac{M}{fck*b*d^2} = 0.0133$$

$$\frac{P}{fck*b*d} = 0.064$$
p/fck =0
So we provide minimum reinforcement
Minimum reinforcement:
Ast = 0.0025*5600*300
= 4200 mm^2
Using 16 mm Ø bars,
Spacing required = 260mm
Check for spacing
Spacing < 3t = 3*300 = 900mm (OK)
< 450mm (OK)
Provide 16mm Ø bars at 260mm c/c.

To account for reversal effect, provide vertical reinforcements on both faces of wall.

Horizontal reinforcement:

Ast = 0.0025*2600*300

 $= 1950 \text{ mm}^2$

Using 16 mm Ø bars,

Spacing required = 260mm

Check for spacing

Spacing < 3t = 3*300 = 900mm (OK)

< 450mm (OK)

Provide 16mm Ø bars at 260mm c/c.

To account for reversal effect, provide horizontal reinforcements on both faces of wall.

Ultimate load carrying capacity IS 456:2000 Cl 32.2.5 Ultimate load carrying capacity per unit length of wall is $P_u = 0.3*[t-1.2e-2e_a]*fck$ e = 15mm $e_a = 9.72 mm$

Pu = 0.3*[300-(1.2*15)-(2*9.72)]*30= 2363.64 KN/m Total capacity of wall 1 and 2 in X- direction = 12054.56 KN Check for shear: When lateral load is acting in X-direction: Nominal shear stress, IS 456:2000 Cl 32.4.2 $T_{V} = \frac{157.735 \times 10^{4}3}{300 \times 0.8 \times 5.1}$ $= 0.128 \text{ N/mm}^2$ Allowable shear stress = 0.17*fck = 0.17*30 $= 5.1 \text{ N/mm}^2 > \text{Tv}$ $H_w/L_W = 3.6/5.1 = 0.7 < 1$ (Low wall) For low wall, $Tc = 3 - (Hw/Lw)*k1*\sqrt{fck}$ $=(3-\frac{3.6}{5.7})*0.2*\sqrt{30}$ $= 2.59 \text{ N/mm}^2$ When lateral load is acting in Y-direction: Nominal shear stress, IS 456:2000 Cl 32.4.2 $Tv = \frac{72.44*10^{3}}{300*0.8*2.60}$ $= 0.116 \text{ N/mm}^2$ Allowable shear stress = 0.17*fck = 0.17*30 $= 5.1 \text{ N/mm}^2 > \text{Tv}$ $H_w/L_W = 3.6/2.6 = 1.38 > 1$ (High wall) For high wall, $Tc = K_2 \sqrt{fck} * \frac{\frac{Hw}{Lw} + 1}{\frac{Hw}{Lw} - 1}$ $= 1.53 \text{N/mm}^2 > \text{Tv}$ (OK) IS 13920:2016 Cl 9.6.2 Reinforcement at opening: Area of opening = 900*2100

No. of horizontal bars interrupted = 8 nos

No. of vertical bars interrupted = 4nos

Total area of reinforcement = 2412.68mm²

Now, area of bars to be provided around the opening per layer = 2412.68 mm^2 Take 28 mm Ø bars per layer of reinforcement at each side of the opening.

7.8 Design of Mat foundation

Foundations are the subsurface structure that transfers loads from the buildings or individual to the earth. Foundations must be designed to transfer the loads without exceeding the safe bearing capacity. Additionally, it must prevent excessive settlement, and minimize differential settlement. Most of the foundations used in structures are classified as:

- Footing
- Combined footing
- Raft or mat foundation.
- Pile foundation
- Isolated

Raft foundation

Normally, in residential buildings load from superstructure are small enough to be transmitted by isolated footings, spread footings and combined footings. However, in large commercial buildings the loads to be transmitted from the superstructure are heavy to the extent that the individual footings might overlap or require more than 50% of total area. In such cases, a large area footing called raft footing is required. This footing is preferred even in cases of low soil bearing pressure or high settlement.

Method of Analysis

Raft foundation is designed using rigid foundation design method where the foundation is assumed to be rigid and pressure distribution on soil is linearly varying. The analysis requires determination of contact pressure under the raft, which is done as per IS : 2950 (Part I) – 1981 Appendix D.

The raft is analyzed as a whole in each of the two perpendicular directions. In case of uniform conditions when the variations in adjacent column loads and column spacing do not exceed 20% of the higher value, raft may be divided into perpendicular strips of widths equal to the distance between mid-spans and each strip may be analyzed as an independent beam with known column loads and known contact pressures.

Building 1:

Known Data:

Unit weight of soil(γ) = 17KN/m³

Service load (P) = 60073.19 KN

Grade of the concrete = M30

Grade of the steel = Fe500

Bearing capacity of the soil(q) = 140KN/m³

Angle of response of the soil(\emptyset) = 30°

As per IS 1893:(Part 1): 2016, CL 6.3.5.2, when earthquake forces are included, net bearing pressure in soil can be increased depending on the type of the foundation and type of soil. For the raft foundation and stiff soil, this can be increased by 25 %.

Considering axial transfer of the load to the foundation, the area of the soil required to sustain the foundation load is given as:

Area of soil required = $\frac{service \ load + self \ weight \ of \ foundation}{safe \ bearing \ capacity}$

 $=\frac{60073.19*1.1}{140}$ (self weight is taken as 10% of axial load)

$$=472 \text{ m}^2$$

Plinth area = 419.25 m^2

Since area of soil required > 0.5*(Plinth area), mat foundation should be provided.

Location of geometrical centroid $(\bar{x}, \bar{y}) = (9.75, 10.75)$

Calculation:

Response for factored load combinations i.e. (1.5DL + LL)

 $\Sigma P = 60073.19 \text{ KN}$

 $\Sigma M_x = 152.556$ KN-m

 $\Sigma M_y = -1201.8 \text{ KN-m}$

 $\Sigma(P^*X) = 911639.6$

$$\Sigma(P*Y) = 980431$$

Location of the center of resultant forces:

$$X_{f} = \frac{\Sigma(P*X)}{\Sigma P}$$
$$= 10.1169m$$
$$Y_{f} = \frac{\Sigma(P*Y)}{\Sigma P}$$
$$= 10.88m$$

Location of Geometrical Centroid: $(\bar{x}, \bar{y}) = (9.75, 10.75)$

Eccentricity: $e_x = X_f - \bar{x}$ = 0.367m $e_y = Y_f - \bar{y}$ = 0.13mOverall Dimension: L= 23.5m B= 25.5mArea MOI $I_{XX} = \frac{L*B^{A3}}{12}$ $= 3.247*10^4 m^4$ $I_{YY} = \frac{B*L^{A3}}{12}$ $= 2.757*10^4 m^4$

Stress at different coordinates:

$$\sigma = \frac{\Sigma P}{A} \pm \frac{Myy}{Iyy} * X \pm \frac{Mxx}{Ixx} * Y$$
$$M_{yy} = \Sigma P * e_{x} \pm \Sigma M_{y}$$
$$Mxx = \Sigma P * e_{y} \pm \Sigma M_{x}$$

For bearing pressure check (Serviceability condition)

$$\Sigma P = 60073.19 \text{ KN}$$

 $M_{yy} = (60073.19*0.367) + (-152.556/1.5)$

 $M_{xx} = (60073.19*0.13) + (-1201.8/1.5)$

For the design of the mat foundation (Factored)

 $\Sigma P = 90109.79 \text{ KN}$

$$M_{yy} = (90109.79*0.367) + (-1201.8)$$

 $M_{xx} = (90109.79*0.13) + (-152.556)$

Extreme coordinates w.r.t geometrical center (for bearing pressure check)

$$(\mathbf{x}, \mathbf{y}): (\pm 23.5/2, \pm 25.5/2) \\= (\pm 11.75, \pm 12.75)$$

Stress at extreme corners:

 $(11.75, 12.75) = 112.32 \text{ KN/m}^2$

 $(-11.75, 12.75) = 94.21 \text{ KN/m}^2$

 $(11.75, -12.75) = 100.29 \text{ KN/m}^2$

 $(-11.75, -12.75) = 88.16 \text{ KN/m}^2$

So, the stress at extreme corners is within the safe bearing pressure of soil. (140KN/m^2) Design stress under different columns (1.5(DL + LL))

Label	P(KN)	MX	MY	X coordinate	Y coordinate	p*x	p*y
C 17 COLUMN	716.8221	9.8742	-35.4724	0	0	0	0
C 13 COLUMN	1084.834	-6.0137	-78.9402	0	5.5	0	5966.585
C9 COLUMN	1161.043	3.0827	55.9055	0	11	0	12771.48
C6 COLUMN	1077.153	-1.7138	-93.5836	0	15.5	0	16695.87
C 21 COLUMN	586.2821	-28.3729	-38.7016	0	21.5	0	12605.07
C18 COLUMN	1456.689	192.328	-12.1739	6.5	0	9468.476	0
C14 COLUMN	5680.022	4.3583	31.4408	6.5	5.5	36920.14	31240.12
C10 COLUMN	5618.402	-12.0368	-15.2435	6.5	11	36519.61	61802.42
C7 COLUMN	5547.893	-25.1158	46.4323	6.5	15.5	36061.3	85992.34
C22 COLUMN	1605.655	-196.877	-17.0593	6.5	21.5	10436.76	34521.58
C19 COLUMN	1456.645	193.4412	-12.9008	13	0	18936.39	0
C15 COLUMN	6020.416	-17.5689	1.5287	13	5.5	78265.4	33112.29
C11 COLUMN	6032.965	10.1418	0.3199	13	11	78428.55	66362.62
C8 COLUMN	6288.243	-15.0032	11.211	13	15.5	81747.15	97467.76
C23 COLUMN	1676.112	-194.708	-18.2163	13	21.5	21789.45	36036.4
C20 COLUMN	1501.375	91.238	6.2647	19.5	0	29276.81	0
C16 COLUMN	4245.726	-10.4281	-49.6855	19.5	5.5	82791.66	23351.49
C12 COLUMN	3902.74	-34.5149	-76.4448	19.5	11	76103.43	42930.14
C5 COLUMN	4023.122	0.6754	-113.365	19.5	15.5	78450.87	62358.38
C24 COLUMN	1731.749	-92.4116	4.1156	19.5	21.5	33769.11	37232.61
	90109.79	-152.556	-1201.8			911639.6	980431

Table 53: Design Stress for Building 1

For design, the raft is divided into 4 strips in the X-direction and 5 strips in the Y-direction, and each strip is treated as a continuous beam. Bending moments are obtained using coefficients suggested **by IS 456: 2000, Table 12**. For the calculation of bending moment, the maximum value of stress under the column for each strip is used and calculations are done for both X and Y directions.

Bending moment at support = $\frac{q * l^2}{10}$

Bending moment at midspan = $\frac{q * l^2}{12}$

Where, q= maximum stress under a column for a given strip.

Along X-direction:

Strip	Width	LMax	q	Support Moment	Span Moment	Remark
Beam	(m)	(m)	(kN/m2)	(kNm/m)	(kNm/m)	S
1,1	5	6.5	165.478	699.14455	582.6205	Max
2,2	5.25	6.5	163.342	690.11995	575.1	
3,3	5	6.5	161.74	683.3515	569.4596	
4,4	5.5	6.5	159.782	675.07895	562.5658	
5,5	4.75	6.5	157.824	666.8064	555.672	
	1	I	Max	699.14455	582.6205	

Table 54: Moment Calculation for Foundation Design of Building 1 in X-direction

Along Y- direction:

Table 55: Moment Calculation for Foundation Design of Building 1 in Y-direction

Strip	Width	L	q	Support Moment	Span Moment	
Beam	(m)	Max (m)	(kN/m2)	(kNm/m)	(kNm/m)	Remarks
A-A	5.25	5.5	142.936	432.3814	360.3178333	
B-B	6.5	5.5	150.45	455.11125	379.259375	
C-C	6.5	5.5	157.964	477.8411	398.2009167	
D-D	5.25	5.5	165.478	500.57095	417.1424583	
				500.57095	417.1424583	Max

Maximum moment of all four values is used for determination of depth of raft foundation i.e.

M(max) = 699.15 KN-m.

Manual Design:

Depth from moment consideration:

For Fe500, from SP16,

 $M = 0.133 * fck*b*d^2$

 $699.15*10^6 = 0.133*30*1000*d^2$

On solving, we get

d = 418.6 mm

Since footing is critical in shear, depth is increased.

Adopt D = 925 mm

Provide 20mm Ø bars and 75 mm effective cover.

Then,

$$d = 925 - \frac{20}{2} - 75$$

= 840mm.

Check for two-way shear:

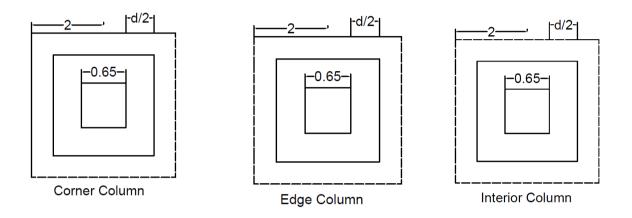


Figure 18: Types of Columns Used in Foundation

The check is for the most critical interior column:

Nominal shear stress $= \frac{v}{b_0 * d}$ IS 456:2000 Cl 31.6.2.1 $b_0 = perimeter$ From IS 456:2000 Cl 36.3.1, $T_V \le k_s T_c$; $ks = (0.5+\beta_c) \le 1$ $\beta_c = L/B$ Here, $\beta_c = 1$. So $K_s = 1$ $T_c = 0.25\sqrt{fck}$ = 1.37So, Nominal shear stress (Tv) should be less than 1.37 N/mm² From clause 31.6.1, Critical section for shear shall be at a distance d/2 from the periphery of column. $b_0 = 4*(650+840)$

= 5960mm

d = 740 mm

Maximum load (V) = 6288.24 KN

 $T_{v} = \frac{6288.24*10^{3}}{5960*840}$ = 1.256 N/mm² < 1.37N/mm²(OK) Area of steel: Minimum area of steel = 0.12% of Bd = 1008 mm²

IS 456:2000 Cl 26.5.2.1

In X direction

a. Area of steel at supports (bottom bars)

IS 456:2000 Annex G

$$Mu = 0.87* f_y * A_{st} * d(1 - \frac{A_{st} * fy}{b * d * fck})$$

Here Mu= 699.14 KN-m

On solving,

 $A_{st} = 1992.124 \text{ mm}^2 > \text{Ast(min)}$

For 20 mm bars

$$A_b = 314.159 \text{ mm}^2$$

Spacing of bars:

$$S_v = \frac{A_b}{A_{st}} * 1000$$
$$= 157.7 \text{mm}$$

Provide 20mm Ø bars at 150mm c/c.

 A_{st} provided = 2094.4 mm².

b. Area of steel at midspan (top bars)

IS 456:2000 Annex G

$$Mu = 0.87*f_y*A_{st}*d(1-\frac{A_{st}*fy}{b*d*fck})$$

Here Mu= 582.62 KN-m

On solving,

 $A_{st} = 1648.38 \text{ mm}^2 > \text{Ast(min)}$

For 20mm bars

$$A_b = 314.159 \text{ mm}^2$$

Spacing of bars:

$$S_v = \frac{A_b}{A_{st}} * 1000$$

= 190.58 mm

Provide 20mm Ø bars at 180 mm c/c.

 A_{st} provided = 1745.33 mm².

In Y direction

- a. Area of steel at supports (bottom bars)
 - IS 456:2000 Annex G

$$Mu = 0.87*f_y*A_{st}*d(1-\frac{A_{st}*fy}{h*d*fck})$$

Here Mu= 500.57 KN-m

On solving,

 $A_{st} = 1409.33 \text{ mm}^2 > \text{Ast(min)}$

For 20mm bars

$$A_b = 314.159 \text{ mm}^2$$

Spacing of bars:

$$S_v = \frac{A_b}{A_{st}} * 1000$$
$$= 222.91$$

Provide 20mm Ø bars at 150mm c/c.

 A_{st} provided = 2094.4 mm².

b. Area of steel at midspan (top bars)

IS 456:2000 Annex G

 $Mu = 0.87* f_y * A_{st} * d(1 - \frac{A_{st} * fy}{b * d * fck})$

Here Mu= 417.14 KN-m

On solving,

 $A_{st} = 1168.69 \text{ mm}^2 > \text{Ast(min)}$

For 20mm bars

 $A_b = 314.159 \text{ mm}^2$

Spacing of bars:

$$S_v = \frac{A_b}{A_{st}} * 1000$$

= 268.81 mm

Provide 20mm Ø bars at 180mm c/c.

 A_{st} provided = 1745.33 mm².

Check for development length

Bond stress for M30 concrete $(T_{bd}) = 1.5$

IS 456:2000 Cl 26.2.1.1

$$L_d = \frac{\phi * \sigma}{4 * T b d}$$

$$=\frac{20*0.87*500}{4*1.6*1.5}$$
$$=906.25$$
mm

 $L_o = effective depth (d) or 120$ whichever is greater.

= 840mm

 $1.3M1/V = \frac{1.3*699.15}{6288.24}$ = 144.5 mm

 $1.3\frac{M1}{V} + L_0 = 1008.29 > L_D$. Hence OK

Load transfer from column to footing

Nominal bearing stress in column = $\frac{P}{A}$

$$=\frac{6288.24*10^3}{650*650}$$

$$= 14.88 \text{ N/mm}^2$$

Permissible bearing stress = 0.45*fck

= 0.45*30 = 13.5N/mm²<nominal stress

So,

There is need to provide dowel bars to transfer column load.

Excess bearing stress = $14.88 - 13.5 = 1.38 \text{ N/mm}^2$

 $A_{sc} = \frac{1.38*A_C}{0.67*f_y} = 1750.45 \text{ mm}^2$

Using 12 mm diameter dowel bars, no. of bars = 15.47 = 16 nos.

Since footing thickness is less than 1m, there is no need to provide side reinforcement. Chair bars

As per SP 34, suggested spacing of chair bars is 30 times its diameter with at least 12 mm as its diameter. Providing 16mm chair bars@ 480mm c/c.

From manual design:

Along X direction, provide 20 mm ϕ bars @ 150 mm c/c at supports and @ 180 mm c/c at midspan.

Along Y direction, provide 20 mm ϕ bars @ 150 mm c/c at supports and @ 180 mm c/c at midspan.

Chair bars 16 mm @ 480 mm c/c

Building 2:

Known Data:

Unit weight of soil(γ) = 17KN/m³

Service load (P) = 52,340.762 KN

Grade of the concrete = M30

Grade of the steel = Fe500

Bearing capacity of the soil(q) = 140KN/m³

Angle of response of the soil(\emptyset) = 30°

As per IS 1893:(Part 1): 2016, CL 6.3.5.2, when earthquake forces are included, net bearing pressure in soil can be increased depending on the type of the foundation and type of soil. For the raft foundation and stiff soil, this can be increased upto 25 %.

Considering axial transfer of the load to the foundation, the area of the soil required to sustain the foundation load is given as:

Area of soil required = $\frac{\text{service load+self weight of foundation}}{\text{safe bearing capacity}}$ = $\frac{52340.762*1.1}{140}$ (self weight is taken as 10% of axial load) = 411.24 m²

Plinth area = 434.3 m^2

Since area of soil required > 0.5*(Plinth area), mat foundation should be provided.

Location of geometrical centroid $(\bar{x}, \bar{y}) = (10.1, 10.75)$

Calculations:

Response for factored load combinations i.e. (1.5DL + LL)

 $\Sigma P = 78,511.14 \text{ KN}$

 $\Sigma M_x = 105.228$ KN-m

 $\Sigma M_y = -748.616 \text{ KN-m}$

 $\Sigma(P^*X) = 881881.53$

 $\Sigma(P*Y) = 1029667$

Location of center of resultant forces:

$$X_{f} = \frac{\Sigma(P * X)}{\Sigma P}$$
$$= 11.23m$$
$$Y_{f} = \frac{\Sigma(P * Y)}{\Sigma P}$$
$$= 13.115m$$

Location of Geometrical Centroid : $(\bar{x}, \bar{y}) = (11.55, 12.75)$

Eccentricity:

$$e_{x} = X_{f} - \bar{x}$$

$$= -0.32m$$

$$e_{y} = Y_{f} - \bar{y}$$

$$= 0.365m$$
Overall Dimension:
$$L= 23.1m$$

$$B= 25.5m$$
Area MOI
$$I_{XX} = \frac{L*B^{3}}{12}$$

$$= 3.2*10^{4} m^{4}$$

$$I_{YY} = \frac{B*L^{3}}{12}$$

$$= 2.62*10^{4} m^{4}$$

Stress at different coordinates:

$$\sigma = \frac{\Sigma P}{A} \pm \frac{Myy}{Iyy} * X \pm \frac{Mxx}{Ixx} * Y$$

$$M_{yy} = \Sigma P * e_x + \Sigma M_y$$

$$Mxx = \Sigma P * e_y + \Sigma M_x$$
For bearing pressure check (Serviceability condition)
$$\Sigma P = 52,340.762 \text{ KN}$$

$$M_{yy} = (52,340.762 * -0.32) + (-748.616/1.5)$$

$$= -17248.12 \text{ Kn-m}$$

 $M_{xx} = (52,340.762*0.365) + (105.2285/1.5)$

For design of mat foundation(Factored)

$$\Sigma P = 78,511.143 \text{ KN}$$

$$M_{yy} = (78,511.143*-0.32) + (-748.616)$$

$$M_{xx} = (78,511.143*0.365) + (105.2285)$$

Extreme coordinates w.r.t geometrical center (for bearing pressure check)

$$(\mathbf{x}, \mathbf{y}): (\pm 23.1/2, \pm 25.5/2) = (\pm 11.55, \pm 12.75)$$

Stress at extreme corners:

 $(11.55, 12.75) = 76.201 \text{KN/m}^2$

$$(-11.55, 12.75) = 116.79$$
KN/m²

 $(11.55, -12.75) = 60.92 \text{KN}/\text{m}^2$

 $(-11.55, -12.75) = 101.51 \text{KN/m}^2$

So the stress at extreme corners is within the safe bearing pressure of soil. (140KN/m^2) Design stress under different columns (1.5(DL + LL))

Column	X(m)	Y(m)	Stress	
C15	2	2	98.54825	
C16	2	7.5	103.4433	
C17	2	13	108.3383	
C6	2	17.5	112.3433	
C1	2	23.5	117.6833	
C14	6	2	109.0883	
C23	6	7.5	113.9833	
C24	6	13	118.8783	
C7	6	17.5	122.8833	
C2	6	23.5	128.2233	
C13	10.5	2	120.9458	
C22	10.5	7.5	125.8408	
C25	10.5	13	130.7358	
C18	10.5	17.5	134.7408	
C3	10.5	23.5	140.0808	
C12	16.2	2	135.9653	
C21	16.2	7.5	140.8603	
C20	16.2	13	145.7553	
C19	16.2	17.5	149.7603	
C4	16.2	23.5	155.1003	
C11	22.2	2	151.7753	
C10	22.2	7.5	156.6703	
С9	22.2	13	161.5653	

Table 56: Design Stress Calculation for Building 2

C8	22.2	17.5	165.5703
C5	22.2	23.5	170.9103

For design, raft is divided in 5 strips in X- direction and 5strips in Y- direction, and each strip is treated as continuous beam. Bending moments are obtained using coefficients suggested **by IS 456: 2000, Table 12**. For calculation of bending moment, the maximum value of stress under column for each strip is used and calculations are done for both X and Y directions.

Bending moment at support = $\frac{q*l^{2}}{10}$ Bending moment at midspan = $\frac{q*l^{2}}{12}$

Where, q= maximum stress under a column for a given strip.

Along X-direction:

Table 57: Moment Calculation for Foundation Design of Building 2 in X-direction

					Span	
Strip	Width	L(Max	q	Support Moment	Moment	
Beam	(m))	(KN/m2)	(KNm/m)	(KNm/m)	Remarks
1,1	5	6	170.9103	615.27	512.73	Max
2,2	5.25	6	165.5703	596.052	496.71	
3,3	5	6	161.5653	581.634	484.695	
4,4	5.5	6	156.6703	564.012	470.01	
5,5	4.75	6	151.7753	546.372	455.31	
				615.27	512.73	Max

Along Y- direction:

Table 58: Moment Calculation for Foundation Design of Building 2 in Y-direction

		L				
Strip	Width	Max		Support Moment	Span Moment	
Beam	(m)	(m)	q (kN/m2)	(kNm/m)	(kNm/m)	Remarks
A-A	4	6	117.6833	423.655	353.0466	
B-B	4.25	6	128.2233	461.59	384.2294427	
C-C	5.1	6	140.0808	504.3277	420.27309	
D-D	5.85	6	155.1003	561.27708	467.7309	
E-E	3.85	6	170.9103	615.27	512.73	
				615.27	512.73	Max

Maximum moment of all four values is used for determination of depth of raft foundation i.e.

M(max) = 615.27 KN-m.

Manual Design:

Depth from moment consideration:

For Fe500, from SP16,

 $M = 0.133 * fck*b*d^2$

 $615.27*10^6 = 0.133*30*1000*d^2$

On solving, we get

d = 392.86mm

Since footing is critical in shear, depth is increased.

Adopt D = 925mm

Provide 20mm Ø bars and 50mm clear cover.

Then,

 $d = 900 - \frac{20}{2} - 75$ = 840mm.

Check for two way shear:

The check is for the most critical interior column:

Nominal shear stress = $\frac{V}{b_0 * d}$ IS 456:2000 Cl 31.6.2.1

 $b_0 = perimeter$

From IS 456:2000 Cl 36.3.1,

$$\begin{split} T_V &\leq k_s T_c \ ; \ ks = (0.5 + \beta_c) \leq 1 \quad \beta_c = L/B \\ \text{Here, } \beta_c = 1. \\ \text{So } K_s = 1 \\ T_c &= 0.25 \sqrt{f} ck \\ &= 1.37 \\ \text{So, Nominal shear stress}(Tv) \text{ should be less than } 1.37 \ \text{N/mm}^2 \end{split}$$

From clause 31.6.1,

Critical section for shear shall be at a distance d/2 from the periphery of column.

 $b_0 = 4*(650+840)$

= 5960mm

d = 740 mm

Maximum load (V) = 4755.68KNSo, $T_v = \frac{4755.68*10^3}{5960*840}$ $=0.9499 \text{ N/mm}^2 < 1.37 \text{N/mm}^2(\text{OK})$ Area of steel: Minimum area of steel = 0.12% of Bd _

IS 456:2000 Cl 26.5.2.1

$$= 1008 \text{ mm}^2$$

In X direction

c. Area of steel at supports (bottom bars) IS 456:2000 Annex G 1 ... far

$$Mu = 0.87*f_y*A_{st}*d(1 - \frac{A_{st}*y}{b*d*fck})$$

Here Mu = 615.27KN-m

On solving,

 $A_{st} = 1744 \text{ mm}^2 > \text{Ast(min)}$

For 20mm bars

$$A_b = 314.159 \text{ mm}^2$$

Spacing of bars:

$$S_v = \frac{A_b}{A_{st}} * 1000$$

Provide 20mm Ø bars at 170mm c/c.

 A_{st} provided = 1848 mm².

d. Area of steel at midspan (top bars)

IS 456:2000 Annex G

$$Mu = 0.87* f_y * A_{st} * d(1 - \frac{A_{st} * fy}{b * d * fck})$$

Here Mu = 512.73KN-m

On solving,

 $A_{st} = 1444 \text{ mm}^2 > \text{Ast(min)}$

For 20mm bars

 $A_b = 314.159 \text{ mm}^2$

Spacing of bars:

$$S_v = \frac{A_b}{A_{st}} * 1000$$

= 229.101mm

Provide 20mm Ø bars at 200mm c/c.

 A_{st} provided = 1570.795 mm².

In Y direction

a. . Area of steel at supports (bottom bars)

IS 456:2000 Annex G

$$Mu = 0.87*f_y*A_{st}*d(1 - \frac{A_{st}*fy}{b*d*fck})$$

Here Mu = 615.27KN-m

On solving,

 $A_{st} = 1744 \text{ mm}^2 > \text{Ast(min)}$

For 20mm bars

$$A_b = 314.159 \text{ mm}^2$$

Spacing of bars:

$$S_v = \frac{A_b}{A_{st}} * 1000$$

Provide 20mm Ø bars at 170mm c/c.

 A_{st} provided = 1848 mm².

b. Area of steel at midspan (top bars)

IS 456:2000 Annex G

$$Mu = 0.87*f_y*A_{st}*d(1-\frac{A_{st}*fy}{b*d*fck})$$

Here Mu= 512.73KN-m

On solving,

 $A_{st} = 1444 \text{ mm}^2 > \text{Ast(min)}$

For 20mm bars

 $A_b = 314.159 \text{ mm}^2$

Spacing of bars:

$$S_v = \frac{A_b}{A_{st}} * 1000$$

= 229.101mm

Provide 20mm Ø bars at 200mm c/c.

 A_{st} provided = 1570.795 mm².

Check for development length

Bond stress for M30 concrete $(T_{bd}) = 1.5$

IS 456:2000 Cl 26.2.1.1

$$L_{d} = \frac{\phi * \sigma}{4 * T b d}$$
$$= \frac{20 * 0.87 * 500}{4 * 1.6 * 1.5}$$
$$= 906.25 \text{mm}$$

 $L_o = effective depth (d) or 120$ whichever is greater.

= 840mm

$$1.3M1/V = \frac{1.3*615.65}{4755.68}$$

= 168.29mm
 $1.3\frac{M1}{V} + L_0 = 1008.29 > L_D$. Hence OK

Load transfer from column to footing

Nominal bearing stress in column =
$$\frac{P}{A}$$

= $\frac{4755.68*10^3}{650*650}$
= 11.25 N/mm²

Permissible bearing stress = 0.45*fck

-

So,

No need to provide dowel bars to transfer column load.

Since footing thickness is less than 1m, there is no need to provide side reinforcement.

Chair bars

As per SP 34, suggested spacing of chair bars is 30 times its diameter with atleast 12 mm as its diameter. Providing 16mm chair bars@ 480mm c/c.

From manual design:

Along X direction, provide 20 mm ϕ bars @ 170 mm c/c at supports and @ 200 mm c/c at midspan.

Along Y direction, provide 20 mm ϕ bars @ 170 mm c/c at supports and @ 200 mm c/c at midspan.

Chair bars 16 mm @ 480 mm c/c

7.9 Design of Ramp Slab

Upper Basement Slab

Concrete grade = M30

Calculation:

Known values:

Overall depth of slab (D) = 300mm (D > 125mm for earthquake resistant design)

Clear long span = 6.5 - 0.35 = 6.15m

Clear short span = 5.78 - 0.35 = 5.43m

Diameter of bar Φ = 10mm

Effective depth (d) = 300 - 15 - 10/2 = 280mm

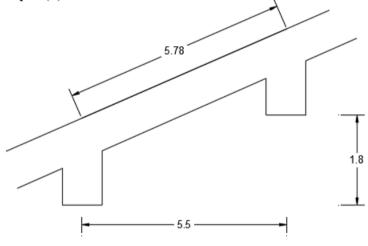


Figure 19: Ramp Dimensions

Effective Length Calculation (IS 456:2000 Cl. 22.2.B.1) Lx = Lesser of (5.43 + 0.28) and (5.43 + 0.35)= 5.71m Ly = Lesser of (6.15 + 0.28) and (6.15 + 0.35)= 6.43m Ly/lx = 6.43/5.71 = 1.12 (<2: two-way slab) Load Calculation Dead load = $(25*0.3) = 7.5 \text{ kN/m}^2$ Floor finish = 1 kN/m² Live load = 5 kN/m²

Total factored load = 20.25 kN/m^2

Since it is a two-way slab with two short edges discontinuous, type 5.

 $\alpha_{x(-)} = 0.04976$ (Negative moment at edge) $\alpha_{x}(+) = 0.0376$ (Positive moment at mid-span) $\alpha_{v(+)} = 0.035$ (Positive moment at mid-span) $M = \alpha * w * l_x^2$ M_x (+ve) = 24.82 kNm M_x (-ve) = 32.85 kNm M_v (+ve) = 23.1 kNm $V_x = w^{1}/2$ = 57.81375 kN **Tensile Steel Calculation** M= $0.36 * f_{ck} * b * x_{u,lim} * (d_{bal} - 0.416 x_{u,lim})$ Where, M = 32.85 kNm $f_{ck} = 30 \text{ MPa}$ b = 1000 mm $x_{u,lim} = 0.46 * d_{bal}$ $d_{bal} = 90.532 \text{mm} (< 280 \text{mm ok}) \text{Now},$ $M = 0.87 * f_y * A_{st} * (1 - 0.416 * x_u)$ For $M_{x + ve} = 24.82 \text{ kNm}$ $A_{st,x^+} = 206.31 \text{ mm}^2$ For $M_{x - ve} = 32.85 \text{ kNm}$ $A_{st,x^+} = 274.18 \text{ mm}^2$ For $M_{y + ve} = 23.1 \text{ kNm}$ $A_{st,v+} = 191.84 \text{ mm}^2$ $A_{st,min} = 0.12\%$ of bD = 360 mm² Maximum spacing of bars should be less than i. 3d = 3*280 = 840mmii. 300mm Take spacing = 150mm, for all cases. $A_{st, provided} = 314.159 \text{ mm}^2$ In X-direction: Provide 10mm diameter bars @ 250mm c/c in mid-span Provide 10mm diameter bars @ 250mm c/c in edge In Y-direction:

```
Provide 10mm diameter bars @ 250mm c/c in mid-span
Check for shear
Maximum shear force = 57.813 kN
K = 1 (from IS 456:2000 cl 40.2.1.1)
\% steel = 0.12
\tau_{c} = 0.29
Shear capacity = 81.2 \text{ kN} (> max SF)
Check for deflection (IS 456:2000 cl.23.2.1)
\alpha = 26
\beta = 1 (for spans < 10m)
for \gamma
f_s = 190.44
% tension reinforcement = 0.12
\gamma = 2
\delta = 1
\lambda = 1
Provided L/D = 19
Maximum allowable L/D = \alpha^* \beta^* \gamma^* \delta^* \lambda = 52 (ok)
Check for development length (IS 456:2000 cl.26.2)
L_d=0.87 fy \phi/(4\tau_{bd}) = 0.87*500*10/(4*1.5*1.6) = 453.125 mm
M1=0.87 f_y A_{st}(d=0.416 x_u)
where xu=0.87 f_v A_{st}/(0.36 f_{ck} b)
M1 = 0.87*500*(314.159/2)*(280-0.416*x_u)
        = 19 \text{ kNm}
V = 57.813 \text{ kN}
1.3M1/V = 427.23mm
Providing anchorage of 8\phi = 80mm
1.3M1/V + L_0 = 507.23mm (>453.125mm) ok
```

CONCLUSION

With such a high susceptibility to the impact of earthquakes, it is indispensable to make sure that a building designed for Nepal must be such that it ensures adequate safety for both human lives as well as the structure. For this purpose, relevant earthquake-resistant design and ductile detailing must be incorporated. We have completed the project based on the earthquake-resistant design codes (IS 1893) and ductile detailing code (IS 13920), with an attempt to provide adequate safety to the adopted building. Over the course of the completion of the project, we believe to have known better about the mechanism of transfer of lateral earthquake load to the vertical members, and finally to the foundation. Our learnings are not limited to this but extend beyond being able to work efficiently with structural analysis software, enhancing our knowledge regarding the design of buildings based on IS codes, and broadening our horizon regarding structural analysis and design aspects.

With a collective team effort, we have idealized, analyzed, and designed the building to our best ability, under the guidance of our respected supervisor. We are hopeful that the design meets the expectations set on us by our respected supervisor, as well as other faculties and friends, who have in one way or the other, helped us throughout the course of the project.

REFERENCES

Jain, A.K., (2002), Reinforced Concrete Limit State Design, 6th Edition.

Varghese, P.C., (1999), Limit State Design of Reinforced Concrete.

Pillai, S. Unnilkrishna, M. Devdas, Reinforced Concrete Design,3rd Edition.

ANNEX A

				Rein	forcement	detailing for ground floor bear	n		
Floor	Location		Bottom reinforcement			Top reinforcement		Shear rei	nforcement
		Area required	Bars adopted	Area provided		Bars adopted	Area provided	Area provided	Spacing adopted
	Left	343	2-20mm Ø	628.31	692	2-25mm Ø	981.74	157.08	200
A4B4	Mid	102	2-20mm Ø	628.31	43	2-20mm Ø	628.31	157.08	300
	Right	450	2-20mm Ø	628.31	600	2-25mm Ø	981.74	157.08	200
	Left	182.5	2-20mm Ø	628.31	365	2-20mm Ø	628.31	157.08	300
B4C4	Mid	237	2-20mm Ø	628.31	118.5	2-20mm Ø	628.31	157.08	300
	Right	226	2-20mm Ø	628.31	373	2-20mm Ø	628.31	157.08	300
	Left	335	 2-20mm Ø	628.31	670	2-25mm Ø	981.74	157.08	250
C4D4	Mid	235	2-20mm Ø	628.31	117.5	2-20mm Ø	628.31	157.08	300
	Right	343	2-20mm Ø	628.31	687	2-25mm Ø	981.74	157.08	250
	Left	386	2-20mm Ø	628.31	771	2-25mm Ø	981.74	157.08	200
D4E4	Mid	403	2-20mm Ø	628.31	202	2-20mm Ø	628.31	157.08	300
	Right	428.5	2-20mm Ø	628.31	857	2-25mm Ø	981.74	157.08	200

Beam	Location	Reinforcement	t detailing fo	or first floor beam									
		Bottom reinfo	orcement			Top reinfo	orcement			Shear reinfo	orcement		
		Area required	Bars adopt	ed	Area provided	Bars adop	ted	Area prov	rided	Area provid	led	Spacing ad	opted
A4B4	Left	1250	3-25mm Ø		1472.62	1714	4-25mm Ø	19	63.49	157.08		110	
	Mid	157	2-25mm Ø		981.74	- 78	2-25mm Ø	9	81.74	157.08		300	
	Right	1293	3-25mm Ø		1472.62	1457	4-25mm Ø	19	63.49	157.08		110	
B4C4	Left	873	2-25mm Ø		981.74	1203	3-25mm Ø	14	72.62	157.08		200	
	Mid	204	2-25mm Ø		981.74	102	2-25mm Ø	9	81.74	157.08		300	
	Right	971	2-25mm Ø		981.74	1340	3-25mm Ø	14	72.62	157.08		200	
C4D4	Left	831	2-25mm Ø		981.74	1374	3-25mm Ø	14	72.62	157.08		150	
	Mid	326	2-25mm Ø		981.74	. 192	2-25mm Ø	9	81.74	157.08		300	
	Right	786	2-25mm Ø		981.74	1360	3-25mm Ø	14	72.62	157.08		150	
D4E4	Left	695	2-25mm Ø		981.74	1389	4-25mm Ø	19	63.49	157.08		200	
	Mid	398	2-25mm Ø		981.74	200	2-25mm Ø	9	81.74	157.08		300	
	Right	783	2-25mm Ø		981.74	1566	4-25mm Ø	19	63.49	157.08		200	

				Rei	nforcement	t detailing for third floor beam			
Beam	Location		Bottom reinforcement			Top reinforcement		Shear reir	oforcement
		Area required	Bars adopted	Area provided		Bars adopted	Area provided	Area provided	Spacing adopted
	Left	1355	3-25mm Ø	1472.62	1914	4-25mm Ø	1963.49	157.08	100
A4B4	Mid	261	2-25mm Ø	981.74	176	2-25mm Ø	981.74	157.08	300
	Right	1452	3-25mm Ø	1472.62	1561	4-25mm Ø	1963.49	157.08	100
	Left	856	3-25mm Ø	1472.62	1180	3-25mm Ø	1472.62	157.08	200
B4C4	Mid	212	2-25mm Ø	981.74	192	2-25mm Ø	981.74	157.08	300
	Right	812	3-25mm Ø	1472.62	1143	3-25mm Ø	1472.62	157.08	200
	Left	985	3-25mm Ø	1472.62	1516	4-25mm Ø	1963.49	157.08	180
C4D4	Mid	255	2-25mm Ø	981.74	212	2-25mm Ø	981.74	157.08	300
	Right	917	3-25mm Ø	1472.62	1526	4-25mm Ø	1963.49	157.08	180
	Left	695	3-25mm Ø	1472.62	1413	4-25mm Ø	1963.49	157.08	120
D4E4	Mid	398	2-25mm Ø	981.74	253	2-25mm Ø	981.74	157.08	300
	Right	783	3-25mm Ø	1472.62	1677	4-25mm Ø	1963.49	157.08	120

				Reir	forcement	detailing for fourth floor bean	า		
Beam	Location		Bottom reinforcement			Top reinforcement		Shear reir	nforcement
		Area required	Bars adopted	Area provided		Bars adopted	Area provided	Area provided	Spacing adopted
	Left	1203	3-25mm Ø	1472.62	1771	4-25mm Ø	1963.49	157.08	100
A4B4	Mid	326	2-25mm Ø	981.74	251	2-25mm Ø	981.74	157.08	300
	Right	1316	3-25mm Ø	1472.62	1403	4-25mm Ø	1963.49	157.08	100
	Left	692	2-25mm Ø	981.74	1002	3-25mm Ø	1472.62	157.08	200
B4C4	Mid	173	2-25mm Ø	981.74	138	2-25mm Ø	981.74	157.08	300
	Right	411	2-25mm Ø	981.74	554	3-25mm Ø	1472.62	157.08	200
	Left	899	2-25mm Ø	981.74	1418	3-25mm Ø	1472.62	157.08	220
C4D4	Mid	223	2-25mm Ø	981.74	110	2-25mm Ø	981.74	157.08	300
	Right	843	2-25mm Ø	981.74	1427	3-25mm Ø	1472.62	157.08	220
	Left	671	2-25mm Ø	981.74	1288	4-25mm Ø	1963.49	157.08	120
D4E4	Mid	370	2-25mm Ø	981.74	173	2-25mm Ø	981.74	157.08	300
	Right	591	2-25mm Ø	981.74	1570	4-25mm Ø	1963.49	157.08	120

				Rei	nforcemen	t detailing for fifth floor beam			
Beam	Location		Bottom reinforcement			Top reinforcement		Shear reir	nforcement
		Area required	Bars adopted	Area provided		Bars adopted	Area provided	Area provided	Spacing adopted
	Left	940	3-25mm Ø	1472.62	1601	4-25mm Ø	1963.49	157.08	100
A4B4	Mid	173	2-25mm Ø	981.74	125	2-25mm Ø	981.74	157.08	300
	Right	1070	3-25mm Ø	1472.62	1200	3-25mm Ø	1472.62	157.08	100
	Left	472	2-25mm Ø	981.74	780	3-25mm Ø	1472.62	157.08	300
B4C4	Mid	173	2-25mm Ø	981.74	105	2-25mm Ø	981.74	157.08	300
	Right	279	2-25mm Ø	981.74	415	3-25mm Ø	1472.62	157.08	300
	Left	748	2-25mm Ø	981.74	1260	3-25mm Ø	1472.62	157.08	200
C4D4	Mid	251	2-25mm Ø	981.74	125	2-25mm Ø	981.74	157.08	300
	Right	692	2-25mm Ø	981.74	1283	3-25mm Ø	1472.62	157.08	200
	Left	601	2-25mm Ø	981.74	1203	3-25mm Ø	1472.62	157.08	100
D4E4	Mid	472	2-25mm Ø	981.74	251	2-25mm Ø	981.74	157.08	300
	Right	748	2-25mm Ø	981.74	1496	4-25mm Ø	1963.49	157.08	100

				Rei	nforcement	detailing for sixth floor beam	1		
Beam	Location		Bottom reinforcement			Top reinforcement		Shear reir	nforcement
		Area required	Bars adopted	Area provided		Bars adopted	Area provided	Area provided	Spacing adopted
	Left	646	2-25mm Ø	981.74	1278	3-25mm Ø	1472.62	157.08	120
A4B4	Mid	173	2-25mm Ø	981.74	105	2-25mm Ø	981.74	157.08	300
	Right	799	2-25mm Ø	981.74	895	3-25mm Ø	1472.62	157.08	120
	Left	266	2-25mm Ø	981.74	533	2-25mm Ø	981.74	157.08	300
B4C4	Mid	153	2-25mm Ø	981.74	95	2-25mm Ø	981.74	157.08	300
	Right	246	2-25mm Ø	981.74	492	2-25mm Ø	981.74	157.08	300
	Left	537	2-25mm Ø	981.74	1020	3-25mm Ø	1472.62	157.08	200
C4D4	Mid	251	2-25mm Ø	981.74	115	2-25mm Ø	981.74	157.08	300
	Right	524	2-25mm Ø	981.74	1043	3-25mm Ø	1472.62	157.08	200
	Left	334	2-25mm Ø	981.74	878	3-25mm Ø	1472.62	157.08	120
D4E4	Mid	378	2-25mm Ø	981.74	219	2-25mm Ø	981.74	157.08	300
	Right	177	2-25mm Ø	981.74	1185	3-25mm Ø	1472.62	157.08	120

				Rei	inforcemen	t detailing for top floor beam			
Beam	Location		Bottom reinforcement			Top reinforcement		Shear reir	oforcement
		Area required	Bars adopted	Area provided		Bars adopted	Area provided	Area provided	Spacing adopted
	Left	435	2-25mm Ø	981.74	865	2-25mm Ø	981.74	157.08	180
A4B4	Mid	135	2-25mm Ø	981.74	122	2-25mm Ø	981.74	157.08	300
	Right	555	2-25mm Ø	981.74	595	2-25mm Ø	981.74	157.08	180
	Left	246	2-25mm Ø	981.74	492	2-25mm Ø	981.74	157.08	300
B4C4	Mid	173	2-25mm Ø	981.74	57	2-25mm Ø	981.74	157.08	300
	Right	195	2-25mm Ø	981.74	390	2-25mm Ø	981.74	157.08	300
	Left	422	2-25mm Ø	981.74	843	2-25mm Ø	981.74	157.08	250
C4D4	Mid	259	2-25mm Ø	981.74	130	2-25mm Ø	981.74	157.08	300
	Right	450	2-25mm Ø	981.74	900	2-25mm Ø	981.74	157.08	250
	Left	360	2-25mm Ø	981.74	713	2-25mm Ø	981.74	157.08	220
D4E4	Mid	330	2-25mm Ø	981.74	173	2-25mm Ø	981.74	157.08	300
	Right	452	2-25mm Ø	981.74	904	2-25mm Ø	981.74	157.08	220

Reinforcement Summary of All Beams Building 1:

				Reinfo	rcement de	tailing for upper basement bea	am				
Floor	Location		Bottom reinforcement			Top reinforceme	nt	Shear reinforcement			
		Area required	Bars adopted	Area provided		Bars adopted	Area provided	Area provided	Spacing adopted		
	Left	195	2-25mm Ø	981.74	390	2-25mm Ø	981.74	157.08	300		
A2B2	Mid	243	2-25mm Ø	981.74	122	2-25mm Ø	981.74	157.08	300		
	Right	195	2-25mm Ø	981.74	390	2-25mm Ø	981.74	157.08	300		
	Left	344	2-25mm Ø	981.74	688	2-25mm Ø	981.74	157.08	150		
B2C2	Mid	504	2-25mm Ø	981.74	205	2-25mm Ø	981.74	157.08	300		
	Right	390	2-25mm Ø	981.74	765	2-25mm Ø	981.74	157.08	150		
	Left	348	2-25mm Ø	981.74	696	2-25mm Ø	981.74	157.08	200		
C2D2	Mid	476	2-25mm Ø	981.74	238	2-25mm Ø	981.74	157.08	300		
	Right	382	2-25mm Ø	981.74	761	2-25mm Ø	981.74	157.08	200		

				Reint	forcement	detailing for ground floor beam			
Floor	Location		Bottom reinforcement			Top reinforceme	nt	Shear reir	offorcement
		Area required	Bars adopted	Area provided		Bars adopted	Area provided	Area provided	Spacing adopted
	Left	998	3-25mm Ø	1472.62	1776	4-25mm Ø	1963.48	157.08	100
A2B2	Mid	541	2-25mm Ø	981.74	255	2-25mm Ø	981.74	157.08	300
	Right	931	3-25mm Ø	1472.62	1647	4-25mm Ø	1963.48	157.08	100
	Left	948	3-25mm Ø	1472.62	1546	4-25mm Ø	1963.48	157.08	150
B2C2	Mid	459	2-25mm Ø	981.74	250	2-25mm Ø	981.74	157.08	300
	Right	895	3-25mm Ø	1472.62	1606	4-25mm Ø	1963.48	157.08	150
	Left	940	3-25mm Ø	1472.62	1546	4-25mm Ø	1963.48	157.08	100
C2D2	Mid	554	2-25mm Ø	981.74	371	2-25mm Ø	981.74	157.08	300
	Right	891	3-25mm Ø	1472.62	1866	4-25mm Ø	1963.48	157.08	100

				Rei	nforcemen	t detailing for first floor beam				
Floor	Location		Bottom reinforcement			Top reinforcemen	t	Shear rein	forcement	
		Area required	Bars adopted	Area provided		Bars adopted	Area provided	Area provided	Spacing adopted	
	Left	1245	3-25mm Ø	1472.62	2091	5-25mm Ø	2454.36	157.08	100	
A2B2	Mid	529	2-25mm Ø	981.74	275	2-25mm Ø	981.74	157.08	300	
	Right	1213	3-25mm Ø	1472.62	1963	5-25mm Ø	2454.36	157.08	100	
	Left	1264	3-25mm Ø	1472.62	1861	5-25mm Ø	2454.36	157.08	130	
B2C2	Mid	455	2-25mm Ø	981.74	253	2-25mm Ø	981.74	157.08	300	
	Right	1199	3-25mm Ø	1472.62	2257	5-25mm Ø	2454.36	157.08	130	

	Left	1264	3-25r	nm Ø	1472.62	1877	5-25mm Ø	2454.3	5 15	7.08	10	0
C2D2	Mid	554	2-25r	nm Ø	981.74	270	2-25mm Ø	981.7	4 15	7.08	30	0
	Right	1185	3-25r	nm Ø	1472.62	2269	5-25mm Ø	2454.3	5 15	7.08	10	0

				Reir	nforcement	detailing for third floor beam			
Floor	Location		Bottom reinforcement			Top reinforceme	nt	Shear reir	oforcement
		Area required	Bars adopted	Area provided		Bars adopted	Area provided	Area provided	Spacing adopted
	Left	1070	3-25mm Ø	1472.62	2176	5-25mm Ø	2454.36	157.08	100
A2B2	Mid	604	2-25mm Ø	981.74	411	2-25mm Ø	981.74	157.08	300
	Right	1052	3-25mm Ø	1472.62	2024	5-25mm Ø	2454.36	157.08	100
	Left	1138	3-25mm Ø	1472.62	1882	5-25mm Ø	2454.36	157.08	130
B2C2	Mid	463	2-25mm Ø	981.74	374	2-25mm Ø	981.74	157.08	300
	Right	1070	3-25mm Ø	1472.62	2002	5-25mm Ø	2454.36	157.08	130
	Left	1134	3-25mm Ø	1472.62	1855	5-25mm Ø	2454.36	157.08	100
C2D2	Mid	562	2-25mm Ø	981.74	295	2-25mm Ø	981.74	157.08	300
	Right	1029	3-25mm Ø	1472.62	2287	5-25mm Ø	2454.36	157.08	100

