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ABSTRACT

Out of prominent factors, dissolution rate and solubility of drugs have significant role in
oral drug absorption. The solubility of drugs depends uponmany factors including diffu-
sion coefficient, solvation free energy in particular solvent environment. The solubility
of drugs can be estimated from the calculation of solvation free energy. In this work,
molecular dynamics study of amoxicillin, an antibacterial agent, has been carried out to
understand its transport and thermodynamic properties in aqueous medium. We used
water (SPC/E and TIP3P models) as solvent; and all atom OPLS force field parameters
to model the solute.

We have studied the diffusion phenomenon of amoxicillin in water through the estimation
of self diffusion coefficients of both solute as well as solvent and their binary diffusion
coefficient using Einstein’s and Darken’s relations respectively. We have examined the
effect of temperature on diffusion coefficients of the molecular system under study.
For this, we performed simulations at different temperatures; and it has been observed
that the coefficients follow Arrhenius’s behavior. In addition, the estimated values of
diffusion coefficient from simulations carried out under periodic boundary conditions
are also affected by the size of the simulations box due to screening effect caused by long
range hydrodynamic interactions. So, we have also analyzed the size dependency of
diffusion coefficient by performing simulations taking systems of different sizes. It has
clearly been noticed that the estimated values of diffusion coefficient from simulation
are size dependent; and the estimated values increase with increase in size of simulation
box. From this study, the size independent values of diffusion coefficient, i.e., diffusion
coefficients estimated with system of infinite size of solvent as well as solution have been
reported.

Besides the study of diffusion process, solvation free energy of amoxicillin in aqueous
medium has been estimated at 310 K using thermodynamic integration (TI) and free
energy perturbation (FEP) based methods: TI, TI-cubic, BAR and MBAR. Only non-
bonded Lennard Jones and Coulomb interactions were manipulated to couple solute
and solvent molecules. During the estimation of free energy difference between two
thermodynamic states, concept of decoupling was used, i.e., initial state indicates that
solute and solvent are fully coupled and final state means they are independent. The
estimated values of free energy of solvation of amoxicillin in water from different
approaches are in good agreement; and solvation energy has positive sign. This ensures
that amoxicillin is soluble in water as expected. Also, we have analyzed the individual
contribution of van der Waals and Coulomb interactions to solvation free energy; and
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it has been found that Coulomb interaction has major contributions to the solvation of
amoxicillin in water.

Motivating the influence of solvent on transport and thermodynamic properties of solute,
we have studied the diffusion and solvation process of amoxicillin in other solvent i.e.,
ethanol. Both self and binary diffusion coefficients of amoxicillin in ethanol have been
estimated at 298 K temperature; and free energy of solvation of amoxicillin in ethanol
has been reported at 310 K temperature. We used aforementioned methods to study
transport and thermodynamic properties of amoxicillin in ethanol.

Furthermore, we have reported the solvent accessible surface area (SASA) of solute and
number of hydrogen bonds between solute and solvent molecules to get more insight
into effect of solvent environments on solvation free energy. The large value of SASA as
well as hydrogen bonds in water than in ethanol also support the higher estimated value
of solvation free energy of amoxicillin in water in comparison to ethanol.
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CHAPTER 1

1. INTRODUCTION

1.1 General Consideration

Bacterial infections cause several types of diseases like Pneumonia, Meningitis and so
on. There are wide varieties of agents available for the treatment of bacterial infection.
A bacteriostatic agent does not kill bacteria but does inhibit their reproductive growth;
whereas a bactericidal agent actually kills bacteria. Antibiotic inhibits the growth or even
destroys micro organism (Nogrady et al., 2005). Out of many antibiotics, amoxicillin is
a semi-synthetic broad-spectrum antibiotic of penicillin family and is widely used in the
treatment of bacterial infections (Danelon et al., 2006). When an amino group is added
to penicillin, an effective antibiotic is created. This combination of amino group and
the penicillin, termed as aminopenicillins for example amoxicillin, can fight against the
biotic infection (Todd & Benfield, 1990).

Amoxicillin is in the class of V-lactam antibiotics; in which V-lactam ring is respon-
sible for antibacterial activity. The bacterial cell-wall is strengthened due to cross-
linked D-alanyl-alanine portion of peptide in the presence of penicillin binding proteins
(PBPs) (Bush&Bradford, 2016). The V-lactam ring inhibits the process of cross-linking
in cell wall synthesis of both Gram-negative and Gram-positive bacteria by binding with
penicillin binding proteins (PBPs) and thus interfering cell wall synthesis (Rice, 2012;
Kapoor et al., 2017). The semi-synthetic penicillins are classified in to three types: acid-
resistant alternative to penicillin G, penicillinase resistant penicillins and the extended
spectrum penicillin (Tripathi, 2013). Out of these three categories, amoxicillin belongs
to the third one.
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Figure 1: Classification of semisynthetic penicillin.

Orally administered drugs are absorbed at different parts of digestive tract. Absorption
begins from mouth with the maximum amount absorbed through the intestinal tissues
and finally enters into the portal vein. Oral drug absorption is basically affected by
three factors: solubility, dissolution and intestinal permeability. Taking solubility and
permeability in account, the drugs are classified into four classes: class I (High solu-
bility and high permeability), class II (Low solubility and high permeability), class III
(High solubility and low permeability) and class IV (Low solubility and low perme-
ability). Amoxicillin is a class III type of antibiotic. The permeability of this drugs
can be enhanced by co-administration of bioenhancers, the agents which themselves
are not therapeutic entities but when combined with an active drug, it accelerate the
pharmacological effect of drugs (Barve & Ruparel, 2015).

1.2 Composition of Amoxicillin

Amoxicillin is a drugmoleculewithmolecular formulaC16H19N3O5S and IUPACname -
(2S,5R,6R)-6-[(2R)-2-4(4-hydroxyphenyl)-acetyl]amino-3,3-dimethyl-7-oxo-4-thia-1-az-
abicyclo[3.2.0]heptane-2-carboxylic acid. The molecular weight, melting point and
aqueous solubility of amoxicillin are 365.404 g/mol, 194 ◦C and ≈ 4 mg/mL respec-
tively. It has 5 double bonds, 46 f-bonds, 5 c-bonds, one carboxyl group and one
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hydroxyl group. It has the following mass percentages for different atoms: 52.591 % of
carbon (C), 5.241 % of hydrogen (H), 11.499% of nitrogen (N), and 8.752 % of sulphur
(S). The molecule has four hydrogen bond donor and seven hydrogen bond acceptor.
Amoxicillin is one of the widely used antibiotics.

Amoxicillin is white or almost white powder/crystalline solid having a bit sulphurous
odour. Amoxicillin sodium is highly soluble in water, sparingly soluble in anhydrous
ethanol, slightly soluble in acetone, while Amoxicillin trihydrate is slightly soluble
in water, slightly soluble in ethanol (96 percent), practically insoluble in fatty oil. It
dissolves in dilute acids and dilute solutions of alkali hydroxides (Kaur et al., 2011). As
the solubility of amoxicillin sodium is very high, it is used for intra-venous infusion. Due
to low solubility and high stability, amoxicillin trihydrate is used for oral suspension.
Figure shows the 3-D geometry (projected in plane) of an amoxicillin molecule.

Figure 2: Amoxicillin molecule.

Amoxicillin is stable in presence of gastric acid. It has solubility ≈4 mg/L in water. Sev-
eral studies were carried out to study about the stability of Amoxicillin after dissolution
in tap water. Amoxicillin dissolves fast, has a high solubility and a good stability if pH
is buffered at 8 (Boeren et al., 2006).

1.3 Mechanical Action in Bacteria

The cell wall of a bacteria consists of peptidoglycan. Figure 3 is the schematic rep-
resentation of formation of peptidoglycan (Humphrey et al., 1996). It is a polymer of
N-acetylmuramic acid (NAM) alternating with N-acetylglucosamine (NAG). The amino
acid polymers bridge the neighbouring strands of peptidoglycan. In each amino acid
polymer, five amino acids are linked together, L-Alanine (L-Ala), D-Glutamic acid
(D-Glu), L-Lysine (L-Lys) and two D-Alanine (D-Ala) (Vollmer et al., 2008). The

3



cross-linking occurs from the third position amino acid that is attached to the first strand
of peptidoglycan to the carboxyl group of D-Ala at the fourth position of polypeptide in
the next strand via directly or 5 glycine residues (Höltje, 1998). The energy for binding
of two polypetides of two strands is provided in the expense of cleavage of fifth position
D-Ala in both the strands. When this process is repeated, long thick cell wall is formed
in the bacterial cell. Thus, the cross-linking provides the stability and rigidity of the
cell wall and prevents osmotic pressure that acts from cytoplasm of the bacterial cell.
An enzyme named transpeptidase stimulates and mediates the process of the amino acid
linkage between two peptedoglycan strands (Scheffers & Pinho, 2005). The V-lactam

Figure 3: Formation of peptidoglycan with amino acid polymer.

antibiotics prevent the binding of polypeptide side chains by deactivating the action of
transpeptidase. The transpeptidase and the corresponding amino acids under the link-
age region constitute the penicillin (amoxicillin is a type of penicillin) binding proteins
(PBPs). Since the penicillin inhibits the formation of cell wall, the osmotic pressure
inside the cell wall tends to swell the cell and then burst out. Finally, the bacteria die
out.
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1.4 Bacterial Infections and Antibiotics

Bacteria are the small single-celled microorganisms. They are found everywhere on the
earth. Most of the bacteria are harmless, but a few of them are infectious. When bacteria
enters into the body, they spread throughout due to their fast breading ability. They invade
the body via several openings that link the interior part of body to the surroundings.
Swelling in infected parts is a common symptom of bacterial infection. When harmful
bacteria enter the body, the defensive mechanism of our body kills them. Specifically,
white blood cells (WBCs) fight against bacteria. The immune system easily copes
and fights with the infection caused by such deteriorative biomolecule (Karthikeyan &
Meyer, 2006). Even though immune system fights against such harmful lives, the system
fails in some situations. Our body’s immune system is affected if the multiplication of
bacteria is excessively high. So, external medication is essential. In such conditions,
antibiotics are useful (Karthikeyan & Meyer, 2006). Antibiotics are the agents that fight
against bacteria. They are used for the prevention and treatment of biotic infections.
Before the discovery of antibiotics (before 1920), people died of even a minor bacterial
infection.

The discovery of antibiotics is considered as a breakthrough in the field of medicine.
Golden era of antibiotics development was between 1940s to 1960s when most the cur-
rently used antibiotics were developed. After 1970s new antibiotics developments were
faltering so that only few antibiotics are in discovery pipelines. A wide use of natural
penicillins resulted in the emergence of penicillinase (beta-lactamase) producing strains
among gram positive bacteria and, thus, resulting antibiotic resistance. This directed
the research towards development of beta-lactamase-resistent semi-synthetic penicillins
(i.e., second generation penicillins) such as oxacillin, methicillin, and dicloxacillin. To
overcome the narrow spectrum of second generation penicillins, in 1960s, the third
generation and broad spectrum penicillins also known as aminopenicillins were intro-
duced. Amoxicillin and ampicillin are the major antibiotics of this group which have
broad spectrum coverage including gram-negative bacteria (as Hemophilus influenza,
Escheria coli, Salmonella spp. and Sigella spp.) (Sutherland, 1964). The last generation
of penicillins which include carboxypenicillins and ureidopenicillins had further broaden
spectrum covering Gram-negative bacteria as Pseudomonas aeruginosa (Lobanovska &
Pilla, 2017).

After the invention of antibiotics, life expectancy of people increased, surgeries got
softer and life became easier. There are basically two types of antibiotics: bactericidal
antibiotic and bacteriostatic antibiotic. The bactericidal antibiotic kills bacteria, whereas
the bacteriostatic antibiotic stops themultiplication of bacteria. Antibiotic is not effective
against the viral diseases.
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1.5 Medical Uses and Side Effects

Amoxicillin is used to treat many types of infections like ear infection, throat infection,
pneumonia, skin infection, urinary tract infection etc. It is a common medicine for
people of all ages from childhood to old age. It is mostly taken orally, and sometimes
from intravenous injections. It is diffused easily into the body tissues and fluids. It is
used alone or in combination with clavulanic acid. In some cases, amoxicillin alone is
superior to that combination with clavulanic acid, but the combination is more effective
and has low side effects in several other cases (Gresser, 2001). The side effects as skin
reaction are higher if amoxicillin alone which can be reduced by combining it with
clavulanate acid. But the combination has greater unwanted effects on gastrointestinal,
hepatic and haematological system. This combination has also higher risk of hepatic
problems, diarrhoea, nausea, vomiting, loose stools, and abdominal discomfort (Caron
et al., 1991).

Nowadays, medical chemists have a challenge to find or make compounds that have
potency with minimum side effects on the host cells. In general, chemists used trial
and screening method to design and synthesize the bioactive molecules that is very
expensive. But the present need of chemists is the fast access to reliable and accurate
information on the synthesizedmolecules with accuratemathematical model of chemical
structures and their interactionswith drug receptor sites. In this direction of development,
molecular dynamics can be used as a fundamental technique. Molecular dynamics can
be used to study internal molecular motion and to find out the structure of medium sized
molecules (Mosher, 1992). In medical sciences, the study about interactions of drugs
with targets and their dynamics pay great attention. Even though, many experimental
and theoretical techniques can be used to understand the structural, transport as well as
thermodynamic properties of biological systems, molecular dynamics simulation also
has been routinely used to understand such properties in molecular level. Among many
tools, computer simulations including Molecular Dynamics (MD) simulations have
gained on ever increasing role in addressing key structural, dynamical, thermodynamic
and kinetic features at a molecular level (Harmandaris et al., 2007; Malloci et al., 2015).
Dynamical events may vary the functional properties of biomolecules. Synthesis of
macromolecules is very expensive. Computer simulation can be the alternative way to
study about the properties of macromolecules commonly used in the pharmaceutical
industry (Ercolessi, 1997). Various experimental studies for the improvement of quality
of Amoxicillin have been conducted so far but the researches regarding the measurement
of its diffusivity, viscosity, etc. have not been noticed. The present work may play a
significant role to understand the transport and thermodynamic properties of amoxicillin
in molecular level.
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1.6 Rationale of the Study

The majority of biological phenomena happen in aqueous environment. The under-
standing about transport, thermodynamics properties like diffusion, viscosity, free en-
ergy difference can play a vital role in many disciplines of science including industrial
process. Diffusion, a transport property, is the process of transfer of matter from one
part to another part of system as a result of random molecular motion (Crank, 1979). In
living organisms, diffusion is a crucial phenomenon (Khanal et al., 2019). It is due to
the consequence of constant thermal motion of atoms, molecules and particles moving
from high concentration to low concentration. The transfer rate is affected by many fac-
tors including temperature, viscosity of fluid and the size (mass) of the particles as well
system used during simulation. The dynamics of biomolecules in human body happen
through diffusion process. The kinetic term; dissolution rate of drugs depends upon
the diffusion coefficient, a transport term, and thermodynamic term: solubility (Noyes
& Whitney, 1897). Such phenomenon provides idea about inter/intra atomic/molecular
interactions (Umecky et al., 2006). However, the experimental measurement of diffusion
rate is difficult.

The knowledge about solubility has significant role in many areas including industrial
process (Amidon et al., 1995). The aqueous solubility has important role in pharmaceu-
tical industries (Yalkowsky & Valvani, 1980). Out of many factors, solubility is a major
factor affecting bioavailability of drugs. The solubility of drug in a particular medium
also controls the rate of dissolution and quantity that is dissolved in the medium (Noyes
&Whitney, 1897; Skyner et al., 2015; Dizaj et al., 2015). There are many approaches to
study about the solubility includingMD simulations. The solubility of a solute in solvent
can be estimated from the knowledge of free energy of solvation (Matos et al., 2017;
Bergström & Larsson, 2018). Also, we can estimate the relative solubility of a solute
in two different solvents from the estimation of free energy of solvation (Bellucci et
al., 2019). The free energy of solvation measures the interactions of solute with solvent
environment; and can be estimated from the change in free energy between the two states
i. e., the state of fully interacting solute and solvents through different interactions and
state of no interactions between them at definite temperature and pressure (Dasari &
Mallik, 2020).

The role of different computational methods including molecular dynamics (MD) sim-
ulations has been increasing in different stages of drug designing (Mortier et al., 2015;
DeVivo et al., 2016). With the availability of high speed computational power, computa-
tional methods have routinely been used in the discovery of new drug candidate (Borhani
& Shaw, 2012). It becomes a powerful alternative approach which also provides guide-
lines for experimental study. Simulation technique can also be used for those extreme
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conditions like high pressure and high temperature in which it is difficult to perform
experiments. The simulations play a role of bridge between theoretical and experimental
results (Allen & Tildesley, 1987). During simulations, the macroscopic properties of
interest like transport properties, free energy calculations etc. can be extracted from
microscopic properties like masses of atoms, interactions between them and so on the
system. Simulations can be taken as a complement to get more insight about results
obtained from theoretical and experimental methods (Frenkel & Smit, 2002).

1.7 Objectives of the Study

In human body, the dynamics of biomolecules happen through diffusion process. The
physiological transport of digested food materials, hormones and enzymes that occur in
living cell is due to diffusion (Bhandari & Adhikari, 2016). The delivery of drug and its
efficiency in our body involves the diffusive transport of molecules through membrane.
Out of many factors, solubility and dissolution rate of drug are the major factors affecting
oral drug absorption. The solubility can be estimated from the knowledge of free energy
of solvation. The diffusion rate and solubility affect the dissolution rate. So, the study
about the transport and thermodynamic properties of drugs has significant role. The
general objective of this work is:

• To study the transport and thermodynamic properties of amoxicillin

And, the specific objectives are:

• To study the diffusion processes and calculate the diffusion coefficient of amoxi-
cillin in water at different temperatures

• To study the effect of system size on diffusion coefficient

• To estimate the solvation free energy of amoxicillin in water

1.8 Organization of the Thesis

The structure of this thesis is organized as follows:

(i) In chapter 2, we present literatures which provide a background to set up objectives
of this work.

(ii) Chapter 3 describes the theoretical background required to complete this work. In
this chapter, we present in brief the Fick’s law to explain diffusion phenomenon,
Einstein’s relation to estimate self diffusion coefficient, Darken’s relation to esti-
mate binary diffusion coefficient and effect of system size on diffusion coefficient.
We also discuss the free energy perturbation (FEP) and thermodynamic integra-
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tion methods to estimate the free energy of solvation. This chapter is named as
Materials and Methods.

(iii) The main findings of this work are presented and discussed in the chapter 4 en-
titled ‘Results and discussion’. Section 4.1 introduces the background for the
whole chapter. We discuss the structural analysis through the calculation of radial
distribution function (RDF) between different molecules, the estimation of diffu-
sion coefficients at different temperature, size dependence of diffusion coefficient
and estimation of solvation free energy of amoxicillin in different solvents using
different approaches in sections 4.2, 4.3, 4.4 and 4.5 respectively.

(iv) We briefly summarize the conclusions with possible extension of the work in
chapter 5. Finally, the summary is presented in chapter 6 followed by the references.
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CHAPTER 2

2. LITERATURE REVIEW

In this chapter, we briefly discuss some literatures relevant to the present work. Firstly,
we review literatures related to antibiotics followed by amoxicillin, a penicillin type of
antibiotic. Then we present literatures that are focused on diffusion and thermodynamic
phenomena. We also discuss the literatures related to molecular dynamics study.

During last few decades, many research works were performed about physiochemical
properties of different antibiotics. The term antibiotics had been originated from French
word antibiose which was used as an antonym to symbiosis to describe the antagonistic
action between different microorganisms, coined by Paul Vuillemin (Vuillemin, 1889).
First manmade antibacterial agent was Salvarsan (arsphenamine) which was synthesized
by chemist Alfred Bertheim in the laboratories of Paul Ehlrich who had been working
in the dyes that specifically stain bacterial cell wall. It was approved in 1910 as a drug
and was used for the treatment of syphilis (Ehrlich & Bertheim, 1912).

Discovery of penicillin in 1929 by Alexander Fleming superseded the sulphonamides
which were the first truly effective broad spectrum antimicrobials and are still in
use (Fleming, 1929). However, he could not produce purified penicillin and it almost
took 10 years for its development in purified form. In 1939, Howard Florey with his team
in Oxford University, successfully purified penicillin and tested it against streptococcus
in mice (Chain et al., 1940). It was major breakthrough that enabled the development
of semi-synthetic derivatives which help to bypass the penicillin resistance. Alexander
Fleming, Ernst Boris Chain and Howard Walter Florey jointly awarded Nobel prize in
1945 for the discovery of penicillin with its therapeutic value (Raju, 1999).

Amoxicillin was discovered in 1972 which differ from ampicillin structurally by addition
of a hydroxyl group in the benzene ring. Addition of the hydroxyl group results in
a drug that is more lipid soluble and thus increased bioavailability and duration of
action (Sutherland et al., 1972). Although amoxicillin was first synthesized in 1970, it
was formulated in tablet in 1981 in United Kingdom (Geddes et al., 2007). Figure 4
shows chart of antibiotic development (Hutchings et al., 2019).
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Figure 4: Flow chart of time-line development of antibiotics.

Mainly, the research works were focused on the study of solubility, permeability and
diffusivity of antibiotics to enhance the potency of drugs against bacteria. Bodey and
Nance studied the antibacterial activity of amoxicillin and compared it to that of ampi-
cillin and cephalothin (Bodey & Nance, 1972). They reported that amoxicillin was more
effective over ampicillin on the basis of serum levels produced after oral administration.
The comparison of antibacterial activity between amoxicillin and ampicillin were also
carried out by Sutherland and co-workers; and they suggested amoxicillin show similar
antibacterial activity as ampicillin (Sutherland et al., 1972; Rolinson, 1973). The ab-
sorption after oral dose for ampicillin is 30-55 % with 25-45 % recovered unchanged
in urine and peak serum concentration of 2-6 mg/L after 500mg dose. Oral absorption
of amoxicillin was better with bioavailability of 77-90 % with 50-80 % drug recov-
ered unchanged in urine and peak serum concentration of 7-10 mg/L after 500 mg oral
dose (Brogden et al., 1975).

The absorption half life of amoxicillin was reported 0.72 hours by Arancibia et al.
(1980). The electrochemical behavior of amoxicillin in aqueous medium at pH 10.5
using ferrocenedicarboxylic acid asmediator inCarbon nanotubes (CNTs)was studied by
Fouladgar et al. and they reported that oxidation of amoxicillin takes place at a potential
of ≈ 0.5 V (Fouladgar et al., 2011). Amoxicillin distributes well into liver, lungs,
prostate, muscle, middle ear effusions, maxillary sinus secretions, bone, gallbladder,
bile and into ascetic and synovial fluids, however, poorly penetrate into cerebrospinal
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fluid (Huttner et al., 2020).

The crystal structure analysis of amoxicillinwas performedbyBoles and co-workers (Boles
et al., 1978). They reported that amoxicillin has orthorhombic unit cell with P212121

space group having dimensions a = 15.677 Å, b = 18.785 Å and c = 6.645 Å. It has
four molecules per unit cell. They also reported the coordinates, bond length and bond
angles between atoms. Bebu and co-workers reported the optimizedmolecular geometry
and molecular electrostatic potential using density functional theory (DFT) with B3LYP
functional and 6-31G(d) basis set (Bebu et al., 2011). They also reported the FTIR,
FT−Raman and SERS spectrum determined from quantum calculation and using spec-
troscopies; and also compared the experimental and theoretical spectrum. The crystal
structure of amoxicillin was studied by Santos et al. using NMR crystallography (Santos
et al., 2013). Similarly, the optimized geometry of amoxicillin and ampicillin as well as
their IR spectra were reported by Kariper using quantum calculations (Kariper, 2017).
NMR data, molecular electrostatic potential as well as molecular docking study of the
molecules were also reported in this article.

The dissociation constant of 7 different V-lactam antibiotics in water as well as mixture
of acetonitrile-water were evaluated using spectrophotometric and chromatographic
method byDemiralay and co-workers (Demiralay et al., 2012). On the other hand, Crea et
al. (2012) reported the solubility of amoxicillin and other two penicillin type antibiotics in
water as well as aqueous solution of NaCl salt experimentally using shake-flask method.
Similarly, the solubility of amoxicillin at different pH and temperatures in mixtures of
ethanol and water was calculated and compared with previously reported values by Felix
et al. (2016). They also analyzed the effect of pH and ethanol concentration on the
solubility of amoxicillin.

The idea about interaction of drugs with amino acids in molecular level has significant
role to understand the transport of drugs throughmembrane and other drug action. Singla
and co-workers studied the interactions of amoxicillin with some amino acids: glycine,
L-alanine, L-valine and L-leucine at three different temperatures 305.5 K, 310.5 K and
315.5 K and they reported that the interaction increases with increase in molar mass as
well as concentration of amino acids (Singla et al., 2014).

Hancock and co-worker studied the antibiotic uptake into gram-negative bacteria. An-
tibiotics taken up into gram negative bacteria face two major diffusion barriers, the outer
and cytoplasmic membrane. This study is concerned with the outer diffusion barrier. In
this study, the uptake in porin-deficient and porin-sufficient mutants compared. It was
found that particularly V-lactam pass across the outer membrane through the water filled
channel of protein called porins in porins sufficient mutants (Hancock & Bell, 1989).
Furthermore, Kalyani Bavre and co-workers focused their study about the improvement

12



of bioavailability of amoxicillin and they observed that the bioavailability of amoxicillin
can be significantly increased by combining with bioenhancers like Piperine and Ginger
resis (Barve & Ruparel, 2015).

The effects of the macromolecular solute on the translational mobility of surrounding
solvent water, and Na+ and Cl− ions were studied by Valdimir A. Marker and Co-
workers using Molecular Dynamics. In this study, the average diffusion coefficient as a
function of distance from the closest solute atom of myoglobin and DNA decamer was
determined. It was observed that overall diffusion rate at the interface is lower than in
bulk (Makarov et al., 1998). Furthermore, Jean and co-workers focused their review on
the problem of bacterial adaptation to reduce influx of antibiotics through porins. The
study was concentrated on the bacterial response towards antibiotic stress on altered
membrane permeability and the recent molecular approaches for the improvement of the
physio-chemical parameters that govern the translocation of antibiotics through porin
channel (Pages et al., 2008).

Himmelblau reviewed in detail about the diffusion of dissolved gases (slightly soluble in
water) in water (Himmelblau, 1964). The author explained the diffusion theory as well
as different experimental methods including diaphragm cells, gas absorption in steady-
state laminar flow systems, ringbom apparatus, interferometric techniques to determine
diffusion of dissolved gases. Also, he presented the data analysis of diffusion with effect
of temperature, pressure and concentration.

Molecular Dynamics

In 1957, Alder and Wainwright published first paper based on molecular dynamics sim-
ulations (Alder & Wainwright, 1957; Ercolessi, 1997). They studied phase behavior
of hard sphere system from simulation carried out in rectangular box under periodic
boundary conditions. Gibson and co-workers used finite difference method to solve
equation of motion during simulations (Gibson et al., 1960). Rahman, a pioneer work
in 1964, reported the diffusion coefficient of liquid argon estimated from molecular dy-
namics simulations performed with pairwise Lennard Jone potential (taking parameters:
n/:B = 120 K and f = 3.4 ) (Rahman, 1964). Simulation was carried out in cubic box
of size 10.229 f under periodic boundary conditions; and estimated value of diffusion
coefficient of liquid argon at 94.4 K is 2.43 × 10−6 cm2/s using mean square displace-
ment of particles. In this work, Rahman also explained the pair correlation and auto
correlation functions between argon atoms. For hard sphere, the detail about velocity
autocorrelation function was explained by Alder and Wainwright (Alder & Wainwright,
1967). The dynamical behavior of pancreatic trypsin protein was studied using molec-
ular dynamics simulation by McCammon et al. (1977). Similarly, Levitt and Warshel
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performed simulation to understand the protein folding mechanism (Levitt & Warshel,
1975).

Shivakumar et al. (2010) reported the solvation free energy of 239 different molecules in
neutral state in SPC water model using free energy perturbation (FEP) method. In this
paper, the authors also compared the solvation free energy of 13 different molecules in
different water models: SPC, TIP3P and TIP4P. The solvation free energy of mono-, di-
and tri- ethylene in two solvents: water andmethane was presented fromMD simulations
using FEP, BAR and TI methods (Olsen et al., 2016). The simulations were carried at
1 and 80 atm pressure at 298 K and 283 K respectively. The detailed methodology to
calculate free energy ofmolecular solids usingMDused presented byNoya et al. (Noya et
al., 2008). They also reported the free energy of ice using Einstein’s molecule approach
and also compared with the previously reported value from Einstein’s crystal method.
A software to perform molecular simulation and analysis trajectory: GROMACS was
developed by Bekker and co-workers (Bekker et al., 1993; Lindahl et al., 2001; Hess
et al., 2008). They also explained different algorithms to solve equations of motion.
Aragones and co-authors illustrated the calculations of free energy of atomic solids
using GROMACS and LAMMPS (Aragones et al., 2012). Similarly, in 2013, the detail
of methodology and procedure to estimate the free energy of molecular solids using
GROMACSwas explained byAragones and co-workers (Aragones et al., 2013). Authors
used Einstein molecule approaches; and applied this methodology for the determination
of free energy of solid methanol and water.

In 1935, Kirkwood explained the thermodynamic integration method to evaluate the
free energy (Kirkwood, 1935). Similarly, Zwanzig described the perturbation method
to estimate thermodynamic properties in 1954 (Zwanzig, 1954). The detailed about the
estimation of free energy difference between two states using simulations was explained
by Bash and co-workers (Bash et al., 1987). The authors also reported the solvation free
energy of amino acids as well as analogues side chain in TIP3P water model at 300 K
under 1 atm pressure. Furthermore, theoretical explanation regarding the free energy
differences was elaborated by Jarzynski (1997). Klimovich and co-workers explained the
analysis tools to estimate the free energy using simulation (Klimovich et al., 2015). They
explained the different approaches of free energy calculations based on thermodynamic
integration and free energy perturbation basedmethods as well as reported the idea about
convergence of free energy calculations.

Adhikari and co-workers from the Central Department of Physics already carried out
MD study to estimate diffusion coefficients of heavy water, oxygen, nitrogen, carbon
monoxide, nitric oxide etc. in water (Dahal & Adhikari, 2012; Thapa & Adhikari, 2013;
Sharma & Adhikari, 2014; Poudyal & Adhikari, 2014; Pokharel et al., 2016). DNA pro-
tein interaction was studied by Adhikari and co-workers from MD simulations (Koirala,
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Pokhrel, et al., 2021). They also reported the change in binding free energy during
interactions using umbrella sampling method.

Bellucci and co-workers used MD technique to estimate the solubility of paracetamol
in ethanol at different temperatures from the estimation of absolute solid free energy
using GROMACS software package and compared with experimentally determined
values (Bellucci et al., 2019). On the other hand, Dasari and Mallik performed MD
study of LASSBio-294, poorly water soluble drug, in water and other ionic solvents to
understand the solvation process (Dasari & Mallik, 2020). They reported the solvation
free energy as well relative solubility of the drug at 298.15 K temperature; and also
analyzed the individual contributions of van der Waals and Coulomb contributions to
solvation free energy. The all-atom force field parameters of 40 different antimicrobial
compounds including antibiotics and beta-lactamase inhibitors were reported byMalloci
et al. (2015). They also studied many properties including number of hydrogen bonds,
hydrophobic and hydrophilic surfaces etc. of the compounds using molecular dynamics
simulations.

Research Gap

From the review of relevant literatures, it has been observed that many experimental
works were carried out to understand the solubility of amoxicillin in different medium.
The crystal structure of amoxicillin was already reported. Similarly, optimized geometry
and different spectrum of amoxicillin were studied by different groups using DFT cal-
culations. Although the experimental studies have been going on about the calculation
of solubility and other thermodynamic parameters, the solvation free energy as well
as transport properties of amoxicillin in aqueous medium have not been performed in
molecular level. The estimation of free energy difference between two thermodynamic
states of drugs pay great attention to understand their binding mechanism with targets;
and also solubility of drug in particular solvent can be understood from the solvation free
energy of the drug in that solvent. Also, from the knowledge of transport phenomena
of drug, we can get more information about the transport of drug to target area. In this
context, the study of thermodynamic and transport properties of amoxicillin is relevant
to get more insight about solvation process in molecular level.
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CHAPTER 3

3. MATERIALS AND METHODS

3.1 General Consideration

In this chapter, we have discussed the methodology used to accomplish the objectives
of the present work. The chapter follows the following organization. In section 4.1, we
have discussed about radial distribution function (RDF) to analyze structural properties.
Similarly, we have addressed about diffusion theory: Fick’s law of diffusion, Einstein’s
equation to measure diffusion coefficient and effect size of system on diffusion coeffi-
cient in section 4.2. Section 4.3 deals with theory related to estimate free energy of
solvation. Also, details about molecular dynamics simulations have discussed in section
4.4. Finally, the different systems under study are presented in section 4.5.

Computer simulations technique like molecular dynamics has been widely used in large
areas of research with availability of high speed computers. Simulations can be used
to understand about the structural, dynamics, thermodynamics and so on properties of
drugs, macromolecules like protein, DNA,RNA etc. (Allen&Tildesley, 1987; Ercolessi,
1997). Methods of simulations can also be applied in those extreme conditions like high
pressurewhich are not feasible in experiments (Frenkel&Smit, 2002). The experimental
study of some phenomenon like diffusion, is difficult. Computer simulations can be
taken as complements to get knowledge about the phenomenon like diffusion whose
experimental study is difficult. It also provides guidelines for experimental study. In
the computer experiment, we first prepare a model of the system under consideration
and follow a recipe to calculate the different properties of interest (Adhikari et al.,
2004). Although simulations techniques are widely used, the validity of results obtained
from the simulations depends on the accuracy of models and validity can be checked
by comparing the results with previously reported experimental values. Figure 3.2
shows schematic diagram of connection among experimental study, theoretical study
and computer simulations (Allen & Tildesley, 1987).
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Figure 5: Schematic diagram showing the connection of computer simulations with experiment and
theoretical study.

3.2 Radial Distribution Function (RDF)

The radial distribution function (RDF), which gives the probability of finding a pair of
atoms located at distance ‘r’, has been used to analyze the structural properties of system
(Allen & Tildesley, 1987). The RDF provides idea about the distribution of molecules
around another molecule (McQuarrie, 2000; Hansen & McDonald, 2013). The fourier
transform of RDF provides the structure factor. X-ray diffraction technique can be used
to study the RDF, liquid exhibits more diffuse pattern of RDF. Alternatively, we can
estimate the RDF between molecules from molecular dynamics simulations technique.
Figure 6 shows the RDF for liquid argon (Chandler, 1987).

For liquids, the RDF shows an oscillatory in nature (McQuarrie, 2000; Hansen &
McDonald, 2013). The oscillation persists upto certain distance from referencemolecule
and after than the probability distribution function becomes unity, which indicates that
no correlation between two molecules. The region from A = 0 up to which the RDF
becomes zero is known as excluded region (ER).

The radial distribution function 6-. (A) between particles of type X and Y is defined in
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Figure 6: RDF between atoms of liquid argon.

the following way (David et al., 2005):

6-. (A) =
〈d. (A)〉
〈d. 〉local

=
1

〈d. 〉local
1
#-

#-∑
8∈-

#.∑
9∈-

X(A8 9 − A)
4c A2 (3.1)

In this equation, 〈d. (A)〉 is the particle density of type Y at a distance A around particles
X and 〈d. 〉 is the particle density of type Y averaged over all the spheres around particles
X. Figures show different peaks in RDF.

