

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

THESIS NO.: 073/MSPS/718

Application of High-Capacity Conductors for Uprating Transmission Lines

Capacity in Nepal

by

Yadab Prasad Neupane

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN POWER SYSTEM ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING

LALITPUR, NEPAL

July, 2023

Application of High-Capacity Conductors for Uprating Transmission Lines

Capacity in Nepal

by

Yadab Prasad Neupane

Roll No.: 073/MSPS/718

Thesis Supervisor:

Prof. Nava Raj Karki, PhD

Institute of Engineering, Pulchowk Campus

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Power System Engineering

Department of Electrical Engineering

Institute of Engineering, Pulchowk Campus

Tribhuvan University

Lalitpur, Nepal

July, 2023

DECLARATION

I hereby declare that the work reported in this thesis entitled "Application of High-Capacity Conductors for Uprating Transmission Lines Capacity in Nepal" submitted to the Institute of Engineering, Department of Electrical Engineering, Pulchowk Campus, is my original work done in partial fulfillment of the requirement for the degree of Master of Science in Power System Engineering under the supervision of Prof. Nava Raj Karki, PhD of Institute of Engineering, Pulchowk Campus. Related works on the topic by other researchers have been duly acknowledged. I owe all the liabilities relating to the accuracy and authenticity of the data and any other information included hereunder.

Yadab Prasad Neupane Campus Roll No.: 073/MSPS/718 Exam Roll No.: 19142 T.U. Regd. No. 5-1-49-677-97

COPYRIGHT ©

The author has agreed that the library, Department of Electrical Engineering, Institute of Engineering, Pulchowk Campus may make this report freely available for the inspection. Moreover, the author has agreed that the permission for extensive copying of this thesis report for scholarly purpose may be granted by the supervisor who supervised the thesis work recorded herein or, in their absence, by the Head of the Department wherein the thesis report was done. It is understood that the recognition will be given to the author of this report and to the Department of Electrical Engineering, Institute of Engineering, Pulchowk Campus in any use of the material of this thesis report. Copyright or publication or other use of this report for the financial gain without approval of the Department of Electrical Engineering, Institute of Engineering, Pulchowk Campus and author's permission is prohibited.

Request for the permission to copy or to make any other use of the material in this report in whole or in part should be addressed to:

Head

Department of Electrical Engineering Pulchowk Campus, Institute of Engineering Lalitpur, Nepal

CERTIFICATE OF APPROVAL

The undersigned certify that they have read and recommended to the Institute of Engineering for acceptance, a thesis report entitled "Application of High-Capacity Conductors for Uprating Transmission Lines Capacity in Nepal" submitted by Yadab Prasad Neupane in partial fulfillment of the requirement for the degree of Master of Science in Power System Engineering.

Prof. Nava Raj Karki, PhD (Thesis Supervisor) Department of Electrical Engineering Institute of Engineering, Pulchowk Campus

Deepak Chand (External Examiner)

Basaalaga

Assoc. Prof. Basant Kumar Gautam, PhD (Program Coordinator, MSc. Power System Engineering) Department of Electrical Engineering Institute of Engineering, Pulchowk Campus

Asst. Prof. Yuvraj Adhikari (Head of Department) Department of Electrical Engineering Institute of Engineering, Pulchowk Campus

ABSTRACT

Electricity demand and market penetration in Nepal is increasing day by day due to increased industrialization, expand urbanization, large population density, change in energy consumption habits of the consumers etc. Utility has to face multiple challenges to expand new transmission line in urban and semi-urban areas due to lack of availability of corridors triggered by the high real-estate cost, infrastructure development, forest/ecology conversation etc. Additionally, transmission line projects usually have limited execution schedule to comply with the increased load demand and project completion to match with new hydropower projects. To maximize the power transfer per unit RoW, replacing the old ACSR conductors with newly developed HTLS conductors would be the best solution which have higher power transfer capacity in the order of 2 to 3 times. Moreover, it can be completed in lesser time span without any significant work and budget plan vis-à-vis a new line. The same transmission line footprint might be used without any major modification in the existing tower.

Load flow analysis of the INPS using the tool: DigSilent PowerFactory 15.1. is carried out at different generation scenario considering the maximum load constant throughout the study. Total internal generation of 2438.72 MW and maximum load of 2054.59 MW is recorded from secondary sources which are interconnected in INPS. At 100% generation scaling, load flow result is noted with the surplus power of 230.07MW and the grid losses of 154.06 MW which accounts the loss of 6.31% of the total system in-feed. At that scenario, ten (10) 132kV line sections (515.82 ckt.-km length of ACSR Bear and 28 ckt.-km of ACSR Panther) is found to be overloaded by more than 100%. Maximum line loading of 167.22% is noted at Dhalkebar-Mirchaiya section (ACSR Bear) followed by 154.44% at Kusaha-Kataiya (ACSR Bear) section. Gandak-Bardaghat line section having ACSR Panther conductor is also noted to be overloaded by 116.03%. At decreased internal generation, power deficit is fulfilled by the external in-feed which caused the total grid power loss to increase gradually. Critical 132kV line sections found at 100% generation scaling are considered for further analysis to use equivalent HTLS conductor. Replacement of insulators along with erection accessories are also considered in the study.

ACCC OSLO conductor having equivalent cross section, weight per unit length and meeting required ultimate tensile strength is considered as equivalent conductor and found the most compactible for both ACSR conductor types. 'IEEE 738 Standard' is applied to calculate the derated current carrying capacity of the candidate HTLS conductor under NEA service condition which is found to be 2.45 times higher than ACSR Bear and 2.84 times higher than ACSR Panther conductor for the value of maximum allowable current which is quite satisfactory to consider as an equivalent conductor. Line loading is reduced drastically at all critical line section after conductor uprating viz. a maximum value of 62.78% at Lamosanghuv- Khimti section and 54.83% at Dhalkebar - Mirchaiya section. Line loading value of 25.57% is minimum at Gandak- Bardaghat section. It is also remarkable that the surplus power in INPS generation is found to be 245.67 MW which is more by 15.60 MW than the case before. It means grid power loss is decreased by 15.60 MW which is only 5.67% of total internal generation and it was 6.31% before conductor replacement.

Sag-tension analysis of old ACSR and HTLS ACCC OSLO conductors is also carried out using PLS-CADD tool to study the behavior at different weather cases. It's all complied the required criteria for not violating the existing sag at any operating temperature condition of each individual conductor.

Total cost estimated for conductor replacement is found to be USD 25.798 Million which is almost equivalent to set up a new 15.60 MW hydropower plant and it is considered as an analogy of grid power loss reduction after conductor replacement.

The test of old ACSR conductors, insulators, erection hardware and fitting accessories etc. is recommended as per prevailing IS/BS at accredited laboratory to find the remaining useful life and its technical viability to re-use in new/old transmission lines.

ACKNOWLEDGEMENTS

This thesis research entitled "Application of High-Capacity Conductors for Uprating Transmission Lines Capacity in Nepal" has been prepared in partial fulfillment of the requirements of the degree of Master of Science in Power System Engineering at Institute of Engineering, Pulchowk Campus. This research may not complete with my sole effort, many helping hands have made contributions personally and professionally to bring out in shapes. I cannot remain without acknowledging their contributions.

Words cannot express my gratitude to my respected supervisor Prof. Nava Raj Karki, PhD, Department of Electrical Engineering, Pulchowk Campus for his worthful suggestions, guidance, continuous cooperation and feedback during the period of this research. I owe a deep gratitude for his regular follow up and substantial guidance which helped me to reach at this stage of the research. I would also extend my profound gratitude to Mr. Basanta K. Gautam, PhD, Program Coordinator of Master of Science in Power System Engineering for the inspiration to complete this study. I am also grateful to all respected lecturers as well as staffs of the IoE, Department of Electrical Engineering, Pulchowk Campus for their cooperation during my study.

I am very grateful to Nepal Electricity Authority, Grid Operation Department, System Planning Department and System Operation Department for providing the valuable data and information of the Integrated Nepal Power System.

I would like to acknowledge my friends Mr. Saugat Paudel, Mr. Suraj Dahal, Mr. Subrat Aryal and Mr. Prakash Budha to their handful support for sharing their ideas and information for learning tools and software which are applied in this thesis. I would also extend my gratitude to the coworkers of my office in NEA, Grid Operation Department for their cooperation and support during the period of my study.

Lastly, I would be remiss in not mentioning my family, especially my parents and spouse. Their belief in me has kept my spirits and motivation high for my study. The entire intervention wouldn't be materialized, had it not been for the restless efforts and continuous inspiration of my family members.

Yadab Prasad Neupane July 2023

TABLE OF CONTENTS

DECLARATION	iii
COPYRIGHT ©	iv
CERTIFICATE OF APPROVAL	v
ABSTRACT	vi
ACKNOWLEDGEMENTS	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xi
LIST OF FIGURES	xii
A DETED A CT	Xili
ABSIRAUI	XIV
INTRODUCTION	1
1 1 Overview	1
1.2 Problem Statement	2
1.3 Research Objective	
1.4 Assumptions for the research	3
1.5 Limitations of the Study	3
1.6 Outline of Thesis	4
CHAPTER 2	5
LITERATURE REVIEW	5
2.1 Background	5
2.2 Construction Challenges in Nepal for Transmission Lines	6
2.3 HTLS Conductors and its Application	
2.4 Application of High-Capacity Conductor in Global Context	
2.5 Adoption of High-Capacity Conductor in Nepal	13
2.6 IEEE Standard 738 for Calculating Current-Temperature of Bare Ove Conductors	erhead 14
2.7 Load Flow Study	
2.9 Sag and Tension Calculation	
2.10 Degradation of ACSR Conductor	
2.11 Cost Analysis	
2.11.1 Net Present Value	
2.11.2 Internal Rate of Return	
CHAPTER 3	
RESEARCH METHODOLOGY	
3.1 Introduction	

3.2 Data Collection	6
3.3 Transmission Line Service Conditions in Nepal	27
3.4 Integrated Nepal Power System	.8
3.5 Load Flow Study Tool	28
3.6 Post Load Flow Study	.9
3.6 Cost Analysis	1
CHAPTER 4	2
RESULTS AND DISCUSSION	2
4.1 Load Flow Analysis	2
4.2 Derating of Line Conductors	9
4.3 ACSR Equivalent HTLS Conductor	9
4.4 Load Flow Study after HTLS Conductor	2
4.5 Sag- Tension Study	4
4.6 Cost Analysis for Conductor Replacement 4	8
4.7 Technical Viability for Reuse ACSR Conductor	0
CHAPTER 5	2
CONCLUSION AND RECOMMENDATION	2
5.1 Conclusion	2
5.2 Recommendation for further works	3
REFERENCES	4
APPENDIX A: INPS Bus Name and Number5	6
APPENDIX B: INPS Line Parameters5	7
APPENDIX C: Generator Data	9
APPENDIX D: Derating of Line Conductors with IEEE Standard 738 6	1
APPENDIX E: Supply, Delivery, Construction and Installation of Conductors, Insulators with Hordware Eitting and Accessories	1
A DDENIDIX E: Technical Data Shoot of ACCD & UTI & Conductor	4 7
APPENDIX G: Result of Plagiarism Check for Similarity Index	2

LIST OF TABLES

Table Title	Page No.
Table 2.1: Electrical and Mechanical Characteristic of Equivalent	
HTLS Conductor	12
Table 2.2: Bus Types for Load Flow Studies	20
Table 3.1: Sag-Tension Requirements for Equivalent ACSR Conductor	30
Table 4.1: List of 132kV Critical Transmission Lines at 100% Generation	32
Table 4.2: List of 132kV Critical Transmission Lines at 80% Generation	34
Table 4.3: List of 132kV Critical Transmission Lines at 50% Generation	35
Table 4.4: List of 132kV Critical Transmission Lines at 40% Generation	36
Table 4.5: List of 132kV Critical Transmission Lines at 35% Generation	37
Table 4.6: Grid Power Loss at Different Generation Scaling	38
Table 4.7: Derating of ACSR Conductors	39
Table 4.8: Technical Features of ACSR Conductor	39
Table 4.9: Technical Requirements for Equivalent ACSR Conductor	40
Table 4.10: Technical Features of Equivalent HTLS Conductor	41
Table 4.11: Status of 132kV Critical Transmission Lines after	
Conductor Uprating	43
Table 4.12: Conductor load at different weather case	44
Table 4.13: Sag-Tension Report at Kusaha - Kataiya (T3-T4)	44
Table 4.14: Sag-Tension Report at Dhalkebar- Chapur (T4-T5)	46
Table 4.15: Sag-Tension Report at Khimti - Lamosanghu (T4-T5)	47
Table 4.16: Cost Analysis for Conductor Replacement	49
Table 4.17: List of Standards for Test of Conductors	50

Figure Title	Page No.
Figure 2.1 Voltage and Current Up-gradation in Transmission Line	8
Figure 2.2: TACSR Conductor	9
Figure 2.3: Gap-type Conductor (GTACSR)	10
Figure 2.4: ZTACIR Conductor	10
Figure 2.5: ACSS Conductor	11
Figure 2.6: Cross Sectional view of ACCC Conductor	11
Figure 2.7: Sag of ACSR and HTLS at different temperature limit	12
Figure 2.8: Sag when supports at same levels	21
Figure 2.9: The Catenary Curve for Level Spans	22
Figure 3.1 Flowchart of the Study	26
Figure 3.2 Model for Derating the Conductor Ampacity	28
Figure 3.3 Load Flow in DigSilent PowerFactory	28
Figure 3.4 System Tools and Software	30
Figure 4.1 Stringing Chart at Kusaha – Kataiya (T3-T4)	45
Figure 4.2 Stringing Chart at Dhalkebar- Chapur (T4-T5)	47
Figure 4.3 Stringing Chart at Khimti - Lamosanghu (T4-T5)	48

LIST OF FIGURES

LIST OF ABBREVIATIONS

AAAC	All Aluminum Alloy Conductor
AAC	All Aluminum Conductor
AACSR	Aluminum Alloy Conductor Steel Reinforced
AC	Alternating Current
ACSR	Aluminum Conductor Steel Reinforced
ACSS	Aluminum Conductor Steel Supported
BS	British Standard
CTE	Coefficient of Thermal Expansion
DC	Direct Current
DIgSILENT	DIgital SImuLation and Electrical NeTwork calculation program
GWh	Giga-Watt Hour
GZTACSR	Gap Type Super Thermal Resistant Aluminum Conductor Steel
	Reinforced
HTLS	High Temperature Low Sag
HVAC	High Voltage Alternating Current
HVDC	High Voltage Direct Current
IEEE	Institute of Electrical and Electronics Engineers
INPS	Integrated Nepal Power System
IRR	Internal Rate of Return
IS	Indian Standard
km	Kilo Meter
kV	Kilo-Volt
KWh	Kilowatt Hour
MoE	Modulus of Elasticity
MW	Mega-Watt
MVar	Mega Var
NEA	Nepal Electricity Authority
NPV	Net Present Value
PLS-CADD	Power Line System – Computer Aided Design and Drafting
PPA	Power Purchase Agreement
SZTACIR	Super Thermal Resistant Aluminum Conductor Invar
	Reinforced
TACSR	Thermal Resistant Aluminum Conductor Steel Reinforced

ABSTRACT

Electricity demand and market penetration in Nepal is increasing day by day due to increased industrialization, expand urbanization, large population density, change in energy consumption habits of the consumers etc. Utility has to face multiple challenges to expand new transmission line in urban and semi-urban areas due to lack of availability of corridors triggered by the high real-estate cost, infrastructure development, forest/ecology conversation etc. Additionally, transmission line projects usually have limited execution schedule to comply with the increased load demand and project completion to match with new hydropower projects. To maximize the power transfer per unit RoW, replacing the old ACSR conductors with newly developed HTLS conductors would be the best solution which have higher power transfer capacity in the order of 2 to 3 times. Moreover, it can be completed in lesser time span without any significant work and budget plan vis-à-vis a new line. The same transmission line footprint might be used without any major modification in the existing tower.

Load flow analysis of the INPS using the tool: DigSilent PowerFactory 15.1. is carried out at different generation scenario considering the maximum load constant throughout the study. Total internal generation of 2438.72 MW and maximum load of 2054.59 MW is recorded from secondary sources which is interconnected in INPS. At 100% generation scaling, load flow result is noted with the surplus power of 230.07MW and the grid losses of 154.06 MW which accounts the loss of 6.31% of the total system in-feed. At that scenario, ten (10) 132kV line sections (515.82 ckt.-km length of ACSR Bear and 28 ckt.-km of ACSR Panther) is found to be overloaded by more than 100%. Maximum line loading of 167.22% is noted at Dhalkebar-Mirchaiya section (ACSR Bear) followed by 154.44% at Kusaha-Kataiya (ACSR Bear) section. Gandak-Bardaghat line section having ACSR Panther conductor is also noted to be overloaded by 116.03%. At decreased internal generation, power deficit is fulfilled by the external in-feed which caused the total grid power loss to increase gradually. Critical 132kV line sections found at 100% generation scaling are considered for further analysis to use equivalent HTLS conductor. Replacement of insulators along with erection accessories are also considered in the study.

ACCC OSLO conductor having equivalent cross section, weight per unit length and meeting required ultimate tensile strength is considered as equivalent conductor and found the most compactible for both ACSR conductor types. 'IEEE 738 Standard' is applied to calculate the derated current carrying capacity of the candidate HTLS conductor under NEA service condition which is found to be 2.45 times higher than ACSR Bear and 2.84 times higher than ACSR Panther conductor for the value of maximum allowable current which is quite satisfactory to consider as an equivalent conductor. Line loading is reduced drastically at all critical line section after conductor uprating viz. a maximum value of 62.78% at Lamosanghuv- Khimti section and 54.83% at Dhalkebar - Mirchaiya section. Line loading value of 25.57% is minimum at Gandak- Bardaghat section. It is also remarkable that the surplus power in INPS generation is found to be 245.67 MW which is more by 15.60 MW than the case before. It means grid power loss is decreased by 15.60 MW which is only 5.67% of total internal generation and it was 6.31% before conductor replacement.

Sag-tension analysis of old ACSR and HTLS ACCC OSLO conductors is also carried out using PLS-CADD tool to study the behavior at different weather cases. It's all complied the required criteria for not violating the existing sag at any operating temperature condition of each individual conductor.

Total cost estimated for conductor replacement is found to be USD 25.798 Million which is almost equivalent to set up a new 15.60 MW hydropower plant and it is considered as an analogy of grid power loss reduction after conductor replacement.

The test of old ACSR conductors, insulators, erection hardware and fitting accessories etc. is recommended as per prevailing IS/BS at accredited laboratory to find the remaining useful life and its technical viability to re-use in new/old transmission lines.

CHAPTER 1 INTRODUCTION

1.1 Overview

Almost all the existing transmission lines in Nepal are overhead due to economy. Existing high voltage transmission line in Nepal are 78 Circuit Kilometers (Ckt. km) length of Dhalkebar-Muzzarffarpur 400 kV Cross Border Transmission Line, 524.60 Ckt. km length of 220 kV including 5 Ckt. km length of 220 kV Double Circuit Underground in Matatirtha – Matatirtha Substation in Kathmandu; 3,459.54 Ckt. km length of 132 kV Transmission Line and 514.46 Ckt. km length of 66 kV Transmission Line. Further to note that 754 Ckt. km length of 400 kV, 930 Ckt. km length of 220 kV and 1,430 Ckt. km length of 132 kV Transmission Line are under construction in Nepal. Similarly, the total high voltage substations capacity in operation till the last fiscal year 2078/079, having voltage ratings from 400/220kV to 33/11kV is 7148.60MVA. It was 6433.90 MVA at the end of the fiscal year of 2077/078, hence there was total increment of 714.70 MVA capacity in the last FY 2078/079. Substation capacity under construction is 9,719.50 MVA, voltage rating from 132kV to 400kV [20]. Those transmission lines are developed with direct funding from GoN and donor agencies; distribution capacity is also enhancing. Many international and national firms are also engaged in design and consulting services of these transmission lines and substation projects.

Demand of the electricity and market penetration is increasing day by day due to change in social and working habits of the modern society. After getting free from its scheduled power cuts to the consumers, Nepal Electricity Authority (NEA) efforts is dedicated to ensure the supply of continuous, reliable and affordable power to its consumers [15]. NEA should initiate to make the overall power system more robust with significant investment into transmission and distribution system for their strengthening.

In densely populated urban and semi-urban areas where the cost of the real-estates is increasing with multiple folds, construction of new transmission and distribution lines has been a major challenge to NEA. Continuous opposition of the land owners, for the establishment of new lines have been a common problem for most of the construction projects under NEA, generally in the urban and semi-urban areas. In this scenario, NEA has to rethink about upgrading the transmission capacity with adopting modern practices such that same transmission footprints may be used with newly developed high-capacity conductors, also called High Temperature Low Sag (HTLS) conductors in place of ACSR conductors.

1.2 Problem Statement

In today's electricity market in Nepal, energy consumption pattern is growing gradually due to industrialization; expand urbanization, population growth along with change in energy consumption habits of the consumers. Transmission and distribution lines are designed to carry the optimum load but the subsequent result of the act of large power transfer is overloading the existing lines capacity.

NEA has to face many challenges in development of the new transmission line basically due to the following reasons:

- a) Right of Way Limits: Lack of accessibility of right of ways for development of new line projects owing to high real state cost as a result of large population, infrastructure development and forest conversation.
- b) Time constraints: it is required to construct the new transmission line in limited time schedule. It necessitates the completion of new projects to comply with increased load growth and completion of those line projects to match with new hydropower projects.

Due to increasing the real-estate costs, cost of deforestation and replantation of plants at new location along with regular opposition of the land owners, establishment of new transmission lines have been a common challenge for delaying the projects beyond schedule. On these grounds, government has to rethink to amend the prevailing acts, regulations and directives to address the public concerns such that it opens the route for completion of the projects in schedule. Whereas NEA as an implementing agency, it has to plan to upgrade the transmission capacity of the existing lines using high-capacity conductors so that large power can be transmitted at the load center with small investment. In another way, to relieve the transmission congestion, NEA has to upgrade the capacity of its transmission system.

Building a new overhead transmission line is an expensive and longtime investment, increasing the transmission capacities of existing lines is an unavoidable necessity. It is assumed that capacity of existing lines can be increased with replacing the old ACSR conductor by HTLS conductors with some investment and it's be a good solution to meet the increased electricity demand rather to build the new transmission lines. Those high-capacity conductors can carry higher current and reduces the line loss compared to conventional ACSR conductors. Re-conductoring rapidly provides the substantial line capacity increase at the lowest cost.