				Rein	forcement	detailing for fourth floor bean	ı		
Floor	Location		Bottom reinforcement			Top reinforceme	nt	Shear reir	oforcement
		Area required	Bars adopted	Area provided		Bars adopted	Area provided	Area provided	Spacing adopted
	Left	948	3-25mm Ø	1472.62	1797	4-25mm Ø	1963.48	157.08	120
A2B2	Mid	447	2-25mm Ø	981.74	447	2-25mm Ø	981.74	157.08	300
	Right	962	3-25mm Ø	1472.62	962	4-25mm Ø	1963.48	157.08	120
	Left	1016	3-25mm Ø	1472.62	1576	4-25mm Ø	1963.48	157.08	150
B2C2	Mid	386	2-25mm Ø	981.74	157	2-25mm Ø	981.74	157.08	300
	Right	948	3-25mm Ø	1472.62	1683	4-25mm Ø	1963.48	157.08	150
	Left	1011	3-25mm Ø	1472.62	1536	4-25mm Ø	1963.48	157.08	120
C2D2	Mid	472	2-25mm Ø	981.74	263	2-25mm Ø	981.74	157.08	300
	Right	873	3-25mm Ø	1472.62	1952	4-25mm Ø	1963.48	157.08	120

				Rei	nforcemen	t detailing for fifth floor beam			
Floor	Location		Bottom reinforcement			Top reinforcement		Shear rein	forcement
		Area required	Bars adopted	Area provided		Bars adopted	Area provided	Area provided	Spacing adopted
	Left	646	2-25mm Ø	981.74	1561	4-25mm Ø	1963.48	157.08	120
A2B2	Mid	533	2-25mm Ø	981.74	390	2-25mm Ø	981.74	157.08	300
	Right	663	2-25mm Ø	981.74	1413	4-25mm Ø	1963.48	157.08	120

	Left	716	2-25mm Ø	981.74	1432	4-25mm Ø	1963.48	157.08	130
B2C2	Mid	492	2-25mm Ø	981.74	246	2-25mm Ø	981.74	157.08	300
	Right	778	2-25mm Ø	981.74	1556	4-25mm Ø	1963.48	157.08	130
	Left	708	2-25mm Ø	981.74	1516	4-25mm Ø	1963.48	157.08	100
C2D2	Mid	621	2-25mm Ø	981.74	290	2-25mm Ø	981.74	157.08	300
	Right	947	2-25mm Ø	981.74	1893	4-25mm Ø	1963.48	157.08	100

				Reir	nforcement	detailing for sixth floor beam			
Floor	Location		Bottom reinforcement			Top reinforceme	nt	Shear rein	forcement
		Area required	Bars adopted	Area provided		Bars adopted	Area provided	Area provided	Spacing adopted
	Left	590	2-25mm Ø	981.74	1180	3-25mm Ø	1472.62	157.08	120
A2B2	Mid	537	2-25mm Ø	981.74	255	2-25mm Ø	981.74	157.08	300
	Right	490	2-25mm Ø	981.74	971	3-25mm Ø	1472.62	157.08	120
	Left	502	2-25mm Ø	981.74	1002	3-25mm Ø	1472.62	157.08	150
B2C2	Mid	451	2-25mm Ø	981.74	271	2-25mm Ø	981.74	157.08	300
	Right	526	2-25mm Ø	981.74	1052	3-25mm Ø	1472.62	157.08	150
	Left	461	2-25mm Ø	981.74	922	3-25mm Ø	1472.62	157.08	120
C2D2	Mid	550	2-25mm Ø	981.74	350	2-25mm Ø	981.74	157.08	300
	Right	630	2-25mm Ø	981.74	1250	3-25mm Ø	1472.62	157.08	120

				Re	inforcemen	t detailing for top floor beam			
Floor	Location		Bottom reinforcement			Top reinforcemen	t	Shear rein	forcement
		Area required	Bars adopted	Area provided		Bars adopted	Area provided	Area provided	Spacing adopted
	Left	402	2-25mm Ø	981.74	804	2-25mm Ø	981.74	157.08	180
A2B2	Mid	407	2-25mm Ø	981.74	204	2-25mm Ø	981.74	157.08	300
	Right	340	2-25mm Ø	981.74	679	2-25mm Ø	981.74	157.08	180
	Left	360	2-25mm Ø	981.74	705	2-25mm Ø	981.74	157.08	250
B2C2	Mid	342	2-25mm Ø	981.74	161	2-25mm Ø	981.74	157.08	300
	Right	370	2-25mm Ø	981.74	735	2-25mm Ø	981.74	157.08	250
	Left	330	2-25mm Ø	981.74	658	2-25mm Ø	981.74	157.08	180
C2D2	Mid	398	2-25mm Ø	981.74	212	2-25mm Ø	981.74	157.08	300
	Right	417	2-25mm Ø	981.74	834	2-25mm Ø	981.74	157.08	180

Detailed Slab Design Building 2:

Label	lx	ly	lex	ley	ley/lex	D(mm)	Case	Design loa	αx-	αx+	αγ-	αγ+	Mx-	Mx+	My-	My+	M(max)	d(reqd)	Check
S1	4	6	3.65	5.76	1.578082	150	4	13.125	0.077	0.057	0.047	0.035	13.46405	9.966895	8.218317	6.120023	13.46405	58.09001	ОК
S2	4	4.5	3.656	4.15	1.13512	150	3	13.125	0.0464	0.0348	0.037	0.028	8.140099	6.105074	6.491027	4.912128	8.140099	45.16774	ОК
S3	4	5.5	3.65	5.26	1.441096	150	3	13.6875	0.0646	0.0486	0.037	0.028	11.77992	8.862294	6.747014	5.105848	11.77992	54.33563	ОК
S4	4	5.5	3.65	5.26	1.441096	150	4	13.6875	0.0726	0.0588	0.047	0.035	13.23873	10.72228	8.570531	6.38231	13.23873	57.6019	ОК
S5	4.5	4.5	4.15	4.15	1	150	1	13.6875	0.032	0.024	0.032	0.024	7.543455	5.657591	7.543455	5.657591	7.543455	43.48092	ОК
S6	4.5	5.5	4.15	5.26	1.26747	150	3	14.625	0.055	0.042	0.037	0.028	13.85335	10.57892	9.319525	7.052614	13.85335	58.92382	ОК
S7	4.5	5.5	4.15	5.26	1.26747	150	2	14.625	0.0498	0.0378	0.037	0.028	12.54358	9.521029	9.319525	7.052614	12.54358	56.06919	ОК
S8	4.5	5.7	4.15	5.46	1.315663	150	3	14.625	0.0576	0.0443	0.037	0.028	14.50823	11.15824	9.319525	7.052614	14.50823	60.30049	ОК
S9	3	5.5	2.65	5.26	1.984906	150	2	14.625	0.0678	0.05168	0.037	0.028	6.963335	5.307746	3.80005	2.875714	6.963335	41.77555	ОК
S10	3	5.5	2.65	5.26	1.984906	150	3	14.625	0.084	0.064	0.037	0.028	8.627141	6.57306	3.80005	2.875714	8.627141	46.49936	ОК
S11	3	4.5	2.65	4.15	1.566038	150	2	14.625	0.058	0.044	0.037	0.028	5.956836	4.518979	3.80005	2.875714	5.956836	38.6386	ОК
S12	3	4.5	2.65	4.15	1.566038	150	4	14.625	0.07716	0.0576	0.047	0.035	7.924645	5.915754	4.827091	3.594642	7.924645	44.56598	ОК

	Area requi	red			Spacing re	quired			Minm space	Spacing pr	ovided			Area provi	ded		
Astx-	Astx+	Asty-	Asty+	Ast(min)	SX-	sx+	sy-	sy+		SX-	sx+	sy-	sy+	Astx-	Astx+	Asty-	Asty+
245.7029	180.0232	176.5608	130.5463	180	319.6544	436.2772	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
146.2581	109.0651	138.6335	104.3582	180	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
213.8989	159.5632	144.2256	108.5438	180	367.1828	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
241.4287	194.0924	184.3513	136.2615	180	325.3134	404.6527	426.0344	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
135.3083	100.9446	161.6878	120.4949	180	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
253.1018	191.4174	200.9831	150.9145	180	310.31	410.3076	390.7791	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
228.2794	171.7485	200.9831	150.9145	180	344.0521	436.3333	390.7791	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
265.5891	202.2413	200.9831	150.9145	180	295.7199	388.3479	390.7791	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
124.6979	94.61038	80.43589	60.68657	180	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
155.2248	117.5797	80.43589	60.68657	180	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
106.3727	80.37475	80.43589	60.68657	180	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
142.2997	105.627	102.5226	76.0367	180	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32

	Shear chec	k			Deflection	length				Developme	ent length			
Shear force	Shear stres	Shear strei	Check	(lex/dx)	α	β	(I/d)modify	Defln check	K	Devt lengtl	MOR	V(KN)	1.3M/V	Check
23.95313	0.217756	0.29	ОК	30.41667	23	2	46	OK		453.125	15.6836	23.95313	851.1909	OK
23.9925	0.218114	0.29	OK	30.46667	23	2	46	OK		453.125	15.6836	23.9925	849.794	OK
24.97969	0.227088	0.29	OK	30.41667	23	2	46	OK		453.125	15.6836	24.97969	816.2105	OK
24.97969	0.227088	0.29	ОК	30.41667	23	2	46	OK		453.125	15.6836	24.97969	816.2105	ОК
28.40156	0.258196	0.29	ОК	34.58333	26	2	52	OK		453.125	15.6836	28.40156	717.8719	OK
30.34688	0.275881	0.29	ОК	34.58333	23	2	46	OK		453.125	15.6836	30.34688	671.8545	OK
30.34688	0.275881	0.29	ОК	34.58333	23	2	46	OK		453.125	15.6836	30.34688	671.8545	OK
30.34688	0.275881	0.29	ОК	34.58333	23	2	46	OK		453.125	15.6836	30.34688	671.8545	OK
19.37813	0.176165	0.29	OK	22.08333	23	2	46	OK		454.125	15.6836	19.37813	1052.149	ОК
19.37813	0.176165	0.29	OK	22.08333	23	2	46	OK		455.125	15.6836	19.37813	1052.149	ОК
19.37813	0.176165	0.29	OK	22.08333	23	2	46	OK		456.125	15.6836	19.37813	1052.149	ОК
19.37813	0.176165	0.29	ОК	22.08333	23	2	46	OK		457.125	15.6836	19.37813	1052.149	ОК

Label	lx	ly	lex	ley	ley/lex	D(mm)	Case	Design loa	αx-	αx+	αγ-	αγ+	Mx-	Mx+	My-	My+	M(max)	d(reqd)	Check
S1	3.25	6	2.95	5.78	1.959322	150	4	13.125	0.0896	0.0678	0.047	0.035	10.23414	7.744137	5.368355	3.997711	10.23414	50.64531	ОК
S2	3.25	4.5	2.95	4.28	1.450847	150	3	13.125	0.065	0.049	0.037	0.028	7.42432	5.596795	4.226152	3.198169	7.42432	43.1362	ОК
S3	3.25	5.5	2.95	5.28	1.789831	150	3	13.125	0.078	0.0597	0.037	0.028	8.909184	6.818953	4.226152	3.198169	8.909184	47.25334	ОК
S4	3.25	5.5	2.95	5.28	1.789831	150	4	13.125	0.08484	0.06372	0.047	0.035	9.690451	7.278118	5.368355	3.997711	9.690451	49.28169	ОК
S5	3.25	6	2.95	5.78	1.959322	150	2	13.125	0.0672	0.051	0.037	0.028	7.675605	5.825236	4.226152	3.198169	7.675605	43.86012	ОК
S6	3.25	4.5	2.95	4.28	1.450847	150	1	13.125	0.052	0.04	0.032	0.024	5.939456	4.568813	3.65505	2.741288	5.939456	38.58219	ОК
S7	3.25	5.5	2.95	5.28	1.789831	150	1	13.125	0.0606	0.0456	0.032	0.024	6.921751	5.208446	3.65505	2.741288	6.921751	41.65063	ОК
S8	3.25	5.5	2.95	5.28	1.789831	150	2	13.125	0.06448	0.04848	0.037	0.028	7.364926	5.537401	4.226152	3.198169	7.364926	42.96331	ОК
S9	3.25	6	2.95	5.78	1.959322	150	2	13.125	0.0672	0.051	0.037	0.028	7.675605	5.825236	4.226152	3.198169	7.675605	43.86012	ОК
S10	3.25	4.5	2.95	4.28	1.450847	150	1	13.125	0.052	0.04	0.032	0.024	5.939456	4.568813	3.65505	2.741288	5.939456	38.58219	ОК
S11	3.25	5.5	2.95	5.28	1.789831	150	1	13.125	0.0606	0.0456	0.032	0.024	6.921751	5.208446	3.65505	2.741288	6.921751	41.65063	ОК
S12	3.25	5.5	2.95	5.28	1.789831	150	2	13.125	0.06448	0.04848	0.037	0.028	7.364926	5.537401	4.226152	3.198169	7.364926	42.96331	ОК
S13	3.25	6	2.95	5.78	1.959322	150	2	13.125	0.0672	0.051	0.037	0.028	7.675605	5.825236	4.226152	3.198169	7.675605	43.86012	ОК
S14	3.25	4.5	2.95	4.28	1.450847	150	1	13.125	0.052	0.04	0.032	0.024	5.939456	4.568813	3.65505	2.741288	5.939456	38.58219	ОК
S15	3.25	5.5	2.95	5.28	1.789831	150	1	13.125	0.0606	0.0456	0.032	0.024	6.921751	5.208446	3.65505	2.741288	6.921751	41.65063	ОК
S16	3.25	5.5	2.95	5.28	1.789831	150	2	13.125	0.06448	0.04848	0.037	0.028	7.364926	5.537401	4.226152	3.198169	7.364926	42.96331	ОК
S17	3.25	6	2.95	5.78	1.959322	150	5	14.625	0.0682	0.0514	0	0.035	8.680091	6.541887	0	4.454592	8.680091	46.64184	ОК
S18	3.25	5.5	2.95	5.28	1.789831	150	2	13.125	0.06448	0.04848	0.037	0.028	7.364926	5.537401	4.226152	3.198169	7.364926	42.96331	ОК
S19	3.25	5.5	2.95	5.28	1.789831	150	2	13.125	0.06448	0.04848	0.037	0.028	7.364926	5.537401	4.226152	3.198169	7.364926	42.96331	ОК
S20	3.25	6	2.95	5.78	1.959322	150	7	14.625	0.0958	0.0722	0	0.043	12.19286	9.189187	0	5.472785	12.19286	55.27977	ОК
S21	3.25	5.5	2.95	5.28	1.789831	150	4	13.125	0.08484	0.06372	0.047	0.035	9.690451	7.278118	5.368355	3.997711	9.690451	49.28169	ОК
S22	3.25	5.5	2.95	5.28	1.789831	150	4	13.125	0.08484	0.06372	0.047	0.035	9.690451	7.278118	5.368355	3.997711	9.690451	49.28169	ОК

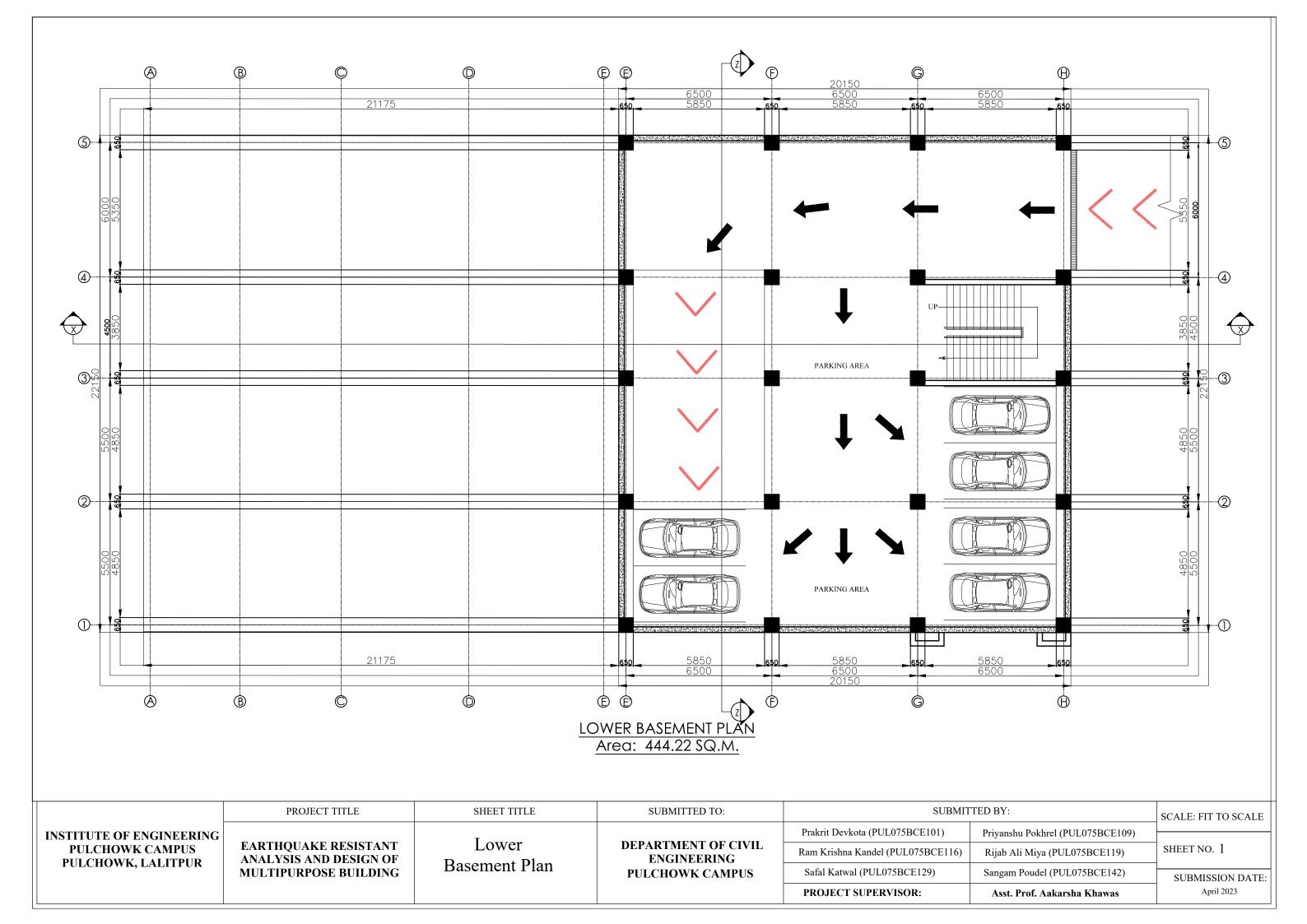
	Area requi	red		Spacing re	quired			Minm space	Spacing pr	ovided			Area provi	ded		
Astx-	Astx+	Asty-	Asty+	SX-	SX+	sy-	sy+		SX-	SX+	sy-	sy+	Astx-	Astx+	Asty-	Asty+
185.476	139.5068	104.4075	77.45605	423.4511	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
133.6432	100.3102	81.93362	61.82919	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
160.945	122.5691	81.93362	61.82919	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
175.3903	130.9657	104.4075	77.45605	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
138.2495	104.4608	81.93362	61.82919	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
106.5379	81.68835	70.75035	52.93046	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
124.4473	93.2646	70.75035	52.93046	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
132.5552	99.23183	81.93362	61.82919	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
138.2495	104.4608	81.93362	61.82919	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
106.5379	81.68835	70.75035	52.93046	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
124.4473	93.2646	70.75035	52.93046	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
132.5552	99.23183	81.93362	61.82919	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
138.2495	104.4608	81.93362	61.82919	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
106.5379	81.68835	70.75035	52.93046	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
124.4473	93.2646	70.75035	52.93046	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
132.5552	99.23183	81.93362	61.82919	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
156.7197	117.5115	0	86.41689	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
132.5552	99.23183	81.93362	61.82919	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
132.5552	99.23183	81.93362	61.82919	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
222.0405	166.1157	0	106.4694	353.7192	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
175.3903	130.9657	104.4075	77.45605	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32
175.3903	130.9657	104.4075	77.45605	436.3333	436.3333	436.3333	436.3333	300	125	125	125	125	628.32	628.32	628.32	628.32

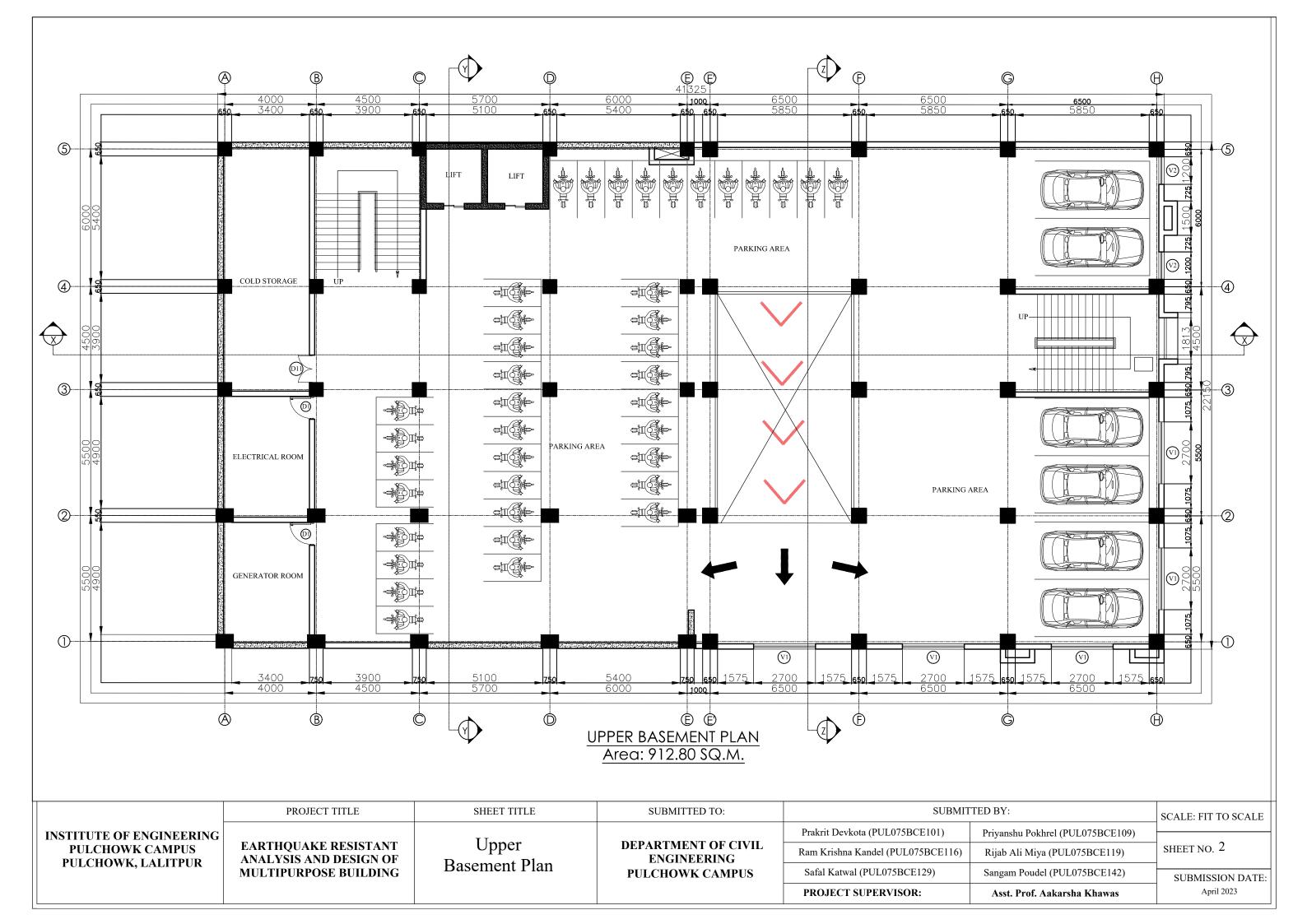
	Shear cheo	:k			Deflection	length				Developme	ent length			
Shear force	Shear stres	Shear strei	Check	(lex/dx)	α	β	(I/d)modify	Defln checl	k	Devt lengtl	MOR	V(KN)	1.3M/V	Check
19.35938	0.148918	0.29	ok	22.69231	23	2	46	OK		457.125	15.6836	19.35938	1053.168	OK
19.35938	0.148918	0.29	ok	22.69231	23	2	46	OK		458.125	15.6836	19.35938	1053.168	OK
19.35938	0.148918	0.29	ok	22.69231	23	2	46	OK		459.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	23	2	46	OK		460.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	23	2	46	OK		461.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	26	2	46	OK		462.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	26	2	46	OK		463.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	23	2	46	OK		464.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	26	2	46	OK		465.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	26	2	46	OK		466.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	23	2	46	OK		467.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	26	2	46	OK		468.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	26	2	46	OK		469.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	23	2	46	OK		470.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	23	2	46	OK		471.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	23	2	46	OK		472.125	15.6836	19.35938	1053.168	ОК
21.57188	0.165938	0.29	ok	22.69231	23	2	46	OK		473.125	15.6836	21.57188	945.1512	ОК
19.35938	0.148918	0.29	ok	22.69231	23	2	46	ОК		474.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	23	2	46	OK		475.125	15.6836	19.35938	1053.168	ОК
21.57188	0.165938	0.29	ok	22.69231	23	2	46	OK		476.125	15.6836	21.57188	945.1512	ОК
19.35938	0.148918	0.29	ok	22.69231	23	2	46	OK		477.125	15.6836	19.35938	1053.168	ОК
19.35938	0.148918	0.29	ok	22.69231	23	2	46	OK		478.125	15.6836	19.35938	1053.168	OK

ANNEX A

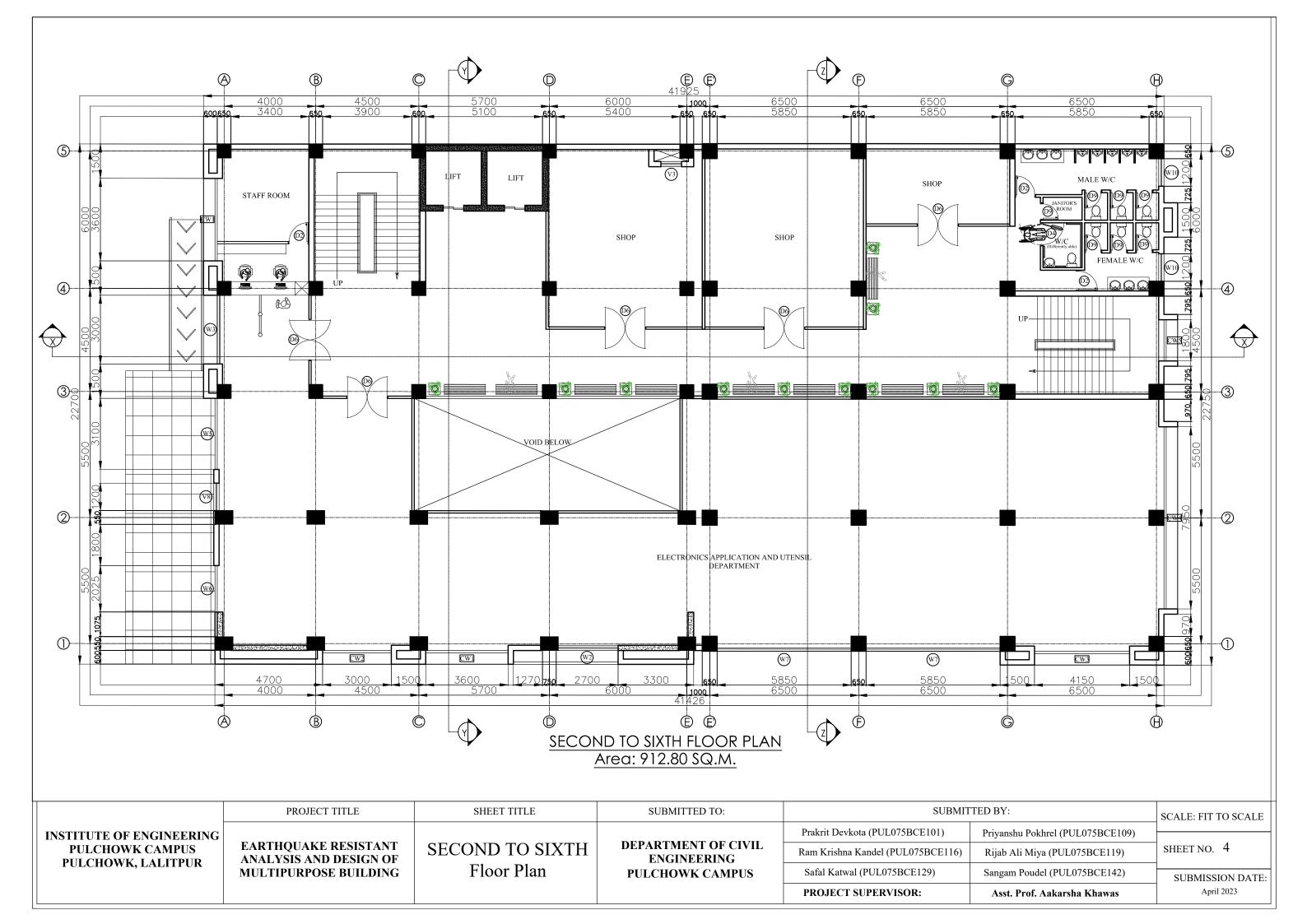
Storey	Column ID	P(KN)	M2(KN-m)	M3(KN-m)	Vmax	Breadth	Depth	Height (H)	H(eff-x)	H(eff-y)	SRx	Sry	Ex	Ey	E(adopted)
1st storey	C15	1921.6	263.47	878	278.21	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C14	1551.03	124.76	1056.08	380.37	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C13	1732	47.55	1041.5	366.3	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C12	1609	104.45	1024.42	350.35	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C11	1376.4	208.56	872.7	252.7	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C10	1648.48	233.56	476.32	125.39	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C16	2347.65	294.78	568.44	180.79	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C23	1520.39	135	656.89	244.37	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C22	1866.71	49.37	617.31	219.27	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C21	1571.1	55.066	586.69	198.6	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C17	1444.6	609.63	52.03	247.55	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C24	1644.56	462.6	62.85	199.1	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C25	1049.6	396.7	3.17	167.205	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C20	2151.49	437.22	52.59	169.48	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C9	1393.92	233.67	387.78	105.02	550	750	3.6	2.773	2.714	5.041818	3.618667	18.33923	25.09833	25.098333
1st storey	C6	1560.6	800.7	49	307.7	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C7	3631.59	249.3	442.3	183.7	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C18	4273.72	95.4	457.2	184.4	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C19	1987.7	147.9	428.2	168.7	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C8	1412.5	680.2	83.1	267.8	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C1	1904.25	336.44	562.8	201.45	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C2	3497.8	113.6	780.5	467.2	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C3	4199.06	141.16	741.35	389.87	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C4	1723.11	92	654.6	247.1	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C5	1410.7	247.5	555.4	176.9	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765

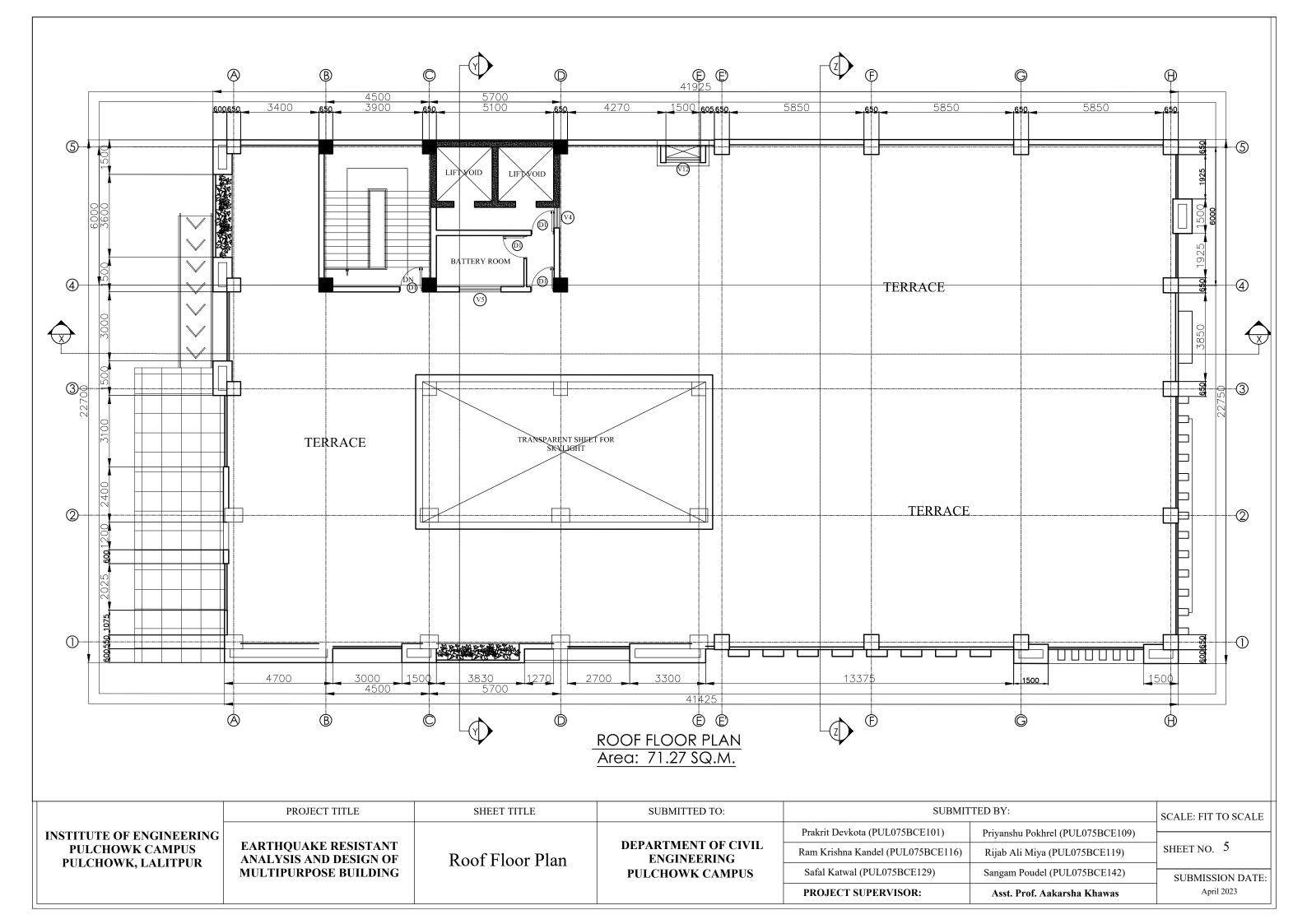
Me(x)	Me(y)	M2(design	M39design)	Area	р%	p/fck	Pu/fckbd	mu/fckbd^	mux1	muy1	puz	pu/puz	alpha	Check
35.240671	48.22896	263.47	878	8250	2	0.066667	0.155281	0.17	1157.063	1577.813	8332.5	0.230615	1.05	0.751862
28.444701	38.92827	124.76	1056.08	8250	2	0.066667	0.125336	0.18	1225.125	1670.625	8332.5	0.186142	1	0.733981
31.763552	43.47031	47.55	1041.5	8250	2	0.066667	0.13996	0.17	1157.063	1577.813	8332.5	0.207861	1.01	0.697159
29.507826	40.38322	104.45	1024.42	8250	2	0.066667	0.13002	0.17	1157.063	1577.813	8332.5	0.193099	1	0.739538
25.242121	34.54535	208.56	872.7	8250	2	0.066667	0.111224	0.185	1259.156	1717.031	8332.5	0.165185	1	0.673896
30.231859	41.3741	233.56	476.32	8250	2	0.066667	0.133211	0.16	1089	1485	8332.5	0.197837	1	0.535226
43.054101	58.9221	294.78	568.44	8250	2	0.066667	0.189709	0.17	1157.063	1577.813	8332.5	0.281746	1.13	0.528769

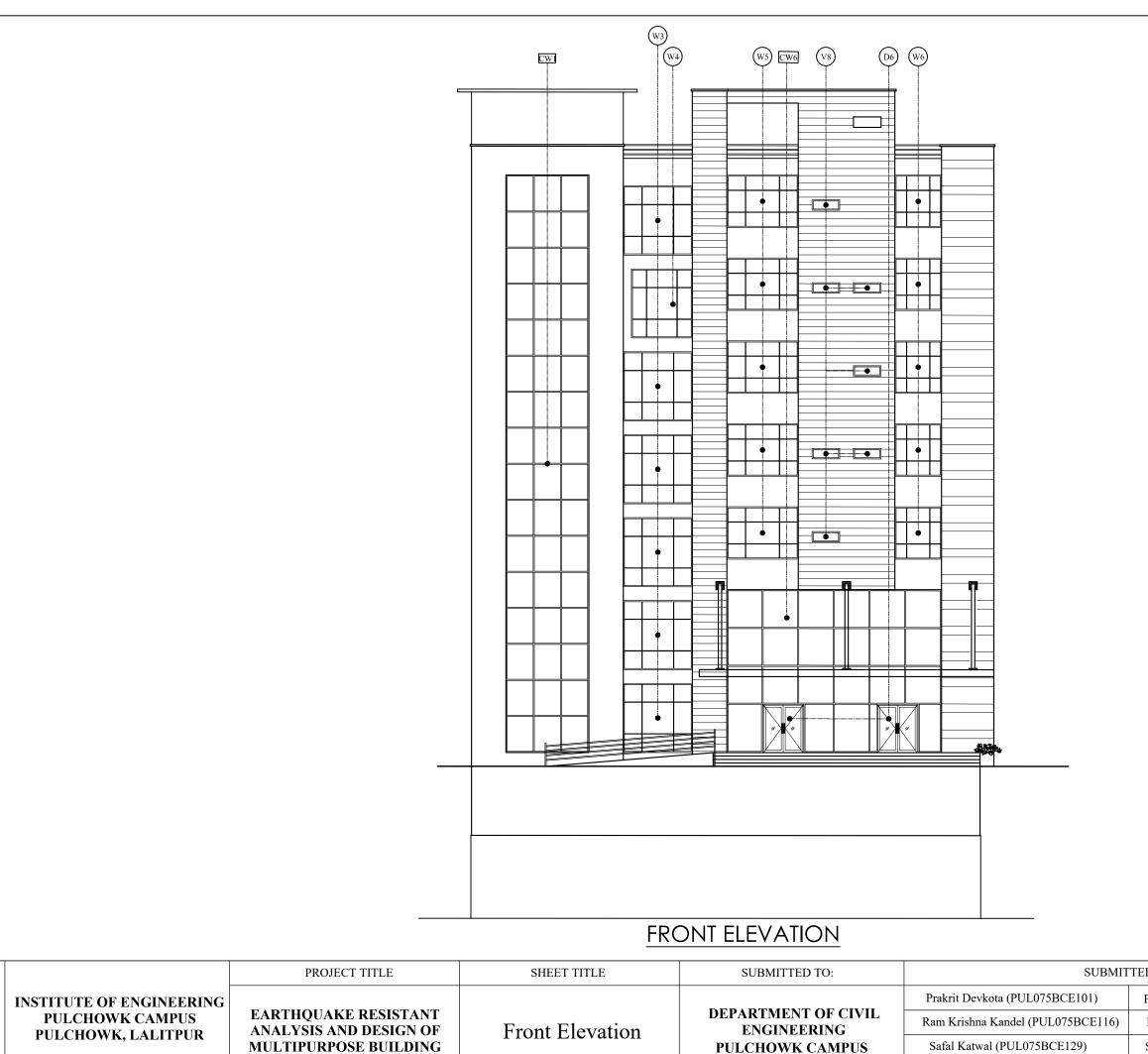

27.882787	38.15926	135	656.89	8250	2	0.066667	0.12286	0.15	1020.938	1392.188	8332.5	0.182465	1	0.604072
34.23403	46.85131	49.37	617.31	8250	2	0.066667	0.150845	0.16	1089	1485	8332.5	0.224028	1.04	0.441413
28.812769	39.43199	55.066	586.69	8250	2	0.066667	0.126958	0.15	1020.938	1392.188	8332.5	0.188551	1	0.475353
26.492856	36.25705	609.63	52.03	8250	2	0.066667	0.116735	0.16	1089	1485	8332.5	0.173369	1	0.594844
30.15997	41.27572	462.6	62.85	8250	2	0.066667	0.132894	0.16	1089	1485	8332.5	0.197367	1	0.467117
19.248859	26.34321	396.7	26.343211	8250	2	0.066667	0.084816	0.15	1020.938	1392.188	8332.5	0.125965	1	0.390841
39.456677	53.99881	437.22	53.998813	8250	2	0.066667	0.173858	0.17	1157.063	1577.813	8332.5	0.258205	1.09	0.370723
25.563424	34.98507	233.67	387.78	8250	2	0.066667	0.11264	0.16	1089	1485	8332.5	0.167287	1	0.475704
33.822208	33.96646	800.7	49	7816.25	1.85	0.061667	0.123124	0.14	1153.425	1153.425	8467.5	0.184305	1	0.736676
78.705876	79.04156	249.3	442.3	7816.25	1.85	0.061667	0.286516	0.11	906.2625	906.2625	8467.5	0.428886	1.381	0.539567
92.622482	93.01752	95.4	457.2	7816.25	1.85	0.061667	0.337177	0.11	906.2625	906.2625	8467.5	0.50472	1.507	0.390234
43.078561	43.26229	147.9	428.2	7816.25	1.85	0.061667	0.156821	0.12	988.65	988.65	8467.5	0.234745	1.057	0.547188
30.6125	30.74306	680.2	83.1	7816.25	1.85	0.061667	0.11144	0.13	1071.038	1071.038	8467.5	0.166814	1	0.712673
41.269985	41.446	336.44	562.8	7816.25	1.85	0.061667	0.150237	0.135	1112.231	1112.231	8467.5	0.224889	1.04	0.780772
75.806304	76.12962	113.6	780.5	7816.25	1.85	0.061667	0.275961	0.12	988.65	988.65	8467.5	0.413085	1.355	0.779213
91.004408	91.39254	141.16	741.35	7816.25	1.85	0.061667	0.331287	0.11	906.2625	906.2625	8467.5	0.495903	1.49	0.803982
37.344216	37.50349	92	654.6	7816.25	1.85	0.061667	0.135946	0.12	988.65	988.65	8467.5	0.203497	1.01	0.750263
30.57349	30.70389	247.5	555.4	7816.25	1.85	0.061667	0.111298	0.13	1071.038	1071.038	8467.5	0.166602	1	0.749647

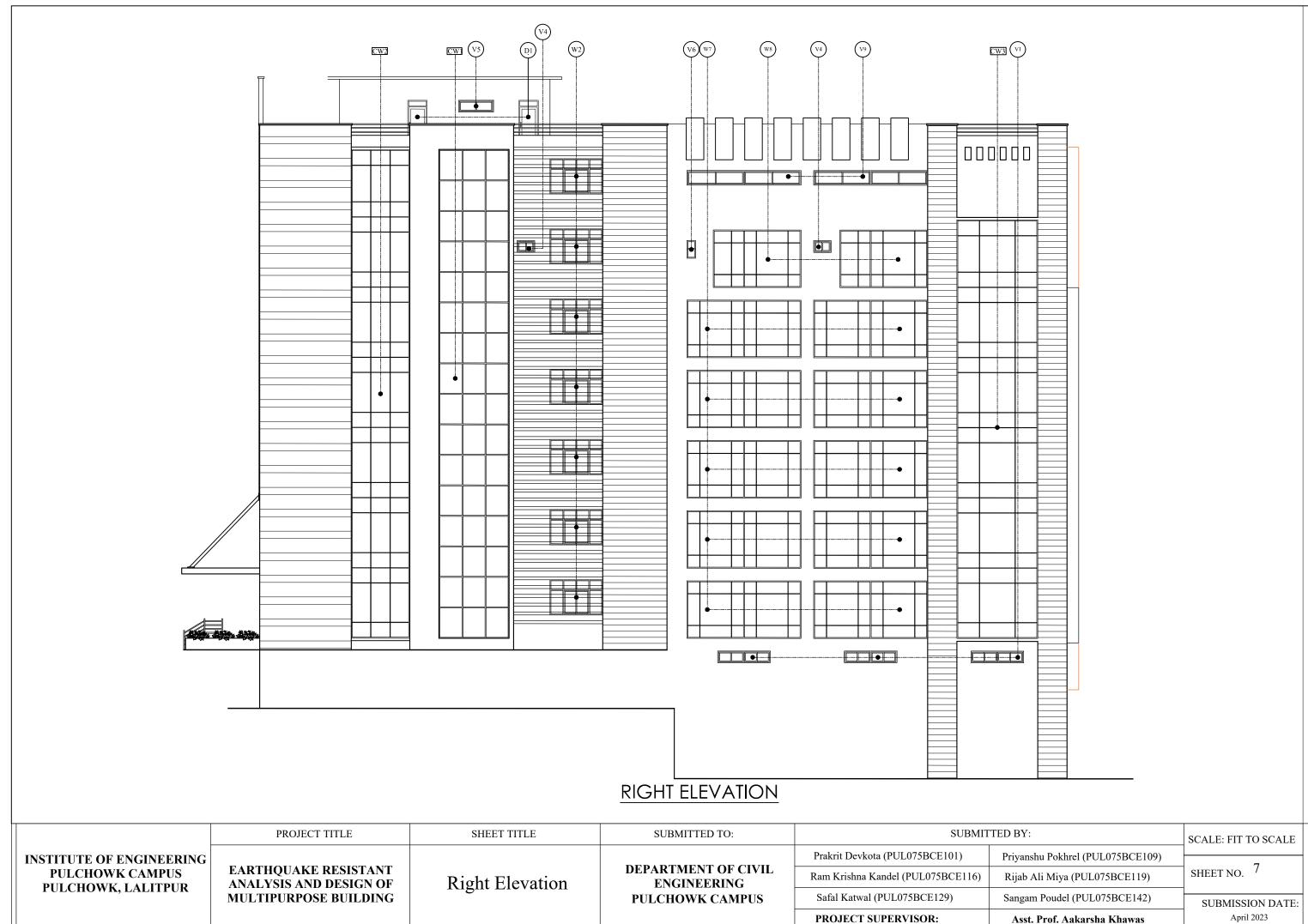

Detailed Column Design Building 1:

Storey	Column ID	P(KN)	M2(KN-m)	M3(KN-m)	Vmax	Breadth	Depth	Height (H)	H(eff-x)	H(eff-y)	SRx	Sry	Ex	Ey	E(adopted)
1st storey	C17	445.61	281.53	87.19	135.41	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C18	2729.84	94.78	512.23	247.22	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C19	2640.27	59.73	508.98	245.014	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C20	670.82	39.32	328.67	156.67	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C13	541.38	63.8	677.03	197.2	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C14	3674.57	43.27	740.65	264.25	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C15	3712.76	49.86	611.29	216.46	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C16	2878.93	697.95	193.94	257.53	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C9	1572.84	801.71	35.27	298.18	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C10	3459.24	80	621.56	221.62	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C11	4513.29	35.86	580.45	219.73	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C12	4367.76	813.29	110.32	420.42	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C6	1610.31	791.68	100.54	288.2	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C7	3575.42	51.44	594.15	212.96	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C8	4808.22	37.23	604.09	224.78	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C5	4335.63	631.33	279.52	322.07	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C21	486.22	70.49	710.37	205.79	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C22	3474.89	53.44	839.86	294.11	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C23	3697.99	46.46	837.98	292.22	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765
1st storey	C24	838.73	68.41	677	196.28	650	650	3.6	2.773	2.714	4.266154	4.175385	21.67257	21.765	21.765

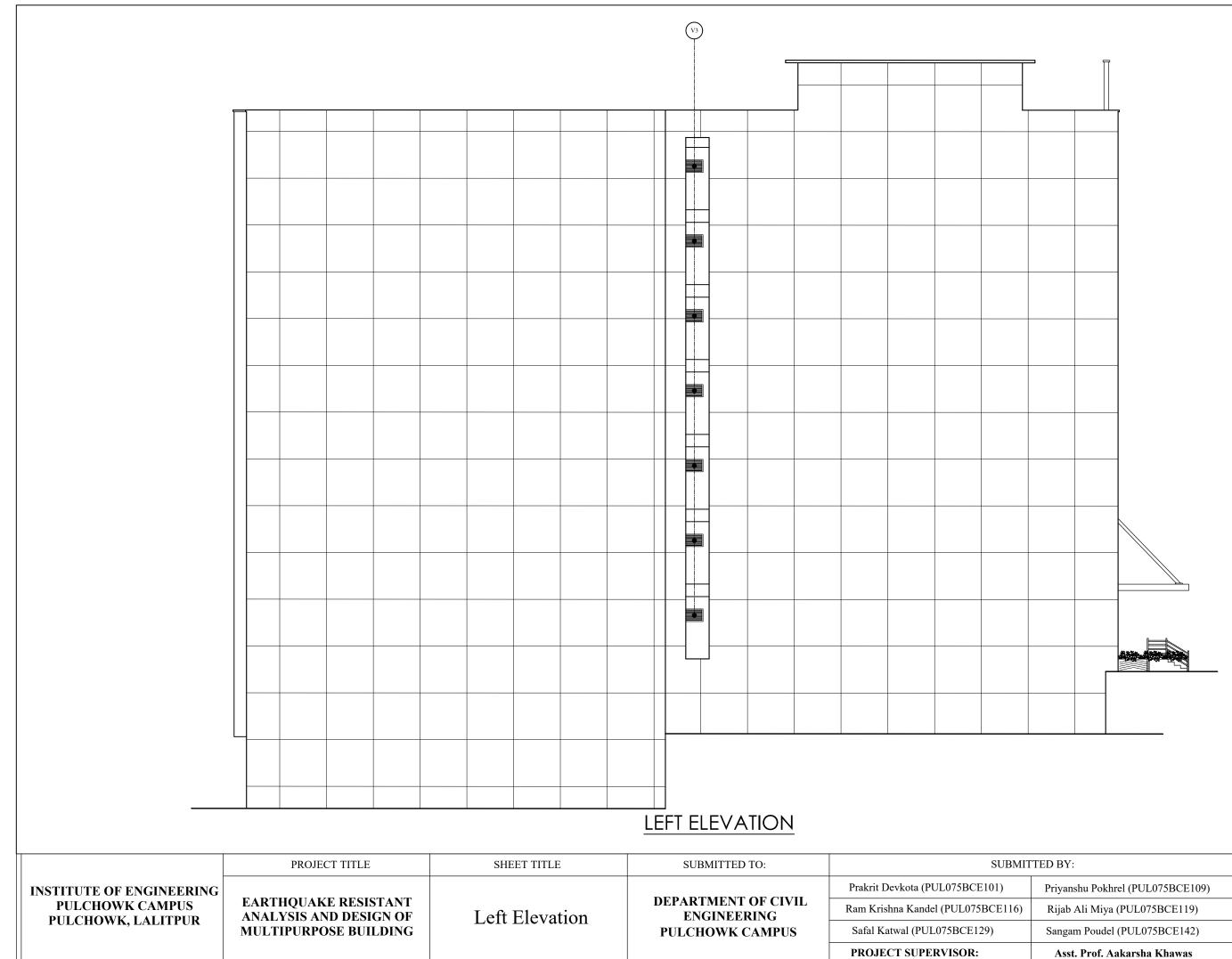

Me(x)	Me(y)	M2(design)	M39desigr	Area	р%	p/fck	Pu/fckbd	mu/fckbd^	mux1	muy1	puz	pu/puz	alpha	Check
9.657512	9.698702	281.53	87.19	7393.75	1.75	0.058333	0.035157	0.11	906.2625	906.2625	8467.5	0.052626	1	0.406858
59.16264	59.41497	94.78	512.23	7393.75	1.75	0.058333	0.215372	0.12	988.65	988.65	8467.5	0.32239	1.2	0.514243
57.22143	57.46548	59.73	508.98	7393.75	1.75	0.058333	0.208305	0.13	1071.038	1071.038	8467.5	0.311812	1.18	0.448829
14.53839	14.6004	39.32	328.67	7393.75	1.75	0.058333	0.052925	0.11	906.2625	906.2625	8467.5	0.079223	1	0.406052
11.73309	11.78314	63.8	677.03	7393.75	1.75	0.058333	0.042712	0.11	906.2625	906.2625	8467.5	0.063936	1	0.817456
79.63736	79.97702	79.6373633	740.65	7393.75	1.75	0.058333	0.289907	0.11	906.2625	906.2625	8467.5	0.433962	1.38	0.771958
80.46504	80.80822	80.46503862	611.29	7393.75	1.75	0.058333	0.29292	0.11	906.2625	906.2625	8467.5	0.438472	1.38	0.599055
62.3938	62.65991	697.95	193.94	7393.75	1.75	0.058333	0.227135	0.12	988.65	988.65	8467.5	0.339998	1.23	0.786505
34.08748	34.23286	801.71	35.27	7393.75	1.75	0.058333	0.12409	0.115	947.4563	947.4563	8467.5	0.18575	1	0.883397
74.97061	75.29036	80	621.56	7393.75	1.75	0.058333	0.272918	0.115	947.4563	947.4563	8467.5	0.408531	1.33	0.608182
97.81458	98.23176	97.81457841	580.45	7393.75	1.75	0.058333	0.356078	0.1	823.875	823.875	8467.5	0.533013	1.55	0.588863
94.66057	95.0643	813.29	110.32	7393.75	1.75	0.058333	0.344596	0.105	865.0688	865.0688	8467.5	0.515826	1.52	0.954154
34.89955	35.0484	791.68	100.54	7393.75	1.75	0.058333	0.127046	0.115	947.4563	947.4563	8467.5	0.190175	1	0.9417
77.48853	77.81902	77.48852831	594.15	7393.75	1.75	0.058333	0.282084	0.105	865.0688	865.0688	8467.5	0.422252	1.36	0.62147
104.2065	104.6509	104.2064685	604.09	7393.75	1.75	0.058333	0.379347	0.1	823.875	823.875	8467.5	0.567844	1.6	0.615721
93.96423	94.36499	631.33	279.52	7393.75	1.75	0.058333	0.342062	0.1	823.875	823.875	8467.5	0.512032	1.51	0.86451
10.53764	10.58258	70.49	710.37	7393.75	1.75	0.058333	0.038361	0.1	823.875	823.875	8467.5	0.057422	1	0.947789
75.30979	75.63098	75.30978518	839.86	7393.75	1.75	0.058333	0.274153	0.115	947.4563	947.4563	8467.5	0.41038	1.35	0.870434
80.14493	80.48675	80.14493481	837.98	7393.75	1.75	0.058333	0.291755	0.105	865.0688	865.0688	8467.5	0.436727	1.4	0.973111
18.17743	18.25496	68.41	677	7393.75	1.75	0.058333	0.066172	0.115	947.4563	947.4563	8467.5	0.099053	1	0.786749