Figure 7: Schematic diagram of RDF (left); and RFD between two oxygen atoms of water taking SPC/E
model (right).
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3.3 Diffusion Theory

Diffusion, a transport phenomenon, is the process of transfer of matter from the region of
higher concentration to lower concentration region. Diffusion occurs in a homogeneous
medium without chemical concentration gradient is self diffusion and diffusion of the
constituent particles occurs in binary mixture is binary diffusion (Frenkel & Smit,
2002). Such phenomenon is measured in terms of diffusion coefficient; the response
of a system to a perturbation relates the particle flux to a concentration gradient. The
experimental measurement of diffusion coefficient which relates the particle flux to a
concentration gradient is very difficult as well as expensive. In this context, molecular
dynamics simulation has been considered to be the best alternative way to study diffusion
phenomenon (Poudyal & Adhikari, 2014).

In continuous system, the diffusion coefficient is defined by Fick’s law. According to
Fick’s law, the rate of particle flux, the rate of transfer of diffusing substance through
unit area of section, is proportional to the concentration gradient measured normal to
the surface i.e., (Fick, 1855)

P = −�∇� (r, C) (3.2)

where, � (r, C) is the concentration of diffusing substance which is function of position
r and time; and � is proportionality constant known as diffusion coefficient. The
significance of negative sign in Equation (3.2) is that the diffusion occurs in the direction
opposite to that of increasing concentration. If both terms P and � (r, C) in the equation
are expressed in same unit e.g. gram or gram molecules, then the � has dimensions of
(length)2(time)−1 (Crank, 1979).

We assume that at C = 0, the substance was concentrated at origin of our coordinate
system. The time evolution of the concentration profile can be calculated by relating the
Fick’s law with the continuity equation i.e.,

m� (A, C)
mC

+ ∇ · P(r, C) = 0 (3.3)

Combining equations (3.2) and (3.3), we get

m� (A, C)
mC

+ ∇ · [−�∇� (r, C)] = 0

or
m� (A, C)
mC

− �∇2� (r, C) = 0

or
m� (A, C)
mC

= �∇2� (r, C) (3.4)

Equation (3.4) can be solved by applying the boundary condition � (r, 0) = X(r), where
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X(r) is the Kronecker delta. The solution is

� (r, C) = 1
2(c�C) 32

exp
(
−A2

4�C

)
; (3.5)

where 3 is the dimensionality of the system. To determine the diffusion coefficient, the
time of second moment is defined as

〈A2(C)〉 =
∫

3r� (r, C)A2 ; (3.6)

where, � (r, C) satisfied the normalization condition
∫
3r� (r, C) = 1

We can directly obtain an equation for the time evolution of 〈A2(C)〉 by multiplying
equation (3.4) by A2 and integrating over all space. This gives

m

mC

∫
3r A2 � (r, C) = �

∫
3r A2∇2� (r, C)

or
m

mC
〈A2(C)〉 = �

∫
3r A2∇2� (r, C)

or
m

mC
〈A2(C)〉 = �

∫
3r∇ · (A2∇� (r, C)) − �

∫
3r∇A2 · ∇� (r, C)

or
m

mC
〈A2(C)〉 = 0 − 2�

∫
3rr · ∇� (r, C)

or
m

mC
〈A2(C)〉 = −2�

∫
3r∇ · r� (r, C) + 2�

∫
3r (∇ · r)� (r, C)

or
m

mC
〈A2(C)〉 = 6�

∫
3r� (r, C)

Since ∇ · r = 3 for three dimensional system. Using the normalization condition:∫
3g� (r, C) = 1, we get

m

mC
〈A2(C)〉 = 6�

or � =
m

6mC
〈A2(C)〉 (3.7)

The Equation (3.7) relates the macroscopic quantity transport coefficient (�) to the
microscopic quantity mean squared displacement (MSD) 〈A2(C)〉 of diffusing particles
using statistical mechanics known as Einstein’s relation to measure self diffusion coeffi-
cient (Einstein et al., 1905). From Equation (3.7), it is seen that the instantaneous value
of diffusion coefficient is given by the slope of curve of MSD of the diffusing particles
versus time. For MSD that behaves as a straight line after a period of prolongated time,
the Equation (3.7) reduces to

� = lim
C→∞
〈[A (C) − A (0)]2〉

6C
(3.8)
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Here, 〈...〉 denotes the ensemble average of parameters inside the angled bracket. Hence,
one sixth of the slope of graph plotted between mean squared displacement versus time
estimates the value of self diffusion coefficient.

Also, the binary or mutual diffusion coefficient in binary mixture of two constituents
X and Y can be calculated using Darken’s phenomenological relation (Darken, 1948).
According to the relation, if �- and �. are self diffusion coefficients of two individual
constituents X and Y with mole fraction N- and N. respectively, the binary diffusion
coefficient �-. of the system is:

�-. = #.�- + #-�. (3.9)

Out of many other factors, temperature is a factor uponwhich diffusion depends. Density
of system decreases with increase in temperature and hence the region for random walk
of diffusing particles become more. As a result, particle’s velocity increases with
increase in temperature and hence rate of transfer of particle i.e., diffusion coefficient
increases (Thapa & Adhikari, 2013).

3.3.1 Effect of System Size on Diffusion Coefficient

Nature of hydrodynamics interactions is long range. Long range interaction depends
on size of system. Simulations of system with large size is not easy in practice due
to computational capacity (Allen & Tildesley, 1987). Simulations with small size of
system introduces a problem of surface effect which is illuminated by performing the
simulations under periodic boundary conditions (PBC). The dynamical properties esti-
mated under periodic boundary conditions (PBC) also depends on the size of system on
account of hydrodynamics interactions which are long range in nature. So, some modi-
fication is needed on diffusion coefficient estimated under periodic boundary conditions
(PBC) (Jamali et al., 2018; Dünweg & Kremer, 1993; Yeh & Hummer, 2004). From
the self diffusion coefficient estimated under PBC (�PBC), the size independent value
of self diffusion coefficient (�0) ( i.e., value estimated with infinite system size) can be
estimated by (Yeh & Hummer, 2004):

�0 = �PBC +
2.84 :B)

6c[!

or �PBC = �0 −
2.84 :B)

6c[!
; (3.10)

where, :B,) and [ are Boltzmann constant, absolute temperature of system and viscosity
coefficient respectively.

Using Equation (3.10), size independent value of diffusion coefficient can be estimated
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if viscosity coefficient of solvent [ is known. Also, we can estimate the size independent
value of diffusion coefficient as well as viscosity coefficient from the graph plotted
between DPBC versus 1/! if viscosity coefficient is unknown. For this, at first we should
estimate values of PBC taking simulations box of different size. After linear fit, the
nature of graph between PBC and 1/! is as shown in Figure 8. Values of �0 and [ can

Figure 8: Nature of graph between �%�� and 1/!.

be evaluated from the intercept and slope respectively of the fitted graph. So,

Intercept = �0

Slope = −2.84 :B)
6c[

3.4 Free Energy Calculation

One of the fundamental objective of MD simulations is the estimation of free energy.
In this section, we briefly describes the different approaches to estimate free energy of
solvation. A thermodynamics quantity equivalent to the capacity of a system to work is
known as free energy of the system (i.e., the difference between internal energy of the
system and the amount of energy that cannot be used to perform work). Helmholtz free
energy �(#,+,)) and Gibb’s free energy � (?,+, )) are defined as:

�(#,+,)) = * − )(
� (?,+, )) = � + %+ = * − )( + %+ = `#
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The difference in free energy during the transformation of a system from initial state
� to final � can be calculated using Free Energy Perturbation (FEP) methods (Tuck-
erman, 2010). Suppose a system with potential energy functions *A(r1, · · · , r# ) and
*B(r1, · · · , r# ) for the states � and � respectively. Then, the canonical partition func-
tions of the states � and � are defined as

&� (#,+,)) =
/� (#,+,))
#! Λ#

or &� (#,+,)) =
1

#! Λ#
×

∫
4−V*�(r1,··· ,r# ) 3r1, · · · , 3r# (3.11)

and

&� (#,+,)) =
/� (#,+,))
#! Λ#

or &� (#,+,)) =
1

#! Λ#
×

∫
4−V*� (r1,··· ,r# ) 3r1, · · · , 3r# (3.12)

where, Λ is the de-Broglie wavelength; and /� (#,+,)) and /� (#,+,)) are the con-
figurational partition functions for the states � and � respectively. If �� and �� are the
Helmholtz free energies of the states � and � respectively then the difference in free
energy between the two states is given by

Δ��� = �� − ��
or Δ��� = −:B) ln&� (#,+,)) − (−:B) ln&� (#,+,)))

or Δ��� = −:B) ln
[
&�

&�

]
or Δ��� = −:B) ln

[
/�

/�

]
or Δ��� = −:B) ln

[∫
4−V*� 3# r∫
4−V*� 3# r

]
or Δ��� − :B) ln

[∫
4−V(*�−*�) 3# r∫

3# r

]
or Δ��� = −:B) ln〈exp[−V(*� −*�)]〉� (3.13)

The 〈· · · 〉� gives the ensemble average of difference in potential energy function with
respect to the state �. Equation (3.13) is the Free Energy Perturbation (FEP) for-
mula (Tuckerman, 2010) to calculate the free energy difference between the two states
� and �. If the difference in the potential energy function (*� − *�) is high i.e., if
there is insufficient overlap of phase space between two states � and �, then the value
of the term exp[−V(*� −*�) becomes very small; and hence the estimated value may
not be converges. To overcome the problem of convergence, one can introduce " − 2

23



unphysical intermediate states with potential energy function *U (r1, · · · , r# ), where
U = 1 · · ·" . After then the net change in free energy of the system in between the two
states is

Δ��� = −:B)
"−1∑
U=1

ln〈exp−(VΔ*U,U+1)〉U (3.14)

Alternatively, the transformation can be handled by introducing a new potential energy
function in terms of switching parameter _ as

* (r1, · · · , r# , _) = 5 (_)*� + 6(_) *� (3.15)

Here, _ is coupling parameter such that 0 ≤ _ ≤ 1. The value of _ = 0 represents
initial state A, 1 represents final state B and other values lies between 0 and 1 represents
non-physical intermediate states. There is no change is estimated values of free energy
difference between two states with many non-physical intermediate states as free energy
is a state function. Figure shows schematic diagram of representation of many non-
physical intermediate states in between initial state A and final state B.

Figure 9: Schematic diagram to illustrate two thermodynamic states.

Then, we can define the partition function and hence the free energy for the potential
defined by the equation (3.15) as

�(#,+,), _) = −:B) ln&� (#,+,), _)

Differentiating on both sides with respect to _, we get

m�

m_
= − :B)

&

m&

m_
= − :B)

/

m/

m_
= − :B)

/

m

m_

∫
4−V* (r1,··· ,r# ,_) 3# r

or
m�

m_
= 〈m*

m_
〉
_

Then, the difference in free energy during the transformation of the system from state A
to state B is evaluated using the equation

Δ��� =

∫ 1

0

m�

m_
3_ =

∫ 1

0
〈m*
m_
〉
_
3_ (3.16)
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Equation (3.16) is known as Thermodynamic Integration (TI) formula. If we consider
the functions as 5 (_) = 1 − _ and 6(_) = _, equation (3.16) becomes

Δ��� =

∫ 1

0
〈*� −*�〉_ 3_ (3.17)

Now, the free energy of solvation i.e., the free energy difference between the states with
and without interaction of solute and solvent molecules is evaluated as

Δ�sol =

∫ 1

0

〈
m*

m_

〉
_

3_ (3.18)

or Δ�sol =

∫ 1

0
〈*� −*�〉_3_ (3.19)

Besides FEP and TI methods, another approach used to calculate the free energy dif-
ference is Bennett Acceptance Ratio (BAR) method (Bennett, 1976). The assumption
behind this is that same microstates are shared by both initial and final states. Here,
we briefly describe the theory of BAR method. The canonical configurational partition
function is defined as

&(#,+,)) =
∫

exp [−V * (q1, · · · , q# )] 3q1, · · · , 3q# (3.20)

Now, the ratio of partition functions &0 for initial state A and &1 for final state B in
terms of weighting function W(@1, @2, ......@# ) is given by

&1
&0

=
&1

∫
, exp [−V (*1 +*0)] 3@#

&0
∫
, exp [−V (*0 + *1)] 3@#

or
&1
&0

=
〈, exp [−V *1]〉0
〈, exp [−V *0]〉1

(3.21)

Now, the free energy difference is given by

V Δ� = ln
(
&1
&0

)
= ln

( 〈, exp [−V *1]〉0
〈, exp [−V *0]〉1

)
or V Δ� = ln 〈, exp [−V *1]〉0 − ln 〈, exp [−V *0]〉1 (3.22)

With suitable chosen of the weight function , , we can estimate the free energy with
minimum error and the best choice of weight function is (Bennett, 1976)

, = constant ×
[(
&0
=0

)
exp(−V*1) +

(
&1
=1

)
exp(−V*0)

]−1
; (3.23)

where, =0 and =1 are the number of independent configurations related with two states.
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By combining Equations (3.21) and (3.23), we get

&1
&0

=

〈
{1 + exp [V (*1 −*0 + �)]}−1〉

0〈
{1 + exp [V (*0 −*1 − �)]}−1〉

1

exp(V�)

Here, we defined C as: exp(V�) = (&1=0/&0=1). With Fermi function defined as
5 (G) = (1 + exp(G))−1, the above equation can be expressed as

&1
&0

=
〈 5 (*1 −*0 + �)〉
〈 5 (*0 −*1 − �)〉

exp(V�) (3.24)

3.5 Molecular Dynamics Simulations

In this work, we have performed molecular dynamics (MD) simulations to study the
transport and thermodynamic properties of amoxicillin using Groningen Machine for
Chemical Simulations (GROMACS) software package (David et al., 2005). Molecular
dynamics is a deterministic approach. It is a statistical method in which ensemble aver-
age over configurations represents physical quantities. During simulations, macroscopic
properties interest can be obtained from microscopic properties through the analysis of
trajectory followed in phase space (Gunsteren & Berendsen, 1990; Allen & Tildesley,
1987). With given set of initial position and velocity, the computer calculates their tra-
jectory in a 6N-dimensional phase space, which provides a set of configurations required
in statistical mechanics to represent physical quantities (Frenkel & Smit, 2002). The
measurement of physical quantities by simulation is obtained as an arithmetic average
of the instantaneous values assumed by that quantity during MD run (Rapaport, 2004;
Ercolessi, 1997). Such simulations technique plays a crucial role to get more insight
about different interactions in atomic/molecular levels. During simulations, experimen-
tal environment can be mimicked through the interactions between atoms (Khanal et al.,
2019). In classical MD simulations, new configurations can be generated after solving
Langevin equation (Lemons & Gythiel, 1997)

<8
m2A8 (C)
mC2

= �8{A8 (C)} − W8
3A8 (C)
3C

<8 + '8 (C)

In the Langevin equation, ‘�8’ is the force on 8th particle of mass ‘<8’ due to interaction
of other particles, the second represents the damping term and third terms is random
force term.

The classicalmolecular dynamics simulation is used for the generation of non-equilibrium
ensembles and for the analysis of dynamics events like viscosity, diffusion processes,
dynamics of defects in crystal etc. The Molecular Dynamics simulations technique can
be applied in large area of research like structural and dynamical properties including
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biomolecules like protein, amino-acids; to study about phase transition behaviors; to es-
timate transport coefficients; to calculate free energy of solvation, protein-ligand binding
energy and so on (Rapaport, 2004).

In molecular dynamics simulation, first we prepare a sample: we select a model system
consisting of N-particles and we solve Newton’s equations of motion to equilibrate
the system. After then, we perform the actual measurement. The overall process of
molecular dynamics simulation can be divided into following four steps (Frenkel &
Smit, 2002):

• Modeling the physical system

• Initialization

• Force Calculation

• Integrating Equation of motion

3.5.1 Modeling of the System

The first step of molecular dynamics simulations is the preparation of a model of
the system under study. The results obtained from the simulations also depends on
modeling of system. To construct model for simulations, we specify the molecules
under study in terms of atomic masses, charges, van der Waals radii, well depth of
energies, spring constant, force field etc.. In order to describe the different interactions
between atoms/molecules, we define functional form of empirical potential to constitute
force fields. The forces are evaluated from the negative gradient of the potentials; and
the accuracy of simulations also depends upon the selection of force field parameters.
The most popular force fields for bimolecular simulations are GROMOS96, OPLS-
AA, CHARM and AMBER with reasonable differences in specification and resulting
parameters (Oostenbrink et al., 2004; Jorgensen et al., 1996; Brooks et al., 2009; Wang
et al., 2004).

In classical force fields, the potential functions are derived from empirically to de-
scribe atomic interaction in which atoms are treated as spherically symmetric particles
connected through covalent bonds forming molecules. Each atom experiences a force
resulting from its pairwise interaction with the rest atoms of the system. The total poten-
tial +total which is the sum of bonded and non-bonded interactions given by (Jorgensen
et al., 1983; MacKerell Jr et al., 1998; Thapa & Adhikari, 2013).

+total = +bonded ++non-bonded (3.25)

The bonded interactions includes bond stretching potential (+bond), bond angle poten-
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tial (+angle), proper dihedral potential (+dihed) and improper dihedral potential (+impr).
Similarly, the non-bonded terms is sum of van der Waals potential (+vdW) and Coulomb
potential (+Coulomb). So,

+bonded = +bond ++angle ++dihed ++impr

and +non-bonded = +vdW ++Coulomb

Out of the bonded interactions, bond stretching potential (+bond), bond angle potential
(+angle) and improper dihedral potential (+impr) are harmonic potentials but the proper
dihedral potential (+dihed) (Lindahl et al., 2010).

3.5.1.1 Bonded Interactions

The bonded interactions include the contributions of bond stretching, bond angle and
proper as well as improper dihedral potentials (Lindahl et al., 2010). The different
bonded potentials are presented in below.

3.5.1.2 Bond Stretching Potential

The bond stretching potential between two bonded atoms G and H is harmonic and defined
as

+bond(AGH) =
1
2
:bondGH (AGH − 1GH)2 (3.26)

where :bondGH , AGH and 1GH are force constant for bond stretching potential, distance between
the two atoms and equilibrium bond length respectively. Figure shows the bond between
G and H atoms.

Figure 10: Schematic diagram to represent bond stretching between two atoms separated by a distance
AGH .

3.5.1.3 Bond Angle Potential

The bond angle vibration of three atoms G− H− I is also a harmonic potential and defined
as

+angle(\GHI) =
1
2
:\GHI (\GHI − \0

GHI)2 (3.27)
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where :\GHI, \GHI and \0
GHI are the force constant for bond angle potential, bond angle and

equilibrium bond angle respectively. Figure shows the bond angle vibration between G,
H and I atoms.

Figure 11: Schematic diagram to represent bond angle vibration between three atoms G − H − I.

3.5.1.4 Improper Dihedrals

The improper dihedral angle b is defined as the angle between planes (F, G, H) and
(G, H, I) as shown in the schematic diagram below.

Figure 12: Schematic diagram of improper dihedral.

The simplest improper dihedral potential is harmonic potential and defined as

+impr(bFGHI) =
1
2
:
b
FGHI (bFGHI − b0)2 (3.28)

In this equation, :bFGHI, bFGHI and b0 represent the force constant for improper potential,
improper dihedral and equilibrium improper dihedral angles respectively.

3.5.1.5 Proper Dihedrals

According to the IUPAC/IUB convention, the proper dihedral angle is the angle between
the planes FGH and GHI as shown in schematic diagram below.
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Figure 13: Schematic diagram for proper dihedral.

The potential due to proper dihedral is periodic and defined as

+dihed(qFGHI) = :q (1 + cos(=q − qB)) (3.29)

In above equation, q represents the dihedral angle.

3.5.1.6 Non-bonded Interactions

The non-bonded interactions are in general sum of two contributions: Electrostatic or
Coulomb and van der Waals interactions.

3.5.1.7 Coulomb Potential

The electrostatic interaction between two point charges @8 and @ 9 as shown in figure is
defined in terms of Coulomb potential as (Phillips et al., 2005)

Figure 14: Coulomb interaction.

+Coulomb =
@8@ 9

4cnAn0A8 9
(3.30)

In this Equation (3.30), n0, nr and A8 9 represent the permittivity of free space, dielectric
constant or relative permittivity of the medium and distance between the charges respec-
tively. If atoms/molecules are not ionized, they are not charged. But due to unequal
distributions of charges in the atoms/molecules, partial charges arises; the partial charges
contribute to the electrostatic interaction (Thapa & Adhikari, 2013). The figure shows
the variation of Coulomb potential (Poudyal & Adhikari, 2014).
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Figure 15: Variation of Coulomb Potential.

3.5.1.8 Lennard-Jones (L-J) Potential

Another non-bonded, pairwise potential suitable for many areas of condensed matter
physics is Lennard-Jones (L-J) potential. Such potential includes the strongly repulsive
term due to overlapping of electronic cloud at short distance and attractive term caused
by dipole-dipole interaction for large distance. The L-J potential between two atoms
separated at a distance r is given by (Leach, 2001; Ercolessi, 1997)

qLJ(A) = 4n
[(f
A

)12
−

(f
A

)6
]

(3.31)

In aboveEquation 3.31, the terms n andf stand for strength of the interaction and distance
at which potential becomes minimum respectively. The variation of L-J potential is
shown in figure given below (Thapa & Adhikari, 2013).
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Figure 16: Variation of Lennard - Jones potential with distance between atoms.

3.5.1.9 Potential Box and Periodic Boundary Conditions(PBC)

Construction of simulation box is another important part of modeling of a system. In
general simulation box is taken to be cubic which contains all molecules of the system
under study. In general, simulations has been carried out taking having small number of
molecules i.e., 10 ≤ # ≤ 10000. With small system, we encounter a problem that the
fraction of molecules lie on the surface to within volume of the simulation box is large
known as surface effect (Reed & Flurchick, 1996; Allen & Tildesley, 1987). Surface
effect is arised due to the reason that the molecules on the surface of simulation box
experience different forces from other molecules lie within volume. Such problem plays
important role for relatively small system. The problem of surface effect can be removed
by introducing the periodic boundary condition (PBC) (Allen & Tildesley, 1987). When
we use the concept of PBC, the box enclosing the molecules is replicated to infinity
by rigid translation in all directions as shown in Figure 17. During the simulation if a
particle moves in original box, its periodic images in each of neighbouring boxes move
in exactly the same way that the number density in central box is conserved.

Although, the PBC virtually solves the surface effect problem, finite size effect still
present (Reed & Flurchick, 1996; De Souza & Ornstein, 1997). Also, the number
of interacting pairs goes enormously large with PBC. As a result, we must handle
infinite number of turns to estimate pairwise potential due to short range non-bonded
interaction. The addition of new complexity can be reduced by introducing the concept
of the minimum image criterion. According to which, among all possible images of a

32



Figure 17: Schematic diagram of periodic boundary condition.

particle, only the closest are selected for interaction (Lindahl et al., 2010). Figure 18
illustrates the schematic diagram of minimum image convention. Here, we present the
potential due to interaction of particle A with others obeying minimum image criterion.

3.5.2 Initialization

In order to start simulation, we should assign initial positions and velocities of all
molecules in the system. The molecule positions should be chosen compatible with the
structure that is being aimed to simulate. In any event, the molecules should not be
positioned at positions that result in an appreciable overlap of the atomic or molecular
cores. This is achieved by initially placing the molecules on a cubic lattice. The density
and initial temperature are chosen such that the simple cubic lattice is mechanically
unstable and melts rapidly. At first each molecule is put on its lattice site and for every
molecule the value of each velocity component is attributed from a uniform distribution
which is not Maxwellian. Then we shift all velocities in such a way that the total
momentum is zero. In thermal equilibrium (Frenkel & Smit, 2002)〈

1
2
<E2

U

〉
=
:B)

2

or 〈E2
U〉 =

:B)

<
(3.32)
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Figure 18: Schematic diagram for use of cutoff and minimum image criterion.

In the equation (3.32), < is the mass of molecule, EU is the U component of velocity, :B
is the Boltzmann constant and ) is the temperature.

3.5.3 Force Calculation

Themajor challenging andmost time consuming part ofMDsimulations is determination
of force acting on each particles (Frenkel & Smit, 2002). In MD simulations, we model
our system of interest through pairwise additive interactions: so we take the contribution
to the force on 8th particle due to all its neighbours. If we account all such interactions,
# (# −1)/2 pair interactions must be evaluated to get force on 8th particle for # particles
system. In this case, the required time scale of force calculations is order of #2. In order
to reduce the simulations time, some tricks are implemented during force calculation.
For this, we use the concept of cut off distance i. e., we cut off the interaction between two
particles if the distance between them exceeds some values known as cut off distance Ac
(Rapaport, 2004). The value of cut off for both coulomb and van der Waals interactions
must be less than half the size of simulation box. Such technique reduces the time scale
to order of # . The use of spherical cut off with minimum image convention is shown in
Figure 18.

3.5.3.1 Time Integration Algorithm

InMD study, the desired properties of simulated system have been drawn from trajectory
analysis followed by the particles in phase space during simulation. Thus, we first
generate the trajectory followed by system after solving the equation motion. The time
integration algorithm based on finite difference methods is used to integrate equation of
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motion (Allen & Tildesley, 1987; Frenkel & Smit, 2002). By knowing the positions and
their time derivatives at any instant of time (C), we can calculate the same quantities at
latter time C + ΔC. The finite difference methods are usually based on Taylor expansion
truncated at some terms. Due to truncation, some errors are introduced known as
truncation errors which are intrinsic to algorithm. Another type of error is introduced
due to finite number of digits used in computer arithmetic called round off error. Here
we discuss the frequently used algorithms in computer simulations which are:

Verlet Algorithm

It is derived from the Taylor expansion of the coordinate of a particle at (C + ΔC) and
(C − ΔC) as given below.

r (C + ΔC) = r (C) + v(C)ΔC + L(C)
2<

ΔC2 + ΔC
3

3!
33A

3C3
+ \ (ΔC4) (3.33)

r (C − ΔC) = r (C) − v(C)ΔC + L(C)
2<

ΔC2 − ΔC
3

3!
33A

3C3
+ \ (ΔC4) (3.34)

Now by adding equations (3.33) and (3.34), we get

r (C + ΔC) + r (C − ΔC) = 2r (C) + L(C)
<

ΔC2 + \ (ΔC4)

or r (C + ΔC) = 2r (C) − r (C − ΔC) + L(C)
<

ΔC2 + \ (ΔC4) (3.35)

From Equation (3.35) it is seen that an error of order ΔC4 with time ΔC s introduced when
we measure position in Molecular Dynamics. From Equation (3.35), it is also seen that
Verlet algorithm does not use the velocity to calculate the new position. However, we can
calculate the velocity from the knowledge of trajectory. For this, subtract Equation (3.34)
from Equation (3.33) as

r (C + ΔC) − r (C − ΔC) = 2v(C)ΔC + \ (ΔC3)

or v(C) = r (C + ΔC) − r (C − ΔC)
2ΔC

− \ (ΔC2) (3.36)

The Equation (3.36) is only accurate to ΔC2. However, it is possible to calculate velocity
more accurately and hence kinetic energy using other Verlet-like algorithm. Also from
Equation (3.36) it is seen that Verlet algorithm is time reversible.

3.5.3.2 Leap-Frog Algorithm

Out of several Verlet equivalent algorithms, one is Leap-frog algorithm (Gunsteren &
Berendsen, 1988). This algorithm evaluates velocities at half-integer time steps and
uses these velocities to compute the new positions. To derive Leap-frog algorithm from
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Verlet algorithm, we start by defining the velocity at half-integer time steps as follows.

v

(
C − ΔC

2

)
=

r (C) − r (C − ΔC)
ΔC

(3.37)

and v

(
C + ΔC

2

)
=

r (C + ΔC) − r (C)
ΔC

(3.38)

From Equations (3.37) and (3.38) , we can obtain the expression for new position from
old position and velocity as,

r (C + ΔC) = r (C) + v
(
C + ΔC

2

)
ΔC (3.39)

Also using Verlet algorithm, the expression for the velocity based on the old velocity
can be obtained. Using Taylor expansion on velocity about t we get,

v

(
C + ΔC

2

)
= v(C) + L(C)

2<
ΔC (3.40)

and v

(
C − ΔC

2

)
= v(C) − L(C)

2<
ΔC (3.41)

Subtracting equation (3.41) from (3.40), we get

v

(
C + ΔC

2

)
= v

(
C − ΔC

2

)
+ L(C)

<
ΔC (3.42)

Equation (3.42) represents the expression for new velocity based on old velocity. As
the Leap-frog algorithm is derived from the Verlet algorithm, it gives rise to identical
trajectories. However, the velocities are not defined at the same time as the positions.
As a consequence, kinetic and potential energy are also not defined at the same time,
and hence total energy cannot be computed directly in the Leap-frog algorithm. Figure
below gives a schematic representation of the algorithm.

Figure 19: Schematic diagram of the Leap-Frog integration.
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3.5.3.3 Constraint Dynamics

In molecular system, the particle also interacts through intra-molecular interactions
which are accounted due to change in bond, bond angle etc. The simulation time step
depends upon high frequencies vibrations (Leach, 2001). Due to the high frequency
bond vibrations, the time step becomes extremely small which introduces complexity
for long simulations. Such problem can be handled using the concept of constraint
dynamics which enables to constraint some internal degree of freedom of the molecular
systems (Allen & Tildesley, 1987). Some popular constraint algorithms are SHAKE,
LINCS etc. (Ryckaert et al., 1977; Hess et al., 1997). SHAKE algorithm is an iterative
method in which constraint coordinate is set from unconstrained (Lindahl et al., 2010).
On the other hand, LINCS algorithm is not iterative method which resets the correct
values of bonds in two steps.

3.5.4 Statistical Ensembles in Molecular Dynamics

Molecular dynamical simulations is a statistical approach. The information about differ-
ent properties are generated at microscopic level from trajectory followed by the system
in phase space and relate with macroscopic properties using the concept of statistical
mechanics (Allen & Tildesley, 1987; Frenkel & Smit, 2002). For example, the macro-
scopic property diffusion coefficient is estimated from microscopic properties mean
square displacement (MSD) of particles of the system. So, here we briefly discuss the
concept of statistical mechanics. Suppose a system defined by thermodynamics param-
eters: number of particles (#), volume of system (+) and temperature of the system
()). The micro states of the system at any instant is defined by 3# position and 3#
momenta coordinates. So, 6#-dimensional space is required to specify the micro states
of the system known as phase space and the point in the space with coordinates (@8, ?8)
is representative point of the system. The time evolution of the system is governed by
equation of motion. If � be the instantaneous value of some observable property, then
the macroscopic property that observed experimentally �obs is given by the time average
as (Tuckerman, 2010)

�obs = 〈�〉time = lim
Cobs→∞

1
Cobs

∫ Cobs

0
�(C) 3C (3.43)

We can only taken the average for long finite time but the integration cannot extend
to infinite time; exactly same thing happens in MD simulations. During computer
simulations, large number of simulations steps (=step) defined as =step = Cobs/XC, where
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XC is the time step taken. So, the time average may be defined as

�obs = 〈�〉time =
1
Cobs

Cobs∑
1
�(C) (3.44)

In order to get good results from the simulations, the system must covered the sufficient
area in phase space. Also, the time average for systems having large number ofmolecules
is not suitable in statistical mechanics. Instead of time average, the concept of ensemble
average is used (McQuarrie, 2000). Ensemble is a collection of large number of identical
systems having same macro states. Some ensembles which are used in MD simulations
are:

1. Microcanonical (#+�) ensemble: Collection of infinite number of isolated sys-
tems having equal number of particles (#) in equal volume (+) with equal energy
(�) of each system. The micro-canonical partition function is defined as

&#+� =
∑

X(� (?, @) − �) (3.45)

2. Canonical (#+)) ensemble: Collection of infinite number of closed systems
having equal number of particles (#) in equal volume (+) at equal temperature
()). The partition function for canonical ensemble is defined as

&#+) =
1
ℎ3#

∫
4−V� (?,@) 3? 3@ (3.46)

3. Grand-canonical (`+)) ensemble: Collection of infinite number of open systems
having fixed value of chemical potential (`) in equal volume (+) at equal tem-
perature ()). The partition function for grand-canonical ensemble is defined as

/`+) =
∑
#

I#`/:B)&#+) (3.47)

4. Isothermal-isobaric (#%)) ensemble: Collection of infinite number of closed
systems having fixed number of particles (#) with equal pressure (%) and temper-
ature ()). The partition function for isothermal-isobaric ensemble is defined as

/#%) =
∑
+

4(−%+/:B))&#+) (3.48)
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The ensemble average of observable properties is related with time average by ergodic
hypothesis. According this hypothesis, the time average of any observable say �(?, @)
is equal to its ensemble average i. e.,

〈�(?, @)〉time = 〈�(?, @)〉ensemble (3.49)

3.5.5 Temperature and Pressure Control

Although MD has been already considered as a tool to study many phenomenon like
dynamical properties of liquid, such technique cannot be used to study the transport
properties taking #+� ensemble (Berendsen et al., 1984). Also, to get experimental
environments as well as study the effect of temperature on many properties of interest,
we must performed simulations keeping constant temperature and pressure. The algo-
rithms used to control temperature and pressure are known as thermostat and barostat
respectively.

During MD simulations, the instantaneous temperature of a system is evaluated through
average kinetic energy as (Leach, 2001)

〈K〉 = 3
2
#:B)

where,  and :B are the instantaneous kinetic energy of the system and Boltzmann
constant respectively. Then, the instantaneous value temperature ) (C) at any instant of
time C is given as

) (C) = 2 
3#:B

(3.50)

From the Equation (3.50), it is seen that the temperature can be changed by scaling
velocities. If velocities are multiplied by a factor _, then change in temperature is

Δ) =
1
2

∑
8

2<8 (_E8)2
3#:B

− 1
2

∑
8

2<8E2
8

3#:B

or Δ) =
1
2

∑
8

2<8E2
8

3#:B
(_2 − 1)

From equation (3.50), we get

Δ) = ) (C) (_2 − 1)

or _ =

√
)new
) (C) (3.51)
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Thus, we can control the temperature of a system under simulations by multiplying the
velocities at each step of time by a factor

√
)req/)curr; where )curr is the instantaneous

temperature of the system evaluated from kinetic energy and )req target temperature.
Such method to control temperature by scaling velocities is velocity rescaling thermo-
stat (Bussi et al., 2007). Furthermore, we can control the temperature of the system
through coupling it to external bath at fixed temperature which behaves as the source of
thermal energy to the system. Such method is known as Berendsen temperature cou-
pling (Berendsen et al., 1984). The bath either can supply heat to the system or remove
from the system such that in each step , the rate of change of temperature is proportional
the difference in temperature between the system and bath i. e.,

3) (C)
3C

=
1
g
()bath − ) (C)) (3.52)

Such equation indicates that the deviation of temperature decays in exponential ways
towards desired temperature. In each successive time step, the temperature changes as

Δ) =
XC

g
()bath − ) (C)) (3.53)

And the scaling factor for velocity is

_2 = 1 + XC
g

(
)bath
) (C) − 1

)
(3.54)

Similarly, we can control the pressure of a system by scaling volume of the system. Alter-
natively, pressure can be controlled by using a concept of pressure bath like temperature
bath in case of thermostat. Such concept was introduced by Berendsen (Berendsen et
al., 1984). Berendsen barostat also gives first order kinetic decay of pressure to obtain
reference temperature. According to the Berendsen barostat, the rate of change of pres-
sure is proportional the difference in pressure between the system and pressure bath i. e.,

3%(C)
3C

=
1
g?
(%bath − %(C)) (3.55)

3.5.6 Software Packages

There many software available to perform MD simulations including GROMACS,
NAMD, LAMMPS, CHARM with distinct features. The present work has been car-
ried out using GROningen MAchine for Chemical Simulation (GROMACS) package
(Berendsen et al., 1995; David et al., 2005). The main features of the package are
user-friendly, high compatibility, versatile, open source etc.. We also used other soft-
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wares including Visual molecular dynamics (VMD) (Humphrey et al., 1996), Xmgrace
(Turner, 2005), NAMD (Phillips et al., 2005) and so on.