1.3 Research Objective

Main objective of the research is noted in the following points:

- a) To study the current-temperature relationship of conductors under NEA service conditions to calculate the derated current carrying capacity.
- b) To analyze the load flow to find the critical line sections.
- c) To study the sag-tension analysis of the old and new proposed HTLS conductors at different weather condition.
- d) To analyse the cost for replacing the conductor with new one.

1.4 Assumptions for the research

Following assumptions are considered to meet the scope of the research:

- a) Study is limited to the 132kV overhead lines in INPS.
- b) Accuracy and reliability of the data received from the secondary sources largely governs the correctness of the load flow output to find the critical lines.
- c) Deficit power is provided by the swing bus during load flow study.
- d) Derated current carrying capacity is analyzed based on prevailing service condition of NEA.
- e) Protection and insulation systems are sufficient to supply the increased power flow after conductor replacement.
- Replacement of high-capacity conductor is proposed only for the critical line sections.

1.5 Limitations of the Study

Following limitations are not considered during research:

a) Shut down cost of the operating transmission lines for dismantling the existing ACSR conductors and stringing the new HTLS conductors are not considered.

- b) Indirect cost which might be involved in the conductor replacement is also not considered for the cost analysis.
- c) Analysis of the cost of capital, benefit cost ratio, cash outflow after investment, timeline for the project execution etc. are beyond the scope of the study.

1.6 Outline of Thesis

The thesis is organized as follows:

The first chapter discusses about the background introduction of the topic, problem statement, objective along with assumptions and limitations of the research.

In the second chapter, literature review about development of HTLS conductor and its adoption in NEA, methods for increasing power transfer capability of transmission lines, literature review of IEEE 738 "IEEE Standard for Calculating the Current- Temperature Relationship of Bare Overhead Conductors", Load Flow Study, Sag-Tension Calculation methods, Financial/cost Analysis using NPV and IRR calculation etc. are discussed. Additionally, different research papers by the prominent authors in adoption of HTLS conductor for the same are also explained.

The third chapter explains about the methodology applied for this research in detail. This includes the input parameters, study of Current - Temperature Characteristics of Conductors, Sag-tension analysis of the overhead conductor, cost analysis, degradation of ACSR conductors etc. are discussed.

In the fourth chapter, the results obtained after simulating different cases and their significance are discussed. Technical data sheet of the various conductors are considered and their impact on the results are analyzed. Further, critical line sections are identified with load flow study and it is proposed to replace with the suitable high-capacity conductor and the results are summarized.

The fifth chapter concludes the result of this thesis. Also, the recommendation for the additional works as an extension of this thesis is also outlined in this chapter.

CHAPTER 2 LITERATURE REVIEW

2.1 Background

Power transfer capacity over transmission lines can be increased following four techniques:

a) Increasing line voltage:

For increasing the line voltage level in the existing transmission lines, electrical clearance has to be increased [11]. It requires the change in insulation level to meet the requirements of the new operating voltage, strengthening the transmission line towers and change the erection hardware, accessories etc. Further, substation equipment capacity also needs to increase for increased voltage level. Voltage uprating results potentially higher power transfer but the cost of investment and time required to implement is quite high.

b) Addition of Electric Circuit in Tower:

This can probably be an option of adding electrical circuit in the existing lattice tower structures. Unfortunately, most of the existing transmission line tower structures in Nepal are not designed to accommodate the additional electric circuits.

c) Conversion of AC to DC:

Large power transfer also can be achieved using HVDC transmission lines. However, the cost of HVDC terminal stations is extremely high and it might be a feasible choice for transferring power at a distance beyond 600 km [1]. So, this is not a good choice for transmitting large electricity power in Nepal.

d) Increasing ampacity of power conductors:

For increasing the ampacity of the existing transmission lines, we have the following options [11]:

(i) Use of High Capacity Conductor in place of conventional conductors:

Replacing existing ACSR conductor with higher sized conventional ACSR conductors might be a good option rather to plan for a new transmission line. But, replacing with higher sized conductors would add extra loading in the

tower structures. Thermal sag associated with the conventional conductors would also be a concern to consider for this choice.

(ii) Increasing the operating temperature of the existing conductor:

This option is possible when the line is operating below maximum temperature due to the sag restriction. In this method, height of the tower needs to be increased to increase the ground clearance of the conductor, increasing height is also an expensive option.

(iii)Increasing conductor cross section:

In this option, existing ACSR conductor is replaced with the bundled conductor with larger cross section. However, use of higher size conductor increases the loading at the towers, so that it requires to strengthen the tower capacity along with hardware and accessories etc, so, this option is also an expensive option.

(iv) Re-conductoring with high-capacity conductor:

In this method, existing conductor is replaced with higher ampacity conductor with equivalent geometry and weight per unit length. This method does not require to reinforce or replace the existing the tower structures. This method has been used worldwide in many overhead transmission lines.

2.2 Construction Challenges in Nepal for Transmission Lines

Nepal Electricity Authority has to face many challenges in development of the new transmission line basically due to the following reasons:

- a) Right of Way Limits: Limited convenience of right of ways for construction of new lines due to large real state cost as a result of large population growth, infrastructure development and forest and/or ecological conversation [18].
- b) Time Limits: it is required to construct the new transmission line is limited time schedule. It necessitates the completion of new construction project in line with increased load demand and transmission line to match with generation projects.

To adopt with the above challenges, it may require the following selections:

- **2.2.1 Adoption of EHV levels:** power transmission at extra high voltage may be useful for bulk power transfer however it may require large investment and longer time span.
- **2.2.2 Adoption of multi-circuit towers** may useful at densely populated and high land valued area to reduce the environmental impact of the line.
- **2.2.3 Up-gradation of transmission lines:** existing line may be operated at higher voltage provided that the tower structures and insulation requirement may comply the required technical criteria [18].
- **2.2.4 Uprating of transmission lines** through [18]
 - a) High-tech conductors can be used for increasing power transfer per unit RoW, which can carry bulk power without any change in the existing tower or may require minor changes. Those high-tech conductors can carry the power as much as 2 to 2.5 times without any substantial investment of time and money as required for a new line.
 - b) HTLS conductors can be operated at high temperature (180-210 °C). Such feature deals for higher current carrying capacity as compared to the equivalent ACSR conductor without significant increase in sag.
 - c) We can also add the additional electrical circuits in the existing towers without violating the maximum tower loading.
 - d) For new transmission lines, we may use HTLS conductors in place of conventional ACSR conductors. This choice also reduces the use of bundle ACSR conductor thereby resulting in material savings in tower and foundations along with reduced construction effort, time, cost etc.

Above voltage up-gradation and current uprating techniques can be structured in the following figure:

Figure 2.1 Voltage and Current Up-gradation in Transmission Line

2.2.5 AL59 Conductor

AL-59 alloy conductors [19] are manufactured from Al-Mg-Si (aluminiummagnesium-silica) rods. The conductor comprises of an inner core and concentrically arranged strands forming the inner and outer layers of the conductor.

ACSR conductors are limited by a maximum current carrying capacity of 838 amperes (ACSR Moose at 75 °C). The material of construction of AL-59 alloys conductors overcome this limitation enabling AL-59 alloy conductors to transfer up to 1307 amperes of current (56 per cent higher than ACSR Conductors). Additionally, AL-59 alloy conductors have 9 % better 'strength to weight ratio' and 8 percent lower sag compared with ACSR conductors which enables effective optimisation of tower design.

In view of development of new power transmission and distribution lines, AL-59 alloy conductors may have a special significance while designing transmission line networks, as the properties of these conductors enable superior power evacuation while optimising the cost of the entire transmission line network.

2.3 HTLS Conductors and its Application

HTLS Conductors usually have the higher thermal rating than the conventional ACSR conductors. Generally, ACSR Conductors can withstand a continuous temperature of

75°C to 85°C. For shorter duration during emergency, it can be operated up to 105°C without any sign of distortion [11]. At other side, HTLS conductors can be operated up to 250°C with less thermal elongation than ACSR conductors. It is therefore a good option to increase the thermal rating of the existing lines for large power transfer [13].

HTLS conductors normally include helically stranded aluminium wires over the supporting core. Maximum value of current flows through aluminium wires and the reinforcing core bears the tension load at high temperature [5] however part of the current is also flowing through the supporting core which is almost null in case of conventional ACSR conductors.

At another side, ACSR comprises bimetallic conductors which are mostly used in transmission lines, aluminum wires are helically stranded over steel core. But HTLS conductor involves heat resistant and offers low thermal elongation at high temperature. These conductors can be operated up to 200°C or even more, without substantial changes in mechanical and chemical properties [13]. Different HTLS conductor types are: TACSR (Thermal Aluminum Conductor Steel Supported), GTASCR (Gap-type Thermal Aluminum Conductor Steel Supported), ZTACIR (Super Thermal Aluminum Conductor Invar Reinforced), and ACSS (Aluminum Conductor Steel Supported). TACSR consists of aluminum-zirconium alloy conductor with heat-resistant reinforced steel core. Stable mechanical properties may be achieved up to 150°C using aluminum alloy.

Figure 2.2: TACSR Conductor

The GTACSR conductor consist a small gap between aluminum wires and steel core to apply tension only on the steel core [13].

Figure 2.3: Gap-type Conductor (GTACSR)

The gap between the core and outer layers is occupied with the filler material: grease which decreases the friction between the core and outer layer and prevents the water impregnation into the core. This feature improves the corrosion resistance as well.

In ZTACIR, it comprises the steel-invar galvanized alloy core and trapezoidal shaped thermal wires in the outer layer which is made from Al-Zr (Aluminum Zirconium) alloy. Aluminum clad INVAR (36% Ni in steel) is used for the inner core of the conductor, while Super Thermal Alloy (STAL) wires are used for the outer layer. With INVAR, the coefficient of expansion becomes linear and is near to constant with the application of heat, which is why the name INVAR was given [27]. At temperature up to 210°C, high tensile strength is maintained without loss of annealing property [13].

The aluminum alloy or annealed aluminum provides the conductor to withstand high temperatures without losing mechanical properties. The special core gives the low sag characteristics due to low coefficient of thermal expansion (CTE) and high Young modulus.

Figure 2.4: ZTACIR Conductor

ACSS conductor consist aluminum strands in the outer layers and steel wires on the core subject to an annealing process [13]. The steel wires may be the standard round or trapezoidal aluminum strand [27].

Figure 2.5: ACSS Conductor

Another type of HTLS conductor: ACCC: Aluminum Conductor Composite Core shown in Fig. 2.6 uses composition of carbon with glass fiber and aluminum strands with trapezoidal shape and those features oppose to environment degradation [13, 22].

Figure 2.6: Cross Sectional view of ACCC Conductor

The HTLS conductors described above are very much equivalent in terms of electrical and geometrical respect to the conventional ACSR conductors. These conductors can withstand the high temperature up to up to 210°C or more with low sag, low value of linear thermal expansion; having large power transport capacity [13].

Figure 2.7: Sag of ACSR and HTLS at different temperature limit

The following table compares the electrical and mechanical characteristics of ACSR and the various equivalent HTLS conductors [13]:

T	Conductor Type				
Technical Parameters	ACSR	G(Z)TACSR	ZTACIR	ACSS	ACCC (OSLO)
Area (mm ²)	326.12	308.40	306.94	307.70	313.80
Rated tensile strength (kgf)	11420	10962	10066	9901	15081.60
R _{dc} at 20°C (ohm/km)	0.109	0.111	0.11068	0.1077	0.0893
Weight (kg/km)	1068	1098	1083	1068	981
Coeff. of linear expansion (10 ⁻⁶ /°C	18.9	11.5	4.7	11.5	1.61

Table 2.1: Electrical and Mechanical Characteristic of Equivalent HTLS Conductor

2.4 Application of High-Capacity Conductor in Global Context

Many international research papers have been reviewed to know the practice of replacing the conventional ACSR conductor with high-capacity conductors. Few of those papers are briefed in the following:

Abdou A. et.al. (2015) [2] had researched for improving the transmission capacity of 220kV transmission line in Egyptian Power Network and concluded that the transmission capacity could be upgraded by 58-78% by replacing AAAC 506 with ACSS conductor and evaluated to be the best solution from technical and economic aspects.

Dave et. al (2012) [7] investigated the different techniques to increase the power transfer capacity in which use of HTLS conductor was tested in IEEE 9 Bus system and was found that the use of HTLS conductor eliminated the power congestion by 41% enhancing the overall power transfer capability of the system.

Beryozkina and Sauhats (2015) [23] found that the use of HTLS conductor was justified at high temperature operation.

Another case study by Matesscu et.al (2011) [24] studied the case of 220 kV transmission line in Romania in which it was found that ACSS, ZTACIR, GTACSR, ACCR and ACCC were technically feasible. However, ACSS and ACCC were found to be most economical including cost of power loss but ACSS were selected due to being familiar technology.

A cased study of re-conductor project mentioned by the manufacturer of HTLS ACCC[®] Core M/s CTC Global [22] is found that a major California Utility selected HTLS ACCC[®] conductor to increase the capacity and mitigate sag infractions on their double circuit 230kV Vestal to Magunden lines in the Big Creek Transmission Line Corridor. Re-conductoring with ACCC[®] conductor reduced the construction time from an estimated 48 months to 18 months; freeing up their resources and crews to focus on other projects. This re-conductor project increased line capacity from 936 amps to 1,520 amps and saved an estimated USD 85 Million vs. rebuild with conventional/larger conductor.

2.5 Adoption of High-Capacity Conductor in Nepal

Many practices have been carried out worldwide for increasing ampacity of transmission line conductors however in case of Nepal, it's almost a new one. However, many new ongoing transmission line projects in NEA at different voltage levels (132kV, 220kV, 400kV etc.) are using HTLS conductors of its suitable design. It is briefly discussed about the few upgrading plan/project under NEA in the following sections.

One of the circuits at 33 kV double circuit line (line length: 25 km) in Janakpur is upgraded with HTLS conductor [15] so that ampacity is increased by 70% than at ACSR (Dog) conductor at next circuit in the same line.

Similarly, another project in NEA; Hetauda - Birgunj 66 kV line (20.20 km length) which is using HTLS INVAR to improve the power transfer quality replacing the existing ACSR wolf conductor, to make the power supply system more reliable and uninterrupted in Hetauda – Birgunj industrial corridor [20].

Another project in NEA: 23 km long 132kV line from Inaruwa substation to new Biratnagar substation, under construction includes the HTLS Cordoba (ACSR Bear equivalent) conductor [20]. It aims to improve the power quality in Morang and Sunsari districts and minimize the power congestion problem of Duhabi Grid Substation, 33/11kV Rani Substation and 33/11kV Tankisinwari Substation [20].

Most of the transmission lines in Kathmandu valley are already upgraded with HTLS conductors replacing old aged ACSR conductors. In order to increase the power supply quality in Kathmandu valley, 7 km Suichatar-Matatirtha 132kV line, 5km Suichatar-Balaju 132kV line, 13km Suichatar-Patan 132kV line and 8.5km Suichatar-Teku 66kV line is upgraded with HTLS conductor. Similarly, Bhaktapur – Baneshwor - Patan 66kV line is also upgraded with replacing the existing conductor Chinese ACSR Conductor and ACSR Wolf Conductor from Bhaktapur to Suichatar substation running through Baneshwor and Patan substations and 5 km existing ACSR Dog Conductor between Chapali and Chabahil Substations) of 66kV transmission line with HTLS conductor [15]. Bhaktapur-Suichatar 132kV transmission line having ACSR Wolf conductor has been replaced by HTLS INVAR STACIR conductor which has almost equivalent properties of ACSR Wolf conductor [21].

In addition, 120km of Pathaliya-Dhalkebar 132kV double circuit transmission line having ACSR Bear conductor is uprating with HTLS conductor [15]. Further, transmission line Kushaha-Duhabi 28km long 132kV transmission line having ACSR Bear conductor is planned to upgrade using HTLS conductor [15]. Similarly, NEA has started to reinforce the capacity of Pokhara-Lekhnath 132kV transmission line (7km long) having ACSR Wolf with HTLS conductor [20].

2.6 IEEE Standard 738 for Calculating Current-Temperature of Bare Overhead Conductors

2.6.1 Current - Temperature Characteristics

The temperature at the conductor surface depends on the various factors: conductor material, diameter, surface condition of the conductor, ambient temperature and

current in the conductor [17]. Moreover, the power transfer capacity of the transmission line is limited by the conductor maximum operating temperature, which is determined by its current carrying capacity. The conductor's temperature and therefore the ampacity is depend on environmental service conditions. This fact enables increasing the transmission capacity to calculation based on weather conditions and forecasts as opposed to static and conservation values.

For the current-temperature relationship of the conductors under service condition specified by NEA in various loading conditions, the analysis method is based on IEEE Standard 738, "IEEE Standard for Calculating the Current-Temperature of Bare Overhead Conductors". This method helps to calculate the conductor derated ampacity of the conductors based on various temperature limits. This method takes into account all the relevant weather factors (influence of sun and wind). For calculation, it will be considered the effects and adjustments due to weather, solar heat and geographical location effects.

In this method, heat balance equation will be applied in which heat is generated by ohmic loss and heat gain from solar radiation whereas heat is dissipated by convection and radiation process. Following relations can be used to find the current carrying capacity rating of the conductor under steady state condition of wind velocity, temperature, solar radiation and electric current.

2.6.2 Steady- State Conductor Temperature Calculations

a. Steady - State thermal rating

Steady state heat balance equation is used for the study of steady – state thermal rating of the bared overhead conductor [17]. The equation is given below:

Where-

 I^2R = heat generated in the conductor due to conductor resistance, R ohm/meter.

 $q_s = solar heat gain, watts/length of conductor,$

 q_c = heat loss due to convection, watts/length of conductor,

 q_r = heat loss due to radiation, watts/length of conductor and

 $R_{(Tc)}$ = conductor ohmic resistance at conductor temperature.

Rearranging the above heat balance equation:

$$I = \sqrt{\frac{qc + qr - qs}{R(Tc)}}$$
equation (2.2)

In above equation, the conductor heat gain as an effect of magnetic heat, corona heating and heat loss due to evaporation etc. is usually insignificant, therefore, these factors are not considered in this equation.

b. Steady - State conductor temperature

Since, heat losses by radiation and convection are not linearly dependent on the conductor temperature, so the equation (2.2) is solved for given operating temperature in terms of current and weather variables. It uses iterative techniques [17] to find the conductor current value. For those calculations, following steps are followed:

- (i) A conductor temperature is assumed,
- (ii) The corresponding heat losses are calculated,
- (iii) The conductor current that generates this conductor temperature is calculated according to above equation (2.2)
- (iv) The calculated current is compared with the given conductor current
- (v) The conductor temperature is then increased or decreased, until the calculated current equals the given current.

Above equations (2.1) and (2.2) are heat balance equations for steady – state conditions. For non-steady state, heat balance equations can be written as:

$$q_{\rm c} + q_{\rm r} + mC_{\rm p} \frac{dT_{\rm c}}{dt} = q_{\rm s} + I^2 R(T_{\rm c})$$
equation (2.3a)

Forced convection heat loss is given by:

$$q_{c1} = \left[1.01 + 0.371 \left(\frac{D\rho_f V_w}{\mu_f}\right)^{0.52}\right] \cdot k_f \cdot (T_c - T_a) \cdots equation (2.4a)$$

Above equation (2.4a) is used at low wind and equation (2.4b) for high wind speed. At any wind speed, the larger value calculated from above two equations is used for convection heat loss.

Now the value of natural convection at zero wind speed is calculated as:

$$q_c = 0.283 \rho_f^{0.5} D^{0.75} (T_c - T_a)^{1.25}$$
equation (2.5)

For both forced and natural convection, air density (ρ_f), air viscosity (μ_f) and coefficient of thermal conductivity of air (k_f), T_{film} can be written as:

T_{film} can be written as:

$$T_{\rm film} = \frac{T_{\rm c+Ta}}{2}$$
equation (2.6)

Now, the radiated heat loss is given by:

Solar heat gain is given by:

 $q_s = \alpha Q_s \sin(\theta) A'$ equation (2.8)

where,

 $\theta = \cos^{-1}[\cos(H_c)\cos(Z_c-Z_l)] \quad \dots \quad \text{equation (2.9)}$

2) Conductor Electrical Resistance

Resistance of bare conductor varies with frequency, conductor temperature and current density [17]. However, in IEEE standard 738, the value of conductor temperature is solely considered to calculate the conductor electrical resistance. Conductor resistance at any temperature (T_c) is calculated by using the following equation:

$$R(T_{\rm c}) = \left[\frac{R(T_{\rm High}) - R(T_{\rm Low})}{T_{\rm High} - T_{\rm Low}}\right] \cdot (T_{\rm c} - T_{\rm Low}) + R(T_{\rm Low}) \quad \dots \text{equation (2.10)}$$

Where, T_{high} & T_{low} are value of the conductor high and low temperature. The calculations for ampacity of HTLS conductor is based on IEEE Standard 738.

Manufacturers usually provide the DC resistance of the conductor at 20°C temperature and AC resistance corresponding to 50 Hz. Alternating current flow at specified ambient conditions can be calculated using above formula.

2.7 Load Flow Study

Load flow study [1] reveals the electrical performance and power flows (real and reactive) for specified conditions when the system is operating under steady state. It also provides the information about the transformer and line loads as well as losses throughout the system and voltages at different points in the system for evaluation and regulation of the performance of the power system under given conditions. Further alternative plans for future expansion to meet new load demands can be also analyzed and complete information is made available through this study.

Taking into account these two aspects: 1) present operation and 2) future operation, is how power system should be analyzed. From one side, an operation or control engineer requires relevant information to be available to him/her almost immediately; he/she must be able to obtain somehow the behavior of the power system under different configurations that can occur. On the other side, a planning engineer requires obtaining the behavior of the system reflecting reinforcements that have not yet been built while considering the corresponding yearly and/or monthly load increase.

A bus is a node at which one or many lines, one or many loads and generators are connected. It is not necessary that all of them be connected at every bus. The buses are classified as P-Q (load bus), P-V (Generator or voltage-controlled bus) and V-Q (slack bus).

The current flowing into the buses is written in compact form as:

 $I_{bus} = [Y_{bus}]V_{bus} \qquad \dots equation (2.12)$

Where [Y_{bus}] is a bus admittance matrix for 'n' bus system.