ANNEX B

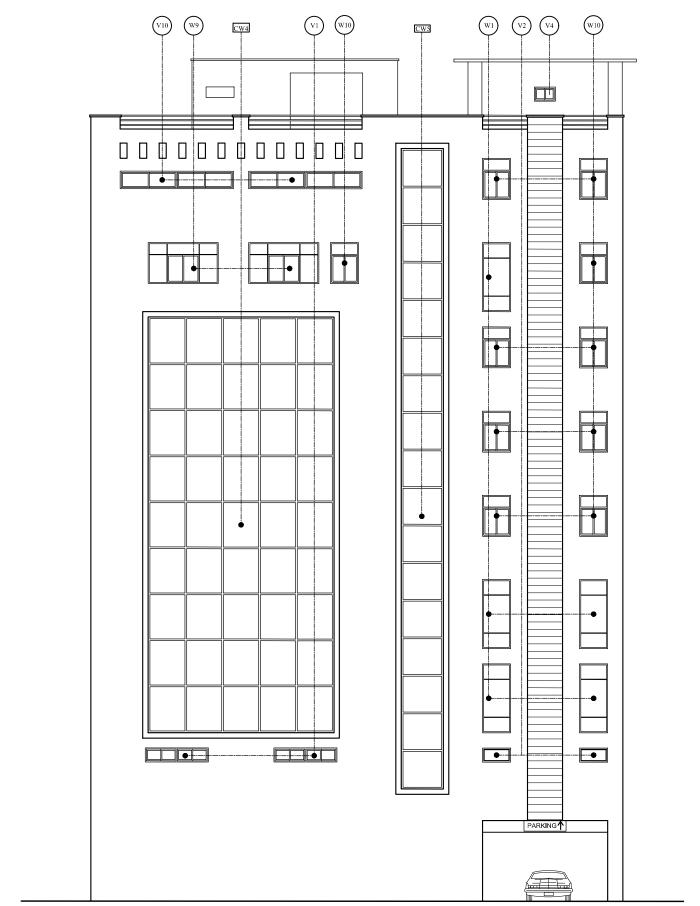




ED BY:	SCALE: FIT TO SCALE
Priyanshu Pokhrel (PUL075BCE109)	
Rijab Ali Miya (PUL075BCE119)	SHEET NO. 6
Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023

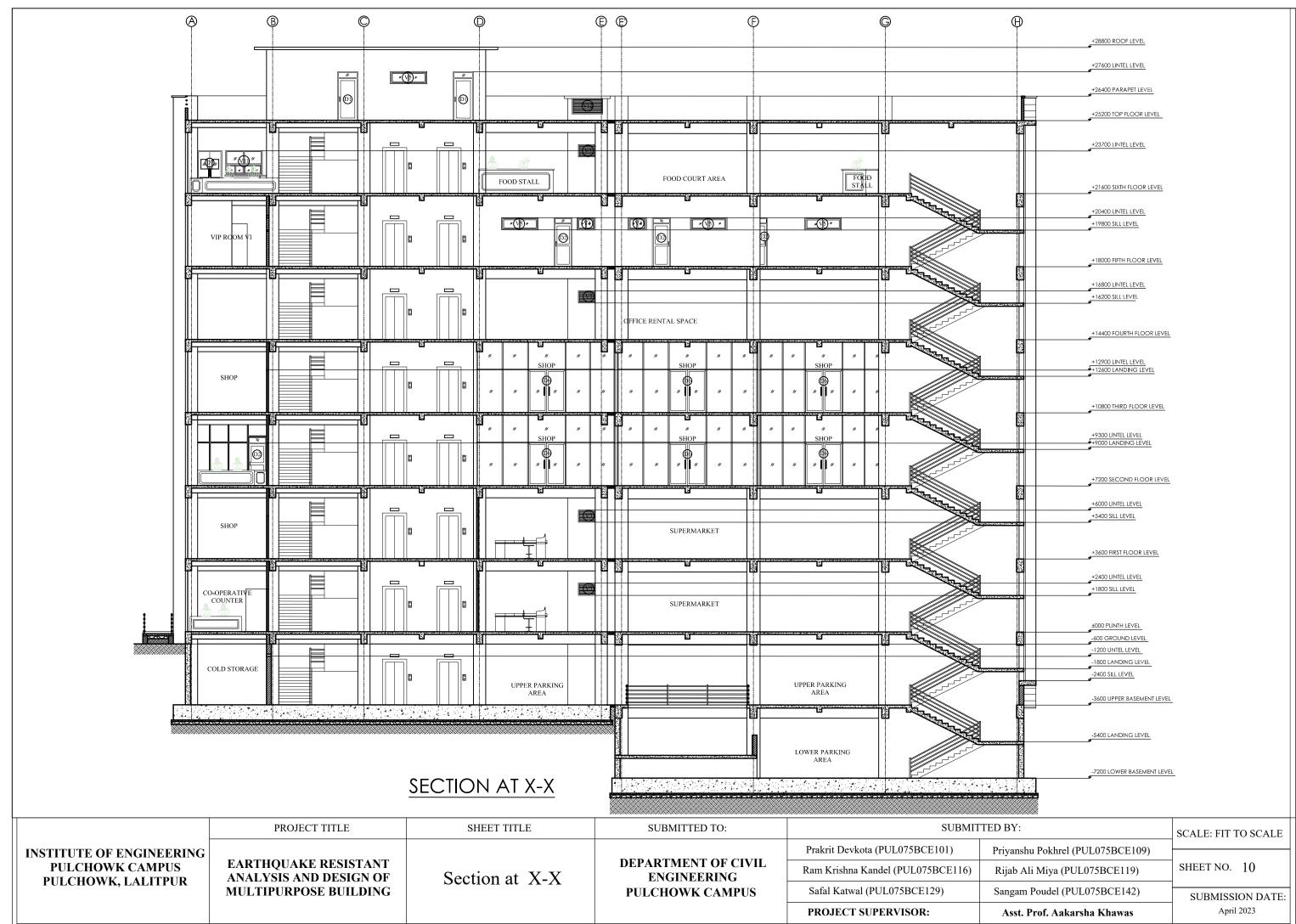

PROJECT SUPERVISOR:

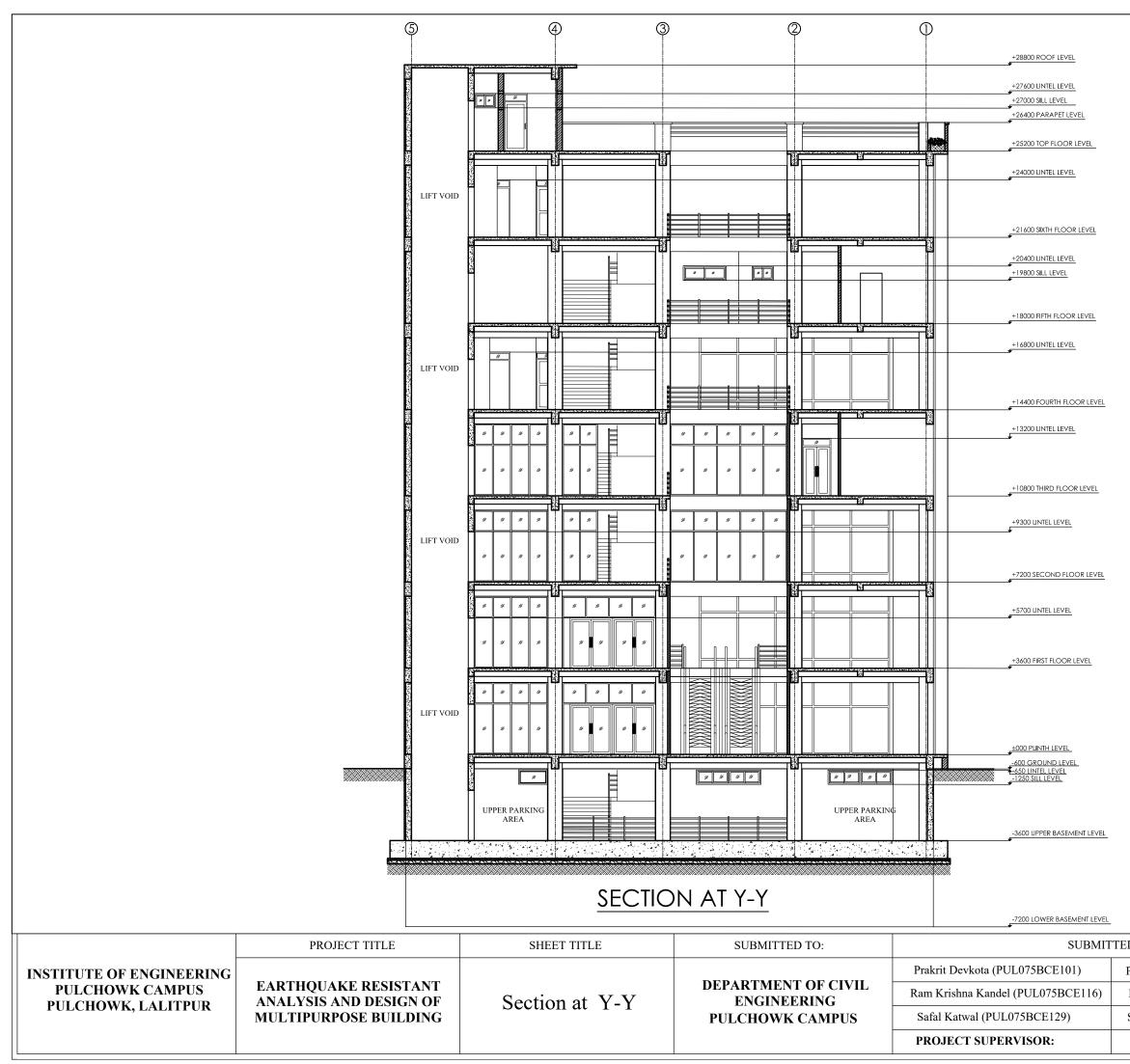
1

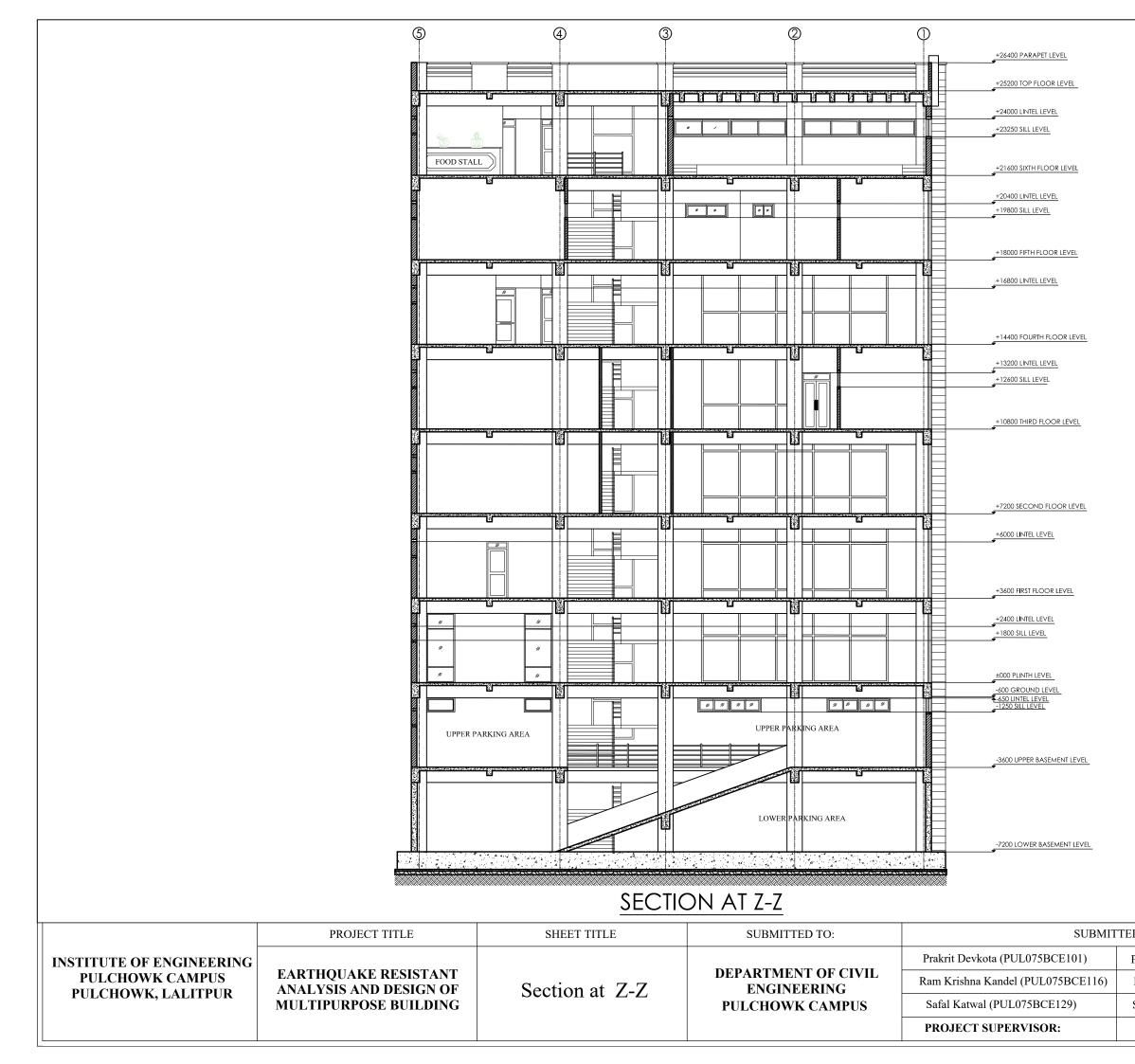


Asst. Prof. Aakarsha Khawas

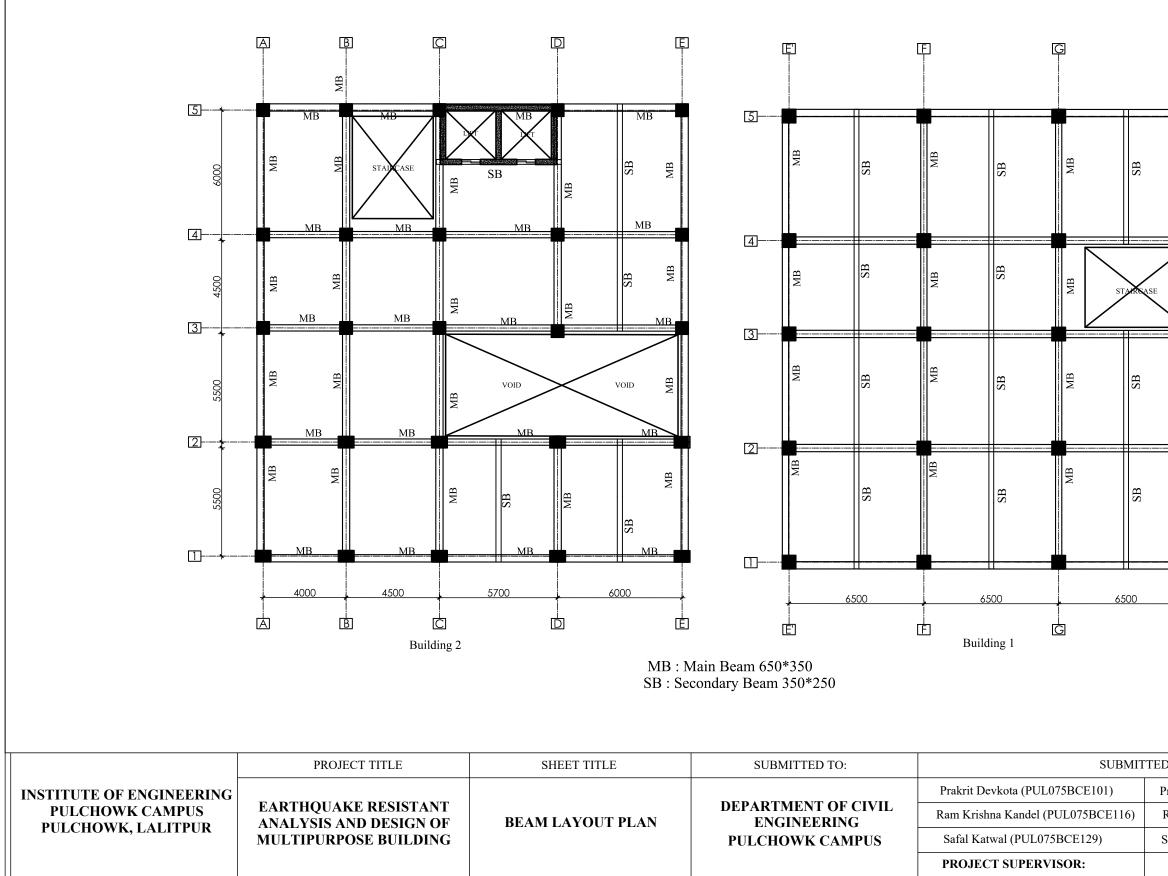
April 2023

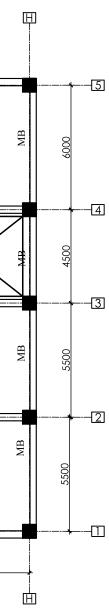


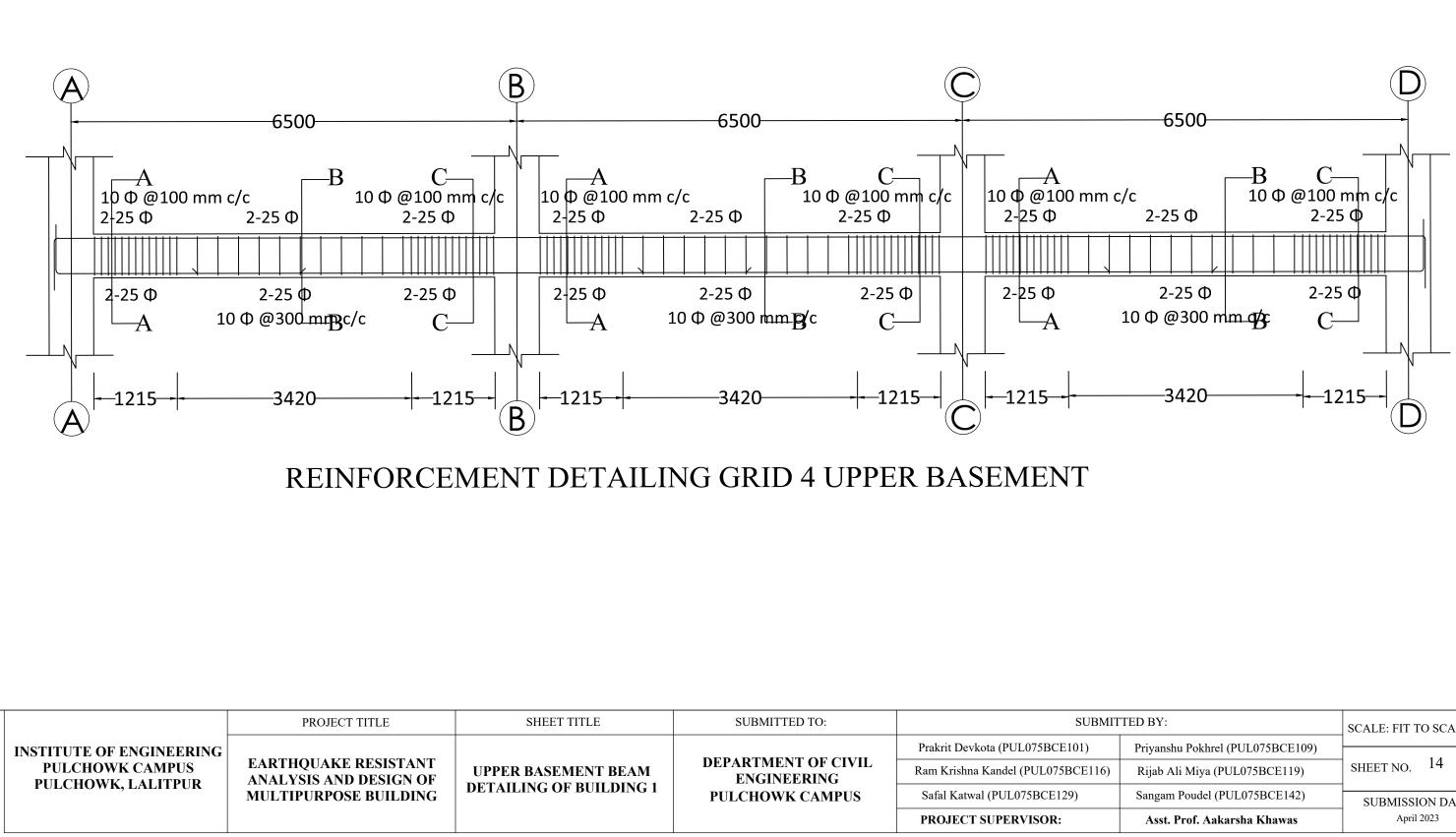

D BY:	SCALE: FIT TO SCALE
Priyanshu Pokhrel (PUL075BCE109)	
Rijab Ali Miya (PUL075BCE119)	SHEET NO. 8
Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023


BACK ELEVATION

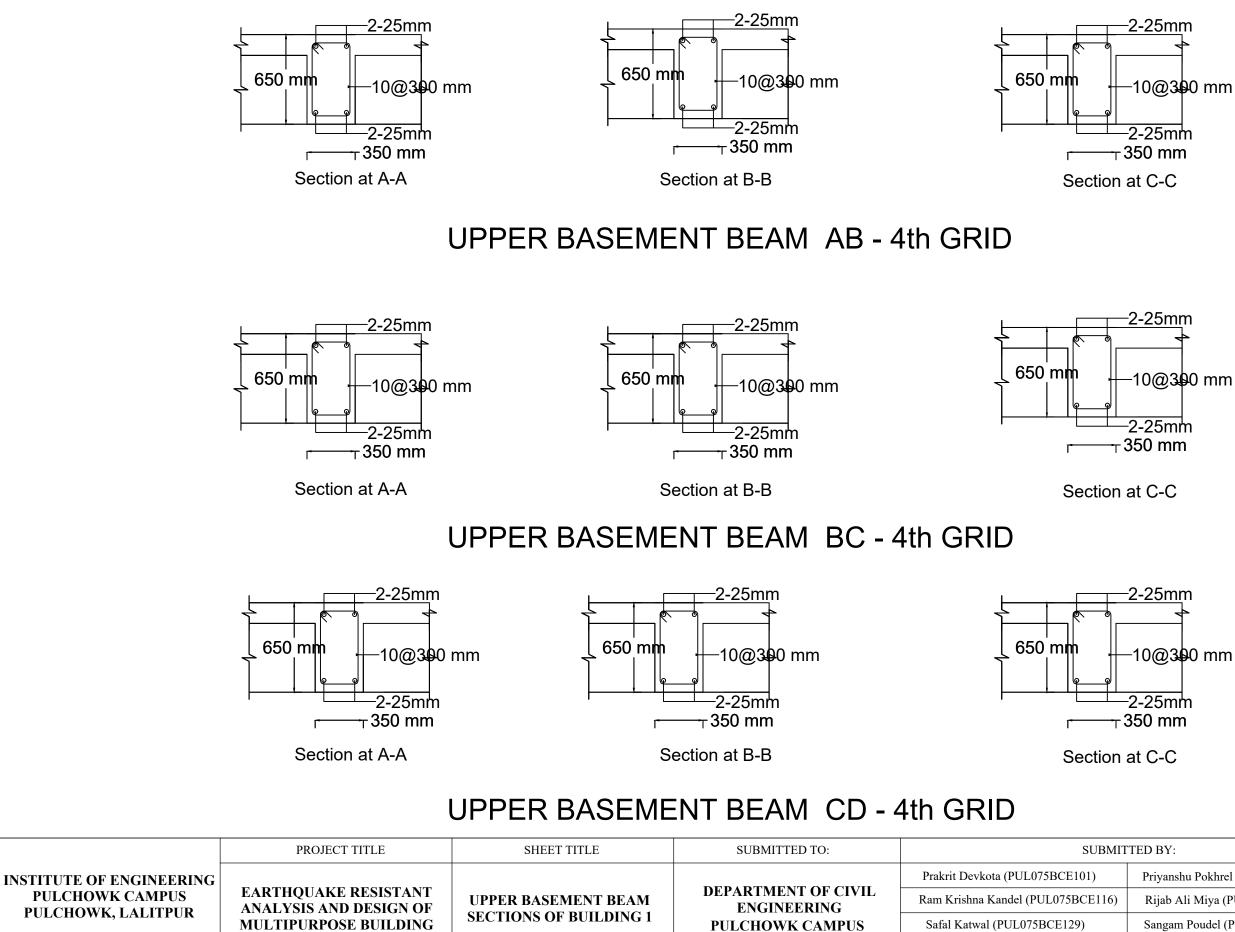
	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMITTED BY:		SCALE: FIT TO SCALE	
INSTITUTE OF ENGINEERING				Prakrit Devkota (PUL075BCE101)	Priyanshu Pokhrel (PUL075BCE109)		
PULCHOWK CAMPUS PULCHOWK, LALITPUR	EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF	Back Elevation	DEPARTMENT OF CIVIL ENGINEERING	Ram Krishna Kandel (PUL075BCE116)	Rijab Ali Miya (PUL075BCE119)	SHEET NO. 9	
	MULTIPURPOSE BUILDING	Dack Lievation	PULCHOWK CAMPUS	Safal Katwal (PUL075BCE129)	Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:	
				PROJECT SUPERVISOR:	Asst. Prof. Aakarsha Khawas	April 2023	



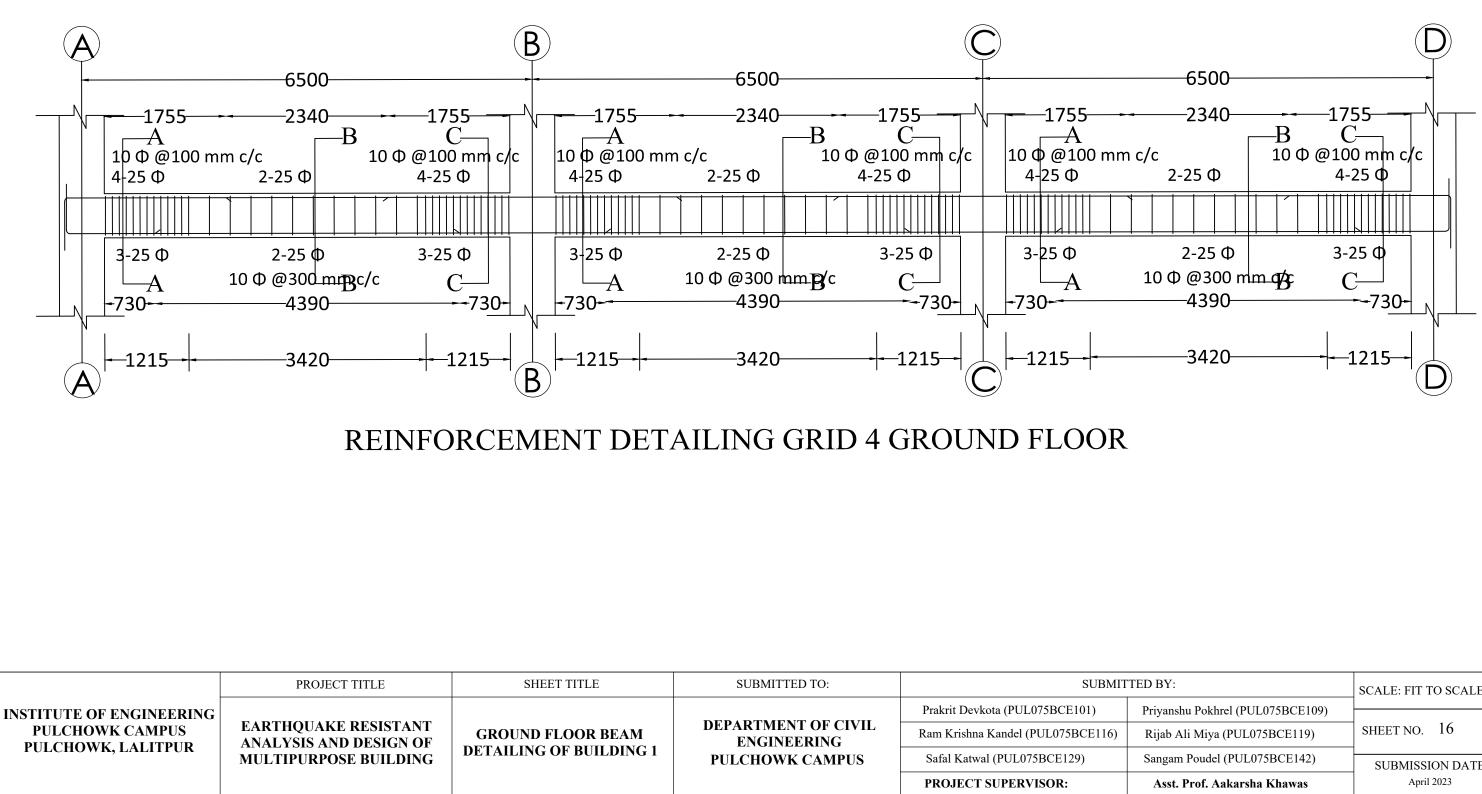

Rijab Ali Miya (PUL075BCE119)	SHEET NO. 11
Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023


ED BY:	SCALE: FIT TO SCALE
Priyanshu Pokhrel (PUL075BCE109)	12
Rijab Ali Miya (PUL075BCE119)	SHEET NO. 12
Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023

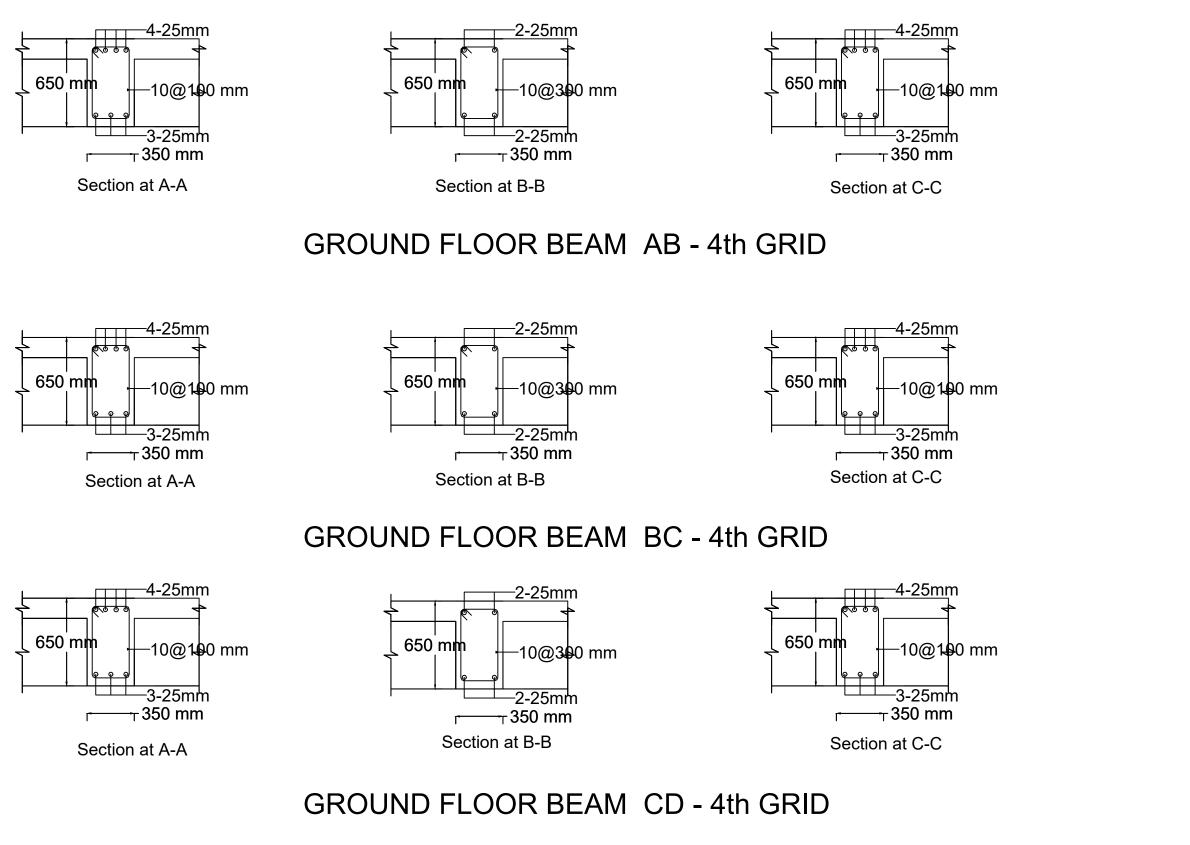
ANNEX C

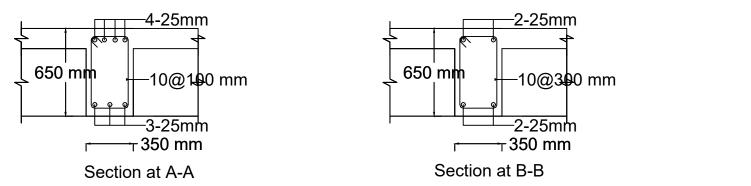


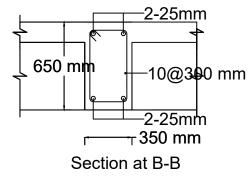
D BY:	SCALE: FIT TO SCALE
Priyanshu Pokhrel (PUL075BCE109)	
Rijab Ali Miya (PUL075BCE119)	SHEET NO. 13
Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023

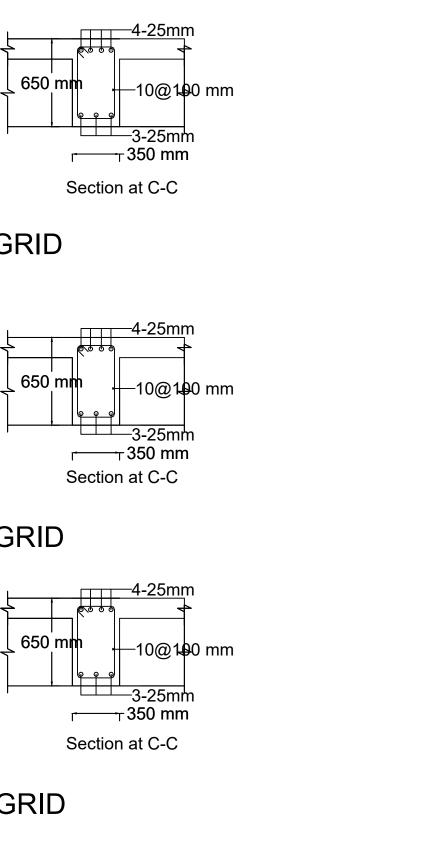


BY:	SCALE: FIT TO SCALE
yanshu Pokhrel (PUL075BCE109)	
ijab Ali Miya (PUL075BCE119)	SHEET NO. 14
ngam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023

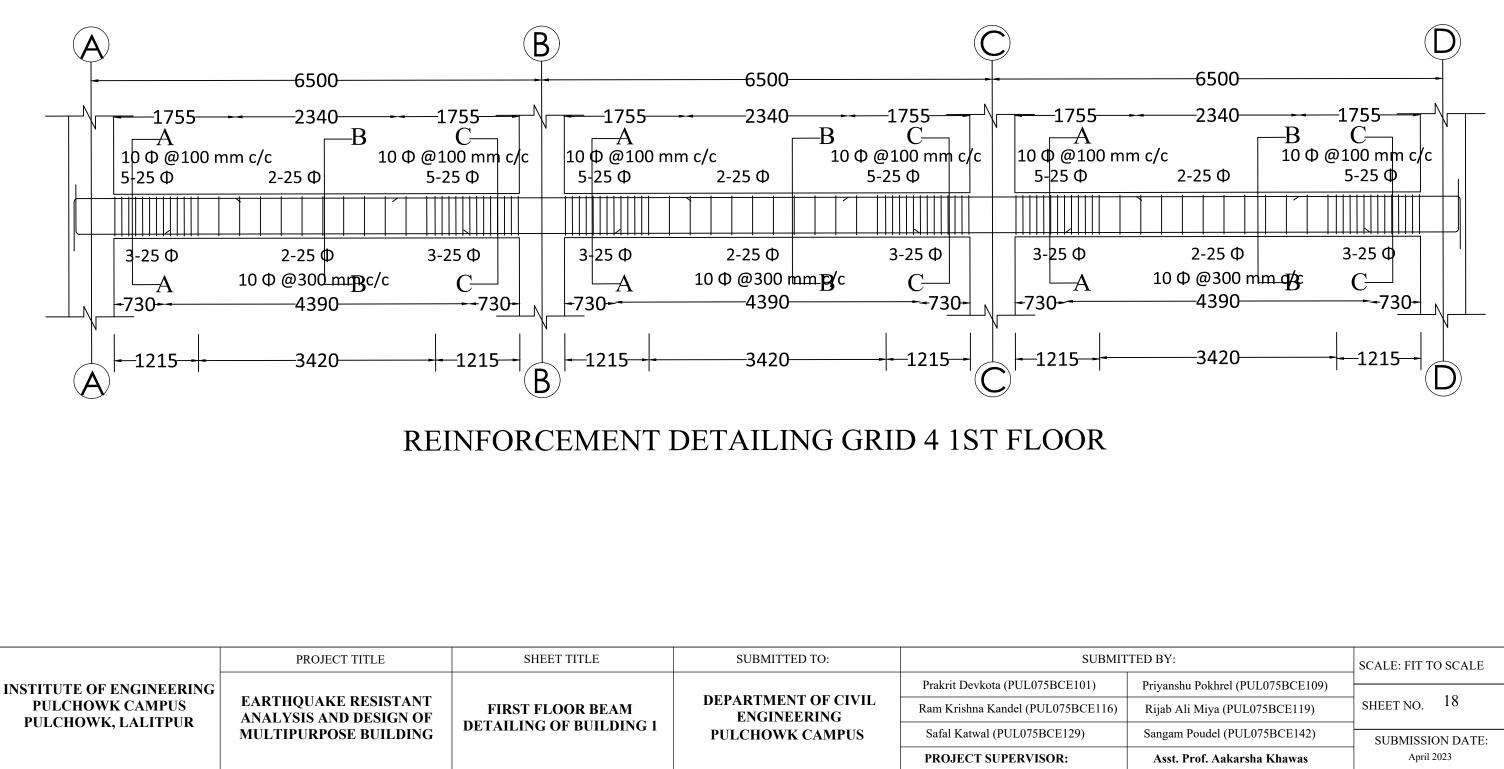


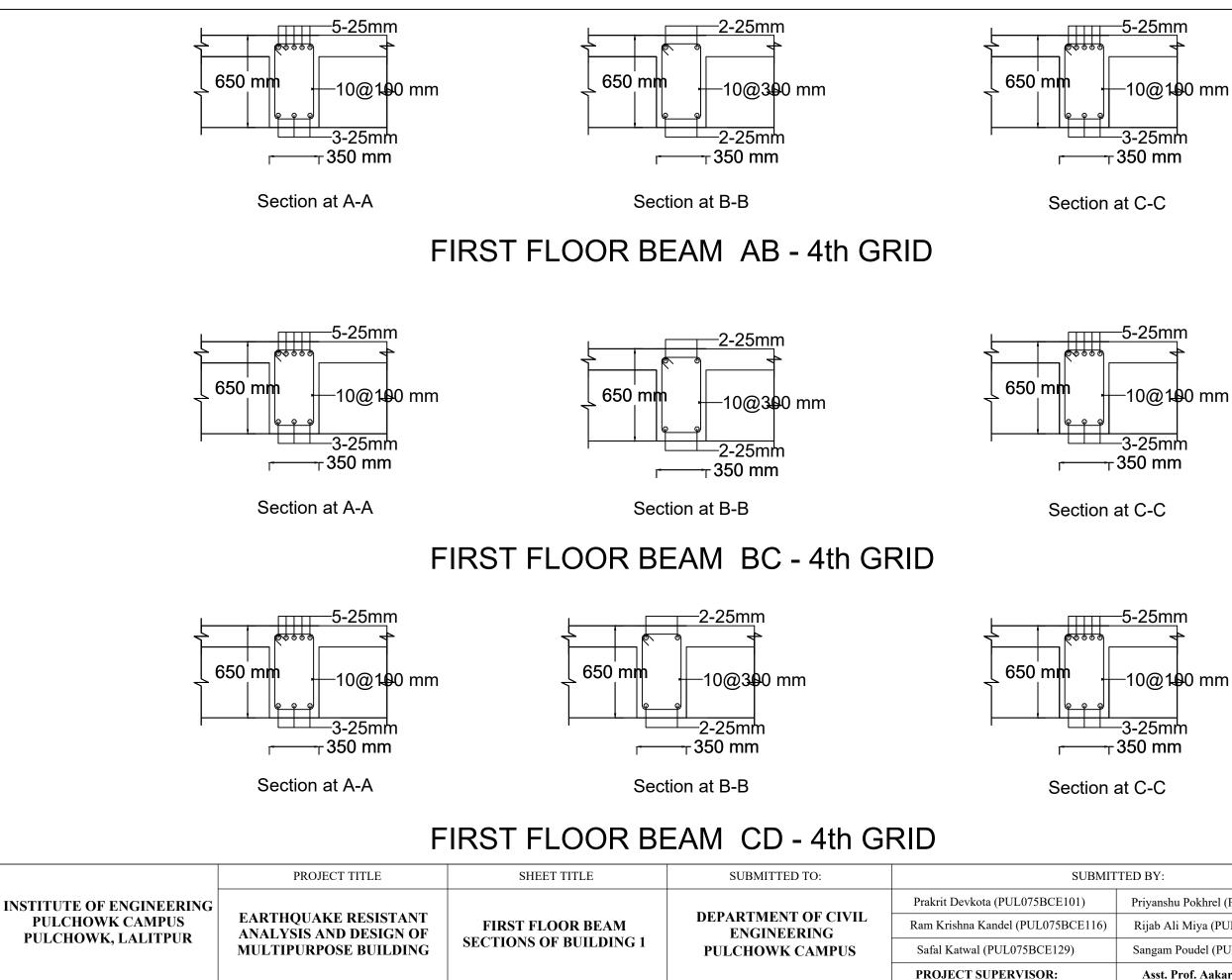

PROJECT SUPERVISOR:

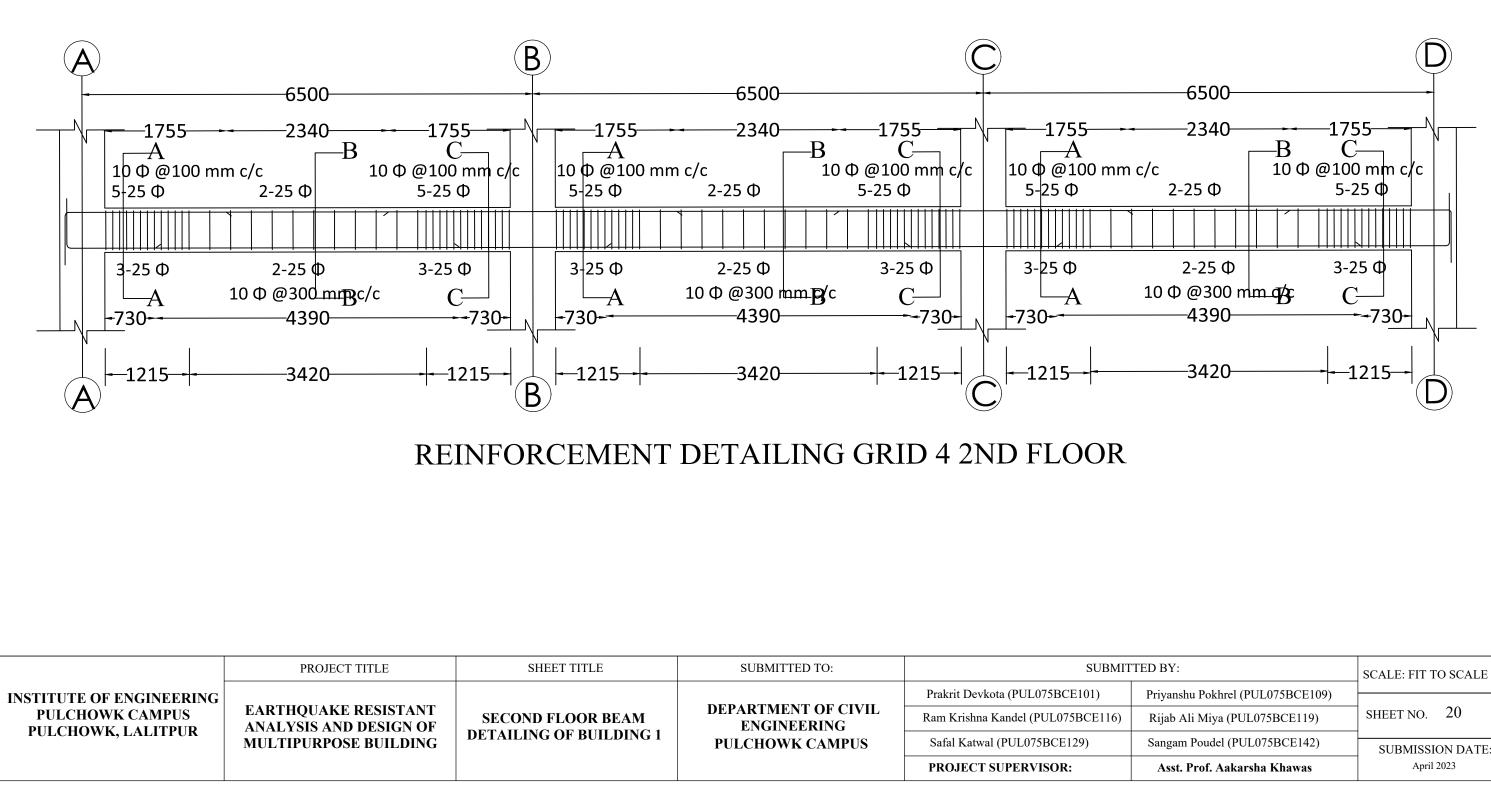

ED BY:	SCALE: FIT TO SCALE		
Priyanshu Pokhrel (PUL075BCE109)			
Rijab Ali Miya (PUL075BCE119)	SHEET NO. 15		
Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:		
Asst. Prof. Aakarsha Khawas	April 2023		