3.5.7 Systems Setup

In this work, we have performed MD simulations to study the transport and thermo-
dynamics properties of amoxicillin. We have studied the diffusion phenomenon and
calculate the diffusion coefficients of amoxicillin in water. We have also analysed the
effect of system size and temperature on the estimated values of diffusion coefficient.
Furthermore, we have estimate the free energy of solvation of amoxicillin in two solvent
environments: water and ethanol. To study such properties, we considered following
systems.

3.5.7.1 Systems to Study Structural and Transport Properties:

In order to study the structural and transport properties, a system of binary mixture of
2 amoxicillin and 2160 water molecules (System-I) was set up under periodic boundary
conditions in cubic simulations box of size 4.05 nm. Figure 20 represents molecular
system of amoxicillin in water.
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Figure 20: VMD snapshot of the system under study ( amoxicillin in water).

Optimized Potentials for Liquid Simulations-all atom (OPLS-AA) (Jorgensen et al.,
1996) was used for modeling amoxicillin molecule; and extended simple point charge
(SPC/E) (Berendsen et al., 1987) was used. For SPC/E water model, the intra-molecular
interactions have been accounted using harmonic potential and the values of parameters
for intra-molecular potential i.e., force constant for inter-atomic bond between oxygen
and hydrogen atoms ( OH), equilibrium bond distance between oxygen and hydrogen
atom (1OH), force constant for bond angle potential ( HOH) and equilibrium bond angle
(\0) are 3.45 × 105 kJ mol−1 nm−2, 0.1 nm, 3.45 × 102 kJ mol−1 nm−2 and 109.47◦

respectively (Thapa & Adhikari, 2013).

During the modeling of the system, we considered both non-bonded: Lennard-Jones
and Coulomb interactions and the total intermolecular potential due to the non-bonded
interaction is given by

* (A8 9 ) = 4Y

[(
f

A8 9

)12
−

(
f

A8 9

)6
]
+

@8@ 9

4cn<A8 9
(3.56)

where Aij, @i and @j are the distance between the 8th and 9 th atoms, permittivity of the
medium, charge of 8th and 9 th atoms respectively; f and Y are the distance at which LJ
interaction becomes zero and depth of the well due to LJ interaction respectively. For
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the SPC/E model, the hydrogen and oxygen atom carries partial charges of +0.42384 and
−0.84764 respectively, where 4 is charge of electron. Also, the non-bonded parameters
the distance at which LJ interaction is zero (fOW-OW) and well depth (YOW-OW) for
oxygen atom of SPC/E water model are 0.3165 nm and 78.2 :B respectively. Also,
the combination rules to determine the non-bonded LJ parameters between two distinct
atoms for OPLS-AA force field parameters are Lindahl et al. (2010).

fUV =
(
fUU × fVV

)1/2 (3.57)

YUV =
(
YUU × YVV

)1/2 (3.58)

In addition, other two systems in different sizes of simulation box: 2 amoxicillin in 4071
water molecules in cubic box of size 4.98 nm (System-I(a)) and 2 amoxicillin in 6504
water molecules in cubic box of size 5.82 nm (System-I(b)) were set up to study the effect
of system size on diffusion coefficient and estimate its size independent value. Moreover,
the solvent environment i.e. viscosity of solvent also has significant role on diffusion
phenomenon (Skyner et al., 2015). In this context, other systemwas set up taking ethanol
as solvent. The system consists of binary mixture of 2 amoxicillin molecules and 2168
ethanol molecules in cubic simulation box of size 5.96 nm (System-I(c)). OPLS-AA
force field was used during modeling of ethanol.

3.5.7.2 Systems to Estimate Free Energy of Solvation:

Besides the study of transport properties, free energy of solvation of amoxicillin was
estimated in two different solvent environments: water and ethanol. In order to estimate
the free energy of solvation of amoxicillin, simulations were carried out at 310 K under
PBC taking following systems: one amoxicillin in 1020 water molecules (System II) and
one amoxicillin in 340 ethanol molecules (System III(a)). We used two different water
models: SPC/E and TIP3P (Berendsen et al., 1987; Jorgensen et al., 1983). Amoxicillin
and ethanol molecules were modeled using OPLS-AA force field parameters.

At the end of this chapter, we have summarized different steps followed during simula-
tions in schematic diagram. Figure represents the flow chart showing different steps of
MD simulation using GROMACS software package.
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Figure 21: Flow chart showing different steps of molecular dynamics simulation using GROMACS
software package.
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CHAPTER 4

4. RESULTS AND DISCUSSION

4.1 General Consideration

In this chapter, we have discussed the main findings of the present work. The structural
analysis of the System-I has been performed by estimating the RDF between solute-
solvent and solvent-solvent at different temperatures in the first section. The study about
transport properties has been presented after the structural analysis. In this section,
the estimation of self diffusion coefficient of amoxicillin and water is followed by their
binary diffusion coefficient; and effect of temperature on diffusion coefficient have
been presented. After this, the effect of size of system has been studied; and the size
independent value of diffusion coefficient, viscosity coefficient of solvent as well as
solution have presented. Finally, we have focused our attention to estimate the free
energy of solvation of amoxicillin in two different solvent environments (i. e., water and
ethanol) at 310 K temperature using thermodynamic integration (TI) and free energy
perturbation (FEP) based method (Lindahl et al., 2010; Bennett, 1976).

At first, we would discuss different steps of MD simulations before analysis of results.
After setting up the systems, we first performed the following three runs: Energy mini-
mization (EM), Equilibration and Production for each system at each temperature. Then,
the different parameters required to energy minimization, equilibration and production
runs with Molecular Dynamics Parameters (MDP) files have been presented for System-
I. To remove the van der Waal’s bad contact, we first carried out energy minimization
run using Steepest-descent method (David et al., 2005). The different parameters used
during energy minimization run are presented in the Molecular Dynamics Parameters
(MDP) file (see Appendix A.1). The energyminimization run was carried out taking 150
kJmol−1nm−1 and 1 nm cut off parameter for both LJ and Coulomb interactions. PME
was used to handle long range interaction. After energy minimization run, the system
attains the minimum potential energy state (Koirala et al., 2019; Moktan et al., 2012).
After energy minimization run, we have plotted a graph of potential energy versus time
which is shown in Figure 22.
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Figure 22: Plot of potential energy of the system after energy minimization.

Many dynamical and thermodynamic properties including diffusion, viscosity, free en-
ergy depend upon different parameters like temperature, pressure, density etc. of the
system under study (Sharma & Adhikari, 2014). In this regard, each system under study
must be in the state of thermodynamic equilibrium; and equilibration run brings the
state of thermodynamic equilibrium (Gallo et al., 2009; Koirala, Thapa, et al., 2021). In
addition, it is also interesting to study the effect of temperature on transport properties.
For this, we performed equilibration run of the System-I at five different temperatures:
298 K, 303 K, 305 K, 310 K and 313 K under isobaric-isothermal (NPT) ensemble. The
MDP parameters used during equilibration run of the system-I at 298 K temperature
are presented in MDP files (see Appendix A.2). Each equilibration run was propagated
under PBC at 1 atm for each above mentioned five different temperatures. We first
assigned initial velocities for each particle using Maxwell-Boltzmann distribution (An-
dersen, 1980; Frenkel & Smit, 2002). All bonds were subjected to constraint using
SHAKE algorithms during equilibration run (Ryckaert et al., 1977). We also considered
isothermal compressibility of 4.6 × 10−5 bar−1. For both short range LJ and Coulomb
interactions, the cut off parameter of 1 nm was chosen; and long range Coulomb inter-
action was handled using Particle Mesh Ewald (PME) method (Darden et al., 1993). In
order to control the temperature of the system, we used velocity rescaling thermostat
with coupling time 0.01 ps; and pressure was controlled by Berendsen barostat with
0.8 ps time of coupling (Bussi et al., 2007; Berendsen et al., 1984). During simula-
tions, the new positions and velocities of each particles are determined after solving
equations of motion from old sets. The equations of motion were solved using Leap-
frog algorithms (Gunsteren & Berendsen, 1988). At each temperature, we performed
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equilibration run for 200 ns taking 0.002 ps time step.

After equilibration run, the temperature and density profiles of the equilibrated system
were plotted at each temperature; and also we compared the density of the equilibrated
system at each temperature with previously reported experimental values. Figures 23
and 24 show the temperature and density profiles of the system under study at 305 K
temperature after equilibration run.
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Figure 23: Temperature profile of the system at 305 K temperature after 200 ns equilibration run.
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Figure 24: Density profile of the system at 305 K temperature after 200 ns equilibration run.

Table 1 shows the temperature and density profile of the system after 200 ns equilibration
run at different temperature with previously reported experimental values of density of
water. From the Table, it is seen that the values of simulated density of the system are in
closed agreement within 0.5 % with previously reported experimental values of water.
This is because our system has large number of water molecules in comparison to 2
amoxicillin molecules.

Table 1: Density and temperature profiles of our system at five different temperatures along with
experimental values after 200 ns equilibration run.

S.N ) )sim dsystem dwater(Baysinger, 2015)
(K) (K) (kg/m3) (kg/m3)

1 298 298.00 ± 0.01 997.17 ± 0.01 997.05
2 303 303.00 ± 0.01 994.47 ± 0.02 995.65
3 305 305.00 ± 0.03 993.32 ± 0.03 995.03
4 310 310.00 ± 0.01 990.48 ± 0.03 993.33
5 313 314.00 ± 0.01 988.70 ± 0.02 992.22

In addition, we have analyzed the energy profile of the equilibrated systemwith individual
contribution of different interactions. During simulations, we used cut off parameter
for both LJ and Coulomb interaction. So, here we present only short range LJ and
Coulomb interactions. We plot the contribution of different energies to total energy of
the system after 200 ns equilibration run. Although, the total potential energy is the
sum of bond angle, dihedral, LJ and Coulomb interactions, the contribution of bonded
bond angle and dihedral is small in comparision to other. The contribution of LJ is
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positive and Coulomb is negative; and the total potential energy is also negative due
to large contribution of Coulomb. Furthermore, the kinetic energy also has positive
contribution. The total energy is the sum of kinetic energy and total potential energy
which has negative value. This indicates that Coulomb has dominant role to stabilize
and bound the system under study (Pokharel et al., 2016). Figure 25 shows the energy
profile of our equilibrated system at 305 K temperature.
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Figure 25: Energy profile of the system at 305 K temperature after 200 ns equilibration run.

In Table 2, we present the contributions of LJ, Coulomb, and kinetic energy to total
energy of the system after 200 ns equilibration at different temperatures. From the
Table, it is observed that potential due to Coulomb increases with increase in temperature
(less negative value with increase in temperature), however, LJ potential decreases with
the increase in temperature. The Coulomb has dominating role over LJ interaction,
and hence the total potential energy also increases with the increase in temperature.
Moreover, the kinetic energy of the system follows increasing trends with temperature.
Finally, the total energy, the sum of kinetic and total potential energies of the system,
follow the same trend of increasing with temperature.
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Table 2: Energy profile of the system at five different temperatures after 200 ns equilibration run.

) LJ Coulomb Potential Kinetic Total
(K) (kJ/ mol) (kJ/mol) (kJ/mol) (kJ/ mol) (kJ/mol)
298 19867.4 ± 1.0 -123829.0 ± 2.5 -102464.0 ± 1.6 16267.4 ± 0.1 -86196.5 ± 1.5
303 19602.3 ± 0.5 -122897.0 ± 1.2 -101784.0 ± 0.9 16540.2 ± 0.2 -85243.4 ± 1.0
305 19485.1 ± 3.6 -122509.0 ± 7.1 -101516.0 ± 1.2 16649.6 ± 0.1 -84866.6 ± 1.2
310 19236.1 ± 3.5 -121609.0 ± 3.5 -100844.0 ± 0.4 16922.6 ± 0.2 -83921.1± 0.4
313 19087.6 ± 2.7 -121073.0 ± 5.0 -100445.0 ± 1.0 17086.1 ± 0.2 -83359.3 ± 1.1

Finally, the equilibrated system at each temperature was propagated to the production
run under isothermal-isochoric (NVT) ensemble. In the beginning of production run,
the initial position and velocities of each particle were assigned from the final step of the
equilibration run; and Leap-frog algorithm was used to generate trajectory after solving
equations of motion. During each production run, pressure coupling was turned off and
other parameters were chosen same as in equilibration run. Each production was carried
out with 0.002 ps time step for the time of 200 ns. During production run, taking System-
I at 298 K temperature, the parameters considered in during production run are presented
in MDP file (see Appendix A.3). After the production runs at above mentioned five
different temperatures, we have analyzed the trajectory to estimate different properties
of our interest including structural and transport.

4.2 Structural Analysis

In this section, we have studied about structural properties of System-I using the concept
of RDF (Allen&Tildesley, 1987). For this, at first, the RDF between solvent-solvent and
after then solvent-solute of System-I at five different temperatures: 298 K, 303 K, 305 K,
310 K and 313 K have been plotted from the trajectory obtained from simulations. From
the RDF plot, we can get idea about the distribution of molecules around a reference
molecule. For liquid, RDF shows an oscillation upto certain distance and becomes
unity (Hansen & McDonald, 2013). The region from A = 0 up to which the RDF
becomes zero is known as excluded region (ER). In order to find the structural properties
of the system under study, we have calculated the RDF of oxygen of water and oxygen
of water 6OW-OW(A), oxygen of water and sulphur of amoxicillin gOW-S(r) and oxygen of
water and nitrogen of amoxicillin 6OW-N(A) at different temperatures. The van der Waals
radius (A1/6 f) for OW-OW, OW-S and OW-N pairs have also been estimated.

Figure 26 shows the RDF between oxygen atoms of water molecules at temperatures:
298 K, 303 K, 305 K, 310 K and 313 K. From the Figure 26, we have noticed that
the graph has oscillatory nature upto three peaks and becomes fairly straight line with
value unity as expected. At A → 0, the RDF is zero due to strong repulsive force
between molecules contributed by Coulomb interaction along with A−12 term of LJ
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interaction. There is certain region from r = 0 upto which we observed zero value of
RDF i.e., ER region. Three peaks have been noted beyond region of zero probability
region. After third peak, the RDF becomes straight with value of unity which means
no correlation occurs between molecules in this region (Dahal & Adhikari, 2012). The
position of first peak indicates the most favorable position of water molecules from
reference water molecule. Furthermore, second and third peak positions indicate other
favorable positions. Also, the estimated values of the excluded region (ER), first peak
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Figure 26: Radial distribution function (RDF) between oxygen atoms of water molecule at five different
temperatures.

position (FPP), first peak value (FPV), second peak position (SPP), second peak value
(SPV), third peak position (TPP) and third peak value (TPV) for RDF between oxygen
atoms of water molecules (OW-OW) are extended in Table 3.

Table 3: Simulated data for the RDF between the water molecules (gOW-OW(r)) at different temperatures.

) (K) ER (nm) FPP (nm) FPV SPP (nm) SPV TPP (nm) TPV
298 0.248 0.275 3.135 0.453 1.113 0.683 1.027
303 0.248 0.274 3.063 0.454 1.101 0.686 1.036
305 0.248 0.274 3.058 0.451 1.101 0.686 1.020
310 0.244 0.275 3.024 0.451 1.100 0.687 1.030
313 0.244 0.275 3.004 0.455 1.090 0.685 1.042
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Furthermore, the value of (fOW-OW) and the calculated value of van der Waals radius
(A1/6 f) for OW-OW are 0.316 nm and 0.355 nm respectively (Lindahl et al., 2010).
From Table 3, we clearly notice that value of both excluded region (ER) and first peak
position (FPP) of RDF between OW-OW are smaller in comparison to corresponding
van der Waals radius. This observation signifies that only van der Waals interaction
can not contribute to the structure stability i.e., other potentials including Coulomb as
well as many body effects along with van der Waals potential contribute to the structural
stability (Poudyal & Adhikari, 2014; Khanal, Koirala, et al., 2021).

Similarly, Figure 27 shows the radial distribution function of oxygen atom of water
molecule and sulphur atom of amoxicillin molecule at different temperatures. The value
of (f$,−() is 0.338 nm and the calculated value of van der Walls radius (A1/6f) for
OW-S is 0.378 nm. The excluded region (ER), first peak position (FPP), first peak value
(FPV), second peak position (SPP), second peak value (SPV), third peak position (TPP)
and third peak value (TPV) for OW-S are presented in Table 4.
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Figure 27: Simulated data for theRDFbetween the oxygen ofwater and sulphur of amoxicillin (6$,−( (A))
at five different temperatures.
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Table 4: Simulated data for the RDF between the oxygen of water and sulphur of amoxicillin (6$,−( (A))
at different temperatures.

) (K) ER (nm) FPP (nm) FPV SPP (nm) SPV TPP (nm) TPV
298 0.241 0.275 3.027 0.451 1.117 0.682 1.038
303 0.241 0.275 3.080 0.452 1.006 0.686 1.040
305 0.241 0.274 3.109 0.452 1.001 0.686 1.037
310 0.241 0.274 3.140 0.452 1.095 0.687 1.042
313 0.245 0.275 3.007 0.455 1.083 0.684 1.032

Figure 28 is the radial distribution function of oxygen atom of water molecule and
nitrogen atom of amoxicillin molecule at five different temperatures. The value of
(f$,−# ) is 0.321 nm and the calculated value of van der Waals radius (A1/6f) for
OW-N is 0.360 nm. The excluded region (ER), first peak position (FPP), first peak value
(FPV), second peak position (SPP), second peak value (SPV), third peak position (TPP)
and third peak value (TPV) for OW-N are presented in Table 5.
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Figure 28: Simulated data for theRDFbetween the oxygen ofwater and sulphur of amoxicillin (6$,−( (A))
at five different temperatures.
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Table 5: Simulated data for the RDF 6$,−# (A) analysis between oxygen atom of water molecule and
nitrogen atom of amoxicillin molecule at five different temperatures.

) (K) ER (nm) FPP (nm) FPV SPP (nm) SPV TPP (nm) TPV
298 0.241 0.275 3.139 0.450 1.1226 0.684 1.044
303 0.242 0.274 3.085 0.451 1.110 0.685 1.040
305 0.241 0.274 3.168 0.450 1.011 0.686 1.030
310 0.242 0.274 3.025 0.451 1.090 0.686 1.028
313 0.241 0.275 3.052 0.452 1.079 0.681 1.028

From above mentioned Tables 4 and 5, it is observed that the values of excluded region
(ER) and that the first peak position (FPP) are less than corresponding van der Waals
radius (A1/6f). It indicates that the van der Waals potential as well as other potentials
contribute to the structural properties of the system.

4.3 Transport Properties

Besides the study about structural properties, we have studied the transport properties
of amoxicillin in water. In this section, we have explained the diffusion phenomenon
in terms of diffusion coefficients as well as the effect of temperature and system size
on diffusion coefficient. The self diffusion coefficients of solute and solvent of the
system under study have been estimated from the trajectory followed by the particles in
phase space using Einstein’s relation (3.8) and their binary diffusion coefficient using
Darken’s relation (3.9). In order to estimate self diffusion coefficient using Einstein’s
relation, we first plotted the MSD versus time graph for both solute and solvent at
different temperatures using trajectory from 200 ns production run. The statistics is
better in beginning region of trajectory in comparison to ending region (Pokharel et
al., 2016). For this region, we truncated the graph between mean square displacement
(MSD) versus time and then linearly fitted taking 5 ns for water and 1 ns time for
amoxicillin respectively although 200 ns production runs were performed (Sharma &
Adhikari, 2014; Bhandari & Adhikari, 2016).

At first, we have plotted MSD versus time graph in logarithmic scale. Figures 29 and 30
show the log-log plots between MSD versus time for water and amoxicillin respectively
at 303 K temperature.
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Figure 29: MSD versus time plot in logarithmic scale for water at temperature 303 K.

Figure 30: MSD versus time plot in logarithmic scale for amoxicillin at temperature 303 K.

From the plots, it is seen that the graphs are not linear in the beginning which indicates
ballistic regime (Caspi et al., 2000). This happens due to ballisticmotion of themolecules
in the beginning. After ballistic regime, the plots become straight line indicating diffusive
regime (Thapa & Adhikari, 2013). The value of self diffusion coefficient is given by
the straight portion of the graph. The diffusive regions start beyond around 40 ps and
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150 ps time for water and amoxicillin respectively. We have also studied the variation of
diffusion coefficient with time. In addition, Figure 31 represents variation of diffusion
coefficient of amoxicillin with time at 303 K.
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Figure 31: Plot of self diffusion coefficient � versus time of amoxicillin at 303K.

From the Figure, it is clearly seen that the diffusion coefficient is very high at first
indicating ballistic regime as also observe in log-log plot; and afterwards, the graph is
almost constant with time. The constant value of diffusion coefficient implies that our
system reaches at equilibrium. The value of self diffusion coefficient is given by the
straight portion of the graph (Pokharel et al., 2016).

From the above MSD versus time plots in logarithmic scale and diffusion coefficient
versus time plot, we concluded that the beginning portion of graphs taking time 1 ns and
5 ns are sufficient to estimate the diffusion coefficient although we performed 200 ns
production runs.

Now, we have discussed the estimation of self diffusion coefficients of solute and solvent
at five different temperatures: 298 K, 303 K, 305 K, 310 K and 313 K using Einstein’s
relation. For this, we have first plotted the MSD versus time graphs for both solute and
solvent at five different temperatures: 298 K, 303 K, 305 K, 310 K and 313 K; and
the data have been linearly fitted taking 5 ns and 1 ns time for water and amoxicillin
respectively. The MSD versus time graphs for water and amoxicillin at five different
temperatures: 298 K, 303 K, 305 K, 310 K and 313 K are presented in the Figures 32
and 33 respectively (Khanal & Adhikari, 2022).
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Figure 32: Variation of MSD with time for water at five different temperatures: 298 K, 303 K, 305 K,
310 K and 313 K.
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Figure 33: Variation of MSD with time for amoxicillin at five different temperatures: 298 K, 303 K,
305 K, 310 K and 313 K.

The slope of the Figures 32 and 33 provides the value of self diffusion coefficient. From
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both Figures, it has been clearly noticed that the slope of graph increases with increase in
temperature. This indicates that the self diffusion coefficient of both solute and solvent
goes increasing with temperature. This happens because the kinetic energy and hence
velocity of diffusing particles increases with increase in temperature (Mehrer, 2007;
Bhandari & Adhikari, 2016). In addition, with the increase in temperature, the density
of system decreases; and thus more space is available for random walk of diffusive
particles (Sharma & Adhikari, 2014). The estimated values of self diffusion coefficients
of solute and solvent at five different temperatures: 298 K, 303 K, 305 K, 310 K and
313 K are presented in Table 6 (Khanal & Adhikari, 2022).

Table 6: The estimated values of self diffusion coefficients of solute and solvent as well as their mutual
diffusion coefficient at five different temperatures: 298 K, 303 K, 305 K, 310 K and 313 K.

Diffusion Coefficient (×10−9 m2s−1)

Temperature (K)
Self

MutualFor amoxicillin For water
MSD MSD Ref.

298 0.30±0.05 2.49±0.02 2.30 [a] 0.30
303 0.34±0.04 2.74±0.01 2.60 [a] 0.35
305 0.35±0.03 2.85±0.01 2.80 [b] 0.36
310 0.40±0.04 3.14±0.01 – 0.41
313 0.43±0.04 3.32±0.00 3.22 [a] 0.43

Ref. [a]- (Holz et al., 2000) and [b]- (Pokharel et al., 2016)

Table 6 shows that the estimated values of self diffusion coefficient of both amoxicillin
and water increases with the increase in temperature. The reason behind increase in
the diffusion coefficient with temperature is the increase in kinetic energy and thus
velocity of each diffusive particles with increase in temperature (Pokharel et al., 2016).
Furthermore, we have compared the estimated values of self diffusion coefficient of water
with previously reported experimental values; and observed that the estimated values of
self diffusion coefficient of water are in close agreement (within 8.5 %) with previously
reported experimental values (Holz et al., 2000). Holz co-worker used H. PFG NMR
method for the determination of diffusion coefficient.

In addition, the mutual diffusion coefficient of the System-I has been calculated using
Darken’s relation (Darken, 1948). The calculated values are presented in Table 6.
The values of mutual diffusion coefficient also increase with increase in temperature.
In addition, the calculated values of mutual diffusion coefficient are almost equal to
the corresponding self diffusion coefficient of amoxicillin. This happens due to low
concentration of amoxicillin in the our system.
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4.3.1 Temperature Dependence of Diffusion Coefficient

The temperature dependence of diffusion coefficient (shown in Table 6) suggests that
diffusion is a phenomenon that is thermally activated (Leach, 2001). It is generally
observed that diffusion coefficient follows Arrhenius equation (Mehrer, 2007):

� = �0 exp
(
− �a
#A:B)

)
In this equation, �0, �a, #A, :B and ) are pre-exponential factor, activation energy,
Avogadro number (6.02 × 1023 mol−1), Boltzmann constant (1.38 × 10−23 J/K) and
absolute temperature respectively (Mohr et al., 2008). The activation energy means the
energy required to confirm diffusion process. The above equation can be written as,

ln
(
�

�0

)
= −

(
�a

#A:B)

)
(4.1)

Equation 4.1 implies that if diffusion coefficient obey Arrhenius behavior, the graph
between ln(�) versus 1/) must be straight such that slope of the straight line provides
activation energy.

To check the Arrhenius behavior of diffusion coefficient, we have plotted the graph
between ln(�) versus 1/) for self diffusion of both solute and solvent. Figures 34
and 35 show the variation of self diffusion coefficient of amoxicillin and water with
temperature respectively (Khanal & Adhikari, 2022).
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Figure 34: Arrhenius plot (i.e., graph between ln(�) versus (1/)) from the estimated values of self
diffusion coefficient of amoxicillin from simulations.
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From the Figure 34, it has been observed that the self diffusion coefficient of amoxicillin
follows Arrhenius behavior. Also, we can estimate the value of activation energy for
diffusion of amoxicillin from the slope of the graph. And the estimated value of activation
energy for diffusion of amoxicillin is 0.017 kJ/mol.
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Figure 35: Arrhenius plot (i.e. Graph between ln(D) versus 1/T) from the estimated and experimental
values of self diffusion coefficient of water.

From the Figure 35, it has been noticed that the self diffusion coefficient of water also
shows Arrhenius behavior. Deviation between simulated and experimental values large
at low temperature range in comparison to high temperature range. This may be due
to different factors like force field parameters used are suitable in high temperature in
comparison to low temperature, accuracy of experimental data etc..

Table 7: Activation energy of water estimated from its simulated and experimental values of self diffusion
coefficient.

Activation energy of water (kJmol −1)
Simulated data Experimental data

15.31 17.43 (Holz et al., 2000)

The activation energy for diffusion of water from simulated values has also been calcu-
lated and compared with the value calculated from experimental values of self diffusion
coefficient of water. The estimated and experimental values of activation energy are
presented in Table 7. From the Table, it is seen that the calculated value of activation
energy of water is in close agreement (within 12.2 %) with experimental value (Holz et
al., 2000; Easteal et al., 1989).
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On the other hand, the diffusion phenomenon also depends upon the solvent environ-
ment (Skyner et al., 2015). So, to understand diffusion process in different solvents, we
performed simulation taking another System-I(c) in which ethanol is solvent at 298 K
under PBC. System-I(c) consists of binary mixture of 2 amoxicillin and 2168 ethanol
molecules in cubic box of size 5.96 nm. During the simulation of the System-I(c), same
molecular dynamics parameters were used as in System-I except cut off parameter for
both non-bonded LJ and Coulomb interactions. Equilibration run was performed after
energy minimization followed by production run. We considered 1.2 nm cut off for both
LJ and Coulomb interactions during equilibration and production runs. We performed
200 ns simulation for both equilibration and production runs with 0.002 ps time step.
After production run, the trajectory has been analyzed to estimate the self diffusion
coefficient of amoxicillin and ethanol along with their binary diffusion coefficient. To
estimate the self diffusion coefficient of solute and solvent, MSD has been plotted as
a function of time for both ethanol and amoxicillin as shown in Figures 36 and 37
respectively.
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Figure 36: MSD versus time graph for ethanol after 200 ns production run taking System-I(c) at 298 K
temperature.
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Figure 37: MSD versus time graph for amoxicillin after 200 ns production run taking System-I(c) at
298 K temperature.

Although, we have propagated production run for 200 ns, we have truncated the graphs
after 5 ns and 1 ns for ethanol and amoxicillin respectively. This is because the statistic
is better in beginning part of trajectory in comparison to ending region. From the slope
of the graphs, we determine the self diffusion coefficient of both solute and solvent.
The estimated values of self diffusion coefficients of solute and solvent with mutual
diffusion coefficient are demonstrated in Table 8. The mutual diffusion coefficient has
been estimated using Darken’s relation (3.9).

Table 8: The estimated values of self diffusion coefficient of amoxicillin and ethanol as well as their
mutual diffusion coefficient at 298 K temperature after 200 ns production taking System-I(c).

Diffusion Coefficient (×10−9 m2s−1)
Self

MutualAmoxicillin Ethanol
Estimated Estimated Expt. % Error
0.26 ± 0.01 1.29 ± 0.02 1.05 (Rathbun & Babb, 1961) 22.8 0.26

We have also compared the estimated value of self diffusion of ethanol with previously
reported value. The estimated value is in agreement with previously reported value
within 23 %. The accuracy on estimated values from simulations depends upon many
factors including force field parameters andmodeling of the system. Also, the previously
reported value depends upon experimental technique that is used to measure it.
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4.3.2 Effect of System Size

The diffusion phenomenon also depends upon size of the simulation box under PBC (Dün-
weg&Kremer, 1993; Yeh&Hummer, 2004). This happens because of long range nature
of hydrodynamics, which causes screening effect under periodic boundary conditions
(Koniakhin et al., 2015; Jamali et al., 2018). Infinite size of simulation box is not viable
in practice due to computational capacity and finite size box affects on diffusion coef-
ficient (Reed & Flurchick, 1996; De Souza & Ornstein, 1997). Hence, in addition to
the effect of temperature on diffusion, we studied the effect of system size in diffusion
processes.

To understand the size effect on diffusion coefficient, simulations were carried out
by considering another system, glycine as solute and water as solvent. For this system,
GROMOS53A6 force field and SPC/Ewater model were taken (Oostenbrink et al., 2004,
2005; Berendsen et al., 1987). During modeling, we considered united atom model for
CH2. We performed simulations at 298.2 K under PBC by taking three systems of
different size with different number of solute and solvent molecules: 3 glycine and 2078
water molecules in cubic box of size 3.98 nm (System-III(a)), 5 glycine and 3464 water
molecules in cubic box of size 4.72 nm (System-III(b)) and 7 glycine and 4849 water
molecules in cubic box of size 5.28 nm (System-III(c)). The number of solute and
solvents were chosen in such a way that the mole fraction remains almost equal.

To remove bad contact between particles in aforementioned systems, we first per-
formed energy minimization run using Steepest-descent method followed by equili-
bration run (David et al., 2005). Each equilibration run was done under NPT ensemble
at 1 atm pressure; and the initial velocities for each particles were allocated using
Maxwell-Boltzmann distribution (Andersen, 1980; Frenkel & Smit, 2002). We consid-
ered 1 nm cut off parameter for both LJ and Coulomb interactions; and PME method
was selected to account long range Coulomb interaction (Darden et al., 1993). All bonds
were constraint through LINCS algorithms (Hess et al., 1997). Isothermal compress-
ibility of 4.6 × 10−5 bar−1 was considered. During equilibration run for each of above
three systems, the temperature was controlled using velocity rescaling thermostat with
coupling time 0.01 ps; and to control pressure, Berendsen barostat with 0.8 ps time of
coupling was chosen (Bussi et al., 2007; Berendsen et al., 1984). After assigning initial
velocities at initial state, the new positions and velocities of each particle at each time
step were determined by solving equation of motion using Leap-frog algorithms (Gun-
steren & Berendsen, 1988). After thermodynamic equilibrium attained by each system,
production run was propagated under NVT-ensemble by taking initial velocities of each
particles from the final stage of the equilibration run. All parameters used during pro-
duction run were same as in equilibration run except barostat which was turned off. Both
equilibration as well as production runs for each of the three systems were executed for
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200 ns with 0.001 ps time step.

After production run for each system, MSD versus time graphs were plotted for both
solute as well as solvent. Although, we performed 200 ns production run, the statistic is
better in beginning region. So, only small portion of each graph (5 ns) has been taken
and then linearly fitted. From slope of the linearly fitted lines, self diffusion coefficients
of both solute and solvent have been estimated using (3.8); and estimated values are
extended in Table 9 (Khanal et al., 2019).

Table 9: Estimated values of self diffusion coefficients of solute (i.e. glycine) and solvent (i.e. SPC/E
water) from 200 ns production run for three systems of different sizes at 298.2 K temperature.

System

Diffusion coefficients (DPBC)(×10−9m2 s−1)

% ErrorSelf
Size (L) Glycine Water Mutual
(nm) Estimated Estimated Expt. Calculated Expt.

System-III(a) 3.98 1.13 2.57
2.30 [d]

1.13
1.06 [e]

6.60
System-III(b) 4.72 1.16 2.62 1.16 9.43
System-III(c) 5.28 1.17 2.64 1.17 10.94

Ref: [d]: (Holz et al., 2000) and [e]: (Longsworth, 1953)

From the Table 9, it is clearly understood that the value of diffusion coefficient increases
with the increase of size of box (!) as expected. The reason behind this observation is
that we performed all simulations in finite size box under PBC. In case of finite size box,
screening effect due to hydrodynamics interactions of long range play role on estimated
value of diffusion coefficient. To overcome this problem, one can perform simulations
with large size systemwhich demands high computational capacity. In this regards, Dün-
weg & Kremer (1993) and Yeh & Hummer (2004) suggested that some modification is
needed in the estimated values of diffusion coefficient from simulations under PBC; and
the Equation (3.10) gives the necessary correction terms on such diffusion coefficient.
From the Equation (3.10), we can also determine the size independent value of diffusion
coefficient (�0) as well as viscosity coefficient ([) if we plot graph between diffusion
coefficient estimated from simulation under PBC (�PBC) versus reciprocal of size of
simulation box (1/!). The intercept and slope of graph between �PBC and 1/! offer the
values of �0 and [ respectively.