For 'n' bus system, I_{bus} is an n*1 vector with general entry I_i , V_{bus} is an n*1 vector with general entry V_i

Since, [Y_{bus}] is an n*n matrix with entries

 $Y_{ii} = |Y_{ii}|$ angle (γ_{ii}) = short circuit driving point admittance at ith node. $Y_{ip} = |Y_{ip}|$ angle (γ_{ip}) = short circuit transfer admittance between ith and pth nodes. For 'n' bus system, current entering at ith bus is given by:

$$Ii = Y_{i1}V_1 + Y_{i2}V_2 + \dots + Y_{ii}V_i + \dots + Y_{in}V_n \dots equation (2.13)$$
$$= \sum_{p=1}^{n} Yip. Vp$$
$$= \sum_{p=1}^{n} |Yip| |Vp| angle(\delta p + \gamma ip) \dots equation (2.14)$$

Where, $V_{p}=~|V_{p}|$ angle(δ_{p}) and $Y_{ip}=|Y_{ip}|$ angle (γ_{ip})

The complex power injected into the ith bus can be written as;

 $S_i = P_i + jQ_i = V_i I_i^*$ equation (2.15)

$$S_i^* = P_i - jQ_i = V_i^* I_i$$

Since, $V_i = |V_i|$ angle(δ_i), $V_i^* = |V_i|$ angle($-\delta_i$) and $Y_{ip} = |Y_{ip}|$ angle (γ_{ip})

 P_i -j $Q_i = V_i^* \sum_{p=1}^n Y_{ip}.V_p$

$$= |V_{i}| \sum_{p=1}^{n} |Y_{ip}|| V_{p}| angle(\delta p + \gamma i p - \delta i)$$
$$= |V_{i}| \sum_{p=1}^{n} |Y_{ip}|| V_{p}| angle(-(\delta i - \delta p - \gamma i p))$$

Separating the real and imaginary parts;

$$P_{i} = |V_{i}|\sum_{p=1}^{n} |Yip||Vp|cos(\delta i - \delta p - \gamma ip)....equation (2.17a)$$
$$Q_{i} = |V_{i}|\sum_{p=1}^{n} |Yip||Vp|sin(\delta i - \delta p - \gamma ip)....equation (2.17b)$$

These above equations (2.17a) and (2.17b) are known as static load flow equations. These equations are non-linear and therefore, only a numerical solution is possible. For each of the 'n' bus system, we have two such equations giving a total '2n' equations. At each bus, we have 4 variables P_i , Q_i , V_i and δ_i giving a total of '4n' variables. To obtain a solution, it is necessary to specify two variables at each bus so that the number of unknowns is reduced to '2n' [1]. Depending on the quantities specified, the buses can be classified into three types as shown in the table below:

Bus type	Specified quantities	Unknown quantities	Approximate use
Load bus or PQ bus	P _i , Q _i	V_i, δ_i	85%
Generator bus or voltage- controlled bus of PV bus	P _i , V _i	Q_i, δ_i	15%
Reference bus or slack bus or swing bus	V_i $\delta_i = 0$	P _i , Q _i	1%

Table 2.2: Bus Types for Load Flow Studies

The solution to the load flow problem consists in assuming a certain initial bus load configuration, specifying the '2n' known variables and using some numerical method to find the remaining '2n'viables for the system with known $[Y_{bus}]$. The final solution must satisfy some constraints. These constraints are;

- i) Voltage magnitude at various buses must be within limits
- ii) Active and reactive generator power at different buses must be within the minimum and maximum limits
- iii) Total generation must equal total load plus losses
- iv) In addition to the system stability considerations impose a limit on the maximum value with ' δ_i ' can have.

The most commonly used methods for load flow studies are Gauss-Siedel method, Newton-Raphson method, and Fast Decoupled Load Flow method.

2.8.1 AC Load Flow Using DigSILENT PowerFactory

In DigSILENT PowerFactory [16] the nodal equations used to represent the analyzed networks are implemented using two different formulations:

- Newton-Raphson using current equations
- Newton-Raphson using power equations, a classical method

In both formulations, the resulting non-linear equation systems must be solved by an iterative method.

PowerFactory uses the Newton-Raphson method as its non-linear equation solver [16]. For large transmission systems, especially when heavily loaded, the standard Newton-Raphson algorithm using the "Power Equations" formulation usually converges best. Distribution systems, especially unbalanced distribution systems,

usually converge better using the "Current Equations" formulation. PowerFactory allows for the calculation of both balanced (AC Load Flow, balanced positive sequence) and unbalanced (AC Load Flow Unbalanced, 3-phase (ABC)) load flows [16].

2.9 Sag and Tension Calculation

Sag-tension calculations is used to predict the catenary sags and the conductor tensions under all design condition of the conductor temperature and ice and/or wind load. Maximum conductor tension is an important factor in structure design [1]. Maximum conductor sag largely determines structures heights and locations in order to maintain electrical clearances throughout the life of the line [26]. Thus, both the mechanical and electrical integrity of an overhead transmission or distribution line is directly dependent on the accuracy of sag-tension calculations.

Figure 2.8: Sag when supports at same levels

It is sufficiently accurate to assume the shape of the line is that of parabola $y = ax^2$ where 'a' is constant for a given line and 'O' is the origin.

Let us suppose,

L = length of span, horizontal distance between two supports, in meters

S = sag at mid span, in meters

T = conductor tension (assumed constant over the whole span) in Newton

w = conductor weight, N/m

y = S when $x = \frac{L}{2}$, it follows that S = a $(\frac{L}{2})^2$ or a = 4S/L² equation (2.18a)
then
$$y = 4S(\frac{x}{L})^2$$
 equation (2.18b)

Considering the equilibrium of half-line OA, assuming that the conductor is almost horizontal and making moments about A

 $TS = \{\frac{wL}{2}\}\{\frac{L}{4}\}$ or $S = wL^2/8T$ equation (2.18c)

Now substituting the value of 'S' in above equation,

$$a = w/2T$$
equation (2.18d)

and $y = wx^2/2T$ equation (2.18e)

The exact shape of a transmission line is that of catenary.

Figure 2.9: The Catenary Curve for Level Spans

The catenary equation given in above equation (2.18e) is identical for both the case of two supports at equal level or at different heights.

During sag and tension calculation, it may be noted that conductor must not violate the existing sag and tension on tower at any operating temperature condition.

2.10 Degradation of ACSR Conductor

Degradation of ACSR conductors begins as a loss of zinc from the galvanized steel core wires. These losses can be detected non-destructively using an overhead line conductor corrosion detector, which was invented by the CEGB staff in England [25].

Furthermore, it needs to carry out the mechanical tests of the conductors for the evidence of damage due to arching, localized annealing, from lighting strikes, phase to phase/ground arcing, hot joints and unusual corrosion etc. conductor tensile strength is to be determined using individual wires as per the prevailing standards. This method allows a comparison of the strength distribution of the aluminum and steel wires as well as that of individual wires within a layer. With the conductors manufactures more than two decades ago, it may not be uncommon to find difference between the strengths and corrosion condition of individual wires. In many cases, these differences can be tracked back to irregularities during manufacturing of the conductors.

Moreover, the individual wires can be tested for torsional ductility using a modified version of the ASTM E558 method [25]. For this test, the wire is held with a tensile load of 1% of the maximum strength and twisted to failure, with the number of turns being recorded.

To determine the remaining useful life of any tested conductor, an unacceptable deterioration level has to be established for each diagnostic procedure. The steel core corrosion detector measurements indicate the average thickness of the zinc remaining. Due to variation in zinc thickness and uncertainty regarding original thickness, the indicative is qualitative. A relatively coarse scale line one to four can be applied to categorize the samples. The instrument does not respond to effects that take a place within the steel wires after zinc coating is pierced or removed, such as surface rusting, pitting of the surface, or severe corrosion within the wires. Consequently, only end point that can be used for these measurements. The maximum value of four which corresponds to 80 to 100% loss of zinc.

2.11 Cost Analysis

2.11.1 Net Present Value

Net Present Value (NPV) is the difference between the present value of cash inflows and the present value of cash outflows over a period of time. NPV is used in capital budgeting and investment planning to analyze the profitability of a projected investment or project. This is an important economic measure as it includes the time factor with the interest rate. It is always unique irrespective of the cash flow patterns. NPV is the result of calculations that find the current value of a future stream of payments, using the proper discount rate. In general, projects with a positive NPV are worth undertaking while those with a negative NPV are not. If the NPV of a project or investment is positive, it means its rate of return will be above the discount rate.

If there is one cash flow from a project that will be paid one year from now, then the calculation for the NPV of the project is as follows:

 $NPV = \frac{Cash flow}{(1+i)^{h}} - initial investment$ where,

i = discount rate

t = time periods, generally in years.

In general, NPV can be calculated as:

NPV=
$$\sum_{t=0}^{n} \frac{Rt}{(1+i)^{t}}$$

Where,

 R_t = net cash inflow - outflows during a given time period 't'

i = discount rate or return that could be earned in alternative investments

t = number of time periods.

2.11.2 Internal Rate of Return

Internal Rate of Return (IRR) is the rate of return at which a project breaks even and is used by management to evaluate potential investments. IRR functions as a return on investment (ROI) calculation.

IRR is the discount rate that makes the net present value (NPV) of all cash flows equal to zero in a discounted cash flow analysis. IRR is calculated by solving the NPV formula for the discount rate required to make NPV equal zero. This method can be used to compare projects of different time spans on the basis of their projected return rates. NPV and IRR are closely related concepts, in that the IRR of an investment is the discount rate that would cause that investment to have an NPV zero. The ultimate goal of IRR is to identify the rate of discount, which makes the present value of the sum annual nominal cash flows equal to the initial net cash outlay for the investment.

The formula and calculation used to determine for IRR is:

$$0 = \text{NPV} = \sum_{t=1}^{T} \frac{\text{Ct}}{(1 + \text{IRR})^{t}} - C_0$$

Where:

 C_t = net cash inflow during the period, t

 $C_0 = total initial investment costs$

IRR = the internal rate of return

t = the number of time periods.

As a part of this research, the best conductor which is selected as an equivalent to the existing ACSR conductor based upon its geometry, weight per unit length, ultimate tensile strength, maximum current carrying capacity etc. is selected. Sag-tension analysis of this conductor is carried out to study the sag-tension performance under different weather cases such that the resultant sag may not violate the maximum sag of the existing conductor. Based upon the cost of the best conductor selected, its cost analysis is carried out for supply of the new items, dismantling the old conductor, insulator, erection hardware and fittings; stringing and commissioning of the new HTLS conductor at the critical line sections is analyzed in detail.

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

The methodology adopted for this study is to seek the technical implication on replacing older ACSR conductor with HTLS conductors at 132 kV transmission line under INPS. Furthermore, cost analysis of conductor replacement work is carried out in this study. To meet all of these research objectives, the research flowchart is structured as below:

Figure 3.1 Flowchart of the Study

3.2 Data Collection

The Integrated Nepal Power System (INPS) data required like generation, transmission line, substation capacity and load etc. are collected from Grid Operation Department, System Operation Department and System Planning Department of NEA. Data and information included in NEA published annual report in the past fiscal years are also considered. Recent prices of ACSR and HTLS conductors along with erection hardware & fittings etc. are also referred from running NEA transmission line and substation augmentation projects. Technical data sheet of the conductor is also referred from the Contract Documents of those running projects along with information leaflets and web sites of the manufacturers. Standing service conditions of the overhead line in NEA is also referred from those associated

projects documents. So, the secondary sources are referred for the required data and information needed for the study.

3.3 Transmission Line Service Conditions in Nepal

Nepal Electricity Authority has its own service conditions under which the conductor shall be capable to operate at 50Hz, alternating current under the prevailing ambient conditions, maximum safe operating temperature and maximum permissible sag meeting other specific technical requirements. Those prevailing service conditions is as specified below:

- i) Altitude above sea level: 100 m to 2000 m from MSL
- ii) Ambient air temperature= 45 °C (max.) & 0 °C (min.)
- iii) Annual average temperature = $32 \circ C$
- iv) Relative humidity (in %) = 100 (max.), 20 (min.)
- v) Solar intensity = 1045 watt/sq.m
- vi) Emissivity constant = 0.45
- vii) Wind velocity = 0.56 m/sec. considering the angle between wind and axis of conductor as 90 deg.
- viii) Angle of sun ray's incidence = 90 deg.

For the 132kV transmission lines in INPS under study, the Electrical System Parameters under study is considered as the followings:

- i) Rated Service Voltage: 132kV
- ii) Highest System Voltage: 145kV
- iii) Impulse withstand voltage: 650kV
- iv) Power frequency withstand voltage: 275kV
- v) Number of Phases: 3
- vi) Operating frequency: 50Hz

The current rating of the conductor specified by the manufacturer in its technical data sheet is derated under NEA prevailing service conditions which is typically lower than that of manufacturer's declared value. This derated value of the conductor

parameters are used in load flow study. Following is given a model for derating the ampacity of the conductor in prevailing environmental service condition in NEA.

Figure 3.2 Model for Derating the Conductor Ampacity

3.4 Integrated Nepal Power System

Integrated Nepal Power System (INPS) consists of various synchronous generations, transmission lines and load connected at different buses voltages ranging from 33kV to 400kV levels. It has also the external grid integrated with INPS from Tanakpur, Nepalgunj, Shivapur (Kapilvastu district), Rampur (Parasi district), Dhalkebar and Kataiya (Saptari district).

3.5 Load Flow Study Tool

DigSilenet PowerFactory 15.1 tools is used for the load flow study of the INPS. A model is developed in DigSilent using the INPS data. For the system model development, it is considered the substation buses of 66kV and higher levels only. All the generations are interconnected at 132kV and higher voltage buses.

Figure 3.3 Load Flow in DigSilent PowerFactory

Using the model shown in above Figure 3.3, overloaded 132kV transmission lines has been listed out from load flow in DigSilent PowerFactory.

3.5.1 Consideration for Load Flow in DigSilent

For the load flow study of INPS in DigSilent, followings have been considered:

- Since, INPS being a grid having multiple buses for power importing from India, external grid at Dhalkebar 400kV bus interconnecting with the Dhalkebar-Muzzafarpur 400kV ex-border transmission line, external grid at Ramnagar and external grid at Kushaha is considered as reference/slack bus as required for the system load flow calculation.
- Result of the load flow may vary with the selection of the slack bus.
- In DigSilent for the load flow study, it has applied the Newton-Rapson load flow power equations. It is considered the maximum number of iterations with Newton-Rapson iteration as 25. The convergence options for the iteration step size are set as automatic adoption i.e., there is no factor of convergence put for the load flow which is also a default setting in this tool.
- AC load flow with 3-phase balanced and positive sequence has been considered during load flow study.
- Lower limit of the allowed voltage at each bus is 0.95 p.u. and upper limited of the allowed voltage is 1.05 p.u.
- Maximum thermal loading limit considered is 100%.
- Transmission line type is considered with lumped parameters.

3.6 Post Load Flow Study

After finding the critical line sections having line loading \geq 100%, Google Earth Pro and Nava GPS Office tools are used for locating those critical line sections and end substations at ground levels. Their UTM coordinates are extracted using these tools to know the span between the towers and terrain type. However, in real project design, line surveys including total station instruments, airborne lasers or photogrammetry tools etc. are used for plan and profile coordinates of the line. But it is not possible to access all of these primary data and it is beyond the scope of this research. Therefore, above two types of tools are used to extract the coordinates. Then, another tool: Power Line Systems- Computer Aided Design and Draft (PLS-CADD) is used to generate the line plan and profiles and study the affected the structure and conductor positions at different temperature and wind case and study the sag and tension in the line conductors.

Figure 3.4 System Tools and Software

Above figure 3.4 depicts the system tools and software which are applied for targeted output of the research.

3.5.3 Sag- Tension Analysis

For sag-tension analysis, it is noted that the existing sag and tension shall not be violated by each conductor at any operating temperature condition. Following is given the minimum requirements for the sag-tension analysis of the candidate conductor:

SN	Technical parameters	Limiting Value
1	Tension at every day condition (32°C, no wind)	Must not exceed 25% UTS value of proposed conductor.
2	Sag at maximum continuous operating temp. for given ruling span (corresponding to specified current per conductor and ambient conditions)	Lower value of standard sag for existing ACSR conductor for specified span @ 75°C and measured sag of existing line @ specified span.
3	Tension at 32°C, full wind	Must not exceed 70% UTS of HTLS conductor and it must be lower than that of existing ACSR conductor.
4	Tension at designed maximum temp. and no wind condition	Not exceeding 25% of UTS at designed maximum temperature, which shall be lower than that of existing conductor.
5	Conductor tension at max. Temp. and full wind.	Must not exceed 70% UTS at max. Temp. of new HTLS conductor and it shall be

Table 3.1: Sag-Tension Requirements for Equivalent ACSR Conductor [30]

		lower	than	that	of	existing	ACSR
		conduct	tor.				
6	Tension at knee point temperature and	Must n	ot exce	ed 409	% U	ΓS of core	of new
	no wind	HTLS conductor and it shall be lower than					
		that of e	existing	g ACSI	R cor	nductor.	

Following the above sag-tension criteria, the software PLS-CADD is used for sagtension analysis to find the sag under various operating temperature conditions. Sagtension chart will find out for maintaining the minimum electrical clearances and tension under different environmental and operating temperature conditions. Following all these process, candidate HTLS conductor will be found for the further study.

3.6 Cost Analysis

After finding the candidate HTLS conductor following all the procedures in the above steps, cost analysis which needs for the replacement of the existing ACSR conductor, insulators, erection hardware and accessories is to carry out. It is supposed that any modification of the tower and support structures may not be required to suspend the new conductor and hardware.

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Load Flow Analysis

For the load flow study, it is noted that the total generation capacity interconnected in INPS is 2438.72 MW and the maximum load is 2054.59 MW. It is assumed that the maximum load is constant throughout the study of the load flow. For these baselines, load flow study has been carried out at different generation scenario selected randomly:

4.1.1 At 100% Generation:

At 100% generation scaling, INPS load flow is converged in 6 iterations. Muzzafarpur and Ramnagar external grids have been considered as reference machines or slack buses. At this case, the result of the grid summary is noted below:

No. of Busbars: 104; No. of Lines: 178

No. of Loads:	75	No. of Shunts C	Capacitor: 3	1	
Total Generatio	n Capa	city: 2438.72 M	W, 646.82	MVar; 25	517.26 MVA
External Infeed	=	-230.07 MW,	184.31	MVar,	294.79 MVA
Load P(U)	=	2054.59 MW,	995.62	MVar,	2283.28 MVA
Grid Losses	=	154.06 MW,	483.92	MVar	

From above results, it is noted that there a surplus of 230.59 MW generation and grid power loss of 154.06 MW which is 6.31% of the total system in-feed.

In this scenario, following 132kV line sections have been found to be the most critical having maximum loading:

SN	Line name/section	Line Length in ckt-km	No. of elec. circuits	Conductor type	Line Loading (%)
1	Dhalkebar-Mirchaiya	63	2	ACSR Bear	167.22
2	Kusaha-Kataiya	13	1	ACSR Bear	154.44
3	Lamosanghu-Khimti	45.84	1	ACSR Bear	146.26
4	Chapur-Dhalkebar	139	2	ACSR Bear	140.53
5	Bhaktapur-Lamoshanghu	96.60	2	ACSR Bear	137.65

Table 4.1: List of 132kV Critical Transmission Lines at 100% Generation

6	Pathalaiya-Chapur	66	2	ACSR Bear	124.92
7	Duhabi-Damak	48.90	1	ACSR Bear	122.07
8	Gandak-Bardaghat	28	2	ACSR Panther	116.03
9	Hetauda-Kulekhani2	10.48	2	ACSR Bear	108.24
10	Pathalaiya-Parwanipur	33	2	ACSR Bear	103.05
Total ckt.km		543.82	ACSR Be	ar: 515.82 ctkm	
		545.02	ACSR Panther: 28 cktkm		

From the above table, it is analyzed that a total 543.82 electrical circuit kilometers of 132kV transmission line is found to be the most critical based on the percentage of maximum loading. Above critical line sections have been selected for the lines having \geq 100% loading. From the table, Dhalkebar-Mirchaiya 132kV transmission line section is found to be the most critical having 167.22% maximum loading followed by Kushaha - Kataiya 132kV transmission line section of 154.44% loading. It is also found that the line loading is maximum at the line sections in Terai zone and Kathmandu valley.

4.1.2 At 80% Generation:

During dry season, water flow in the river will be decreased gradually so that it may not be achieved the generation of installed capacity of the hydropower plants. So, considering these scenarios, load flow pattern is analyzed under reduced internal generation cases.

At 80% generation scaling, INPS load flow is converged in 5 iterations. Muzzafarpur and Ramnagar external grids are considered as reference machine or slack bus. At this case, the result of the grid summary is noted below:

No. of Busbars: 104; No. of Lines: 178

No. of Loads: 75 No. of Shunts Capacitor: 31

10tal Generation Capacity: 1947.25 MW, 034.18 MVar, 2047.91 MV	Fotal	Generation	Capacity:	1947.25	MW,	634.18	MVar; 2047.91	MVA
--	-------	------------	-----------	---------	-----	--------	---------------	-----

External Infeed	= 256.38 MW,	47.85 MVar,	260.81 MVA
Load P(U)	= 2054.59 MW,	995.62 MVar,	2283.28 MVA
Grid Losses	= 148.85 MW,	419.14 MVar	

From above results, it is noted that there a deficit of 256.38 MW which is infeed from the external grid. Total grid power loss of 148.85 MW which will be 6.75% of the total system in-feed.

In this scenario, following 132kV line sections have been found to be the most critical having maximum loading:

SN	Line name/section	Line Length in ckt-km	No. of elec. circuits	Conductor type	Line Loading (%)
1	Dhalkebar-Mirchaiya	63	2	ACSR Bear	100.57
2	Kusaha-Kataiya	13	1	ACSR Bear	116.49
3	Lamosanghu-Khimti	45.84	1	ACSR Bear	173.77
4	Chapur-Dhalkebar	139	2	ACSR Bear	147.92
5	Bhaktapur-Lamoshanghu	96.60	2	ACSR Bear	135.34
6	Pathalaiya-Chapur	66	2	ACSR Bear	131.17
7	Gandak-Bardaghat	28	2	ACSR Panther	212.72
8	Dumkibas-Bardaghat	15	1	ACSR Panther	195.36
9	Pathalaiya-Parwanipur	33	2	104.34	
Total ckt.km		499 44	ACSR Bear: 456.44 ctkm		
		7/7.44	ACSR Panther: 43 cktkm		

 Table 4.2: List of 132kV Critical Transmission Lines at 80% Generation

From the above table, it is analyzed that a total 499.44 electrical circuit kilometers of 132kV transmission line is found to be the most critical based on the percentage of maximum loading. Above critical line sections have been selected for the lines having $\geq 100\%$ loading. From the table, Gandak-Bardaghat 132kV transmission line section is found to be the most critical having 212.72% maximum loading followed by Dumkibas-Bardaghat 132kV transmission line section of 195.36% loading. It is also repeated that the line loading is maximum at the line sections in Terai zone and Kathmandu valley.