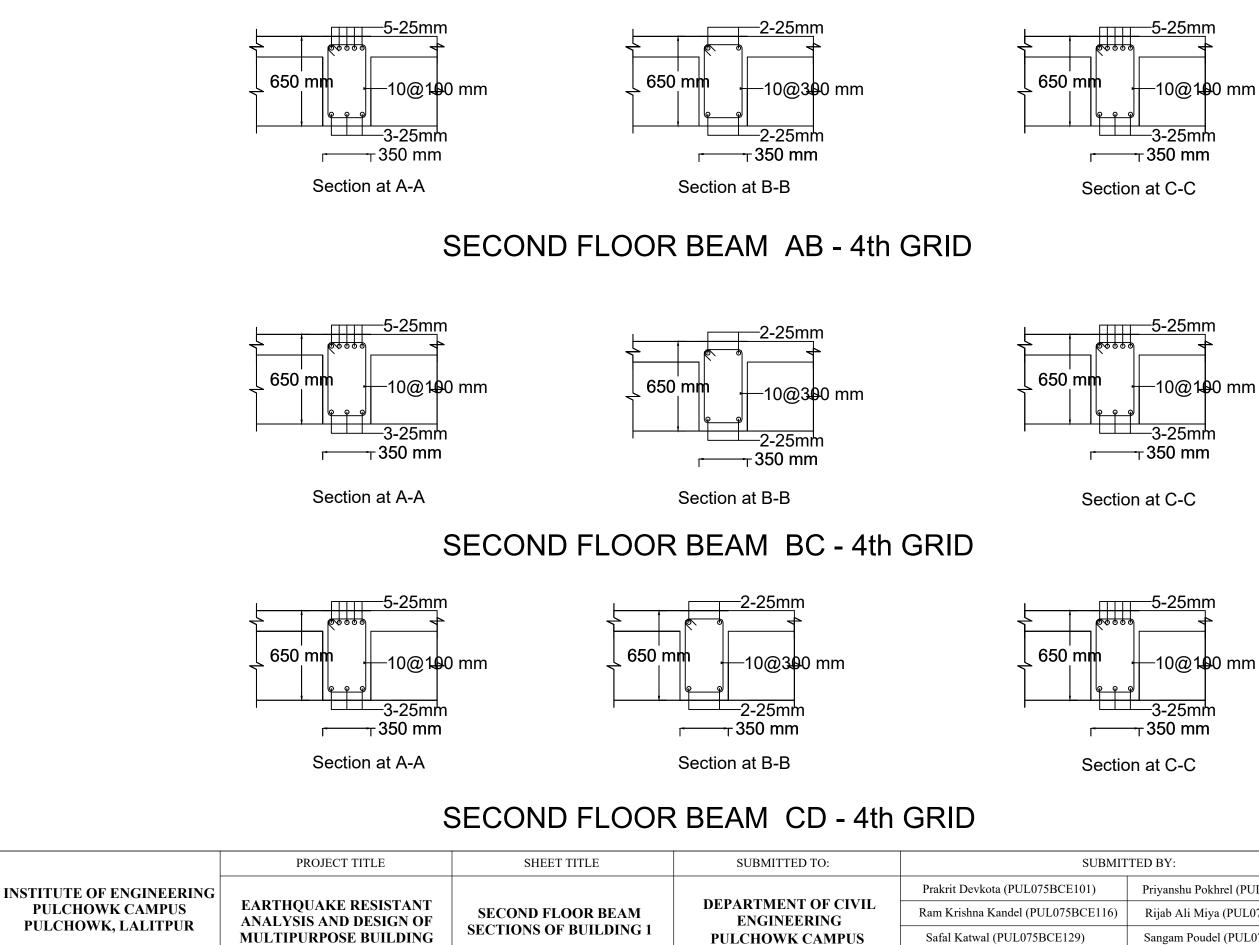


BY:	SCALE: FIT TO SCALE
yanshu Pokhrel (PUL075BCE109)	
jab Ali Miya (PUL075BCE119)	SHEET NO. 16
ngam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023

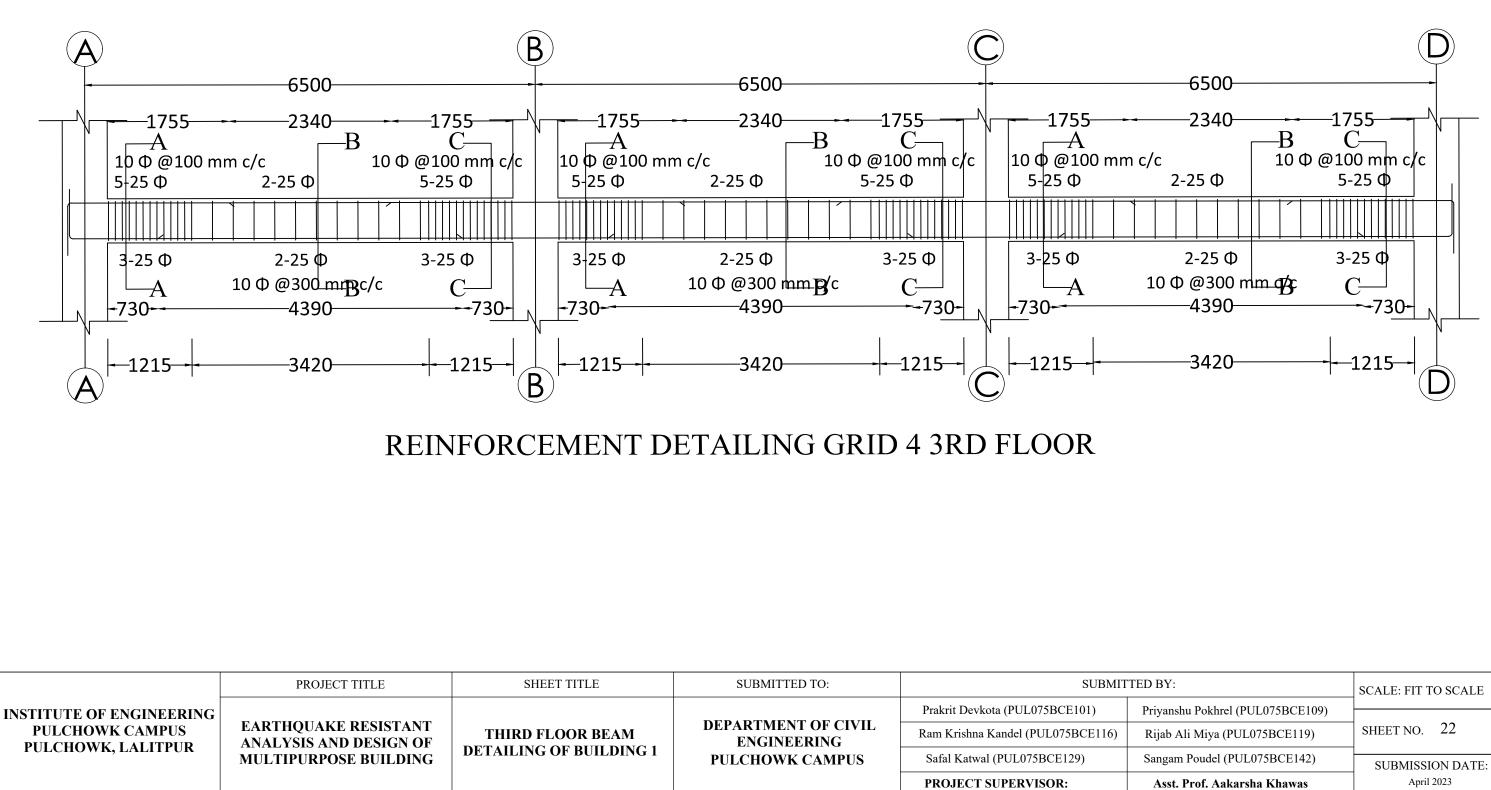




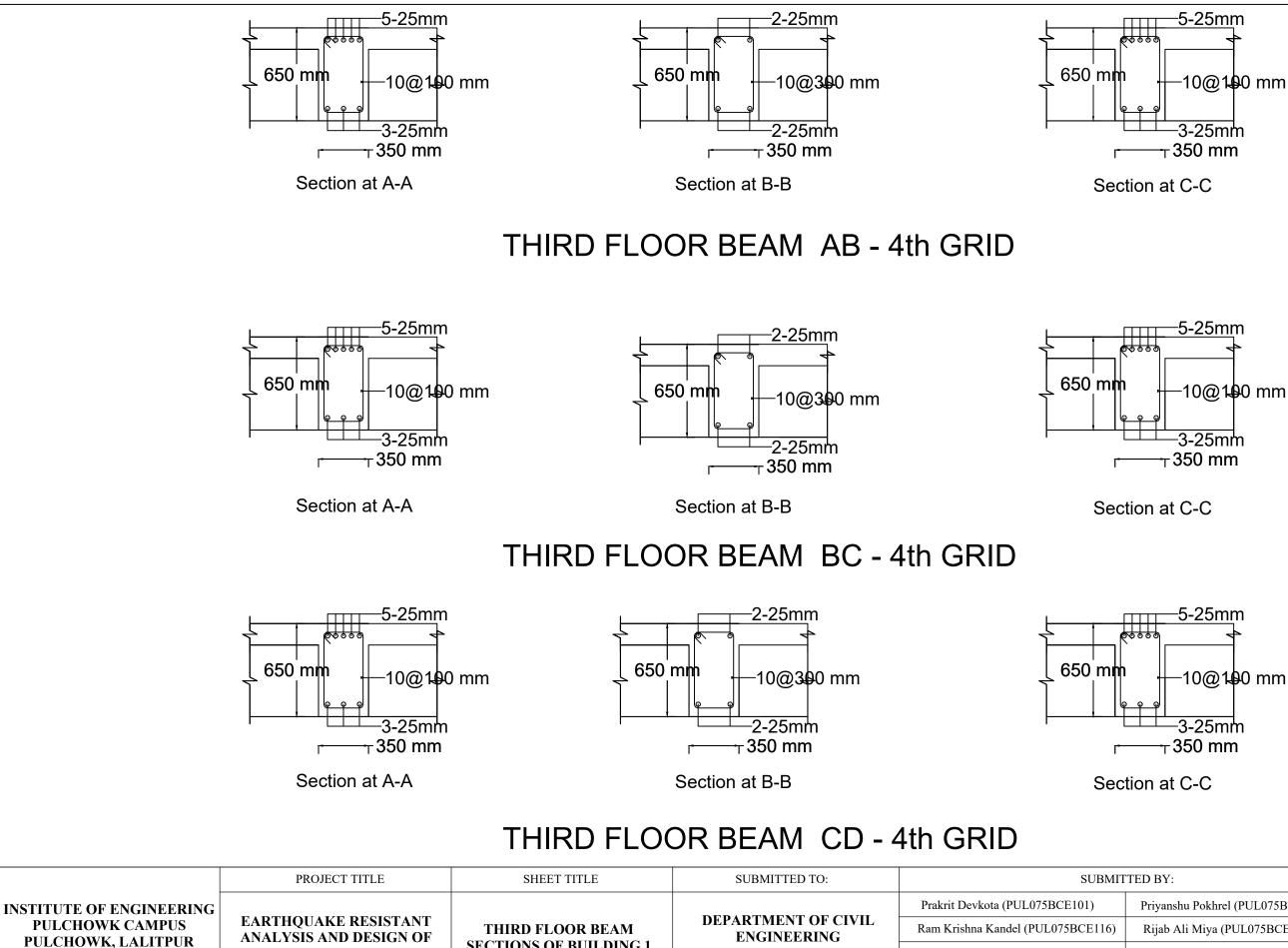

	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMIT	TED BY:	SCALE: FIT TO SCALE
INSTITUTE OF ENGINEERING				Prakrit Devkota (PUL075BCE101)	Priyanshu Pokhrel (PUL075BCE109)	
PULCHOWK CAMPUS	K, LALITPUR ANALYSIS AND DESIGN OF SECTIONS OF BUILDING 1 ENGINEERING		Ram Krishna Kandel (PUL075BCE116)	Rijab Ali Miya (PUL075BCE119)	SHEET NO. 17	
FULCHOWK, LALIIFUK		SECTIONS OF BUILDING 1		Safal Katwal (PUL075BCE129)	Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
				PROJECT SUPERVISOR:	Asst. Prof. Aakarsha Khawas	April 2023


BY:	SCALE: FIT TO SCALE
yanshu Pokhrel (PUL075BCE109)	
ijab Ali Miya (PUL075BCE119)	SHEET NO. 18
ngam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023

ED BY:	SCALE: FIT TO SCALE	
Priyanshu Pokhrel (PUL075BCE109)		
Rijab Ali Miya (PUL075BCE119)	SHEET NO. 19	
Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:	
Asst. Prof. Aakarsha Khawas	April 2023	



BY:	SCALE: FIT TO SCALE
yanshu Pokhrel (PUL075BCE109)	
ijab Ali Miya (PUL075BCE119)	SHEET NO. 20
ngam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023

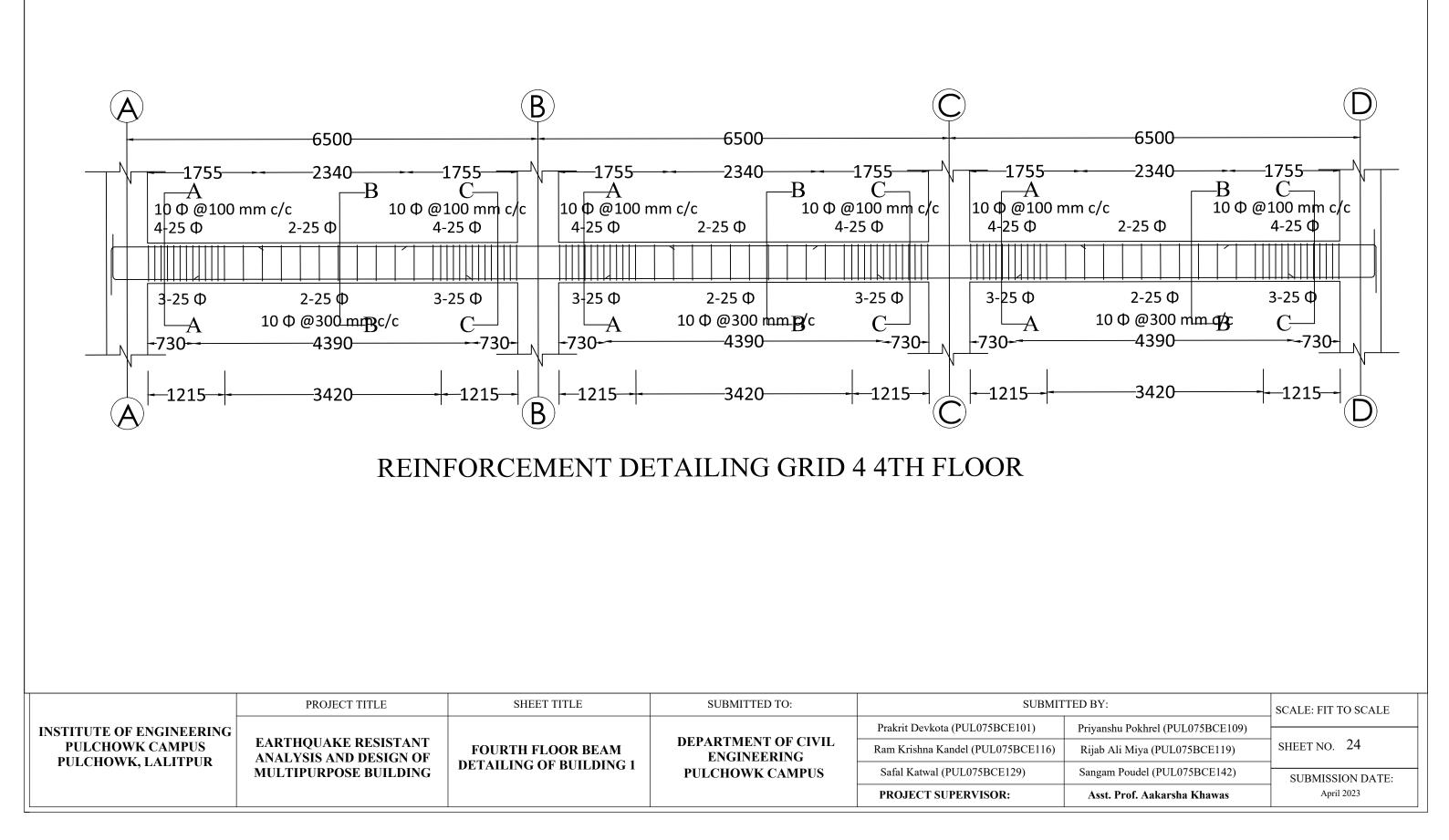


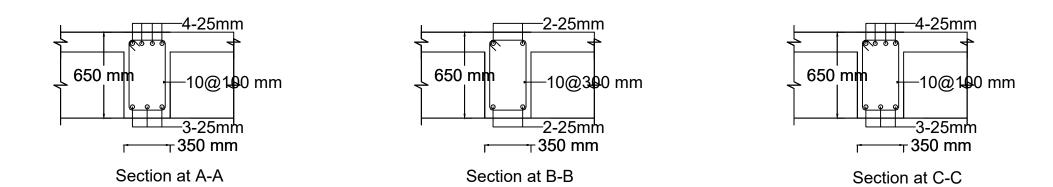
PROJECT SUPERVISOR:

ED BY:	SCALE: FIT TO SCALE
Priyanshu Pokhrel (PUL075BCE109)	
Rijab Ali Miya (PUL075BCE119)	SHEET NO. 21
Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023

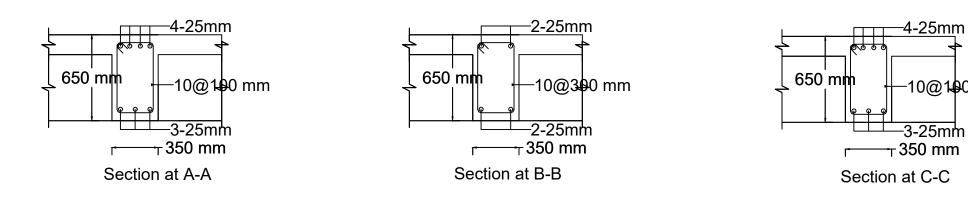
BY:	SCALE: FIT TO SCALE
yanshu Pokhrel (PUL075BCE109)	
ijab Ali Miya (PUL075BCE119)	SHEET NO. 22
ngam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023

PULCHOWK CAMPUS

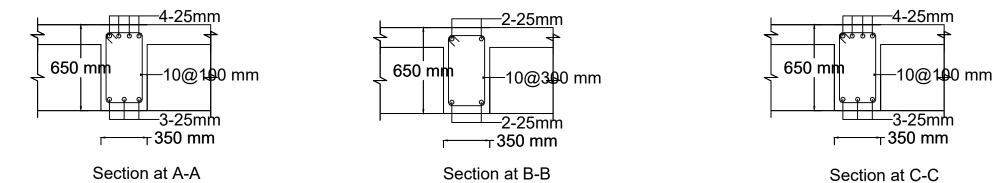

Safal Katwal (PUL075BCE129)


PROJECT SUPERVISOR:

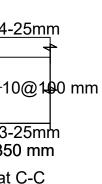
SECTIONS OF BUILDING 1


MULTIPURPOSE BUILDING

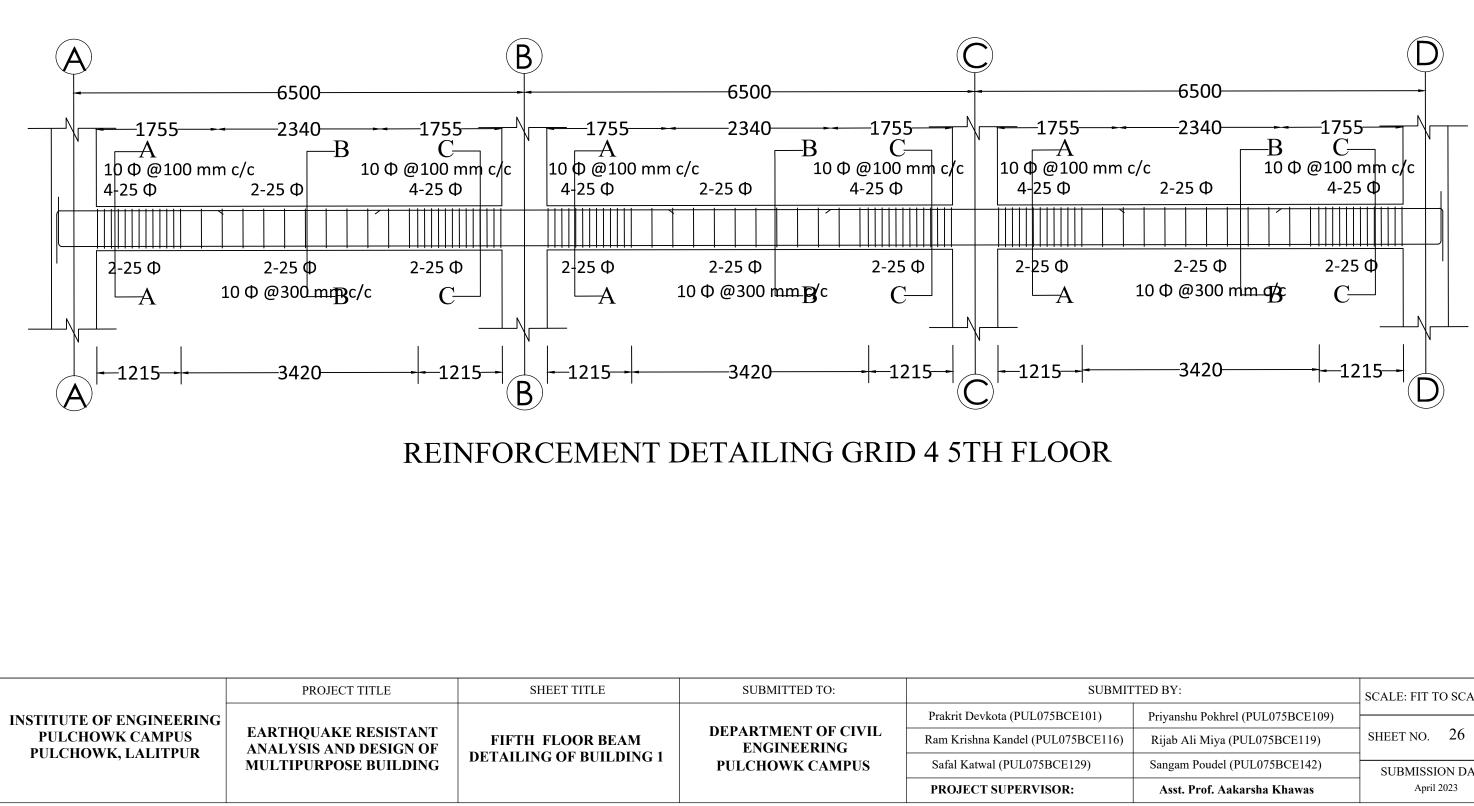
ED BY:	SCALE: FIT TO SCALE	
Priyanshu Pokhrel (PUL075BCE109)		
Rijab Ali Miya (PUL075BCE119)	SHEET NO. 23	
Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:	
Asst. Prof. Aakarsha Khawas	April 2023	



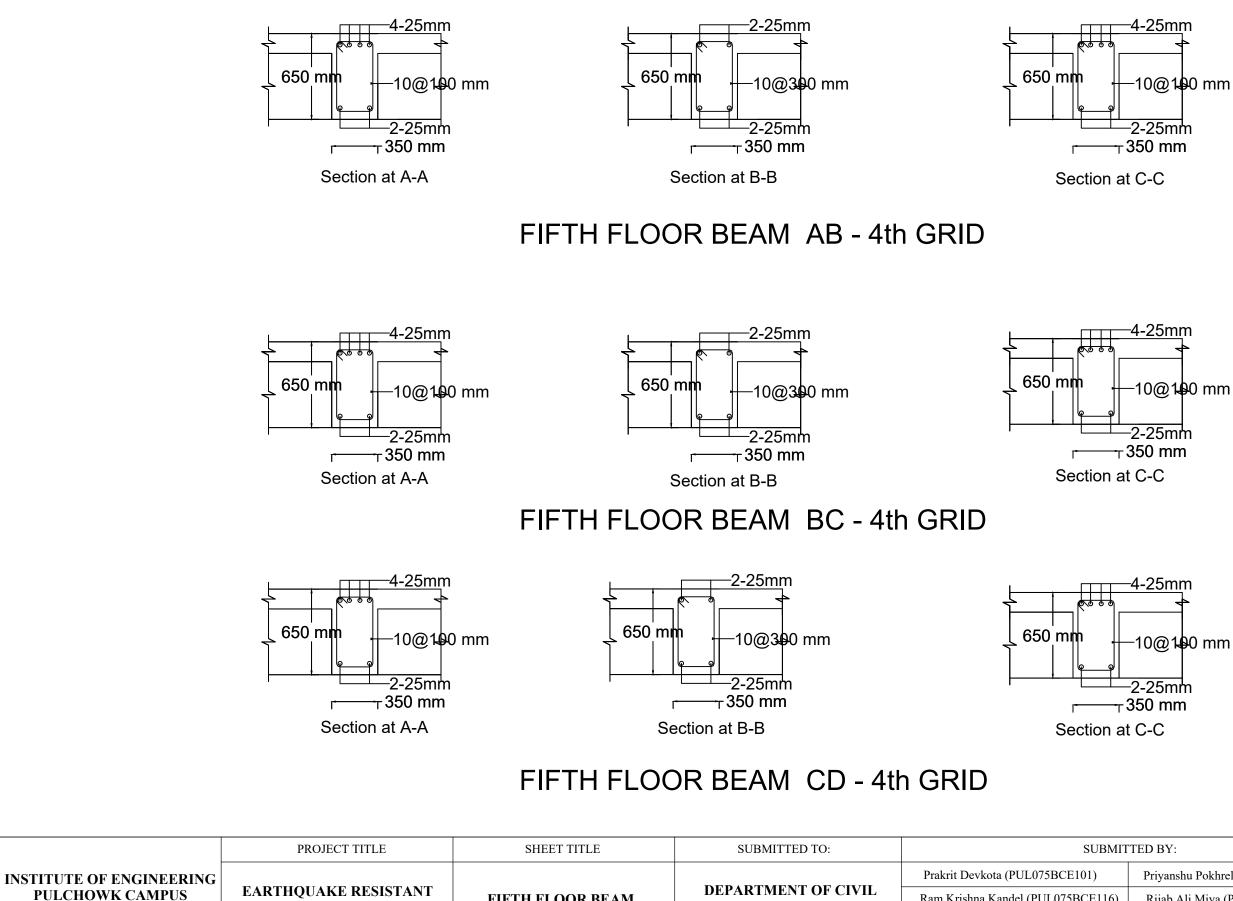
FOURTH FLOOR BEAM AB - 4th GRID



FOURTH FLOOR BEAM BC - 4th GRID



FOURTH FLOOR BEAM CD - 4th GRID


	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMIT	TED BY:	SCALE: FIT TO SCALE
INSTITUTE OF ENGINEERING				Prakrit Devkota (PUL075BCE101)	Priyanshu Pokhrel (PUL075BCE109)	
PULCHOWK CAMPUS	EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF	FOURTH FLOOR BEAM	DEPARTMENT OF CIVIL ENGINEERING	Ram Krishna Kandel (PUL075BCE116)	Rijab Ali Miya (PUL075BCE119)	SHEET NO. 25
PULCHOWK, LALITPUR	MULTIPURPOSE BUILDING	SECTIONS OF BUILDING 1	PULCHOWK CAMPUS	Safal Katwal (PUL075BCE129)	Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
				PROJECT SUPERVISOR:	Asst. Prof. Aakarsha Khawas	April 2023

	1	١	
•		,	

BY:	SCALE: FIT TO SCALE
yanshu Pokhrel (PUL075BCE109)	
ijab Ali Miya (PUL075BCE119)	SHEET NO. 26
ngam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023

ENGINEERING

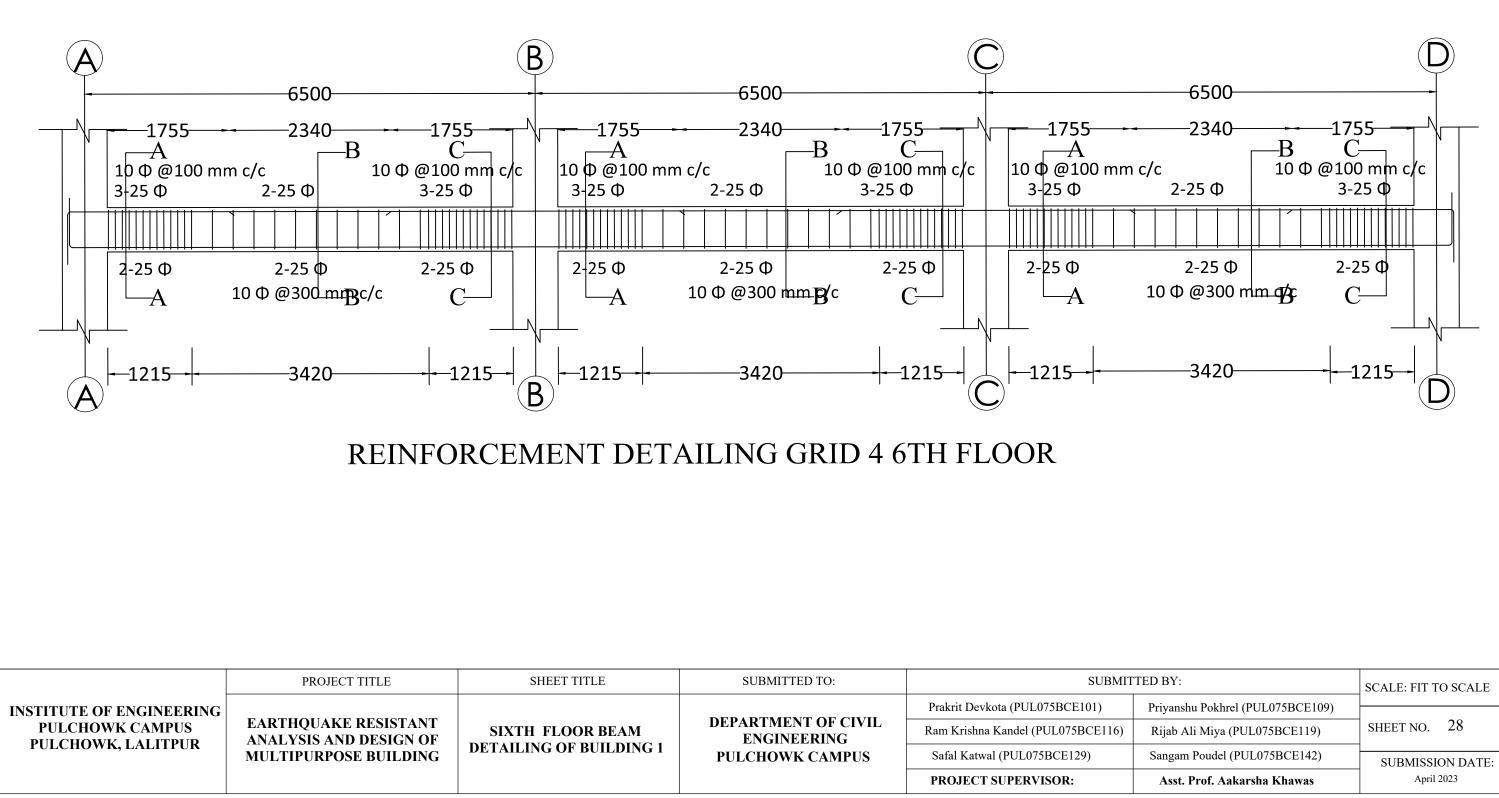
PULCHOWK CAMPUS

FIFTH FLOOR BEAM

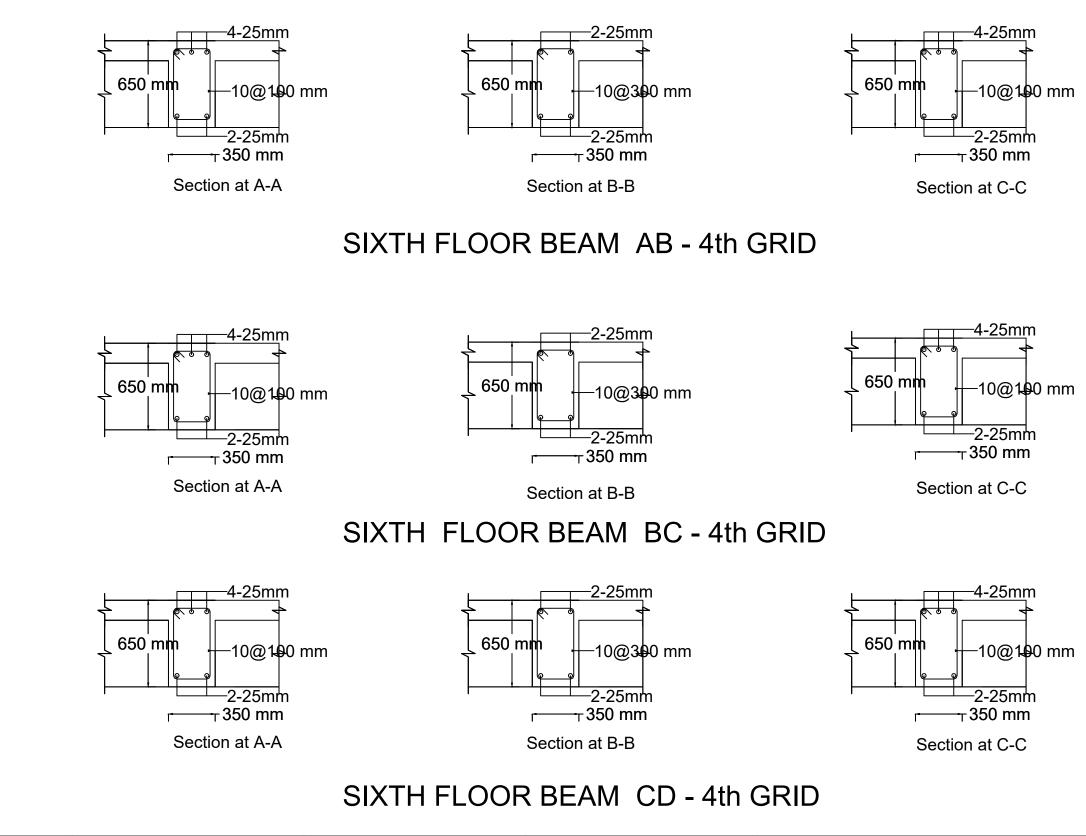
SECTIONS OF BUILDING 1

ANALYSIS AND DESIGN OF

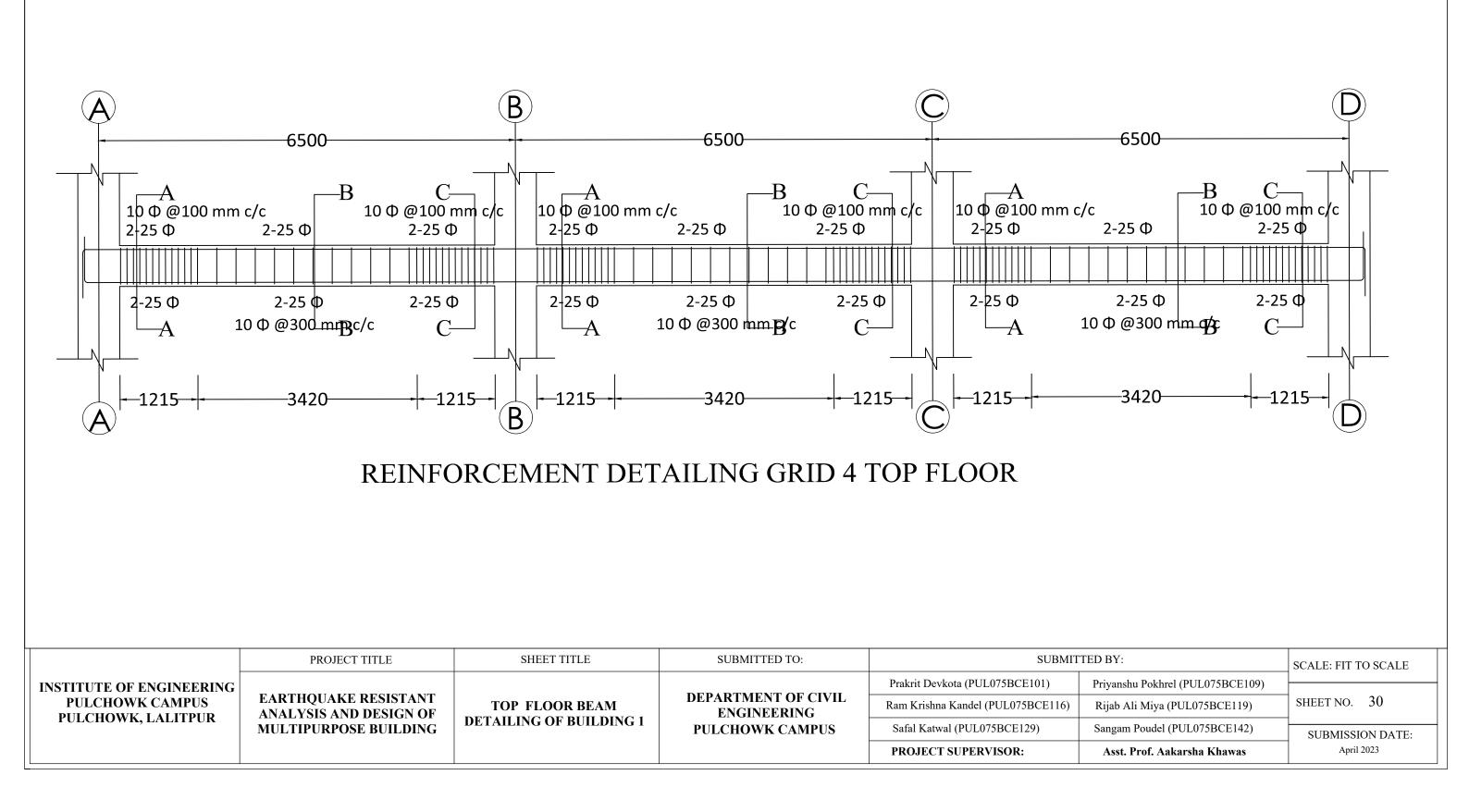
MULTIPURPOSE BUILDING

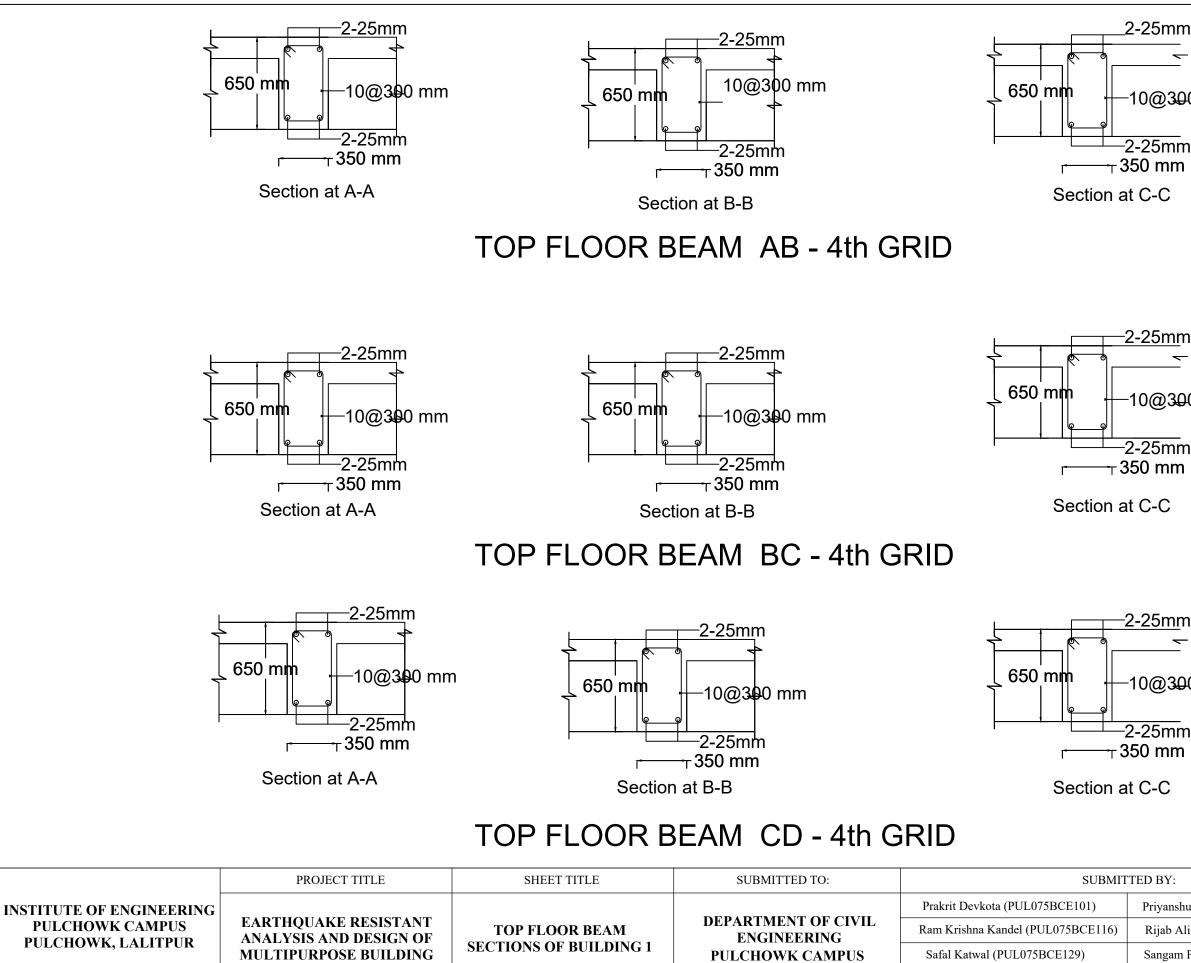

PULCHOWK, LALITPUR

ED BY:	SCALE: FIT TO SCALE
Priyanshu Pokhrel (PUL075BCE109)	
Rijab Ali Miya (PUL075BCE119)	SHEET NO. 27
Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023


Ram Krishna Kandel (PUL075BCE116)

Safal Katwal (PUL075BCE129)

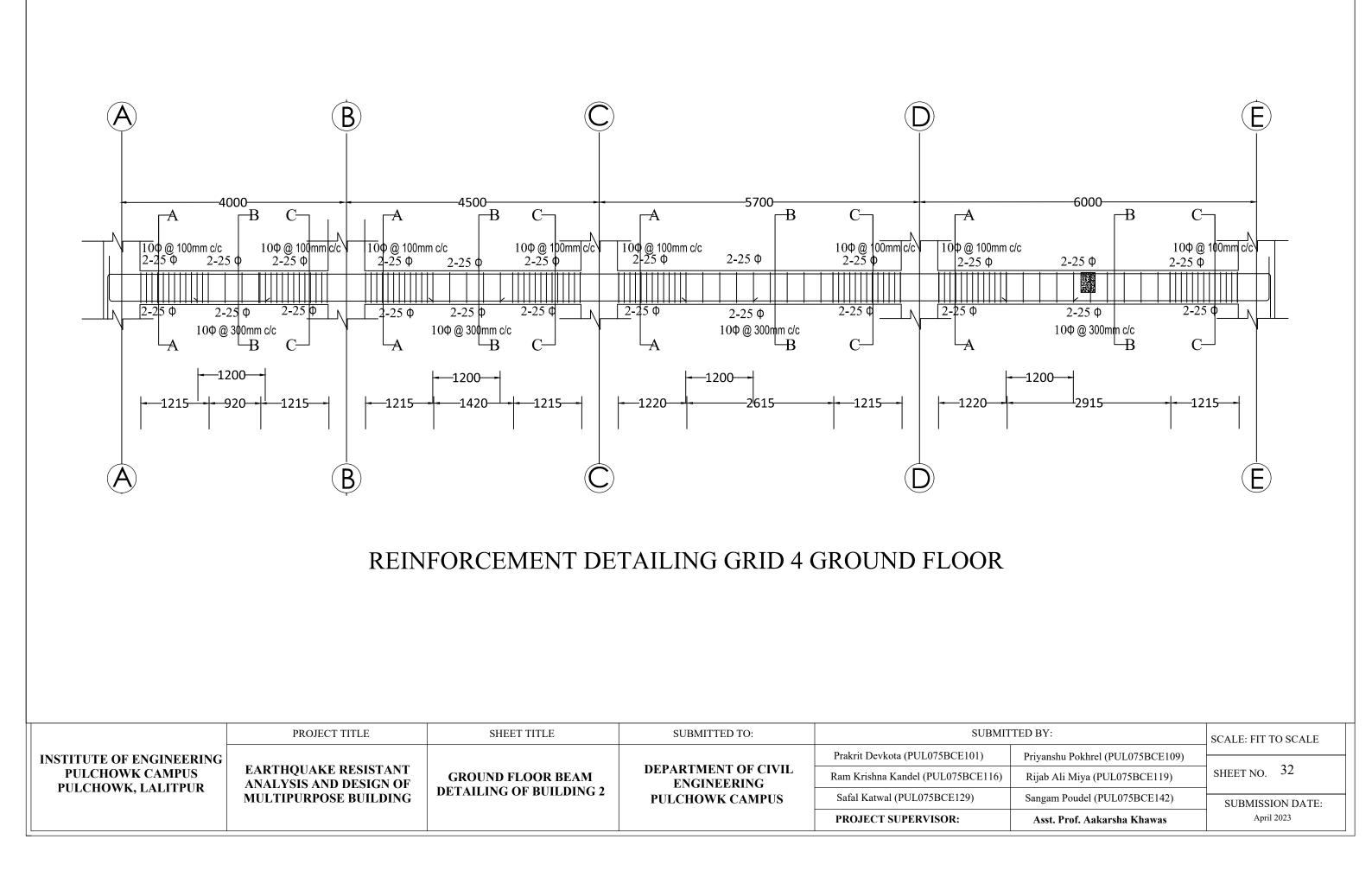

PROJECT SUPERVISOR:

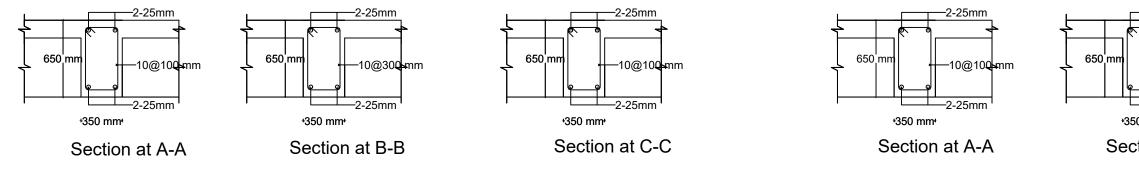


BY:	SCALE: FIT TO SCALE	
iyanshu Pokhrel (PUL075BCE109)		
ijab Ali Miya (PUL075BCE119)	SHEET NO. 28	
ngam Poudel (PUL075BCE142)	SUBMISSION DATE:	
Asst. Prof. Aakarsha Khawas	April 2023	

	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMIT	TED BY:	SCALE: FIT TO SCALE
INSTITUTE OF ENGINEERING				Prakrit Devkota (PUL075BCE101)	Priyanshu Pokhrel (PUL075BCE109)	
PULCHOWK CAMPUS PULCHOWK, LALITPUR	EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF MULTIPURPOSE BUILDING	F SIX I H FLOOR BEAM SECTIONS OF BUILDING 1	ENCLINERING	Ram Krishna Kandel (PUL075BCE116)	Rijab Ali Miya (PUL075BCE119)	SHEET NO. 29
FULCHOWK, LALIIFUK				Safal Katwal (PUL075BCE129)	Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
				PROJECT SUPERVISOR:	Asst. Prof. Aakarsha Khawas	April 2023

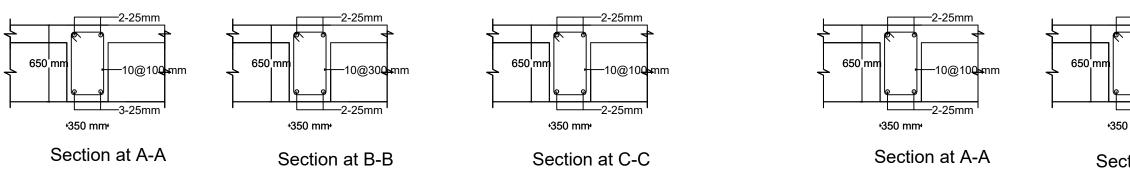
~

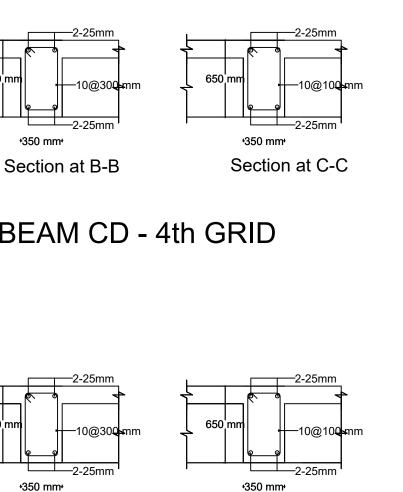

-10@300 mm


-10@300 mm

-10@300 mm

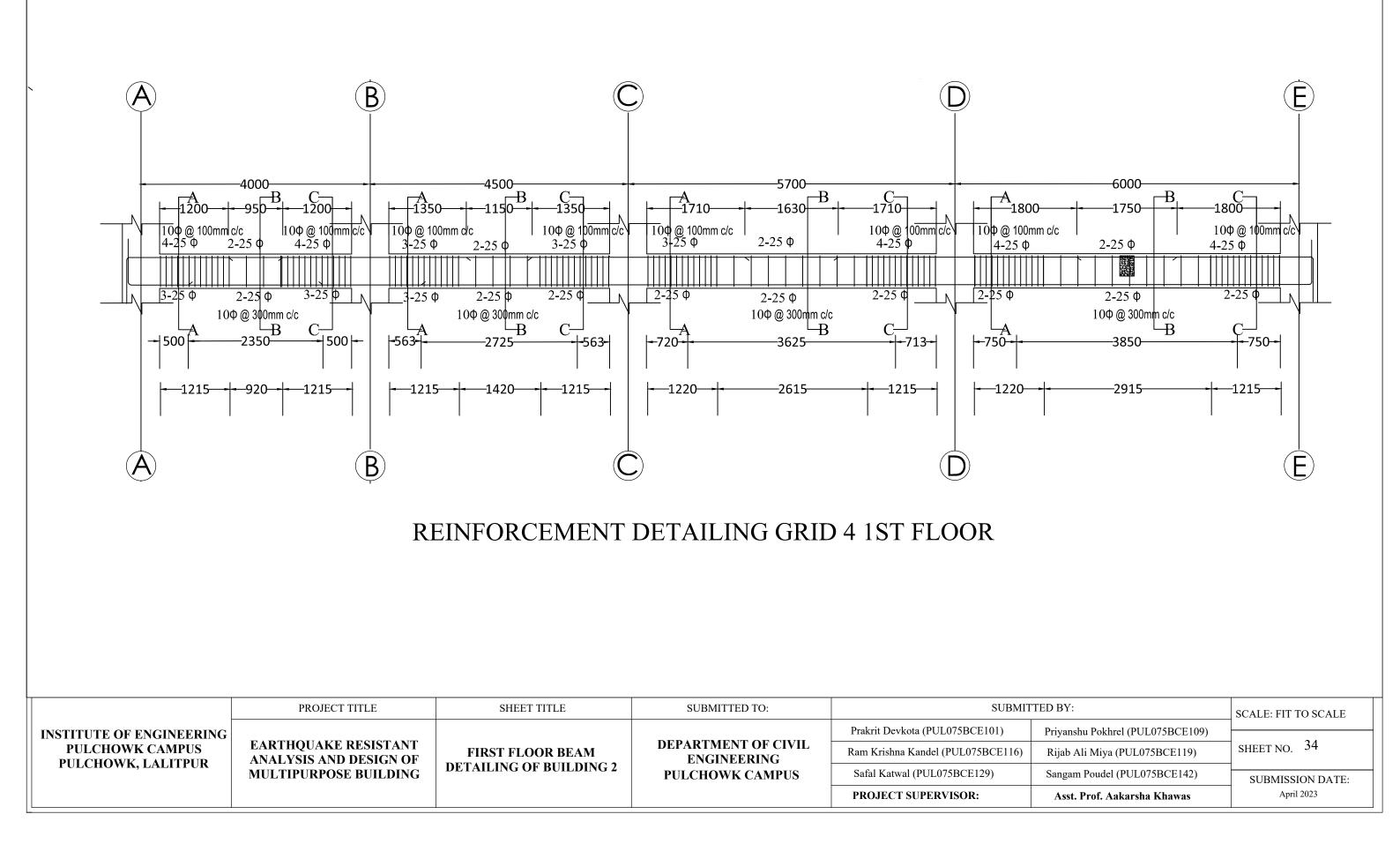
PROJECT SUPERVISOR:

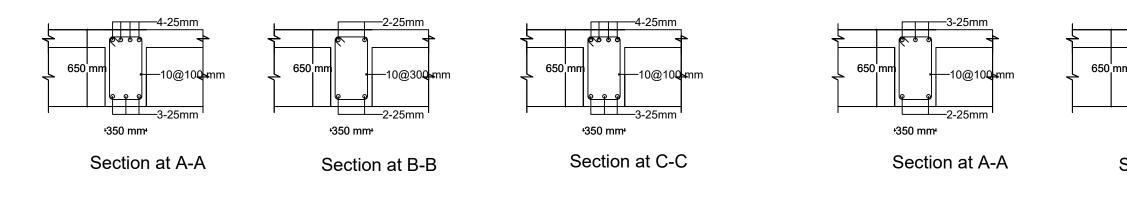

ED BY:	SCALE: FIT TO SCALE
Priyanshu Pokhrel (PUL075BCE109)	
Rijab Ali Miya (PUL075BCE119)	SHEET NO. 31
Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023


GROUND FLOOR BEAM AB - 4th GRID

GROUND FLOOR BEAM CD - 4th GRID

GROUND FLOOR BEAM BC - 4th GRID


	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMIT	TED BY:	SCALE: FIT TO SCALE
INSTITUTE OF ENGINEERING				Prakrit Devkota (PUL075BCE101)	Priyanshu Pokhrel (PUL075BCE109)	
PULCHOWK CAMPUS	EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF MULTIPURPOSE BUILDING GROUND FLOOR BEAM SECTIONS OF BUILDING 2	YSIS AND DESIGN OF GROUND FLOOR BEAM SECTIONS OF BUILDING 2	DEPARTMENT OF CIVIL ENGINEERING PULCHOWK CAMPUS	Ram Krishna Kandel (PUL075BCE116)	Rijab Ali Miya (PUL075BCE119)	SHEET NO. 33
PULCHOWK, LALITPUR				Safal Katwal (PUL075BCE129)	Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
			PROJECT SUPERVISOR:	Asst. Prof. Aakarsha Khawas	April 2023	

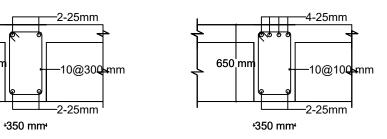


Section at B-B

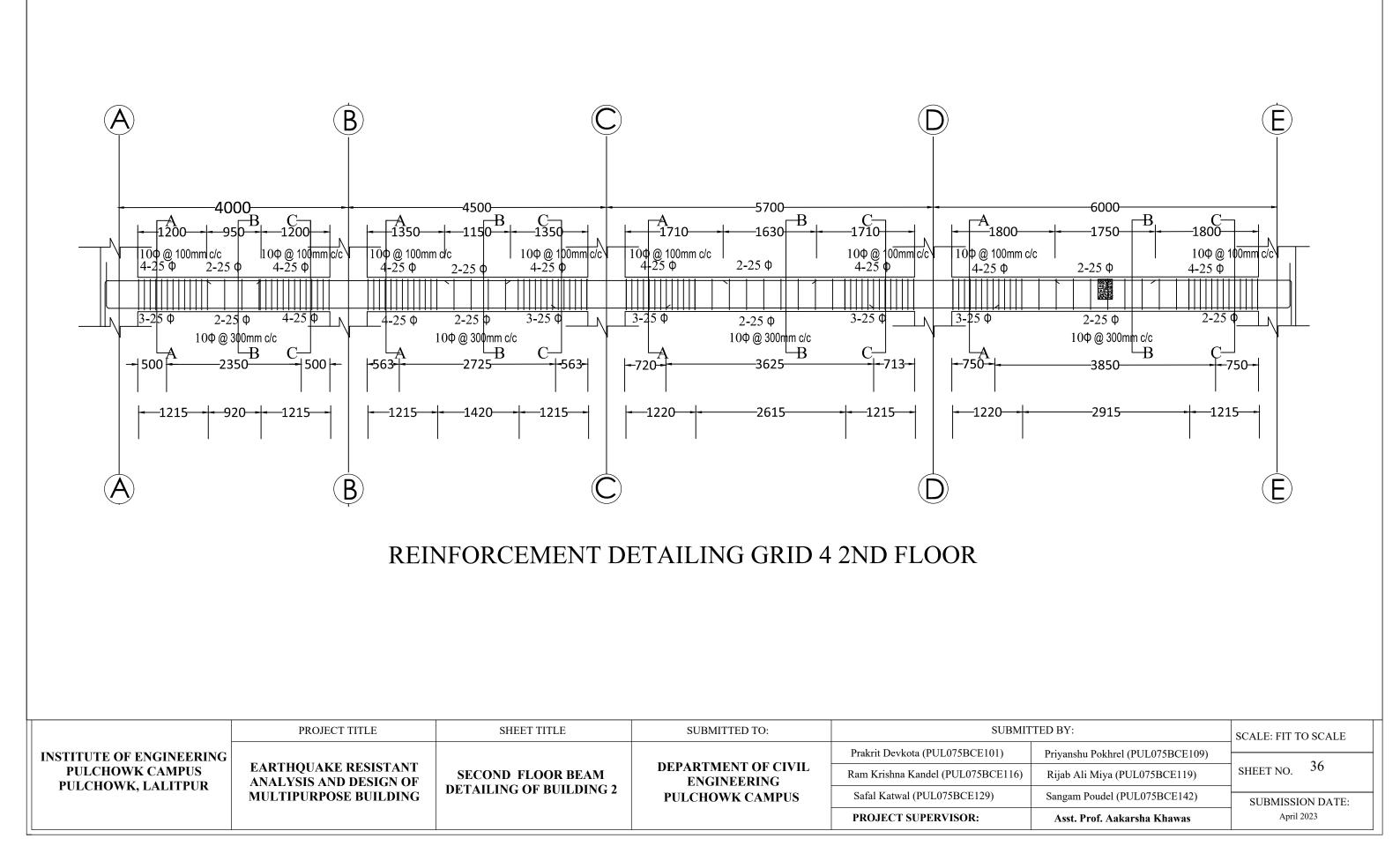
Section at C-C

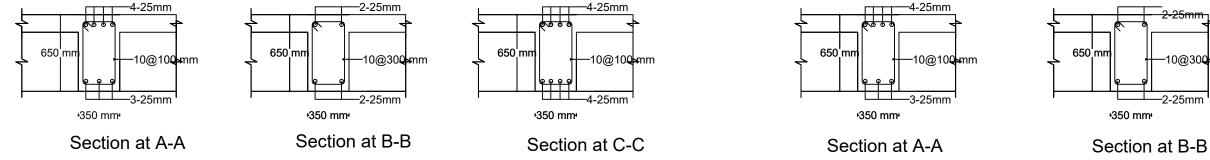
GROUND FLOOR BEAM DE- 4th GRID

FIRST FLOOR BEAM AB - 4th GRID

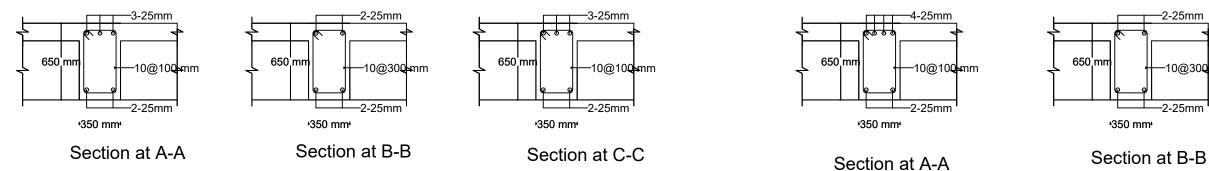

FIRST FLOOR BEAM CD - 4th GRID

FIRST FLOOR BEAM BC - 4th GRID

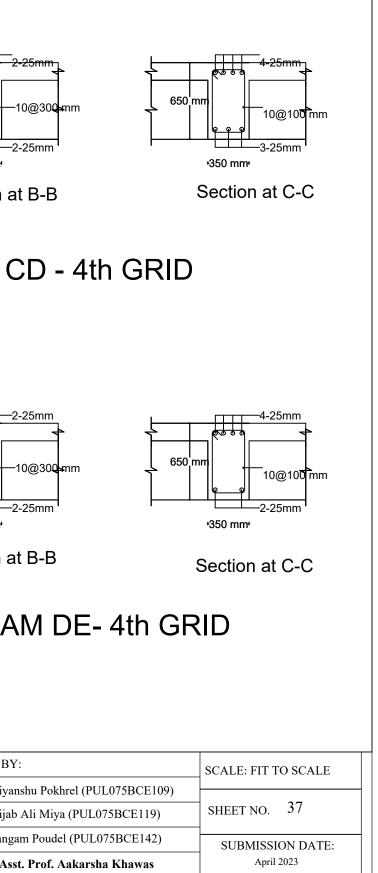

FIRST FLOOR BEAM DE- 4th GRID

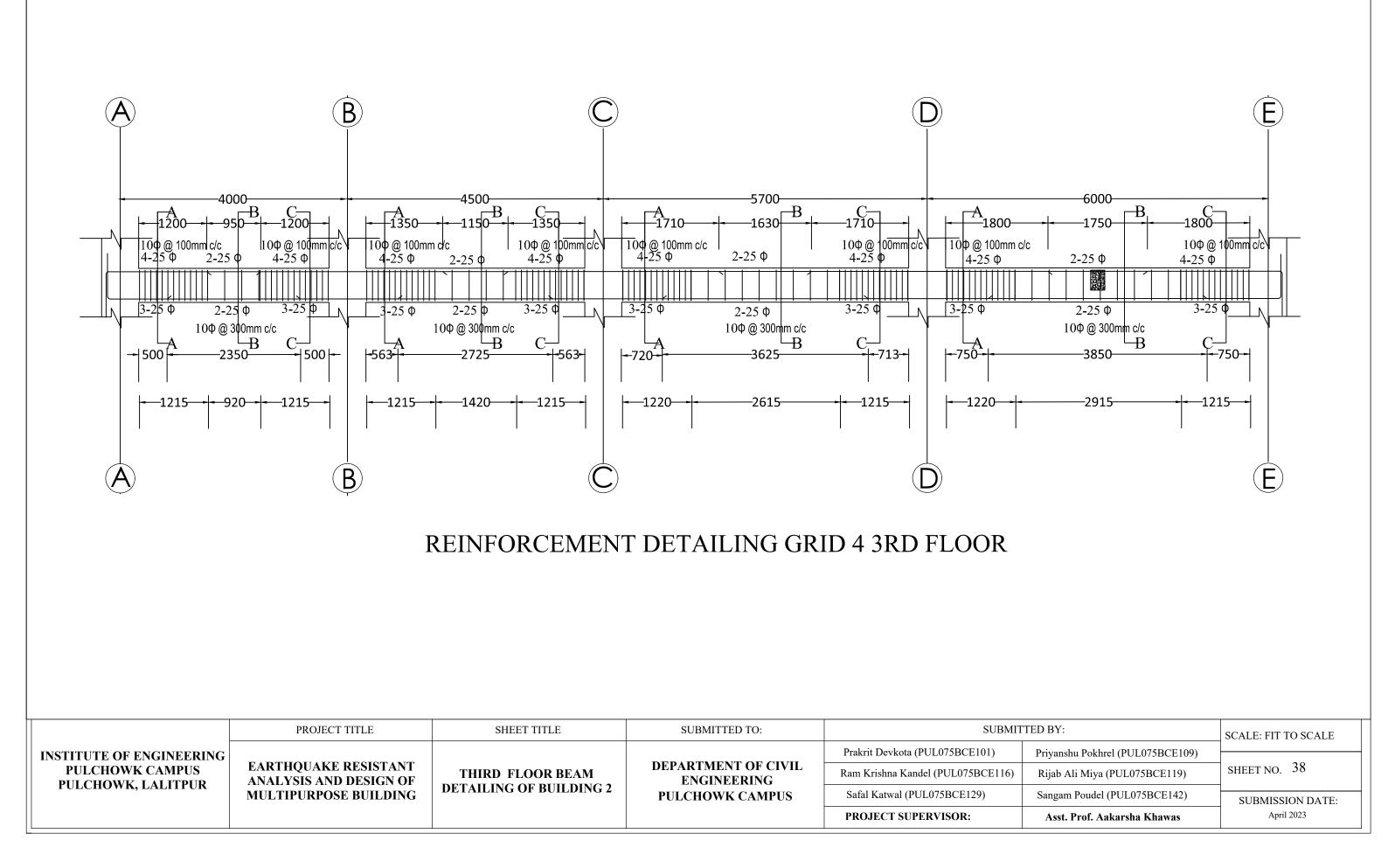

	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMIT	TED BY:	SCALE: FIT TO SCALE
INSTITUTE OF ENGINEERING				Prakrit Devkota (PUL075BCE101)	Priyanshu Pokhrel (PUL075BCE109)	
PULCHOWK CAMPUS	EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF	FIRST FLOOR BEAM	DEPARTMENT OF CIVIL ENGINEERING	Ram Krishna Kandel (PUL075BCE116)	Rijab Ali Miya (PUL075BCE119)	SHEET NO. 35
PULCHOWK, LALITPUR	MULTIPURPOSE BUILDING	SECTIONS OF BUILDING 2	PULCHOWK CAMPUS	Safal Katwal (PUL075BCE129)	Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
				PROJECT SUPERVISOR:	Asst. Prof. Aakarsha Khawas	April 2023

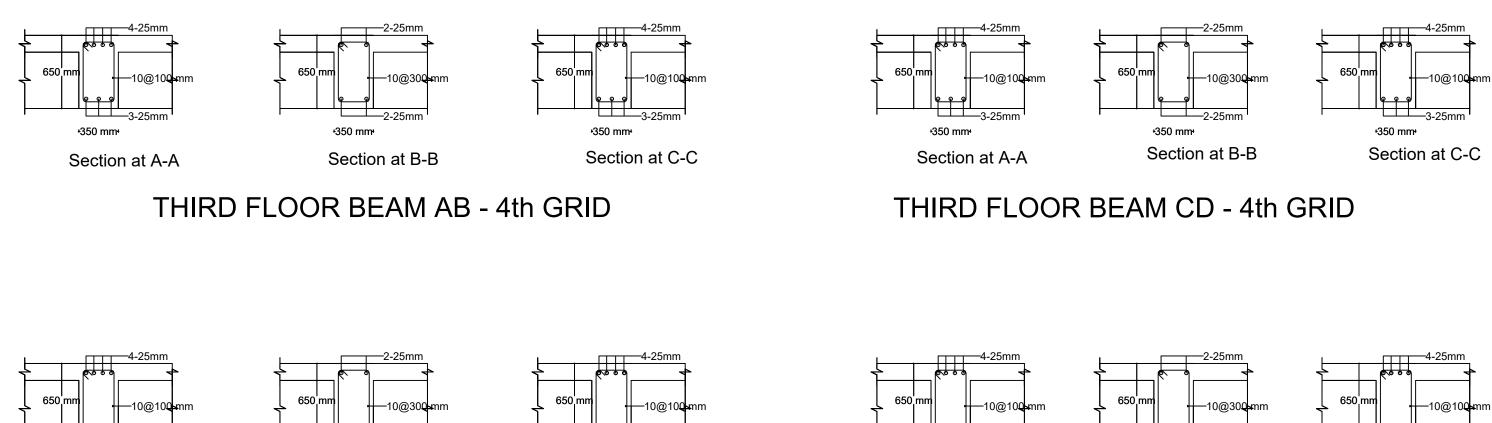
Section at B-B

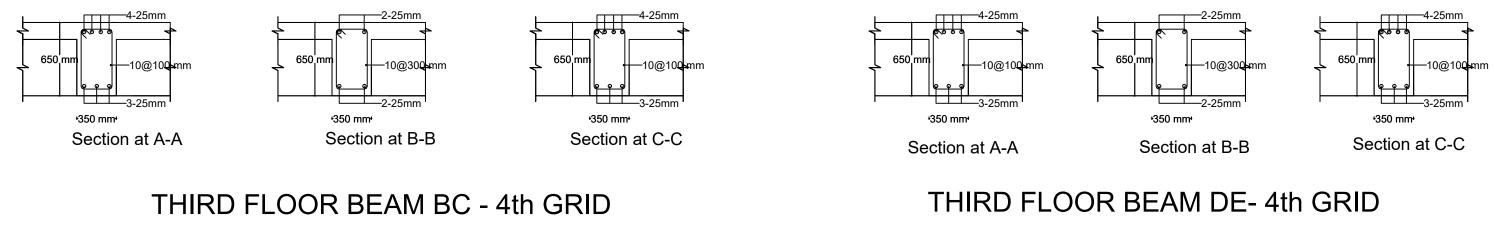

Section at C-C

SECOND FLOOR BEAM AB - 4th GRID

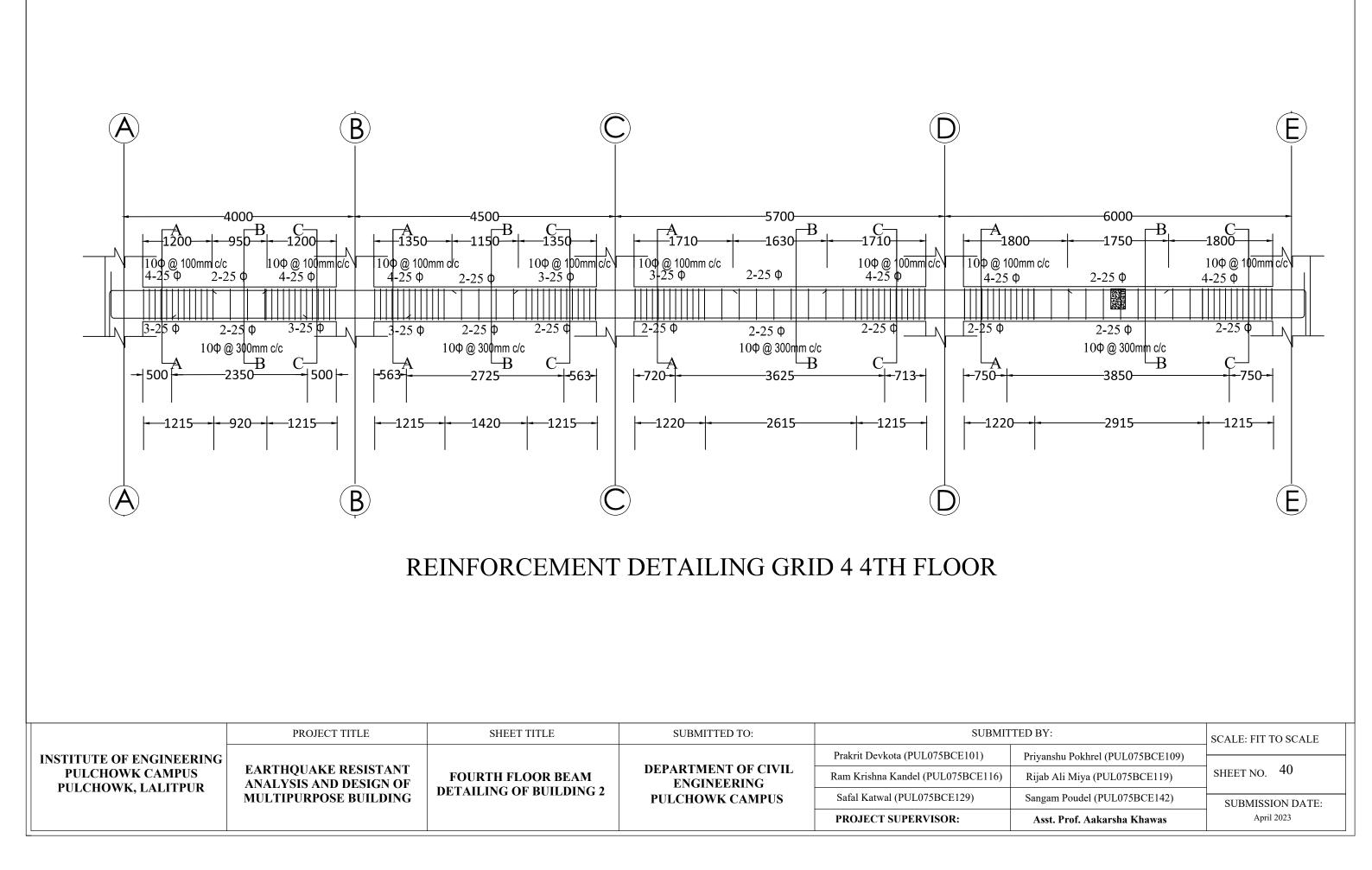

SECOND FLOOR BEAM CD - 4th GRID

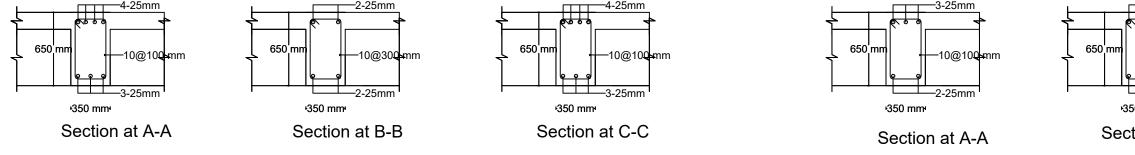


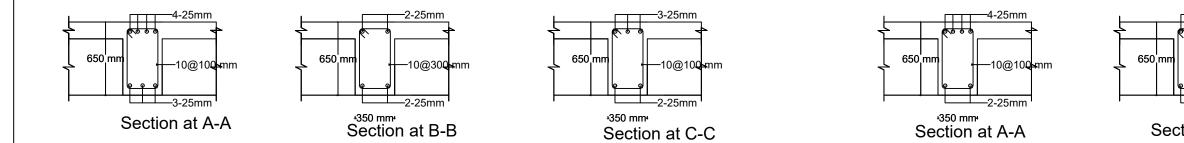

SECOND FLOOR BEAM BC - 4th GRID


SECOND FLOOR BEAM DE-4th GRID

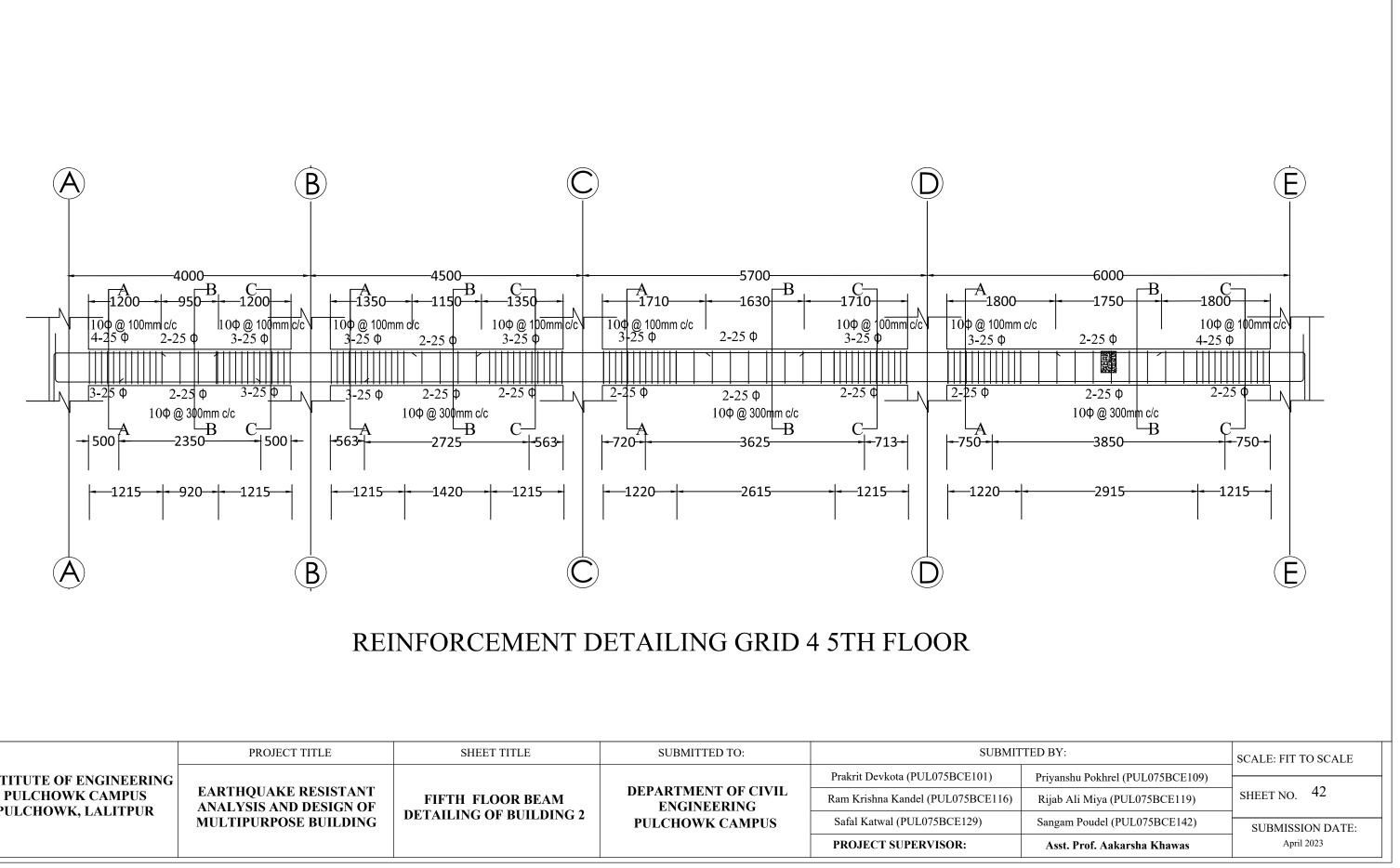
L –						
		PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMIT	TED BY:
	INSTITUTE OF ENGINEERING				Prakrit Devkota (PUL075BCE101)	Priyan
	PULCHOWK CAMPUS PULCHOWK, LALITPUR	EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF	SECOND FLOOR BEAM	DEPARTMENT OF CIVIL ENGINEERING	Ram Krishna Kandel (PUL075BCE116)	Rijab
	FULCHOWK, LALIIFUK	MULTIPURPOSE BUILDING	SECTIONS OF BUILDING 2	PULCHOWK CAMPUS	Safal Katwal (PUL075BCE129)	Sanga
					PROJECT SUPERVISOR:	Asst

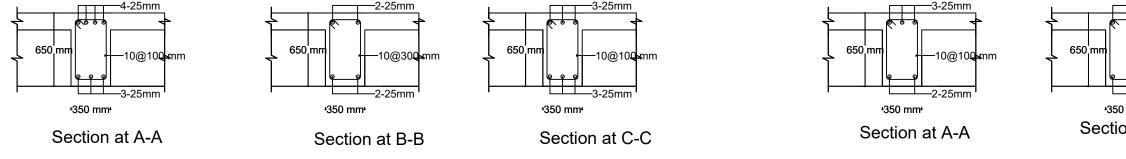




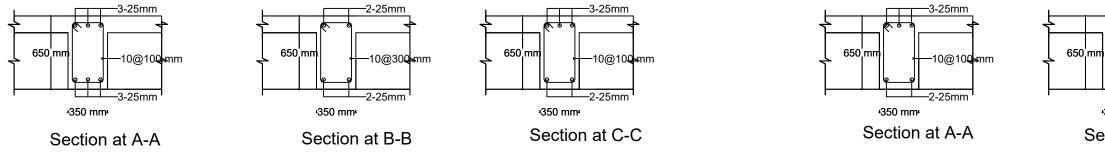

INSTITUTE OF ENGINEERING PULCHOWK CAMPUS PULCHOWK, LALITPUR	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMIT	TED BY:	SCALE: FIT TO SCALE
	EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF MULTIPURPOSE BUILDING THIRD FLOOR BEAM SECTIONS OF BUILDING 2		DEPARTMENT OF CIVIL ENGINEERING PULCHOWK CAMPUS	Prakrit Devkota (PUL075BCE101)	Priyanshu Pokhrel (PUL075BCE109)	SHEET NO. 39
				Ram Krishna Kandel (PUL075BCE116)	Rijab Ali Miya (PUL075BCE119)	
				Safal Katwal (PUL075BCE129)	Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
		-	PROJECT SUPERVISOR:	Asst. Prof. Aakarsha Khawas	April 2023	

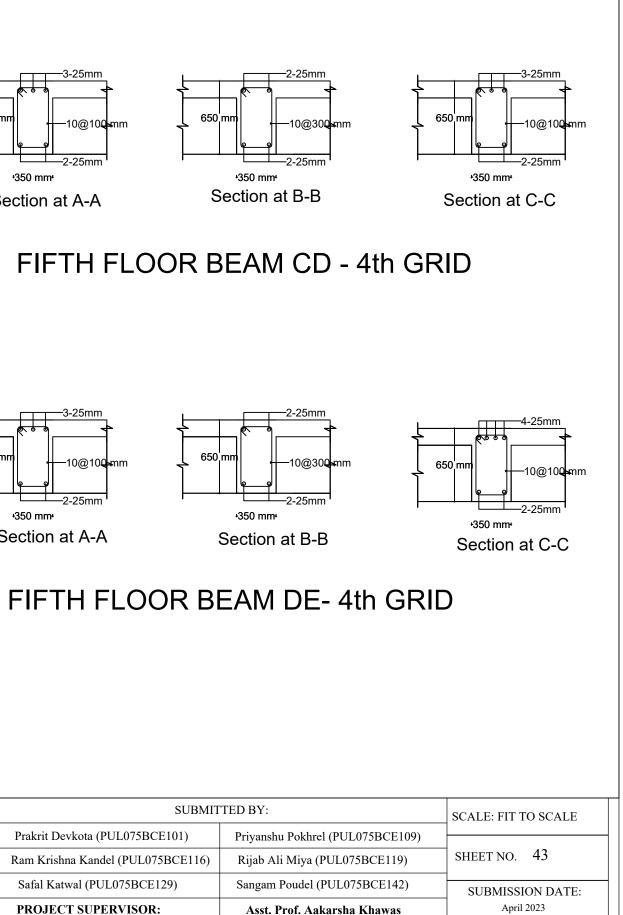
FOURTH FLOOR BEAM AB - 4th GRID

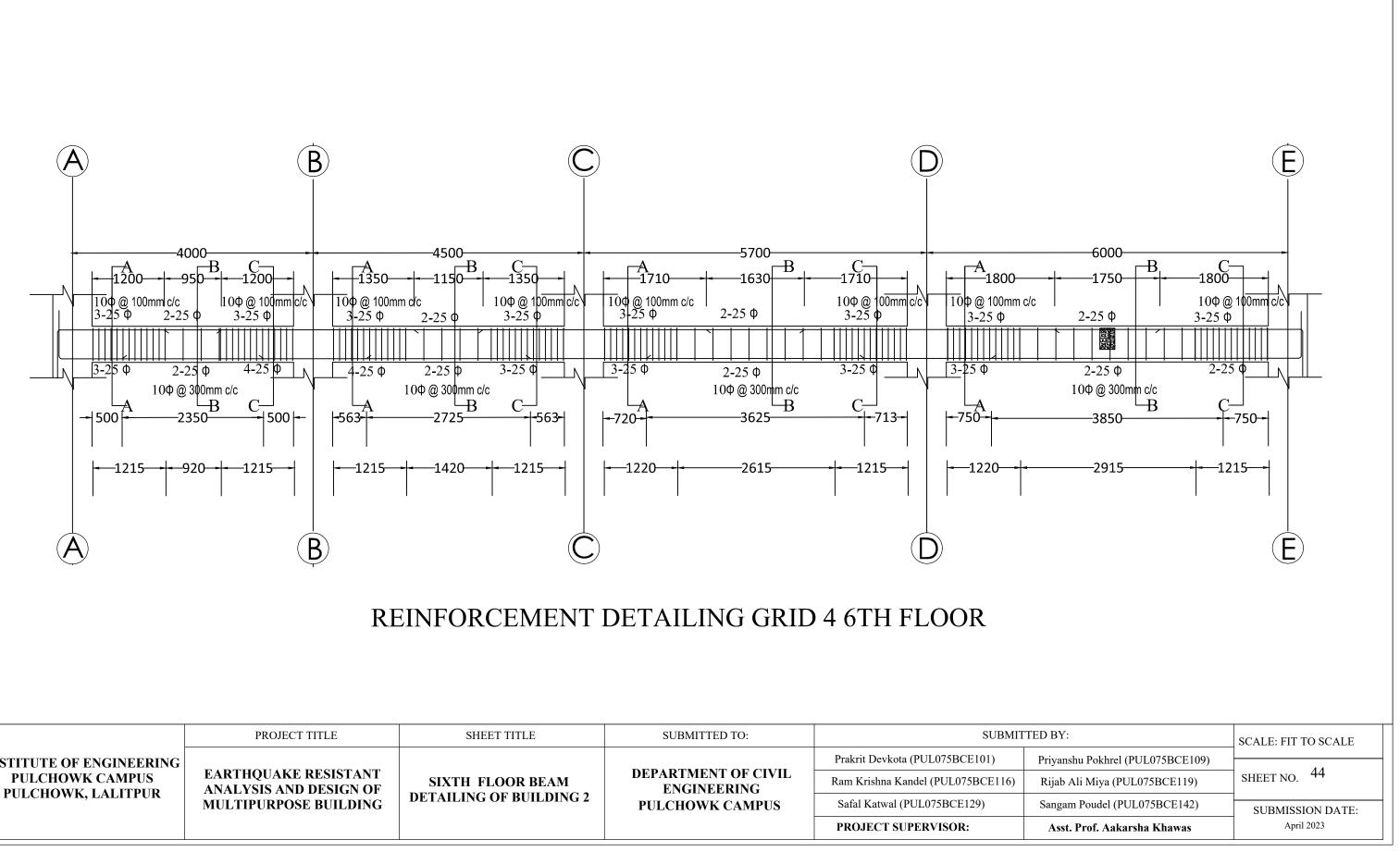

FOURTH FLOOR BEAM CD - 4th GRID

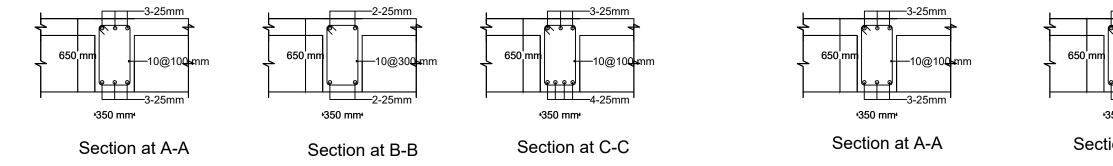

FOURTH FLOOR BEAM BC - 4th GRID

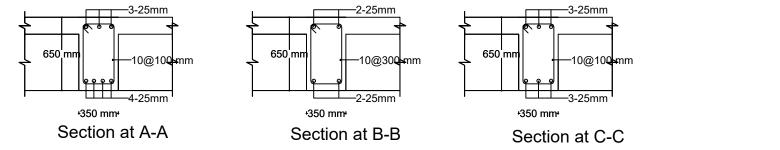
	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMIT	TED BY:	SCALE: FIT TO SCALE
INSTITUTE OF ENGINEERING				Prakrit Devkota (PUL075BCE101)	Priyanshu Pokhrel (PUL075BCE109)	41
PULCHOWK CAMPUS	EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF	FOURTH FLOOR BEAM	HING-LINH HIKLING-	Ram Krishna Kandel (PUL075BCE116)	Rijab Ali Miya (PUL075BCE119)	SHEET NO. 41
PULCHOWK, LALITPUR	MULTIPURPOSE BUILDING	SECTIONS OF BUILDING 2	PULCHOWK CAMPUS	Safal Katwal (PUL075BCE129)	Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
			PROJECT SUPERVISOR:	Asst. Prof. Aakarsha Khawas	April 2023	

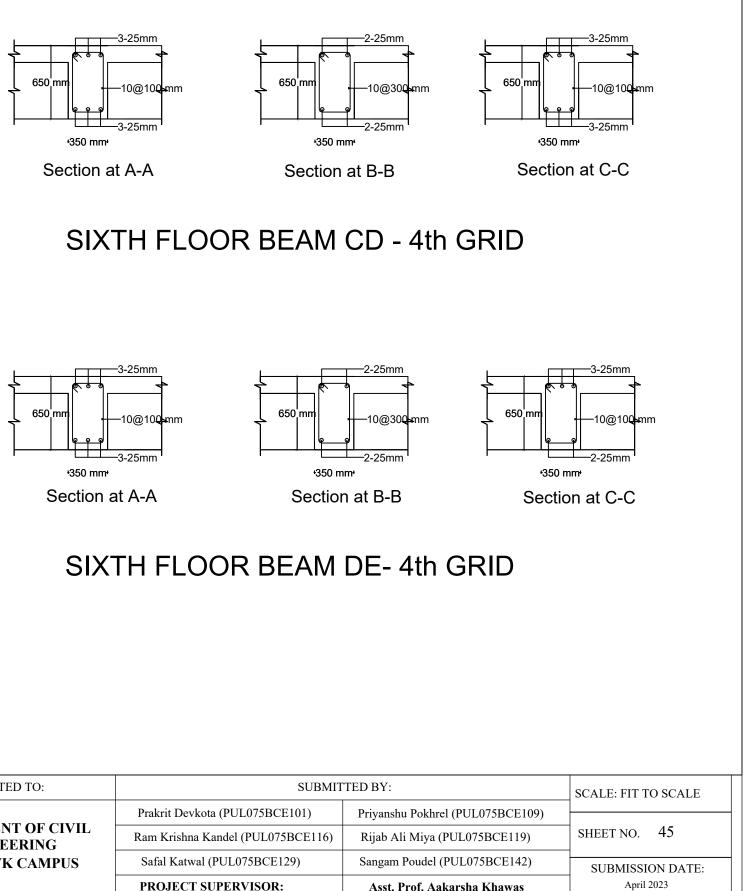



	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMIT	TED BY
INSTITUTE OF ENGINEERING				Prakrit Devkota (PUL075BCE101)	Priya
PULCHOWK CAMPUS PULCHOWK, LALITPUR		FIFTH FLOOR BEAM	DEPARTMENT OF CIVIL ENGINEERING	Ram Krishna Kandel (PUL075BCE116)	Rijab
FULCHOWK, LALIIFUK		DETAILING OF BUILDING 2	PULCHOWK CAMPUS	Safal Katwal (PUL075BCE129)	Sanga
				PROJECT SUPERVISOR:	Ass

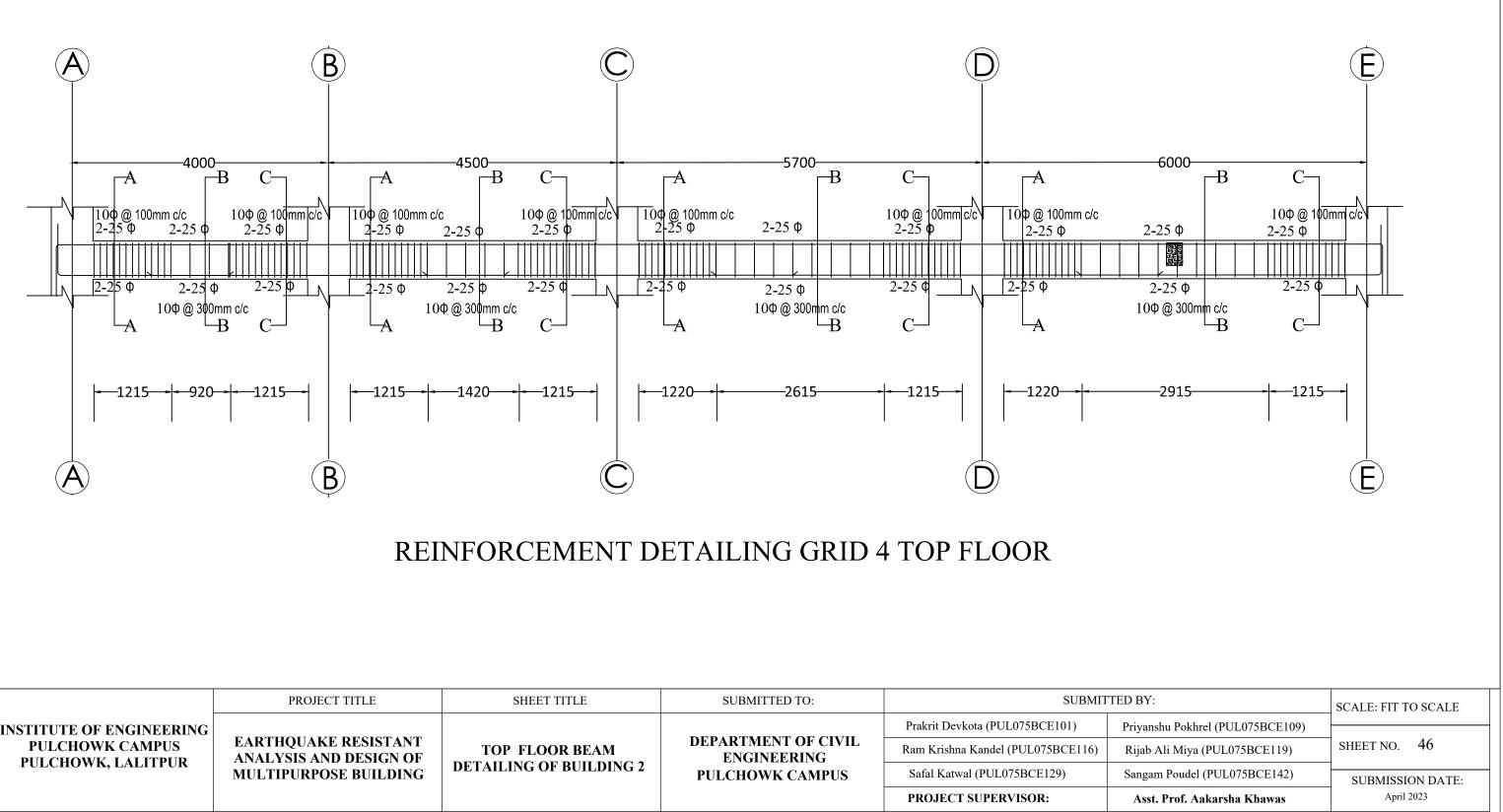

FIFTH FLOOR BEAM AB - 4th GRID

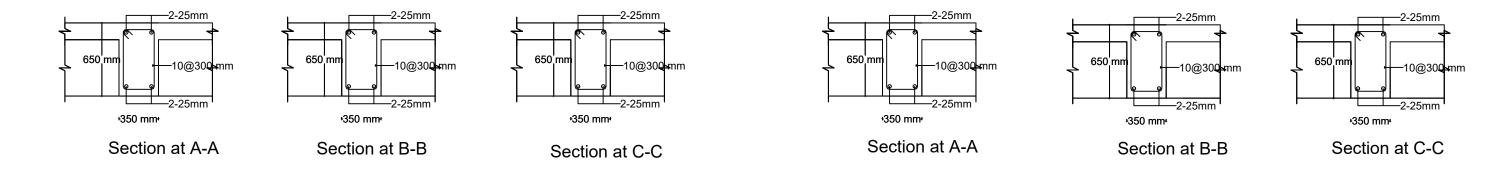

FIFTH FLOOR BEAM BC - 4th GRID


– L						
		PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMIT	ITED BY
	INSTITUTE OF ENGINEERING				Prakrit Devkota (PUL075BCE101)	Priyar
	PULCHOWK CAMPUS	ANALVCIC AND DECICN OF	FIFTH FLOOR BEAM	DEPARTMENT OF CIVIL ENGINEERING	Ram Krishna Kandel (PUL075BCE116)	Rijab
	PULCHOWK, LALITPUR		SECTIONS OF BUILDING 2	PULCHOWK CAMPUS	Safal Katwal (PUL075BCE129)	Sanga
					PROJECT SUPERVISOR:	Ass



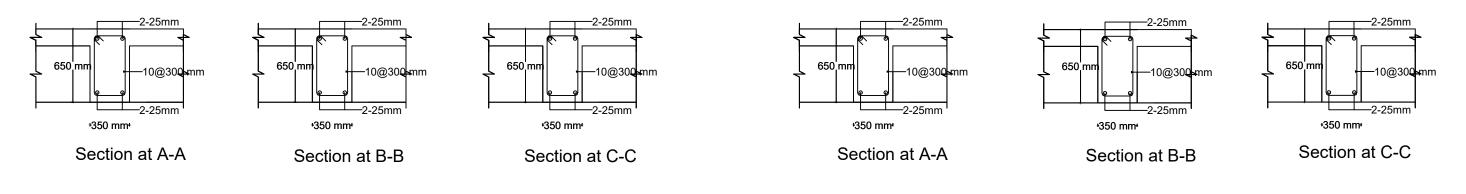
	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMIT	ITED BY
INSTITUTE OF ENGINEERING				Prakrit Devkota (PUL075BCE101)	Priya
PULCHOWK CAMPUS PULCHOWK, LALITPUR	EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF MULTIPURPOSE BUILDING	SIXTH FLOOR BEAM	DEPARTMENT OF CIVIL ENGINEERING	Ram Krishna Kandel (PUL075BCE116)	Rijab
FULCHOWK, LALIIPUK		DETAILING OF BUILDING 2	PULCHOWK CAMPUS	Safal Katwal (PUL075BCE129)	Sanga
				PROJECT SUPERVISOR:	Ass


SIXTH FLOOR BEAM AB - 4th GRID



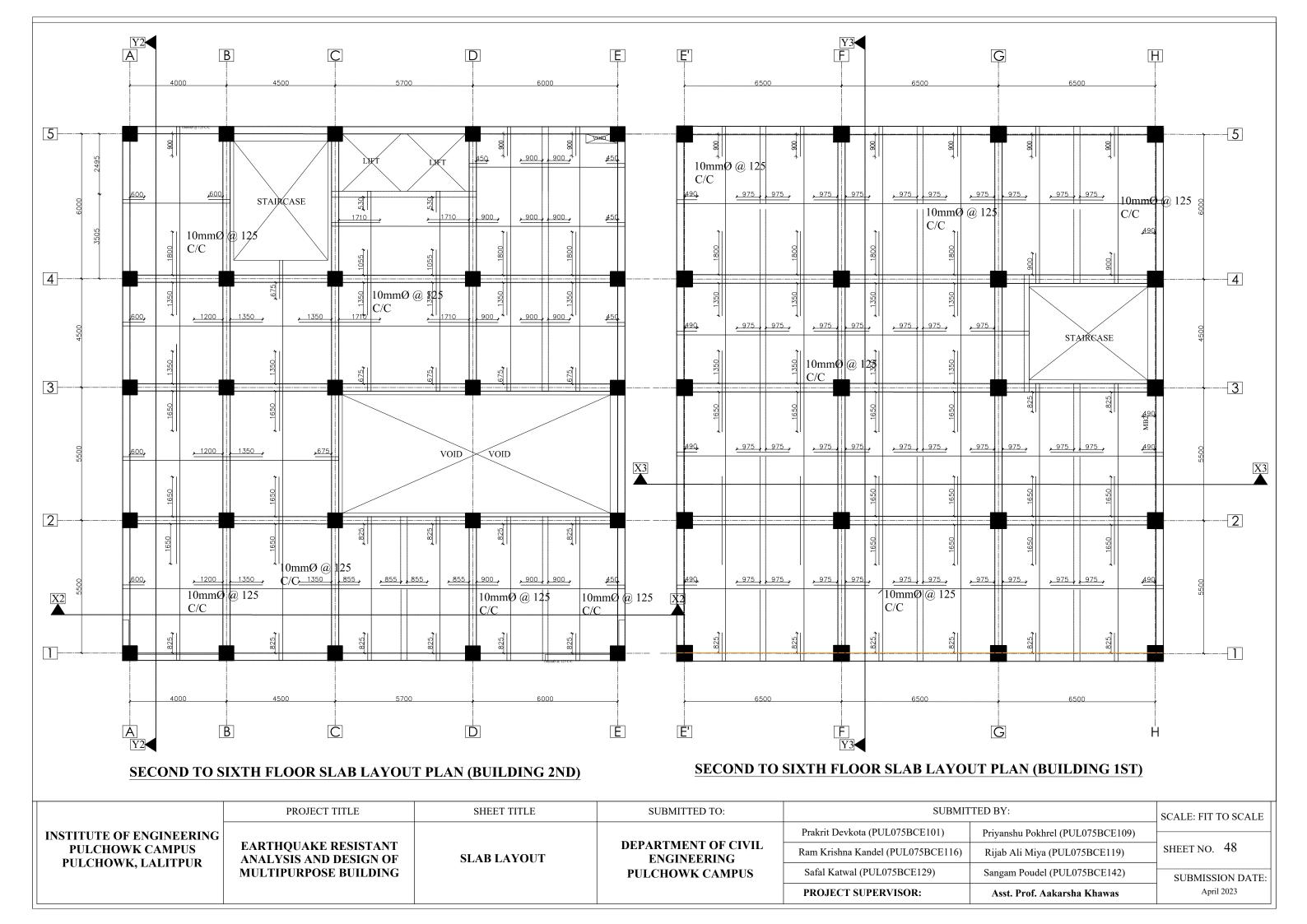
SIXTH FLOOR BEAM BC - 4th GRID

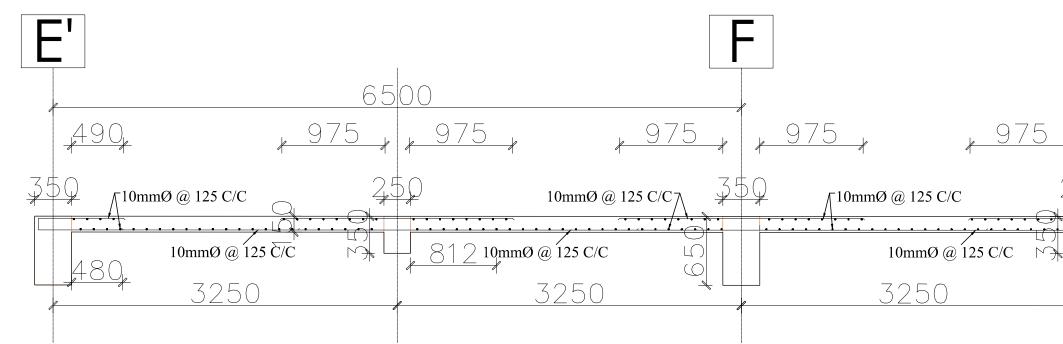
	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMIT	TED BY:
INSTITUTE OF ENGINEERING				Prakrit Devkota (PUL075BCE101)	Priyanshu Pokhrel (PUL075BCE109
PULCHOWK CAMPUS	EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF MULTIPURPOSE BUILDING	SIXTH FLOOR BEAM SECTIONS OF BUILDING 2	DEPARTMENT OF CIVIL ENGINEERING	Ram Krishna Kandel (PUL075BCE116)	Rijab Ali Miya (PUL075BCE119)
PULCHOWK, LALITPUR			PULCHOWK CAMPUS	Safal Katwal (PUL075BCE129)	Sangam Poudel (PUL075BCE142)
				PROJECT SUPERVISOR:	Asst. Prof. Aakarsha Khawas