We have plotted graph between �PBC versus (1/!) for solvent i.e., water and solution
of glycine in water; and Figures 38 and 39 represent the plots for water and solution of
glycine in water respectively at 298.2 K.
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Figure 38: Plot between estimated values of diffusion coefficient (�PBC) of water from simulations under
PBC versus reciprocal of size of simulation boxes (1/!) at 298.2 K temperature.
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Figure 39: Plot between estimated values of diffusion coefficient (�PBC) of solution (glycine in water)
from simulations under PBC versus reciprocal of size of simulation boxes (1/!) at 298.2 K temperature.

Table 10: Calculated values of system-size independent values of diffusion coefficient (�0) of solvent
(i.e., water) and solution (i.e., glycine in water) with previously reported values at 298.2 K temperature
taking SPC/E water model.

System D0 (×10−9m2 s−1) % ErrorCalculated Ref. Expt.
Solvent 2.83 2.97 (Tazi et al., 2012) 2.30 (Holz et al., 2000) 23.04
Solution 1.32 – 1.06 (Longsworth, 1953) 24.53
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The estimated values of �0 for solvent (i.e., SPC/E water model) and solution (i.e.,
glycine in water) are presented in Table 10 (Khanal et al., 2019). From Tables 9 and
10, it is clearly noticed that the system size independent values of diffusion coefficient
(�0) for solvent as well as solution are higher than the corresponding values of diffusion
coefficients estimated from simulations in finite size simulations box under PBC (�PBC)
as expected. From this observation, we conclude that diffusion coefficient estimated
from simulations under PBC also depends upon size of system.

In addition, we have also compared the calculated values with previously reported value
obtained from simulation as well as experimental methods (10). And, it is observed
that the calculated value �0 for solvent is better than previously reported value obtained
from simulations, however, the values for both solvent as well as solution are higher than
previously reported experimental values. This is because SPC/E model was used during
simulations which overestimate the diffusion coefficient although it is better than other
models (Tazi et al., 2012). The estimated values are in agreement (within < 25 %) of
experimental values.

The viscosity coefficient ([) of both solvent as well as solution have been calculated
from the slopes of the Figures 38 and 39; and the calculated values are shown in
Table 11 (Khanal et al., 2019). The calculated values of viscosity coefficient of both
solvent as well solution are smaller than the corresponding previously reported values.
As we used the SPC/E water model during our simulations which underestimate the
viscosity coefficient; and transferable intermolecular potential 4 point (TIP4P/2005)
water model is better for viscosity coefficient as suggested by Markesteijn et al. (2012).

Table 11: Calculated values of viscosity coefficient [ of solvent (i.e., water) and solution (i.e., glycine in
water) with previously reported values at 298.2 K temperature taking SPC/E water model.

System [ (×10−4 Nm−2 sec) % ErrorCalculated Ref. Expt.
Solvent 5.91 6.40 (Tazi et al., 2012) 8.90 (Harris & Woolf, 2004) 33.60
Solution 8.10 – 8.99 (Yan et al., 1999) 9.88

Moreover, the accuracy of results from simulations also depends upon the water models
used during system set up (Tazi et al., 2012; Markesteijn et al., 2012). Due to distinct
quality of different water models, selection of model must be suitable for particular prop-
erties of interest (Tazi et al., 2012). In this regard, we motivated to estimate diffusion
coefficient using another four point water model, i.e., transferable intermolecular poten-
tial 4 point (TIP4P/2005) (Abascal & Vega, 2005). For this, simulation was performed
at 298.2 K taking TIP4P/2005 water model. After simulation, MSD versus time graph
was plotted. Figure 40 shows the MSD versus time graph for two water models: SPC/E
and TIP4P/2005 water models at 298.2 K temperature.
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Figure 40: MSD versus time plot for two water models: SPC/E and TIP4P/2005 at temperature 298.2 K.

From the Figure 40, it is distinctly noticed that the estimated value of diffusion coefficient
also strongly depends on water model selected during simulation. The simulated values
of self diffusion coefficient as well as their previously reported values for different water
models are presented in Table 12 (Khanal et al., 2019).

Table 12: Estimated values of self diffusion coefficient of water with previously reported values for two
different water models: SPC/E and TIP4P/2005 at 298.2 K temperature.

Water models Self diffusion coefficients (×10−9m2 s−1)
Estimated Ref. Expt. % Error

SPC/E 2.55 ± 0.05 2.49 (Shirts & Pande, 2005b) 2.30 (Holz et al., 2000) 10.87
TIP4P/2005 2.08 ± 0.01 2.08 (Abascal & Vega, 2005) 9.56

It is observed from the Table 12 that the estimated value of self diffusion coefficient
from the simulation is exactly equal to previously reported values that obtained from
simulation for TIP4P/2005 (Abascal & Vega, 2005; Shirts & Pande, 2005b). The
estimated value of self diffusion coefficient is smaller for TIP4P/2005 and greater for
SPC/E than previously reported experimental value of water. The estimated values are
in close agreement with experimental value within 10 % and 11 % for TIP4P/2005
and SPC/E models respectively (Holz et al., 2000). Moreover, the SPC/E water model
overestimate the diffusion coefficient but TIP4P/2005 underestimates per expectation
and shown in Figure 41 (Shirts & Pande, 2005b; Tazi et al., 2012).
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Figure 41: Estimated value of self diffusion coefficients of two different water models: SPC/E and
TIP4P/2005 with previously reported simulated as well experimental values at 298.2 K.

Besides the study about effect of system size on diffusion coefficient using a system of
binary mixture of glycine and water, we also used the system of amoxicillin in water
to understand size effect. In order to understand the effect of system size on diffusion
coefficient as well as to estimate size independent value of diffusion coefficient (i.e.,
diffusion coefficient estimated using simulation box of infinite size), we considered
other two systems of different sizes: System-I(a) (2 amoxicillin molecules in 4071 water
molecules in cubic box of size 4.98 nm) and System-I(b) (2 amoxicillinmolecules in 6504
water molecules in cubic box of size 5.82 nm). Simulations were carried out at 298 K
temperature under PBC. During simulations of the above two systems, same parameters
in MDP file were used as for System-I. With above two systems, at first, we carried out
energy minimization runs. After energy minimization, we performed equilibration run
followed by production run for each system. Equilibration and production runs were
propagated for 200 ns with time step of 0.002 ps. After production runs, MSD versus
time graph were potted for both solute as well as solvent. Figures 42 and 43 are the MSD
versus time graph for water and amoxicillin respectively at 298 K temperature taking
three systems of different sizes.
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Figure 42: MSD versus time graph for water plotted taking three systems of different size: System-I,
System-I(a) and System-I(b) at 298 K temperature.
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Figure 43: MSDversus time graph for amoxicillin plotted taking three systems of different size: System-I,
System-I(a) and System-I(b) at 298 K temperature.

From the Figures 42 and 43, it is observed that the slope the MSD versus time graph
increases with the increase in size of system used during our simulations. This clearly
indicates that the diffusion coefficient also depends upon the size of system; and it
increases with the increase in size of system. We have also estimated the size dependent
values of diffusion coefficients using Einstein’s relation taking three different size of
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simulation boxes; and compared with previously reported experimental values of water
(Table 13) (Khanal & Adhikari, 2022).

Table 13: Estimated values of self diffusion coefficients of amoxicillin and water (SPC/E) as well as their
mutual diffusion coefficient along with experimental values of self diffusion coefficient of water at 298 K.

System ! (nm)

Diffusion coefficients (�PBC)(× 10−9 m2 s−1)
Self

For amoxicillin For water Mutual
Simulated Simulated Expt. % Error

I 4.05 0.30 ± 0.05 2.49 ± 0.02
2.30 (Holz et al., 2000)

7.63 0.30
I(a) 4.98 0.34 ± 0.04 2.54 ± 0.01 10.43 0.34
I(b) 5.82 0.38 ± 0.02 2.58 ± 0.01 12.17 0.38

From the Table 13, it is noticed that the diffusion coefficient depends on simulation box
size and it increases with the increase in size of simulation box (!). This happens due
to long range nature of hydrodynamics interactions (Dünweg & Kremer, 1993; Yeh &
Hummer, 2004). This indicates that some corrections are necessary to the estimated
value of diffusion coefficients from simulations taking finite size box under PBC.

After analyzing the effect of system size on diffusion coefficient, we are motivated to
estimate the size independent values of diffusion coefficient of solvent and solution of
amoxicillin in water. The size independent value of diffusion coefficient can be estimated
using Equation (3.10). To estimate the size independent value of diffusion coefficient
(�0), at first, we have plotted graph between �PBC versus (1/!), where �PBC represents
the diffusion coefficient estimated from simulation in box of finite size under PBC. From
the intercept of graph, we can estimate the size independent value of diffusion coefficient.

For this, we have plotted graphs between �PBC versus (1/!) for water and solution of
amoxicillin in water at 298 K temperature; and Figures 44 and 45 represent the graph
for water and solution of amoxicillin in water respectively. Also, from the Figures, it is
clearly observed that the diffusion coefficients estimated from simulations under PBC
increase with the increase in size of the system under study. Moreover, the estimated
size independent values of diffusion coefficient �0 of water and solution of amoxicillin
in water (i.e., mutual diffusion coefficient) estimated from the intercept of the Figures
44 and 45 are presented in Table 14 (Khanal & Adhikari, 2022).
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Figure 44: �PBC versus 1/! plot for water at 298 K temperature.
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Figure 45: �PBC versus 1/! plot for solution of amoxicillin in water at 298 K temperature.

Table 14: System size independent values of diffusion coefficient (�0) of water and solution of amoxicillin
in water at 298 K temperature taking SPC/E water model.

System �0 (× 10−9 m2 s−1) % ErrorCalculated Ref. Expt.
Solvent (water) 2.77 2.97 (Tazi et al., 2012) 2.30 (Holz et al., 2000) 20.4 (Harris & Woolf, 2004)

Solution (amoxicillin in water) 0.54 – – –

Table 14 shows that the calculated value of �0 for water is less than the previously
reported value obtained from simulation (Tazi et al., 2012). However, the calculated
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value is higher than the experimental value of self diffusion coefficient of water; and
the discrepancy between them is 20.4% (Holz et al., 2000). This is because we have
taken SPC/E water model as solvent during simulation and such model overestimates
diffusion coefficient (Tazi et al., 2012; Markesteijn et al., 2012). Furthermore, the
viscosity coefficient ([) of solvent as well as solution can be determined from the slope
of �PBC versus (1/!) graph (Jamali et al., 2018; Koirala et al., 2020). Here, the viscosity
coefficient of both solvent as well as solution of amoxicillin in water has been estimated
from the slopes of above two graphs, i.e., Figures 44 and 45. And, the estimated values of
([) for solvent, i.e., water and solution of amoxicillin in water are introduced in Table 15.

Table 15: System size independent value of diffusion coefficient (�0) and shear viscosity ([) at 298 K
temperature taking SPC/E water model.

System [ (×10−4 Nm−2 sec) % ErrorCalculated Ref. Expt.
Solvent (water) 5.57 6.40 (Tazi et al., 2012) 8.90 (Harris & Woolf, 2004) 37.4

Solution (amoxicillin in water) 6.32 – – –

It is found that the calculated value of [ for water is smaller than both previously reported
experimental as well as simulated values. The value of [ is smaller than previously
reported values because we used SPC/Emodel as solvent which underestimates viscosity
coefficient (Tazi et al., 2012; Koirala et al., 2020). We further calculate the correction
terms on diffusion coefficient due to size effect and the estimated values are present in
Table 16 (Khanal & Adhikari, 2022).

Table 16: Estimated values of correction term on diffusion coefficient (�PBC) determined from intercept
of graphs 44 and 45; and also compared with corresponding value determined from experimental value
of [ of water at 298 K temperature taking SPC/E water model.

System ! (nm)
Correction term calculated from(×10−9 m2 s−1)
Intercept of graph 2.84 :B)

6c[Expt.! (Using
between �PBC versus 1/! experimental value of [Expt.)

Water
4.05 0.28 0.17
4.98 0.23 0.14
5.82 0.19 0.11

Solution
4.05 0.24 –
4.98 0.20 –
5.82 0.16 –

From Table 16, we clearly find that the correction term on diffusion coefficient decreases
with increase in size of simulation box as expected. Also, the correction terms on
diffusion coefficient of water determined from the graphs 44 and 45 are greater than the
corresponding values evaluated (from experimental value of [ for water) using 2.84 :B)

6c[Expt.! .
The reason behind this observation is that we used SPC/E water model during the
simulations which underestimate viscosity coefficient.
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We also analyzed the effect of coupling time on results obtain from simulation. We used
Nose-Hoover thermostat instead of velocity-rescaling thermostat taking three different
coupling time of 0.5 ps, 1 ps and 2 ps at 298.2 K temperature by considering another
System of GABA in water i.e., system consisting of binary mixture of 7 GABA and 2415
SPC/E water molecules. OPLS-AA force field parameters were used to model GABA.
For the system of GABA in water, estimated values of diffusion coefficients are reported
in Table 17.

Table 17: Estimated values of diffusion coefficients taking system-III at 298.2 K temperature using
Nose-Hoover thermostat.

Coupling time

Diffusion coefficients (�PBC)(10−10 m2 s−1)
Self

GABA Water Binary
MSD MSD Exp. % Error Calculated Exp. % Error

0.5 ps 9.32 25.11
22.99 (Holz et al., 2000)

9.2 9.37
8.38 (Yui et al., 2013)

11.8
1 ps 9.49 25.29 10.0 9.54 13.8
2 ps 8.90 25.28 10.0 8.95 6.8

From the Table 17, it has been found that no significant effect on the estimated values
of diffusion coefficients when Nose-Hoover thermostat was used instead of velocity-
rescaling thermostat with different values of coupling time.

4.4 Free Energy of Solvation

The knowledge of thermodynamic properties, specifically estimation of free energy
difference between two thermodynamic states, of drugs, amino acids, proteins and so on
in aqueous medium has significant role to understand many process including working
mechanism of drugs, protein ligand binding and protein folding (Levy&Onuchic, 2006).
The estimation of solvation free energy using different approaches including molecular
dynamics play vital role in different discipline of science including pharmaceutical
industry (Abel et al., 2017; Khanal et al., 2021b). From the free energy of solvation, we
can also estimate the solubility, a major factor for affecting oral drugs absorption (Matos
et al., 2017). The estimation of free energy of solvation of a solute is also affected
by solvent environment. Similarly, the solvation process also depends upon solvent
environments. In this regard, we were inspired to estimate the free energy of solvation
of amoxicillin, drug molecule, in two different solvent environments: water and ethanol
using molecular dynamics simulation technique. In this section, we have discussed
about the estimation of free energy of solvation of amoxicillin in two solvents: water
and ethanol at 310 K temperature using TI and FEP based methods. During estimation
of solvation free energy of amoxicillin in water, we used two different water models:
TIP3P and SPC/E.

The free energy of solvation is the free energy difference between two thermodynamic
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states: coupling state (i.e., solute and solvent molecules are coupled through different
interactions); and decoupling state (i.e., no interactions between solute and solvent which
means solute molecule is in gaseous state). With only two states, there may be a problem
of convergence if the difference in potential energy between the states is high. Such a
problem of convergence can be handled by introducing many non-physical intermediate
states. To introduce intermediate states, we can defined a parameter, i.e., coupling
parameter (_) such that potential energy is also a function of _ and the potential is
defined as

* (A;_) = (1 − _) *A + _ *B (4.2)

where, *A and *B represent the potential energy of initial state A and final state B re-
spectively. We considered the concept of decoupling to estimate free energy difference
which means the solute and solvent which initially in the state of coupling are gradually
transformed into the state of decoupling through different intermediate states. In order to
couple the solute and solvent molecules, only non-bonded LJ and Coulomb interactions
were manipulated without modeling bonded interactions; and the non-bonded interac-
tions were controlled through coupling parameter (_) (Shivakumar et al., 2010; Khanal
et al., 2021b).

To introduce intermediate states, we defined 21 evenly spaced values of coupling pa-
rameters for both LJ and Coulomb interactions in case of TIP3P water and ethanol as
solvents (Fiorentini et al., 2020). While defining the number of intermediate states, we
considered the fact that there must be sufficient overlapping in configurational space
between two neighboring states. The 21 different values of coupling states for LJ (_vdW)
and Coulomb (_Coulomb) interactions are:

Coupling states: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20

_vdW = 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,0.00, 0.10, 0.20, 0.30,
0.40, 0.50, 0.60, 0.70, 0.80, 0.90 and 1.00; and

_Coulomb = 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.0, 1.00, 1.00, 1.00,
1.00, 1.00, 1.00, 1.00, 1.00, 1.00 and 1.00.

However, we used 0.75 instead of 0.7 in case of SPC/E water model as solvent. Here, the
states represented by_ = 0, 1 and other intermediate values represent the fully interacting
solute and solvent molecules, independent and different strength of interaction between
solute and solvent molecules respectively. During calculation of solvation free energy
with potential defined by Equation (4.2), there is a problem of singularity for small
value of r. In order to keep away from such problem introduced by decoupling, LJ
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interaction between solute-solvent molecules were modified by soft core potential of the
type (Zacharias et al., 1994; Paluch et al., 2011)

*SC
LJ (Aij, _) = 4nij_n

©«
1[

U(1 − _)< +
(
Aij/fij

)6
]2 −

1
U(1 − _)< +

(
Aij/fij

)6

ª®®¬ (4.3)

where nij and fij are the well depth and length scale parameter for LJ potential respec-
tively; and U is positive constant with typical value of 0.5. Although different values of
m and n can be considered, 1 is more effective value of both exponents m and n.

For each 21 different values of coupling parameter, simulations were performed at
temperature 310 K and 1 atm pressure under PBC using GROMACS software package.
All three systems (System-III(a), System-III(b) and System-III(c)) were treated with
energy minimization to overcome bad contact between particles, if any, using Steepest-
descent method (David et al., 2005; Pokharel, Khanal, et al., 2019). After attaining
the minimum potential energy state with energy minimization, we propagated each
system for each value of coupling parameter with equilibration run to attain the state
of thermodynamic equilibrium at 310 K temperature under PBC. Each system was
equilibrated in two steps: in NVT ensemble at first followed by NPT ensemble. Finally,
production runs with each above mentioned equilibrated systems were carried out in
NVT ensemble at 310 K under PBC. Time step of 2 fs was chosen for each run. During
each run, electrostatic interactions were accounted with PME of order 6; and 1.2 nm
cut-off was used for both short range LJ as well as Coulomb interactions (Darden et al.,
1993). Temperature was controlled using Berendsen barostat with 0.5 ps of coupling
time (Berendsen et al., 1984). Isothermal compressibility 4.5 × 10−5 bar was chosen
during each simulation. Also, the value of soft core potential parameter U and f were
set to 0.5 and 0.3 respectively; and 1 was selected for both m and n for soft core potential
defined by Equation (20). Bonds were constrained using LINCS algorithms (Hess et al.,
1997). Furthermore, Maxwell-Boltzmann distribution was chosen to assign the initial
velocities of each particle during equilibration in NVT ensemble. Langevin dynamics
was used to solve the equations of motion (Lindahl et al., 2010). We performed 10 ns
simulation for each equilibration and productions runs.

After production runs for each value of coupling parameter, we used alchemical-
analysis.pl tool to extract free energy difference from *.xvg files (Klimovich et al.,
2015; alchemical analysis, 2020). Although different approaches can be used to esti-
mate solvation free energy, TI and FEP methods have been used in our calculations.
From the ensemble average of

〈
m*
m_

〉
, we can estimate free energy difference in TI ap-

proach. During our calculations, two TI based methods: TI-1 and TI-CUBIC have
been implemented. TI-1 and TI-3 approaches use different integration methods, i.e.,
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the trapezoidal rule (a first-order polynomial) and a cubic spline are used in TI-1 and
TI-CUBIC respectively.

As we know in TI based methods, the free energy difference along the integrating path
described by coupling parameter is evaluated from the ensemble average

〈
m*
m_

〉
_
. So, we

first plot the graph between
〈
m*
m_

〉
_
versus _ taking each solvent. Figures 46, 47 and 48

are graph between
〈
m*
m_

〉
_
versus _ for solvents: TIP3P water, SPC/E water and ethanol

respectively (Khanal & Adhikari, 2022).

Figure 46: Graph between
〈
m*
m_

〉
_
versus _ taking TIP3P water model as solvent at 310 K temperature.
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Figure 47: Graph between
〈
m*
m_

〉
_
versus _ taking SPC/E water model as solvent at 310 K temperature.

Figure 48: Graph between
〈
m*
m_

〉
_
versus _ taking ethanol as solvent at 310 K temperature.
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In the plots, red and green colors indicate the individual contribution of Coulomb
and vdW interactions respectively (color online). Also, the estimation of free energy
difference using Trapezoidal rule is represented by shaded area and silver colored curve
represents the estimation using Cubic spline method.

Similarly, out of different perturbation based methods, BAR and MBAR are used. In the
BAR method, the minimum free energy variance is obtained from the sampling in both
direction. In BARmethod, convergence can be obtained with small phase space overlap-
ping between two thermodynamics states in comparision of other techniques (Shirts &
Pande, 2005a; Shirts & Mobley, 2013). The estimated values of free energy differences
between two consecutive states at 310 K temperature using TI-1, TI-CUBIC, BAR and
MBAR methods are presented in Tables 18, 19 and 20 respectively.

Table 18: Estimated values of free energy difference between two consecutive states in TIP3P water
model as solvent at 310 K using different thermodynamic (TI) and free energy perturbation (FEP) based
methods: TI, TI-CUBIC, BAR and MBAR.

Coupling Δ�sol in kJ/mol with method
States TI TI-CUBIC BAR MBAR
0 – 1 137.65 ± 0.06 137.66 ± 0.07 137.79 ± 0.07 137.79 ± 0.07
1 – 2 120.65 ± 0.09 121.26 ± 0.11 120.98 ± 0.10 120.98 ± 0.10
2 – 3 99.48 ± 0.15 99.14 ± 0.17 99.76 ± 0.21 99.77 ± 0.21
3 – 4 77.08 ± 0.21 78.45 ± 0.24 76.64 ± 0.25 76.64 ± 0.25
4 – 5 45.70 ± 0.19 45.06 ± 0.22 43.21 ± 0.83 43.21 ± 1.35
5 – 6 21.11 ± 0.12 18.90 ± 0.14 20.97 ± 0.13 21.07 ± 0.12
6 – 7 14.49 ± 0.09 14.98 ± 0.10 14.54 ± 0.08 14.59 ± 0.07
7 – 8 8.88 ± 0.04 8.64 ± 0.05 8.87 ± 0.03 8.93 ± 0.03
8 – 9 4.38 ± 0.02 4.31 ± 0.02 4.30 ± 0.02 4.41 ± 0.01
9 – 10 1.03 ± 0.01 0.97 ± 0.01 1.01 ± 0.01 1.03 ± 0.01
10 – 11 9.02 ± 0.01 9.03 ± 0.01 9.04 ± 0.01 9.03 ± 0.01
11 – 12 8.61 ± 0.01 8.62 ± 0.01 8.61 ± 0.01 8.64 ± 0.01
12 – 13 8.07 ± 0.01 8.10 ± 0.01 8.11 ± 0.01 8.07 ± 0.01
13 – 14 7.11 ± 0.01 7.17 ± 0.01 7.14 ± 0.01 7.12 ± 0.01
14 – 15 5.41 ± 0.02 5.50 ± 0.02 5.45 ± 0.02 5.45 ± 0.02
15 – 16 3.02 ± 0.02 2.94 ± 0.03 3.15 ± 0.02 3.17 ± 0.02
16 – 17 -0.45 ± 0.04 0.33 ± 0.05 -0.13 ± 0.04 -0.13 ± 0.04
17 – 18 -9.61 ± 0.09 -9.80 ± 0.10 -8.97 ± 0.14 -8.98 ± 0.14
18 – 19 -15.52 ± 0.09 -17.13 ± 0.10 -18.61 ± 0.09 -18.63 ± 0.09
19 – 20 -7.19 ± 0.02 -7.67 ± 0.03 -6.98 ± 0.02 -6.97 ± 0.02
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Table 19: Estimated values of free energy difference between two consecutive states in SPC/E water
model as solvent at 310 K using different thermodynamic (TI) and free energy perturbation (FEP) based
methods: TI, TI-CUBIC, BAR and MBAR.

Coupling Δ�sol in kJ/mol with method
States TI TI-CUBIC BAR MBAR
0 – 1 143.80 ± 0.10 143.82 ± 0.10 144.05 ± 0.11 144.05 ± 0.11
1 – 2 125.63 ± 0.10 126.28 ± 0.12 125.84 ± 0.12 125.85 ± 0.12
2 – 3 103.22 ± 0.18 102.71 ± 0.21 103.40 ± 0.25 103.41 ± 0.25
3 – 4 80.74 ± 0.19 82.15 ± 0.22 80.29 ± 0.22 80.29 ± 0.22
4 – 5 49.09 ± 0.19 48.54 ± 0.21 48.76 ± 1.01 48.78 ± 1.76
5 – 6 23.57 ± 0.18 21.29 ± 0.20 23.60 ± 0.16 23.64 ± 0.16
6 – 7 16.32 ± 0.09 16.87 ± 0.10 16.30 ± 0.08 16.38 ± 0.08
7 – 8 9.78 ± 0.04 9.50 ± 0.05 9.72 ± 0.04 9.76 ± 0.04
8 – 9 4.61 ± 0.02 4.50 ± 0.03 4.47 ± 0.02 4.60 ± 0.02
9 – 10 1.02 ± 0.01 0.93 ± 0.02 0.99 ± 0.01 1.02 ± 0.01
10 – 11 9.35 ± 0.01 9.35 ± 0.01 9.34 ± 0.01 9.35 ± 0.01
11 – 12 8.88 ± 0.01 8.90 ± 0.01 8.91 ± 0.01 8.90 ± 0.01
12 – 13 8.25 ± 0.01 8.26 ± 0.01 8.27 ± 0.01 8.32 ± 0.01
13 – 14 7.36 ± 0.02 7.40 ± 0.02 7.45 ± 0.02 7.48 ± 0.01
14 – 15 6.00 ± 0.02 6.07 ± 0.02 6.05 ± 0.02 6.07 ± 0.02
15 – 16 3.77 ± 0.03 3.88 ± 0.04 3.93 ± 0.03 3.93 ± 0.03
16 – 17 -7.47 ± 0.14 -4.05 ± 0.23 -4.60 ± 0.23 -4.62 ± 0.23
17 – 18 -8.74 ± 0.07 -8.94 ± 0.07 -8.87 ± 0.08 -8.89 ± 0.08
18 – 19 -18.88 ± 0.10 -21.25 ± 0.14 -21.37 ± 0.09 -21.29 ± 0.09
19 – 20 -7.60 ± 0.02 -7.45 ± 0.04 -7.28 ± 0.02 -7.27 ± 0.02
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Table 20: Estimated values of free energy difference between two consecutive states in ethanol as solvent
at 310 K using different thermodynamic (TI) and free energy perturbation (FEP) based methods: TI,
TI-CUBIC, BAR and MBAR.

Coupling Δ�sol in kJ/mol with method
States TI TI-CUBIC BAR MBAR
0 – 1 106.79 ± 0.18 107.34 ± 0.22 106.87 ± 0.19 106.85 ± 0.19
1 – 2 93.71 ± 0.21 93.48 ± 0.24 93.84 ± 0.27 93.84 ± 0.27
2 – 3 77.32 ± 0.24 79.31 ± 0.27 77.69 ± 0.29 77.70 ± 0.29
3 – 4 46.44 ± 0.22 45.94 ± 0.26 43.46 ± 1.79 43.47 ± 2.11
4 – 5 20.40 ± 0.18 18.02 ± 0.21 20.47 ± 0.19 20.52 ± 0.18
5 – 6 13.32 ± 0.18 13.88 ± 0.21 13.22 ± 0.19 13.28 ± 0.17
6 – 7 7.28 ± 0.14 6.88 ± 0.17 7.06 ± 0.14 7.22 ± 0.11
7 – 8 3.52 ± 0.07 3.41 ± 0.08 3.44 ± 0.06 3.73 ± 0.04
8 – 9 1.61 ± 0.03 1.56 ± 0.03 1.60 ± 0.03 1.89 ± 0.01
9 – 10 0.33 ± 0.02 0.33 ± 0.02 0.40 ± 0.02 0.42 ± 0.01
10 – 11 11.81 ± 0.02 11.81 ± 0.02 11.84 ± 0.01 11.83 ± 0.01
11 – 12 11.39 ± 0.01 11.40 ± 0.01 11.38 ± 0.01 11.38 ± 0.01
12 – 13 10.87 ± 0.01 10.88 ± 0.01 10.87 ± 0.01 10.88 ± 0.01
13 – 14 10.16 ± 0.01 10.19 ± 0.02 10.25 ± 0.01 10.21 ± 0.01
14 – 15 9.22 ± 0.02 9.22 ± 0.02 9.14 ± 0.02 9.17 ± 0.02
15 – 16 8.05 ± 0.02 8.16 ± 0.03 8.07 ± 0.02 8.00 ± 0.02
16 – 17 6.03 ± 0.04 6.01 ± 0.04 6.16 ± 0.04 6.18 ± 0.04
17 – 18 2.81 ± 0.07 3.38 ± 0.08 3.18 ± 0.07 3.19 ± 0.07
18 – 19 -3.74 ± 0.11 -4.31 ± 0.12 -3.81 ± 0.16 -3.82 ± 0.16
19 – 20 -4.27 ± 0.09 -5.56 ± 0.12 -5.67 ± 0.08 -5.67 ± 0.08

From the Tables 18, 19 and 20, it is seen that the free energy difference between two
consecutive coupling states is high at the beginning and decreases with increase in
coupling state. This happened because in the beginning, we consider both interactions
in full strength and slowly turned off the interactions such that we first turned of Coulomb
interaction; after then van derWaals interaction. The total free energy difference between
initial and final states gives the solvation free energy. The estimated values of total
free energy difference between initial and final states, i.e., free energy of solvation of
amoxicillin in two solvents: water (TIP3P and SPC/E models) and ethanol using TI, TI-
CUBIC, BAR and MBAR methods are presented in Table 21. During the estimation of
free energy of solvation, we also analyzed the individual contributions of van der Waals
(vdW) and Coulomb interactions to the total solvation free energy in each solvents: and
the individual contributions are also presented in the Table 21 (Khanal & Adhikari,
2022).
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Table 21: Estimated values of free energy of solvation of amoxicillin (Δ�B>;) in water (TIP3P and
SPC/E models) and ethanol at 310 K using TI, TI-CUBIC, BAR and MBAR methods taking individual
contribution of vdW and Coulomb along with total contributions due to both the interactions.

Solvent Model Method Δ�sol in kJ/mol with
vdW only Coulomb only Total

Water

TIP3P

TI 8.47 ± 0.20 530.47 ± 0.53 538.94 ± 0.57
TI-CUBIC 7.09 ± 0.19 529.38 ± 0.53 536.46 ± 0.57

BAR 6.82 ± 0.17 528.07 ± 0.91 534.90 ± 0.93
MBAR 6.77 ± 0.20 528.43 ± 1.43 535.20 ± 1.44

SPC/E

TI 0.93 ± 0.25 557.78 ± 0.57 558.71 ± 0.62
TI-CUBIC 2.16 ± 0.26 556.60 ± 0.57 558.76 ± 0.63

BAR 1.81 ± 0.26 557.42 ± 1.09 559.24 ± 1.12
MBAR 1.97 ± 0.29 557.76 ± 1.84 559.73 ± 1.86

Ethanol

TI 62.35 ± 0.23 370.73 ± 0.74 433.08 ± 0.77
– TI-CUBIC 61.18 ± 0.25 370.15 ± 0.75 431.33 ± 0.79

BAR 61.40 ± 0.20 368.05 ± 1.87 429.45 ± 1.88
MBAR 61.35 ± 0.23 368.92 ± 2.22 430.26 ± 2.23

During the estimation of solvation free energy, our initial thermodynamic state represents
full interaction between solute and solvent molecules through vdW and Coulomb inter-
actions and final state means there is no interaction between them. So, the positive value
of solvation free energy in particular solvent ensures that solvation process occurs in this
solvent. From the Table 21, it is seen that the free energy of solvation of amoxicillin
in both solvents: water and ethanol has positive values when contributions of both van
der Waals and coulomb (vdW-q) interactions has been taken into account. The positive
values of free energy of solvation ensures that the solvation of amoxicillin occurs in both
solvents. Also, it is observed from the Table 21 that the individual contribution of vdW
as well as Coulomb to solvation free energy of amoxicillin in both solvents has positive
values which indicates each individual interaction can contribute to the solvation of
amoxicillin in water. Although both interactions contribute to the solvation of amoxi-
cillin in both the solvents, it is seen that Coulomb interaction has major contributions
for the solvation of amoxicillin in both the solvents: water and ethanol. The estimated
values of free energy of solvation using different TI and FEP based methods are in close
agreement.

Furthermore, due to unavailability of previously reported value for solvation free energy
of amoxicillin, zwitterionic glutamic acid has taken as reference for comparison. The
previously reported data of electrostatic contribution for solvation free energy of zwit-
terionic glutamic acid in aqueous medium is 471.70 kJ/mol and our estimated value of
contribution of Coulomb interaction for solvation free energy of amoxicillin in TIP3P
water is ≈ 530 kJ/mol (Dixit et al., 1997). Our estimated value of contribution of
Coulomb interaction to solvation free energy of amoxicillin in water is in good agree-
ment with previously reported value of electrostatic contribution to solvation free energy
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of glutamic acid in zwitterionic form in aqueous medium.

Moreover, we have also estimated the Gibb’s free energy of solvation of amoxicillin in
water using Born equation, continum solvation method (Born, 1920);

Δ� = −#A/
242

8cn0A0

(
1 − 1

nA

)
In this equation, #A, /4, n0, A0 and nA represent Avogadro number, charges, permittivity
of free space, effective radius of ion and dielectric constant of solvent respectively; and
we take A0 = 0.5 nm. Our estimated value using the Born equation is 547.31 kJ/mol at
35 ◦C which closely agree with our estimated values from simulations.

The free energy estimation from the simulations must be converged. In our free energy
calculation, the convergence of calculation has been analyzed by plotting time series plot,
i.e., graph between estimated value of solvation free energy as a function of simulation
time. Figures 49, 50 and 51 show the time series plots during estimation of solvation
free energy of amoxicillin in water (TIP3P and SPC/E models) and ethanol respectively.
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Figure 49: Variation of estimated value of solvation free energy of amoxicillin in TIP3P water as a
function of simulation time, i.e., time series plot in both forward and reverse directions.
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Figure 50: Variation of estimated value of solvation free energy of amoxicillin in SPC/E water as a
function of simulation time i.e. time series plot in both forward and reverse directions.
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Figure 51: Variation of estimated value of solvation free energy of amoxicillin in ethanol as a function
of simulation time i.e. time series plot in both forward and reverse directions.

From the above plots 49, 50 and 51, it is seen that convergence of our free energy
calculation occur after 0.4 fraction of simulation time. This observation is in accordance
with guidelines for the free energy calculations byKlimovich and co-workers (Klimovich
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et al., 2015). From this observation, we conclude that our calculation of free energy
follow convergence.