4.1.3 At 50% Generation:

At 50% generation scaling, INPS load flow is converged in 6 iterations. Muzzafarpur and Ramnagar external grids are considered as reference machine or slack bus. At this case, the result of the grid summary is noted below:

No. of Busbars: 104; No. of Lines: 178

No. of Loads:	75	No. of Shunt	s Capacitor: 3	31		
Total Generatio	n Capa	acity: 1219.05	MW, 1233.71	MVar;	1734.40 N	/IVA
External Infeed	=	1089.34 MW	-36.27	MVar,	1089.94	4 MVA
Load P(U)	=	2054.59 MW,	995.62	MVar,	2283.28	MVA
Grid Losses	=	253.61 MW,	920.53	MVar		

From above results, it is noted that there a deficit of 1089.34 MW which is infeed from the external grid. Total grid power loss of 253.61 MW which will be 10.98% of the total system in-feed.

In this scenario, following 132kV line sections have been found to be the most critical having maximum loading:

SN	Line name/section	Line Length in ckt-km	No. of elec. circuits	Conductor type	Line Loading (%)	
1	Lamosanghu-Khimti	45.84	1	ACSR Bear	235.97	
2	Chapur-Dhalkebar	139	2	ACSR Bear	173.43	
3	Bhaktapur-Lamoshanghu	96.60	2	ACSR Bear	139.13	
4	Pathalaiya-Chapur	66	2	ACSR Bear	154.07	
5	Gandak-Bardaghat	28	2	ACSR Panther	395.85	
6	Dumkibas-Bardaghat	15	1	ACSR Panther	453.53	
7	Dumkibas-Kawasoti	55	1	ACSR Panther	204.33	
8	New Bharatpur-Dumkibas	70	1	ACSR Bison	176.86	
9	Kawasoti-Bharatpur	28.70	1	ACSR Panther	171.63	
10	Bharatpur-Marsyangdi	25	1	ACSR Bear	145.03	
11	Hetauda-Bharatpur	70.85	1	ACSR Panther	134.24	
12	Butwal-New Butwal	66	2	ACSR Bear	125.72	
13	Hetauda-Kulekhani-2	10.48	2	ACSR Bear	124.09	
14	Pathalaiya-Parwanipur	33	2	ACSR Bear	109.98	
15	New Butwal- Bardaght	20	2	ACSR Bear	125.72	
			ACSR Be	ar: 501.92 ctkm		
Tota	l ckt.km	769.48	ACSR Panther: 197.55 cktkm			
			ACSR Bis	son: 70 ckt. km		

Table 4.3: List of 132kV Critical Transmission Lines at 50% Generation

From the above table, it is analyzed that a total 769.48 electrical circuit kilometers of 132kV transmission line is found to be the most critical based on the percentage of maximum loading. Above critical line sections have been selected for the lines having $\geq 100\%$ loading. From the table, Dumkibas-Bardaghat 132kV transmission line section is found to be the most critical having 453.5372% maximum loading followed by Gandak-Bardaghat 132kV transmission line section of 395.85% loading.

4.1.4 At 40% Generation:

At 40% generation scaling, INPS load flow is converged in 7 iterations. Muzzafarpur and Ramnagar external grids have been considered as reference machine or slack bus. At this case, the result of the grid summary is noted below: No. of Busbars: 104; No. of Lines: 178

No. of Loads:	75	No. of Shunts (Capacitor: 3	81	
Total Generatio	n Capa	acity: 976.33 MV	V, 1787.10	MVar; 2	2036.40 MVA
External Infeed	=	1440.87 MW,	-13.02	MVar,	1440.93 MVA
Load P(U)	=	2054.59 MW,	995.62	MVar,	2283.28 MVA
Grid Losses	=	362.42 MW,	1472.09	MVar	

From above results, it is noted that there a deficit of 1440.87 MW which is infeed from the external grid. Total grid power loss of 362.42 MW which will be 15.0% of the total system in-feed.

In this scenario, following 132kV line sections have been found to be the most critical having maximum loading:

SN	Line name/section	Line Length in ckt-km	No. of elec. circuits	Conductor type	Line Loading (%)
1	Lamosanghu-Khimti	45.84	1	ACSR Bear	274.10
2	Chapur-Dhalkebar	139	2	ACSR Bear	192.57
3	Bhaktapur-Lamoshanghu	96.60	2	ACSR Bear	149.57
4	Pathalaiya-Chapur	66	2	ACSR Bear	174.53
5	Gandak-Bardaghat	28	2	ACSR Panther	484.99
6	Dumkibas-Bardaghat	15	1	ACSR Panther	590.75
7	Dumkibas-Kawasoti	55	1	ACSR Panther	264.12
8	New Bharatpur-Dumkibas	70	1	ACSR Bison	231.67
9	Kawasoti-Bharatpur	28.70	1	ACSR Panther	231.67
10	Bharatpur-Marsyangdi	25	1	ACSR Bear	213.74
11	Hetauda-Bharatpur	70.85	1	ACSR Panther	155.04
12	Butwal-New Butwal	66	2	ACSR Bear	146.22
13	Hetauda-Kulekhani-2	10.48	2	ACSR Bear	160.82
14	Pathalaiya-Parwanipur	33	2	ACSR Bear	114.71
15	New Butwal- Bardaght	20	2	ACSR Bear	149.57
16	Damauli-Bharatpur	39	1	ACSR Wolf	144.09
Total ckt.km		808.47	ACSR Be ACSR Pa ACSR Bis	ar: 501.92 ctkm nther: 197.55 ckt. son: 70 ckt. Km	-km
			ACSR W	olf: 39 ckt. km	

Table 4.4: List of 132kV Critical Transmission Lines at 40% Generation

From the above table, it is analyzed that a total 808.47 electrical circuit kilometers of 132kV transmission line is found to be the most critical based on the percentage of maximum loading. Above critical line sections have been selected for the lines

having \geq 100% loading. From the table, Dumkibas-Bardaghat 132kV transmission line section is found to be the most critical having 590.75% maximum loading followed by Gandak-Bardaghat 132kV transmission line section of 484.99% loading.

4.1.5 At 35% Generation:

At 35% generation scaling, INPS load flow is converged in 8 iterations. Muzzafarpur and Ramnagar external grids have been considered as reference machine or slack bus. At this case, the result of the grid summary is noted below:

No. of Busbars: 104; No. of Lines: 178

No. of Loads: 75 No. of Shunts Capacitor: 31 Total Generation Capacity: 854.97 MW, 2275.27 MVar; 2430.60 MVA External Infeed = 1665.02 MW, 17.51 MVar. 1665.11 MVA Load P(U) = 2054.59 MW, 995.62 MVar, 2283.28 MVA Grid Losses 465.21 MW, 1982.17 MVar =

From above results, it is noted that there a deficit of 1665.02 MW which is infeed from the external grid. Total grid power loss of 465.21 MW which will be 18.46% of the total system in-feed.

SN	Line name/section	Line Length in ckt-km	No. of elec. circuits	Conductor type	Line Loading (%)
1	Lamosanghu-Khimti	45.84	1	ACSR Bear	305.50
2	Chapur-Dhalkebar	139	2	ACSR Bear	210.99
3	Bhaktapur-Lamoshanghu	96.60	2	ACSR Bear	153.40
4	Pathalaiya-Chapur	66	2	ACSR Bear	192.42
5	Gandak-Bardaghat	28	2	ACSR Panther	547.13
6	Dumkibas-Bardaghat	15	1	ACSR Panther	694.32
7	Dumkibas-Kawasoti	55	1	ACSR Panther	309.18
8	New Bharatpur-Dumkibas	70	1	ACSR Bison	273.36
9	Kawasoti-Bharatpur	28.70	1	ACSR Panther	277.36
10	Kamane-Pathalaiya	60	2	ACSR Bear	113.42
11	Hetauda-Bharatpur	70.85	1	ACSR Panther	167.04
12	Butwal-New Butwal	66	2	ACSR Bear	159.40
13	Hetauda-Kulekhani-2	10.48	2	ACSR Bear	190.91
14	Pathalaiya-Parwanipur	33	2	ACSR Bear	118.96

Table 4.5: List of 132kV Critical Transmission Lines at 35% Generation

15	New Butwal- Bardaght	20	2	ACSR Bear	163.19		
16	Damauli-Bharatpur	39	1 ACSR Wolf 184				
Total ckt.km			ACSR Bear: 536.92 ctkm				
		943 47	ACSR Panther: 197.55 cktkm				
		043.47	ACSR Bison: 70 ckt. Km				
			ACSR Wolf: 39 ckt. km				

From the above table, it is analyzed that a total 843.47 electrical circuit kilometers of 132kV transmission line is found to be the most critical based on the percentage of maximum loading. From the table, Dumkibas-Bardaghat 132kV transmission line section is found to be the most critical having 694.32% maximum loading followed by Gandak-Bardaghat 132kV transmission line section of 547.13% loading.

Now analyzing above different cases at various generation scaling keeping the load demand at maximum value of 2054.78 MW, we may synthesize the result in the following Table 4.6:

Generation Scaling (%)	Generation Power (MW)	External Infeed	Grid Power Loss (%)
100	2,432.74	(218.18)	6.56
80	1,947.25	256.38	6.75
50	1,219.05	1,089.34	10.98
40	976.33	1,440.87	15.0
35	854.97	1,665.02	18.46

Table 4.6: Grid Power Loss at Different Generation Scaling

From above Table 4.6, we see that when internal generation is decreased and deficit is fulfilled by the external in-feed, total grid losses is increased. Number of overloaded transmission lines is also increased at decreased internal generation and increasing external in-feed.

Now as a part of this research, it is considered to upgrade the conductors at the line sections which are overloaded by $\geq 100\%$ at full generation capacity and load is considered maximum, the same is also shown in above Table 4.1: List of 132kV Critical Transmission Lines at 100% Generation. These line sections are using the ACSR Bear and ACSR Panther conductors. Therefore, the total length of 543.82 circuit km at those critical line sections with equivalent HTLS conductor along with insulator, erection hardware and fittings are considered for further analysis.

4.2 Derating of Line Conductors

Under NEA service conditions as discussed in Section 3.3, the current – temperature relationship of the line conductors in maximum loading conditions is calculated as per IEEE Standard 738, "IEEE Standard for Calculating the Current-Temperature of Bare Overhead Conductors". Detail calculation is done in .xls sheets and the calculation results are provided in Annex D. The summary of derated current values of few ACSR conductors used in 132kV line in INPS is shown in Table 4.7 below:

Conductor Code	ACSR Wolf	ACSR Panther	ACSR Bear	ACSR Duck
Current carrying capacity at the maximum operating temp. of 75°C as per Manufacturer in Ampere (A)	470	560	650	750
Derated Ampacity under NEA service condition at maximum operating temp of 75° C in Ampere (A)	335.28	395.94	457.78	498.07

 Table 4.7: Derating of ACSR Conductors

It is observed from above Table 4.7 that for all conductors, the derated current carrying capacity is less than the ratings specified by the manufacturer in its standard data sheet. The reason is that the ambient temperature and coefficient of solar absorption is less in actual service condition which cause to contribute the higher heat gain on the conductor surface. However, parameters like emissivity and wind speed are more than in actual service condition which also contributes to the heat loss. So, due to decrease in heat loss and increase in heat gain, conductor reaches higher temperature at lower current as compared to manufacturer's condition.

4.3 ACSR Equivalent HTLS Conductor

The equivalent of any conductor type is generally having an equivalent construction/geometry and weight per unit length. Further, the maximum tensile strength of the conductor should not add the extra loading in the tower structures. Following is given the few technical features of the ACSR conductor:

	Decerintian	Technical parameters				
SN	Description	ACSR Bear	ACSR Panther			
1	Nominal diameter of the conductor	23.45mm	21 mm			
2	Nominal cross-sectional area	326.12 mm^2	261.54 mm^2			
3	Nominal mass of the conductor	1220 kg/km	974 kg/km			
4	Ultimate tensile strength	112 kN	90.80 kN			
5	R _{dc} at 20°C	0.11Ω/km	0.14 Ω/km			

 Table 4.8: Technical Features of ACSR Conductor

6	R _{ac} at 75°C	0.1382Ω/km	0.1759 Ω/km
7	Manufacturer rated current carrying capacity for the maximum operating temp. of 75° C	650 Amp.	560 Amp
8	Derated current carrying capacity under NEA service condition at the maximum operating temp. of 75°C	457.78 Amp.	395.94 Amp

So, the value of equivalent HTLS conductor is assumed to have an equivalent diameter and mass/km equivalent as of ACSR conductor however, the ampacity rating is required to be higher than the previous one.

For the ACSR Bear and ACSR Panther, equivalent HTLS conductor is generally considered to meet the following minimum requirements:

		Limiting	Value
SN	Technical parameters	ACSR Bear Equivalent	ACSR Panther Equivalent
1	Overall diameter of complete conductor	Must not exceed 24.50 mm and not less than 21 mm	Must not exceed the existing conductor overall diameter 22.50 mm and not less than 19 mm
2	Approx. mass of complete conductor (kg/km)	Must be less than or equal to existing conductor weight per unit length- 1220 kg/km	Must be less than or equal to existing conductor weight per unit length- 974kg/km
3	Direction of lay of outer layer	Right I	Hand

 Table 4.9: Technical Requirements for Equivalent ACSR Conductor

ACSR Bear and ACSR Panther conductors have the different limiting values. However, for the simplicity of the study, the equivalent HTLS conductor is considered to be the same for both conductor types. Moreover, it is considered to replace the insulators, erection hardware and accessories at those critical line sections which would be compactible to the candidate HTLS conductor.

Now, looking into the manufacturer's data sheet of various HTLS conductors, following types of conductors have been considered as an equivalent based on similar diameter and weight per unit length. Derated value of the conductor under NEA service conditions is also noted in the same table.

					Т	echnical Pa	arameters			
SN	Description	ACSR	ACSR	G(Z)TAC	STACIR ²	ACSS ³	ACCC ⁴	ACCC	ACCC	ACCC
		Bear	Panther	SR ¹	STACIK	ACSS	OSLO	LISBON	AMSTERDAM	CORDOBA
1	Diameter of the Al conductor, mm	*	*	*	*	*	*	*	*	*
2	Diameter of Core, mm	10.05	9.00	*	*	*	8.76	7.11	7.75	7.75
3	Diameter of complete conductor, mm	23.45	21.00	22.60	23.45	22.42	22.40	21.79	23.55	24.41
4	Cross sectional area of core, mm	61.70	49.48	43.11	58.07	*	60.30	39.70	47.10	47.10
5	Cross-sectional area of Al conductor, mm ²	264.42	212.06	265.30	248.87	*	313.80	315.50	367.40	399.40
6	Cross sectional area of complete conductor, mm ²	326.12	261.54	308.40	325.60	347.71	374.10	355.20	414.50	446.50
7	Nominal mass of the conductor, kg/km	1220	974	1084	1083	1203	981	946	1104	1191
8	Ultimate Tensile Strength of conductor, kN	112	90.80	107.50	98.71	102.50	147.90	103.40	122.40	123.50
9	R_{dc} at 20°C, Ω/km	0.11	0.1363	0.111	0.11068	0.09333	0.0893	0.0887	0.0762	0.070
10	Temperature Coeff. of Resistance per °C	0.00403	0.00403	0.00403	0.00403	0.00403	0.00403	0.00403	0.00403	0.00403
11	Max. operating temp. °C	75	75	210	180	150	180	180	180	180
12	Max. allowable emergency temp. °C	85	85	250	200	180	200	200	200	200
13	Rac at 25°C, Ω/km	0.1178	0.1378	*	*	*	0.0911	0.0910	0.0784	0.0724
14	Rac at 75°C, Ω/km	0.1382	0.1759	*	*	*	0.1091	0.1088	0.0936	0.0864
15	Rac at 180°C, Ω/km	NA	NA	*	*	*	0.1469	0.1461	0.1256	0.1158
16	Current Rating at Max. operating temp.	650	560	1335	1260	1151	1291	1285	1419	1495
17	Derated current carrying capacity under NEA service condition at the maximum operating temp.	457.78	395.94	1134.75	1071	978.35	1123.17	1117.95	1248.72	1318.24

Table 4.10: Technical Features of Equivalent HTLS Conductor

'Z' refers to trapezoidal shape of aluminum conductor. 'G' refers to Gap between steel and aluminum conductor.

* Unknown

Note:

Manufacturer's value of current capacity is given based on referenced conductor temperature, 0.61 m/s wind, 0 m elevation, 0.5 emissivity, 0.50 absorptivity, 40 °C Ambient Temperature, 1045 W/m² (96w/ft²) solar

 ¹ Gap Type Super Thermal Aluminum Conductor Steel Reinforced
 ² Super Thermal Aluminum Alloy Conductor INVAR Reinforced
 ³ Aluminum Conductor Steel Supported

⁴ Aluminum Conductor Composite Core

Conductors listed in Table 4.10 are both electrically and geometrically very similar to the conventional ACSR Bear conductor mostly using in 132kV transmission line. The DC resistance value at 20 °C for G(Z)TACSR, STACIR is near to the ACSR Bear conductor and is also higher than other HTLS conductor types. This value will be higher at large operating temperature. So, the power loss will be increased while operating at large temperature which looks not so good in long run. For ACSS, it has higher weight per unit length than other HTLS ACCC conductors. Further, its derated current carrying capacity is also lower at maximum operating temperature. So, it is also not selected for the analysis.

Now looking into the ACCC conductors, the derated current for ACCC CORDOBA is 1318.24 Amp. at the maximum operating temp. of 180°C under NEA service condition which is followed by ACCC AMSTERDAM with current value of 1248.72 Amp. It is because ACCC CORDOBA has large cross section of Aluminum part than ACCC AMSTERDAM however; both have the same core diameter. The third higher current carrying value is that of ACCC OSLO which 1123.17 Amp is at maximum operating temperature value of 180 °C. It has lower current value in comparison with the previous two ACCC conductor types. Irrespective of having larger cross-sectional area, it has the larger core diameter than in other ACCC conductors. However, it has the highest tensile strength and least weight per unit length among all conductor types and it is more equivalent geometrically to both of ACSR Bear and ACSR Panther conductors. ACCC LISBON has the least derated current value among above ACCC conductors.

Now, following the optimum conductor size equivalent to the both ACSR Bear and ACSR Panther conductors, least conductor mass per unit length and largest ultimate tensile strength is more satisfactory to consider the ACCC OSLO as equivalent ACSR conductor. It has the derated capacity of 1123.17 Amp. It has almost 2.45 times higher than ACSR Bear and 2.84 times higher than ACSR Panther conductor maximum allowable current carrying capacity under derating at NEA service condition which is quite satisfactory to consider as an equivalent conductor.

4.4 Load Flow Study after HTLS Conductor

In view of the above discussion, all the 132kV critical line sections which are overloaded as shown in Table 4.1, load flow has been carried out after replacing

ACSR conductor with HTLS ACCC OSLO. During load low, it is noted that the INPS load flow is converged in 5 iterations. Muzzafarpur and Ramnagar external grids have been considered as reference machine or slack bus. At this case, the result of the grid summary is noted below:

No. of Busbars: 104; No. of Lines: 178

No. of Loads:	75	No. of Shunts Cap	oacitor: (31	
Total Generatio	n Capa	acity: 2438.72 MW,	456.33	MVar; 24	481.05 MVA
External Infeed	=	-245.67 MW,	176.97	MVar,	302.78 MVA
Load P(U)	=	2054.59 MW,	992.95	MVar,	2281.95 MVA
Grid Losses	=	138.45 MW,	375.76	MVar	

Above result is so remarkable that the surplus power in INPS generation is 245.67 MW which is more by 15.60 MW than before conductor replacement. It means that grid power loss is decreased by about 15.60 MW than original case of 154.06 MW which is about 5.67% of the total generation and it is 6.31% before conductor replacement.

It is further analyzed the scenario of the critical lines as noted in Table 4.11 as under:

		Line	No. of	Line Loading (%)			
SN	Line name/section	Length in ckt-km	elec. circuits	ACSR Type	Loading	Loading after HTLS	
1	Dhalkebar-Mirchaiya	63	2	Bear	167.22	54.83	
2	Kusaha-Kataiya	13	1	Bear	154.44	62.53	
3	Lamosanghu-Khimti	45.84	1	Bear	146.26	62.78	
4	Chapur-Dhalkebar	139	2	Bear	140.53	60.32	
5	Bhaktapur- Lamoshanghu	96.60	2	Bear	137.65	52.78	
6	Nawalpur-Chapur	66	2	Bear	124.92	52.61	
7	Duhabi-Damak	48.90	1	Bear	122.07	51.27	
8	Gandak-Bardaghat	28	2	Panther	116.03	25.57	
9	Hetauda-Kulekhani2	10.48	2	Bear	108.24	40.46	
10	Pathalaiya-Parwanipur	33	2	Bear	103.05	47.12	

 Table 4.11: Status of 132kV Critical Transmission Lines after Conductor Uprating

It looks that the loading at all the line sections is drastically reduced after replacement of ACSR conductor with HTLS conductor.

4.5 Sag- Tension Study

For sag - tension analysis of the candidate HTLS conductor: ACCC OSLO, PLS-CADD tool is used. It is required that each individual conductors must be well maintained under all operating condition. The new HTLS conductor must not violate the existing sag and existing tension on tower at any operating temperature condition of each individual conductors.