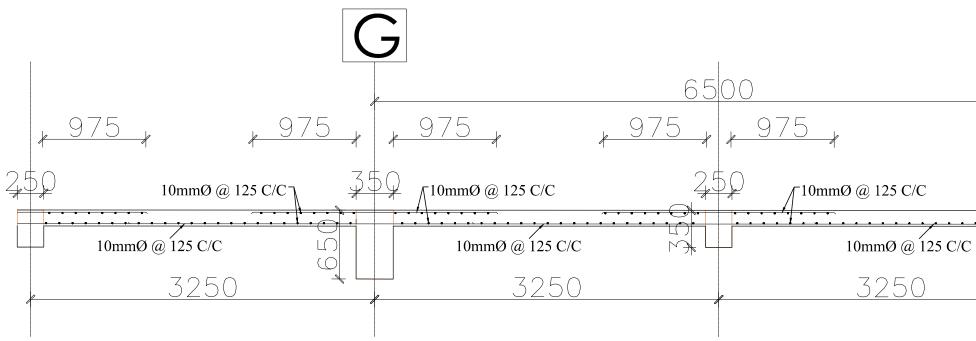


		PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMIT	FTED BY
IN	STITUTE OF ENGINEERING				Prakrit Devkota (PUL075BCE101)	Priya
PULCHOWK CAMPUS		EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF	TOP FLOOR BEAM	DEPARTMENT OF CIVIL ENGINEERING	Ram Krishna Kandel (PUL075BCE116)	Rijał
	PULCHOWK, LALITPUR	MULTIPURPOSE BUILDING	DETAILING OF BUILDING 2	PULCHOWK CAMPUS	Safal Katwal (PUL075BCE129)	Sang
					PROJECT SUPERVISOR:	As

TOP FLOOR BEAM AB - 4th GRID

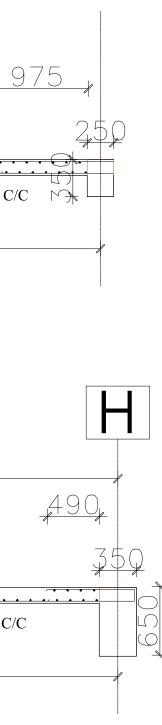

TOP FLOOR BEAM CD - 4th GRID

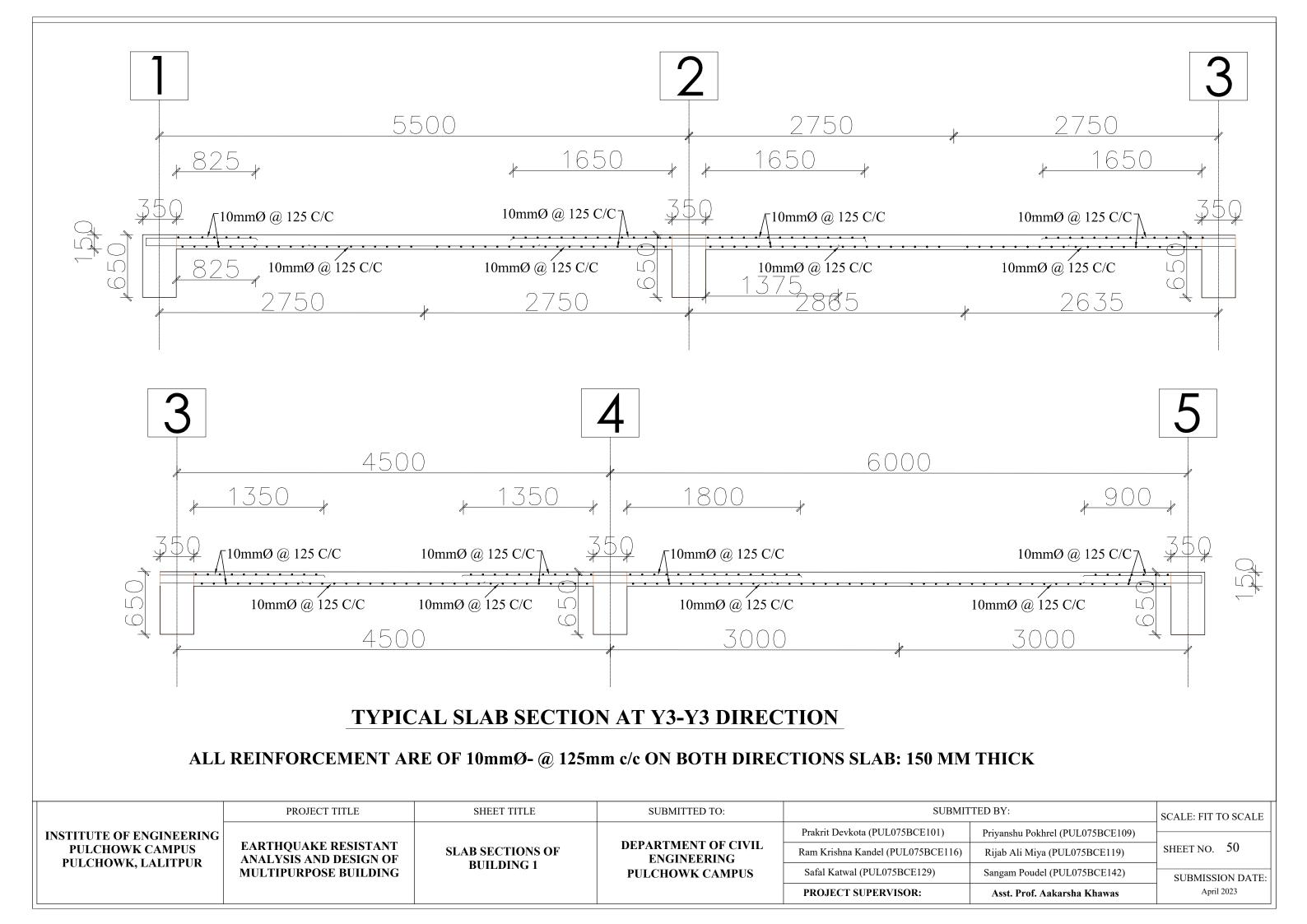


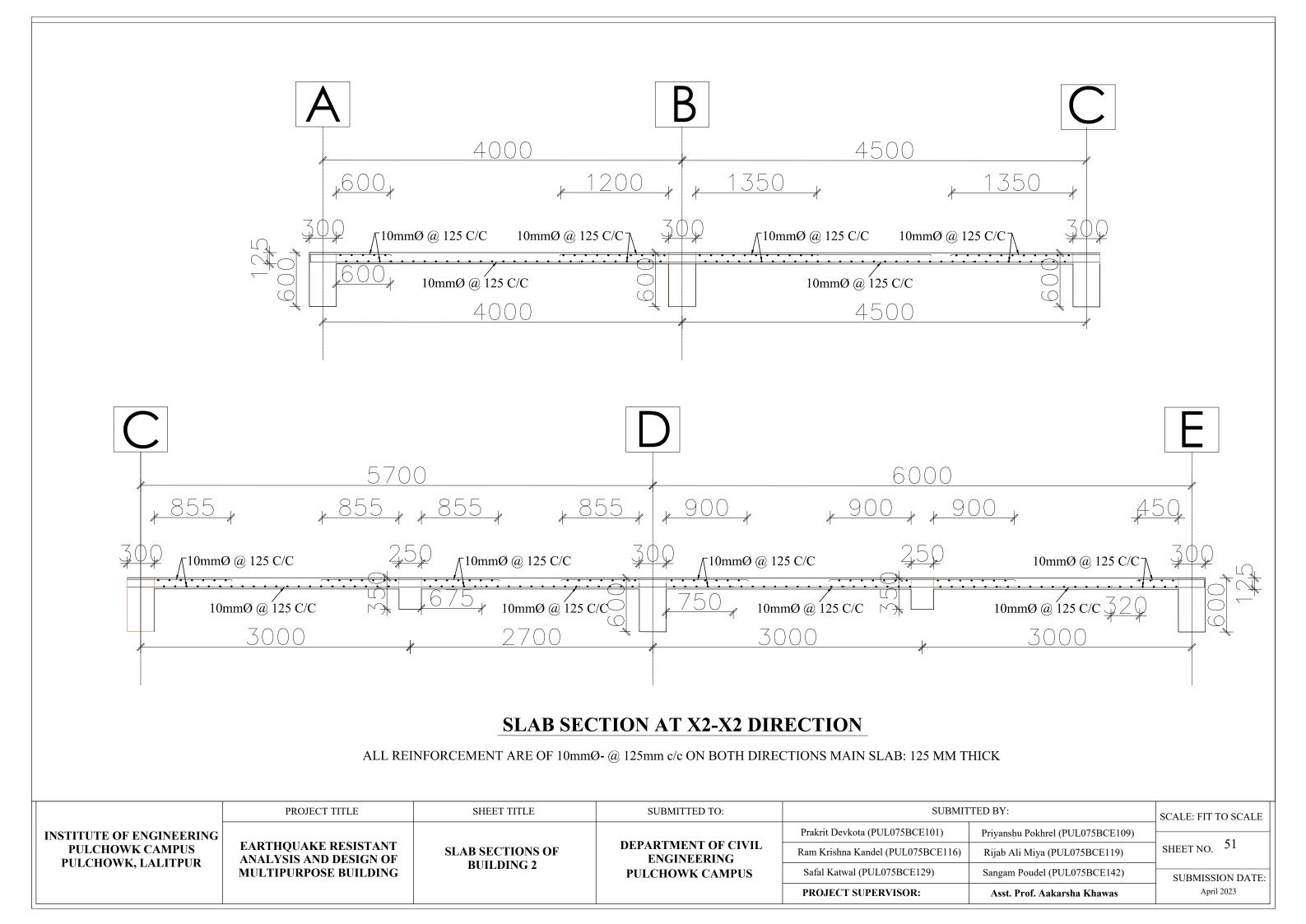

TOP FLOOR BEAM BC - 4th GRID

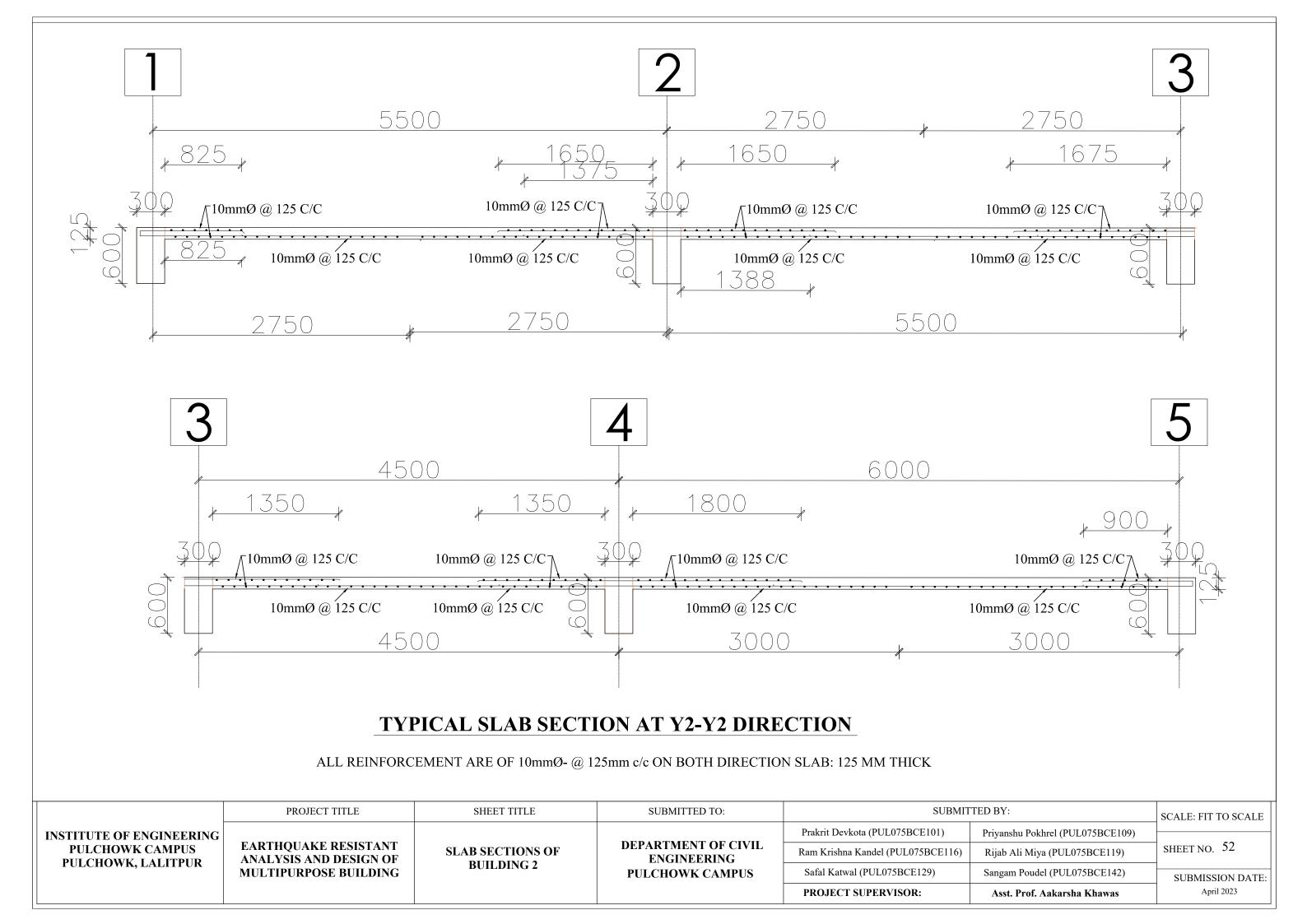
	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMITTED BY:		SCALE: FIT TO SCALE
INSTITUTE OF ENGINEERING	FARTHOUAKE RESISTANT	TOP FLOOR BEAM SECTIONS OF BUILDING 2	DEPARTMENT OF CIVIL ENGINEERING PULCHOWK CAMPUS	Prakrit Devkota (PUL075BCE101)	Priyanshu Pokhrel (PUL075BCE109)	SHEET NO. 47 SUBMISSION DATE: April 2023
PULCHOWK CAMPUS				Ram Krishna Kandel (PUL075BCE116)	Rijab Ali Miya (PUL075BCE119)	
PULCHOWK, LALITPUR				Safal Katwal (PUL075BCE129)	Sangam Poudel (PUL075BCE142)	
				PROJECT SUPERVISOR:	Asst. Prof. Aakarsha Khawas	

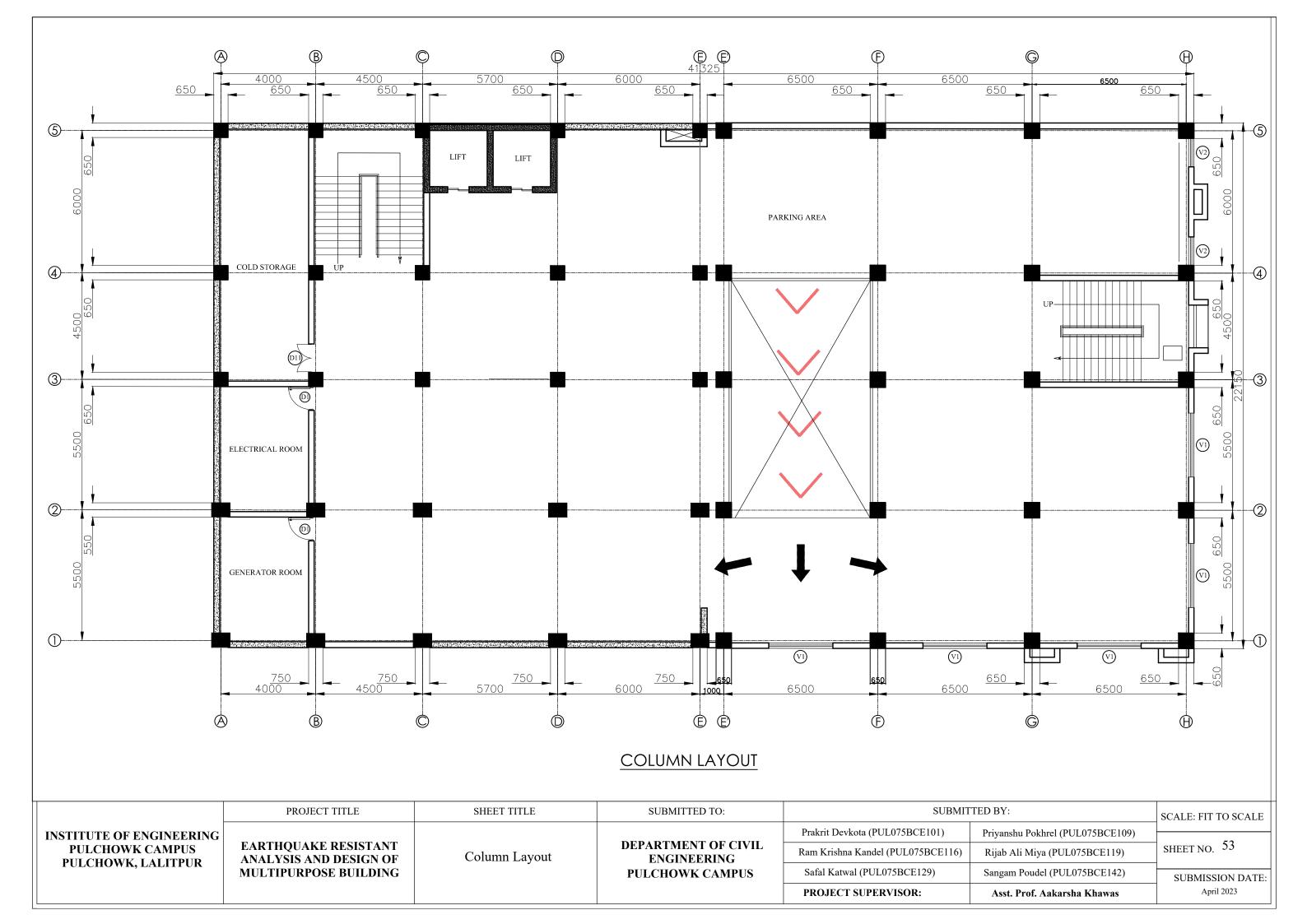
TOP FLOOR BEAM DE- 4th GRID

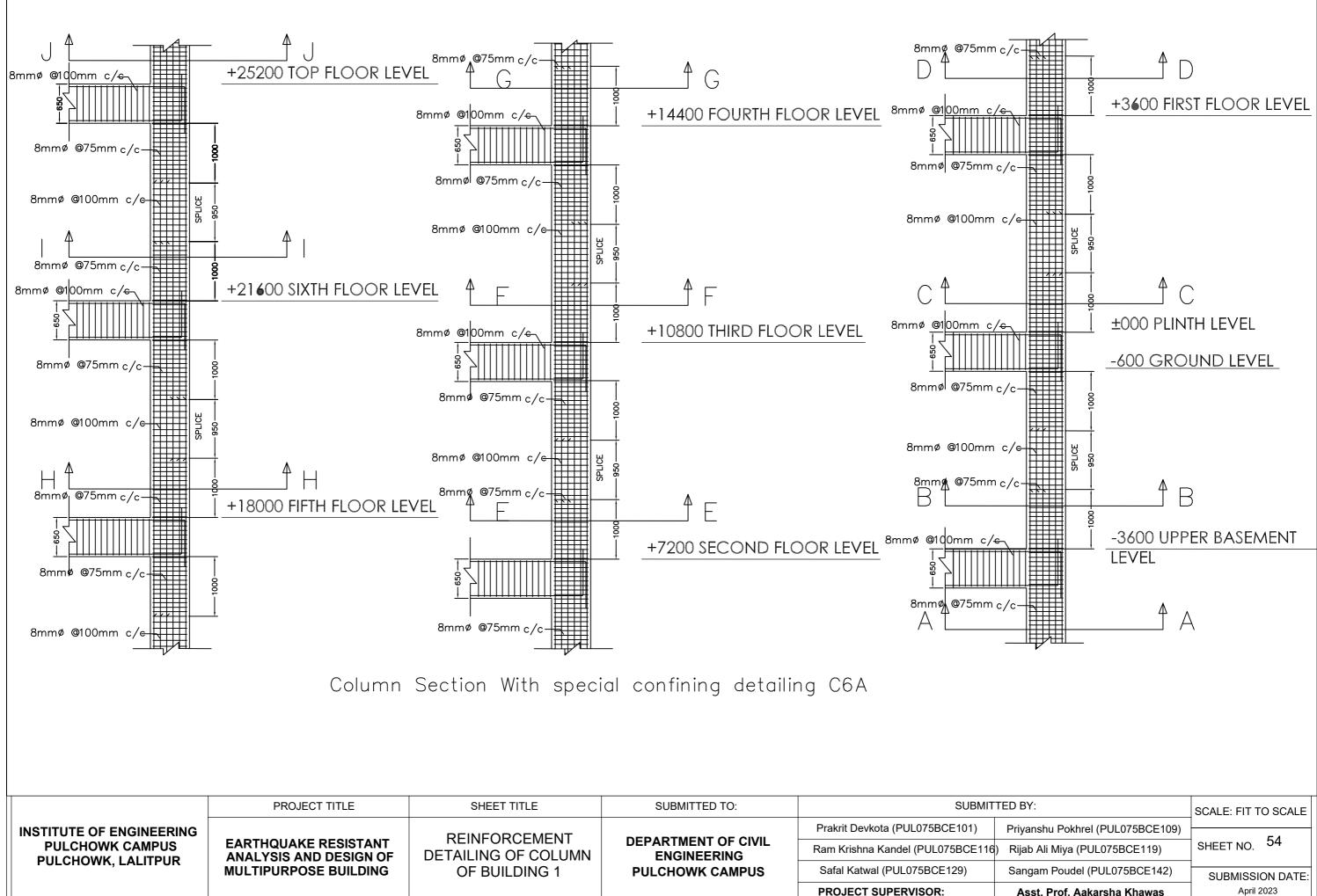


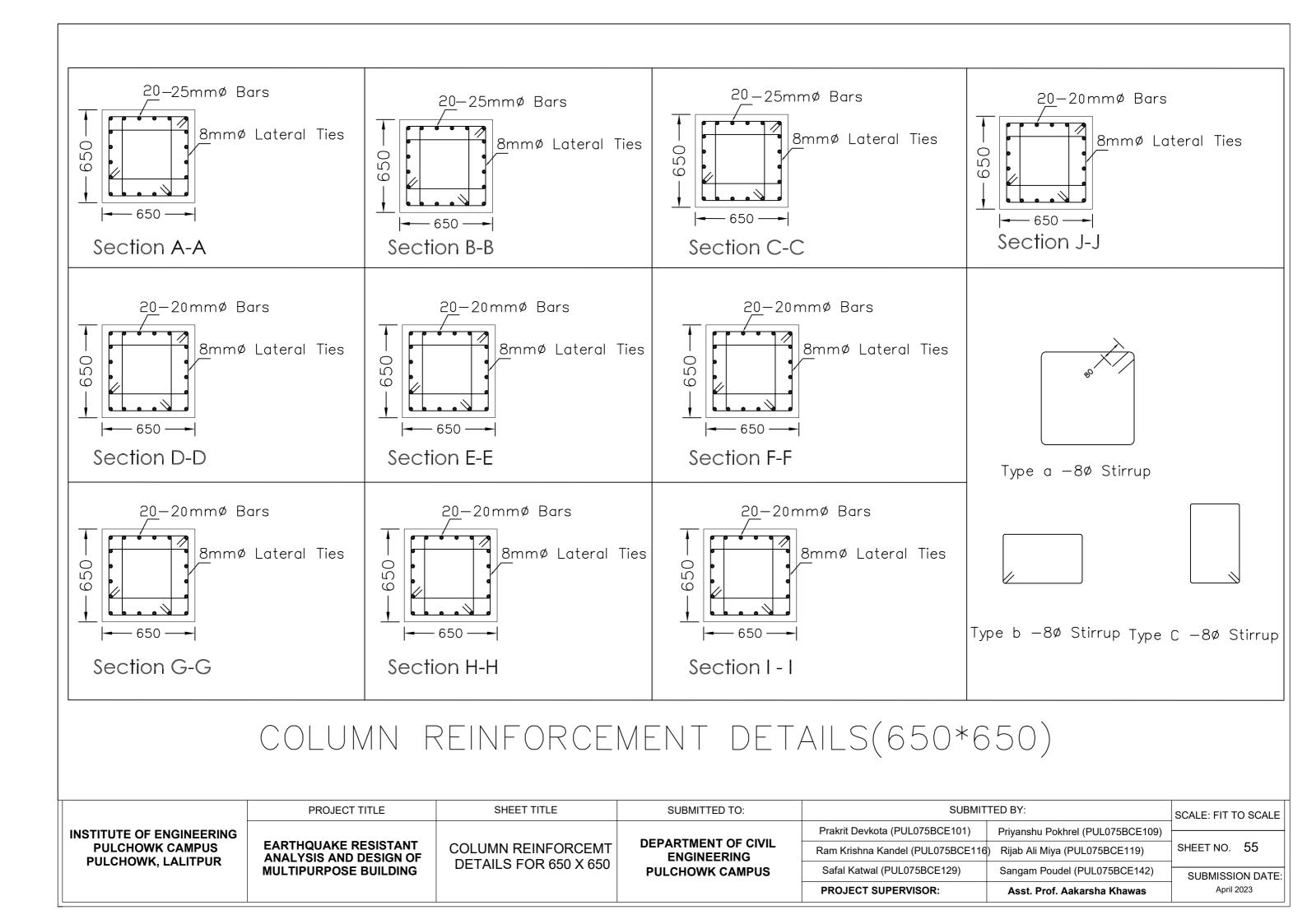


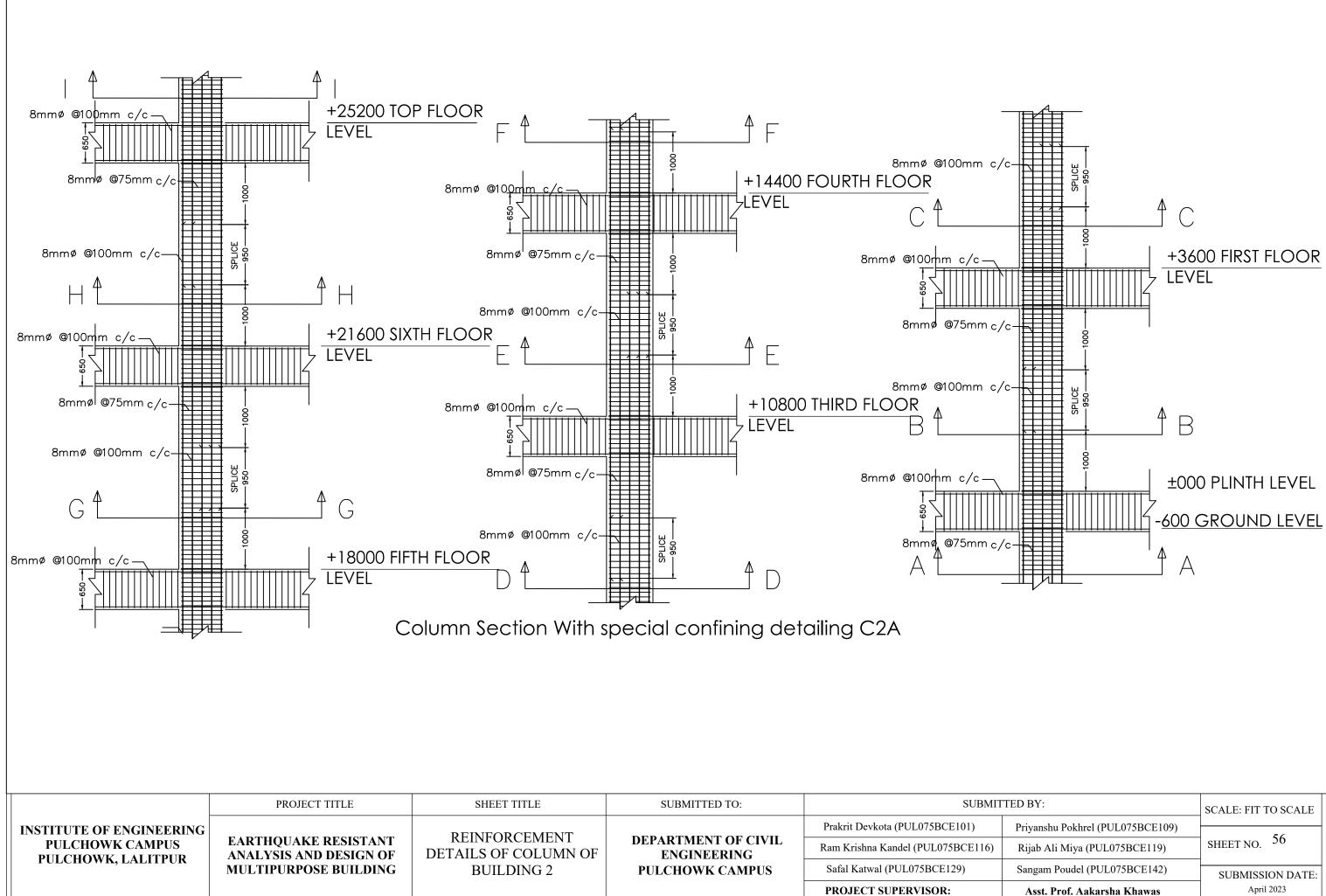

TYPICAL SLAB SECTION AT X3-X3 DIRECTION

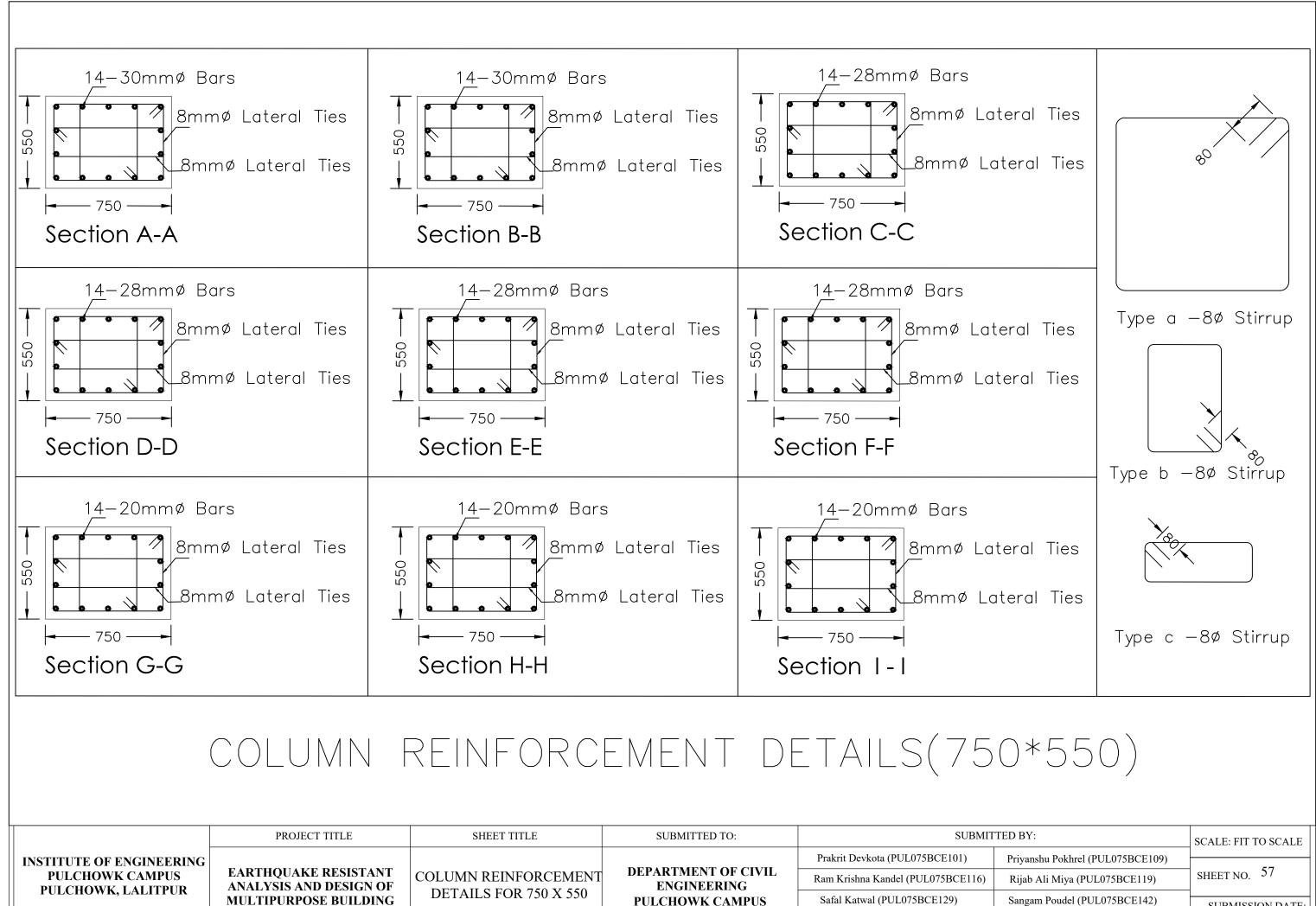

ALL REINFORCEMENT ARE OF 10mmØ- @ 125mm c/c ON BOTH DIRECTIONSLAB: 150 MM THICK


	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMITTED BY:		SCALE: FIT TO SCALE
INSTITUTE OF ENGINEERING	EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF MULTIPURPOSE BUILDING	SLAB SECTIONS OF BUILDING 1	DEPARTMENT OF CIVIL ENGINEERING PULCHOWK CAMPUS	Prakrit Devkota (PUL075BCE101)	Priyanshu Pokhrel (PUL075BCE109)	
PULCHOWK CAMPUS				Ram Krishna Kandel (PUL075BCE116)	Rijab Ali Miya (PUL075BCE119)	SHEET NO. 49
PULCHOWK, LALITPUR				Safal Katwal (PUL075BCE129)	Sangam Poudel (PUL075BCE142)	SUBMISSION DATE: April 2023
				PROJECT SUPERVISOR:	Asst. Prof. Aakarsha Khawas	

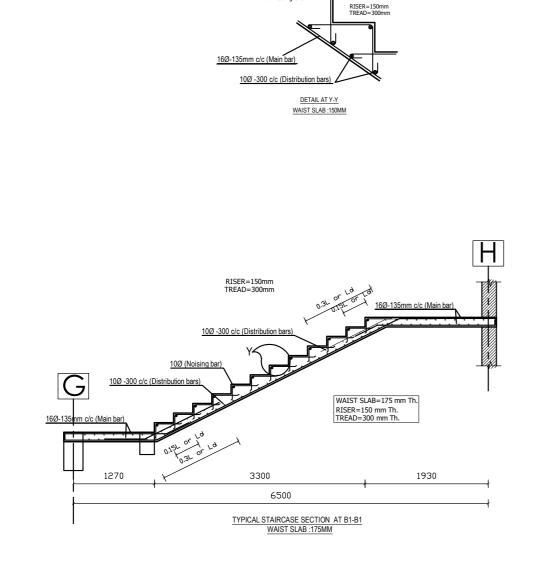


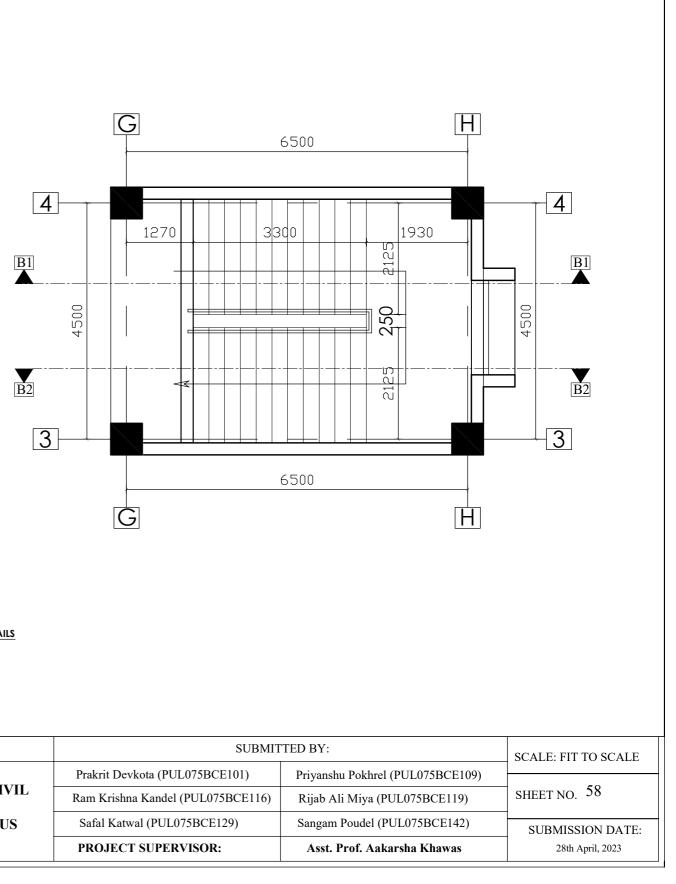






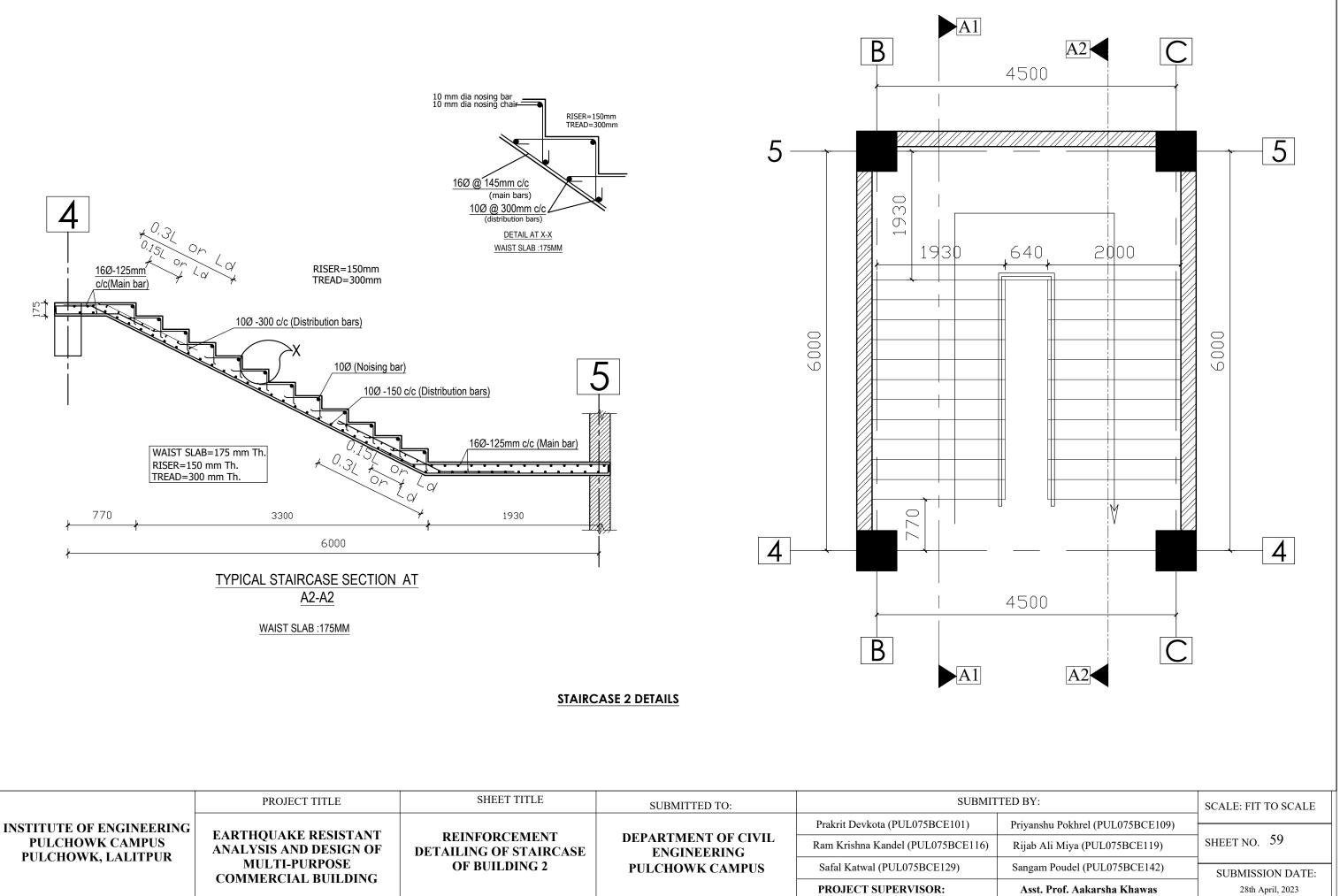
ITT	ED BY:	SCALE: FIT TO SCALE		
	Priyanshu Pokhrel (PUL075BCE109)	SCALL. III TO SCALL		
16)	Rijab Ali Miya (PUL075BCE119)	SHEET NO. 54		
-	Sangam Poudel (PUL075BCE142)			
	Asst. Prof. Aakarsha Khawas	SUBMISSION DAT		


D BY:	SCALE: FIT TO SCALE
Priyanshu Pokhrel (PUL075BCE109)	
Rijab Ali Miya (PUL075BCE119)	SHEET NO. 56
Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023

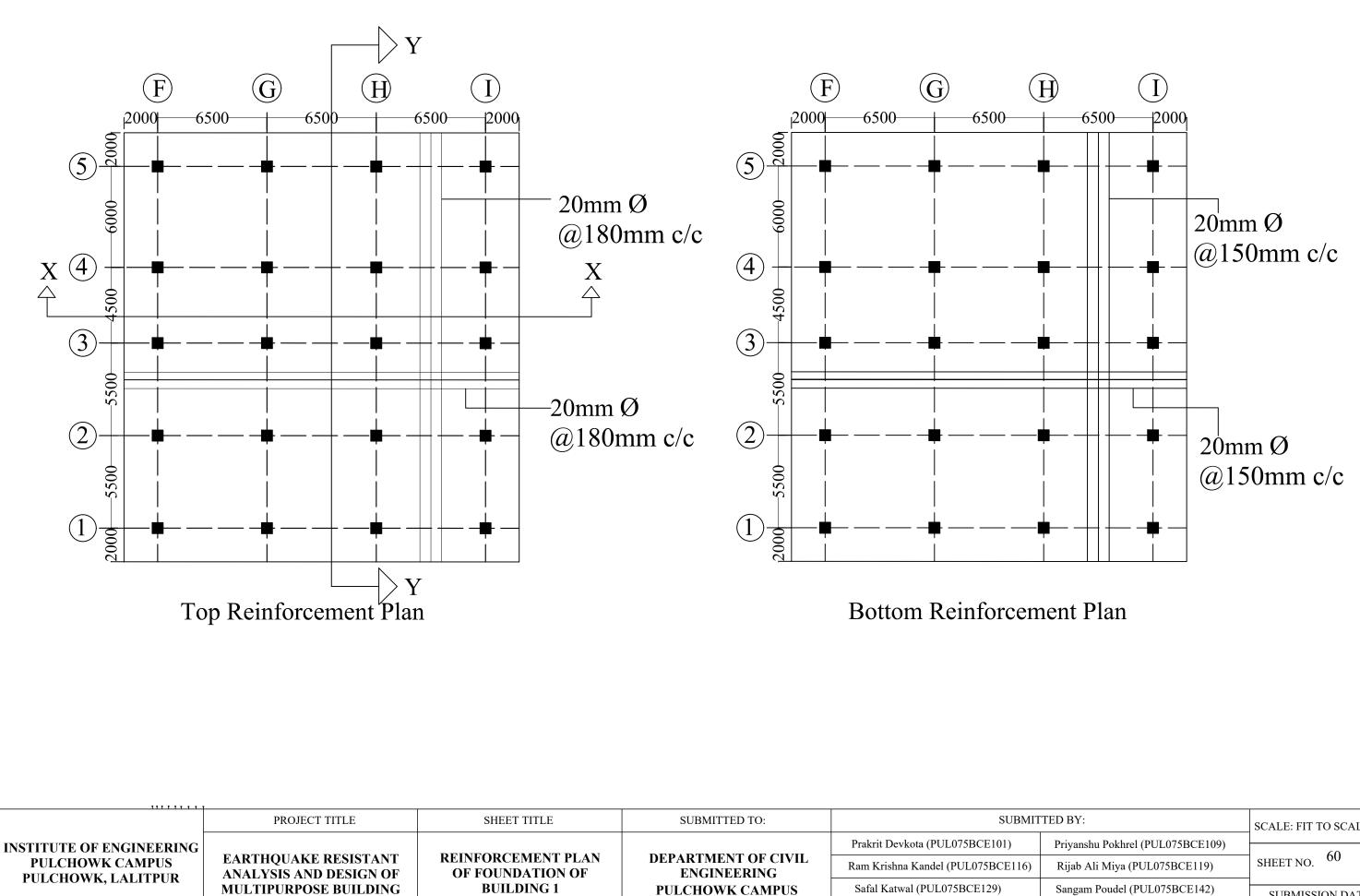

		PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMITTED B		
	INSTITUTE OF ENGINEERING				Prakrit Devkota (PUL075BCE101)	Priya	
	PULCHOWK CAMPUS PULCHOWK, LALITPUR	EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF MULTIPURPOSE BUILDING	COLUMN REINFORCEMENT	DEPARTMENT OF CIVIL ENGINEERING	Ram Krishna Kandel (PUL075BCE116)	Rija	
			DETAILS FOR 750 X 550	PULCHOWK CAMPUS	Safal Katwal (PUL075BCE129)	Sang	
					PROJECT SUPERVISOR:	As	

Asst. Prof. Aakarsha Khawas

SUBMISSION DATE: April 2023

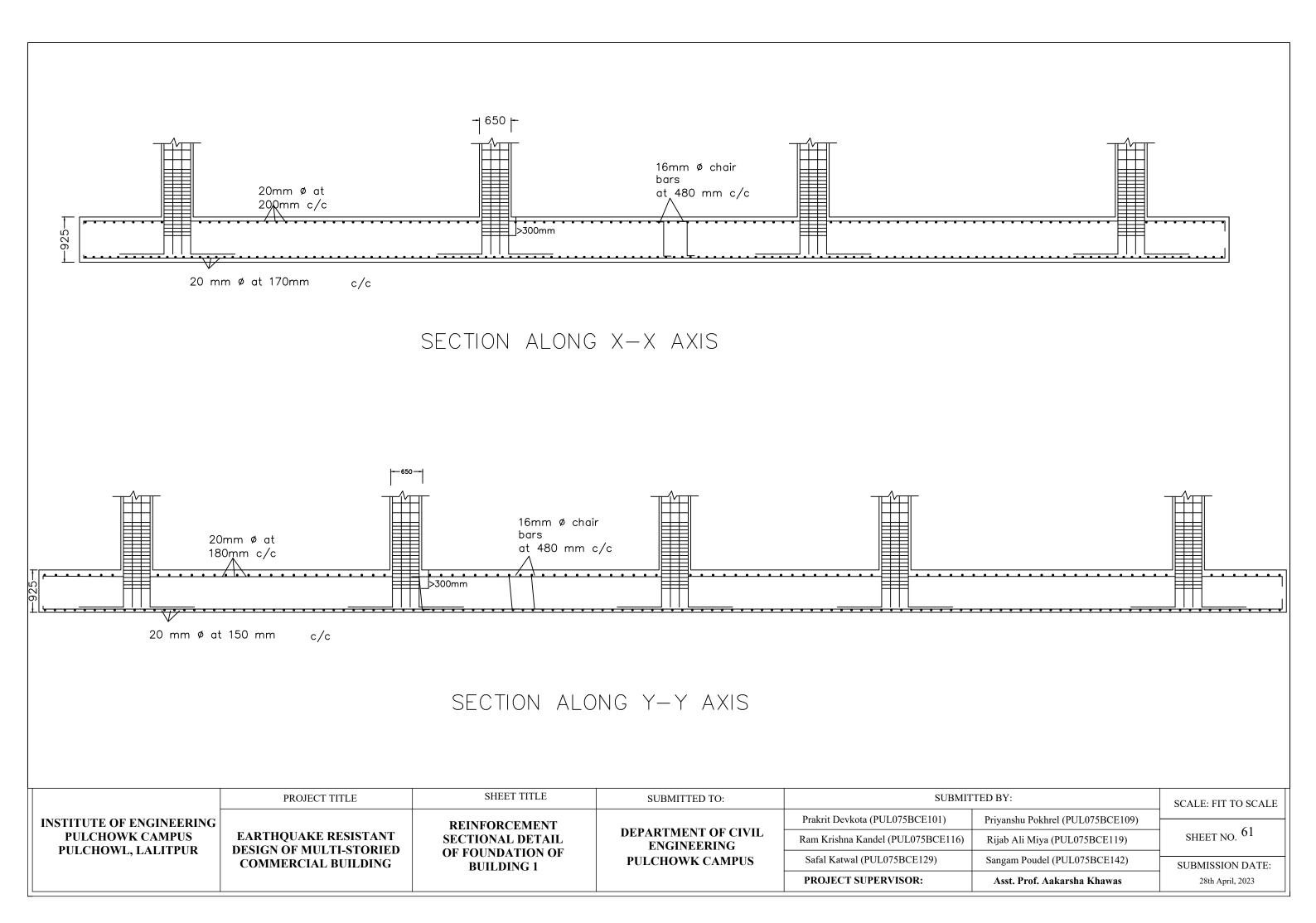


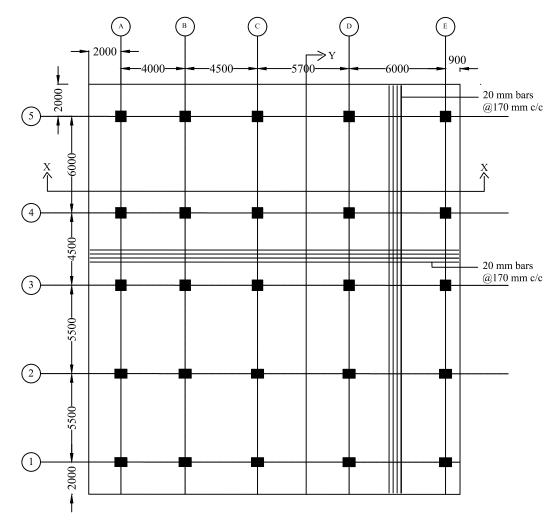
10[⊘] nosing bar 10[⊘] nosing chair

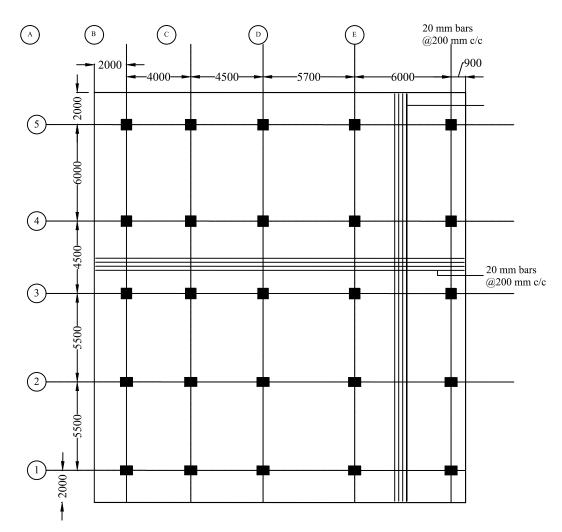


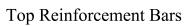
STAIRCASE 1 DETAILS

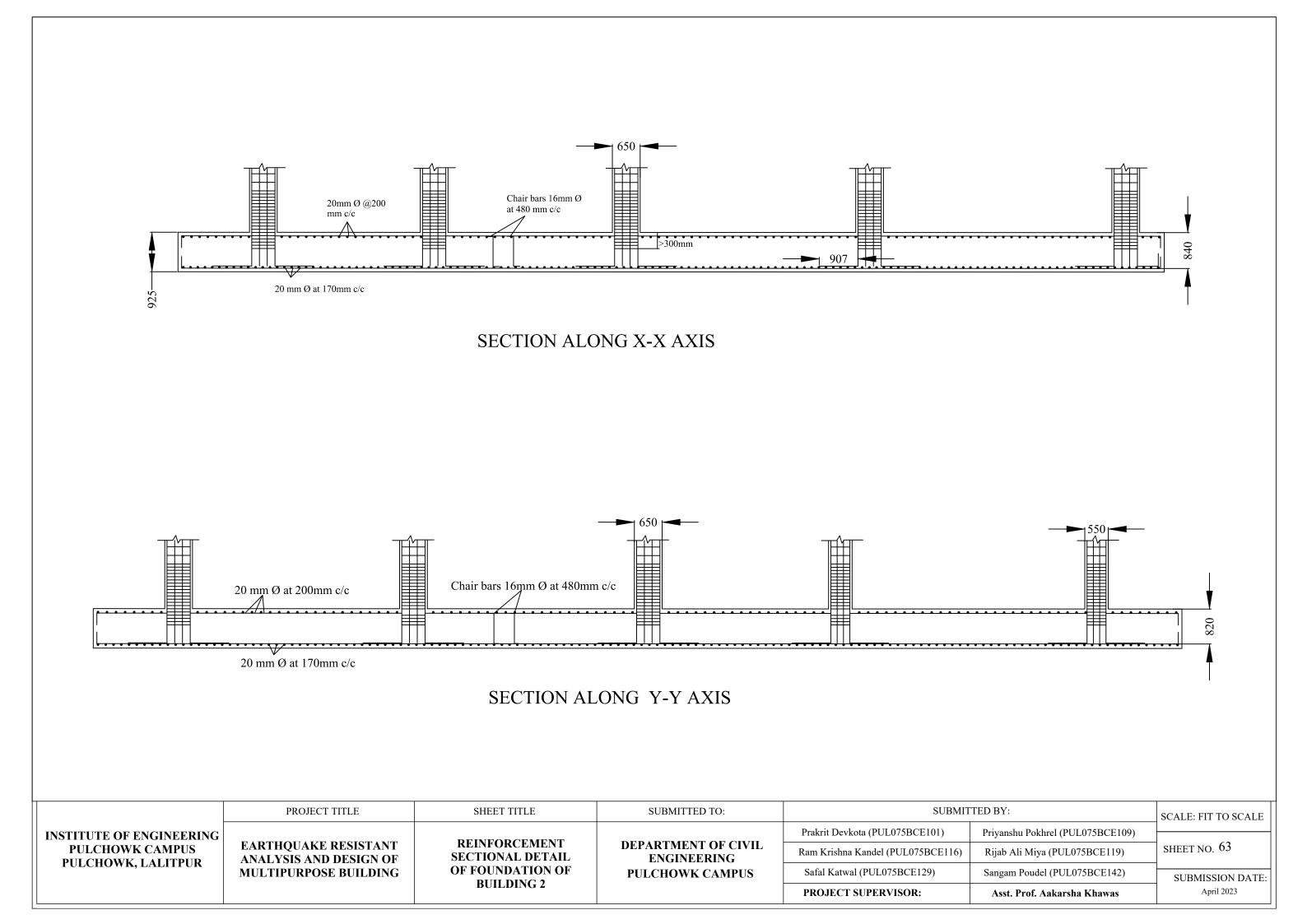
	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMITTED B		
INSTITUTE OF ENGINEERING	EARTHQUAKE RESISTANT			Prakrit Devkota (PUL075BCE101)	Priya	
PULCHOWK CAMPUS PULCHOWK, LALITPUR	ANALYSIS AND DESIGN OF MULTI-PURPOSE COMMERCIAL BUILDING	REINFORCEMENT	DEPARTMENT OF CIVIL ENGINEERING	Ram Krishna Kandel (PUL075BCE116)	Rijal	
FULCHOWK, LALIIFUK		DETAILING OF STAIRCASE OF BUILDING 1	PULCHOWK CAMPUS	Safal Katwal (PUL075BCE129)	Sang	
	COMMERCIAL BUILDING			PROJECT SUPERVISOR:	As	