Solvent Accessible Surface Srea (SASA) and Hydrogen Bond Analysis

We have also analyzed the effect of solvent environment on solvation free energy through
the concept of SolventAccessible SurfaceArea (SASA) of solute and number of hydrogen
bonds between solute and solvent molecules. The SASA measures the surface area of
solute accessible to interaction with solvents; and higher value of SASA indicates more
area is available to solvent for interactions. Figure 52 is the SASA of solute molecules,
i.e., amoxicillin in two solvent environments: water (TIP3P and SPC/E models) and
ethanol at 310 K for initial (_ = 0) state (Khanal & Adhikari, 2022).
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Figure 52: Time evolution of solvent accessible surface area (SASA) of solute molecule at 310 K
temperature for initial state represented by _ = 0 which indicates solute and solvent molecules are fully
interacting through vdW and Coulomb interactions in two different solvent environments: water (TIP3P
and SPC/E models) and ethanol.

From the Figure 52, it is clearly seen that SASA remains almost constant with simulation
time for water as solvent. Also, we observe that SASA of solute to ethanol has lower
value in comparison to water by ≈ 1 nm2. The lower value of SASA in ethanol indicates
that the lower affinity of dissolving of amoxicillin in ethanol than in water. Such results
also support to the previously reported experimental observation that amoxicillin has
smaller solubility in ethanol than in water. This is also in agreement with our observation
that lower value of solvation free energy of amoxicillin in ethanol in comparison of water.
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Similarly, the hydrogen bond analysis between solute and solvent molecules provides
more insight on effect of solvent environment. The hydrogen bonds play a vital role
in formation of intra- and inter-molecular structure. Figures 53 and 54 are the time
evolution and average number of hydrogen bonds between solute (amoxicillin) and
solvents (TIP3P and SPC/E water models) respectively at 310 K temperature for initial
state _ = 0 (Khanal & Adhikari, 2022). During hydrogen bond analysis, we used cut off
parameters 0.35 nm and 30◦ for length and angle respectively. From the plots, we clearly
notice that number of hydrogen bonds remains almost constant with time of simulations
and also more number of the bonds observe in water than in ethanol. Also, the solute in
water has higher number of hydrogen bonds than in ethanol (almost 7). Our calculations
of number of hydrogen bonds in both solvents are also in agreement to higher value of
solvation free energy in water than in ethanol.
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Figure 53: Time evolution of number of hydrogen bonds between solute and solvents (TIP3P water,
SPC/E water and ethanol) at 310 K temperature for _ = 0.
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Figure 54: Average number of hydrogen bonds between solute and solvents (TIP3P water, SPC/E water
and ethanol) at 310 K temperature for _ = 0.

From above analysis, it has been found that the values of SASA of solute and number of
hydrogen bonds between solute and solvent molecules are large in case water as solvent
than ethanol. These findings imply that SASA and number of hydrogen bonds also
play supportive role in our observation that higher value of solvation free energy of
amoxicillin in water than in ethanol.
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CHAPTER 5

5. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

We have performed molecular dynamics study of amoxicillin in water to understand
transport and thermodynamic properties like diffusion phenomenon and solvation free
energy. Simulations were carried out at 1 atm pressure under periodic boundary condi-
tions using GROMACS software package.

Diffusion is measured in terms of diffusion coefficient. The self diffusion coefficients
of solute and solvent as well as their binary diffusion coefficient have been reported at
five different temperatures: 298 K, 303 K, 305 K, 310 K and 313 K from the slope
of MSD versus time graph using Einstein’s and Darken’s relations respectively. The
estimated values of self diffusion coefficient of water at different temperatures are in
good agreement with experimentally reported values in literature within 8.5 %. It has
been observed that both self and binary diffusion coefficients increase with increase
in temperature as expected. The effect of temperature on self diffusion coefficients
of both solute and solvent has been analyzed by plotting Arrhenius equation; and we
observe that the estimated values of self diffusion coefficients followArrhenius behavior.
The calculated values of activation energy for diffusion of amoxicillin and water are
0.017 kJ/mol and 15.31 kJ/mol respectively. The calculated value of activation energy
of water is in agreement within ≈12.2 % with previously reported experimental value.

We have also studied the effect of system size on diffusion coefficient; and estimated the
size independent value of diffusion coefficient as well as viscosity coefficient of water
and solution of amoxicillin in water. In order to study the effect of system size, we
extended our simulations taking two different size box at 298 K temperature. We have
also reported the correction terms on diffusion coefficient.

Besides transport properties, the solvation free energy of amoxicillin in two solvent
environments: water (TIP3P and SPC/E models) and ethanol, has been estimated at
310 K temperature using thermodynamic integration (TI) and free energy perturbation
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(FEP) based methods: TI, TI-Cubic, BAR and MBAR. From the estimation of solvation
free energy, it has been observed that the amoxicillin is soluble in both solvents. The
solvation free energy also depends on solvent environment. The estimated value of
solvation free energy of amoxicillin is higher in water than in ethanol as expected.
Also, the individual contribution of van der Waals and Coulomb interaction on solvation
free energy has been analyzed; and we observe that Coulomb interaction has major
contribution on solvation of amoxicillin in both the solvents. We also examined the free
energy convergence by plotting time series graphs.

In order to get more insight in molecular level regarding the effect of solvent environment
on solvation free energy, the SASA of solute and number of hydrogen bonds between
solute and solvent molecules have been reported for initial thermodynamic state. We
also compared the SASA and number of hydrogen bonds by taking TIP3P, SPC/E and
ethanol as solvents. The reported values of SASA and number of hydrogen bonds are
also in agreement to our observation showing higher value of solvation free energy of
amoxicillin in water than that in ethanol.

Recommendations

The solubility is one of the fundamental factor for oral drug absorption. The detail idea
about solubility of drug in molecular level can play a crucial role in pharmaceutical
industry. Solubility of drugs can be estimated from different technique including analyt-
ical approaches, activity coefficients models etc. Moreover, solubility can be estimated
from the free energy calculation using molecular dynamics approach. The estimation of
solubility of drug from molecular dynamics study gives molecular level characteristics
during the interaction of targeted molecule with surrounding environment; and also
provides guideline for experimental measurement. On the other hand, the knowledge
of transport properties provides information about dynamics of drug in our body which
reveals the inter molecular interaction. The dissolution rate of drug depends upon many
factors including diffusion coefficient, solvation free energy and solubility of the drugs
in particular solvent environment.

The solubility of drug can be estimated from the solvation free energy and absolute
solid free energy of the drug in crystal. Different methods including Einstein molecule
approach can be used to estimate absolute free energy of molecular solid. This work
can be extended to estimate the absolute free energy of amoxicillin crystal; and hence
the solubility of amoxicillin in different solvents. Viscosity coefficient can be estimated
from non-equilibrium dynamics.

The estimation of transport and thermodynamic properties depends upon the solute con-
centration as well as solvent environments. In this regards, the work can be extended to
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estimate the properties by taking different solute concentration and solvent environments
can be fruitful. Moreover, other force field parameters can be used to check the validity
of results. This study can also be utilized to explore the translocation of drug through
the membrane of intestinal wall.
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CHAPTER 6

6. SUMMARY

In this work, the transport and thermodynamic properties of amoxicillin, an antibiotic
with V-lactam ring responsible for antibacterial activity, have been studied using molec-
ular dynamics simulation technique. As we know that most of biological processes
happen in aqueous medium through diffusive transport, the delivery of drugs upto target
also happens through diffusive transport. We can get information about the inter/intra
molecular interactions from the knowledge of diffusion phenomenon. On the other
hand, out of many factors, solubility of drugs is one of the factor affecting oral drug
absorption; it can be measured from solvation free energy. Furthermore, the information
about diffusion coefficient and solubility is also useful to understand the dissolution rate
of drugs.

To understand the transport phenomenon of amoxicillin in aqueous medium, our system
which consist of binary mixture of amoxicillin and water was subjected to simulation
at 1 atm pressure under periodic boundary conditions at five different temperatures:
298 K, 303 K, 305 K, 310 K and 313 K. We have also studied the effect of temperature
on diffusion coefficient; and it has observed that the diffusion coefficient for both solute
and solvent follow Arrhenious behavior. Also, to check the size dependency of diffusion
coefficient estimated from simulations under periodic boundary condition, simulations
have been carried by taking three systems of different size; and it is clearly observed that
diffusion coefficient increases with increase in size of simulation box.

Similarly, the solvation free energy of amoxicillin in two different solvents: water
(SPC/E and TIP3P models) and ethanol, has been estimated at 310 K temperature using
thermodynamic integration and free energy perturbation based methods; and it has been
observed that coulomb interaction has major contribution to solvation free energy of
amoxicillin in both the solvents.
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APPENDIX

A.1 For Energy Minimization Run:

cpp = / l i b / cpp
d e f i n e = −DFLEX_SPCE
c o n s t r a i n t s = none
i n t e g r a t o r = s t e e p ; s t e e p e s t d e s c e n t method
n s t e p s = 5000000 ; t o t a l number o f s t e p s
;
; Energy min imiz ing s t u f f

emto l = 150 ; f o r c e t o l e r a n c e (KJ mol^−1 nm^−1)
emstep = 0 .001 ; i n i t i a l s t e p s i z e (nm)
nstcomm = 1 ; f r e qu en cy f o r c e n t r a l o f mass mot ion

remova l
n s_ t ype = g r i d ; n e i ghbou r s e a r c h i n g t ype
r l i s t = 1 . 0 ; c u t o f f d i s t a n c e f o r t h e s h o r t r ange

ne i ghbo r l i s t
cou lombtype = PME
vdwtype = cut −o f f
rcoulomb = 1 . 0 ; Coulmob cu t o f f
rvdw = 1 . 0 ; v ande rwaa l s c u t o f f
n s t x t c o u t = 20
Tcoupl = no
Pcoup l = no
gen_ve l = no

A.2 For Equilibration Run:

; PREPROCESSING pa r ame t e r s
cpp = / l i b / cpp
i n t e g r a t o r = md
d t = 0 .002
n s t e p s = 100000000
nstcomm = 1

;OUPUT CONTROL pa r ame t e r s .
n s t x o u t = 500
n s t v o u t = 500
n s t f o u t = 500
n s t l o g = 500
n s t e n e r g y = 500
n s t x t c o u t = 500
en e r gyg r p s = sys tem
;NEIGHBOUR SEARCHING pa r ame t e r s .
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n s t l i s t = 10
n s_ t ype = g r i d
r l i s t = 1 . 0
; ELECTROSTATIC and VdW pa r ame t e r s .
vdwtype = cut −o f f
cou lombtype = PME ; P a r t i c l e Mesh Ewald f o r long− r ange
f o u r i e r s p a c i n g = 0 .12 ; g r i d s p a c i n g f o r FFT
pme−o r d e r = 4
ewald− r t o l = 1e−05
rcoulomb = 1 . 0
rvdw = 1 . 0
e p s i l o n − r = 1 . 0
;BERENDSEN TEMPERATURE COUPLING i s on i n two groups
Tcoupl = v− r e s c a l e
t c −g rp s = sys tem
t a u _ t = 0 .01
r e f _ t = 298
; PRESSURE COUPLING i s on
Pcoup l = be r end s en
t au_p = 0 . 8
c om p r e s s i b i l i t y = 4 . 6 e−5
r e f _ p = 1 . 0
;SIMULATED ANNEALING pa r ame t e r s a r e no t s p e c i f i e d .
;GENERATE VELOCITIES i s on a t 298K
gen_ve l = yes ; g e n e r a t e i n i t i a l l y
gen_temp = 298
gen_seed = 173529 ; g i v e d i f f e r e n t v a l u e s f o r d i f f e r e n t

t r i a l s .
l d _ s e e d = 1993
;BONDS pa r ame t e r s
c o n s t r a i n t s = a l l −bonds
c o n s t r a i n t −a l g o r i t hm = SHAKE
uncon s t r a i n e d − s t a r t = no
pbc = xyz

A.3 For Production Run:

; PREPROCESSING pa r ame t e r s
t i n i t = 0
i n t e g r a t o r = md
d t = 0 .002
n s t e p s = 100000000
nstcomm = 1

;OUPUT CONTROL pa r ame t e r s .
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n s t x o u t = 500
n s t v o u t = 500
n s t f o u t = 500
n s t l o g = 500
n s t e n e r g y = 500
n s t x t c o u t = 500
en e r gyg r p s = sys tem
;NEIGHBOUR SEARCHING pa r ame t e r s .
n s t l i s t = 10
n s_ t ype = g r i d
r l i s t = 1 . 0
; ELECTROSTATIC and VdW pa r ame t e r s .
vdwtype = cut −o f f
cou lombtype = PME
f o u r i e r s p a c i n g = 0 .12 ; g r i d s p a c i n g f o r FFT
pme−o r d e r = 4
ewald− r t o l = 1e−05
rcoulomb = 1 . 0
rvdw = 1 . 0
e p s i l o n − r = 1 . 0
;BERENDSEN TEMPERATURE COUPLING i s on i n two groups
Tcoupl = v− r e s c a l e
t c −g rp s = sys tem
t a u _ t = 0 .01
r e f _ t = 298

; PRESSURE COUPLING i s on
Pcoup l = no
;SIMULATED ANNEALING pa r ame t e r s a r e no t s p e c i f i e d .
;GENERATE VELOCITIES i s on a t 298K
gen_ve l = no ; ; g e n e r a t e i n i t i a l l y
gen_temp = 298
gen_seed = 173529 ; g i v e d i f f e r e n t v a l u e s f o r d i f f e r e n t

t r i a l s .
l d _ s e e d = 1993
;BONDS pa r ame t e r s
c o n s t r a i n t s = a l l −bonds
c o n s t r a i n t −a l g o r i t hm = SHAKE
uncon s t r a i n e d − s t a r t = yes
pbc = xyz
;SIMULATED ANNEALING pa r ame t e r s a r e no t s p e c i f i e d .
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a b s t r a c t

We have carried out MD simulations of amoxicillin, a drug molecule used as antibacterial agent, in water
and ethanol to study thermodynamic properties like solvation free energy and transport phenomena like
diffusion, viscosity. The free energy of solvation of amoxicillin in water and ethanol have been estimated
at 310 K using thermodynamic integration (TI) and free energy perturbation (FEP) based methods. It has
been obtained that the free energy of solvation of amoxicillin in water is higher by � 105 kJ/mol in TIP3P
model than in ethanol. We have also reported the solvent accessible surface area (SASA) of solute as well
as the hydrogen bonds between solute and solvent for different solvents. The analysis of SASA and hydro-
gen bond provides more insight on effect of solvent environment in solvation process of amoxicillin. We
have also estimated the diffusion coefficient and our results show that diffusion coefficients of amoxi-
cillin depends on solvent environment, as expected, and it is higher in water than that of ethanol.
Also, applying the idea of system size dependence of diffusion coefficient, the viscosity coefficient of
water and solution of amoxicillin in water have also been estimated. Furthermore, the effects of temper-
ature on diffusion has been studied. The estimated values of self-diffusion coefficients of water are in
good agreement with previously reported experimental data within � 13:5%.

� 2022 Elsevier B.V. All rights reserved.

1. Introduction

Amoxicillin is a penicillin-type, semi-synthetic, b-lactam antibi-
otic widely used to treat bacterial infections [1]. Amoxicillin mole-
cule has a b-lactam ring, responsible for antibacterial activity; one
hydroxyl and one carboxyl groups [2]. Fig. 1 represents snapshot of
amoxicillin molecule in zwitterionic form. Amoxicillin acts by
interrupting bacterial cell-wall formation by covalent binding to
essential penicillin-binding proteins (PBPs), enzymes involved in
the terminal steps of peptidoglycan cross-linking in both Gram-
negative and Gram-positive bacteria [3]. Cross-linking of D-
alanyl-alanine by glycine, which strengthens the cell wall, occurs
with PBPs; and b-lactam ring bind with the PBPs. As a result, the
PBPs are inactivated and unavailable for cell wall synthesis; guide
to lysis of bacterium [4,5]. The optimized geometry and spectra of
amoxicillin were already studied using density functional theory
(DFT) [6]. The kinetic analysis of amoxicillin in aqueous medium
was also performed [7].

Solubility, dissolution rate and intestinal permeability are the
major factors that affect oral drugs absorption [8]. On the basis
of solubility and intestinal permeability, amoxicillin is a class III
type antibiotic with high solubility and low permeability. The

understanding about the solubility has significant role in many
areas including pharmaceutical industry [9,10]. The dissolution
rate and solubility are the essential parameters to understand
about solvation; Noyes-Whitney relates them by [11]

dm
dt

¼ DAðCs � CÞ
L

: ð1Þ

In this equation, dmdt , D, A, C, Cs and L are the rate of dissolution, dif-
fusion coefficient, solute surface area in contact with solvent,
instantaneous solute concentration in the bulk solvent, saturation
solubility of drug in solution and thickness of the diffusion layer
respectively. The Noyes-Whitney equation also establish a connec-
tion among i) dissolution rate: kinetic term, ii) solubility: thermo-
dynamic term and iii) diffusion: transport property [12]. The
dissolution rate can be enhanced by increasing effective surface
area of drug particles [13].

Many experimental techniques can be used to estimate solubil-
ity of drugs, a key factor to understand bioavailability of drugs. The
solubility of paracetamol in organic solvent was reported using
experimental as well as molecular dynamics (MD) study [9]. It
can also be estimated from the knowledge of solvation free energy
[14–17]. The solvation free energy, change in free energy due to
transfer of a solute molecule from solvent to ideal gas state (or vice
versa) at particular temperature and pressure, can be determined
from understanding of interactions between solute and solvent

https://doi.org/10.1016/j.molliq.2022.118865
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using molecular dynamics (MD) study [18,19]. The solvation free
energy of LASSBio-294 in different medium and estimation of rel-
ative solubility of the drug in logarithmic scale was already per-
formed from MD study [18]. The electrostatic contributions to
the solvation free energy of zwitterionic glutamic acid was
reported as 471.70 kJ/mol using Finite Difference Poisson–Boltz-
mann method [20]. Similarly, many of biological processes in
human body happens through diffusion; and diffusion also
depends upon viscosity coefficient of solvent. In this context, the
knowledge about transport properties like diffusion coefficient,
viscosity etc. of biomolecules including drug has significant role
to understand about diffusive transport and hence solvation pro-
cess. Such transport properties also can be estimated from molec-
ular dynamics study [21,22].

In drugs designing, the estimation of free energy difference
between two thermodynamic states from simulations has substan-
tial role [23]. From the estimation of difference in free energy
between two thermodynamic states, we can understand about
many phenomenon including protein ligand binding mechanism,
protein folding mechanism, transport of drug through membrane.
There are different methods to calculate the free energy difference
between two states [24]. MD can be considered as powerful tool in
different steps of drugs discovery. Different techniques like free
energy perturbation (FEP) with umbrella sampling, steered MD
etc. can be used to understand the drug target binding from ther-
modynamics and kinetics views [25]. Furthermore, the relative
binding free energies (RBFEs), applicable in discovery of drugs,
can also be estimated from MD simulation [26].

MD plays a significant role to get detail knowledge about the
thermodynamic, kinetic, dynamical as well as structural properties
at molecular level [27]. During simulations, the macroscopic prop-
erties can be connected with microscopic properties using statisti-
cal mechanics [28,29]. Such technique can also be used to
understand the transport phenomena like diffusion, viscosity etc.
which provide the information about the interaction between
solute and solvent molecules [30,31].

From the solvation free energy, diffusion coefficient etc. of
drugs, we can get information about the dissolution rate of the
drugs as suggested by Noyes-Whitney equation. To the best of
our knowledge, molecular dynamics study of amoxicillin has not
been carried out to study about the transport properties, free
energy calculation etc. The solvation free energy, transport proper-
ties also depends upon solvent environments. In this work, we
have reported the free energy of solvation of amoxicillin in zwitte-
rionic form in two solvents: water and ethanol using MD simula-
tions. Also, diffusion coefficients of zwitterionic amoxicillin as

well as solvent have been reported; and we have also analyzed
the effects of temperature on diffusion coefficients. Furthermore,
we have also studied the effects of system size on diffusion coeffi-
cient; and also the viscosity coefficient of water and solution of
amoxicillin in water have been reported.

2. Methods and methodology

2.1. Theoretical background

Estimation of free energy is one of fundamental objectives of
MD simulation. During MD simulation, different approaches
including free energy perturbation (FEP) and thermodynamic inte-
gration (TI) are used to estimate free energy difference between
two thermodynamic state. According to FEP method, the free
energy difference during the transformation of a system from ini-
tial state A to final state B at a temperature T ðDFABÞ is given by [28]

DFAB ¼ �kBT lnhexp½�bðUB � UAÞ�iA: ð2Þ
In Eq. 2, UA and UB represent the potential energy function of states
A and B respectively, kB is Boltzmann constant, b ¼ 1=kBT; and � � �h iA
represents the ensemble average of difference in potential energy
function between two thermodynamic states A and B with respect
to the state A. If the potential energy difference between two states
is very high, there is a problem of convergence. In this case, the sys-
tem may not cover sufficient phase space; however there must be
sufficient overlap in phase space for reliable estimation of free
energy difference. Such problem of convergence can be resolved
by introducing many unphysical intermediate states between the
two states. The intermediate states are defined by introducing cou-
pling parameter k with values 0 6k 61 such that the potential
energy is also a function of the coupling parameter. The 0, 1 and
other values of k represent the initial, final and other intermediate
states respectively. The free energy of solvation can be estimated
using thermodynamic integration (TI) method as [17]

DGsol ¼
Z 1

0

@U
@k

� �
k

dk ð3Þ

Out of many factors, the rate of dissolution of drug also depends
upon its diffusion coefficient. Diffusion, a transport phenomena, is
measured in terms of diffusion coefficients [32]. The self diffusion
coefficient is calculated using Einstein’s relation. According to Ein-
stein, the macroscopic quantity diffusion coefficient D for 3-
dimensional system is calculated from the microscopic quantity
mean square displacement (MSD) as [21,22],

Fig. 1. Snapshot of amoxicillin molecule using VMD.
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D ¼ lim
t!1

1
6
h½rðtÞ�2i

t
ð4Þ

Due to long range nature of hydrodynamic interactions, the size of
system used during simulation also has effect on the dynamical
properties calculated under periodic boundary conditions (PBC)
[33]. Some correction is necessary on the values of diffusion coeffi-
cients estimated under PBC; and the size independent value of self
diffusion coefficient (D0) from size dependent value (DPBC) calcu-
lated from simulation in cubic box of size L with correction term
can be estimated using the equation [34,35]:

D0 ¼ DPBC þ 2:84kBT
6pgL ð5Þ

where kB; T and g are the Boltzmann constant, absolute temperature
of system and viscosity coefficient respectively. Also, from the Eq. 4,
the viscosity coefficient of both solvent as well as solution can be
estimated after performing MD simulations taking box of different
sizes.

2.2. Modeling of the system

The classical MD simulations have been carried out under peri-
odic boundary conditions using GROMACS [36] software package.
During the simulations, two water models: SPC/E and TIP3P; and
ethanol were used as solvents in order to understand the effects
of solvents [37,38]. All atom force field model was used during
the simulations. From the OPLS-AA, we investigate amoxicillin
and ethanol [38]. Both non-bonded Lennard-Jones (LJ) and Cou-
lomb potentials were taken into account for intermolecular inter-
action. The total intermolecular potential is defined as

UðrijÞ ¼ 4e
r
rij

� �12

� r
rij

� �6
" #

þ qi qj

4p�m rij
ð6Þ

where rij; e;r; �m; qi and qj are the distance between the ith & jth

atoms, well depth of the LJ interaction, distance at which LJ interac-

tion is zero, permittivity of the medium, charge of ith and jth atom
respectively. The partial charges for hydrogen and oxygen atom of
water are þ0:4238e and �0:8476e respectively, where e is elec-
tronic charge. Also, the non-bonded parameters for water
rOW�OW and eOW�OW are 0.3165 nm and 78.2 kB respectively. The
combination rules used for the non-bonded LJ interaction parame-

ters between two different atoms a and b are rab ¼ ðraa � rbbÞ1=2
and eab ¼ ðeaa � ebbÞ1=2 [39].

2.3. Simulation details

2.3.1. Estimation of free energy
To estimate the free energy of solvation, we performed MD sim-

ulations taking systems of binary mixture of one amoxicillin in
1020 water molecules (system-I(a)); and one amoxicillin in 340
ethanol molecules (system-I(b)) in a cubic simulation box at
310 K temperature. The simulations were performed at 1 atm pres-
sure under PBC.We used two TIP3P and SPC/E water models to esti-
mate the free energy of solvation of amoxicillin. To remove van der
Waals bad contact, we performed energy minimization run using
steepest descent method [39]. Before production run, the system
should be in the state of thermodynamic equilibrium [40]. For this,
we performed equilibration run, for 10 ns with time step of 1 fs at
1 atm pressure, under NVT ensemble at first and then NPT. During
each equilibration run, LINCS algorithms and Langevin dynamics
[39,41] were used to constrain all bonds and solve the equations
of motion respectively. Also, we used Berendsen barostat with cou-
pling time 0:5ps and value of isothermal compressibility

4:5� 10�5bar respectively during each equilibration run [42]. Fur-
ther, Maxwell–Boltzmann distributionwas chosen to assign the ini-
tial velocities of each particle [39]. Cut off distance of 1:2nm was
taken for the non-bonded interactions i.e. Coulomb and LJ; and
the Coulomb long range interaction was accounted using Particle
Mesh Ewald (PME) method. After the equilibration run, production
runwas carried for 10 ns with 1 fs time step using Langevin dynam-
ics with same parameters used during equilibration run [39].

During free energy calculations, only non-bonded vdW and
Coulomb interactions were manipulated to introduce intermediate
states keeping the bonded interactions as it is. In order to trans-
form the system from initial state to final state, we consider 21 dif-
ferent values of evenly spaced coupling parameter k as: kCoulomb =
0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.0, 1.00,
1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00 and 1.00 for Coulomb
interaction; and kvdW = 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00,0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80,
0.90 and 1.00 for van der Waals interaction; but in case of SPC/E
water, we consider 0.75 instead of 0.7 [43]. Here, state k ¼ 0 means
the solute and solvent are fully coupled through non-bonded Cou-
lomb and vdW interactions, k ¼ 1 means solute and solvent mole-
cules are decoupled and other intermediate values means they are
coupled with different strengths.

2.3.2. Transport properties
We considered also a system having binary mixtures of 2 amox-

icillin and 2160 (System-II) water molecules in cubic simulation
box. The System-II was simulated at six different temperature:
293 K, 298 K, 303 K, 305 K, 310 K and 313 K. Also, the effects of sys-
tem size on diffusion coefficients estimated under PBC have been
analyzed from the simulations at 298 K temperature considering
other three systems in cubic box of different sizes: 2 amoxicillin
in 4071 water molecules (System-III(a)), 2 amoxicillin in 6504
water molecules (System-III(b)) and 2 amoxicillin in 9523 water
molecules (System-III(c)). Diffusion phenomenon also depends
upon the solvent environment i.e. viscosity of solvent [12]. In this
context, we also performed simulations taking system with amox-
icillin as solute and ethanol as solvent. The system consists of bin-
ary mixture of 2 amoxicillin molecules and 2168 ethanol molecules
in cubic simulations box (System-IV).

We first performed energy minimization run for the systems II,
III(a), III(b) and IV using Steepest-descent method [39]; and each
of the system was equilibrated at each temperature taking NPT
ensemble for 200 ns with time step of 2 fs using Leap-frog algo-
rithms [39]. Maxwell–Boltzmann distribution was used to assign
initial velocity for each particle. SHAKE algorithm was used to con-
straint bonds [44]. Velocity rescaling thermostatwith coupling time
of 0.01 ps and Berendsen barostat with coupling time 0.8 ps were
used to ensure constant temperature and pressure respectively
[42,45]. Also, we used cut off parameters of 1 nm for Systems-II &
III, and 1.4 nm for System-IV for both non-bonded interactions;
and long range Coulomb was accounted using Particle Mesh Ewald
(PME) method with fourier spacing of 0.12 nm. We compared the
density of each equilibrated systemwith previously reported exper-
imental data of solvent and found that simulated values were in
close agreement. Finally, we performed production run to each sys-
tem at each temperature for 200 nswith time step of 2 fs under NVT
ensemble. Velocity-rescaling thermostat with coupling time of
0.01 ps during the production runs; and initial velocities of eachpar-
ticle were taken from final step of equilibration run.

3. Results and discussion

In this section, we present and discuss the findings of the pre-
sent work. At first, we present the free energy of solvation of amox-
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icillin in water and ethanol; and then we discuss the self and bin-
ary diffusion coefficients of the systems: amoxicillin in water and
amoxicillin in ethanol as well as effect of temperature and system
size on diffusion coefficient. Finally, we present the viscosity coef-
ficient of water and solution of amoxicillin in water.

3.1. Free energy of solvation

The free energy of solvation of amoxicillin has been estimated
from trajectory of production run for each value of lambda using
Python tool [46,47]. The free energy of solvation of the amoxicillin
has been estimated in two different solvent environment: water
and ethanol at 310 K temperature. Although different approaches
can be used to estimate the free energy of solvation, we used
two thermodynamic integration based methods: TI and TI-CUBIC.
The only difference in the two methods is that trapezoidal and
cubic spline rules are used by TI and TI-CUBIC for numerical inte-
gration respectively. Also, two approaches Bennett Acceptance
Ratio (BAR) and Multistate Bennett Acceptance Ratio (MBAR) based
on FEP method are used [48,49]. As discussed already, it is neces-
sary to introduce many non-physical intermediate states between
initial and final states. The intermediate states can be introduced
using coupling different values of coupling parameter k [46]. We
consider 21 different states including the initial state of full inter-
action between solute and solvent through non-bonded vdW and
Coulomb interactions and final state with no interaction between
them. Since, the free energy of solvation can be estimated from
the variation of the ensemble average of change in free energy with
respect to k i.e. @U

@k

� �
k
as a function of coupling states using Eq. 3.

The variation @U
@k

� �
k
as function of k of has been plotted for both sol-

vents: water and ethanol. Fig. 2 (a-c) show the variation of @U
@k

� �
k
as

function of k for the solvents water (TIP3P and SPC/E models) and
ethanol respectively at 310 K. In the Fig. 2 (a-c), red and green color
(online) represent the contribution of Coulomb and vdW interac-
tions respectively to the solvation free energy. From the plots, it
is seen that the free energy difference between two consecutive
coupling states is high at beginning and decreases with increase
in coupling state. This happened because in the beginning, we con-
sidered both interactions in full strength. Slowly we turned off the
interactions; at first Coulomb interaction and then vdW interac-
tion. The total free energy difference between initial state of cou-
pling of solute to solvent and final state of decoupling between
them provides the solvation free energy of the solute. The esti-
mated values of free energy of solvation of amoxicillin in water
and ethanol at 310 K using four different methods: TI, TI-CUBIC,
BAR and MBAR are presented in the Table 1.

From the Table 1, it is seen that the free energy of solvation of
amoxcillin in both solvents: water and ethanol has high negative
values when contributions of both vdW and Coulomb interactions
have been taken into account. The negative value of free energy of

solvation ensures that the solvation of amoxicillin occurs in both
the solvents; and the reason for high value is that we used zwitte-
rion form. Also, the individual contribution of vdW and Coulomb
interactions have been analyzed; and it is observed from the
Table 1 that the free energy of solvation of amoxicillin in both sol-
vents has small negative value when only vdW interaction is con-
sidered. This means vdW interaction has small contribution to the
solvation of amoxicillin in both solvents. In addition, it is seen that
Coulomb interaction has major contributions for the solvation of
amoxicillin in both the solvents: water and ethanol. The estimated
values of free energy of solvation using different methods are in
close agreement within 1.2%. We have also compared the esti-
mated value of free energy of solvation of amoxicillin in water by
taking the contributions of oly Coulomb interaction with previ-
ously reported value of electrostatic contributions on solvation free
energy of glutamic acid in zwitterionic form. Our estimated values
of solvation free of amoxicillin are � – 530 kJ/mol and � – 557 kJ/-
mol in TIP3P and SPC/E water models respectively; and the previ-
uosly reported value for glutamic acid is – 471.70 kJ/mol using
Finite Difference Poisson–Boltzmann (FDPB) method [20]. For
TIP3P water model, our estimated value is in close agreement
within 12.3%. Furthermore, the estimated value of free energy of
solvation of amoxicillin in water is greater than in ethanol. This
may happen because the solubility of amoxicillin in water has lar-
ger value than in ethanol i. e. the experimental value of solubility
of amoxiciilin in water and ethanol are 4 mg/mL and 3.4 mg/mL
respectively [50].

During simulations, the free energy difference between two
thermodynamic states has been estimated from trajectory analy-
sis; and hence the trajectory must be sampled at equilibrium to
converge the estimated value. In order to check the convergence,
we have plotted the free energy difference as a function with time
of simulation for both forward and time-reversed data; and Fig. 3
(a-c) are those plots for TIP3P model, SPC/E model and ethanol
respectively.

Since, it has been expected that during free energy calculation,
the first 40% of simulated data for all lambda are in the non-
equilibrium [47]. From the time series plots, it is seen that our cal-
culations also converges after 0.4 fraction of simulation time as
expected.

3.1.1. Hydrogen bonds and Solvent Accessible Surface Area (SASA)
We have analyzed the hydrogen bonds between solute and sol-

vent molecules using trajectory after 10 ns production for initial
i.e., coupling state represented by k = 0. The hydrogen bond analy-
sis also provides information about the effect of solvent environ-
ment. During hydrogen bond analysis, we used cut off
parameters 0.35 nm and 30� for length and angle respectively.
Fig. 4 show the plot of time evolution of number of hydrogen bonds
between solute (i. e. amoxicillin) and solvents: water (TIP3P model

Fig. 2. Variation of @U
@k

� �
k
as a function of k at 310 K temperature taking water (TIP3P model (a), SPC/E model (b)) and ethanol (c) as solvents.
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and SPC/E model) and ethanol as a function of simulation time for
coupling state represented by k=0 (left) and average number of
hydrogen bonds between solute and solvents (right) at 310 K tem-
perature. From the above plots, we clearly observe higher number
of hydrogen bonds with water as solvent in comparison to ethanol
as solvent throughout the 10 ns simulations. The average number
of hydrogen bonds in water are higher than � 6.6 in ethanol; and
this grater number of hydrogen bonds in water than in ethanol is
in agreement with our observation with large value of solvation
free energy in water than in ethanol.

Solvent Accessible Surface Area (SASA) evaluates how the solute
is accessible to dissolve in a particular solvent; higher the SASA
gives the greater affinity of solute to dissolve in the solvent. We
have also estimated SASA in both solvent environments: water
and ethanol from the trajectory after 10 ns production run. Fig. 5

represents the time evolution of SASA in two different solvents
water (TIP3P and SPC/E model) and ethanol for coupling state
between solute and solvent represented by k=0. From the Fig. 5,
it is seen that SASA has smaller value with ethanol as solvent in
comparison to water as solvent. This information of SASA in two
different solvents also supports to our estimation of solvation free
energy i.e. the solvation free energy of amoxicillin in water is
higher in comparison of ethanol as shown in Table 1.

3.2. Transport properties

3.2.1. Self-diffusion coefficients
Together with the estimation of free energy of solvation of

amoxicillin, the transport properties of amoxicillin in two solvents
water and ethanol have also been studied. In order to estimate the

Table 1
Estimated values of free energy of solvation of amoxicillin (DGsol) in water (TIP3P and SPC/E models) and ethanol at 310 K using TI, TI-CUBIC, BAR and MBAR methods taking
individual contribution of vdW and Coulomb along with total contributions due to both the interactions.