Sag – tension calculation has been carried out at each criticl line sections taking the case of both ACSR and HTLS conductor. Now, the sag – tension behaviour of the conductors at different weather conditions is discussed below:

4.5.1. Kusaha – Katiya Section

At this line section, 2.83 km of line lengh from Kusaha to Kataiya is selected for the study. In the selected line length, the minimum line span is found 149 m between Tower No. 4 and Tower No. 5 and the maximum span is found 376 m between Tower No. 3 to Tower No. 4. ACSR Bear conductor is used at this line. The ambient temperature at the intial condition during stringing is considered 32 °C. Ruling span sag-tension report is analyzed in the followings:

SN	Weather age	Conducto Bear)	or Loa	d (ACSR	Conductor Load (ACCC OSLO)		
DIN	Weather Case	Hor. (N/m)	Vert. (N/m)	Resultant (N/m)	Hor. (N/m)	Vert. (N/m)	Resultant (N/m)
1	0 deg. no wind	0.00	11.90	11.90	0.00	9.81	9.81
2	0 deg. 36% wind	13.25	11.90	17.81	12.65	9.81	16.01
3	32 deg. no wind	0.00	11.90	11.90	0.00	9.81	9.81
4	32 deg. full wind	39.79	11.90	38.67	35.14	9.81	36.49
5	180 deg. no wind	-	-	-	0.00	9.81	9.81
6	75 deg. no wind	0.00	11.90	11.90	0.00	9.81	9.81

 Table 4.12: Conductor load at different weather case

In Table 4.12, the conductor load distribution at different weather cases is shown. At no wind case, there is only the vertical load, horizontal load of the conductor is zero. At windy case, extra loading is imposed in the conductor so that the total load is the resultant value of both vertical and horizontal load of the conductor.

Table 4.13: Sag-Tension Report at Kusaha - Kataiya (T3-T4)

SN	Weather case	Sag-tension after load (ACSR Bear)			Sag-tension after load (ACCC OSLO)		
		Max. Tens. (N)	Hori. Tens. (N)	Sag (m)	Max. Tens. (N)	Hori. Tens. (N)	Sag (m)
1	0 deg. no wind	26268	26166	8.07	40559	40512	4.29

2	0 deg. 36% wind	34914	34746	9.10	44463	44355	6.40
3	32 deg. no wind	22609	22491	9.39	37716	37666	4.62
4	32 deg. full wind	55612	55124	12.46	56810	56386	11.49
5	180 deg. no wind	-	-	-	30910	30849	5.64
6	75 deg. no wind	19247	19109	11.06	34054	33999	5.12

Looking at the above Table. 4.13, we see the sag at different weather cases which is lower while the conductor is changed into ACCC OSLO from ACSR Bear. More tension is imposed in the the conductor than in the initial case, however it is within the limit of sag-tension criteria.

Looking at the figure 4.1 below, we may visualize the sag distribution once using both conducors at maximum operating temperature of 75 °C. At near to the knee point of the conductor catenary curve, we see that the conductor ACCC OSLO looks having less sag less than ACSR Bear by about 5.4m.

4.5.2. Dhalkebar - Chapur Section

At this line section, 2.89 km of line lengh from Kusaha to Kataiya is selected for the study. The minimum line span is found to be 311 m between Tower No. 5 and Tower

No. 6 and the maximum span is found 399 m between Tower No. 3 and Tower No. 4. We take the span between Tower No. 4 and Tower No. 5 for the study where the ruling span is 311.12 m. ACSR Bear conductor is used at this line. The ambient temperature at initial condition during stringing is considered 32 °C. Ruling span sagtension report is given in the followings:

SN	Weather ease	Sag-tension after load (ACSR Bear)			Sag-tension after load (ACCC OSLO)			
511	weather case	Max. Tens. (N)	Hori. Tens. (N)	Sag (m)	Max. Tens. (N)	Hori. Tens. (N)	Sag (m)	
1	0 deg. no wind	32772	32624	4.40	38119	38001	3.12	
2	0 deg. 36% wind	39915	39734	5.41	41037	40890	4.73	
3	32 deg. no wind	26052	25895	5.55	35205	35087	3.37	
4	32 deg. full wind	55614	55211	8.46	50491	50108	8.80	
5	180 deg. no wind	-	-	-	30720	30600	3.87	
6	75 deg. no wind	20361	20190	7.12	31461	31342	3.78	

Table 4.14: Sag-Tension Report at Dhalkebar- Chapur (T4-T5)

Again, we see in table 4.14 that the conductor sag is decreased after replacing ACSR with HTLS whereas the tension is higher in the later case but is within the limit of sag-tension criteria. Similarly, we may visualize the sag variant between two conductor types in the below figure 4.2. Here, the two supports seem to be at different level so that the knee point is at the right from the mid span length. Looking at the demarked point, there is a sag difference of 2.7 m between two conductor types i.e., ACCC OSLO is having the lower sag value.

Figure 4.2 Stringing Chart at Dhalkebar- Chapur (T4-T5)

4.5.3. Khimti - Lamosanghu Section

Similarly taking the another case of Khimti – Lamosanghu 132kV line section, line length of 1.680 km from Khimti to Lamosanghu is selected for the study. The minimum line span is 215.20 m between Towr No. 2 and Towr No. 3 and the maximum span is found 607.7 m between Tower No. 3 and Tower No. 4. Span between Tower No. 4 and Tower No. 5 is selected for the sag – tension analysis. Ruling span of this section is 425 m, sag-tension report is given in the followings:

SN	Weather age	Sag-tension after load (ACSR Bear)		oad	Sag-tension after load (ACCC OSLO)			
511	weather case	Max. Tens. (N)	Hori. Tens. (N)	Sag (m)	Max. Tens. (N)	Hori. Tens. (N)	Sag (m)	
1	0 deg. no wind	23665	23356	11.48	39135	38910	5.68	
2	0 deg. 36% wind	32624	32244	12.45	43979	43710	8.25	
3	32 deg. no wind	21248	20928	12.82	36462	36236	6.10	
4	32 deg. full wind	55607	54844	15.91	58664	58025	14.18	
5	180 deg. no wind	-	-	-	31062	30834	7.16	
6	75 deg. no wind	18849	18512	14.50	33054	32827	6.73	

Table 4.15: Sag-Tension Report at Khimti - Lamosanghu (T4-T5)

Again here, the conductor sag is reduced drastically after replacing ACSR with ACCC conductor. Similarly, we may look at the conductor catenary curve suspended between two supports at Tower No. 4 and Tower No. 5 at the figure 5.3 below:

Figure 4.3 Stringing Chart at Khimti - Lamosanghu (T4-T5)

We may look that the two supports are at the different levels. The knee point of the conductor catenary curve is towards left from the mid span length. Looking at the middle phase of the line, the ACCC conductor has less sag by about 2.2 m in comparison to the existing ACSR Bear conductor.

Similarly, other line sections are also analyzed for the sag- tension behavior at different weather cases. It's all complied the required criteria of not violating the existing sag at any operating temperature condition of each individual conductors.

4.6 Cost Analysis for Conductor Replacement

It is also a part of the study for the cost analysis which needs for the replacement of the existing ACSR conductor, insulators, erection hardware and accessories. It is supposed that any modification of the tower and support structures may not be required to suspend the new conductor and hardware.

As noted in the Table 4.1, length of 132kV transmission line selected as the most critical section is 543.82 circuit kilometers. It is proposed to replace the conductor at

the whole line sections. Following is given the cost summary of the items, detail estimate of the items and the cost breakup is provided in Appendix E1 and Appendix E2.

Sec	Section A: Supply of HTLS Conductor and accessories							
SN	Items description	Estimated Cost	Remarks					
1	HTLS ACCC OSLO Conductor (1700km)	USD 18,763,920.00						
2	Insulators with hardware fitting and accessories	USD 164,505.35						
3	Erection Hardware and other accessories required for the installation of new conductor	USD 3,621,591.00						
4	Total of Section A: Supply Items	USD 22,550,016.35						
Sect	ion B: Dismantling, Installation and Commi	ssioning Charges						
1	Check Survey of existing Transmission line	USD 100, 000.00						
2	Dismantling and storing of Existing ACSR Conductor, hardware & accessories and Stringing, tensioning, clamping, jointing etc. of HTLS Conductor including fitting materials complete along with Testing and Commissioning of Line	USD 2,877,969.23						
3	Insulators with hardware fitting and accessories	USD 7,062.46						
4	Erection Hardware: a ll necessary accessories, hardware and fittings (Tension, suspension clamps, Connector etc.) required to complete the HTLS stringing works completely	USD 363,941.05						
5	Total of Section B: Dismantling, Installation and commissioning charges	USD 3,248,972.74						
6	Sum of Section A + Section B	USD 25,798,989.09						
7	Total amount in NPR.	NPR. 3,353,868,581.90	1 USD @NRs. 130					

Table 4.16: Cost Analysis for Conductor Replacement

In the above analysis, the total cost estimated for the conductor replacement is USD 25.798 Million excluding applicable custom duty and VAT. We may also look at the section 4.4 that the grid power loss is decreased by 15.60 MW which is assumed to be equivalent to the generation of that power and it can be analyzed as the cost of establishment of 15.60 MW hydropower generation plant. In today's study, the average cost incurred to establish a hydropower is NRs. 200 million per MW so that total cost needed for setting up a 15.60 MW hydropower plan will be NRs. 3,120 million which is near to the total cost required for HTLS conductor replacement as noted in above table 4.16.

For the construction of a new 132kV double circuit line with the use of ACSR Bear conductor, the average cost required is NRs. 20 million in average [29]. This amount is excluding the cost of land for the tower footings, cost of IEE/EIA study, cost of compensation of structures, crops, forest and land falling in the right of way etc. Considering all of these various factors, the total direct cost of the new transmission line may reach up to NRs. 50 million per kilometer which is quite a large value. Indirect cost like cost of capital, cost of overhead for resolution of social and forest related issues etc., also add extra cost in the project.

Therefore, considering all of these factors, the choice of conductor replacement is the best option for uprating the transmission line capacity.

4.7 Technical Viability for Reuse ACSR Conductor

To determine the remaining useful life of the old ACSR conductors, it needs to carry out the test of the conductor. The conductor should conform the test following the Indian/International standards as noted below:

SN	IS Nomo	Title	International
511	15 Name	The	Standard
1.	IS: 209-1992	Specification for zinc	BS:3436-1986
2.	IS: 398 Part-I -1996	Specification for Aluminum	IEC:1089-1991
		Conductors for Overhead	BS:215-1970
		Transmission Purposes	
3.	IS:398 Part-II -1996	Aluminum Conductor Galvanized	BS;215-1970
		Steel Reinforced	IEC:1089-1991
4.	IS:398 Part-V -1992	Aluminum Conductor Galvanized	IEC:1089-1991
		Steel- Reinforced for Extra High	BS:215-1970
		Voltage (400 KV) and above	
5.	IS : 1778-1980	Reels and Drums for Bare	BS:1559-1949
		Conductors	
6.	IS : 1521-1991	Method of Tensile Testing of Steel	ISO 6892-1984
		Wire	
7.	IS : 2629-1990	Recommended Practice for Hot Dip	
		Galvanizing of Iron and Steel	
8.	IS : 2633-1992	Method of Testing Uniformity of	
		Coating on Zinc Coated Articles	
9.	IS : 4826-1992	Galvanized Coating on Round Steel	IEC: 888-1987
		Wires	BS:443-1969
10.	IS: 6745-1990	Methods of Determination of	BS:433-1969
		Weight of Zinc Coating of Zinc	ISO 1460 - 1973
		Coated Iron and Steel Articles	

Table 4.17: List of Standards for Test of Conductors

11.	IS : 8263-1990	Method of Radio Interference Tests	IEC:437-1973
		on High Voltage Insulators	NEMA:107-1964
			CISPR
12.		Zinc Coated steel wires for stranded	IEC: 888-1987
		Conductors	
13.		Hard drawn Aluminum wire for	IEC: 889-1987
		overhead line conductors	

Where:

BS: British Standard; IEC: International Electro technical Commission.

BIS/IS: Bureau of Indian Standards;

ISO: International Organization for Standardization.

NEMA: National Electric Manufacturing Association

As explained in Section 2.10, the degradation of ACSR conductors begins as a loss of zinc from the galvanized steel core wires [25]. These losses can be measured using corrosion detector. The steel core corrosion detector measurements indicate the average thickness of the zinc remaining. Furthermore, it needs to carry out the mechanical tests of the conductors for the evidence of damage due to arching, localized annealing, lightning impulse, unsymmetrical and symmetrical faults etc.

To determine the remaining useful life of any tested conductor, an unacceptable deterioration level has to be established for each diagnostic procedure. Due to variation in zinc thickness and uncertainty regarding original thickness, the indicative is qualitative result of the conductor remaining useful life. A relatively coarse scale line one to four can be applied to categorize the samples. The instrument does not respond to effects that take a place within the steel wires after zinc coating is pierced or removed, such as surface rusting, pitting of the surface, or severe corrosion within the wires. Consequently, only end point that can be used for these measurements. The maximum value of four which corresponds to 80 to 100% loss of zinc.

In view of the above literature, the old ACSR conductors need to carry out the test to decide its technical viability for reusing in new project. Many conductor manufacturers in Nepal have lab facilities for those needed tests. Therefore, it is recommended to carry out the test as per the prevailing international standards to determine the remaining useful life and possibility for reusing those old conductors in transmission line.

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Following the analysis of the research in above sections, total of 543.82 circuit km. of 132kV line length (having ACSR Bear: 515.82 Ckt. km and ACSR Panther: 28 ckt. km) is found to be overloaded at full generation of 2438.72 MW and full load of 2054. 59 MW demand. At this case, total grid power surplus is 230.07 MW and grid power loss is 154.06 MW. When those overloaded line conductors are replaced with HTLS ACCC OSLO conductor which is equivalent to the ACSR Bear and ACSR Panther conductor, the grid power surplus is increased to 245.67 MW and decreasing the power loss by 15.60 MW from 154.06 MW which becomes 5.67% of the total system in-feed and it was 6.31% before conductor replacement. It is also found that the proposed ACCC OSLO HTLS conductor can carry the current by almost 2.45 times higher than ACSR Bear and 2.84 times ACSR Panther while derating at NEA service condition which is a quite amazing result. The line loading at each critical section is also reduced at safe zone, limiting 62.78% at maximum in Lamosanghu – Khimti 132kV Transmission Line section.

Reduction of grid power loss after conductor replacement is assumed to be equivalent to the generation of that power and it can be analyzed as the cost of establishment of 15.60 MW hydropower generation plant.

Similarly, all the critical line sections are analyzed for the sag- tension behavior at different weather cases. It's all complied the required criteria for not violating the existing sag at any operating temperature condition of each individual conductors, the new conductor has lesser sag than the at original case.

Cost analysis is also carried out for the replacement of the existing ACSR conductor, insulators, erection hardware and accessories. The total cost required for all these conductor replacement works is USD 25.798 million which is found to be more economic than constructing a new transmission line. Therefore, considering all the scenario, the choice of conductor replacement is the best option for uprating the transmission line capacity in 132kV transmission line critical sections in NEA.

To determine the remaining useful life of the old ACSR conductors, it needs to carry out the test of the conductor. The conductor should conform the test following the Indian/International standards.

5.2 Recommendation for further works

Recommendation for further work is provided in the following points:

- Study of Initial Environmental Examination (IEE) and/or Environmental Impact Assessment (EIA) and Social Impact Assessment (SIA) is recommended to carry out before execution for the old conductor replacement.
- Capacity enhancement of dedicated human resources, arrangement of tools and tackles, stock of spare conductors for repair and maintenance of HTLS conductor is recommended for NEA.
- 3) Test of old ACSR conductors, insulators, erection hardware and fitting accessories etc. is recommended as per prevailing IS/BS at accredited laboratory to find the remaining useful life and its technical viability to re-use in new/old transmission lines.
- 4) Use of HTLS conductors with appropriate design and current carrying capacity is recommended at new transmission lines projects in NEA.

REFERENCES

- [1] Gupta, B.R., 2006, "Power System Analysis and Design". New Delhi: S. Chand & Company Ltd.
- [2] Abdou Ayman A., Hafez Hazma Adb-Elsalam and et.al, "Assessment Techniques for improving the capacity of EHV transmission system on Egyptian Network", International Electrical Journal, 6, 2015.
- [3] Andres H Dominquez, Antonio Z Escobar and Ramon AGallego, "*Transmission Expansion Planning Considering Conductor Proposals with different wire size and technology*", Transmission and Distribution Conference and Exposition- Latin America, 2014.
- [4] Ivica Petrovic & et.al., "Current-Temperature Analysis of the Ampacity of Overhead Conductors depending on Applied Standards", a research article published in Journal of Energy Technology, JET Volume 7 (2014), p.p. 11-28, Issue 2, May 2014.
- [5] Ntuli M., Mbuli N. & et.al., "Increasing the Capacity of Transmission Lines via Current Uprating: An Updated Review of Benefits, Considerations and Developments", University of Johannesburg, South Africa, 2016
- [6] Baldick, R. & P.O'Neill, R., "Estimates of Comparative Costs for Uprating Transmission Capacity", IEEE Transactions on Power Delivery, Vol. 24, No. 2, April, 2009.
- [7] Dave, K. et. al., "Analyzing Techniques for Increasing Power Transfer in Electric Grid", IEEE Transactions, 2012.
- [8] Xu Wang, Guohong Chen & et.al., "Damage Investigation of the aged Aluminium Cable Steel Reinforced (ACSR) Conductors in a High Voltage Transmission Line", Research Gate, Jan. 2012, Engineering Failure Analysis 19(1): 13-21.
- [9] He Peng & et.al. "Research on Failure Mechanisms of Broken Strands of Jumper Wires for EHV Transmission Lines in Strong-Wind Areas", A Research article published in Metals 2020, 10, 39; doi:10.3390/met10010039 (www.mdpi.com/journal/metals)
- [10] R.B. Kalombo & et.al, "Assessment of the fatigue failure of an All Aluminium Alloy Cable (AAAC) for 230 kV transmission line in the Center-West of Brazil", a research article published in https://doi.org/10.1016/j.engfailanal.2015.08.043 (Engineering Failure Analysis, volume 61, March 2016, pages 77-87).
- [11] CBIP (1998) "*Transmission Line Design Manual*", New Delhi: Central Board of Irrigation and Power.
- [12] A. Alwar, E.J. Bosze, S.R. Nut "A hybrid numerical method to calculate the sag of composite conductors" Electric Power System Research, Volume 76, Issue 5, March 2006, P.389-394.
- [13] M.G. Ippolito, F. Massaro, C. Cassaro "A Way to Optimize RES Generation and to Improve the Competitiveness of the Electrical Market- A Case Study in Sicily", a research article published in Hindawi, Journal of Electrical and Computer Engineering, Volume 2018, Article ID 2073187, 10 pages, <u>https://doi/org/10.1155/2018/2073187</u>

- [14] Cigre. "Conductors for the uprating of existing overhead lines". TB 763. April 2019
- [15] Nepal Electricity Authority, A Year in Review-Fiscal Year 2021/2022.
- [16] User Manual of DigSILENT PowerFactory 15.1
- [17] IEEE Standard 738: Calculating the Current-Temperature Relationship of Bare Overhead Conductors.
- [18] Gupta R. Presentation on "New Generation High Performance Conductors- Power Grid's Experience", Power Grid Corporation of India Ltd., Gurgaon, India.
- [19] Information on AL-59 Conductor by JDS Group https://kjvalloys.in/aluminiumconductor-al59-al59conductor/#:~:text=AL%2D59%20alloy%20conductors%20are,carrying%20capa city%20of%20838%20amperes.
- [20] Nepal Electricity Authority, A Year of Book- Fiscal Year 2021/2022 (2078/2079 BS).
- [21] Sterlite Tech "Innovative Solutions for efficient power transmission systems: HTLS Conductor Technology" 2017, Sterlite Technologies Limited.
- [22] Manufacturer of HTLS ACCC[®] Core M/s CTC Global (www.ctcglobal.com)
- [23] S. Berjozkina, & A. Sauhats ,2015 "Research and Simulations of Overhead Power Line Uprating Using Advanced Conductors". Riga Technical University.
- [24] Matesscu, E. et al., 2011 "Reconductoring using HTLS conductors, Case study for a 220kV Double Circuit Transmission Line in Romania". Transmission & Distribution Construction, Operation and Live-Line Maintenance (ESMO). Providence, 2011. IEEE.
- [25] David G. "Use of Available Technologies for Assessing the present condition of Conductors", Ontario Hydro, Transmission & Distribution, May 1991.
- [26] Cigre 324 "Sag-Tension Calculation Methods for Overhead Lines", Task Force B2.12.3, First edition: June 2007, Revision: April 2016
- [27] Kumar M. & Rahangdale R. "*Comparative Analysis of ACSR and HTLS Conductor*" International Journal on Future Revolution in Computer Science & Communication Engineering, Volume: 4 Issue: 5, ISSN: 2454-4248 (29-35).
- [28] Nepal Electricity Authority, Project Management Directorate, "Transmission Line Upgrading Project, PMD/EGMP/TLUP-077/78-01 (RE)"
- [29] Nepal Electricity Authority, Transmission Directorate, Grid Development Department, "Kaligandaki Ridi 132kV Transmission Line Project"
- [30] IS 802 (Part 1/Sec 1): 1995 "Use of Structural Steel in overhead transmission line towers- code of practices." Third Revision.