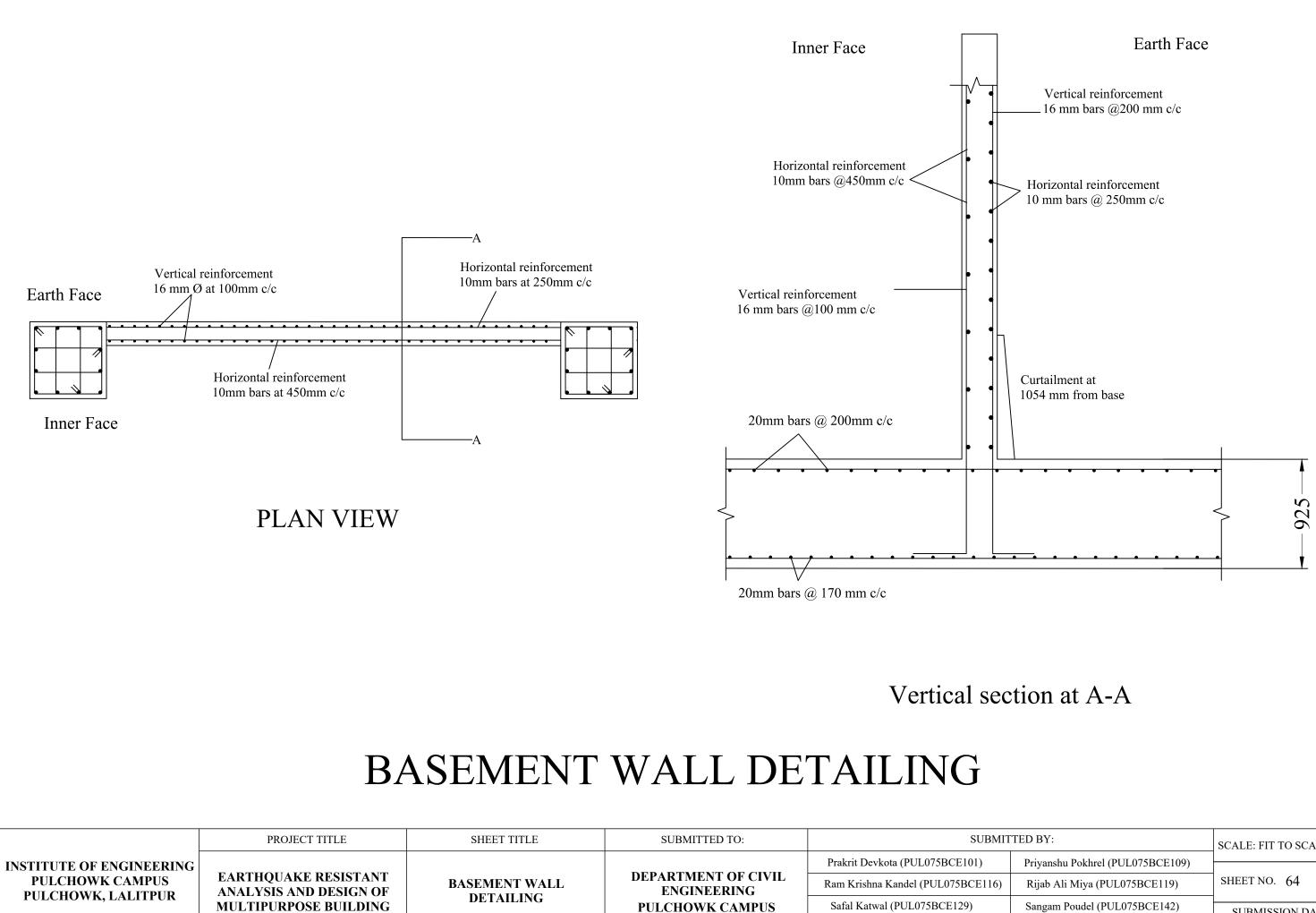


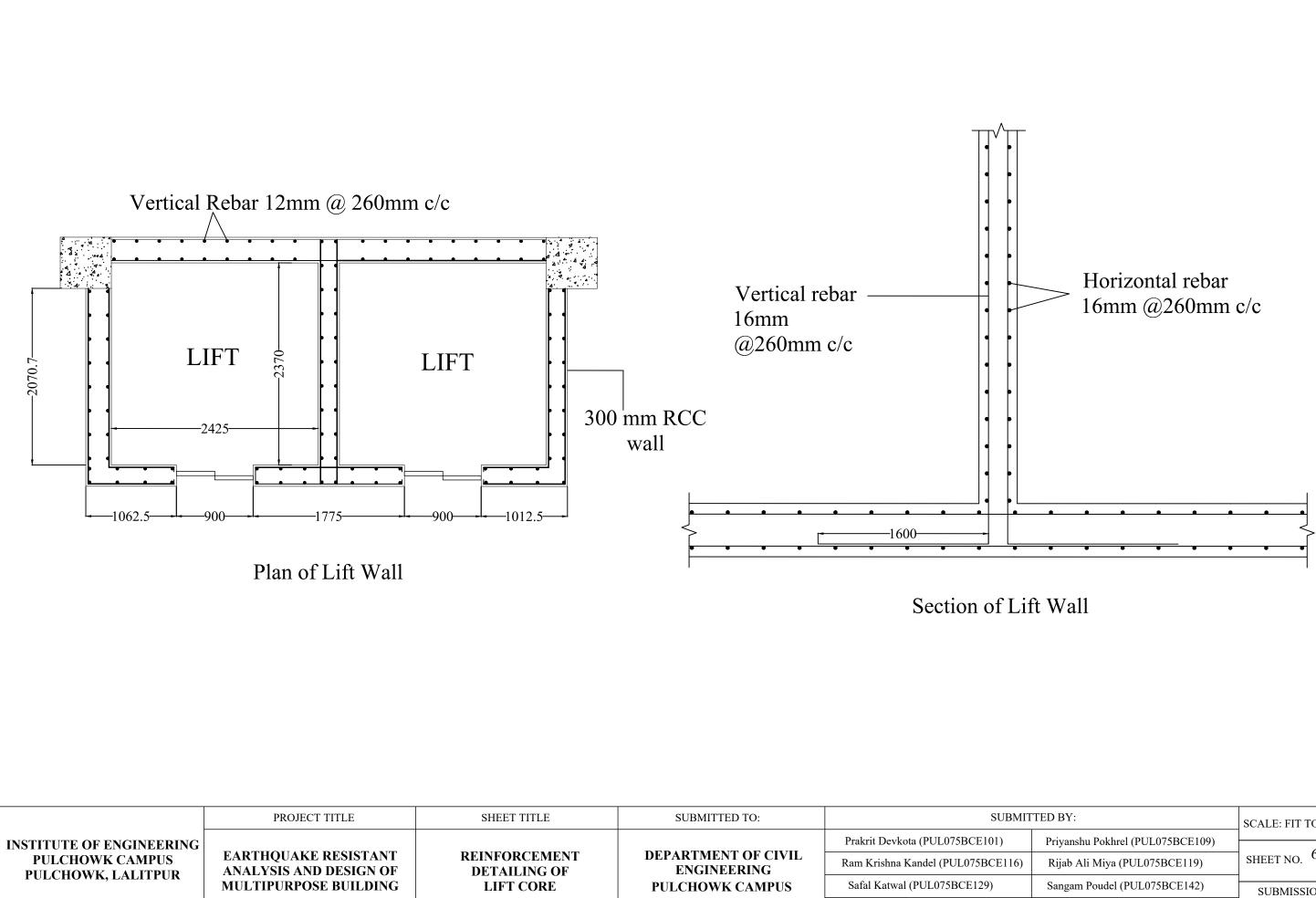

	PROJECT TITLE	SHEET TITLE	SUBMITTED TO:	SUBMITTED BY:		
INSTITUTE OF ENGINEERING	EARTHQUAKE RESISTANT			Prakrit Devkota (PUL075BCE101)	Priyansh	
PULCHOWK CAMPUS PULCHOWK, LALITPUR	EARTHQUARE RESISTANT ANALYSIS AND DESIGN OF MULTI-PURPOSE COMMERCIAL BUILDING	REINFORCEMENT DETAILING OF STAIRCASE OF BUILDING 2	DEPARTMENT OF CIVIL ENGINEERING	Ram Krishna Kandel (PUL075BCE116)	Rijab A	
			PULCHOWK CAMPUS	Safal Katwal (PUL075BCE129)	Sangam	
				PROJECT SUPERVISOR:	Asst.	

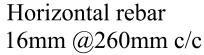

PROJECT SUPERVISOR:


D BY:	SCALE: FIT TO SCALE
Priyanshu Pokhrel (PUL075BCE109)	
Rijab Ali Miya (PUL075BCE119)	SHEET NO. 60
Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023

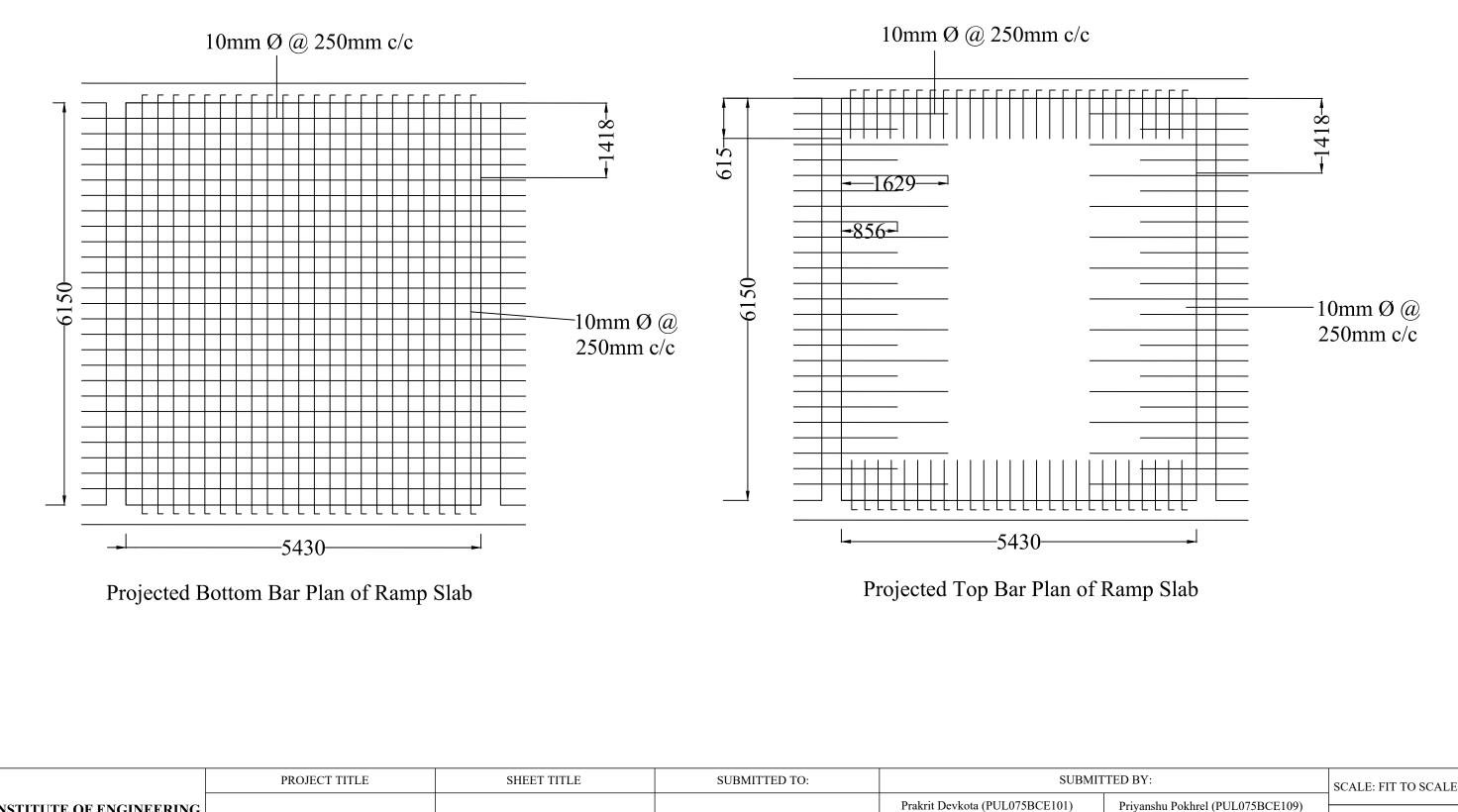



Bottom Reinforcement Bars


	PROJECT TITLE SHEET TITLE		SUBMITTED TO:	SUBMIT	TED BY:	SCALE: FIT TO SCALE
INSTITUTE OF ENGINEERING		REINFORCEMENT		Prakrit Devkota (PUL075BCE101)	Priyanshu Pokhrel (PUL075BCE109)	
PULCHOWK CAMPUS	EARTHQUAKE RESISTANT ANALYSIS AND DESIGN OF MULTIPURPOSE BUILDING	PLAN OF FOUNDATION OF BUILDING 2	DEPARTMENT OF CIVIL ENGINEERING PULCHOWK CAMPUS	Ram Krishna Kandel (PUL075BCE116)	Rijab Ali Miya (PUL075BCE119)	SHEET NO. 62
PULCHOWK, LALITPUR				Safal Katwal (PUL075BCE129)	Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
				PROJECT SUPERVISOR:	Asst. Prof. Aakarsha Khawas	April 2023

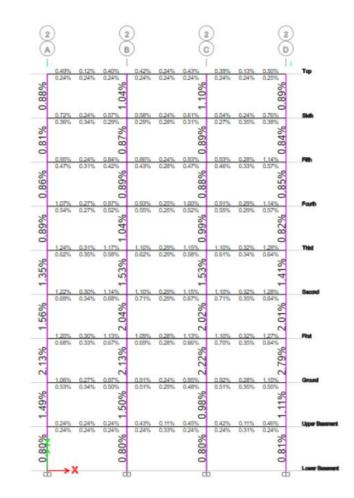


PROJECT SUPERVISOR:

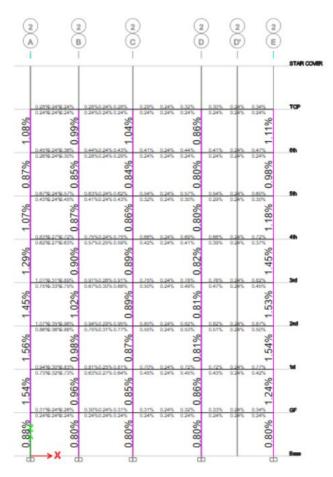

D BY:	SCALE: FIT TO SCALE
Priyanshu Pokhrel (PUL075BCE109)	
Rijab Ali Miya (PUL075BCE119)	SHEET NO. 64
Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:
Asst. Prof. Aakarsha Khawas	April 2023

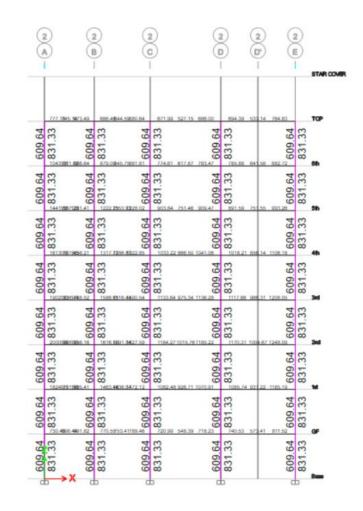
PROJECT SUPERVISOR:

SCALE: FIT TO SCALE
(5
SHEET NO. 65
SUBMISSION DATE:
April 2023



INSTITUTE OF ENGINEERING PULCHOWK CAMPUS PULCHOWK, LALITPUR	PROJECT TITLE	SHEET TITLE SUBMITTED TO:		SUBMIT	SCALE: FIT TO SCALE		
				Prakrit Devkota (PUL075BCE101)	Priyanshu Pokhrel (PUL075BCE109)		
	ANALYSIS AND DESIGN OF DETA	REINFORCEMENT DETAILING OF RAMP SLAB	DEPARTMENT OF CIVIL ENGINEERING PULCHOWK CAMPUS	Ram Krishna Kandel (PUL075BCE116)	Rijab Ali Miya (PUL075BCE119)	SHEET NO. 66	
				Safal Katwal (PUL075BCE129)	Sangam Poudel (PUL075BCE142)	SUBMISSION DATE:	
				PROJECT SUPERVISOR:	Asst. Prof. Aakarsha Khawas	April 2023	


Analysis Results Samples


Building 1:

Building 2:

Wall name	Length(m)	Height(m)	Thickness (m)	К	Weight(KN)	X(m)	Y(m)	W*X(KN-m)	W*Y(KN-m)
			1	.st building (first floor-sixth fl	oor)			
A5-B5	3.35	2.95	0.23	1	43.186525	2	21.5	86.37305	928.5102875
B5-C5	3.85	2.95	0.23	1	49.632275	5.6	21.5	277.94074	1067.093913
C5-D5	5.05	2.95	0.23	1	65.102075	10.05	21.5	654.2758538	1399.694613
D5-E5	5.35	2.95	0.23	1	68.969525	15.25	21.5	1051.785256	1482.844788
A1-A2	4.75	2.95	0.23	0.8	48.9877	0	2.375	0	116.3457875
A2-A3	4.75	2.95	0.23	0.8	48.9877	0	7.125	0	349.0373625
A3-A4	3.85	2.95	0.23	0.8	39.70582	0	11.425	0	453.6389935
A4-A5	5.35	2.95	0.23	0.8	55.17562	0	16.025	0	884.1893105
A1-B1	3.25	2.95	0.23	1	41.897375	2	0	83.79475	0
B1-C1	3.75	2.95	0.23	0.8	38.6745	5.5	0	212.70975	0
C1-D1	4.95	2.95	0.23	0.8	51.05034	9.85	0	502.845849	0
D1-E1	5.25	2.95	0.23	0.8	54.1443	14.95	0	809.457285	0
B3-B4	3.85	2.95	0.115	0.8	19.85291	4	13.25	79.41164	263.0510575
B4-B5	5.35	2.95	0.23	1	68.969525	4	18.5	275.8781	1275.936213
C1-C2	4.85	2.95	0.115	1	31.2618875	8.5	2.75	265.7260438	85.97019063
C2-C3	4.85	2.95	0.115	1	31.2618875	8.5	8.25	265.7260438	257.9105719
C4-C5	5.35	2.95	0.23	1	68.969525	8.5	18.5	586.2409625	1275.936213
D3-D4	3.85	2.95	0.115	0.8	19.85291	14.2	13.25	281.911322	263.0510575
D4-D5	5.35	2.95	0.115	0.8	27.58781	14.2	18.5	391.746902	510.374485
A4-B4	3.35	2.95	0.115	0.8	17.27461	2	15.5	34.54922	267.756455
A3-B3	3.35	2.95	0.115	0.8	17.27461	2	11	34.54922	190.02071
C3-D3	5.05	2.95	0.115	1	32.5510375	11.35	11	369.4542756	358.0614125
D3-E3	5.35	2.95	0.115	1	34.4847625	17.2	11	593.137915	379.3323875
C2-D2	4.95	2.95	0.115	1	31.9064625	11.35	5.5	362.1383494	175.4855438
D2-E2	5.25	2.95	0.115	1	33.8401875	17.2	5.5	582.051225	186.1210313
E3-E2	4.85	2.95	0.115	1	31.2618875	20.2	8.25	631.4901275	257.9105719
					Sum			Sum	Sum
					1071.863768			8433.193881	12428.27295

Centre of Gravity – Brick Walls (Unit Weight of Brick Masonry = 19 kN/m³)

Wall name	Length(m)	Height(m)	Thickness (m)	К	Weight(KN)	X(m)	Y(m)	W*X(KN-m)	W*Y(KN-m)
			1st	building (g	round floor, top	floor)			
A5-B5	3.35	2.95	0.23	0.5	21.5932625	2	21.5	43.186525	464.2551438
B5-C5	3.85	2.95	0.23	0.5	24.8161375	5.6	21.5	138.97037	533.5469563
C5-D5	5.05	2.95	0.23	0.5	32.5510375	10.05	21.5	327.1379269	699.8473063
D5-E5	5.35	2.95	0.23	0.5	34.4847625	15.25	21.5	525.8926281	741.4223938
A1-A2	4.75	2.95	0.23	0.4	24.49385	0	2.375	0	58.17289375
A2-A3	4.75	2.95	0.23	0.4	24.49385	0	7.125	0	174.5186813
A3-A4	3.85	2.95	0.23	0.4	19.85291	0	11.425	0	226.8194968
A4-A5	5.35	2.95	0.23	0.4	27.58781	0	16.025	0	442.0946553
A1-B1	3.25	2.95	0.23	0.5	20.9486875	2	0	41.897375	0
B1-C1	3.75	2.95	0.23	0.4	19.33725	5.5	0	106.354875	0
C1-D1	4.95	2.95	0.23	0.4	25.52517	9.85	0	251.4229245	0
D1-E1	5.25	2.95	0.23	0.4	27.07215	14.95	0	404.7286425	0
B3-B4	3.85	2.95	0.115	0.4	9.926455	4	13.25	39.70582	131.5255288
B4-B5	5.35	2.95	0.23	0.5	34.4847625	4	18.5	137.93905	637.9681063
C1-C2	4.85	2.95	0.115	0.5	15.63094375	8.5	2.75	132.8630219	42.98509531
C2-C3	4.85	2.95	0.115	0.5	15.63094375	8.5	8.25	132.8630219	128.9552859
C4-C5	5.35	2.95	0.23	0.5	34.4847625	8.5	18.5	293.1204813	637.9681063
D3-D4	3.85	2.95	0.115	0.4	9.926455	14.2	13.25	140.955661	131.5255288
D4-D5	5.35	2.95	0.115	0.4	13.793905	14.2	18.5	195.873451	255.1872425
A4-B4	3.35	2.95	0.115	0.4	8.637305	2	15.5	17.27461	133.8782275
A3-B3	3.35	2.95	0.115	0.4	8.637305	2	11	17.27461	95.010355
C3-D3	5.05	2.95	0.115	0.5	16.27551875	11.35	11	184.7271378	179.0307063
D3-E3	5.35	2.95	0.115	0.5	17.24238125	17.2	11	296.5689575	189.6661938
C2-D2	4.95	2.95	0.115	0.5	15.95323125	11.35	5.5	181.0691747	87.74277188
D2-E2	5.25	2.95	0.115	0.5	16.92009375	17.2	5.5	291.0256125	93.06051563
E3-E2	4.85	2.95	0.115	0.5	15.63094375	20.2	8.25	315.7450638	128.9552859
					Sum			Sum	Sum
					535.9318838			4216.59694	6214.136477

Wall name	Length(m)	Height(m)	Thickness (m)	К	Weight(KN)	X(m)	Y(m)	W*X(KN-m)	W*Y(KN-m)		
	1st building (roof cover)										
B5-C5	3.85	2.95	0.115	0.5	12.4080688	6.25	21.5	77.55043	266.773478		
C5-D5	5.05	2.95	0.115	0.5	16.2755188	11.35	21.5	184.72714	349.923653		
B4-C4	3.85	2.95	0.23	0.4	19.85291	6.25	15.5	124.08069	307.720105		
C4-D4	5.05	2.95	0.23	0.4	26.04083	11.35	15.5	295.56342	403.632865		
B4-B5	5.35	2.95	0.115	0.5	17.2423813	4	18.5	68.969525	318.984053		
C4-C5	5.35	2.95	0.23	0.5	34.4847625	8.5	18.5	293.12048	637.968106		
D4-D5	5.35	2.95	0.23	0.5	34.4847625	14.2	18.5	489.68363	637.968106		
					Sum			Sum	Sum		
					160.789234			1533.6953	2922.97037		

Center of Gravity – Slabs

		C	Center of mass -	SLABS (GF to t	op floor)			
Slab	Length(m)	Breadth(m)	Thickness(m)	Weight(KN)	x	Y	W*X	W*Y
AB45	4	6	0.15	90	2	18.5	180	1665
AB34	4	4.5	0.15	67.5	2	13.25	135	894.375
AB23	4	5.5	0.15	82.5	2	8.25	165	680.625
AB12	4	5.5	0.15	82.5	2	2.75	165	226.875
BC34	4.5	4.5	0.15	75.9375	6.25	13.25	474.6094	1006.172
BC23	4.5	5.5	0.15	92.8125	6.25	8.25	580.0781	765.7031
BC12	4.5	5.5	0.15	92.8125	6.25	2.75	580.0781	255.2344
CD44'	5.7	2.62	0.15	56.0025	11.35	16.81	635.6284	941.402
CD34	5.7	4.5	0.15	96.1875	11.35	13.25	1091.728	1274.484
CD12	5.7	5.5	0.15	117.5625	11.35	2.75	1334.334	323.2969
DE45	6	6	0.15	135	17.2	18.5	2322	2497.5
DE34	6	4.5	0.15	101.25	17.2	13.25	1741.5	1341.563

DE12	6	5.5	0.15	123.75	17.2	2.75	2128.5	340.3125
				Sum			Sum	Sum
				1213.815			11533.46	12212.54

	Center of mass - SLABS (stair cover)											
Slab	Length(m)	Breadth(m)	Thickness(m)	Weight (KN)	x	Y	W*X	W*Y				
BC45	4.5	6	0.15	101.25	6.25	18.5	632.8125	1873.125				
CD45	5.7	6	0.15	128.25	11.35	18.5	1455.638	2372.625				
				Sum			Sum	Sum				
				229.5			2088.45	4245.75				

Center of Gravity – Columns

			Center of m	nass - Colun	nns (GF to sixt	h floor)			
Column	Width(m)	Breadth(m)	Height (m)	К	Weight(KN)	x	Y	W*X	W*Y
A1	0.75	0.55	3.6	1	37.125	0	0	0	0
B1	0.75	0.55	3.6	1	37.125	4	0	148.5	0
C1	0.75	0.55	3.6	1	37.125	8.5	0	315.5625	0
D1	0.75	0.55	3.6	1	37.125	14.2	0	527.175	0
E1	0.75	0.55	3.6	1	37.125	20.2	0	749.925	0
A2	0.75	0.55	3.6	1	37.125	0	5.5	0	204.1875
B2	0.75	0.55	3.6	1	37.125	4	5.5	148.5	204.1875
C2	0.75	0.55	3.6	1	37.125	8.5	5.5	315.5625	204.1875
D2	0.75	0.55	3.6	1	37.125	14.2	5.5	527.175	204.1875
E2	0.75	0.55	3.6	1	37.125	20.2	5.5	749.925	204.1875
A3	0.65	0.65	3.6	1	38.025	0	11	0	418.275
B3	0.65	0.65	3.6	1	38.025	4	11	152.1	418.275

C3	0.65	0.65	3.6	1	38.025	8.5	11	323.2125	418.275
D3	0.65	0.65	3.6	1	38.025	14.2	11	539.955	418.275
E3	0.65	0.65	3.6	1	38.025	20.2	11	768.105	418.275
A4	0.65	0.65	3.6	1	38.025	0	15.5	0	589.3875
B4	0.65	0.65	3.6	1	38.025	4	15.5	152.1	589.3875
C4	0.65	0.65	3.6	1	38.025	8.5	15.5	323.2125	589.3875
D4	0.65	0.65	3.6	1	38.025	14.2	15.5	539.955	589.3875
E4	0.65	0.65	3.6	1	38.025	20.2	15.5	768.105	589.3875
A5	0.65	0.65	3.6	1	38.025	0	21.5	0	817.5375
B5	0.65	0.65	3.6	1	38.025	4	21.5	152.1	817.5375
C5	0.65	0.65	3.6	1	38.025	8.5	21.5	323.2125	817.5375
D5	0.65	0.65	3.6	1	38.025	14.2	21.5	539.955	817.5375
E5	0.65	0.65	3.6	1	38.025	20.2	21.5		817.5375
					941.625			8064.338	10146.94

			Center of	mass - Col	umns (TOP FL	OOR)			
Column	Width(m)	Breadth(m)	Height (m)	К	Weight(KN)	x	Y	W*X	W*Y
A1	0.75	0.55	3.6	0.5	18.5625	0	0	0	0
B1	0.75	0.55	3.6	0.5	18.5625	4	0	74.25	0
C1	0.75	0.55	3.6	0.5	18.5625	8.5	0	157.7813	0
D1	0.75	0.55	3.6	0.5	18.5625	14.2	0	263.5875	0
E1	0.75	0.55	3.6	0.5	18.5625	20.2	0	374.9625	0
A2	0.75	0.55	3.6	0.5	18.5625	0	5.5	0	102.0938
B2	0.75	0.55	3.6	0.5	18.5625	4	5.5	74.25	102.0938
C2	0.75	0.55	3.6	0.5	18.5625	8.5	5.5	157.7813	102.0938
D2	0.75	0.55	3.6	0.5	18.5625	14.2	5.5	263.5875	102.0938
E2	0.75	0.55	3.6	0.5	18.5625	20.2	5.5	374.9625	102.0938
A3	0.65	0.65	3.6	0.5	19.0125	0	11	0	209.1375
B3	0.65	0.65	3.6	0.5	19.0125	4	11	76.05	209.1375
C3	0.65	0.65	3.6	0.5	19.0125	8.5	11	161.6063	209.1375

D3	0.65	0.65	3.6	0.5	19.0125	14.2	11	269.9775	209.1375
E3	0.65	0.65	3.6	0.5	19.0125	20.2	11	384.0525	209.1375
A4	0.65	0.65	3.6	0.5	19.0125	0	15.5	0	294.6938
B4	0.65	0.65	3.6	1	38.025	4	15.5	152.1	589.3875
C4	0.65	0.65	3.6	1	38.025	8.5	15.5	323.2125	589.3875
D4	0.65	0.65	3.6	1	38.025	14.2	15.5	539.955	589.3875
E4	0.65	0.65	3.6	0.5	19.0125	20.2	15.5	384.0525	294.6938
A5	0.65	0.65	3.6	0.5	19.0125	0	21.5	0	408.7688
B5	0.65	0.65	3.6	1	38.025	4	21.5	152.1	817.5375
C5	0.65	0.65	3.6	1	38.025	8.5	21.5	323.2125	817.5375
D5	0.65	0.65	3.6	1	38.025	14.2	21.5	539.955	817.5375
E5	0.65	0.65	3.6	0.5	19.0125	20.2	21.5		408.7688
					584.8875			5047.436	7183.856

			Center o	f mass - Col	lumns (Stair co	over)			
Column	Width(m)	Breadth(m)	Height (m)	К	Weight(KN)	х	Y	W*X	W*Y
B5	0.65	0.65	3.6	0.5	19.0125	4	21.5	76.05	408.7688
C5	0.65	0.65	3.6	0.5	19.0125	8.5	21.5	161.6063	408.7688
D5	0.65	0.65	3.6	0.5	19.0125	14.2	21.5	269.9775	408.7688
B4	0.65	0.65	3.6	0.5	19.0125	4	15.5	76.05	294.6938
C4	0.65	0.65	3.6	0.5	19.0125	8.5	15.5	161.6063	294.6938
D4	0.65	0.65	3.6	0.5	19.0125	14.2	15.5	269.9775	294.6938
					114.075			1015.268	2110.388

Center of Gravity – Primary Beams

		Center	of mass - pr	imary beams (GF to top	floor)		
Beam	Length(m)	Breadth(m)	Depth(m)	Weight(KN)	x	Y	W*X	W*Y
A1-B1	3.25	0.35	0.65	18.484375	2	0	36.96875	0
B1-C1	3.75	0.35	0.65	21.328125	6.25	0	133.300781	0
C1-D1	4.95	0.35	0.65	28.153125	11.35	0	319.537969	0
D1-E1	5.25	0.35	0.65	29.859375	17.2	0	513.58125	0
A2-B2	3.25	0.35	0.65	18.484375	2	5.5	36.96875	101.664063
B2-C2	3.75	0.35	0.65	21.328125	6.25	5.5	133.300781	117.304688
C2-D2	4.95	0.35	0.65	28.153125	11.35	5.5	319.537969	154.842188
D2-E2	5.25	0.35	0.65	29.859375	17.2	5.5	513.58125	164.226563
A3-B3	3.35	0.35	0.65	19.053125	2	11	38.10625	209.584375
B3-C3	3.85	0.35	0.65	21.896875	6.25	1	136.855469	21.896875
C3-D3	5.05	0.35	0.65	28.721875	11.35	11	325.993281	315.940625
D3-E3	5.35	0.35	0.65	30.428125	17.2	11	523.36375	334.709375
A4-B4	3.35	0.35	0.65	19.053125	2	15.5	38.10625	295.323438
B4-C4	3.85	0.5	0.6	28.875	6.25	15.5	180.46875	447.5625
C4-D4	5.05	0.35	0.65	28.721875	11.35	15.5	325.993281	445.189063
D4-E4	5.35	0.35	0.65	30.428125	17.2	15.5	523.36375	471.635938
A5-B5	3.35	0.35	0.65	19.053125	2	21.5	38.10625	409.642188
B5-C5	3.85	0.5	0.6	28.875	6.25	21.5	180.46875	620.8125
C5-D5	5.05	0.35	0.65	28.721875	11.35	21.5	325.993281	617.520313
D5-E5	5.35	0.35	0.65	30.428125	17.2	21.5	523.36375	654.204688
A1-A2	4.8	0.35	0.65	27.3	0	2.75	0	75.075
A2-A3	4.8	0.35	0.65	27.3	0	8.25	0	225.225
A3-A4	3.85	0.35	0.65	21.896875	0	13.25	0	290.133594
A4-A5	5.35	0.35	0.65	30.428125	0	18.5	0	562.920313
B1-B2	4.8	0.35	0.65	27.3	4	2.75	109.2	75.075
B2-B3	4.8	0.35	0.65	27.3	4	8.25	109.2	225.225
B3-B4	3.85	0.35	0.65	21.896875	4	13.25	87.5875	290.133594

B4-B5	5.35	0.5	0.6	40.125	4	18.5	160.5	742.3125
C1-C2	4.8	0.35	0.65	27.3	8.5	2.75	232.05	75.075
C2-C3	4.8	0.35	0.65	27.3	8.5	8.25	232.05	225.225
C3-C4	3.85	0.35	0.65	21.896875	8.5	13.25	186.123438	290.133594
C4-C5	5.35	0.5	0.6	40.125	8.5	18.5	341.0625	742.3125
D1-D2	4.8	0.35	0.65	27.3	14.2	2.75	387.66	75.075
D2-D3	4.8	0.35	0.65	27.3	14.2	8.25	387.66	225.225
D3-D4	3.85	0.35	0.65	21.896875	14.2	13.25	310.935625	290.133594
D4-D5	5.35	0.35	0.65	30.428125	14.2	18.5	432.079375	562.920313
E1-E2	4.8	0.35	0.65	27.3	20.2	2.75	551.46	75.075
E2-E3	4.8	0.35	0.65	27.3	20.2	8.25	551.46	225.225
E3-E4	3.85	0.35	0.65	21.896875	20.2	13.25	442.316875	290.133594
E4-E5	5.35	0.35	0.65	30.428125	20.2	18.5	614.648125	562.920313
Landing beam	3.85	0.5	0.6	28.875	6.25	21.5	180.46875	620.8125
				Sum			Sum	Sum
				1092.8			10483.4225	12128.4258

	Center of mass - primary beams (stair cover)											
Beam	Length(m)	Breadth(m)	Depth(m)	Weight(KN)	x	Y	W*X	W*Y				
B4-C4	3.85	0.35	0.65	21.896875	6.25	15.5	136.855469	339.401563				
C4-D4	5.05	0.35	0.65	28.721875	11.35	15.5	325.993281	445.189063				
B5-C5	3.85	0.35	0.65	21.896875	6.25	21.5	136.855469	470.782813				
C5-D5	5.05	0.35	0.65	28.721875	11.35	21.5	325.993281	617.520313				
B4-B5	5.35	0.35	0.65	30.428125	4	18.5	121.7125	562.920313				
C4-C5	5.35	0.35	0.65	30.428125	8.5	18.5	258.639063	562.920313				
D4-D5	5.35	0.35	0.65	30.428125	14.2	18.5	432.079375	562.920313				
				192.52188			1738.12844	3561.65469				

Center of Gravity – Secondary Beam

		Center of n	nass - second	ary beams (GF	⁼ to top f	loor)		
Beam	Length(m)	Breadth(m)	Depth(m)	Weight(KN)	х	Y	W*X	W*Y
								228.64
D'45	5.65	0.25	0.35	12.359375	17.2	18.5	212.5813	84
								120.28
D'34	4.15	0.25	0.35	9.078125	17.2	13.25	156.1438	52
								30.980
D'12	5.15	0.25	0.35	11.265625	17.2	2.75	193.7688	47
								30.980
C'12	5.15	0.25	0.35	11.265625	11.35	2.75	127.8648	47
								208.90
CD4'	5.2705	0.25	0.35	11.529219	11.35	18.12	130.8566	94
								619.80
				55.497969			821.2152	4

Center of Gravity – Staircase

	Center of mass- staricase (GF to 6th floor)								
Element	Area	Thickness	Weight	Х	Y	W*X	W*Y		
Landing slab 1	3.465	0.175	15.15938	6.25	15.885	94.74609	240.8067		
Landing slab 2	8.685	0.175	37.99688	6.25	20.535	237.4805	780.2658		
Waist slab 1	7.52	0.175	32.9	5.175	17.92	170.2575	589.568		
Waist slab 2	7.52	0.175	32.9	7.325	17.92	240.9925	589.568		
			118.9563			743.4766	2200.209		
		Center of r	nass- stairca	se (Top	floor)				
Element	Area	Thickness	Weight	Х	Y	W*X	W*Y		
Landing slab 1	3.465	0.175	15.15938	6.25	15.885	94.74609	240.8067		
Landing slab 2	4.3425	0.175	18.99844	6.25	20.535	118.7402	390.1329		
Waist slab	7.52	0.175	32.9	7.325	17.92	240.9925	589.568		
			67.05781			454.4788	1220.508		

Center of Gravity – Basement Wall

Wall name	Length(m)	Height(m)	Thickness (m)	Weight(KN)	X(m)	Y(m)	W*X(KN- m)	W*Y(KN- m)
A1A2	4.75	2.95	0.2	35.03125	0	2.75	0	96.33594
A2A3	4.8	2.95	0.2	35.4	0	8.25	0	292.05
A3A4	3.85	2.95	0.2	28.39375	0	13.25	0	376.2172
A4A5	5.35	2.95	0.2	39.45625	0	18.5	0	729.9406
A1B1	3.25	2.95	0.2	23.96875	2	0	47.9375	0
B1C1	3.75	2.95	0.2	27.65625	6.25	0	172.8516	0
C1D1	4.95	2.95	0.2	36.50625	11.35	0	414.3459	0
D1E1	5.25	2.95	0.2	38.71875	17.2	0	665.9625	0
A5B5	3.25	2.95	0.2	23.96875	2	21.5	47.9375	515.3281
B5C5	3.75	2.95	0.2	27.65625	6.25	21.5	172.8516	594.6094
C5D5	4.95	2.95	0.2	36.50625	11.35	21.5	414.3459	784.8844
D5E5	5.25	2.95	0.2	38.71875	17.2	21.5	665.9625	832.4531
				391.9813			2602.195	4221.819

Overall COM Compilation

Ground Floor

Element	W(KN)	W*X	W*Y	COM(X)	COM(Y)
Wall	535.9319	4216.597	6214.136		
Primary beam	1092.8	10483.42	12128.43		
Slabs	1213.815	11533.46	12212.54		
Column	941.625	8064.338	10146.94	8.841225	9.841225
Secondary				0.041225	
beam	55.49797	821.2152	619.804		
Staircase	118.9563	743.4766	2200.209		
Basement wall	391.9813	2602.195	4221.819		
	4350.607	38464.7	42815.31		

First Floor

Element	W(KN)	W*X	W*Y	COM(X)	COM(Y)
Wall	1071.864	8433.194	12428.27		
Primary beam	1092.8	10483.42	12128.43		
Slabs	1213.815	11533.46	12212.54		
Column	941.625	8064.338	10146.94	8.917251	9.917251
Secondary					
beam	55.49797	821.2152	619.804		
Staircase	118.9563	743.4766	2200.209		
	4494.558	40079.1	44573.66		

Second Floor

Element	W(KN)	W*X	W*Y	COM(X)	COM(Y)
Wall	1071.864	8433.194	12428.27		
Primary beam	1092.8	10483.42	12128.43		
Slabs	1213.815	11533.46	12212.54		
Column	941.625	8064.338	10146.94	8.917251	9.917251
Secondary					
beam	55.49797	821.2152	619.804		
Staircase	118.9563	743.4766	2200.209		
	4494.558	40079.1	44573.66		

Third Floor

Element	W(KN)	W*X	W*Y	COM(X)	COM(Y)
Wall	1071.864	8433.194	12428.27	- 8.917251	9.917251
Primary beam	1092.8	10483.42	12128.43		
Slabs	1213.815	11533.46	12212.54		
Column	941.625	8064.338	10146.94	0.517251	5.517251
Secondary					
beam	55.49797	821.2152	619.804		

Staircase	118.9563	743.4766	2200.209	
	4494.558	40079.1	44573.66	

Fourth Floor

Element	W(KN)	W*X	W*Y	COM(X)	COM(Y)
Wall	1071.864	8433.194	12428.27		
Primary beam	1092.8	10483.42	12128.43		
Slabs	1213.815	11533.46	12212.54		
Column	941.625	8064.338	10146.94	8.917251	9.917251
Secondary					
beam	55.49797	821.2152	619.804		
Staircase	118.9563	743.4766	2200.209		
	4494.558	40079.1	44573.66		

Fifth Floor

Element	W(KN)	W*X	W*Y	COM(X)	COM(Y)
Wall	1071.864	8433.194	12428.27		
Primary beam	1092.8	10483.42	12128.43		
Slabs	1213.815	11533.46	12212.54		
Column	941.625	8064.338	10146.94	8.917251	9.917251
Secondary					
beam	55.49797	821.2152	619.804		
Staircase	118.9563	743.4766	2200.209		
	4494.558	40079.1	44573.66		

Sixth Floor

Element	W(KN)	W*X	W*Y	COM(X)	COM(Y)
Wall	1071.864	8433.194	12428.27		
Primary beam	1092.8	10483.42	12128.43		
Slabs	1213.815	11533.46	12212.54		
Column	941.625	8064.338	10146.94	8.917251	9.917251
Secondary					
beam	55.49797	821.2152	619.804		
Staircase	118.9563	743.4766	2200.209		
	4494.558	40079.1	44573.66		

Top Floor

Element	W(KN)	W*X	W*Y	COM(X)	COM(Y)
Wall	535.9319	4216.597	6214.136		
Primary beam	1092.8	10483.42	12128.43		
Slabs	1213.815	11533.46	12212.54		
Column	584.8875	5047.436	7183.856	9.1709	10.1709
Secondary					
beam	55.49797	821.2152	619.804		
Staircase	67.05781	454.4788	1220.508		
	3549.99	32556.61	36106.6		

Stair Cover

Element	W(KN)	W*X	W*Y	COM(X)	COM(Y)		
Wall	160.7892	1533.695	2922.97				
Primary beam	192.5219	1738.128	3561.655	9.148613	18.42591		
Slabs	229.5	2088.45	4245.75	9.140015	18.42591		
Column	114.075	1015.268	2110.388				
	696.8861	6375.541	12840.76				

Center of Stiffness – Columns

				Cen	ter of st	iffness-GF to	top floor				
Column	Lx(m)	Ly(m)	lx(m)	ly(m)	H(m)	Кх	Ку	Х	Y	Kx*X	Ку*Ү
A1	0.75	0.55	0.010398	0.019336	3.6	73244.07	136197.6	0	0	0	0
B1	0.75	0.55	0.010398	0.019336	3.6	73244.07	136197.6	4	0	292976.275	0
C1	0.75	0.55	0.010398	0.019336	3.6	73244.07	136197.6	8.5	0	622574.584	0
D1	0.75	0.55	0.010398	0.019336	3.6	73244.07	136197.6	14.2	0	1040065.78	0
E1	0.75	0.55	0.010398	0.019336	3.6	73244.07	136197.6	20.2	0	1479530.19	0
A2	0.75	0.55	0.010398	0.019336	3.6	73244.07	136197.6	0	5.5	0	749087.0662
B2	0.75	0.55	0.010398	0.019336	3.6	73244.07	136197.6	4	5.5	292976.275	749087.0662
C2	0.75	0.55	0.010398	0.019336	3.6	73244.07	136197.6	8.5	5.5	622574.584	749087.0662
D2	0.75	0.55	0.010398	0.019336	3.6	73244.07	136197.6	14.2	5.5	1040065.78	749087.0662
E2	0.75	0.55	0.010398	0.019336	3.6	73244.07	136197.6	20.2	5.5	1479530.19	749087.0662
A3	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	0	11	0	1152575.122
B3	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	4	11	419118.226	1152575.122
C3	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	8.5	11	890626.23	1152575.122
D3	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	14.2	11	1487869.7	1152575.122
E3	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	20.2	11	2116547.04	1152575.122
A4	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	0	15.5	0	1624083.126
B4	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	4	15.5	419118.226	1624083.126
C4	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	8.5	15.5	890626.23	1624083.126
D4	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	14.2	15.5	1487869.7	1624083.126
E4	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	20.2	15.5	2116547.04	1624083.126
A5	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	0	21.5	0	2252760.465
B5	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	4	21.5	419118.226	2252760.465
C5	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	8.5	21.5	890626.23	2252760.465
D5	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	14.2	21.5	1487869.7	2252760.465
E5	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	20.2	21.5	2116547.04	2252760.465

						2304134	2933670		21	612777.2	28892528.9
				C	Center c	of stiffness - ba	sement wall				
Wall	Lx(m)	Ly(m)	lx(m)	ly(m)	H(m)	Кх	Ку	Х	Y	Kx*X	Ку*Ү
A1A2	0.2	4.75	1.786198	0.003167	2.95	22865221.3	40536.68035	0	2.75	0	111475.871
A2A3	0.2	4.8	1.8432	0.0032	2.95	23594908.2	40963.38225	0	8.25	0	337947.904
A3A4	0.2	3.85	0.95111	0.002567	2.95	12175218.6	32856.04618	0	13.25	0	435342.612
A4A5	0.2	5.35	2.552173	0.003567	2.95	32670510.9	45657.10313	0	18.5	0	844656.408
A1B1	3.25	0.2	0.002167	0.572135	2.95	27735.6234	7323938.054	2	0	55471.25	0
B1C1	3.75	0.2	0.0025	0.878906	2.95	32002.6424	11250928.96	6.25	0	200016.5	0
C1D1	4.95	0.2	0.0033	2.021456	2.95	42243.4879	25876776.58	11.35	0	479463.6	0
D1E1	5.25	0.2	0.0035	2.411719	2.95	44803.6993	30872549.07	17.2	0	770623.6	0
A5B5	3.25	0.2	0.002167	0.572135	2.95	27735.6234	7323938.054	2	21.5	55471.25	157464668
B5C5	3.75	0.2	0.0025	0.878906	2.95	32002.6424	11250928.96	6.25	21.5	200016.5	241894973
C5D5	4.95	0.2	0.0033	2.021456	2.95	42243.4879	25876776.58	11.35	21.5	479463.6	556350697
D5E5	5.25	0.2	0.0035	2.411719	2.95	44803.6993	30872549.07	17.2	21.5	770623.6	663759805
						91599429.8	150808398.6			3011150	1621199565