Solvent Model Method DGsol in kJ/mol with

vdW only Coulomb only Total

Water TIP3P TI - 8.47 � 0.20 �530.47 � 0.53 - 538.94 � 0.57
TI-CUBIC - 7.09 � 0.19 - 529.38 � 0.53 - 536.46 � 0.57

BAR - 6.82 � 0.17 - 528.07 � 0.91 - 534.90 � 0.93
MBAR - 6.77 � 0.20 - 528.43 � 1.43 - 535.20 � 1.44

SPC/E TI - 0.93 � 0.25 - 557.78 � 0.57 - 558.71 � 0.62
TI-CUBIC - 2.16 � 0.26 - 556.60 � 0.57 - 558.76 � 0.63

BAR - 1.81 � 0.26 - 557.42 � 1.09 - 559.24 � 1.12
MBAR - 1.97 � 0.29 - 557.76 � 1.84 - 559.73 � 1.86

Ethanol TI - 62.35 � 0.23 - 370.73 � 0.74 - 433.08 � 0.77
– TI-CUBIC - 61.18 � 0.25 - 370.15 � 0.75 - 431.33 � 0.79

BAR - 61.40 � 0.20 - 368.05 � 1.87 - 429.45 � 1.88
MBAR - 61.35 � 0.23 - 368.92 � 2.22 - 430.26 � 2.23

Fig. 3. Estimated value of free energy differences of amoxicillin as a function of simulation time for both forward and reverse directions at 310 K temperature taking water
(TIP3P model (a) and SPC/E model (b)) and ethanol (c) as solvents.

Fig. 4. Comparison of time evolution of number of hydrogen bonds between solute and different solvents (left) and average number of hydrogen bonds (right) at 310 K
temperature for coupling state represented by k=0.
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self diffusion coefficient of solute and solvent of the system using
Einstein’s relation (4), at first the mean square displacement
(MSD) as a function of time in logarithmic scale has been plotted.
The graphs are not linear near origin due to ballistic motion of
the molecules and after some time, the graph becomes straight
indicating the uniform motion of the molecules. The value of
self-diffusion coefficient is given by the straight portion of the
graph. We have plotted graph between mean square displacement
(MSD) versus time and the data have been linearly fitted taking
1 ns time for amoxicillin and 5 ns for water and ethanol at different
temperature [51]. Figs. 6 and 7 show the MSD versus time graph
for amoxicillin and water respectively at different temperature.
The estimated values of self diffusion coefficient of amoxicillin
and water at different temperature along with their binary diffu-
sion coefficients are presented in Table 2. The binary diffusion coef-
ficients are calculated using Darken’s relation [52].

From Table 2, it is found that the values of self diffusion coeffi-
cient of amoxicillin and water increase with the increase in tem-

perature. It is because the velocity increases and density
decreases with the increase in temperature [51]. The estimated
values of self diffusion coefficient of water are in close to previ-
ously reported values. From the table, it has been also observed
that the values of binary diffusion coefficient are almost equal to
corresponding values of self diffusion coefficient of amoxicillin
due to low concentration of amoxicillin in the system. In addition,
the self diffusion coefficients of amoxicillin and ethanol as well as
their binary diffusion coefficient have been estimated at 298 K
temperature. The estimated values of diffusion coefficients with
previously reported experimental value are presented in the
Table 3. From the Table 3, it is seen that the estimated value of self
diffusion coefficient of ethanol is in agreement with previously
reported value within 23%.

We have also studied the temperature dependence of diffusion
coefficient of solute and solvent. Figs. 8 and 9 show the variation of
diffusion coefficient of amoxicillin and water with temperature
respectively. Further, the activation energy of amoxicillin and

Fig. 5. Comparison of time evolution of Solvent Accessible Surface Area (SASA) of solute molecule at 310 K temperature for coupling state k=0 in two different solvent
environments: water (TIP3P and SPC/E model) and ethanol.

Fig. 6. MSD versus time plot for amoxicillin at different temperature.
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water have calculated using Arrhenius formula [32]. The estimated
value of activation energy for amoxicillin is 0.017 kJ/mol. Also, the
estimated and experimental values of activation energy of water
are 15.31 kJ/mol and 17.43 kJ/mol [55] respectively. The estimated
value is in agreement with experimental value within 12.2%.

3.2.2. Effects of system-size
Under periodic boundary conditions, the size of system taken

during simulations also has effect on the estimated value of diffu-
sion coefficient [34,33,35]. The effect of system size has been stud-
ied from the simulations taking other three systems (i.e. III(a), III(b)
& III(c)) of different size under PBC. To estimate the diffusion coef-
ficient at 298 K taking systems of different size, we first plot the
MSD versus time graphs for amoxicillin and water as shown in
Figs. 10 and 11 respectively. The size dependent values of self dif-

fusion coefficient of amoxicillin and water; and their binary diffu-
sion coefficient estimated under PBC at 298 K are presented in
Table 4. It is seen from the Table 4 that the diffusion coefficient also
depends on size of system under consideration and increase with
the increase in the size of simulation box, which is due to the effect
of long-range hydrodynamics interactions in simulations under
PBC. Also, size independent values of diffusion coefficient (D0)
and viscosity coefficient (g) have been estimated from the graph
plotted between diffusion coefficient DPBC calculated under PBC
and reciprocal of size of simulation box ð1=LÞ using Eq. 4. Figs. 12
& 13 represent the graph between DPBC versus ð1=LÞ for water
and solution of amoxicillin in water at 298 K temperature with
the size independent value for water calculated using experimental
value of viscosity coefficient DExpt:

0 . We can estimate D0 and g from
the intercept and slope of the plot respectively. The estimated val-

Fig. 7. MSD versus time plot for water at different temperature.

Table 2
The simulated values of self diffusion coefficients as well as mutual diffusion coefficient at different temperature taking the System-II.

Diffusion Coefficient (�10�9 m2s�1)

Temperature (K) Self Mutual

For amoxicillin For water

MSD MSD Ref.

293 0.26 � 0.03 2.20 � 0.00 2.02 [a] 0.26
298 0.30 � 0.05 2.49 � 0.02 2.30 [a] 0.30
303 0.34 � 0.04 2.74 � 0.01 2.60 [a] 0.35
305 0.35 � 0.03 2.85 � 0.01 2.80 [b] 0.36
310 0.40 � 0.04 3.14 � 0.01 – 0.41
313 0.43 � 0.04 3.32 � 0.00 3.22 [a] 0.43

Ref. [a]- [53] and [b]- [51].

Table 3
The simulated values of self diffusion coefficient of solute and solvent as well as mutual diffusion coefficient at 298 K temperature taking System-IV.

Diffusion Coefficient (�10�9 m2s�1)

Self Mutual

For amoxicillin For ethanol

MSD MSD Ref. % Error

0.26 � 0.01 1.29 � 0.01 1.05 [54] 22.8 0.26
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ues are presented in Table 5. From the Table 5, it has been observed
that the estimated value of D0 for solvent is higher and smaller
than the previously reported experimental and simulated values
respectively. The estimated value is in agreement within 20.4%
with the experimental value. Also, it has been seen that the calcu-
lated value of g for solvent is smaller than experimental value. This
is because we used SPC/E model of water which overestimates dif-
fusion coefficient and underestimates the viscosity coefficient
[56,58]. The correction on diffusion coefficient estimated under
PBC can be calculated in two ways: from intercept of the graphs
12 & 13 and using experimental value of viscosity coefficient.

We have also estimate th correction terms on diffusion coeffi-
cient of water and solution and the estimated values of correction
term on diffusion coefficient estimated under PBC are presented in
Table 6. From the Table 6, we clearly observe the effect of system
size on diffusion coefficient estimated under PBC taking finite size
simulation box. It is seen from the Table that the correction term
decreases with increase in size of simulation box. In case of water,
the correction terms estimated from experimental value of viscos-
ity coefficient are smaller in comparison of corresponding value
calculated from intercept of the graph. This is because we used
SPC/E water model during our simulations and SPC/E model under-
estimate viscosity coefficient; and as a result, the correction terms
becomes larger.

4. Conclusions and concluding remarks

In thiswork,molecular dynamics study of amoxicillin in two sol-
vents: water and ethanol has been carried out at different tempera-
tures under periodic boundary conditions. During the simulations,
OPLS-AA forcefield, and TIP3P and SPC/E water model were used.
The free energy of solvation of amoxicillin inwater and ethanol have
been estimated at 310 K temperature using thermodynamic inte-
gration (TI) and Free Energy Perturbation (FEP) based methods. It
has been observed that solvation free energy of amoxicillin in water
has higher value in comparison to ethanol; and Coulomb has major
contribution for solvation of amoxicillin in both solvents. We also
compare the electrostatic contribution to solvation free energy of
amoxicillin in water with previously reported value of Coulomb
contribution to solvation free energy of zwitterionic glutamic acid

Fig. 8. Arrhenius plot of the simulated values of amoxicillin.

Fig. 9. Arrhenius plot of the simulated and experimental values of water.

Fig. 10. MSD versus time plot for amoxicillin at 298 K temperature taking four systems of different size.
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in aqueousmedium; our estimated value of solvation free energy of
amoxicillin in water is in good agreement with the solvation free
energy of glutamic acid. Number of hydrogen bonds between solute
and solvent molecules as well as SASA of solute for initial coupling
have been reported at 310 K temperature taking water (i.e. TIP3P
and SPC/E models) and ethanol as solvents. The analysis of number
of hydrogen bond and SASA also support to higher value of solvation
free energy of amoxicillin in water than in ethanol. Also, the self dif-
fusion coefficients of amoxicillin and water as well as their binary
diffusion coefficient have been reported at different temperatures
under PBC using Einstein’s and Darken’s relations respectively.

The estimated values of binary diffusion coefficients are almost
equal to respective self diffusion coefficient of solute due to infi-
nitely dilute solution. In addition, the effect of system size on diffu-
sion coefficient estimated from simulation under periodic boundary
conditions has been studied; and size independent values of diffu-
sion coefficients have been calculated at 298K temperature. The vis-
cosity coefficient of water as well as solution of amoxicillin in water
have been estimated at 298 K temperature. Furthermore, the self
diffusion coefficients of amoxicillin and ethanol, and their binary
diffusion coefficient have been reported at 298 K temperature using
aforementioned methods.

Fig. 11. MSD versus time plot for water at 298 K temperature taking four systems of different size.

Table 4
Simulated values of diffusion coefficients for different size systems at 298 K temperature.

System L (nm) Diffusion coefficients (DPBC )ð10�9m2s�1Þ
Self

For amoxicillin For water Binary

MSD MSD Expt. % Error

II 4.05 0.30 � 0.05 2.49 � 0.02 2.30 [53] 7.63 0.30
III(a) 4.98 0.34 � 0.04 2.54 � 0.01 10.43 0.34
III(b) 5.82 0.38 � 0.01 2.58 � 0.01 12.17 0.38
III(c) 6.60 0.41 � 0.05 2.61 � 0.01 13.48 0.41

Fig. 12. DPBC versus ð1=LÞ plot for water. Fig. 13. DPBC versus ð1=LÞ plot for solution of amoxicillin in water.
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ABSTRACT

Diffusion, transport of mass in response to concentration and thermal energy gradient, is an important transport property, vital in material
science and life science. In the present work, we have studied about the diffusion of zwitterion glycine, zwitterion diglycine and zwitterion
triglycine in SPC/E model of water using classical molecular dynamics. Self and binary diffusion coefficients of aqueous solution of these
molecules have been estimated using Einstein’s method. Our results agree with experimental data reported in literatures. Temperature depen-
dency of diffusion of glycine in water has been explored using estimated values of self and binary diffusion coefficients at four different
temperature. Effects of peptide bond formation in diffusion has been studied using peptide chain composed of up to three monomers of
glycine. The system-size dependence of diffusion coefficient has been studied and the shear viscosity of solvent and system has been calcu-
lated. Also, the diffusion coefficient of zwitterion glycine in other water model TIP4P/2005 has been estimated. The structure of the system
has been analyzed using radial distribution function of different atoms.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5099069

I. INTRODUCTION

Amino acids, the fundamental building blocks of proteins, are
the organic substances which contain both amine (-NH2) and acidic
(-COOH) functional groups. Out of 300 naturally found amino
acids, only 20 serve as building blocks of protein.1 Glycine (gly),
a major inhibitory neurotransmitter in the spinal cord and brain
stem, is the simplest of all the amino acids and plays significant
role in biological systems.2 Glycylglycine or diglycine (dgl) and gly-
cylglycylglycine or triglycine (tgl) are peptides of glycine having
two and three monomer units in chain respectively.3 The measure-
ment of mass transfer rates of amino acids has significant role in
science. Diffusion provides information about the inter and intra
atomic/molecular interactions. It also helps in the understanding
of the dynamics of amino acids, other bio-molecules, protein and
protein folding.4

Study of diffusion of biomolecules in aqueous and other
medium has attracted a significant number of researchers, both
in experiment as well as in simulation. At 298.2 K temperature,
the binary diffusion coefficient of aqueous glycine, at infinite dilu-
tion, has been reported to be 10.55, 10.64, 10.59 and 10.62 by

Longsworth,5 Lyons and Thomas,6 Woolf et al.7 and Ma et al.8
respectively; all in the unit of 10−10 m2s−1. Similarly, Umecky et al.4
have studied the temperature dependency of binary diffusion coef-
ficient of glycine and reported the diffusion coefficient to be 9.36
x 10−10 m2s−1 at 293.2 K and increase in it by 12.83 x 10−10 m2s−1
corresponding to 40 K increase in temperature. Yan et al.9 havemea-
sured densities and viscosities of aqueous solutions of some α-amino
acids as a function of temperature and concentration. Also, Dün-
weg and Kremer10 have performed MD simulations of a polymer
chain in solvent and explained the influence of finite system-size on
dynamical properties, and Yeh et al.11 have studied dependence of
diffusion coefficients on system-size and calculate the coefficient vis-
cosity. Furthermore, Changwei et al.12 have shown that the binary
diffusion coefficient of aqueous glycine depends upon concentra-
tion and changes from 10.4011 to 9.4258 x 10−10 m2s−1 with the
change in concentration from 0.1057 to 0.9045 mol.L−1. Campo13
have carried out molecular dynamics (MD) study of hydration and
structure of glycine in water. Many other works have been done to
study about different properties of glycine, diglycine, and triglycine.
Furthermore, Ventura et al.14 have developed a coarse grained
model which explains the interactions between bio-molecules, and
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between antibody and substrates. The knowledge about the inter-
actions between the bio-molecules play a key role in different areas
of science including biotechnology. Similarly, Tazi et al.15 have cal-
culated the system-size independent values of diffusion coefficient
and shear viscosity of three water models: SPC/E, TIP4P/2005 and
Dang-Chang.

Molecular dynamics simulations has become a powerful tool,
which can provide a guideline for experimental study. During the
simulations, the experimental environment could be mimicked by
modeling different interactions between the atoms and molecules.
Nowadays, it is routinely used to understand the structure and
dynamics of bio-molecules.16 Inspite of having many experimental
works been done to study about the diffusion of glycine in aqueous
medium, it is equally important to study about the diffusion phe-
nomenon of the system by using molecular dynamics simulations.
To the best of our knowledge, no realistic molecular dynamics sim-
ulations has been carried out to study about transport properties of
this system.

In the present work, self and binary diffusion coefficient of
aqueous solution of zwitterion glycine has been estimated at differ-
ent temperatures from molecular dynamics simulation, as per mole
fraction matching to the experimental values reported by Umecky
et al.,4 and Longsworth.5 Diffusion coefficients of aqueous solution
of zwitterion diglycine and zwitterion triglycine have also been esti-
mated. The structure of systems and its effect on diffusion have been
discussed. Furthermore, as the diffusion coefficient depends upon
size of system due to screening effect of hydrodynamics flow under
periodic boundary conditions (PBC),10,11 the system-size depen-
dence of diffusion coefficient has also been studied. And, the shear
viscosity of solvent as well as solution has been calculated. All
the simulations have been carried out using SPC/E water model.
Likewise, self diffusion coefficients of zwitterion glycine and water
have been calculated using other water model TIP4P/2005,17 for
the dynamical properties significantly depends upon water models
taken during simulations.15 All the simulations are carried out using
GROMACS software package.

In this paper, we have discussed theoretical background of
the present work in section II, computational details in section III,
results in section IV, and conclusions in section V.

II. THEORY

Diffusion is the dynamic property by which particles are trans-
ported from one region to other due to their randommotion. It takes
place in an account of concentration inhomogeneity and thermal
gradient. Diffusion is an essential function in living organisms and
has many applications in modern material science and technology.

Diffusion of particle in homogeneous medium with no chemi-
cal concentration gradient is called the self diffusion coefficient. Rate
of the self-diffusion is measured in terms of self-diffusion coefficient.
Under the assumption of isotropy of medium, if r(t) − r(0) is the
change of position of diffusing particle in time t, then the macro-
scopic transport property i.e. self diffusion coefficient can be related
to microscopic property, mean squared displacement of material, by
using Einstein’s relation, as:18

D = lim
t→∞
�[r(t) − r(0)]2�

6 t
(1)

Here, �. . .� represents the ensemble average of quantity inside the
angled bracket, which is the square of displacement. Thus, the self
diffusion coefficient of any species is one sixth of slope of mean
squared displacement plotted as a function of time.

Binary or mutual diffusion in binary mixture is the diffusion
of constituent species in that mixture and the corresponding dif-
fusion coefficient is called binary or mutual diffusion coefficient.
If self diffusion coefficients of two individual species, A and B are
DA and DB, with mole fraction NA and NB respectively, the binary
diffusion coefficient DAB of these species, according to Darken’s
phenomenological relation, is:19

DAB = NBDA +NADB (2)

The simulation is carried out under periodic boundary conditions.
Under periodic boundary conditions, the dynamical properties of
system also depends upon size of simulation box due to effect
of long range hydrodynamics interaction. So, it is necessary to
account the system-size dependence of diffusion coefficient. The
system-size independent value of diffusion coefficient (i.e. the dif-
fusion coefficient of particles in an infinite system size) can be
estimated by:10,11

D0 = DPBC +
2.84 kBT
6πηL

(3)

where D0 is the system-size independent value of diffusion coeffi-
cient, DPBC the simulated value of diffusion coefficient in cubic box
of size L under periodic boundary condition (PBC), kB the Boltz-
mann constant,T the absolute temperature of system and η the shear
viscosity of solvent.

or, DPBC = D0 − 2.84 kBT
6πηL

(4)

Thus, if values of DPBC are known for systems with different sizes,
D0 can be estimated from the intercept of the graph and the η from
its slope plotted between DPBC versus 1/L.

III. COMPUTATIONAL DETAILS

In the present work, zwitterion form of glycine, diglycine and
triglycine were taken and modeled in GROMOS53A6 force field
platform.20,21 Specific bonds, and bond angles were taken in g96 for-
mat to configure the topology of the molecules. Different proper
dihedrals were defined to prevent rotation around a bond and
improper dihedrals were defined to confine four atoms in plane or
tetrahedral configuration. We took CH2 as united atom in which
position of united atom is the position of the heaviest carbon(C)
atom. Fig. 1 shows the models of zwitterion glycine, diglycine and
triglycine molecules respectively. To estimate the diffusion coeffi-
cient of zwitterion glycine in water and to check its dependency
in temperature, two zwitterion glycine molecules were dissolved in
11,112 water molecules in system-I. It was simulated at four dif-
ferent temperature: 293.2 K, 303.2 K, 313.2 K, and 333.2 K. In
order to estimate variation of diffusion coefficient with increase
in monomer units in peptide chain, two zwitterion glycine, two
zwitterion diglycine, and two zwitterion triglycine molecules were
separately dissolved in 1,385 water molecules in system-II, system-
III, and system-IV respectively; and diffusion coefficients were esti-
mated at temperature 298.2 K.22 SPC/E model of water23 was taken
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FIG. 1. Zwitterion glycine (a), diglycine (b) and triglycine (c) with CH2 as united
atom centered at position of atom C.

as solvent in system-I, II, III and IV. Furthermore, to analyse the
system-size dependence of diffusion coefficient and to calculate
shear viscosity, we performed simulations with SPC/E water model
taking cubic box of different sizes (i.e. systems with different num-
ber of solute and solvent molecules). In addition, in system-V, two
zwitterion glycine molecules were dissolved in 1385 water molecules
with TIP4P/200517 water model at 298.2 K to check the dependence
of diffusion coefficients on water models used during simulations.
All the simulations were carried out at pressure of one atmosphere
and under periodic boundary conditions using cubic simulation box.
The number of molecules were chosen to match mole fraction of
experimentally reported data.4,5

During the simulation, if the simulation box contains over-
lapped particles or particle with bad contact, molecular dynamics
may explode and never bring system to equilibrium.18 To avoid
bad contacts and bring the system in minimum potential state,
energy minimization was carried out for each of the systems using
Steepest-descent method.24

Dynamical properties like diffusion, thermal conduction, etc.
depend strongly upon the temperature, and pressure of system.25 To
bring system under study at a condition that best mimics experi-
mental environment, the systems ware equilibrated for 200 ns with
time step of 0.002 ps using NPT (Isothermal-isobaric) ensemble.
LINCS and Leap-frog algorithms24 were used to constrain all bonds
and to integrate equation of motion respectively. The initial veloc-
ities were generated using Maxwell-Boltzmann distribution. The
velocity-rescaling thermostat and Berendsen barostat24 with a cou-
pling time of 0.01 ps and 0.8 ps respectively were used to maintain
constant temperature and pressure. Also, the value of isothermal
compressibility was taken to be 4.5 x 10−5 bar and cut off distance for
both of the non bonded interactions- coulomb and LJ was 1.0 nm.

Particle Mesh Ewald (PME) was used for long-range coulomb inter-
action. Density of the equilibrated system was tallied with exper-
imentally reported values to ensure proper equilibration and to
be sure that the force field parameters are suitable for the system
under consideration. In no case, density of system after equilibration
differed from experimental values by 1.5 percent.

After equilibration of each system, production run was car-
ried out to estimate equilibrium properties of the system taking
NVT ensemble. During production run, velocity-rescaling thermo-
stat with coupling time of 0.01 ps was used and initial velocities were
taken from final step of equilibration run. Each production run was
carried out for 100 ns with time step of 0.002 ps. Structural property
of system after production runwas explored using radial distribution
function (RDF).

IV. RESULTS AND DISCUSSION

We have calculated the self diffusion coefficients of glycine
and water, and their binary diffusion coefficient at four differ-
ent temperature using system-I. Diffusion coefficients of aqueous
glycine, diglycine, and triglycine have been calculated at tempera-
ture 298.2 K. These diffusion coefficients have been calculated by
Einstein method,18 where self diffusion coefficient of any species in
three dimensional isotropic medium is one sixth of slope of mean
squared displacement (MSD) versus time plot as in equation (1).
Structure of systems have been studied using the radial distribu-
tion function (RDF), which gives preferred position of one particle
around other particles.

A. Mean squared displacement (MSD)

Mean squared displacement (MSD) as a function of time is
used to calculate self diffusion coefficient in Einstein’s method. As
statistics is better at beginning than ending region, certain por-
tion has been taken and linear fit of MSD of different molecules
at different temperature are plotted as a function of time for 5 ns.
Fig. 2 is MSD plot of glycine at four different temperature. The
MSD is becoming steeper with increase in temperature. This shows
that rate of diffusion is increasing with the increase in temperature.
Fig. 3 is MSD plot of water at four different temperature and shows

FIG. 2. MSD plot of glycine at four different temperature.
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FIG. 3. MSD plot of water at four different temperature.

FIG. 4. MSD plot of glycine, diglycine and triglycine at temperature 298.2 K.

similar behaviour of MSD plot of glycine in Fig. 2. MSD plot of
glycine, diglycine and triglycine at temperature 298.2 K is shown in
Fig. 4. The MSD line is getting less steep with increase in molecule
size indicating smaller rate of diffusion of larger molecule than that

FIG. 5. MSD plot of water with different solute at temperature 298.2 K.

of smaller molecule at same temperature. MSD plot of water at
298.2 K containing three different solutes is shown in Fig. 5. The
MSD curve is steeper when lighter solute molecules are present.
It indicates that water diffuses faster at given temperature when
smaller solute molecules are present. Figs. 4 and 5 show the effect
of chain length of solute on MSD and diffusion.

B. Self diffusion coefficient

Table I presents the estimated values of self diffusion coefficient
of different molecules at different temperature. The self diffusion
coefficient of zwitterion glycine and water is increasing with increase
in temperature. This happens because random velocity increases
with the increase in temperature.

Self diffusion coefficients of zwitterion glycine, zwitterion
diglycine and zwitterion triglycine each dissolved separately in 1,385
water molecules at temperature 298.2 K and pressure 1 bar is pre-
sented in the same table. The estimated self diffusion coefficient of
these molecules have decreased with the increase in monomer unit
in chain. It could be attributed to size of the molecules. At given
temperature, molecule of larger molecular weight attains smaller
velocity than lighter molecule. Therefore, in the same environment

TABLE I. Estimated values of self diffusion coefficient of diferent molecules at one atm pressure and different temperature.

Water (10−9m2.s−1)

Temperature (K) Solute Dsolute
self (10−9m2.s−1) Dest

self Dexp
self

293.2 Glycine 1.09 2.48 2.0226

Glycine 0.99 2.55 2.3026

298.2 Diglycine 0.70 2.52 2.3026

Triglycine 0.48 2.51 2.3026

303.2 Glycine 1.43 2.97 2.6026

313.2 Glycine 1.81 3.61 3.2226

333.2 Glycine 2.36 5.00 4.7227
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FIG. 6. Binary diffusion coefficient of zwitterion glycine, diglycine and triglycine at
298.2 K temperature.

and physical conditions, large molecules diffuse slowly than small
molecules. As the chain length and molecular weight of molecule
increases from zwitterion glycine, zwitterion diglycine to zwitterion
triglycine, the rate of diffusion decreases. The variation of self dif-
fusion coefficient with size of glycine is shown in Fig. 6. From the
figure, it is noticed that self diffusion coefficient decreases linearly
with increase in monomer unit in chain.

Also from Table I, we observe that at temperature 298.2 K, self
diffusion coefficient of glycine appears less than that at 293.2 K. It
could be because of higher concentration of glycine at 298.2 K com-
pared to that at 293.2 K. The value of self diffusion coefficient of
water has increased with increase in temperature. Estimated values
are slightly greater than experimental values reported in literatures.
The reason is SPC/E water model was used during the simulations
which overestimate the diffusion coefficient.15 The errors has been
reported to be less than 1% and 0.2% respectively by Holz26 and Eas-
tel et al.27 respectively. Further, the self diffusion coefficient could
have been affected by presence of solute. The self diffusion coef-
ficient of water at 298.2 K is slightly smaller in the presence of
larger molecules because of increased hindrance in motion of water
molecules with increased solute size.

C. Binary diffusion coefficient

Binary diffusion coefficient has been calculated for zwitterion
glycine-water mixture at four different temperature, and mixture of
zwitterion glycine - water, zwitterion diglycine - water and zwitte-
rion triglycine - water at temperature 298.2 K using Darken’s rela-
tion (2). Binary diffusion coefficients of different pairs of molecules
at different temperature are presented in Table II and are compared
with experimental values reported in literature.4,5 Dest

binary is binary
diffusion coefficient estimated in present work and Dexp

binary is exper-
imental value of binary diffusion coefficient reported in literature.
With the increase in temperature, thermal agitation of molecules
increases, which boosts the diffusion. This means diffusion coeffi-
cient should be greater at higher temperature.

From Table II, it is noticed that the binary diffusion coeffi-
cient of glycine in water is increasing with increase in temperature,

TABLE II. Binary diffusion coefficient of different pairs of molecules at different
temperatures.

Diffusion coeff.
(10−9m2.s−1)

Solvent Solute Temperature (K) Dest
binary Dexp

binary % Error

Glycine 293.2 1.10 0.944 17.02
Glycine 298.2 0.99 1.065 6.60
Diglycine 298.2 0.70 0.795 11.39

Water Triglycine 298.2 0.48 0.675 28.36
Glycine 303.2 1.43 1.224 17.21
Glycine 313.2 1.81 1.504 20.67
Glycine 333.2 2.36 2.224 6.31

like self diffusion coefficient. Binary diffusion coefficient of glycine,
diglycine and triglycine in water is also following the decreasing
nature of self diffusion coefficient with increase in molecular weight.
Mass of molecules increases from glycine to diglycine and then to
triglycine; and it is seen that the value of binary diffusion coeffi-
cient decreases sharply with increase in number of monomers in
peptide chain as in Fig. 6. The error have been reported to be less
than 2% Umecky et al.4 The standard error in the estimation of self
as well as binary diffusion coefficients are very small and insignifi-
cant compared to the estimated values, where symmetric round off
errors in each estimation of diffusion coefficient is of the order 10−11.
The value of Dext

binary for triglycine has deviated from experimentally
reported value by about 28 percent. It is possible that the united
atom modeling and corresponding force field parameters that we
used might not be adequate for large molecule like triglycine. More-
over, we observe that the effects of united atommodel on calculation
of diffusion coefficients increases as the number of atom in chain
increases.

D. Effect of temperature on diffusion

Diffusion is transport of mass due to concentration and thermal
gradient. It strongly depends upon temperature. We have checked
the temperature dependency of diffusion coefficient of glycine, water
and their binary mixture using Arrhenius formula:28,29

D = De exp(− Ea
NAkBT

) (5)

where De is frequency factor (i.e. pre-exponential factor), Ea the dif-
fusion activation energy, T the absolute temperature, NA Avogadro
number, and kB is the Boltzmann constant. The activation energy of
diffusion process corresponds to the slope of Arrhenius plot, which
is plot between ln(D) and reciprocal of absolute temperature.

Fig. 7 shows the Arrhenius diagram of self diffusion coeffi-
cient of zwitterion glycine, self diffusion coefficient of water, and
their binary diffusion coefficient. From the Figure, it is observed
that diffusion coefficients increase with the increase in temperature.
In the plot, points obtained from simulations have aligned around
straight line. Hence, we can say that diffusion coefficient of these
molecules at different temperature follows Arrhenius behaviour.
As the self diffusion coefficient of glycine and binary diffusion
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FIG. 7. Arrhenius diagram of diffusion coefficient of water, zwitterion glycine, and
their binary mixture.

TABLE III. Activation energy of diffusion.

Activation energy
(Ea) (kJ.mol−1)

System Simulated Experimental % Error

Water 14.14 17.4116 18.78
Binary mixture-simulated 15.52 18.47 15.97

coefficient of aqueous glycine are nearly equal, Arrhenius plots have
overlapped. This is because of very small mole fraction of glycine.
The activation energies are presented in Table III. The experimental
values of activation energy of the binary mixture is obtained by fit-
ting the experimental data of diffusion coefficient. From the table,
it is seen that the simulated values of activation energy for both
glycine and binary mixture agree with previously reported values
within 19%.

E. Effect of system-size

The diffusion coefficient also depends on system-size due
to screening effect of hydrodynamics under periodic boundary

conditions.10,11,30 After the calculation of system-size dependent val-
ues of diffusion coefficients under periodic boundary conditions, we
can calculate the system-size independent value of diffusion coeffi-
cient and also shear viscosity. So, we have studied the dependence
of diffusion coefficient on size of system from simulations of the
systems: (a) 3 glycine molecules and 2078 water molecules in cubic
simulation box of size 3.98 nm [System-a], (b) 5 glycine molecules
and 3464 water molecules in cubic simulation box of size 4.72 nm
[System-b] and (c) 7 glycine molecules and 4849 water molecules in
cubic simulation box of size 5.28 nm [System-c]. The simulations
have been carried out under periodic boundary at 298.2 K temper-
ature with SPC/E water model using same thermostat and barostat
as in the system of 1385 water molecules and 2 glycine molecules.
The calculated values of binary diffusion coefficients for the sys-
tems along with simulated values of self diffusion coefficients are
presented in Table IV.

From the Table IV, it is noticed that the diffusion coefficients
increase with the increase in the size of simulation box, which may
be due to the effect of long-range hydrodynamics interactions in
simulations under periodic boundary conditions.

The system-size independent value of diffusion coefficient D0
is estimated from the graph between simulated values of diffu-
sion coefficients DPBC with periodic boundary conditions versus
reciprocal of size of simulation box (1/L).

Figs. 8 and 9 show the graph between DPBC versus (1/L) for
water taking SPC/E model and solution of glycine and water respec-
tively. Then, we can estimate the system-size independent values of
diffusion coefficient (D0) from intercept and also values of coeffi-
cient of viscosity (η) from slopes of the graphs. The estimated values
of D0 and η are presented in the Table V. From the Table, it is seen
that the calculated values of bothD0 and η for water are smaller than
the previously reported simulated values. Also, from the Table, we
observe that the calculated values of D0 are greater than previously
reported experimental values but values of η are smaller than the
experimental values for both water as well as solution.32 This may be
due to the fact that SPC/E water model overestimate diffusion coef-
ficient but underestimate viscosity and TIP4P/2005 water model is
better for viscosity measurement.15,31

Furthermore, the calculation of dynamical properties like diffu-
sion coefficient, viscosity etc., from simulation depends not only on
simulation parameters like cut-off radius, temperature etc, but also
on water models taken in simulations. As the different models of
water taken in simulations have distinct features on the basis of their

TABLE IV. Simulated values of diffusion coefficients for different size systems at 298.2 K temperature.

Diffusion coefficients (DPBC) (10−9m2 s−1)

Self

For glycine For water Binary

System L (nm) MSD MSD Expe. Calculated Expe. % Error

System-a 3.98 1.13 2.57 1.13 6.60
System-b 4.72 1.16 2.62 2.3026 1.16 1.065 9.43
System-c 5.28 1.17 2.64 1.17 10.94
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FIG. 8. DPBC versus (1/L) plot for water.

FIG. 9. DPBC versus (1/L) plot for system of glycine in water.

number of interaction sites, flexibility or rigidity etc., they matter the
performance of particular properties of the system under consid-
eration.15 Thus, we have also performed the simulations of glycine
in water at temperature 298.2 K using TIP4P/2005 water model for
system-V. Figs. 10 and 11 areMSD plot for glycine and water respec-
tively at temperature 298.2 K using SPC/E and TIP4P/2005 water

FIG. 10. MSD plot of glycine using different water models at temperature 298.2 K.

FIG. 11. MSD plot of water for different water models at temperature 298.2 K.

models. From the Figs. 10 and 11, it is seen that the diffusion of
glycine as well as water also depends upon the water models used
in simulations.

The simulated values of self diffusion coefficient as well as their
previously reported values for different water models are presented
in Table VI and are plotted in Fig. 12. From the table, it is noticed

TABLE V. System-size independent value of diffusion coefficient (D0) and shear viscosity (η) at 298.2 K temperature taking
SPC/E water model.

D0 (10−9m2 s−1) η (10−4 Nm−2 sec)

System Calculated Ref. Expe. % Error Calculated Ref. Expe. % Error

Water (SPC/E) 2.83 2.9715 2.3026 23.04 5.91 6.4015 8.9032 33.60

Solution (Glycine 1.32 – 1.065 24.53 8.10 – 8.999 9.88and water)
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TABLE VI. Simulated values of self diffusion coefficient of glycine and water at
temperatures 298.2 K using different water models.