Bus	Bus Name	Bus		315	'MODE33
<u>N0.</u>		Voltage		601	'HETAUDA
104	KOHALPUR	132		602	'KL-I
105	LAMAHI	132		603	'HTCEM
106	JHIMKUK	132		604	'AMLEK
107	SHIVPUR	132		605	'SIMRA
108	BUTWAL	132		606	'ASSTEEL
110	BARDGHAT	132		607	'JYOTI
111	'GANDAK	132		608	'PARWANI
112	BHARATPU	132		609	'BIRGUNJ
113	HETAUDA	132		610	'SIUCHATA
114	DHALKE	132		611	'BALAJU
115	'LAHAN	132		612	'LAINCHOU
116	'DUHABI	132		613	'CHABEL
117	'ANARMANI	132		614	'BHAKTPUR
118	MARSHYAN	132		615	BANESWOR
119	'DAMAULI	132		616	'PATAN
120	POKHARA	132		617	'SUNKOSHI
121	'KL-II	132		618	'TRISHULI
122	'SIUCH	132		619	'DEVIGHAT
123	'BALAJU	132		620	'CHILIME
124	'KUSHAHA	132		621	'BANEPA
125	'KG-A	132		622	'INDRAWAT
126	'MODI	132		623	'PANCHKHA
127	'KHIMTI1	132		630	'TEKU
128	BHOTEKOS	132		631	'K-3
129	LAMOSANG	132		632	'MAILUNG
130	'BHAKTAPU	132		633	'LOINDRAW
131	'ATARKHEL	132		700	'DUMTEKU
132	'HARISIDI	132		1001	MARSYANG
133	'THANKOT	132		1002	'GANDAK
134	'PARWANI	132		1003	'KL-I
135	'KL-3	132		1004	'MULTIFUL
141	'UP MODI	132		1005	'HETUDA
150	'MIDMARS	132		1006	'CHILIME
157	CHANDRAN	132		1007	'KHIMTI
158	'LEKHNATH	132		1008	'BHOTEKOS
170	'PATHA	132		1301	'KG-A
199	'KAWASOTI	132	ĺ	1500	'MIDMARS
301	'ANDHIKHO	33	ĺ	3001	'LONYADI
302	'BUTWAL	33	ĺ	5001	'ANDHIKOL
303	'MULTIFL	33	ĺ	6001	'DEVIGHAT
304	'DUHABI	33		6002	'TRISULI
305	'ANARMANI	33	ĺ	6003	'JHIMRUK
306	'PUWA	33	ĺ	6004	'KL-II
309	'DARAMKH	33		6005	'SUNKOSHI
310	'PILUWA	33		6006	'MODI
311	'KHUDI	33	ĺ	6007	'PUWA
312	'DAMAULI	33		6008	'INDRAWAT
313	'LONYADI	33	ĺ	6010	'PILUWA
314	'MARDI33	33	ĺ	6012	'KHUDI

APPENDIX A: INPS Bus Name and Number

13.8

3.3

5.3

6.6 6.6

6.6 6.6

6.3 6.6 6.6

6.6 6.6 'LOINDRAW

'MARDI

'MAILUNG

'T-46

6.6

6.6

From Bus	To Bus	Circuit No.	R	X	В	MVA Rating	Length, KM
104	105	1	0.05985	0.21894	0.0479	142	96
104	105	2	0.05985	0.21894	0.0479	142	96
105	106	1	0.09878	0.13648	0.02299		50
105	107	1	0.03179	0.11631	0.02545	142	51
105	107	2	0.03179	0.11631	0.02545	142	51
107	108	1	0.03803	0.13912	0.03044	142	61
107	108	2	0.03803	0.13912	0.03044	142	61
108	110	1	0.02681	0.09807	0.02146	142	43
108	110	2	0.02681	0.09807	0.02146	142	43
108	125	1	0.02615	0.11161	0.02353	180	58
108	125	2	0.02615	0.11161	0.02353	180	58
110	111	1	0.01089	0.03318	0.00672	123	14
110	199	1	0.01154	0.04219	0.00923	142	35
112	113	1	0.05447	0.1659	0.0336	123	70
112	118	1	0.01362	0.05813	0.01226	180	25
112	119	1	0.04056	0.09441	0.01827	103	39
112	199	1	0.01154	0.04219	0.00923	142	35
113	121	1	0.00499	0.01814	0.00402	142	8
113	135	1	0.00187	0.00684	0.0015	142	3
113	170	1	0.0187	0.06842	0.01497	139	30
113	170	2	0.0187	0.06842	0.01497	139	30
114	115	1	0.0374	0.13684	0.02994	142	60
114	115	2	0.0374	0.13684	0.02994	142	60
114	134	1	0.07917	0.02896	0.06337	142	127
114	157	1	0.04114	0.15052	0.03293	139	66
115	116	1	0.05361	0.19613	0.04291	142	96
116	117	1	0.04736	0.17702	0.03709	142	76
116	124	1	0.02618	0.09651	0.02079	142	42
118	122	1	0.04578	0.19502	0.04116	180	84
118	150	1	0.02397	0.10231	0.02158	180	44
119	150	1	0.02743	0.10035	0.02196	139	0
119	158	1	0.04162	0.09688	0.01875	103	40
120	126	1	0.02493	0.0938	0.01942	142	40
120	158	1	0.00622	0.01448	0.0028	103	6
121	133	1	0.01908	0.06941	0.01539	142	30.6
122	123	1	0.00383	0.01598	0.0034	142	7
122	133	1	0.00212	0.00771	0.00171	142	3.4
123	131	1	0.00612	0.0221	0.00497	142	9.8
125	158	1	0.03159	0.13486	0.02844	180	48
126	141	1	0.00623	0.02281	0.00499	142	10
127	129	1	0.0293	0.10719	0.02345	139	0
128	129	1	0.01869	0.07035	0.01456	142	30
129	130	1	0.03005	0.11165	0.02369	142	48.2
129	130	2	0.03005	0.11165	0.02369	142	48.2
130	131	1	0.00748	0.027	0.00607	142	12
130	132	1	0.00623	0.02354	0.00485	142	10
132	133	1	0.00623	0.02345	0.00485	142	10
134	170	2	0.0106	0.03877	0.00848	139	17
From Bus	To Bus	Circuit No.	R	Х	В	MVA Rating	Length, KM
----------	--------	-------------	---------	---------	---------	------------	------------
157	170	1	0.02743	0.10035	0.02196	139	44
301	302	1	0.5036	0.7423	0.0007	19.7	20
302	309	1	1.515	2.1447	0.00213	20	60
303	304	1	0.1259	0.1856	0.0002	19.7	5
303	304	2	0.1259	0.1856	0.0002	19.7	5
304	310	1	1.0072	1.4848	0.0016	19.7	
305	306	1	1.0072	1.4848	0.0016	19.7	40
311	312	1	1.16223	1.64453	0.00164	20	46
312	313	1	0.1259	0.1856	0.0002	20	70
314	315	1	0.7554	1.1136	0.0012	20	30
601	602	1	0.06659	0.13397	0.00208	51	16
601	602	2	0.06659	0.13397	0.00208	51	16
601	603	1	0.00416	0.00875	0.00013	51	
601	603	2	0.00416	0.00875	0.00013	51	
602	610	1	0.1207	0.2537	0.00377	51	29
602	610	2	0.1207	0.2537	0.00377	51	29
603	604	1	0.06659	0.13997	0.00208	51	16
603	604	2	0.06659	0.13997	0.00208	51	16
604	605	1	0.04162	0.08748	0.013	51	10
604	605	2	0.04162	0.08748	0.013	51	10
605	606	1	0.00416	0.00875	0.00013	51	1
605	606	2	0.00416	0.00875	0.00013	51	1
606	607	1	0.00416	0.00875	0.00013	51	1
606	607	2	0.00416	0.00875	0.00013	51	1
608	609	1	0.03746	0.07873	0.00117	51	9
608	609	2	0.03746	0.07873	0.00117	51	9
610	611	1	0.02721	0.06066	0.00089	51	7
610	611	2	0.02721	0.06066	0.00089	51	7
610	616	1	0.0136	0.03563	0.00051	51	2
610	616	2	0.0136	0.03563	0.00051	51	2
610	630	1	0.01748	0.03674	0.00055	72	4.2
610	630	2	0.01022	0.0361	0.00053	72	4.1
610	700	1	0.01748	0.03674	0.00055	72	4.2
611	612	1	0.00716	0.01784	0.00034	62	2.3
611	618	1	0.18265	0.292	0.00361	40	29
611	618	2	0.18265	0.292	0.00036	40	29
611	619	1	0.20784	0.33227	0.00411	40	33
613	614	1	0.04252	0.12817	0.00177	71	14
613	619	1	0.19525	0.31214	0.00386	40	31
614	615	1	0.05914	0.08857	0.00136	44	10.5
614	621	1	0.09495	0.12756	0.00199	44	15.3
615	616	1	0.01753	0.02533	0.00039	44	3
617	623	1	0.131	0.17598	0.00275	44	27
618	619	1	0.0208	0.04348	0.00065	51	5
618	6346	1	0.08803	0.18504	0.00275	51	21.2
620	6346	1	0.06792	0.14276	0.00212	51	16.3
621	623	1	0.06179	0.08301	0.0013	44	10
622	623	1	0.19564	0.257	0.004	44	31
622	633	1	0.00252	0.00332	0.00005	44	0.4
630	631	1	0.00546	0.00004	0.00001	59.4	3.5
631	700	1	0.00546	0.00004	0.00001	59.4	3.5

632	6346	1	0.01889	0.03021	0.00037	51	3

Generator No	Capacity MW	MVA
1	20	

Γ

Bus No	Generator No	Capacity MW	MVA Rating	Generator Impedance
1001	1	20	30	0.182
1001	2	25	30	0.182
1001	3	25	30	0.182
1002	1	5	5.88	0.32
1002	2	5	5.88	0.32
1002	3	4	5.88	0.32
1003	1	30	35.3	0.14
1003	2	30	35.3	0.14
1004	1	7	7.65	0.13
1004	2	7	7.65	0.13
1004	3	7	7.65	0.13
1004	4	7	7.65	0.13
1004	5	7	7.65	0.13
1004	6	7	7.65	0.13
1005	1	2	2.5	0.13
1005	2	2	2.5	0.13
1005	3	1	2.5	0.13
1005	4	2	2.5	0.13
1006	1	10	13	0.161
1006	2	10	13	0.161
1007	1	12	14.2	0.23
1007	2	12	14.2	0.23
1007	3	6	14.2	0.23
1007	4	12	14.2	0.23
1007	5	12	14.2	0.23
1008	1	14	25	0.166
1008	2	14	25	0.166
1301	1	48.69	56.5	0.22
1301	2	48.69	56.5	0.22
1301	3	48.69	56.5	0.22
1500	1	35	41.18	0.2
1500	2	35	41.18	0.2
3001	1	2	2.7	0.2
3001	2	2.1	2.7	0.2
5001	1	2	2.2	0.2
5001	2	1	2.2	0.2
5001	3	2	2.2	0.2
6001	1	5	6	0.2
6001	2	5	6	0.2
6001	3	4	6	0.2
6002	1	3	3.389	0.2
6002	2	3	3.389	0.2
6002	3	3	3.389	0.2
6002	4	3	3.389	0.2
6002	5	3	3.389	0.2

APPENDIX C: Generator Data

Bus No	Generator No	Capacity MW	MVA Rating	Generator Impedance
6002	6	1	3.389	0.2
6002	7	1	3.389	0.2
6003	1	4	5	0.16
6003	2	4	5	0.16
6003	3	1	5	0.16
6004	1	15	18.8	0.19
6004	2	15	18.8	0.19
6005	1	3	4	0.192
6005	2	3	4	0.192
6005	3	3	4	0.192
6006	1	5	7.8	0.23
6006	2	5	7.8	0.23
6007	1	3	3.64	0.2
6007	2	2	3.64	0.2
6008	1	2	2.95	0.2
6008	2	1	2.95	0.2
6010	1	1	1.76	0.2
6010	2	1	1.76	0.2
6012	1	1	2.12	0.2
6012	2	1.2	2.12	0.2
6013	1	2	2.7	0.2
6013	2	1	2.7	0.2
6014	1	1.5	1.88	0.2
6014	2	1.5	1.88	0.2
6321	1	1	2.2	0.2
6321	2	1	2.2	0.2
6321	3	2.3	2.2	0.2

APPENDIX D: Derating of Line Conductors with IEEE Standard 738

1) ACSR Bear Conductor

Domonistons	Growbal	Manufact	turer Data	NEA condition		
Parameters	Symbol	Unit	Value	Unit	Value	
Conductor diameter	D	mm	23.45	inch	0.923	
Elevation of conductor above sea level	He	m	0	ft	0	
Elevation correction factors for high altitude	ude (See Ta	able 4) in IEE	E 738 Standar	ď		
Ambient temperature	Ta	°C	35		45	
Conductor surface Maximum temperature	Ts	°C	75		75	
Conductor Temperature	T ₁	°C	20		20	
Conductor Temperature	T ₂	°C	75		75	
Temperature of boundary layer, (Ts+Ta)/2	$\mathrm{T}_{\mathrm{film}}$	°C	55		60	
Azimuth of sun	Zc	degrees		degrees	139.0	
Average sun altitude between 10:00 am and 12:00 noon	H _c	degrees		degrees	72.5	
Transmission line runs in east-west direction, so latitude is assumed as	N	degrees		degrees	27	
wind velocity considering angle between wind and axis of conductor as 90 degrees	v	m/sec	0.61	ft/s	1.8368	
Velocity of air stream	V_{w}			ft/h	6612.48	
Density of air	$\rho_{\rm f}$			lb/ft ³	0.055	
Absolute viscosity of air	μ_{f}			lb/ft.hr	0.0484	
Thermal conductivity of air at temperature T_{film}	K _f			w/ft (°C)	0.00875	
Emissivity constant	З		0.5		0.45	
Effective angle of incidence of the sun's ray	θ	degree	78.62	degree	78.62	
Solar radiation (total solar and sky radiated heat flux)	Qs	watt/sq.m	1045	w/ft ²	97.12	
Natural Convection heat loss	q _c	w/ft		w/ft	4.389	
Heat loss due to natural convection at low wind	q _{c1}	w/ft		w/ft	9.946	
Heat loss due to natural convection at high wind	q _{c2}	w/ft		w/ft	8.975	
The larger of the heat loss due to both natural and forced convection is used in calculating thermal rating. therefore, convection heat loss is	qc	w/ft		w/ft	9.946	
Radiated heat loss calculation	q _r	w/ft		w/ft	2.5456	
Solar Heat Gain Calculation						
Solar absorptivity	α		0.5		0.5	
A'	ft²/ft			ft^2/ft	0.0769	

Solar heat gain	qs	w/ft		w/ft	3.663
DC Resistance at 20°C	R _{dc20}	Ω/km	0.11	Ω/ft	3.35E-05
AC Conductor Resistance at 20°C	Rac20	Ω/km	0.113	Ω/ft	3.45E-05
Temperature coefficient of resistance at 20°C	ρ ₂₀	per °C	0.004	per °C	0.004
AC Conductor Resistance at 45°C	Rac45	Ω/km	0.1246	Ω/ft	3.80E-05
AC Conductor Resistance at 75 °C	Rac75	Ω/km	0.1382	Ω/ft	4.21E-05
Derated current value	Ι	Amp	650	Amp	457.78

2) ACSR Panther Conductor

Domonistonia	Growbal	Manufact	urer Data	NEA Condition		
Parameters	Symbol	Unit	Value	Unit	Value	
Conductor diameter	D	mm	21	inch	0.827	
Elevation of conductor above sea level	He	m	0	ft	0	
Elevation correction factors for high altitud	le (See Tal	ole 4) in IEEE	738 Standard			
Ambient temperature	Та	°C	35		45	
Conductor surface Maximum temperature	Ts	°C	75		75	
Conductor Temperature	T1	°C	20		20	
Conductor Temperature	T2	°C	75		75	
Temperature of boundary layer, (Ts+Ta)/2	$\mathrm{T}_{\mathrm{film}}$	°C	55		60	
Azimuth of sun	Zc	degrees		degrees	139.0	
Average sun altitude between 10:00 am and 12:00 noon	H _c	degrees		degrees	72.5	
Transmission line runs in east-west direction, so latitude is assumed as	N	degrees		degrees	27	
wind velocity considering angle between wind and axis of conductor as 90 degrees	v	m/sec	0.61	ft/s	1.8368	
Velocity of air stream	$V_{\rm w}$			ft/h	6612.48	
Density of air	$\rho_{\rm f}$			lb/ft ³	0.055	
Absolute viscosity of air	μ_{f}			lb/ft.hr	0.0484	
Thermal conductivity of air at temperature T_{film}	\mathbf{K}_{f}			w/ft (°C)	0.00875	
Emissivity constant	з		0.5		0.45	
Effective angle of incidence of the sun's ray	θ	degree	78.62	degree	78.62	
Solar radiation (total solar and sky radiated heat flux)	Qs	watt/sq.m	1045	w/ft ²	97.12	
Natural Convection heat loss	q _c	w/ft		w/ft	4.040	
Heat loss due to natural convection at low wind	q _{c1}	w/ft		w/ft	9.406	
Heat loss due to natural convection at high wind	q _{c2}	w/ft		w/ft	8.400	

The larger of the heat loss due to both natural and forced convection is used in calculating thermal rating. therefore, convection heat loss is	q _c	w/ft		w/ft	9.406
Radiated heat loss calculation	q _r	w/ft		w/ft	2.2797
Solar Heat Gain Calculation					
Solar absorptivity	α		0.5		0.5
A'	ft²/ft			ft²/ft	0.0689
Solar heat gain	qs	w/ft		w/ft	3.280
DC Resistance at 20°C	R _{dc20}	Ω/km	0.14	Ω/ft	4.27E- 05
AC Conductor Resistance at 20°C	Rac20	Ω/km	0.144	Ω/ft	4.40E- 05
Temperature coefficient of resistance at 20°C	ρ ₂₀	per °C	0.004	per °C	0.004
AC Conductor Resistance at 45 °C	R _{ac45}	Ω/km	0.1586	Ω/ft	4.83E- 05
AC Conductor Resistance at 75°C	Rac75	Ω/km	0.1759	Ω/ft	5.36E- 05
Derated Current value	Ι	Amp	560	Amp	395.94

APPENDIX E: Supply, Delivery, Construction and Installation of Conductors, Insulators with Hardware Fitting and Accessories

APPENDIX E1: Supply & Delivery of HTLS Conductors, Insulators with Hardware Fitting and Accessories [28]

Item No.	Item description	Unit	Quantity	CIP Project Site including insurance, clearing, forwarding and transportation to site (Excluding Taxes and Duties applicable in Nepal)			
	TRANSMISSION LINE CONDUCTOR UPGRADE			Currency#	Unite Rate	Amount	
	TRANSMISSION LINE CONDUCTOR UPGRADE						
	Part-A : EMPLOYER ASSESSED QUANTITIES						
	TRANSMISSION UPGRADE						
А	Design, Manufacture, Testing and Supply of HTLS Conductor with all necessary accessories to complete the specified scope of works.						
A.1	High Tension Low Sag (HTLS) Conductor	Km	1,700.0	USD	11,000	18,763,920.00	
	SUB TOTAL 'A'				-	18,763,920.00	
В	Insulators with hardware fitting and accessories				-	-	
B.1	Design, manufacture, testing and Supply of Disc Insulators 70 KN with fittings	Nos.	1815	USD	16.80	30,492.00	
B.2	Design, manufacture, testing and Supply of Disc Insulators 120 KN with fittings	Nos.	1815	USD	16.80	30,492.00	
B.3	Vibration Damper for HTLS Conductor	Nos	2000	USD	18.90	37,800.00	
B.5	Mid span compression joint for HTLS conductor (A.1)	Nos	150	USD	434.70	65,205.00	
B.7	Repair Sleeve for HTLS conductor (A.1)	Nos	115	USD	4.49	516.35	
	SUB TOTAL 'B'				-	164,505.35	
	Part-B: CONTRACTOR ASSESSED QUANTITIES						
С	Erection Hardware						
1	All necessary accessories, hardware and fittings (Tension, suspension clamps, Connector etc) required to complete the HTLS stringing works completely	Lot	1	USD	3,292,356.00	3,292,356.00	
2	All tools and tackles required for the installation of the HTLS conductor.	Lot	1	USD	329,235.00	329,235.00	
	SUB TOTAL 'C'			USD		3,621,591.00	

D	Total of Supply Items [A+B+C]			22,550,016.35

APPENDIX E2: Installation and Construction Charges of HTLS Conductors [28]

					Installatio	on Charges		
Sl. No.	Item Description	T 1 *4	0.1	Portion	n in Foreign C	urrency	Portion in Nepalese Currency (in NPR)	
		Unit	Qty.	Currency#	Unit Rate	Total Charges	Unit Rate	Total Charges
(1)	(2)	(5)	(6)	7				
	TRANSMISSION LINE CONDUCTOR UPGRADE							
	Part-A : EMPLOYER ASSESSED QUANTITIES							
PART I	SUB TRANSMISSION UPGRADE							
Α	Check Survey of existing Transmission line	Lot	1	USD	100,000.00	100,000.00		
	SUB TOTAL 'A'					100,000.00		
В	Dismantling and storing of Existing ACSR Conductor, hardware & accessories and Stringing, tensioning, clamping, jointing etc of HTLS Conductor including fitting of all necessary line materials complete and Testing and Commissioning of Line							
B.1	Dismantling of Existing ACSR Conductor, hardware, accessories, fittings and storage at NEA Site store	Km	1700	USD	168.00	285,600.00	12,600.00	21,420,000.00
B.2	Stringing of HTLS conductor with installation of all <i>required</i> hardware and accessories and testing and commissioning of Transmission line as specified							
B.2.1	High Tension Low Sag (HTLS) Conductor	Km	1700	USD	840.00	1,428,000.00	76,440.00	129,948,000.00
	SUB TOTAL 'B'					1,713,600.00		151,368,000.00
С	Insulators with hardware fitting and accessories							
C.1	Design, manufacture, testing and Supply of Disc Insulators 70 KN with fittings	Nos.	1815			-	84.00	152,460.00
C.2	Design, manufacture, testing and Supply of Disc Insulators 120 KN with fittings	Nos.	1815			-	84.00	152,460.00
C.3	Vibration Damper for HTLS Conductor as per B2.1	Nos	2000			-	84.00	168,000.00

C.5	Mid span compression joint for HTLS conductor (B2.1)	Nos	150			-	1,680.00	252,000.00
C.7	Repair Sleeve for HTLS conductor (B2.1)	Nos	115				1,680.00	193,200.00
SUB TOTAL 'C'					-	-		918,120.00
	Part-B: CONTRACTOR ASSESSED QUANTITIES				-	-	-	-
D	Erection Hardware				-	-	-	-
1	All necessary accessories, hardware and fittings (Tension, suspension clamps, Connector etc) required to complete the HTLS stringing works completely.	LS	1	USD	362,159.10	362,159.10	231,653.40	231,653.40
	SUB TOTAL 'D'				-	362,159.10	-	231,653.40
	Total of [(Part-A+ Part-B)]					2,075,759.10		152,517,773.40
	Total in equivalent USD @ 1 USD= 130.00 NPR					2,075,759.10		1,173,213.64
	Total in equivalent USD @ 1 USD= 130.00 NPR						3,248,972.74	4
	Total of supply, installation and construction charges in equivalent USD (Appendix E1+ Appendix E2)					25,798,989.09		