	Center of stiffness-stair cover										
Column	Lx(m)	Ly(m)	lx(m)	ly(m)	H(m)	Кх	Ку	Х	Y	Kx*X	Ky*Y
B4	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	4	15.5	419118.226	1624083.126
C4	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	8.5	15.5	890626.23	1624083.126
D4	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	14.2	15.5	1487869.7	1624083.126
B5	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	4	21.5	419118.226	2252760.465
C5	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	8.5	21.5	890626.23	2252760.465
D5	0.65	0.65	0.014876	0.014876	3.6	104779.6	104779.6	14.2	21.5	1487869.7	2252760.465
						628677.3	628677.3			5595228.32	11630530.77

Overall Center of Stiffness

		Gro	ound floor			
Element	Кх	Ку	Kx*X	Ку*Ү	COR(X)	COR(Y)
Column	2304134.03	2933669.832	21612777.2	28892528.9		
Basement					0.262226	10.73286
wall	91599429.8	150808398.6	3011149.96	1621199565		
Sum	93903563.9	153742068.4	24623927.2	1650092094		
		For 1	Lst-top floor			
Element	Кх	Ку	Kx*X	Ку*Ү	COR(X)	COR(Y)
Column	2304134.03	2933669.832	21612777.2	28892528.9	9.38	9.848596
		For	stair cover			
Element	Кх	Ку	Kx*X	Ку*Ү	COR(X)	COR(Y)
Column	628677.339	628677.3391	5595228.32	11630530.8	8.9	18.5

Calculation for Foundation Design

					Coord	dinate		
SN	Joint element	P(KN)	MX	MY	Х	Y	P*X	P*Y
26	C15 Column	658.113	8.1127	-8.8735	2	2	1316.226	1316.23
	Basement							
182	joint	103.8972	1.4365	-1.2825	2	2.3438	207.7944	243.514
	Basement							
177	joint	107.1412	1.8101	-3.0541	2	2.6875	214.2824	287.942
	Basement							
183	joint	102.8953	1.859	-5.004	2	3.0313	205.7906	311.907
	Basement							
185	joint	99.0023	1.6998	-6.6368	2	3.375	198.0046	334.133
	Basement							
188	joint	94.8726	1.3902	-7.8688	2	3.7188	189.7452	352.812

Basement91.5742 0.4304 -9.1933 2 4.4063 183.1484 Basement93.4353 -0.1025 -9.3784 2 4.75 186.8706 Basement93.4353 -0.1025 -9.3784 2 4.75 186.8706 Basement97.4875 -0.6202 -9.2878 2 5.0938 194.975 Basement97.4875 -0.6202 -9.2878 2 5.0938 194.975 Basement97.4875 -0.6202 -9.2878 2 5.0938 194.975 Basement91.0111 104.1888 -1.0534 -8.9231 2 5.4375 208.3776 Basement93.995 -8.2673 2 5.7813 223.6456 Basement93.995 -7.2939 2 6.125 242.9594 Basement93.0525 -1.4784 -6.0007 2 6.4688 260.105 Basement93.9934 -1.1331 -4.4709 2 6.8125 281.8068 Basement95joint 144.7419 -0.7431 -3.143 2 7.1563 289.4838 23C16980.9481 1.9282 61.6026 2 7.5 1961.8962	375.537 403.503
192 joint 91.5742 0.4304 -9.1933 2 4.4063 183.1484 Basement 93.4353 -0.1025 -9.3784 2 4.75 186.8706 Basement 93.4353 -0.1025 -9.3784 2 4.75 186.8706 Basement 97.4875 -0.6202 -9.2878 2 5.0938 194.975 Basement 97.4875 -0.6202 -9.2878 2 5.0938 194.975 Basement 90.011 104.1888 -1.0534 -8.9231 2 5.4375 208.3776 Basement 90.011 104.1888 -1.3905 -8.2673 2 5.7813 223.6456 Basement 90.011 121.4797 -1.4935 -7.2939 2 6.125 242.9594 Basement 90.011 130.0525 -1.4784 -6.0007 2 6.4688 260.105 Basement 90.011 140.9034 -1.1331 -4.4709 2 6.8125 281.8068 Basement 95 90.011 144.7419 -0.7431 -3.143 2	403 503
Basement 93.4353 -0.1025 -9.3784 2 4.75 186.8706 Basement -9.3784 2 4.75 186.8706 - 186 joint 97.4875 -0.6202 -9.2878 2 5.0938 194.975 Basement - - - - - - - 180 joint 104.1888 -1.0534 -8.9231 2 5.4375 208.3776 Basement - <t< td=""><td>403 503</td></t<>	403 503
189 joint 93.4353 -0.1025 -9.3784 2 4.75 186.8706 Basement 97.4875 -0.6202 -9.2878 2 5.0938 194.975 Basement 97.4875 -0.6202 -9.2878 2 5.0938 194.975 Basement 104.1888 -1.0534 -8.9231 2 5.4375 208.3776 Basement 104.1888 -1.0534 -8.9231 2 5.7813 223.6456 Basement 111.8228 -1.3905 -8.2673 2 5.7813 223.6456 Basement 121.4797 -1.4935 -7.2939 2 6.125 242.9594 Basement 130.0525 -1.4784 -6.0007 2 6.4688 260.105 Basement 140.9034 -1.1331 -4.4709 2 6.8125 281.8068 Basement 140.9034 -1.1331 -3.143 2 7.1563 289.4838 95 joint 144.7419 -0.7431 -3.143 2 7.1563 289.4838 23 C16 Column 980.9481	+05.505
Basement 97.4875 -0.6202 -9.2878 2 5.0938 194.975 Basement 104.1888 -1.0534 -8.9231 2 5.4375 208.3776 Basement -1.1330 -8.9231 2 5.7813 223.6456 Basement -1.13905 -8.2673 2 5.7813 223.6456 Basement -1.14797 -1.4935 -7.2939 2 6.125 242.9594 Basement -1.130.0525 -1.4784 -6.0007 2 6.4688 260.105 Basement -1.1331 -4.4709 2 6.8125 281.8068 Basement -1.1331 -4.4709 2 6.8125 281.8068 Basement -1.4741 -0.7431 -3.143 2 <td< td=""><td></td></td<>	
186 joint 97.4875 -0.6202 -9.2878 2 5.0938 194.975 Basement 104.1888 -1.0534 -8.9231 2 5.4375 208.3776 Basement 104.1888 -1.0534 -8.9231 2 5.4375 208.3776 Basement 111.8228 -1.3905 -8.2673 2 5.7813 223.6456 Basement 111.8228 -1.3905 -7.2939 2 6.125 242.9594 148 joint 121.4797 -1.4935 -7.2939 2 6.125 242.9594 Basement - - - - - - - 129 joint 130.0525 -1.4784 -6.0007 2 6.4688 260.105 Basement - - - - - - - 102 joint 140.9034 -1.1331 -4.4709 2 6.8125 281.8068 95 joint 144.7419 -0.7431 -3.143 2 7.1563 289.4838 23 C16 Column	443.818
Basement 104.1888 -1.0534 -8.9231 2 5.4375 208.3776 Basement 111.8228 -1.3905 -8.2673 2 5.7813 223.6456 Basement 111.8228 -1.3905 -8.2673 2 5.7813 223.6456 Basement 121.4797 -1.4935 -7.2939 2 6.125 242.9594 Basement 121.4797 -1.4935 -7.2939 2 6.4688 260.105 Basement 130.0525 -1.4784 -6.0007 2 6.4688 260.105 Basement 140.9034 -1.1331 -4.4709 2 6.8125 281.8068 Basement 95 joint 144.7419 -0.7431 -3.143 2 7.1563 289.4838 23 C16 Column 980.9481 1.9282 61.6026 2 7.5 1961.8962	
180 joint 104.1888 -1.0534 -8.9231 2 5.4375 208.3776 Basement 111.8228 -1.3905 -8.2673 2 5.7813 223.6456 Basement 111.8228 -1.3905 -8.2673 2 5.7813 223.6456 Basement 121.4797 -1.4935 -7.2939 2 6.125 242.9594 Basement 130.0525 -1.4784 -6.0007 2 6.4688 260.105 Basement 130.0525 -1.4784 -6.0007 2 6.8125 281.8068 Basement 140.9034 -1.1331 -4.4709 2 6.8125 281.8068 Basement 95 joint 144.7419 -0.7431 -3.143 2 7.1563 289.4838 23 C16 Column 980.9481 1.9282 61.6026 2 7.5 1961.8962	496.582
Basement 111.8228 -1.3905 -8.2673 2 5.7813 223.6456 Basement 111.8228 -1.3905 -8.2673 2 5.7813 223.6456 Basement 148 joint 121.4797 -1.4935 -7.2939 2 6.125 242.9594 Basement 129 joint 130.0525 -1.4784 -6.0007 2 6.4688 260.105 Basement 129 joint 130.0525 -1.4784 -6.0007 2 6.4688 260.105 Basement 102 joint 140.9034 -1.1331 -4.4709 2 6.8125 281.8068 Basement - - - - - - - 102 joint 144.7419 -0.7431 -3.143 2 7.1563 289.4838 23 C16 Column 980.9481 1.9282 61.6026 2 7.5 1961.8962	
171 joint 111.8228 -1.3905 -8.2673 2 5.7813 223.6456 Basement 148 joint 121.4797 -1.4935 -7.2939 2 6.125 242.9594 Basement -1.4935 -7.2939 2 6.125 242.9594 Basement -1.4935 -7.2939 2 6.4688 260.105 Joint 130.0525 -1.4784 -6.0007 2 6.4688 260.105 Basement -1.1331 -4.4709 2 6.8125 281.8068 Basement -1.1331 -4.4709 2 6.8125 281.8068 Basement -1.1331 -3.143 2 7.1563 289.4838 95 joint 144.7419 -0.7431 -3.143 2 7.5 1961.8962 23 C16 Column 980.9481 1.9282 61.6026 2 7.5 1961.8962	566.527
Basement 121.4797 -1.4935 -7.2939 2 6.125 242.9594 Basement Basement -1.4935 -7.2939 2 6.125 242.9594 Basement 130.0525 -1.4784 -6.0007 2 6.4688 260.105 Basement 130.0525 -1.4784 -6.0007 2 6.4688 260.105 Basement 140.9034 -1.1331 -4.4709 2 6.8125 281.8068 Basement 95 joint 144.7419 -0.7431 -3.143 2 7.1563 289.4838 23 C16 Column 980.9481 1.9282 61.6026 2 7.5 1961.8962	
148 joint 121.4797 -1.4935 -7.2939 2 6.125 242.9594 Basement - - - - - - - 129 joint 130.0525 -1.4784 -6.0007 2 6.4688 260.105 Basement - - - - - - 102 joint 140.9034 -1.1331 -4.4709 2 6.8125 281.8068 Basement - - - - - - 95 joint 144.7419 -0.7431 -3.143 2 7.1563 289.4838 23 C16 Column 980.9481 1.9282 61.6026 2 7.5 1961.8962	646.481
Basement -1.4784 -6.0007 2 6.4688 260.105 Basement -1.1331 -4.4709 2 6.8125 281.8068 Basement -1.1331 -4.4709 2 6.8125 281.8068 Basement -0.7431 -3.143 2 7.1563 289.4838 95 joint 144.7419 -0.7431 -3.143 2 7.1563 289.4838 23 C16 Column 980.9481 1.9282 61.6026 2 7.5 1961.8962	
129 joint 130.0525 -1.4784 -6.0007 2 6.4688 260.105 Basement - <t< td=""><td>744.063</td></t<>	744.063
Basement 140.9034 -1.1331 -4.4709 2 6.8125 281.8068 Basement -0.7431 -3.143 2 7.1563 289.4838 95 joint 144.7419 -0.7431 -3.143 2 7.1563 289.4838 23 C16 Column 980.9481 1.9282 61.6026 2 7.5 1961.8962	
102 joint 140.9034 -1.1331 -4.4709 2 6.8125 281.8068 Basement - <	841.284
Basement -0.7431 -3.143 2 7.1563 289.4838 95 joint 144.7419 -0.7431 -3.143 2 7.1563 289.4838 23 C16 Column 980.9481 1.9282 61.6026 2 7.5 1961.8962	
95 joint 144.7419 -0.7431 -3.143 2 7.1563 289.4838 23 C16 Column 980.9481 1.9282 61.6026 2 7.5 1961.8962	959.904
23 C16 Column 980.9481 1.9282 61.6026 2 7.5 1961.8962	4005.00
	1035.82
	7757 44
	7357.11
Basement 145.0126 1.2108 -3.1299 2 7.8438 290.0252	1137.45
94 Joint 143.0126 1.2108 -3.1299 2 7.8438 290.0232 Basement	1157.45
	1181.86
Basement	1101.00
	1146.89
Basement	11-0.05
	1123.54

	Basement							
152	joint	118.8347	1.8435	-8.1617	2	9.2188	237.6694	1095.51
	Basement							
170	joint	112.9734	1.5043	-8.8008	2	9.5625	225.9468	1080.31
	Basement							
175	joint	108.4003	1.0486	-9.1628	2	9.9063	216.8006	1073.85
	Basement							
179	joint	106.6164	0.5168	-9.2759	2	10.25	213.2328	1092.82
	Basement							
176	joint	107.1883	-0.0277	-9.151	2	10.5938	214.3766	1135.53
	Basement							
172	joint	110.7321	-0.5121	-8.7779	2	10.9375	221.4642	1211.13
	Basement							
163	joint	115.643	-0.915	-8.1296	2	11.2813	231.286	1304.6
	Basement							
145	joint	122.915	-1.1057	-7.1725	2	11.625	245.83	1428.89
	Basement							
131	joint	129.5801	-1.1862	-5.8997	2	11.9688	259.1602	1550.92
	Basement							
111	joint	138.6234	-0.9566	-4.3916	2	12.3125	277.2468	1706.8
	Basement							
101	joint	142.1939	-0.6951	-3.0825	2	12.6563	284.3878	1799.65
				-		10	1001 0000	400000
24	C17 Column	945.9041	0.7833	60.3355	2	13	1891.8082	12296.8
	Basement		0 0075	2 4 2 4 -	-	40.0400	204 5 402	4045 50
89	joint	145.7741	0.8075	-3.1347	2	13.3462	291.5482	1945.53
	Basement		4 000 4	4 4700	2	10 0000	202.202	2004 40
88	joint	146.154	1.0884	-4.4796	2	13.6923	292.308	2001.18
4.00	Basement	120 0055	4 0 4 0 0	F 0050	-	44.0005	270 074	4005 40
106	joint	139.9855	1.2129	-5.9959	2	14.0385	279.971	1965.19

	Basement							
115	joint	136.281	1.1165	-7.2252	2	14.3846	272.562	1960.35
	Basement	100.201	1.1100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1 1100 10	2,2:002	1000.00
122	joint	133.383	0.9048	-8.0621	2	14.7308	266.766	1964.84
	Basement							
125	joint	132.4332	0.5063	-8.4858	2	15.0769	264.8664	1996.68
	Basement							
123	joint	133.237	0.094	-8.5011	2	15.4231	266.474	2054.93
	Basement							
118	joint	135.2989	-0.3114	-8.1103	2	15.7692	270.5978	2133.56
	Basement							
108	joint	139.8222	-0.4969	-7.3135	2	16.1154	279.6444	2253.29
	Basement							
97	joint	143.6487	-0.5892	-6.1339	2	16.4615	287.2974	2364.67
	Basement							
79	joint	150.469	-0.298	-4.6765	2	16.8077	300.938	2529.04
	Basement							
74	joint	153.2733	-0.0839	-3.3783	2	17.1538	306.5466	2629.22
				-				
21	C6 Column	1013.8514	6.9893	56.6285	2	17.5	2027.7028	17742.4
	Basement							
104	joint	140.3184	1.6723	-3.1962	2	17.8333	280.6368	2502.34
	Basement							
107	joint	139.979	2.2043	-4.385	2	18.1667	279.958	2542.96
	Basement							
133	joint	128.5556	2.4092	-5.7817	2	18.5	257.1112	2378.28
	Basement							
154	joint	118.6507	2.4572	-6.9945	2	18.8333	237.3014	2234.58
	Basement							
174	joint	108.9535	2.3731	-7.9438	2	19.1667	217.907	2088.28

	Basement							
184	joint	100.6699	2.0954	-8.6327	2	19.5	201.3398	1963.06
	Basement							
190	joint	93.2572	1.7004	-9.0917	2	19.8333	186.5144	1849.6
	Basement							
194	joint	87.9793	1.2121	-9.3496	2	20.1667	175.9586	1774.25
	Basement							
196	joint	84.8046	0.6789	-9.422	2	20.5	169.6092	1738.49
	Basement							
197	joint	84.3608	0.1254	-9.3046	2	20.8333	168.7216	1757.51
	Basement							
195	joint	86.2114	-0.4343	-8.9754	2	21.1667	172.4228	1824.81
	Basement							
193	joint	90.7374	-0.9532	-8.3902	2	21.5	181.4748	1950.85
	Basement							
187	joint	96.4709	-1.4241	-7.4985	2	21.8333	192.9418	2106.28
	Basement							
181	joint	104.0535	-1.7305	-6.248	2	22.1667	208.107	2306.52
	Basement							
173	joint	110.2772	-1.8956	-4.6384	2	22.5	220.5544	2481.24
450	Basement	117 2252	4 75 65	0 7540	2		224 4504	2676.64
158	joint	117.2252	-1.7565	-2.7513	2	22.8333	234.4504	2676.64
1.01	Basement	110 1001	1 2500	1 0 0 1 7	2	22 4 6 6 7	222 2202	2004 25
161	joint	116.1691	-1.3586	-1.0617	2	23.1667	232.3382	2691.25
25	C1 Column	801.1373	-8.1409	-3.7785	2	23.5	1602.2746	18826.7
170	Basement	107.0973	1.2461	-0.8267	2 2 2 2 2 2	2	249.89013	214 105
178	joint Basement	107.0973	1.2401	-0.8267	2.3333	2	249.89013	214.195
135	joint	127.5517	-1.1537	-0.4698	2.3333	23.5	297.61638	2997.46
132	Basement	127.5517	-1.1337	-0.4036	2.3335	23.5	297.01030	2337.40
167	joint	114.3426	2.744	-1.0792	2.6667	2	304.91741	228.685
101	Joint	114.3420	2./44	-1.0792	2.0007	Z	304.91/41	220.005

	Basement							
121	joint	133.5254	-2.6537	-0.6225	2.6667	23.5	356.07218	3137.85
	Basement							
162	joint	116.0658	4.413	-1.1192	3	2	348.1974	232.132
	Basement							
116	joint	135.9311	-4.3089	-0.6754	3	23.5	407.7933	3194.38
	Basement							
153	joint	118.6607	5.7353	-0.9308	3.3333	2	395.53171	237.321
	Basement							
105	joint	140.2083	-5.5893	-0.407	3.3333	23.5	467.35633	3294.9
	Basement							
150	joint	120.4579	6.6016	-0.6367	3.6667	2	441.68298	240.916
	Basement							
98	joint	143.2543	-6.3765	-0.0309	3.6667	23.5	525.27054	3366.48
	Basement							
142	joint	123.9646	6.9827	-0.2779	4	2	495.8584	247.929
	Basement							
83	joint	148.9106	-6.624	0.4251	4	23.5	595.6424	3499.4
	Basement					_		
136	joint	127.3797	6.8894	0.0493	4.3333	2	551.97445	254.759
	Basement	454.000	6 9 9 4 5	0.0004				
71	,	154.232	-6.3215	0.8381	4.3333	23.5	668.33353	3624.45
124	Basement	400.0074	6 3 5 9 7	0.0400	4 6 6 6 7	-	640.04000	265 674
124	joint	132.8371	6.3507	0.2193	4.6667	2	619.91089	265.674
62	Basement	162,4000	F 466	1 0200	A CCC7	22 5	757 04704	2010 02
63	joint	162.4098	-5.466	1.0306	4.6667	23.5	757.91781	3816.63
112	Basement	127 6147	E /1C1	0 2062	-	2	600 0725	275 220
112	joint Bacamant	137.6147	5.4161	0.3062	5	2	688.0735	275.229
ГС	Basement	160 7524	1 0702	1 1000	-	<u>ээ</u> г	042 7655	2065 7
56	joint	168.7531	-4.0783	1.1092	5	23.5	843.7655	3965.7

	Basement							
91	joint	145.1817	4.2118	0.1308	5.3333	2	774.29756	290.363
	Basement							
43	joint	177.6883	-2.2588	0.745	5.3333	23.5	947.66501	4175.68
	Basement							
82	joint	149.5962	3.1119	0.0197	5.6667	2	847.71679	299.192
	Basement							
39	joint	182.6127	-0.4015	0.4266	5.6667	23.5	1034.8114	4291.4
22	C 14 Column	1000.0568	41.5288	-7.7284	6	2	6000.3408	2000.11
6	C 23 Column	3424.2952	-8.1149	7.4355	6	7.5	20545.771	25682.2
9	C 24 Column	3286.6426	1.6374	6.0566	6	13	19719.856	42726.4
4	C7 Column	4255.081	-25.0827	7.6406	6	17.5	25530.486	74463.9
15	C2 Column	1262.6739	24.5593	-5.0141	6	23.5	7576.0434	29672.8
203	basment joint	19.6519	0.6351	-0.5089	6.175	18.27	121.35048	359.04
70	basment joint	154.7589	3.2359	-1.3757	6.3462	2	982.13093	309.518
29	basment joint	196.0031	1.2709	-1.4255	6.3462	23.5	1243.8749	4606.07
201	basment joint	45.7774	1.3035	0.8924	6.5083	18.27	297.93305	836.353
68	basment joint	156.9675	4.4001	-1.7054	6.6923	2	1050.4736	313.935
30	basment joint	194.0967	1.6744	-1.9238	6.6923	23.5	1298.9533	4561.27
202	basment joint	42.1936	1.3781	1.3729	6.8417	18.27	288.67595	770.877
78	basment joint	151.0765	5.6767	-1.7964	7.0385	2	1063.3519	302.153
32	basment joint	190.3649	2.1999	-2.1453	7.0385	23.5	1339.8833	4473.58
199	basment joint	58.2389	1.5438	2.6937	7.175	18.27	417.86411	1064.02
86	basment joint	147.7117	6.6952	-1.6303	7.3846	2	1090.7918	295.423
34	basment joint	187.227	2.4969	-2.1137	7.3846	23.5	1382.5965	4399.83
200	basment joint	51.9171	1.8154	3.2523	7.5083	18.27	389.80916	948.525
92	basment joint	145.1708	7.3664	-1.3431	7.7308	2	1122.2864	290.342
36	basment joint	185.0888	2.6372	-1.8345	7.7308	23.5	1430.8845	4349.59
198	basment joint	79.6137	2.2657	5.0051	7.8417	18.27	624.30675	1454.54
93	basment joint	145.026	7.6804	-0.8685	8.0769	2	1171.3605	290.052

38	basment joint	184.12	2.6787	-1.3689	8.0769	23.5	1487.1188	4326.82
	Staircase joint	-57.3656	0.6619	6.2411	8.175	18.27	-468.9638	-1048.1
87	basment joint	146.809	7.6436	-0.3953	8.4231	2	1236.5869	293.618
37	basment joint	184.4156	2.5975	-0.8292	8.4231	23.5	1553.351	4333.77
81	basment joint	150.0943	7.2567	0.0493	8.7692	2	1316.2069	300.189
35	basment joint	186.1107	2.451	-0.3428	8.7692	23.5	1632.042	4373.6
69	basment joint	155.8214	6.5138	0.2481	9.1154	2	1420.3744	311.643
33	basment joint	188.2945	2.2375	-0.0394	9.1154	23.5	1716.3797	4424.92
64	basment joint	161.1973	5.4265	0.3335	9.4615	2	1525.1683	322.395
31	basment joint	191.9796	1.9054	0.019	9.4615	23.5	1816.415	4511.52
55	basment joint	169.9373	4.0876	0.0501	9.8077	2	1666.6941	339.875
28	basment joint	196.1412	1.2205	-0.1667	9.8077	23.5	1923.694	4609.32
49	basment joint	175.1573	2.8561	-0.1266	10.1538	2	1778.5122	350.315
27	basment joint	199.2862	0.6512	-0.5985	10.1538	23.5	2023.5122	4683.23
				-				
20	C 13 Column	1133.9813	33.9109	11.4108	10.5	2	11906.804	2267.96
5	C22 Column	3685.4005	3.8419	3.1589	10.5	7.5	38696.705	27640.5
8	C 25 Column	3298.3802	-4.3379	-1.1331	10.5	13	34632.992	42878.9
3	C 18 Column	4591.4342	-16.2104	5.4011	10.5	17.5	48210.059	80350.1
				-				
14	C3 Column	1281.0491	5.0036	12.8607	10.5	23.5	13451.016	30104.7
60	basment joint	163.3874	2.7119	-2.0048	10.8353	2	1770.3515	326.775
42	basment joint	178.4552	-1.4614	-2.5015	10.8353	23.5	1933.6156	4193.7
58	basment joint	165.035	3.8404	-2.5857	11.1706	2	1843.54	330.07
46	basment joint	175.9107	-3.7846	-3.1055	11.1706	23.5	1965.0281	4133.9
72	basment joint	154.1805	5.1064	-2.81	11.5059	2	1773.9854	308.361
65	basment joint	160.9041	-6.2998	-3.3936	11.5059	23.5	1851.3465	3781.25
90	basment joint	145.3356	6.1885	-2.7907	11.8412	2	1720.9479	290.671
84	basment joint	148.5603	-8.5662	-3.4107	11.8412	23.5	1759.1322	3491.17
113	basment joint	136.533	7.0138	-2.625	12.1765	2	1662.4941	273.066

114	basment joint	136.3098	-10.4303	-3.2264	12.1765	23.5	1659.7763	3203.28
130	basment joint	130.0252	7.5936	-2.2255	12.5118	2	1626.8493	260.05
139	basment joint	126.4417	-11.8387	-2.7399	12.5118	23.5	1582.0133	2971.38
140	basment joint	125.2137	7.9608	-1.7016	12.8471	2	1608.6329	250.427
155	basment joint	118.3891	-12.774	-2.091	12.8471	23.5	1520.9566	2782.14
144	basment joint	123.105	8.1459	-1.074	13.1824	2	1622.8194	246.21
168	basment joint	113.9113	-13.2398	-1.3125	13.1824	23.5	1501.6243	2676.92
141	basment joint	124.1622	8.1642	-0.4583	13.5176	2	1678.375	248.324
169	basment joint	113.2564	-13.2454	-0.5201	13.5176	23.5	1530.9547	2661.53
134	basment joint	128.3211	8.0152	0.1621	13.8529	2	1777.6194	256.642
160	basment joint	116.3375	-12.8026	0.254	13.8529	23.5	1611.6118	2733.93
119	basment joint	135.1625	7.6821	0.6629	14.1882	2	1917.7126	270.325
143	basment joint	123.1733	-11.9266	0.8877	14.1882	23.5	1747.6074	2894.57
99	basment joint	143.2048	7.1332	1.0282	14.5235	2	2079.8349	286.41
126	basment joint	131.6271	-10.6416	1.3666	14.5235	23.5	1911.6862	3093.24
73	basment joint	153.6466	6.3344	1.1048	14.8588	2	2283.0041	307.293
100	basment joint	142.8743	-8.9979	1.5123	14.8588	23.5	2122.9406	3357.55
62	basment joint	162.8842	5.2733	1.055	15.1941	2	2474.8788	325.768
75	basment joint	153.1893	-7.0784	1.4877	15.1941	23.5	2327.5735	3599.95
48	basment joint	175.1793	4.02	0.6405	15.5294	2	2720.4294	350.359
57	basment joint	167.4944	-5.0603	1.0774	15.5294	23.5	2601.0875	3936.12
41	basment joint	180.6659	2.9001	0.2597	15.8647	2	2866.2103	361.332
51	basment joint	173.4627	-3.3675	0.6774	15.8647	23.5	2751.9337	4076.37
				-				
16	C 12 Column	1236.2838	37.2488	10.3635	16.2	2	20027.798	2472.57
7	C21 Column	3315.0462	17.6959	-1.0717	16.2	7.5	53703.748	24862.8
10	C20 Column	2854.3945	-24.5465	4.0463	16.2	13	46241.191	37107.1
2	C19 Column	4755.6775	-14.4668	12.0173	16.2	17.5	77041.976	83224.4
17	C4 Column	1233.1943	-51.9799	-5.8741	16.2	23.5	19977.748	28980.1
50	basment joint	174.8575	2.8618	-2.1433	16.5333	2	2890.9715	349.715

45 basment joint 176.2945 3.9468 -2.8724 16.8667 2 2973.5064 352.58 52 basment joint 173.0717 -3.6833 -2.5549 16.8667 23.5 2919.1484 4067.11 61 basment joint 160.7332 -4.8482 -2.9027 17.2 23.5 2764.611 3777.2 77 basment joint 151.9171 6.199 -3.2812 17.5333 2 2663.6081 303.83 80 basment joint 150.2211 -5.8411 -2.9798 17.5333 23.5 2633.8716 3530. 103 basment joint 130.9064 7.5321 -2.8421 18.2 2 2382.4965 261.81 128 basment joint 130.9064 7.5321 -2.3512 18.5333 2 2273.874 245.27 146 basment joint 112.26562 -7.4759 -2.0614 18.5333 23.5 2273.2242 288.24 157 basment joint 117.741 8.0867									
52 basment joint 173.0717 -3.6833 -2.5549 16.8667 23.5 2919.1484 4067.1 61 basment joint 163.0808 5.1653 -3.2106 17.2 2 2804.9898 326.16 66 basment joint 150.7332 -4.8482 -2.9027 17.2 23.5 2764.611 3777.2 77 basment joint 150.9171 6.199 -3.2812 17.5333 2 2663.6081 303.83 80 basment joint 150.2211 -5.8411 -2.9798 17.5333 2.35 2633.8716 3530. 103 basment joint 139.3146 -6.5939 -2.8953 17.8667 23.5 2489.0922 3273.8 128 basment joint 130.9064 7.5321 -2.8502 18.2 235 2373.2454 3064.3 147 basment joint 122.6376 7.8862 -2.3512 18.5333 23.5 2272.8794 245.27 146 basment joint 117.7741 8.0867	54	basment joint	171.1486	-2.7453	-1.82	16.5333	23.5	2829.6511	4021.99
61 basment joint 163.0808 5.1653 -3.2106 17.2 2 2804.9898 326.16 66 basment joint 160.7332 -4.8482 -2.9027 17.2 23.5 2764.611 3777.2 77 basment joint 151.9171 6.199 -3.2812 17.5333 2 2663.6081 303.83 80 basment joint 140.3873 6.9818 -3.1928 17.5667 2 2508.2578 280.77 109 basment joint 139.3146 -6.5939 -2.8953 17.8667 23.5 2489.0922 3273.8 127 basment joint 130.9064 7.5321 -2.8421 18.2 2 2382.4965 261.81 128 basment joint 122.6376 7.862 -2.3512 18.5333 2 2272.8794 245.27 146 basment joint 122.6562 -7.4759 -2.0614 18.5333 23.5 2212.5753 234.54 156 basment joint 117.2741 8.0867 <	45	basment joint	176.2945	3.9468	-2.8724	16.8667	2	2973.5064	352.589
66basment joint160.7332-4.8482-2.902717.223.52764.6113777.277basment joint151.91716.199-3.281217.533322663.6081303.8380basment joint150.2211-5.8411-2.979817.533323.52633.87163530.103basment joint140.38736.9818-3.192817.866722508.2578280.77109basment joint139.3146-6.5939-2.895317.866723.52489.09223273.8127basment joint130.90647.5321-2.842118.222382.4965261.81128basment joint122.63767.8862-2.351218.533322272.8794245.27146basment joint112.6562-7.4759-2.061418.53332.3.52273.22422882.4157basment joint117.27418.0867-1.72618.866722115.753234.54156basment joint117.7855-7.6881-1.4418.866723.5222.22372767.9166basment joint115.4171-7.7821-0.77819.223.52216.00832712.165basment joint115.49418.0937-0.392719.53332.3.52286.65012751.0151basment joint115.49418.0937-0.392719.53332.3.52469.23.223.5159basment joint112.429-7.61660.606	52	basment joint	173.0717	-3.6833	-2.5549	16.8667	23.5	2919.1484	4067.18
77basment joint151.91716.199-3.281217.533322663.6081303.8380basment joint150.2211-5.8411-2.979817.533323.52633.87163530.103basment joint140.38736.9818-3.192817.866722508.2578280.77109basment joint139.3146-6.5939-2.895317.866723.52489.09223273.8127basment joint130.90647.5321-2.842118.222382.4965261.81128basment joint122.63767.8862-2.351218.533322272.8794245.27146basment joint122.6562-7.4759-2.061418.53332.3.52273.24222882.4157basment joint117.27418.0867-1.72618.866722212.5753234.54156basment joint117.7855-7.6881-1.4418.866723.52222.22372767.9166basment joint115.4171-7.7821-0.77819.222195.7158228.7165basment joint115.49418.0937-0.392719.533323.52286.65012751.0151basment joint117.0642-7.7631-0.094519.533323.52469.73238.57149basment joint112.4229-7.61660.606419.866723.52412.27232853.4137basment joint126.61117.53280.8	61	basment joint	163.0808	5.1653	-3.2106	17.2	2	2804.9898	326.162
80 basment joint 150.2211 -5.8411 -2.9798 17.5333 23.5 2633.8716 3530. 103 basment joint 140.3873 6.9818 -3.1928 17.8667 2 2508.2578 280.77 109 basment joint 139.3146 -6.5939 -2.8953 17.8667 23.5 2489.0922 3273.8 127 basment joint 130.9064 7.5321 -2.8421 18.2 2 2382.4965 261.81 128 basment joint 130.3981 -7.1244 -2.5502 18.2 23.5 2373.2454 3064.3 147 basment joint 122.6376 7.8862 -2.3512 18.5333 2 2272.8794 245.27 146 basment joint 117.2741 8.0867 -1.726 18.8667 2 212.5753 234.54 156 basment joint 117.7855 -7.6881 -1.44 18.8667 23.5 222.2237 2767.9 166 basment joint 115.4171 -7.7631	66	basment joint	160.7332	-4.8482	-2.9027	17.2	23.5	2764.611	3777.23
103basment joint140.38736.9818-3.192817.866722508.2578280.77109basment joint139.3146-6.5939-2.895317.866723.52489.09223273.8127basment joint130.90647.5321-2.842118.222382.4965261.81128basment joint130.3981-7.1244-2.550218.223.52373.24543064.33147basment joint122.63767.8862-2.351218.533322272.8794245.27146basment joint1122.6562-7.4759-2.061418.533323.52273.22422882.4157basment joint117.27418.0867-1.72618.866722212.5753234.54156basment joint117.7855-7.6881-1.4418.866723.52222.22372767.99166basment joint115.4171-7.7821-0.77819.223.52216.00832712.164basment joint115.49418.0937-0.392719.533323.52286.65012751.0151basment joint117.0642-7.7631-0.094519.533323.52412.27232853.4137basment joint124.62117.53280.896820.22255.5442253.22132basment joint129.5014-7.30911.22320.223.52615.92833043.2149basment joint139.2904-6.78771.7	77	basment joint	151.9171	6.199	-3.2812	17.5333	2	2663.6081	303.834
109basment joint139.3146-6.5939-2.895317.866723.52489.09223273.8127basment joint130.90647.5321-2.842118.222382.4965261.81128basment joint130.3981-7.1244-2.550218.223.52373.24543064.33147basment joint122.63767.8862-2.351218.533322272.8794245.27146basment joint112.6562-7.4759-2.061418.533323.52273.22422882.4157basment joint117.7855-7.6881-1.72618.866722212.5753234.544156basment joint117.7855-7.6881-1.4418.866723.52222.22372767.9166basment joint114.36028.1512-1.068219.222195.7158228.7165basment joint115.4171-7.7821-0.77819.223.52216.00832712.164basment joint117.0642-7.7631-0.094519.533323.52286.65012751.0151basment joint119.28547.89550.295719.866723.52412.27232853.4137basment joint122.60117.53280.896820.222557.5442253.22132basment joint129.5014-7.30911.22320.223.52615.92833043.2137basment joint139.2904-6.78771.7794<	80	basment joint	150.2211	-5.8411	-2.9798	17.5333	23.5	2633.8716	3530.2
127basment joint130.90647.5321-2.842118.222382.4965261.81128basment joint130.3981-7.1244-2.550218.223.52373.24543064.33147basment joint122.63767.8862-2.351218.533322272.8794245.27146basment joint1122.6562-7.4759-2.061418.533323.52273.22422882.4157basment joint117.27418.0867-1.72618.866722212.5753234.54156basment joint117.7855-7.6881-1.4418.866723.52222.22372767.9166basment joint114.36028.1512-1.068219.222195.7158228.7165basment joint115.4171-7.7821-0.77819.223.52216.00832712.164basment joint117.0642-7.7631-0.094519.533323.52286.65012751.0151basment joint119.28547.89550.295719.866723.52412.27232853.4137basment joint121.4229-7.61660.606419.866723.52412.27232853.4137basment joint122.61117.53280.896820.222557.5442253.22132basment joint129.5014-7.30911.22320.223.52615.92833043.2117basment joint139.2904-6.78771.7794 <td>103</td> <td>basment joint</td> <td>140.3873</td> <td>6.9818</td> <td>-3.1928</td> <td>17.8667</td> <td>2</td> <td>2508.2578</td> <td>280.775</td>	103	basment joint	140.3873	6.9818	-3.1928	17.8667	2	2508.2578	280.775
128basment joint130.3981-7.1244-2.550218.223.52373.24543064.3147basment joint122.63767.8862-2.351218.533322272.8794245.27146basment joint122.6562-7.4759-2.061418.533323.52273.22422882.4157basment joint117.27418.0867-1.72618.866722212.5753234.54156basment joint117.7855-7.6881-1.4418.866723.52222.22372767.9166basment joint115.4171-7.7821-0.77819.222195.7158228.7165basment joint115.4171-7.7821-0.77819.223.52216.00832712.164basment joint117.0642-7.7631-0.094519.533322255.9809230.98159basment joint119.28547.89550.295719.866722369.8073238.57149basment joint126.61117.53280.896820.222557.5442253.22132basment joint129.5014-7.30911.22320.223.52615.92833043.22117basment joint139.2904-6.78771.779420.533322787.0444271.46110basment joint139.2904-6.78771.779420.533323.52860.09163273.385basment joint147.83046.10761.7361	109	basment joint	139.3146	-6.5939	-2.8953	17.8667	23.5	2489.0922	3273.89
147basment joint122.63767.8862-2.351218.533322272.8794245.27146basment joint122.6562-7.4759-2.061418.533323.52273.22422882.4157basment joint117.27418.0867-1.72618.866722212.5753234.54156basment joint117.7855-7.6881-1.4418.866723.52222.22372767.9166basment joint114.36028.1512-1.068219.222195.7158228.7165basment joint115.4171-7.7821-0.77819.223.52216.00832712.164basment joint115.49418.0937-0.392719.533322255.9809230.98159basment joint117.0642-7.7631-0.094519.533323.52286.65012751.0151basment joint119.28547.89550.295719.866722269.8073238.57149basment joint126.61117.53280.896820.222557.5442253.22132basment joint129.5014-7.30911.22320.223.52615.92833043.2117basment joint135.73296.95351.428920.533322787.0444271.46110basment joint139.2904-6.78771.779420.533323.52860.09163273.385basment joint147.83046.10761.7361	127	basment joint	130.9064	7.5321	-2.8421	18.2	2	2382.4965	261.813
146basment joint122.6562-7.4759-2.061418.533323.52273.22422882.4157basment joint117.27418.0867-1.72618.866722212.5753234.54156basment joint117.7855-7.6881-1.4418.866723.52222.22372767.9166basment joint114.36028.1512-1.068219.222195.7158228.7165basment joint115.4171-7.7821-0.77819.223.52216.00832712.164basment joint115.49418.0937-0.392719.533322255.9809230.98159basment joint117.0642-7.7631-0.094519.533323.52286.65012751.0151basment joint119.28547.89550.295719.866722369.8073238.57149basment joint126.61117.53280.896820.222557.5442253.22132basment joint129.5014-7.30911.22320.223.52615.92833043.22117basment joint135.73296.95351.428920.533322787.0444271.466110basment joint147.83046.10761.736120.866723084.7326295.6676basment joint152.3086-5.9912.095820.866723.53178.17793579.267basment joint158.79624.95671.90332	128	basment joint	130.3981	-7.1244	-2.5502	18.2	23.5	2373.2454	3064.36
157basment joint117.27418.0867-1.72618.866722212.5753234.544156basment joint117.7855-7.6881-1.4418.866723.52222.22372767.94166basment joint114.36028.1512-1.068219.222195.7158228.7165basment joint115.4171-7.7821-0.77819.223.52216.00832712.164basment joint115.49418.0937-0.392719.533322255.9809230.983159basment joint117.0642-7.7631-0.094519.53332.3.52286.65012751.0151basment joint119.28547.89550.295719.866722369.8073238.57149basment joint121.4229-7.61660.606419.866723.52412.27232853.4137basment joint129.5014-7.30911.22320.223.52615.92833043.22132basment joint135.73296.95351.428920.533322787.0444271.466110basment joint139.2904-6.78771.779420.533323.52860.09163273.385basment joint147.83046.10761.736120.866723.53178.17793579.267basment joint152.3086-5.9912.095820.866723.53178.17793579.267basment joint158.79624.95671.90	147	basment joint	122.6376	7.8862	-2.3512	18.5333	2	2272.8794	245.275
156basment joint117.7855-7.6881-1.4418.866723.52222.22372767.9166basment joint114.36028.1512-1.068219.222195.7158228.7165basment joint115.4171-7.7821-0.77819.223.52216.00832712.164basment joint115.49418.0937-0.392719.533322255.9809230.98159basment joint117.0642-7.7631-0.094519.533323.52286.65012751.0151basment joint119.28547.89550.295719.866722369.8073238.57149basment joint121.4229-7.61660.606419.866723.52412.27232853.4137basment joint129.5014-7.30911.22320.222557.5442253.22132basment joint129.5014-7.30911.22320.223.52615.92833043.22117basment joint139.2904-6.78771.779420.533322787.0444271.466110basment joint139.2904-6.78771.779420.533323.52860.09163273.385basment joint147.83046.10761.736120.866723.53178.17793579.267basment joint152.3086-5.9912.095820.866723.53178.17793579.267basment joint158.79624.95671.9033 <td>146</td> <td>basment joint</td> <td>122.6562</td> <td>-7.4759</td> <td>-2.0614</td> <td>18.5333</td> <td>23.5</td> <td>2273.2242</td> <td>2882.42</td>	146	basment joint	122.6562	-7.4759	-2.0614	18.5333	23.5	2273.2242	2882.42
166basment joint114.36028.1512-1.068219.222195.7158228.7165basment joint115.4171-7.7821-0.77819.223.52216.00832712.164basment joint115.49418.0937-0.392719.533322255.9809230.983159basment joint117.0642-7.7631-0.094519.533323.52286.65012751.0151basment joint119.28547.89550.295719.866722369.8073238.57149basment joint121.4229-7.61660.606419.866723.52412.27232853.4137basment joint126.61117.53280.896820.222557.5442253.22132basment joint129.5014-7.30911.22320.223.52615.92833043.23117basment joint135.73296.95351.428920.533322787.0444271.466110basment joint139.2904-6.78771.779420.533323.52860.09163273.385basment joint147.83046.10761.736120.866723084.7326295.6676basment joint152.3086-5.9912.095820.866723.53178.17793579.2367basment joint158.79624.95671.903321.223366.4794317.59	157	basment joint	117.2741	8.0867	-1.726	18.8667	2	2212.5753	234.548
165basment joint115.4171-7.7821-0.77819.223.52216.00832712.164basment joint115.49418.0937-0.392719.533322255.9809230.98159basment joint117.0642-7.7631-0.094519.533323.52286.65012751.0151basment joint119.28547.89550.295719.866722369.8073238.57149basment joint121.4229-7.61660.606419.866723.52412.27232853.4137basment joint126.61117.53280.896820.222557.5442253.22132basment joint129.5014-7.30911.22320.223.52615.92833043.22117basment joint135.73296.95351.428920.533322787.0444271.466110basment joint139.2904-6.78771.779420.533323.52860.09163273.385basment joint147.83046.10761.736120.866723084.7326295.6676basment joint152.3086-5.9912.095820.866723.53178.17793579.267basment joint158.79624.95671.903321.223366.4794317.59	156	basment joint	117.7855	-7.6881	-1.44	18.8667	23.5	2222.2237	2767.96
164basment joint115.49418.0937-0.392719.533322255.9809230.98159basment joint117.0642-7.7631-0.094519.533323.52286.65012751.0151basment joint119.28547.89550.295719.866722369.8073238.57149basment joint121.4229-7.61660.606419.866723.52412.27232853.4137basment joint126.61117.53280.896820.222557.5442253.22132basment joint129.5014-7.30911.22320.223.52615.92833043.23117basment joint135.73296.95351.428920.533322787.0444271.466110basment joint139.2904-6.78771.779420.533323.52860.09163273.385basment joint147.83046.10761.736120.866723084.7326295.6676basment joint152.3086-5.9912.095820.866723.53178.17793579.267basment joint158.79624.95671.903321.223366.4794317.59	166	basment joint	114.3602	8.1512	-1.0682	19.2	2	2195.7158	228.72
159basment joint117.0642-7.7631-0.094519.533323.52286.65012751.0151basment joint119.28547.89550.295719.866722369.8073238.57149basment joint121.4229-7.61660.606419.866723.52412.27232853.4137basment joint126.61117.53280.896820.222557.5442253.22132basment joint129.5014-7.30911.22320.223.52615.92833043.24117basment joint135.73296.95351.428920.533322787.0444271.466110basment joint139.2904-6.78771.779420.533323.52860.09163273.385basment joint147.83046.10761.736120.866723084.7326295.6676basment joint152.3086-5.9912.095820.866723.53178.17793579.2567basment joint158.79624.95671.903321.223366.4794317.59	165	basment joint	115.4171	-7.7821	-0.778	19.2	23.5	2216.0083	2712.3
151basment joint119.28547.89550.295719.866722369.8073238.57149basment joint121.4229-7.61660.606419.866723.52412.27232853.4137basment joint126.61117.53280.896820.222557.5442253.22132basment joint129.5014-7.30911.22320.223.52615.92833043.23117basment joint135.73296.95351.428920.533322787.0444271.466110basment joint139.2904-6.78771.779420.533323.52860.09163273.3385basment joint147.83046.10761.736120.866723084.7326295.6676basment joint152.3086-5.9912.095820.866723.53178.17793579.2367basment joint158.79624.95671.903321.223366.4794317.593	164	basment joint	115.4941	8.0937	-0.3927	19.5333	2	2255.9809	230.988
149basment joint121.4229-7.61660.606419.866723.52412.27232853.4137basment joint126.61117.53280.896820.222557.5442253.22132basment joint129.5014-7.30911.22320.223.52615.92833043.22117basment joint135.73296.95351.428920.533322787.0444271.464110basment joint139.2904-6.78771.779420.533323.52860.09163273.385basment joint147.83046.10761.736120.866723084.7326295.6676basment joint152.3086-5.9912.095820.866723.53178.17793579.2467basment joint158.79624.95671.903321.223366.4794317.593	159	basment joint	117.0642	-7.7631	-0.0945	19.5333	23.5	2286.6501	2751.01
137basment joint126.61117.53280.896820.222557.5442253.22132basment joint129.5014-7.30911.22320.223.52615.92833043.22117basment joint135.73296.95351.428920.533322787.0444271.46110basment joint139.2904-6.78771.779420.533323.52860.09163273.3385basment joint147.83046.10761.736120.866723084.7326295.6676basment joint152.3086-5.9912.095820.866723.53178.17793579.2367basment joint158.79624.95671.903321.223366.4794317.593	151	basment joint	119.2854	7.8955	0.2957	19.8667	2	2369.8073	238.571
132basment joint129.5014-7.30911.22320.223.52615.92833043.24117basment joint135.73296.95351.428920.533322787.0444271.464110basment joint139.2904-6.78771.779420.533323.52860.09163273.3385basment joint147.83046.10761.736120.866723084.7326295.6676basment joint152.3086-5.9912.095820.866723.53178.17793579.2367basment joint158.79624.95671.903321.223366.4794317.593	149	basment joint	121.4229	-7.6166	0.6064	19.8667	23.5	2412.2723	2853.44
117basment joint135.73296.95351.428920.533322787.0444271.460110basment joint139.2904-6.78771.779420.533323.52860.09163273.3385basment joint147.83046.10761.736120.866723084.7326295.6676basment joint152.3086-5.9912.095820.866723.53178.17793579.2367basment joint158.79624.95671.903321.223366.4794317.593	137	basment joint	126.6111	7.5328	0.8968	20.2	2	2557.5442	253.222
110basment joint139.2904-6.78771.779420.533323.52860.09163273.385basment joint147.83046.10761.736120.866723084.7326295.6676basment joint152.3086-5.9912.095820.866723.53178.17793579.267basment joint158.79624.95671.903321.223366.4794317.593	132	basment joint	129.5014	-7.3091	1.223	20.2	23.5	2615.9283	3043.28
85basment joint147.83046.10761.736120.866723084.7326295.6676basment joint152.3086-5.9912.095820.866723.53178.17793579.2567basment joint158.79624.95671.903321.223366.4794317.592	117	basment joint	135.7329	6.9535	1.4289	20.5333	2	2787.0444	271.466
76basment joint152.3086-5.9912.095820.866723.53178.17793579.267basment joint158.79624.95671.903321.223366.4794317.59	110	basment joint	139.2904	-6.7877	1.7794	20.5333	23.5	2860.0916	3273.32
67 basment joint 158.7962 4.9567 1.9033 21.2 2 3366.4794 317.593	85	basment joint	147.8304	6.1076	1.7361	20.8667	2	3084.7326	295.661
	76	basment joint	152.3086	-5.991	2.0958	20.8667	23.5	3178.1779	3579.25
59 basment joint 163.5702 -4.8768 2.2682 21.2 23.5 3467.6882 3843.5	67	basment joint	158.7962	4.9567	1.9033	21.2	2	3366.4794	317.592
	59	basment joint	163.5702	-4.8768	2.2682	21.2	23.5	3467.6882	3843.9
53 basment joint 171.7139 3.5426 1.6582 21.5333 2 3697.5669 343.423	53	basment joint	171.7139	3.5426	1.6582	21.5333	2	3697.5669	343.428

44	basment joint	176.7717	-3.4775	1.9585	21.5333	23.5	3806.478	4154.13
47	basment joint	175.8479	2.1364	1.138	21.8667	2	3845.2133	351.696
40	basment joint	180.7566	-2.0901	1.3755	21.8667	23.5	3952.5503	4247.78
19	C11 Column	1140.7035	17.7467	0.108	22.2	2	25323.618	2281.41
				-				
12	C10 Column	2373.3786	-0.6889	32.8448	22.2	7.5	52689.005	17800.3
				-				
13	C9 Column	2075.8025	-1.7011	28.4449	22.2	13	46082.816	26985.4
				-				
11	C8 Column	2727.0918	-8.7908	42.8354	22.2	17.5	60541.438	47724.1
18	C5 Column	1200.2039	-22.7238	2.0732	22.2	23.5	26644.527	28204.8
				-				
		78511.1431	105.2285	748.616			881881.53	1029667