Self diffusion coefficients (10−9m2 s−1)

For glycine For water

Water models MSD MSD Ref. Expe. % Error

SPC/E 0.99 2.55 2.4933 2.3026 10.87
TIP4P/2005 0.94 2.08 2.0817 9.56

that the SPC/E water models over estimate the value of diffusion
coefficient but TIP4P/2005 underestimate.15,33 Also, it is observed
that the estimated value of self diffusion coefficient for water agrees
with experimental value26 for TIP4P/2005 water model within 10%
and within 11% for SPC/E model. It is also noticed that the both
SPC/E and TIP4P/2005 water models are better to estimate the
diffusion coefficients.

F. Radial distribution function (RDF)

The radial distribution function (RDF), which gives the proba-
bility of finding a pair of atoms located at distance ‘r’, has been used
to analyse the structural properties of system. The RDF that provides
idea about the distribution of molecules around another molecule
as reference shows an oscillation upto certain distance and becomes
unity for liquids. It gives the preferred position of one particle with
respect to other particle. The region from r = 0 up to which the RDF
becomes zero is known as excluded region. For isotropic system, it
is only the function of distance between particles.18,34

Fig. 13 is the RDF of oxygen atom of water (OW) in refer-
ence to oxygen atom of other water molecule (OW). Value of r in
this plot gives the preferred distance of oxygen atom in a water
molecule around other water molecules and value of g(r) gives
relative probability of finding OW. Only three peaks are observ-
able and beyond that value of g(r) is unity which means there
is no correlation between oxygen in water molecules beyond the
position of third peak. van der Waals radius of oxygen atom is

FIG. 12. Self-diffusion coefficients of different water models at 298.2 K.

FIG. 13. Radial distribution function of oxygen of water (OW) in reference of oxygen
of water (OW).

21/6σ = 0.355 nm.24 In the plot, first peak positions are 0.274 nm,
0.275 nm, 0.276 nm, and 0.276 nm and corresponding peak values
are 3.151, 3.053, 2.982, and 2.835 at temperature 293.2 K, 303.2 K,
313.2 K, and 333.3 K respectively. It is observed that the values
of excluded region (ER) and that the first peak position (FPP) are
less than van der Waals radius which indicates that the van der
Waals potential as well as other potentials contribute to the struc-
tural properties of the system. Also, the hydrogen and oxygen atom
in SPC/E model of water has partial positive and negative charges
which introduces Coulomb interaction. Thus, the Coulomb inter-
action is responsible for first peak position being smaller than the
van der Waals radius. Although, Lennard-Jones (LJ) plus Coulomb
potentials have major contribution to structural properties, many
body effects also contributes.16

Fig. 14 is the Radial distribution function of oxygen (OW) in
water molecule in reference of oxygen (O1) in zwitterion glycine.

FIG. 14. Radial distribution function of oxygen (OW) in water molecule in reference
of oxygen (O1) in zwitterion glycine.
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FIG. 15. Radial distribution function of oxygen of water (OW) in reference of
nitrogen (N) in zwitterion glycine.

Fig. 15 is the RDF of oxygen (OW) in water molecule in ref-
erence of oxygen (O1) in glycine. It gives average distribution of
OW and hence the water molecules around O1 in zwitterion glycine.
The first peak positions of OW around O1 at temperature 293.2 K,
303.2 K, 313.2 K, and 333.2 K are 0.280 nm, 0.282 nm, 0.282 nm,
and 0.284 nm while the corresponding peak values are 2.034, 2.024,
1.971, and 1.907 respectively. Fig. 15 is the RDF of OW in refer-
ence of nitrogen (N) in glycine. It gives the distribution of water
molecules around NH3+ terminal of zwitterion glycine. The first
peak positions of OW around N at temperature 293.2 K, 303.2 K,
313.2 K and 333.2 K are 0.294 nm, 0.294 nm, 0.296 nm, and 0.298 nm
while the corresponding peak values are 2.191, 2.161, 2.128, and
2.062 respectively.

In all three RDF plots, with increase in temperature, the first
peak positions have moved farther while heights of first peak have
decreased and their width have increased. These phenomenon indi-
cate the increased random motion with temperature. Further, wide
RDF at higher temperature means more space in between the
molecules. This allows the molecules to move more freely, that
results the increase in diffusion coefficient. Therefore, the increase
in width of RDF means increase in diffusion.

V. CONCLUSIONS AND CONCLUDING REMARKS

We carried out realistic classical molecular dynamics simu-
lation of glycine, diglycine, and triglycine in SPC/E water using
GROMACS software package, where concentration of solutes were
same as previously reported in experiments. The solutions used in
simulation were very dilute, and hence calculated values of binary
diffusion coefficients were nearly equal to self diffusion coefficients
of molecule of extremely small mole fraction. The effect of increase
in chain length from zwitterion glycine to triglycine on diffusion
coefficient was studied and it was observed that diffusion coefficients
decrease with increase in chain length. Also, the effect of tempera-
ture on diffusion coefficient of glycine, SPC/E water and their binary
mixture was studied and we found that diffusion coefficients fol-
low Arrhenius behaviour. The estimated values were in good agree-
ment with previously reported values. Furthermore, we performed

the simulation of glycine in SPC/E water taking simulation box
of different sizes under periodic boundary conditions to study the
size dependence of diffusion coefficient, and hence the system-size
independent values of diffusion coefficient as well as shear viscos-
ity of both solvent and solution were estimated. We also performed
simulations of glycine in water for other TIP4P/2005 water model
and it was noticed that TIP4P/2005 water model also suitable for
diffusion calculation. In addition, the equilibrium structural prop-
erties of the system was studied using radial distribution function
(RDF).

In future, we intend to extend our work to study the trans-
port properties of polymer of glycine in other water models, and
transport properties of other amino acids.
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ABSTRACT

Molecular dynamics simulations have been performed to study the transport properties of the dilute solution of cysteine in water at different
temperatures. Structural analysis of the system has been carried out using radial distribution functions between different atoms of the solvent
and solute. The self-diffusion coefficients of the solute and solvent are estimated from the slope of the mean square displacement vs the time
plot using Einstein’s equation and their binary diffusion coefficients from Darken’s relation. The temperature dependency of diffusion is
demonstrated via Arrhenius plots. We have further extended our work to study the effects of the system size on diffusion and to calculate
the viscosity coefficients of both the solvent and solution. The calculated values are in close agreement with the previously reported results
available in literature.
© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5132777., s

INTRODUCTION

Cysteine, a non-essential amino acid, contains a sulfur atom
in its side chain (CH2–S–H). The covalent link between the cys-
teine molecules is of two types: ordinary peptide bond (CO–NH)
and disulfide bond (R–S–S–R′). Although methionine, an amino
acid, also contains a sulfur atom in its side chain, it does not form
a disulfide bond, neither by itself nor with any other molecules.
Thus, cysteine possesses identical behavior in the formation of a
covalent link during polypeptide chain synthesis. The disulfide bond
plays a significant role in protein folding, stability, and functional
variation.1,2

Cysteine is a white crystalline solid having a molar mass of
121.15 g/mol and a melting point of 513 K. Its solubility in water is
16 g per 100 ml at 288 K. However, cysteine exhibits a hydrophobic
nature, due to which it generally resides in the interior of proteins.
Cysteine is essential for the synthesis of highly anti-oxidative glu-
tathione, which is important in the detoxification and protection of
various tissues and organs in the body. Furthermore, cysteine con-
tributes to the absorption of nutrients from the intestinal wall and
in the metabolism of lipids. It enhances fertility and strengthens the

immune system, thus aiding prevention of dementia, multiple scle-
rosis, and Parkinson’s disease.3 It is also recognized as an anti-aging
amino acid. All these functions place cysteine in a special position
that cannot be substituted by any other amino acid.4

The cysteine molecule as a residue in the protein chain plays
a crucial role in the DNA–protein interaction. In the DNA methy-
lation repair mechanism, cysteine works in the suicidal reaction in
methyl-transfer from methyl-DNA to cysteine itself.5 Cysteine not
only plays a role in biomolecular interactions, but also acts as the
catalytic agent in the electroreduction process of metals such as bis-
muth and gold in the appropriate solvents.6 Therefore, the study of
the mechanical properties of cysteine is necessary in biological and
material sciences.

The term transport phenomenon means the process by which
the mass, linear momentum, angular momentum, energy, and
charge are transferred from one part of the system to another
due to non-uniformity or inhomogeneity of the system. Diffu-
sion, an important transport property, is the phenomenon in which
mass is transferred as a result of random molecular motion. Var-
ious experimental techniques such as the peak-height method,7
nuclear magnetic resonance (NMR), and molecular dynamics (MD)
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simulations8 have been performed to study the diffusion phe-
nomenon of amino acids in water. These studies were mainly con-
cerned about the effect of concentration, polarity, and temperature
on the diffusion of amino acids.

Based on the consideration of chemical parallel of its sulfhydryl
(R–S–H) and hydroxyl (O–H) groups in the side chain of other polar
amino acids, the cysteine molecule appears due to the hydrophilic
nature; however, free cysteine molecules are found in the hydropho-
bic region of proteins.9,10 Since the cysteine side chain is hydropho-
bic in nature, it tends to enhance the diffusion in water. However,
the sulfur atom at the cysteine side chain tends to reduce the diffu-
sion, as it has a relatively higher atomic mass than basic elements
in organic compounds, such as carbon, nitrogen, and oxygen.11–13
The study of the effect of the hydrophobic interaction for rela-
tively heavy molecule on the diffusion coefficient would be exciting.
Importantly, the thiol –SH site of the cysteine residue in antibodies
is functionally active in the interaction with metals such as gold and
in bio-sensing. The cysteine molecule, after breakage of the disulfide
bond in the peptide chain, plays a very important role in function-
alizing the gold surface and immobilizing the antibody. Although
gold is an inert metal, it can be made chemically active by interact-
ing with a peptide sequence, basically interacting with sulfur avail-
able in the thiol group –SH of the cysteine residue.14 Moreover, as
the cysteine in combination with tryptophan can act as the strong
link to bind refractory bio-receptors, it has wide applications in
bio-sensing.15

Since amino acids are the building blocks of protein molecules,
they have many similarities with more complex biomolecules such
as antibiotics. Antibiotics are widely used in medicines and nutri-
ents.16 Therefore, the measurement of diffusivity of amino acids is
important in designing the drugs. Moreover, its efficiency of move-
ment in solution can be quantitatively measured by determining the
coefficient of viscosity in aqueous solutions.

Thus, a comprehensive study of the diffusion process and
viscous property of amino acid molecule in water is essential to
understand life processes and the physical mechanism of inorganic
compounds. Many researchers have already studied the mechanical
properties of some amino acids.6,17 To the best of our knowledge,
the diffusion coefficient and coefficient of viscosity of the cysteine
molecule in water using MD simulation has not yet been studied.
Therefore, we intend to study these properties of cysteine.

DIFFUSION

Diffusion is a dynamic property of matter in which its particles
are transported from the higher concentration region to the lower
concentration region. It occurs due to the concentration inhomo-
geneity and thermal agitation of particles.18 Diffusion plays many
important roles in non-living substances as well as in living organ-
isms. The diffusion in a homogeneous system having no chemi-
cal concentration gradient is called self-diffusion, and the corre-
sponding diffusion coefficient is termed self-diffusion coefficient.19
Einstein’s equation is used to calculate the self-diffusion coeffi-
cients, which relates the diffusion coefficient with the mean square
displacement (MSD) of the particles,20,21

D = lim
t→∞
�[r(t) − r(0)]2�

6t
. (1)

In Eq. (1), r(t) − r(0) is the displacement of the particle from the ref-
erence point during the course of time t, [r(t) − r(0)]2 is the square of
displacement, and ��� represents the ensemble average, and hence,�[r(t) − r(0)]2� gives the MSD of the particle.

Binary diffusion is the diffusion of particles in the mixture of
two different substances. It is the quantitatively measured diffusion
coefficient using Darken’s relation22

D12 = N2D1 +N1D2. (2)

In Eq. (2), D12 is the binary diffusion coefficient, D1 and D2 are the
self-diffusion coefficients of substances 1 and 2, respectively, and N1
and N2 are the corresponding mole fractions.

In order to estimate the diffusion coefficients, simulations are
carried out using periodic boundary conditions (PBC). Under PBC,
the diffusion strongly depends on the size of the simulation box
as suggested by Yeh and Hummer23 due to the long range nature
of hydrodynamics interaction. The effect of the system size on the
diffusion coefficient (DPBC) under periodic boundary conditions is
accounted for by23–25

D0 = DPBC +
2.84 kBT
6πηL ,

where D0 is the system-size independent value of the diffusion coef-
ficient, DPBC is the simulated value of the diffusion coefficient in the
cubic box of size L under periodic boundary conditions (PBC), kB is
the Boltzmann constant, T is the absolute temperature of the system,
and η is the shear viscosity of the solvent,

or, DPBC = D0 − 2.84 kBT
6πηL . (3)

From the intercept and slope of Eq. (3), the values of D0 and η are
estimated.

COMPUTATIONAL DETAILS

Molecular dynamics simulations were performed for the sys-
tem of 3 cysteine and 1039 water molecules in a cubic box of size
3.17 nm at five different temperatures; 288 K, 293 K, 303 K, 313 K,
and 323 K. The Extended Simple Point Charge (SPC/E) water model
and Optimized Potentials for Liquid Simulations-All Atom (OPLS-
AA) force field parameters were used in the simulations. All the
bonded and non-bonded interaction parameters are assigned in the
OPLS-AA force field by default, and the parameters for SPC/E26

water model are included in the file spce.itp inherent to GROMACS
5.1.1.27 In addition, the same atom possesses different partial charges
based on the group of attachment. The Coulomb interaction occurs
due to the partial charge existing in the atoms/molecules. Likewise,
the van derWaal’s interaction occurs as a result of the induced dipole
interaction.

The coordinates assigned for the molecules in the .pdb file
may not be the equilibrium structures, rather they are initial guess
from the electron probability density map produced by x-ray diffrac-
tion (XRD) or nuclear magnetic resonance (NMR). In addition,
molecules may have been under steric hindrance, which may pro-
duce unnecessary strain in the system. In order to remove the
effects and to bring the system at the minimum potential energy
state, the energy minimization process was carried out using the
Steepest-descent algorithm.27
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After energy minimization, the system is ready to study the
dynamic properties. However, the dynamical properties, such as
diffusion and viscosity, usually vary with the parameters such as
temperature, pressure, and density.28 Therefore, before starting the
production run, these aforementioned parameters should be kept
constant during simulation, and the system under study is to be
brought in the state of thermodynamic equilibrium, which is known
as equilibration of the system. To bring the system to the state of
thermodynamic equilibrium, we performed the equilibration run
for each system in NPT ensemble. The velocity rescaling thermo-
stat with a temperature coupling time of 0.01 ps and the Berendsen
barostat with a coupling time of 0.8 ps were used during each sim-
ulation.27 The isothermal compressibility of 4.6 × 10−5 bar−1 was
taken. The Linear Constraint Solver (LINCS) constraint algorithm
was applied to convert all bonds into constraints during the equi-
libration run.27 The cutoff distance of 1 nm was taken for both
Coulomb and Lennard-Jones (LJ) interactions, and the long range
Coulomb interaction was accounted for using the PME (Particle-
mesh Ewald) method with a Fourier spacing of 0.12 nm. To start
up the equilibration run, the velocity of the molecules should be
assigned. Maxwell–Boltzmann distribution was used to generate the
initial velocities for the particles in the system. To obtain new posi-
tions and velocities of the particles after each time step, the leapfrog
algorithm27 was chosen. Each equilibration run was performed for
50 ns with a 1 fs time step.

Consequently, the production run of each system was per-
formed to calculate the transport properties of the system in the
NVT ensemble for 50 ns with a time step of 1 fs taking velocity-
rescaling thermostat with a coupling time of 0.01 ps. Furthermore,
it is not required to generate the initial velocities in the NVT run
as the simulation continues with the velocities generated in the
equilibration run.

RESULTS AND DISCUSSION

In this section, we present structural analysis and transport
properties of the system at different temperatures.

STRUCTURE OF THE SYSTEM

The radial distribution functions (RDF) between the pair of
atoms are used to analyze the structural properties of the system.
For this, we have plotted the RDF between oxygen atoms of water
molecules [gOW–OW(r)] and carboxyl oxygen of cysteine and oxygen
of water [gOC–OW(r)] at five different temperatures.

Figure 1 shows the RDF between oxygen atoms of water
molecules at the following temperatures: 288 K, 293 K, 303 K, 313 K,
and 323 K.

The values of the excluded region (ER), first peak position
(FPP), first peak value (FPV), second peak position (SPP), second
peak value (SPV), third peak position (TPP), and third peak value
(TPV) of RDF gOW–OW(r) are presented in Table I.

In Fig. 1, there are three distinct peaks. The first peak, which
is located at the separation of about 0.27 nm from centered atom’s
position, is the highest and sharpest. This implies that, at this posi-
tion, the maximum number of oxygen atoms is clustered from the
reference oxygen atom. In other words, the probability of finding
oxygen atoms at the first peak position is the highest. This is the

FIG. 1. RDF plot of oxygen–oxygen of water molecules, gOW–OW(r), at different
temperatures.

most preferable position or minimum energy position from the cen-
tered atom. The value of the Lennard-Jones parameter σ of oxygen in
water is 0.3166 nm and the van derWaal’s radius is (2 1

6 σ) ≈ 0.36 nm.
However, the FPP in our system is 0.27 nm less than 0.36 nm. This
reveals the fact that there is not only the LJ interaction between oxy-
gen atoms of water, but also other interactions such as Coulomb and
bonded interactions are present.

The second and third peaks are relatively shorter and wider,
which are located approximately at positions 0.45 nm and 0.68 nm,
respectively. The excluded region, in which RDF is zero, has
extended up to 0.24 nm from the center of the reference oxygen
atom. Any other oxygen atom cannot exist within the excluded
region due to strong repulsive forces, namely, the r−12 term of the
LJ interaction and repulsive Coulomb interactions.29 We have also
studied the effect of temperature on RDF. With the increase in tem-
perature, the peak positions are shifted to right, heights of the peaks
are decreased, and widths are increased (see Table I). This reflects
that our system has become less organized with the increase in tem-
perature. The increase in thermal agitation of atoms in the system
with rising temperature accounts for this fact. Furthermore, beyond
the third peak graph is the straight line possessing the unit value on

TABLE I. Details of RDF of oxygen–oxygen atoms of water molecules at different
temperatures.

RDF analysis of OW–OW atoms

T ER FPP SPP TPP
(K) (nm) (nm) FPV (nm) SPV (nm) TPV

288 0.240 0.274 3.230 0.450 1.140 0.682 1.049
293 0.240 0.274 3.175 0.450 1.129 0.680 1.048
303 0.240 0.274 3.077 0.450 1.110 0.686 1.043
313 0.240 0.276 3.000 0.450 1.096 0.690 1.041
323 0.240 0.276 2.945 0.450 1.091 0.686 1.037
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FIG. 2. RDF plot of carbonyl oxygen of cysteine and oxygen of water, gOC–OW(r),
at different temperatures.

average. This indicates that there is no pair correlation of the oxygen
atoms.

The RDF gOC–OW(r) gives the insight into how the carbonyl
oxygen atoms of cysteine are organized around the oxygen atom
of water. Figure 2 represents the RDF gOC–OW(r) at the above-
mentioned temperatures. From the figure, it is clearly seen that the
RDF has two noticeable peaks. The values of ER, FPP, FPV, SPP, and
SPV are tabulated in Table II.

The first peak, which is located at the separation of about
0.33 nm from the position of the reference oxygen atom of water,
is the highest and sharpest. This implies that, at this position,
maximum number of carbonyl oxygen atoms of cysteine clustered
from the reference oxygen atom. Therefore, this is the most pre-
ferred position of carbonyl oxygen atoms to cluster around the
oxygen atom of water. The second peak is relatively shorter and
wider, which is located approximately at the position of 0.58 nm.
The excluded region extends up to 0.24 nm from the center of
the reference oxygen atom. It is not possible to find any car-
bonyl oxygen within the excluded region due to strong repul-
sive forces. Beyond the second peak, there is no pair correla-
tion of carbonyl oxygen atoms and the reference oxygen atom of
water.

TABLE II. Details of RDF of carbonyl oxygen of cysteine and oxygen of water at
different temperatures.

RDF analysis of OC–OW atoms

T (K) ER (nm) FPP (nm) FPV SPP (nm) SPV

288 0.240 0.336 1.125 0.584 1.018
293 0.242 0.338 1.094 0.590 1.020
303 0.242 0.336 1.185 0.578 1.031
313 0.242 0.336 1.092 0.580 1.026
323 0.242 0.336 0.985 0.586 1.003

FIG. 3. MSD vs time plot of cysteine at different temperatures.

DIFFUSION COEFFICIENTS

The self-diffusion coefficients of cysteine and water have been
calculated for five different temperatures by using the corresponding
MSD curves. We have determined the self-diffusion coefficient from
the slope of the MSD plot according to Einstein’s equation (1).

We have plotted the MSD curves for 3 ns for all tempera-
tures, even though the production run was done for 50 ns as statis-
tics is better at the beginning than the ending region of the plot.
Figures 3 and 4 show the MSD vs time plot for cysteine and water
at 288 K, 293 K, 303 K, 313 K, and 323 K temperatures. The
study has shown that as the temperature increases, the slope of
the MSD curves also increases, which in turn increases the self-
diffusion coefficient. The estimated values of self-diffusion coeffi-
cients of cysteine and water and their binary diffusion coefficients
are presented in Table III with previously reported experimen-
tal values. Table III demonstrates that the simulated values of the

FIG. 4. MSD vs time plot of water at different temperatures.

AIP Advances 10, 025122 (2020); doi: 10.1063/1.5132777 10, 025122-4

© Author(s) 2020



AIP Advances ARTICLE scitation.org/journal/adv

TABLE III. Estimated values of self and binary diffusion coefficients at different temperatures.

Diffusion coefficients (DPBC) (10−10 m2 s−1)

Self

For cysteine For water Binary

S.No. Temp. (K) MSD MSD Expt.30 Error (%) Cal. Expt.7 Error (%)

1 288 8.17 ± 1.10 19.63 ± 0.01 17.66 11.16 8.20 7.90 3.80

2 293 9.01 ± 0.27 22.12 ± 0.14 20.25 9.23 9.05 . . . . . .

3 303 10.81 ± 0.41 27.38 ± 0.03 25.97 5.43 10.86 . . . . . .

4 313 13.78 ± 2.79 32.95 ± 0.20 32.22 2.26 13.84 . . . . . .

5 323 16.29 ± 0.51 40.19 ± 0.05 39.83 0.90 16.36 . . . . . .

self-diffusion coefficients are in agreement with that of experimen-
tal values within 12% error. The error in the experimental values
of self-diffusion coefficient of water, as reported by Holz,30 is less
than 1%.

The self-diffusion coefficients of cysteine and water at partic-
ular temperatures obtained in the previous sections are now used
for the calculation of binary diffusion coefficients by using Darken’s
relation (2). We have simulated three cysteine molecules and 1039
water molecules, 1042 molecules in total. Thus, the mole fraction
of cysteine is 0.003 and that of water is 0.997. The calculated values
of binary diffusion coefficients and the corresponding experimen-
tal values are shown in Table III. The calculated value of the binary
diffusion coefficient agrees within 4%7 with the experimental value
at 288 K. In addition, the calculated values of diffusion coefficients
increase with the increase in temperature because the thermal energy
of molecules increases with the increase in temperature but the den-
sity of the system decreases, which in turn increases the available
space for diffusion. Thus, the molecular movement in the system
is enhanced, and hence, the diffusion coefficient increases at higher
temperatures.

Temperature dependency of diffusion

As observed in Table III, the diffusion phenomenon is strongly
dependent on temperature. The temperature dependent behavior of
diffusion is given by the Arrhenius equation29

D = D0 e
−Ea

NAkBT . (4)

In Eq. (4), D is the diffusion coefficient, D0 represents the pre-
exponential factor, Ea is the activation energy for diffusion, NA is
the Avogadro’s number whose value is 6.022 × 1023 mol−1, kB is the
Boltzmann’s constant whose value is 1.38 × 10−23 J K−1, and T is
the absolute temperature. On taking natural logarithm in Eq. (4),
we get

lnD = lnD0 − Ea
NAkBT

. (5)

The activation energy Ea for diffusion can be obtained from the slope
of lnD vs 1

T plot (Arrhenius plot) as

Ea = −NA kB
@ lnD
@(1�T) . (6)

The intercept when extrapolated to the 1/T → 0 in the Arrhenius
plot gives the pre-exponential factor.

Figure 5 depicts the Arrhenius plot of the simulated values of
self-diffusion of cysteine. The activation energy for self-diffusion of
cysteine calculated using the slope of the linear fit of simulated values
is found to be 15.49 kJ mol−1.

Figure 6 portrays the Arrhenius plot of both the simulated
and experimental values of self-diffusion of water. The activation
energies for self-diffusion of water calculated using the correspond-
ing slope of the linear fit of simulated values and experimen-
tal values are found to be 15.67 kJ mol−1 and 17.88 kJ mol−1,
respectively.

Figure 7 displays the Arrhenius plot of simulated values of
binary diffusion of cysteine in water. The activation energy for
binary diffusion of cysteine in water calculated using the slope of
the linear fit of simulated values is found to be 15.50 kJ mol−1.

FIG. 5. Arrhenius diagram for self-diffusion coefficients of cysteine.
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FIG. 6. Arrhenius diagram for self-diffusion coefficients of water

FIG. 7. Arrhenius diagram for binary diffusion coefficients of the binary mixture of
cysteine and water.

Figures 5–7 demonstrate the temperature dependency of diffu-
sion. From these plots, it is seen that the diffusion coefficients are
found to increase with temperature. We have calculated the activa-
tion energies for diffusion of cysteine, water, and their binary mix-
ture by using the slopes of the respective Arrhenius plots, which are
tabulated in Table IV.

From Table IV, it is observed that the activation energies for
self-diffusion of cysteine and for the binary diffusion of cysteine

TABLE IV. Activation energies for diffusion.

Activation energy (Ea) (kJ mol−1)

System Simulated Experimental Error (%)

Cysteine 15.49
Water 15.67 17.8830 12.36
Binary mixture 15.50

TABLE V. Estimated values of diffusion coefficients for different sizes (L) of systems
at 288 K.

Diffusion coefficients (DPBC) (10−10 m2 s−1)

Self

For cysteine For water Binary

L (nm) MSD MSD Expt. Calculated Expt. Error (%)

2.76 8.08 19.36 17.6630 8.11 7.907 2.7
3.17 8.17 19.63 8.20 3.8
3.75 8.47 20.21 8.50 7.6

in water are almost same. This implies that the concentration of
cysteine in the system is infinitesimal. Furthermore, the activa-
tion energy calculated for simulated and experimental values of
self-diffusion of water is in agreement with the error of 13%.

Effect of system size on diffusion

Moreover, the diffusion coefficient under periodic boundary
conditions (PBC) also depends on the size of the system.23 In the
above calculation, the diffusion coefficient has been calculated at dif-
ferent temperatures under periodic boundary conditions. Now, the
simulation was extended to find how the diffusion coefficients vary
by changing the size of the box. For this, other two systems were set
up: (i) 2 cysteine in 693 water molecules in the box of size 2.76 nm
and (ii) 5 cysteine in 1732 water molecules in the box of size 3.75 nm.
The estimated values of diffusion coefficients under periodic bound-
ary conditions with simulation boxes of different sizes are tabulated
in Table V.

In addition, the values of the viscosity coefficient of water and
the solution of cysteine in water were determined at 288 K. They
were calculated by plottingDPBC vs 1/L in accordance with Eq. (3) as
in Figs. 8 and 9. The estimated values of the viscosity coefficient of
water at targeted temperature are in agreement with the experimen-
tal value within 38%. This error might be the nature of the water

FIG. 8. D0 vs (1/L) plot for water at 288 K.
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FIG. 9. D0 vs (1/L) plot for solution of cysteine in water at 288 K.

TABLE VI. System-size independent value of the diffusion coefficient (D0) and
viscosity coefficient (η) for water and solution at 288 K.

D0 (10−10 m2 s−1) η (10−4 Nm−2 s)

System Cal. Expt. Error (%) Cal. Expt. Error (%)

Water 22.39 17.6630 26.8 7.10 11.37 37.6
Solution 9.59 7.907 21.4 14.57

model SPC/E used for solvation, which underestimates the value of
viscosity.31 The viscosity coefficient of solution is found to be greater
than that of water as presented in Table VI.

CONCLUSIONS

In this work, we have performed the molecular dynamics study
of transport properties of cysteine in SPC/E water molecules at
288 K, 293 K, 303 K, 313 K, and 323 K temperatures using the
GROMACS 5.1.1 software package. We used OPLS-AA force field
parameters throughout the simulation. The structures of the solute
and solvent of the system are studied via radial distribution func-
tions between atoms. The analysis of the RDF plots at different
temperatures reveals that the system becomes less organized with
the increase in temperature.Moreover, Lennard-Jones andCoulomb
interactions, including many body effects, contribute to the struc-
tural properties of the system.

The self-diffusion coefficients of both cysteine and water are
determined by using the Einstein’s equation. In addition, the dif-
fusion of the binary mixture of cysteine and water is calculated by
using Darken’s relation. The simulated values obtained are com-
pared with the corresponding experimental values. The simulated
values of self-diffusion coefficients of water show excellent agree-
ments with experimental values, especially at higher temperatures
andwith a small deviation (∼11%) at low temperatures (288 K). Like-
wise, the simulated values of the binary diffusion coefficient of cys-
teine in water were compared with the available experimental values
at 288 K. This comparison shows very little deviation of about 8%.

Furthermore, the estimated values of diffusion coefficients increase
with the increase in temperature, which follows the Arrhenius plots.
We also estimate the activation energies of diffusion. We have com-
pared the calculated value of activation energy for self-diffusion of
water with the experimental value, which is in agreement with the
error of 13%. In addition, we have studied the effect of the system
size on diffusion, and the viscosity coefficients of both water and
solution are estimated at 288 K.

As the further extension of this work, we have a plan to study
the transport properties of polycysteine in aqueous medium.
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Abstract
SARS-CoV-2 virus is the serious health concern throughout theworld. A comprehensive investigation
of binding of SARS-CoV-2 active site with host receptor protein hACE2 is important in designing
effective drugs. In the present work, themajor amino acid binding partners between the virus CTD
and host receptor have been studied and are comparedwith SARS-CoVRBDbindingwith hACE2.
Our investigation show that some unique hydrogen bond pairs whichwere not reported in previous
work. Alongwith hydrogen bonding, salt-bridges, hydrophobic interactions and contributions of
electrostatic and van derWaals contacts play significant role in bindingmechanism. The binding
affinity of SARS-CoV-2CTD/hACE2 is greater than SARS-CoVRBD/hACE2. This outcome is also
verified from the free energy estimation by using umbrella sampling.

1. Introduction

Corona virus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome (SARS)-like corona
virus (SARS-CoV-2), is a serious health concern for the global community [1–4]. Although the origin of the virus
is still unclear, it has been spread all over theworld threatening the human civilizations after its initial outbreak
fromChina in 2019. Till date,more than 52millions infected population has been reported globally andmore
than 12 hundred thousands people have lost their lives [5]. There is no approved drug or vaccine against the
COVID-19, even though several antiviral drugs have been proposed and are also in clinical trials [6].
Understandingmore about interactions of this viruswith human body is highly demanding at this pandamic
time to design drugs. SARS-CoV and other viruses had also threatened the human society at different periods;
however the influence of SARS-CoV-2 is significantly higher than other viruses throughout the globe.

SARS-CoV-2 hasmore than 70 percent of structural similaritywith SARS-CoV;most of the residues at binding
interface are similar [7, 8]. SARS-CoV-2 similarwith SARS-CoVandother corona viruses utilize samehuman
angiotensin converting enzyme2 (hACE2) receptor to enter into human cell. This entry process ismediated by the
spike(s) glycoproteinwhich are embedded in the capsid of SARS-CoV-2 [9]. The spike protein is subdivided into
two receptor binding entities S1 andS2. S1 is responsible in the detection of receptor,whereas S2plays important
role inmembrane fusion. Similar to SARS-CoV,C-TerminalDomain(CTD)of S1 subunit of spike protein in
SARS-CoV-2 acts as receptor bindingdomain (RBD) [10, 11]. Even thoughboth SARS-CoVand SARS-CoV-2
have samebinding domain, thebinding affinity of SARS-CoV-2 is different from that of SARS-CoV [12, 13].

Immediately after theCOVID-19outbreak, several researcheshavebeen carriedout to identify thenature and
locationof bindingof SARS-CoV-2CTDwithhACE2using static crystal structure [14, 15]. Although, these researches
have attempted todetect the entryprocess andbindingmechanismof SARS-CoV-2withhACE2, thebreakthroughon
drugdesigning is still challenging. Severalworks are in thewayofhopeful future, explorationofdetail binding
mechanism is still being essential.Moreover, thedetail dynamicsof SARS-CoV-2 andhACE2canbe very important to
design thedrug.Whenwewere independentlyworkingon thebindingmechanismof SARS-CoV-2withhost receptor
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hACE2, in themean time similar typeof researchworkshavebeenpublished [12].Howeverour technique aswell as
some results aredifferent frompreviousworks.

We focuson the estimationof free energydifferenceof virusprotein andhACE2complex.The free energy
calculationprovides in-depth insight on thebindingmechanismbetween theproteinmolecules [16]. There are several
experimental techniquesofmeasuringbinding free energy suchas isothermal titration calorimetry (ITC) [17],
fluorescence resonance energy transfer (FRET) [18], nuclearmagnetic resonance (NMR) [19], surfaceplasmon
resonance (SPR) [20] andmanyothers.The computational approachcanbe thebest complement for large scale
investigations [21–23].Outofmany computational approach,umbrella sampling is oneof thewidelyusedmethod for
the estimationof free energy in largemolecular systems [24, 25]. It improves the sampling systembydesigning and
implementing thebiasingpotentials as a functionof reaction coordinates [26, 27]. If an energybarrier exists inbetween
tworegionsof configuration states, theremaybepoor sampling, despite the long simulation runbeing carriedout.The
appliedbiasingpotential bridges such configuration states andmakes it easier in searching local or globalminima,
which canbeconsidered as the structurally favorable state in themolecular complex [28]. Besides these techniques, free
energy canbe calculateddirectly fromsteeredmoleculardynamics (SMD) [29, 30].

In thepresentwork,wehave carriedoutmoleculardynamics (MD) simulations for the comprehensive studyof
bindingmechanismof SARS-CoV-2CTDwithhACE2andalso comparedwithSARS-CoV-RBD/hACE2. In addition,
umbrella samplingmethodhasbeenexecuted to estimate thebinding free energyof SARS-CoV-2CTD/hACE2.
Requiredwindows for theumbrella samplinghavebeen taken fromsteeredmoleculardynamics (SMD) [31]
simulations. In SMD,SARS-CoV-2CTDhasbeen translated taking thehACE2as the referencemolecule.The
quantitative estimationof binding affinitybetween the targetedmolecules facilitates in silico-drugdesigning.Wehave
alsoperformedcomparative studyof various interactions suchashydrogenbonding, salt bridges, hydrophobic,
electrostatic andvanderWaals interactions at thebinding interfaceof SARS-CoV-2andSARS-CoVwithhACE2.
Furthermore, the contact surface areaof these complexeshavebeen estimatedandcompared to investigate the stability.