APPENDIX F: Technical Data Sheet of ACSR & HTLS Conductor

			Steel	core		Aluminiu	um Outer la	ayer(s)	Tot	al Condu	ctor	* 5	Standard	Ę	
	Conductor		dia.	area	mass		area	mass	dia.	area	mass	laye ectic	drum	catic	
	name	Number/	mm	mm ²	kg/km	Number/	mm ²	kg/km	mm	mm ²	kg/km	/ dir	length	ecifi	
s		Size	Nom.	Nom.	Nom.	5126	Nom.	Nom.	Nom.	Nom.	Nom.	La)	m	Sp	
<u>lo</u>						7 Stee	I + 30 Alı	uminium							
lensi	94-AL3/22- ST1A (94/22)	7/2.00	6.00	21.99	173	30 / 2.00	94.25	255	14.00	116.24	606	(Z) RH	2000	EN	
lim	Canna 147.1	7/2.25	6.75	27.83	219	30 / 2.25	119.28	322	15.75	147.11	549	(Z) RH	2000	EN	
р р	Tiger	7/2.36	7.08	30.62	240	30 / 2.36	131.23	355	16.52	161.85	606	(Z) RH	2000	EN	
an	Wolf	7/2.59	7.77	36.88	290	30 / 2.59	158.06	427	18.13	194.94	730	(Z) RH	2000	EN	
uo Uo	Oriole	7/2.69	8.07	39.78	312	30 / 2.69	170.50	461	18.83	210.28	785	(Z) RH	2000	EN	
cti	Lynx	7/2.79	8.37	42.80	336	30 / 2.79	183.41	496	19.53	226.20	832	(Z) RH	2000	CAN	
E	Panther	7/3.00	9.00	49.48	389	30 / 3.00	212.06	573	21.00	261.54	970	(Z) RH	2000	BS	
ns	Bear	7/3.35	10.05	61.70	485	30 / 3.35	264.42	715	23.45	326.12	1220	(Z) RH	2000	EN	
မိ	Lion	7/3.18	9.54	55.60	437	30 / 3.18	238.27	644	22.26	293.86	1081	(Z) RH	2000	EN	
	Goat	7/3.71	11.13	75.67	594	30 / 3.71	324.31	877	25.97	399.98	1500	(Z) RH	2000	EN	
	Sheep	7/3.99	11.97	87.53	687	30 / 3.99	375.11	1 0 1 4	27.93	462.63	1701	(Z) RH	2000	EN	
	Deer	7/4.27	12.81	100.24	787	30 / 4.27	429.60	1 161	29.89	529.84	1949	(Z) RH	2000	EN	
	Elk	7/4.50	13.50	111.33	874	30 / 4.50	477.13	1 290	31.50	588.46	2164	(Z) RH	2000	EN	
		Modul	us of							Resis	tance	0	1	ţ	(pa
		Elasti	icity	Coeff	icient			Grease				ratin	ircuit	nsta	ep kulat
	Conductor name	Elasti Initial	icity Final	Coeff of lir expar	icient near nsion	UT	S	Grease Nom. (Case 2)		dc 20°C	ac 75°C	Surrent ratin	Short circuit rating	reep consta	#Creep ominal, calculat
	Conductor name	Elasti Initial kN/m	Final	Coeff of lir expar	icient near nsion	UT	S	Grease Nom. (Case 2)		dc 20°C	ac 75°C	Current ratin	Short circui rating	Creep consta	#Creep (nominal, calculat
	Conductor name	Elasti Initial kN/m Nor	Final 11m² n.	Coeff of lir expar x10	icient near nsion ⁵ /°C	UT	's N	Grease Nom. (Case 2) kg/km		dc 20°C Ω/	ac 75°C km	 Current ratin 	sting sting	m/mm w	#Creep w/minal, calculat
Ø	Conductor name	Elasti Initial kN/m Nor	Final Tim ² n. 7 Stee	Coeff of lir expar x10 ⁻	icient hear hsion ⁵ ⁄°C lumini u	UT kt	s I	Grease Nom. (Case 2) kg/km	S	dc 20°C Ω/	ac 75°C km	A Current ratin	kA.1s Rhort circuit kA.1s	mr Creep consta	#Creep (nominal, calculat
erties	Conductor name 94-AL3/22- ST1A (94/22)	Elasti Initial kN/m Nor 53.4	Final 11m ² n. 7 Stee 82.0	Coeff of lir expar x10 ⁻¹ • I + 30 A 18.	icient hear hsion ⁵ / ⁰ C Iuminiu 43	UT kt I m 53.	S N 53	Grease Nom. (Case 2) kg/km 11.48	berties	dc 20°C Ω/ 0.3530	ac 75°C km 0.3737	A Steel + 3 330	kA.1s kA.1s 6.33	mm/m 18.92	#Creep (nominal, catculat
operties	Conductor name 94-AL3/22- ST1A (94/22) Canna 147.1	Elasti Initial kN/m Nor 53.4 49.2	icity Final m ² n. 7 Stee 82.0 75.5	Coeff of lir expar x10 ⁻ : I + 30 A 18.	icient hear hsion ⁵ / ⁶ C Iuminiu 43	UT kt I m 53. 54.	-S N 53 00	Grease Nom. (Case 2) kg/km 11.48 0.1322	roperties	dc 20°C Ω/ 0.3530 0.2430	ac 75°C km 0.3737 0.2953	A Steel + 3 330 415	kA.1s kA.1s 6.33 7.19	mm/m 18.92 18.92	mm/km (nominal, catculat 339
l properties	Conductor name 94-AL3/22- ST1A (94/22) Canna 147.1 Tiger	Elasti Initial kN/m Nor 53.4 49.2 54.3	icity Final m ² n. 7 Stee 82.0 75.5 83.4	Coeff of lir expar x10 [°] 1 + 30 A 18. 18. 18.	icient hear hsion ⁵ / ⁰ C luminiu 43 43	UT I M 53. 54. 58.	°S N 53 00 70	Grease Nom. (Case 2) kg/km 11.48 0.1322 15.98	al Properties	dc 20°C Ω/ 0.3530 0.2430 0.2202	ac 75°C km 0.3737 0.2953 0.2684	A Steel + 3 330 415 420	kA.1s kA.1s 6.33 7.19 7.56	mm/m 18.92 18.92 18.92	mm/km 339 339 339
ical properties	Conductor name 94-AL3/22- ST1A (94/22) Canna 147.1 Tiger Wolf	Elasti Initial kN/m Nor 53.4 49.2 54.3 54.3	icity Final nm ² n. 7 Stee 82.0 75.5 83.4 83.4	Coeff of lir expar x10 ⁻ el + 30 A 18. 18. 18. 18.	icient hear hsion ⁵ / ⁶ C Iuminiu 43 43 43	UT kN 1 m 53. 54. 58. 69.	S N 53 00 70 20	Grease Nom. (Case 2) kg/km 11.48 0.1322 15.98 19.25	rical Properties	dc 20°C Ω/ 0.3530 0.2430 0.2202 0.1828	ac 75°C km 0.3737 0.2953 0.2684 0.2228	A Steel + 3 330 415 420 470	kA.1s kA.1s 6.33 7.19 7.56 8.34	mm/m 18.92 18.92 18.92 18.92	40000000000000000000000000000000000000
ıysical properties	Conductor name 94-AL3/22- ST1A (94/22) Canna 147.1 Tiger Wolf Oriole	Elasti Initial kN/m Nor 53.4 49.2 54.3 54.3 54.3 54.3	icity Final m ² n. 7 Stee 82.0 75.5 83.4 83.4 83.4	Coeff of lir expar x 10 ⁻ 1 + 30 A 18. 18. 18. 18. 18. 18.	icient hear hsion ⁵ / ⁶ C <mark>Iuminiu</mark> 43 43 43 43 43	UT kN 100 53. 54. 58. 69. 74.	S N 53 00 70 20 20	Grease Nom. (Case 2) kg/km 11.48 0.1322 15.98 19.25 20.77	ectrical Properties	dc 20°C Ω/ 0.3530 0.2430 0.2202 0.1828 0.1695	ac 75°C km 0.3737 0.2953 0.2684 0.2228 0.2066	A Steel + 3 330 415 420 470 498	kA.1s kA.1s 6.33 7.19 7.56 8.34 8.68	mm/m 18.92 18.92 18.92 18.92 18.92 18.92	#Creep mm/km 339 339 339 339 339 339
Physical properties	Conductor name 94-AL3/22- ST1A (94/22) Canna 147.1 Tiger Wolf Oriole Lynx	Elasti Initial kN/m Nor 53.4 49.2 54.3 54.3 54.3 54.3 54.3	icity Final m ² n. 7 Stee 82.0 75.5 83.4 83.4 83.4 83.4	Coeff of lir expar x10 ⁻ 1 + 30 A 18. 18. 18. 18. 18. 18. 18. 18.	icient hear hsion ⁵ /°C 43 43 43 43 43 43 45 45	UT kh 100 53. 54. 58. 69. 74. 79.	S 53 50 70 20 20 30	Grease Nom. (Case 2) kg/km 11.48 0.1322 15.98 19.25 20.77 22.34	Electrical Properties	dc 20°C Ω/ 0.3530 0.2430 0.2202 0.1828 0.1695 0.1572	ac 75°C km 0.3737 0.2953 0.2684 0.2228 0.2066 0.1920	A Steel + 3 330 415 420 470 498 520	kA.1s kA.1s 30 Aluminiu 6.33 7.19 7.56 8.34 8.68 9.03	mm/m 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92	dama (Leonard Creed) mm/km 339 339 339 339 339 339 339
Physical properties	Conductor name 94-AL3/22- ST1A (94/22) Canna 147.1 Tiger Wolf Oriole Lynx Panther	Elasti Initial kN/m Nor 53.4 49.2 54.3 54.3 54.3 54.3 54.3 54.3 54.3	icity Final m ² n. 7 Stee 82.0 75.5 83.4 83.4 83.4 83.4 83.4 83.4	Coeff of lir expar x10 [°] 1 + 30 A 18. 18. 18. 18. 18. 18. 18. 18. 18.	icient lear hsion ⁵ / ⁰ C luminiu 43 43 43 43 43 45 45 45 43	UT kN 53. 54. 58. 69. 74. 79. 90.	S 53 53 00 70 20 20 30 80	Grease Nom. (Case 2) kg/km 11.48 0.1322 15.98 19.25 20.77 22.34 25.83	Electrical Properties	dc 20°C Ω/ 0.3530 0.2430 0.2202 0.1828 0.1695 0.1572 0.1363	ac 75°C km 0.3737 0.2953 0.2684 0.2228 0.2066 0.1920 0.1661	A Steel + 3 330 415 420 470 498 520 560	kA.1s kA.1s c.33 7.19 7.56 8.34 8.68 9.03 9.74	mm/m mm/m 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92	danamian (united in the second
Physical properties	Conductor name 94-AL3/22- ST1A (94/22) Canna 147.1 Tiger Wolf Oriole Lynx Panther Bear	Elasti Initial kN/m Nor 53.4 49.2 54.3 54.3 54.3 54.3 54.3 54.3 54.3 54.3	icity Final m ² n. 7 Stee 82.0 75.5 83.4 83.4 83.4 83.4 83.4 83.4 83.4	Coeff of lir expar x10 ⁻ 1 + 30 A 18. 18. 18. 18. 18. 18. 18. 18. 18. 18.	icient lear hsion 5 ⁶ /°C 1uminiu 43 43 43 43 43 45 43 45 43 43	UT kN 53. 54. 58. 69. 74. 79. 90.	S 53 00 70 20 20 30 80 .00	Grease Nom. (Case 2) kg/km 11.48 0.1322 15.98 19.25 20.77 22.34 25.83 32.21	Electrical Properties	dc 20°C Ω/ 0.3530 0.2430 0.2202 0.1828 0.1695 0.1572 0.1363 0.1093	ac 75°C km 0.3737 0.2953 0.2684 0.2228 0.2066 0.1920 0.1661 0.1332	A Steel + 3 330 415 420 470 498 520 560 650	kA.1s kA.1s 80 Aluminiu 6.33 7.19 7.56 8.34 8.68 9.03 9.74 10.94	mm/m 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92	40000000000000000000000000000000000000
Physical properties	Conductor name 94-AL3/22- ST1A (94/22) Canna 147.1 Tiger Wolf Oriole Lynx Panther Bear Lion	Elasti Initial kN/m Nor 53.4 49.2 54.3 54.3 54.3 54.3 54.3 54.3 54.3 54.3	icity Final m ² n. 7 Stee 82.0 75.5 83.4 83.4 83.4 83.4 83.4 83.4 83.4 83.4	Coeff of lir expar x 10 1 + 30 A 18. 18. 18. 18. 18. 18. 18. 18. 18. 18.	icient hear hsion 6/°C 43 43 43 43 43 43 43 43 43 43 43 43 43	UT kh 1m 53. 54. 58. 69. 74. 79. 90. 112 100	S 53 53 00 70 20 20 30 80 80 .00 .50	Grease Nom. (Case 2) kg/km 11.48 0.1322 15.98 19.25 20.77 22.34 25.83 32.21 29.02	Electrical Properties	dc 20°C Ω/ 0.3530 0.2430 0.2202 0.1828 0.1695 0.1572 0.1363 0.1093 0.1210	ac 75°C km 0.3737 0.2953 0.2684 0.2228 0.2066 0.1920 0.1661 0.1332 0.1478	A Steel + 3 330 415 420 470 498 520 560 650 650 610	kA.1s kA.1s 6.33 7.19 7.56 8.34 8.68 9.03 9.74 10.94 10.36	mm/m 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92	40000000000000000000000000000000000000
Physical properties	Conductor name 94-AL3/22- ST1A (94/22) Canna 147.1 Tiger Wolf Oriole Lynx Panther Bear Lion Goat	Elasti Initial kN/m Nor 53.4 49.2 54.3 54.3 54.3 54.3 54.3 54.3 54.3 54.3	icity Final m ² n. 7 Stee 82.0 75.5 83.4 83.4 83.4 83.4 83.4 83.4 83.4 83.4	Coeff of lir expar x10 ⁻ 1 + 30 A 18. 18. 18. 18. 18. 18. 18. 18. 18. 18.	icient hear hsion 5/°C 43 43 43 43 43 43 45 43 43 45 43 43 43 43	UT kh 53. 54. 58. 69. 74. 79. 90. 112 100 136	S 53 53 00 70 20 20 20 30 30 80 .00 .50 .00	Grease Nom. (Case 2) kg/km 11.48 0.1322 15.98 19.25 20.77 22.34 25.83 32.21 29.02 39.50	Electrical Properties	dc 20°C Ω/ 0.3530 0.2430 0.2202 0.1828 0.1695 0.1572 0.1363 0.1093 0.1210 0.0891	ac 75°C km 0.3737 0.2953 0.2684 0.2228 0.2666 0.1920 0.1661 0.1332 0.1478 0.1086	A Steel + 3 330 415 420 470 498 520 560 650 610 730	kA.1s butto kA.1s 30 Aluminiu 6.33 7.19 7.56 8.34 8.68 9.03 9.74 10.94 10.36 12.18	mm/m 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92	40000000000000000000000000000000000000
Physical properties	Conductor name 94-AL3/22- ST1A (94/22) Canna 147.1 Tiger Wolf Oriole Lynx Panther Bear Lion Goat Sheep	Elasti Initial kN/m Nor 53.4 49.2 54.3 54.3 54.3 54.3 54.3 54.3 54.3 54.3	icity Final m ² n. 7 Stee 82.0 75.5 83.4 83.4 83.4 83.4 83.4 83.4 83.4 83.4	Coeff of lir expar x10 ⁻ 1 + 30 A 18. 18. 18. 18. 18. 18. 18. 18. 18. 18.	icient hear hsion 5°/°C 1uminiu 43 43 43 43 43 45 43 45 43 45 43 45 43 45	UT kh 53. 54. 58. 69. 74. 79. 90. 112 100 136 156	S S S S S S S S S S S S S S S S S S S	Grease Nom. (Case 2) kg/km 11.48 0.1322 15.98 19.25 20.77 22.34 25.83 32.21 25.83 32.21 29.02 39.50	Electrical Properties	dc 20°C Ω/ 0.3530 0.2430 0.2202 0.1828 0.1695 0.1572 0.1363 0.1210 0.0891 0.0769	ac 75°C km 75°C 0.3737 0.2953 0.2684 0.2228 0.2066 0.1920 0.1661 0.1322 0.1478 0.1086 0.0939	A Steel + 3 330 415 420 470 498 520 560 650 650 610 730 800	kA.1s kA.1s c.33 7.19 7.56 8.34 8.68 9.03 9.74 10.94 10.36 12.18 13.15	mm/m mm/m 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92	4,000 4,0000 4,000 4,000 4,000 4,000 4,0000 4,0000 4,0000 4,00000000
Physical properties	Conductor name 94-AL3/22- ST1A (94/22) Canna 147.1 Tiger Wolf Oriole Lynx Panther Bear Ear Ear Lion Goat Sheep Deer	Elasti Initial kN/m Nor 53.4 49.2 54.3 54.3 54.3 54.3 54.3 54.3 54.3 54.3	icity Final m ² n. 7 Stee 82.0 75.5 83.4 83.4 83.4 83.4 83.4 83.4 83.4 83.4	Coeff of lir expar x10 ⁻ 1 + 30 A 18. 18. 18. 18. 18. 18. 18. 18. 18. 18.	icient lear hsion 5/°C 43 43 43 43 43 43 45 43 45 43 45 43 45 43 45 45	UT kh 1m 53. 54. 58. 69. 74. 79. 90. 112 100 136 156 178	S S S S S S S S S S S S S S S S S S S	Grease Nom. (Case 2) kg/km 11.48 0.1322 15.98 19.25 20.77 22.34 25.83 32.21 29.02 39.50 45.69 52.33	Electrical Properties	dc 20°C Ω/ 0.3530 0.2430 0.2202 0.1828 0.1695 0.1572 0.1363 0.1210 0.0891 0.0769 0.0671	ac 75°C km 75°C 0.2953 0.2684 0.2228 0.2066 0.1920 0.1661 0.1332 0.1478 0.1086 0.0939 0.0820	A Steel + 3 330 415 420 470 498 520 560 650 650 650 610 730 800 870	kA.1s kA.1s c.33 c.19 c.56 k.34 k.68 y.03 y.74 10.94 10.36 12.18 13.15 14.13	mm/m 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92 18.92	mm/km 339 339 339 339 339 339 339 339 339 33

DATA SHEET:

ACCC® OSLO ACCC® 314/60/224 (619 kcmil)*

For questions,	please contact CTC Application	Engineering Department:	applicationsupport@ctcglob	al.com
Unite are considered	aanarata			

/letric and US Units are considered separate						
Aluminum Specification	n Specification Metric			US Units		
Nominal Aluminum Cross-sectional Area***	313.8	mm ²	619.3	kcmil		
Aluminum Conductivity/Type	63%	% IACS	135	60-0		
Aluminum Nominal Weight**	867.7	kg/km	583.2	lb/kft		
Coefficient of Thermal Expansion	23.0	x10 ⁻⁶ /°C	12.8	x10 ⁻⁶ /°F		
Aluminum Heat Capacity	809.9	W-s/m-C	137.1	W-s/ft-F		
ACCC® Core Specification (CTC Part Number 200-008)	Me	etric	US L	Jnits		
Nominal Cross-sectional Area of Core	60.30	mm ²	0.0935	in ²		
Nominal Diameter of Composite Core	8.76	mm	0.345	in.		
Core Nominal Weight	113.0	kg/km	75.8	lb/kft		
Rated Strength of Core - 310 ksi (2137 MPa)	129.0	kN	29.0	kips		
Coefficient of Thermal Expansion	1.61	x10 ⁻⁶ /°C	0.894	x10 ⁻⁶ /°F		
Modulus of Elasticity	112.3	GPa	16.29	Msi		
Core Heat Capacity	91.9	W-s/m-°C	15.6	W-s/ft-°F		
ACCC® Conductor Specification	M	etric	US L	Jnits		
Overall Diameter of Conductor ¹	22.40	mm	0.882	in.		
Nominal Cross-sectional Area of the Conductor	374.1	mm ²	0.580	in ²		
Ultimate Tensile Strength of Conductor ²	146.7	kN	33.0	kips		
Conductor Nominal Weight**	980.7	kg/km	659.0	lb/kft		
Coefficient of Linear Expansion Above Thermal Kneepoint	1.61	x10 ⁻⁶ /°C	0.894	x10 ⁻⁶ /°F		
Coefficient of Linear Expansion Below Thermal Kneepoint	17.1	x10 ⁻⁶ /°C	9.49	x10 ⁻⁶ /°F		
Final Modulus of Elasticity Above Thermal Kneepoint	112.3	GPa	16.29	Msi		
Final Modulus of Elasticity Below Thermal Kneepoint	67.4	GPa	9.8	Msi		
Maximum Allowable Operating Temperature at Surface ³	180	°C	356	°F		
Electrical Specification	Me	etric	US L	Jnits		
Nominal DC Resistivity at 20ºC	0.0893	ohm/km	0.1437	ohm/mile		
Temperature Coefficient of Resistance	0.00403	/°C	0.00209	∕°F		
Frequency	50	Hz	50	Hz		
AC Nominal Resistance at 25°C	0.0915	ohm/km	0.1473	ohm/mile		
AC Nominal Resistance at 75°C	0.1095	ohm/km	0.1762	ohm/mile		
AC Nominal Resistance at 180°C	0.1471	ohm/km	0.2367	ohm/mile		
AC Current Bating at Given Temperatures ⁴		1292	@ 180C & 50 Hz			
	0.25	1361	@ 200C & 50 Hz	<i>f</i> ₁		
GIVIK (estimated)	9.25	mm	0.0303	tt.		
	0.220	Onm/km	0.3535	onm/mile		
сарасние кеастапсе	0.189		0.1176	ivionm-mile		

ACCC[®] is produced using 1350-O (fully annealed) aluminum.

1) Minimum hub diameter of the conductor reel must meet the requirements of CTC F-750-032.

2) Strength at ambient temperature. Based on 96% of the 1350-O minimum tensile strength (8500 psi/58.6 Mpa) and 100% of the composite core mininum tensile strength (310 ksi/2137 Mpa).

3) Maximum operating temperature of ACCC® is 180°C and a maximum emergency temperature of 200°C (10,000 hours over the life of the conductor).

4) Conditions: 2 ft/s (0.6 m/s) wind, 0 ft (0 m) Elevation, 0.5 Emis. 0.5 absorp., 25°C Ambient temp., 96 W/sq. ft (1033 W/sq. m) sun radiation *ASTM name designation: mm² nominal aluminum area/mm² nominal core area/mm nominal diameterx10 (nominal kcmil aluminum)

**ACCC® Conductors are required to exhibit lay lengths (ratios) that conform to ASTM B 857 or EN 50540.

***Different configurations among conductor manufacturers may result in slight variations within the parameters of indicated values for a given size in accordance with the stated specification.

F-730-564-NC www.ctcglobal.com

Date Produced: 7/1/2019

DATA SHEET:		and a start of		
ACCC [®] LISBON	CT		TRAI	
ACCC® 316/40/218 (623 kcmil)*			JUAL	
For questions, please contact CTC Application Engine	ering Department: a	applicationsuppor	t@ctcglobal.com	
Metric and US Units are considered separate			-	
Aluminum Specification	Me	etric	US L	Jnits
Nominal Aluminum Cross-sectional Area***	315.5	mm ²	622.7	kcmil
Aluminum Conductivity/Type	63%	% IACS	135	0-0
Aluminum Nominal Weight**	871.9	kg/km	586.0	lb/kft
Coefficient of Thermal Expansion	23.0	x10 ⁻⁶ /°C	12.8	x10 ⁻⁶ /°F
Aluminum Heat Capacity	814.3	W-s/m-C	137.9	W-s/ft-F
ACCC [®] Core Specification (CTC Part Number 200-004)	Me	etric	US L	Jnits
Nominal Cross-sectional Area of Core	39.70	mm ²	0.0616	in ²
Nominal Diameter of Composite Core	7.11	mm	0.280	in.
Core Nominal Weight	74.2	kg/km	50.0	lb/kft
Rated Strength of Core - 310 ksi (2137 MPa)	85.0	kN	19.1	kips
Coefficient of Thermal Expansion	1.61	x10 ⁻⁶ /°C	0.894	x10 ⁻⁶ /°F
Modulus of Elasticity	112.3	GPa	16.29	Msi
Core Heat Capacity	60.3	W-s/m-°C	10.2	W-s/ft-°F
ACCC® Conductor Specification	Me	etric	US L	Jnits
Overall Diameter of Conductor ¹	21.79	mm	0.858	in.
Nominal Cross-sectional Area of the Conductor	355.2	mm ²	0.551	in ²
Ultimate Tensile Strength of Conductor ²	102.7	kN	23.1	kips
Conductor Nominal Weight**	946.1	kg/km	636.0	lb/kft
Coefficient of Linear Expansion Above Thermal Kneepoint	1.61	x10 ⁻⁶ /°C	0.894	x10 ⁻⁶ /°F
Coefficient of Linear Expansion Below Thermal Kneepoint	18.8	x10 ⁻⁶ /°C	10.47	x10 ⁻⁶ /°F
Final Modulus of Elasticity Above Thermal Kneepoint	112.3	GPa	16.29	Msi
Final Modulus of Elasticity Below Thermal Kneepoint	64.1	GPa	9.3	Msi
Maximum Allowable Operating Temperature at Surface ³	180	°C	356	°F
Electrical Specification	Me	etric	US L	Jnits
Nominal DC Resistivity at 20ºC	0.0887	ohm/km	0.1427	ohm/mile
Temperature Coefficient of Resistance	0.00403	/°C	0.00209	∕°F
Frequency	50	Hz	50	Hz
AC Nominal Resistance at 25°C	0.0910	ohm/km	0.1464	ohm/mile
AC Nominal Resistance at 75°C	0.1088	ohm/km	0.1751	ohm/mile
AC NOMINAL RESISTANCE AT 180ºC	0.1461	0nm/km	0.2352	onm/mile
AC Current Rating at Given Temperatures ⁴		1353	@ 200C & 50 Hz	~
GMR (estimated)	8.85	mm	0.0290	ft.
Inductive Reactance	0.222	ohm/km	0.3579	ohm/mile
Capacitive Reactance	0.191	Mohm-km	0.1186	Mohm-mile

ACCC® is produced using 1350-O (fully annealed) aluminum.

1) Minimum hub diameter of the conductor reel must meet the requirements of CTC F-750-032.

2) Strength at ambient temperature. Based on 96% of the 1350-O minimum tensile strength (8500 psi/58.6 Mpa) and 100% of the composite core mininum tensile strength (310 ksi/2137 Mpa).

3) Maximum operating temperature of ACCC[®] is 180°C and a maximum emergency temperature of 200°C (10,000 hours over the life of the conductor).

4) Conditions: 2 ft/s (0.6 m/s) wind, 0 ft (0 m) Elevation, 0.5 Emis. 0.5 absorp., 25°C Ambient temp., 96 W/sq. ft (1033 W/sq. m) sun radiation *ASTM name designation: mm² nominal aluminum area/mm² nominal core area/mm nominal diameterx10 (nominal kcmil aluminum)

**ACCC® Conductors are required to exhibit lay lengths (ratios) that conform to ASTM B 857 or EN 50540.

*** Different configurations among conductor manufacturers may result in slight variations within the parameters of indicated values for a given size in accordance with the stated specification.

F-730-565-NC

www.ctcglobal.com

Date Produced: 7/1/2019

ACCC [®] AMSTERDAM	CT	C GI ()BAI	
ACCC® 367/47/235 (725 kcmil)*				
For questions, please contact CTC Application Engineer	ring Department:	applicationsuppor	t@ctcglobal.com	
Metric and US Units are considered separate				
Aluminum Specification	Me	etric	USL	Jnits
Nominal Aluminum Cross-sectional Area***	367.4	mm ²	725.1	kcmil
Aluminum Conductivity/Type	63%	% IACS	135	0-0
Aluminum Nominal Weight**	1015.3	kg/km	682.4	lb/kft
Coefficient of Thermal Expansion	23.0	x10 ⁻⁶ /°C	12.8	x10 ⁻⁶ /°F
Aluminum Heat Capacity	948.2	W-s/m-C	160.6	W-s/ft-F
ACCC [®] Core Specification (CTC Part Number 200-005)	Me	etric	USL	Jnits
Nominal Cross-sectional Area of Core	47.20	mm ²	0.0731	in ²
Nominal Diameter of Composite Core	7.75	mm	0.305	in.
Core Nominal Weight	88.3	kg/km	59.3	lb/kft
Rated Strength of Core - 310 ksi (2137 MPa)	101.0	kN	22.7	kips
Coefficient of Thermal Expansion	1.61	x10 ⁻⁶ /°C	0.894	x10 ⁻⁶ /°F
Modulus of Elasticity	112.3	GPa	16.29	Msi
Core Heat Capacity	71.8	W-s/m-°C	12.2	W-s/ft-°F
ACCC [®] Conductor Specification	Me	etric	US L	Jnits
Overall Diameter of Conductor ¹	23.55	mm	0.927	in.
Nominal Cross-sectional Area of the Conductor	414.6	mm ²	0.643	in ²
Ultimate Tensile Strength of Conductor ²	121.7	kN	27.4	kips
Conductor Nominal Weight**	1103.6	kg/km	741.7	lb/kft
Coefficient of Linear Expansion Above Thermal Kneepoint	1.61	x10 ⁻⁶ /°C	0.894	x10 ⁻⁶ /°F
Coefficient of Linear Expansion Below Thermal Kneepoint	18.8	x10 ⁻⁶ /°C	10.43	x10 ⁻⁶ /°F
Final Modulus of Elasticity Above Thermal Kneepoint	112.3	GPa	16.29	Msi
Final Modulus of Elasticity Below Thermal Kneepoint	64.2	GPa	9.3	Msi
Maximum Allowable Operating Temperature at Surface ³	180	°C	356	°F
Electrical Specification	Me	etric	US L	Jnits
Nominal DC Resistivity at 20ºC	0.0762	ohm/km	0.1226	ohm/mile
Temperature Coefficient of Resistance	0.00403	/°C	0.00209	∕°F
Frequency	50	Hz	50	Hz
AC Nominal Resistance at 25°C	0.0784	ohm/km	0.1261	ohm/mile
AC Nominal Resistance at 75°C	0.0936	ohm/km	0.1507	ohm/mile
AC Nominal Resistance at 180ºC	0.1256	ohm/km	0.2022	ohm/mile
AC Current Rating at Given Temperatures ⁴		1419	@ 200C & 50 Hz	
GMR (estimated)	9.57	mm	0.0314	ft.
Inductive Reactance	0.217	ohm/km	0.3500	ohm/mile
Capacitive Reactance	0.186	Mohm-km	0.1158	Mohm-mile

ACCC[®] is produced using 1350-O (fully annealed) aluminum.

1) Minimum hub diameter of the conductor reel must meet the requirements of CTC F-750-032.

2) Strength at ambient temperature. Based on 96% of the 1350-O minimum tensile strength (8500 psi/58.6 Mpa) and 100% of the composite core mininum tensile strength (310 ksi/2137 Mpa).

3) Maximum operating temperature of ACCC® is 180°C and a maximum emergency temperature of 200°C (10,000 hours over the life of the conductor).

4) Conditions: 2 ft/s (0.6 m/s) wind, 0 ft (0 m) Elevation, 0.5 Emis. 0.5 absorp., 25°C Ambient temp., 96 W/sq. ft (1033 W/sq. m) sun radiation *ASTM name designation: mm² nominal aluminum area/mm² nominal core area/mm nominal diameterx10 (nominal kcmil aluminum)

**ACCC® Conductors are required to exhibit lay lengths (ratios) that conform to ASTM B 857 or EN 50540.

***Different configurations among conductor manufacturers may result in slight variations within the parameters of indicated values for a given size in accordance with the stated specification.

F-730-566-NC

DATA SHEET:

www.ctcglobal.com

Date Produced: 7/1/2019

DATA SHEET.		1000				
ACCC® CORDOBA	CTC GLOBAL					
ACCC® 399/47/244 (788 kcmil)*						
For questions, please contact CTC Application Engin	neering Department:	applicationsuppor	t@ctcglobal.com			
Metric and US Units are considered separate						
Aluminum Specification	M	etric	US L	Jnits		
Nominal Aluminum Cross-sectional Area***	399.4	mm ²	788.2	kcmil		
Aluminum Conductivity/Type	63%	% IACS	135	i0-0		
Aluminum Nominal Weight**	1102.5	kg/km	741.0	lb/kft		
Coefficient of Thermal Expansion	23.0	x10 ⁻⁶ /°C	12.8	x10 ⁻⁶ /°F		
Aluminum Heat Capacity	1030.8	W-s/m-C	174.5	W-s/ft-F		
ACCC [®] Core Specification (CTC Part Number 200-005)	M	etric	US L	Jnits		
Nominal Cross-sectional Area of Core	47.20	mm ²	0.0731	in ²		
Nominal Diameter of Composite Core	7.75	mm	0.305	in.		
Core Nominal Weight	88.3	kg/km	59.3	lb/kft		
Rated Strength of Core - 310 ksi (2137 MPa)	101.0	kN	22.7	kips		
Coefficient of Thermal Expansion	1.61	x10 ⁻⁶ /°C	0.894	x10 ⁻⁶ /°F		
Modulus of Elasticity	112.3	GPa	16.29	Msi		
Core Heat Capacity	71.8	W-s/m-°C	12.2	W-s/ft-°F		
ACCC [®] Conductor Specification	M	etric	US L	Jnits		
Overall Diameter of Conductor ¹	24.41	mm	0.961	in.		
Nominal Cross-sectional Area of the Conductor	446.6	mm ²	0.692	in ²		
Ultimate Tensile Strength of Conductor ²	123.5	kN	27.8	kips		
Conductor Nominal Weight**	1190.8	kg/km	800.3	lb/kft		
Coefficient of Linear Expansion Above Thermal Kneepoint	1.61	x10 ⁻⁶ /°C	0.894	x10 ⁻⁶ /°F		
Coefficient of Linear Expansion Below Thermal Kneepoint	19.0	x10 ⁻⁶ /°C	10.55	x10 ⁻⁶ /°F		
Final Modulus of Elasticity Above Thermal Kneepoint	112.3	GPa	16.29	Msi		
Final Modulus of Elasticity Below Thermal Kneepoint	62.7	GPa	9.1	Msi		
Maximum Allowable Operating Temperature at Surface ³	180	°c	356	°F		
Electrical Specification	M	etric	US L	Jnits		
Nominal DC Resistivity at 20ºC	0.0700	ohm/km	0.1127	ohm/mile		
Temperature Coefficient of Resistance	0.00404	/°C	0.00209	∕°F		
Frequency	50	Hz	50	Hz		
AC Nominal Resistance at 25°C	0.0724	ohm/km	0.1165	ohm/mile		
AC Nominal Resistance at 15°C	0.0864	onm/km	0.1390	ohm/mile		
AC NOMINAL RESISTANCE AT 180°C	0.1158	1495	0.1804 @ 180C & 50 Hz	onm/mile		
AC Current Rating at Given Temperatures ⁴		1576	@ 200C & 50 Hz			
GMR (estimated)	9.89	mm	0.0324	ft.		
Inductive Reactance	0.215	ohm/km	0.3467	ohm/mile		
Capacitive Reactance	0.184	Mohm-km	0.1145	Mohm-mile		

ACCC[®] is produced using 1350-O (fully annealed) aluminum.

1) Minimum hub diameter of the conductor reel must meet the requirements of CTC F-750-032.

2) Strength at ambient temperature. Based on 96% of the 1350-O minimum tensile strength (8500 psi/58.6 Mpa) and 100% of the composite core mininum tensile strength (310 ksi/2137 Mpa).

3) Maximum operating temperature of ACCC® is 180°C and a maximum emergency temperature of 200°C (10,000 hours over the life of the conductor).

4) Conditions: 2 ft/s (0.6 m/s) wind, 0 ft (0 m) Elevation, 0.5 Emis. 0.5 absorp., 25°C Ambient temp., 96 W/sq. ft (1033 W/sq. m) sun radiation *ASTM name designation: mm² nominal aluminum area/mm² nominal core area/mm nominal diameterx10 (nominal kcmil aluminum)

**ACCC® Conductors are required to exhibit lay lengths (ratios) that conform to ASTM B 857 or EN 50540.

***Different configurations among conductor manufacturers may result in slight variations within the parameters of indicated values for a given size in accordance with the stated specification.

F-730-567-NC

www.ctcglobal.com

Date Produced: 7/1/2019

APPENDIX G: Result of Plagiarism Check for Similarity Index

Please Look at Next Page

Application of High-Capacity Conductors for Uprating Transmission Lines Capacity in Nepal

By Yadab Prasad Neupane

Application of High-Capacity Conductors for Uprating Transmission Lines Capacity in Nepal

ORIGINALITY REPORT

1 SIMILA	5% ARITY INDEX	
PRIMA	ARY SOURCES	
1	www.investopedia.com	173 words — 1%
2	www.hindawi.com	139 words — 1%
3	cea.nic.in Internet	131 words — 1%
4	www.slideshare.net	126 words — 1%
5	D.G. Havard, M.K. Bissada, C.G. Fajardo, D.J. Horrocks, J.R. Meale, J.Y. Motlis, M. Tabatabai, K.S. Yoshiki-Gravelsins. "Aged ACSR conductors. II. Pred remaining life", IEEE Transactions on Power Deliver _{Crossref}	125 words — 1% diction of ry, 1992
6	WWW.Nea.org.np Internet	120 words — 1%
7	www.wbsetcl.in	100 words — 1%
8	www.fe.um.si	31 words — < 1%

9	www.scribd.com	81 words — < ^	1%
10	etd.aau.edu.et	78 words — < *	1%
11	www.ijfrcsce.org	68 words — < *	1%
12	vt.co-aol.com Internet	51 words — < '	1%
13	www.coursehero.com	51 words — < '	1%
14	upenergy.in Internet	50 words — < ´	1%
15	Μπραϊμιώτη, Αικατερίνη Braimioti, Aikaterini– Dafni. "The Energy Sevices Company as Business Model for Entrepreneurship - A Case Study of Gre University of Piraeus (Greece), 2022 ProQuest	50 words — < ´	1%
16	media.neliti.com	45 words — < *	1%
17	Azlan Abdul Rahim. "Verification of conductor temperature and time to thermal-overload calculations by experiments", 2009 3rd Internatio Conference on Energy and Environment (ICEE), 12 Crossref	44 words — < ´ nal 2/2009	1%
18	tloverview.blogspot.com	44 words — < ^	1%

19	"Advances in Electric Power and Energy Infrastructure", Springer Science and Business Media LLC, 2020 Crossref	42 words — < 1	%
20	"Overhead Lines", Springer Nature, 2017 Crossref	42 words — < 1	%
21	www.financestrategists.com	40 words $- < 1$	%
22	krex.k-state.edu	37 words — < 1	%
23	kjvalloyconductors.tripod.com	33 words — < 1	%
24	livrosdeamor.com.br	31 words — < 1	%
25	www.luminoindustries.com	31 words — < 1	%
26	ieema.org Internet	29 words $- < 1$	%
27	core.ac.uk Internet	27 words — < 1	%
28	preview.entsoe.eu	27 words — < 1	%
29	Ashfaq Ahmed, P. E "Power Transmission Lines" Wiley, 1999 _{Crossref}	′ 24 words — < 1 ′	%
30	www.thaifrx.com		

	Internet	24 words $-<$	1%
31	etap.com Internet	23 words — <	1%
32	A. Kayode Coker, Rahmat Sotudeh - Gharebagh. "Chemical Process Engineering", Wiley, 2022 Crossref	22 words — <	1%
33	coek.info Internet	22 words — <	1%
34	thl.com.np Internet	21 words $-<$	1%
35	pserc.wisc.edu Internet	20 words — <	1%
36	"Numerical Mathematics and Advanced Applications ENUMATH 2019", Springer Science and Business Media LLC, 2021 Crossref	19 words — <	1%
37	eprints.utm.my Internet	19 words — <	1%
38	XuZhu Dong, Qingming Wang, Zhengmin Zhou, Ruihai Li et al. "Technical and Economic Analysis of Aluminum Conductor with Multi-stranded Com and Its Application", 2019 IEEE Innovative Smart (Technologies - Asia (ISGT Asia), 2019 Crossref	18 words — < posite Core Grid	1%
39	D.G. Harvard, G. Bellamy, P.G. Buchan, H.A. Ewing, D.J. Horrocks, S.G. Krishnasamy, J. Motlis, K.S. Yoshiki-Gravelsins. "Aged ACSR conductors. I	17 words — <	1%

procedures for conductors and line items", IEEE Transactions on Power Delivery, 1992

Crossref

40	vdoc.pub Internet	17 words $-<$	1%
41	www.ctcglobal.com	16 words — <	1%
42	Mark Graham. "Determination of static thermal conductor rating using statistical analysis method", 2008 Third International Conference on Deregulation and Restructuring and Power Techn 04/2008 Crossref	15 words — < Electric Utility ologies,	1%
43	"Industrial Problems", Numerical Techniques for Chemical and Biological Engineers Using MATLAB®, 2007 Crossref	14 words — <	1%
44	pdfcoffee.com Internet	14 words — <	1%
45	www.torrentpower.com	14 words — <	1%
46	WWW.yumpu.com Internet	14 words — <	1%
47	Chika Oliver Ujah, Daramy Vandi Von Kallon, Daniel O. Aikhuele, Victor Sunday Aigbodion. "Advanced Composite Materials: A Panacea for In Electricity Transmission", Applied Sciences, 2022 Crossref	13 words — < nproved	1%

citeseerx.ist.psu.edu

48	Internet	13 words —	<	1	%
49	dl.lib.uom.lk Internet	13 words —	<	1	%
50	" Standards on Electron Tubes: Definitions of Terms, 1950 ", Proceedings of the IRE, 4/1950 _{Crossref}	12 words —	<	1	%
51	Nhlanhla Mbuli, Ronald Xezile, Lethoko Motsoeneng, Mavula Ntuli, Jan-Harm Pretorius. "A literature review on capacity uprate of transmi 2008 to 2018", Electric Power Systems Research, 2 ^{Crossref}	10 words — ssion lines: 2019	<	1	%
52	de.slideshare.net	10 words —	<	1	%
53	psecommunity.org	10 words —	<	1	%
54	www.sterlitetech.com	10 words —	<	1	%
55	N. M. Zainuddin, M. S. Abd Rahman, M. Z. A. Ab Kadir, N. H. Nik Ali et al. "Review of Thermal Stress and Condition Monitoring Technologies for Overh Transmission Lines: Issues and Challenges", IEEE Crossref	9 words — s lead Access, 2020	<	1	%
56	uir.unisa.ac.za Internet	9 words —	<	1	%
57	www.mdpi.com	9 words —	<	1	%

59	Camila Paes Salomon. "Hybrid Particle Swarm Optimization with Biased Mutation Applied to Load Flow Computation in Electrical Power Systems", Le in Computer Science, 2011 Crossref	d ⁸ words — <	1%
60	Jordi-Roger Riba, Santiago Bogarra, Álvaro Gómez- Pau, Manuel Moreno-Eguilaz. "Uprating of transmission lines by means of HTLS conductors for sustainable growth: Challenges, opportunities, and needs", Renewable and Sustainable Energy Review Crossref	8 words — < or a d research vs, 2020	1%
61	conference.ioe.edu.np	8 words — <	1%
62	CSpc.co.in Internet	8 words — <	1%
63	delhitransco.in	8 words — <	1%
64	m.jskindia.co.in	8 words — <	1%
65	pt.scribd.com	8 words — <	1%
			. 0/

 H. B. D. Yasaranga, W. D. A. S. Wijayapala, K. T. M. U. Hemapala. "Techno Economic Analysis of the Use of High Temperature Low Sag (HTLS) Conductors in the Sri Lanka's Transmission System", Engineer: Journal of the Institution of Engineers, Sri Lanka, 2017 Crossref

 $_{7 \text{ words}} - < 1\%$

 $_{6 \text{ words}} - < 1\%$ Alwuhaibi, Sami Abdallah. "A cultural perspective 68 on the impact of family and society on the competitive advantage of organizations and nations", Proquest, 20111108

ProQuest

- $_{6 \text{ words}} < 1\%$ M. G. Ippolito, F. Massaro, C. Cassaro. "HTLS 69 Conductors: A Way to Optimize RES Generation and to Improve the Competitiveness of the Electrical Market—A Case Study in Sicily", Journal of Electrical and Computer Engineering, 2018 Crossref
- $_{6 \text{ words}} < 1\%$ Somboon Nuchprayoon, Artitaya Chaichana. 70 "Performance Comparison of Using ACSR and HTLS Conductors for Current Uprating of 230-kV Overhead Transmission Lines", 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2018 Crossref
- 71

 $_{6 \text{ words}} - < 1\%$ Tan Loc Le, M. Negnevitsky, M. Piekutowski. "Expert system application for the loading capability assessment of transmission lines", IEEE Transactions on Power Systems, 1995 Crossref

72

 $_{4 \text{ words}} - < 1\%$ Sulav Ghimire, Mazhar Ali, David Pozo. "Modal Analysis for Voltage-Stable Regime Determination: The Nepalese Power System Case", 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2020 Crossref

EXCLUDE QUOTES	ON	EXCLUDE SOURCES	OFF
EXCLUDE BIBLIOGRAPHY	ON	EXCLUDE MATCHES	OFF