2.Methods

2.1. System set up
Twomolecular structures, PDBIDs6LZGand2AJF,were taken for themoleculardynamics simulations.ThePDBID
6LZGcontains the complexof SARS-CoV-2CTDandhACE2 receptorprotein (i.e., SARS-CoV-2CTD/hACE2
complex) and thatofPDBID2AJFcontains the complexof SARS-CoVRBDandhACE2 receptorprotein
(i.e., SARS-CoVRBD/hACE2complex) [32].CHARMM-GUI [33]wasused to create thepdbandpsffiles of these
complexes.Then,both the complex structureswere solvatedusingTIP3P [34]water andelectricallyneutralizedby
addingNaCl.Wehave added theNaCl in the systemwith concentration0.15MbyusingCHARMM-GUI. In
SARS-CoV-2CTD/hACE2complex system220Na+ ions and197Cl− ionswere added toneutralize the system.
Similarly inSARS-CoVRBD/hACE2complex system214Na+ and188Cl− ionswere added so that the system
becameneutral.A cubical boxofdimensions 144× 144× 144Å3wasprepared forNPTsimulationof the complex
SARS-CoV-2CTD/hACE2andanother cubical boxofdimensions 131× 131× 131Å3wasprepared forNPT
simulationof the complexSARS-CoVRBD/hACE2.Further, twoequal sizedorthorhombic simulationboxeswere
prepared inorder to estimate the free energydifferencesof above complexesby changing thedimensions to
250× 90× 90Å3 andelectricallyneutralizedbyaddingNaClwith concentration0.15M.

2.2.Molecular dynamics simulation
All atommolecular dynamics (MD) simulationswere performed usingNAMD [31] simulation package. The
CHARMM36m [35] forcefieldwas used for each simulations. The ParticleMesh Ewald (PME) [36]was used for
the long-range interactions with a 12.0Å non-bonded cut-off. The energyminimizationwas performed for
10,000 steps, using the conjugate gradient and line search algorithm [37, 38]. The systemwas then equilibrated at
310K for 10 nswith harmonically restrained heavy atoms taking 1 fs time step. Finally, the production runwas
propagated for 250 ns simulation underNPT conditions by using Langevin dynamics with a damping constant
of 1 ps−1 taking time step of 2 fs.

2.3.Molecular dynamics and umbrella sampling
Toperform the umbrella sampling, sample windowswere chosen from steeredmolecular dynamics (SMD)
trajectories. During SMD,CTD/RBDof SARS-CoV-2CTD/SARS-CoVRBDwere pulled correspondingly
towards the negative x-directionwith constant velocity pullingmethod of velocity 0.00005Å/fs. In this process,
the alpha carbons of hACE2 proteinwere taken as the fixed atoms and alpha carbons inCTD/RBDpart of spike
protein of the systemswere taken as the dummy atoms. CTD/RBDof spikes were pulled from their center of
mass (COM) along the negative x-directionwith constant velocity �v dx dt( )G G

inwater and ions environment.
Then the SMDatomexperiences the force � � %F t k v t x( ) ( )G G G

, providing the external potential energy,
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� � %U x t k v t x n,
1

2
. 12( ) ( ˆ) ( )G G

where, k (=5 kcal mol−1Å−2) is the spring constant and gives the stiffness of the applied harmonic restraining
force, and% � �x t x t x0( ) ( )G G G

, is the displacement of SMDmolecules from initial position x0
G
to

instantaneous position x t( )G
and n̂ is the unit vector along the direction of pulling.

Outofmanyother techniquesof free energy calculations [39], umbrella samplingwasperformed to investigate the
free energydifferenceduring the translationof SARS-CoV-2CTDfromhACE2protein for systemSARS-CoV-2
CTD/hACE2; and identical condition is applied for systemSARS-CoVRBD/hACE2. SMDtrajectorieswereused to
select the appropriatewindows. Identifying the informationon the terminationofmolecular interactions fromSMD,
weestimated thenumberofumbrellawindows inboth the systems.Tenwindowswereprepared inSARS-CoV-2
CTD/hACE2and sixwindowswereprepared for SARS-CoVRBD/hACE2complexes. Every successivewindowwas
taken fromtheSMDtrajectories during the translationof1Å along thenegative x-direction.Thewindowsize ensures
the sufficientoverlappingof successivewindows to cover the entire reaction coordinate space.The reactioncoordinate
was chosenas thedistancebetween the center ofmass (COM)ofhACE2andCTD/RBDspike along thenegative
x-axis. Tomake thenecessaryoverlapping reactioncoordinates, a bias potential of the ithwindowVi(x)wasused to
force the system tofluctuate in coordinate space,which is givenby,

� �V x k x x
1

2
2i i 0

2( ) ( ) ( )

where x0 is the harmonic constraint defining a center of window i (i=1 to 10 for for SARS-CoV-2 and 1 to 6 for
SARS-CoV), and force constant k is thewindowwidth.We used the force constant of 1.5 kcal mol−1Å−2.

2.4.Data analysis
VisualMolecularDynamics (VMD) [40] andPymol [41]wereused tovisualize aswell as generate imagesof the
complex structures .VMDanalysis toolswereused to identify andanalyzenon-bonded interactionsbyusing the
simulation trajectories.TheNAMDenergyplugin, available inVMD,wasused to calculate thenon-bonded interaction
energy contributions.Pycontact [42] softwarepackagewasused to analyzed thehydrophobic interactions and salt
bridges between the targetedprotein residues inCTD/RBDof spikeprotein andACE2.WeightedHistogramAnalysis
Method (WHAM)program [43]wasused to estimate the free energy fromumbrella sampling simulation.The free
energy calculationof largemolecular system is generally computationallydemanding.Thismethodminimizes the
statistical errors aswell as increases the efficiencyof computational simulation.Moreover, it has the advantageof
multipleoverlappingof probabilitydistributions for obtainingbetter estimationof free energy calculations.

3. Results

3.1. Conformational variation in complexes
Toexamine the conformational variationduring thedynamics,wehave estimated the rootmean squaredeviation
(RMSD)of eachmolecule onSARS-CoV-2CTD/hACE2andSARS-CoVRBD/hACE2complexes.BesidesRMSD,
contact surface areabetween themoleculeswithin the each complexhas alsobeen calculated forboth complexes.

We have calculated theRMSD for all atoms of proteins backbonewithout taking hydrogen atoms. The
structure fromfirst step of the simulationwas taken as the reference to calculate the RMSD. TheRMSDof
hACE2 and spike CTD/RBDhave been compared separately to evaluate the structural integrity of themolecules.
Figures 1(a) shows the RMSDof hACE2molecule in SARS-CoV-2CTD/hACE2 and SARS-CoVRBD/hACE2
complexes andfigure 1(b) represents the RMSDof spike CTD/RBD. From thefigure, it is observed that RMSD
of hACE2 of SARS-CoV-2CTD/hACE2 is smaller than that of SARS-CoVRBD/hACE2. RMSDof both the
systems are stable with the values below 3.0Å and 4.5Å for CoV-2 andCoV respectively. SARS-CoV-2CTDhas
the RMSDof 2.5Å, whereas the RMSDof SARS-CoVRBD is 4.0Å. This shows the large rearrangements of
structure in SARS-CoVRBD,while SARS-CoV-2CTD structure remains relatively stable.

To getmore insight into stability, we also analyzed the contact surface area between the spike protein CTD/
RBDand hACE2 receptor usingMD trajectories. Contact area is the surface buried at the interface between two
proteins which contributes to bind and stabilize the protein-protein complexes. Larger contact surface indicates
greater stability of the structure [44]. The estimated values of contact surface area are presented in table 1. From
the table 1, it has been observed that SARS-CoV-2CTD/hACE2 has larger contact area than SARS-CoVRBD/
hACE2 by 77.02± 2.46Å2. The contact surface area for SARS-CoV-2CTD ismore in comparison to SARS-CoV
RBD indicating the greater binding affinity of SARS-CoV-2with receptor.

3
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3.2. Non-bonded interactions
Furthermore, we studied in details the hydrogen bonds, salt-bridges, hydrophobic, electrostatic and vdw
interactions between the residues residing at the interface between SARS-CoV-2CTD/hACE2 and obtained
results are comparedwith SARS-CoVRBD/hACE2.

3.2.1. Hydrogen bonds
At the interface region, hydrogenbonds play pivotal role in binding themolecules to forma stable complex.Wang
et al (2020) andLan et al (2020)have studied the atomic interactions at the interface of static crystal structure of
SARS-CoV-2CTD/hACE2 complex [14, 15], whereaswehave investigated the hydrogenbonds at the interface of
twocomplexes by analyzing theMDsimulations trajectories. The cut-off distance for hydrogenbondwas taken to
be 3.5Å[14].Wemonitored the time evolutionof number of hydrogenbonds formed at the interface between
SARS-CoV-2CTD/hACE2 and also comparedwith that of SARS-CoVRBD/hACE2 as shown infigure 2 (also see
supplementary table S 1).Hydrogenbondswere found tobe consistently existing in both complexes. Total
hydrogenbonds formedduring the simulationswere seen to bemore in case of SARS-CoV;however the strength
and life timeof potential hydrogenbondswere found tobe greater in case of SARS-CoV-2.

Many researchworks have been published by analyzing the hydrogen bonds pair partners between the
molecules in the complexes. Even though our investigations regarding the hydrogen bonds in the complexes are
in consistent with those published papers, some pair partners are not consistent with these previously published
outcomes. Ali et al reported three unique hydrogen bonds in SARS-CoV-2CTD/hACE2 complex, whichwere
not detected in SARS-CoVRBD/hACE2 complex [12].We found consistent result inGLU35-TYR449 pair,
however the result is not consistent with other two pair partners: TYR449-ASP38 andGLN498-LYS353.We
have clearly observedASP38-TYR436 and LYS353-GLY488 pairs in SARS-CoV-RBD/hACE2. Furthermore, a
strong hydrogen bond has been detected betweenGLN498withGLN42. In static structures, no hydrogen bond
was formed by SER19 of hACE2withASP463 residue of SARS-CoVRBD [14, 15]. Our investigation shows two
potential hydrogen bonds formed betweenmain-main&main-side chains of SER19 of hACE2with side chain of
ASP463 of SARS-CoVRBDand similar type of bond has been detected between SER19 andALA475 in SARS-
CoV-2CTD/hACE2 complex (see figure 4(a) and supplementary figures S1 and S2).

In the present work, interactions ofmolecules in each complex has been observed considering threemain
regionswhere the interfacial residues of hACE2 take part actively in bindingwith the spike CTD/RBD section of

Figure 1.RMSDplotof SARS-CoV-2CTD/hACE2 andSARS-CoVRBD/hACE2.RMSDplot inblue color represents the SARS-CoV-2
and redcolor represents the SARS-CoV.The graphs reveal the stable structure in SARS-CoV-2CTDthan that of SARS-CoVRBD.

Table 1.Calculation of contact surface area;A1, A2 & A3 are the average solvent accessible surface area (SASA) of hACE2, SARS-CoV-2CTD
and their complexes; and a a aA A A, &1 2 3 are the average solvent accessible surface area (SASA) of hACE2, SARS-CoVRBDand their
complexes.

Complex SASA (Å2) for Net contact area (A)[44]

SARS-CoV-2CTD/hACE2 hACE2 (A1) SARS-CoV-2CTD (A2) complex (A3) A1 + A2 − A3 (A1 + A2 − A3)/2

29 100.36 11227.97 38 549.02 1779.31 889.66 ± 1.07

SARS-CoVRBD/hACE2 hACE2 aA1( ) SARS-CoVRBD aA2( ) complex aA3( ) a � a � aA A A1 2 3 Net contact area ( aA )

29 092.62 10859.54 38326.88 1625.27 812.64 ± 2.22
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the virusmolecule as shown in supplementary figures S1(a) and S2(a). The hydrogen bonds formed at three key
regions of interface between SARS-CoVRBD/hACE2 in the begining of the simulation run are shown infigures
(see supplementary figures: S1(a), S1(b)&S1(c)). Some residue pairs whose hydrogen bond (Hbond) occupancy
percentage greater than 20% is shown infigure 3 and detail ofHbond occupancy percentage in three key regions
are shown infigures 4(a), (b) and (c).We have observed some differences in the atomic interactions at the
interface of both virus proteins and hACE2 than that of static crystal structure. The two different approaches
might be the reason of variation in the number of interactions.

The rearrangement of aminoacids at the binding vicinity have been detected in both the complexes.
Different color contrast have been used to indentify the pair partners as shown infigures 3 and 5. The binding
affinity of the complexwas observed increasing due to the allignments of pair partners at the interface.

At the binding interface of SARS-CoV-2CTDand hACE2 receptor, three key regionswheremost of the
polar contacts are actively participated to form the hydrogen bonds. The interactions at the interface inwhich
Hbond occupancy greater than 20%are shown infigure 5, and also the details ofHbond occupancy in these
regions are shown infigures 6(a), (b) and (c). In region 1, SER19, GLN24 andTYR83 of hACE2 formhydrogen
bondswithALA475 andASN487 of SARS-CoV-2CTDas infigures (see supplementary figures: S2(a), S3(a),
S4(a), S5(a)&S6(a)). In region 2, there are interactions between the residues LYS417, TYR453 andGLN493 of
SARS-CoV-2CTD forming hydrogen bondswith ASP30, LYS31 andGLU35 of hACE2 (see supplementary
figures: S2(b), S3(b), S4(b), S5(b)&S6(b)). Similarly, in region 3, there is extensive network of hydrogen bonds
between SARS-CoV-2 CTD residues TYR449, GLN498, THR500, ASN501, GLY502 andTYR505with the
hACE2 residues GLU37, ASP38, TYR41, GLN42, LYS353 andASP355 (see supplementary figures: S2(c), S3(c),
S4(c), S5(c)&S6(c)). Because of dynamical nature of our system, there is continuous formation, breaking and

Figure 2.Comparison of time evolution of number of hydrogen bonds at the interfaces of SARS-CoV-2CTD/hACE2 and SARS-CoV
RBD/hACE2.

Figure 3.The arrangement ofmajor interaction residues at the interface of SARS-CoVRBD/hACE2 complex. Three subdivided parts
of the interface region are circled in 3(a). Figure 3(a) represents themolecular structure of the complex in the beginning of the
simulations and that of at the end of the simulation is represented byfigure 3(b). The contact pairs in color contrast are SER19-ASP463
(red), ASP30-TYR442 (green), LYS31-ASN479 (blue), ASP355-THR486 (magenta), and LYS353-GLY488 (violet).
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reformation of hydrogen bonds during the simulations. The variation of hydrogen bonds formed during the five
representative frames of 250 ns simulation of SARS-CoV-2 has been shown in supplementary figures S2–S6.

3.2.2. Salt-bridges
In addition to extensive network of interfacial hydrogen bonds, another important contributions to protein-
protein binding comes from salt-bridge interactions.MD trajectory analysis has shown three salt-bridges,
having different bond length and strength, formed at the interface of SARS-CoV-2CTD/hACE2. The salt-
bridge formed between the residue LYS417 of SARS-CoV-2CTDwith ASP30 of hACE2 is found to be the
strongest one among themowing to its short bond length. The remaining residues GLU484 and LYS458 of

Figure 4.Hbond occupancy percentage details ofmajor interacting residues in SARS-CoVRBD/hACE2 complex. The double bars for
SER19-ASP463 in bar diagram shows the significant bonding of these residues in side chain—main chain andmain chain—main
chain interactions. 4(a), 4(b) and 4(c) are theHbond occupancy percentage for three key regions respectively.

Figure 5.Major interacting residues at the interface of SARS-CoV-2CTD/hACE2 complex. Three subdivided regions are circled in
which 4(a) represents themolecular complex at the beginning stage of the simulation run and 4(b) represents the structure
rearrangement of residues ofmolecular complex at the end of simulation run. The pairs in color contrast are TYR83-ASN487 (red),
ASP30-LYS417 (green), GLU35-CLN493 (violet), LYS353-GLY502 (lime), TYR41-THR500 (orange) andASP355-THR500
(magenta).

Figure 6.Details ofHbond occupancy percentage ofmajor interacting residues in SARS-CoV-2CTD/hACE2 complex. 6(a), 6(b) and
6(c) are theHbond occupancy percentage for three key regions respectively.
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SARS-CoV-2CTDhave formed salt-bridges with LYS31 andGLU23 of hACE2 respectively. In contrast, we
found only one salt-bridge formed betweenARG426 of SARS-CoVRBDandGLU329 of hACE2which is weaker
than that of SARS-CoV-2 because of larger bond length as infigure 7.

3.2.3. Hydrophobic interactions

3.2.4. Electrostatic and van derWaals (vdw) interactions
The electrostatic and van derWaals (vdw) interactions in two complexes SARS-CoVRBD/hACE2 and SARS-
CoV-2CTD/hACE2 have been studied. Supplementary figure S7 depicts the comparative analysis of energy due
to electrostatic and vdw interactions as a function of time. In the beginning of simulations, the electrostatic
contributions of SARS-CoV-2CTD/hACE2was distinctly higher than SARS-CoVRBD/hACE2, howevermost
of the simulation time, the contributions were almost equal. In addition, the potential energy contributed by
vdw interactions were consistently almost equal for both the systems throughout the simulations. It reveals that
electrostatic and vdw interactions are almost equally contributed in binding both the complexes.

3.3. Free energy
To investigate the energetic difference in binding of hACE2with SARS-CoV-2CTDand SARS-CoVRBD, the
free energy differences have been estimated using umbrella sampling technique. Umbrella windowswere taken
from the trajectories of SMD simulations. The interactions between themolecules in SARS-CoV-2CTD/
hACE2were found terminated after traversing 9Å distance away from the original position. To incorporate all
interacting pathways, tenwindowswith 1Å distance separationwere taken for every successive window.On the
other hand, the interactions between themolecules in SAR-CoVRBD/hACE2were found ceased after
traversing 5Å distance from the original position. Therefore, sixwindowswere prepared separating
1Å distance away for every successive window. To ensure the overlapping of consequent data sets in umbrella
sampling, we have plotted the distributions of data obtained from the simulations.We found sufficient
overlapping of data sets. The graphs for distribution versusCOMdistance have been included in the
supplementary figures S8 and S9. Figure 8 shows the change in free energy during the translation of virus CTD/
RBD fromactive pocket of hACE2 for both complexes. The center ofmass (COM) distance as a reaction
coordinate allows us to track the free energy changes for SARS-CoV-2CTD in complexwith hACE2 and SAR-
CoVRBD in complexwith hACE2. Free energy has also been used to compare the differences in the binding
affinity for the two complexes. The SARS-CoV-2CTD in complexwith hACE2 is found to have the greater
binding free energy of∼1.91 kcal/mol compared to the SAR-CoVRBD in complexwith hACE2. This, as well as
the nature of the free-energy curve, provides an insight on bindingmechanisms of the complexes.

4.Discussion

COVID-19 pandemic has seriously threatened public health throughout the globe. Since there is no approved
drug till date to combat against the SARS-CoV-2 virus,more comprehensive study is essential through the

Figure 7.Comparison of time evolution of salt-bridge bond length at the interface of SARS-CoVRBD/hACE2 and SARS-CoV-2
CTD/hACE2. The residue pair ASP30-LYS417 corresponds to the SARS-CoV-2CTD/hACE2 system andGLU329-ARG426
corresponds to the SARS-CoVRBD/hACE2 system.
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various aspects atmolecular level. The fundamental necessity is to understand the entrymechanismof the virus
into the human cell, which is really helpful to discover the drug against the virus. To deal the entrymechanisms
and dynamical characteristics of the virus cell in complexwith hACE2 receptor, we used various computational
techniques. C-Terminal Domain (CTD) of S1 subunit of spike protein, being the active interacting region, has
been taken into consideration in SARS-CoV-2.We performed the comparative analysis of the key residues and
atomic interactions responsible for the binding of the SARS-CoV-2CTDand SARS-CoVRBDwith human
ACE2 receptor.

Estimation of structural variation during the simulation is the foremost judgement ofmolecular stability in
molecular dynamics study. RMSD is themeasure of stability ofmolecular structure in the cellular environment.
Well equilibrated systemwith consistent RMSD ensures us to proceed for the further study of binding affinity
and energy variations of themolecular complexes.Moreover, contact surface area between themolecules
identifies the binding strength of the complex. Therefore, we have obtained the contact surface area of both
complexes calculating the solvent accessible surface area (SASA). SASAhas been determined from time
evolution data generated from the 250 nsNPT run. Then, average value of contact area for both the systems have
been presented in table 1 and are interpreted graphically infigure 2. Larger contact surface area in SARS-CoV-2
CTD/hACE2 complex depicts the stronger binding of this complex than that of SARS-CoVRBD/hACE2 [45].

Our results show considerable similarity in the binding sites, interfacial residues and important atomic
interactions in both viral protein receptor binding domain (i.e., SARS-CoV-2CTDand SARS-CoVRBD).
However, there are some variations in loop between two structures in the binding region and some residues at
the binding sites are different. This facilitatesmore and stronger atomic contacts between SARS-CoV-2CTD
and hACE2 interface and thereby enhancing its binding affinity. Polar residues residing at the interface form an
extensive network of hydrogen bonds and salt-bridge interactions [46–49]. Our study reveals that interfacial
hydrogen bonds, salt-bridges and hydrophobic interactions play an important role in the binding of SARS-CoV-
2CTD to host cell receptor. Furthermore, comparative analysis of the bindingmechanismof two viral proteins
with hACE2 show that binding affinity of SARS-CoV-2 is greater than that of SARS-CoV.Notably,more
residues are engaged in the binding of SARS-CoV-2CTDwith hACE2.Wefind the greater number of potential
hydrogen bonds formed in the case of SARS-CoV-2CTDwhich contributes to higher binding affinity.More and
stronger salt-bridges formed in case of SARS-CoV-2CTD establish stronger binding to the receptor than SARS-
CoVRBD.Additionally, we observe hydrophobic interactions are stronger in case of SARS-CoV-2which also
contribute to enhanced binding.

The contributions of electrostatic and vdw contacts are significant to form a stable protein-protein complex
[50, 51]. The potential energy in binding the virus CTD/RBDand host receptor are compared in both the
systems. Though, initially the electrostatic energy is observed relatively larger in SARS-CoV-2CTD/hACE2 than
that of SARS-CoVRBD/hACE2, the dynamical results show almost equal contributions in both the complexes.
This shows that the contributions of hydrogen bonds, salt bridges and hydrophobic interactions are responsible
to provide the greater binding strength in SARS-CoV-2CTD/hACE2.

The bindingmechanisms of the complexes are further analyzed to estimate the free energy differences from
umbrella samplingmethod. SMD trajectories are taken for the appropriate samples that ensure the sufficient

Figure 8. Free energy curve for SARS-CoV-2CTD/hACE2 and SARS-CoVRBD/hACE2 during the translation of spikes CTD/RBD
fromhACE2.
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overlapping onwindows [52]. In SMD, the virus CTD/RBDare pulled upto that distance, beyondwhich no
interactions persists.Wefind the interactions ofmolecules in complex SARS-CoVRBD/hACE2 have been
terminated after the displacement of RBDby 5Å fromhost receptor, whereas the interactions sustain upto
9Å displacement from the initial position in SARS-CoV-2CTD/hACE2. Comparisons of free energy of two
complexes have provided the insight of bonding affinity between the virus CTD/RBDand hACE2molecules.
The greater free energy difference between SARS-CoV-2CTD in complexwith hACE2 depicts the stronger
binding strength than the complex of SARS-CoVRBDand hACE2. As the further investigation, we plan to
calculate the solvation free energy of SARS-CoV-2 and SARS-CoVmolecule in the aqueous environment.
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ABSTRACT 

The study of structural conformation of Gamma-aminobutyric acid (GABA) 

exhibits its biological and chemical activities. The GABA molecule is responsible 

in neurotransmission from one neuron to another neuron and activates the ion 

channels to pass the chlorine and sodium ions in nerve cells. Its conformation in 

solid state and gas state are extremely different and it also shows five different 

conformations in aqueous solution. The study of its structure in such environment 

can reveal its activity in cellular environment. We have performed the classical 

molecular dynamics study of this system of GABA in aqueous medium to deal its 

structure. Radial distribution function (RDF) has been used to study the structural 

properties of the system. 
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1. Introduction 

 

Gamma-aminobutyric acid (GABA), a chief 

inhibitory neurotransmitter, plays major role in 

reducing the neuronal excitability throughout the 

central nervous system [1-3]. It is mostly found in 

nervous system of highly developed brain of 

mammals. It is, in fact, a chemical messenger that 

transmits the signals across chemical synapses from 

one neuron to another neuron, gland cells or to the 

muscles [4]. It is also used to treat high blood 

pressure, stress and anxiety; and to stimulate the 

secretion of natural growth hormone of body. The 

disorder of GABA in the body may cause the 

neurologic and psychiatric conditions. In addition, 

GABA is also detected in the other part from 

central nervous system like intestines, kidneys, 

uterus, ovaries, lungs etc. So, it has several 

functions in body mechanisms [5]. 
 

GABA is synthesized from anion of glutamic acid, 

called glutamate, via the enzyme glutamate 

decarboxylase with pyridoxal phosphate as a 

cofactor [6]. Its chemical formula is C4H9NO2 and 

molar mass 103.120 g/mol. It is a white 

microcrystalline powder with density 1.11 g/mL. It 

is soluble in water with solubility value 130 g/100 

mL. The temperature difference between solid state 
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and the gas state is quite narrow, with melting point 

203.7oC and boiling point 247.9oC [7,8]. 
 
 

It contains a primary amine group and a carboxylic 

acid functional group, due to which it is categorized 

in amino acid group; however, the amino group (-

NH2) does not link to the alpha carbon as the 

ordinary amino acid contains. That is why, the 

GABA is not incorporated into the protein 

molecule. It is mostly found in zwitterion form [9, 

10]. The interesting characteristic of GABA is its 

nature of conformation with its surroundings. It is 

mostly found highly folded configuration in gas 

phase and extended form in solid phase. Its 

character is surprising in solvent. It has high 

solvent effect with five different conformation [11]. 

The biochemical functions of biomolecules are 

greatly influenced by their structural conformation. 

Since the GABA can be at different conformations 

in various phases and also in the surrounding 

conditions, its structural study makes the great 

sense to understand the neurotransmission in 

nervous system, the spinal cord and 

hyperpolarization condition in ion exchange 

process in nerve cells [12]. Several researches have 

been carried out to deal the structural 

conformations of GABA in aqueous solution; 

however its structural variations in the living body 

are still unclear. Solvation of GABA molecule in 

water resembles real body.  
 

Ashby et al. studied about different interactions 

with binding site that involved in GABA binding in 

molecular level; and Zafar and Jabeen studied the 

structure and function of GABA transporters 

(GATs)  using computational method [13, 14]. 

Also, many experimental studies about transport 

properties of GABA have been already performed. 

Umecky et al. and Yui et al. measured the binary 

diffusion coefficient of GABA in infinitesimal 

aqueous medium at different temperature using 

Taylor dispersion method [15,16]. Also, viscosity 

of aqueous solution of GABA was estimated by 

Romero and Beltron [17]. 

Molecular dynamics (MD) study can be considered 

as an alternative technique to study about many 

properties including structural analysis [18].  MD 

also provides guideline for experimental study. To 

our best knowledge, the structural properties of 

GABA in water have not been studied using 

molecular dynamics.  We expect that this study will 

help to learn the structural conformation of the 

molecule in water environment. 
 

In this paper, we have discussed methods and 

methodology in section 2. The results of the work 

are presented and discussed in section 3; and finally 

conclusions and concluding remarks are presented 

in section 4. 

 
 

Fig. 1: Snapshot of GABA molecule. 

 
 

2. Methods and Methodology 
 

 

Modeling of system 
 

We performed classical molecular dynamics 

simulations of the system of aqueous solution of 

GABA. GROMACS 5.1.1 software package was 

used for the simulations [19]. The OPLS-AA 

(optimized potentials for liquid simulations – all 

atom) force field for modeling the GABA molecule 

and three point SPC/E [20] water model were used 

during the simulations.  In the classical molecular 

dynamics simulations, we solve the Newton’s 

equation of motion [21]. To account the intra-

molecular interactions, the bonded interaction i.e. 

bond stretching, bond angle and dihedral potentials 

are considered. And, the non-bonded Coulomb and 

Lennard-Jones (LJ) interactions contribute to the 

inter-molecular interactions. The Coulomb 

interaction arises due to partial charges of the 
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atoms in GABA and water molecules. For SPC/E 

water model, the partial charges of hydrogen and 

oxygen atoms are +0.4238e and -0.8476e 

respectively where e is elementary charge; and 

Lennard-Jones (LJ) parameters are 0.316 nm and 

78.2kB.  Now, the inter-molecular interaction is 

caused due to non-bonded interactions which can 

be expressed as 

𝑉(𝑟𝑖𝑗) = 4𝜀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] +
𝑞𝑖𝑞𝑗

4𝜋𝜖𝑚𝑟𝑖𝑗
 

where 𝑟𝑖𝑗  is the distance between 𝑖𝑡ℎ &  𝑗𝑡ℎ atoms 

of charges 𝑞𝑖  & 𝑞𝑗  respectively, 𝜀  & 𝜎 are LJ 

parameters and 𝜖𝑚  is permittivity of medium 

between the charge. 
 
 

Computational details 
 

We performed the simulations of the system of 3 γ-

aminobutyric acid (GABA) as solute and 1035 

water molecules as solvent at 1 atm pressure at five 

different temperature: 298.2 K, 303.2 K, 313.2 K, 

323.2 K and 333.2. The simulations were carried 

out in cubic simulation box under periodic 

boundary conditions (PBC). At first, to remove van 

der Waals bad contact and to obtain the minimum 

potential energy state, energy minimization of the 

system was carried out using Steepest-descent 

method taking 50 kJ/mole-nm force tolerance [22, 

23].  
 

Many properties of the system under study depend 

upon the parameters like temperature, pressure etc. 

So, the system must be in thermodynamics 

equilibrium. For this, the system was equilibrated at 

each temperature for 200 ns time taking time step 

of 0.002 ps using isothermal-isobaric (NPT) 

ensemble. During equilibration run, velocity 

rescaling thermostat with 0.01 ps coupling time 

was used to control temperature and Beresdsen 

barostat  with coupling time of 0.8 ps was used to 

keep constant pressure [24]. LINCS algorithm and 

Maxwell-Boltzmann distribution were taken to 

constraint all bonds and to assign initial velocities 

for each particle respectively [24]. Also, Particle 

Mesh Ewald (PME) method was chosen to account 

the long range Coulomb interaction; and cut off 

parameters of 1 nm was taken for both short range 

Coulomb & Lennard-Jones (LJ) interactions.   In 

order to solve the equations of motion, Leap-frog 

algorithm was used [24]. Figure 2 represents the 

temperature and density profiles of the system after 

equilibration run at temperature of 303.2 K. Also, 

the simulated values of temperature and density are 

presented in the table 1.  

 

 

Fig. 2: Temperature (left) and density (right) profiles of the system after equilibration run at 303.2 K temperature.  
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Table 1: Simulated values of temperature and density at five different coupling temperature. 

 

Coupling Temperature 

(K) 

Simulated 

Temperature (K) 

Simulated    Density 

(kg/m3) 

Experimental Density 

(kg/m3)[25] 

298.2 298.20±0.01 990.07±0.02 997.03 

303.2 303.19±0.00 987.49±0.02 995.63 

313.2 313.19±0.04 981.46±0.03 992.19 

323.2 323.19±0.01 974.45±0.02 988.19 

333.2 333.19±0.02 967.19±0.02 983.17 

 

 

From the table , it is seen that the simulated values 

of densities at different coupling temperature agree 

within 2% with previously reported experimental 

values. 
 

After the equilibrating the system, the production 

run was done at each temperature using canonical 

(NVT) ensemble.  During the production run, 

velocity rescaling thermostat with coupling time of 

0.01 ps was used to control temperature. The 

velocities of final step of equilibration run were 

taken as initial velocities for production run. Each 

production was performed for 100 ns  with time 

step 0.002 ps.  

   

3. Results and Discussion 
 

In this section, we present the RDF between 

different atoms of GABA and Water molecules. 
 

Radial Distribution Function (RDF) 
 

Structural properties of the system has been 

studied by using radial distribution function 

(RDF).  RDF, that provides the idea of distribution 

of molecules around another molecule which is 

taken as reference, gives the probability of finding 

a pair of atoms located at distance `r' [26].  For 

liquid, RDF shows an oscillation up to certain 

distance and becomes unity which means that there 

is no correlation between molecules after the 

distance [27, 28]. The GABA molecule contains 

the functional groups  amide (-NH2) and carboxyl 

(-COOH). Thus, to find the structural properties of  

 

 

 
 

the system under study, we have calculated the 

RDF of oxygen of water & oxygen of water  (g OW-

OW(r)), oxygen of water & nitrogen of amide (- 

NH2) group of  GABA  (g OW-N1(r)),  and oxygen of 

water &  oxygen of carboxylic group (-COOH) of  

GABA   (g OW-O2(r)). Figures 3, 4 and 5 represent 

the  g OW-OW(r), g OW-N1(r) and g OW-O2(r) at five 

different temperature 298.2 K, 303.2 K, 313.2 K, 

323.2 K and 333.2 K respectively.  
 

In the RDF plots, there is a region from the 

reference atom up to which the value of RDF is 

zero. In this region, the probability of finding 

another atom is zero. Such region is known as 

excluded region (ER).  Beyond the zero probability 

region, some peaks are observed  and the value of 

RDF becomes unity beyond certain distance from 

reference atom. The unity value of RDF indicates 

that no correlation between atoms at that region i.e. 

correlation between atoms takes place up to certain 

distance from reference position [23]. Three peaks 

are observed between excluded and unity regions. 

The peaks indicate the favorable position of the 

atoms/molecules from reference. The first peak 

means the most favorable position of the atoms 

from reference.  The values of excluded region 

(ER), first peak position (FPP),  first peak value 

(FPV) ), second peak position (SPP), second peak 

value (SPV) ), third peak position (TPP) and  third 

peak value (FPV)  for g OW-OW(r), g OW-N1(r) and g 

OW-O2(r)  are presented in Tables 2, 3,and 4 

respectively.  
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Fig. 3: RDF between oxygen atoms of  water (g OW-OW(r)) at different temperature. 

 

 

Fig. 4: RDF between nitrogen of GABA and oxygen of water (g OW-N1(r)) at different temperature.

.

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: RDF between oxygen of GABA and oxygen of water (g OW-O2(r)) at different temperature. 
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Table 2: Simulated data for Radial distribution function (RDF) between water molecules (g OW-OW(r))     

at different temperature. 
 

Temperature(K) ER(nm) FPP(nm) FPV SPP(nm) SPV TPP(nm) TPV 

298.2 0.240 0.274 3.141 0.450 1.126 0.686 1.046 

303.2 0.240 0.276 3.104 0.450 1.120 0.690 1.040 

313.2 0.240 0.276 3.018 0.450 1.103 0.688 1.037 

323.2 0.240 0.276 2.936 0.450 1.087 0.694 1.036 

333.2 0.240 0.276 2.874 0.450 1.075 0.686 1.034 

  

Table 3: Simulated data for Radial distribution function (RDF) between nitrogen (N1) of GABA and  

water molecules (g OW-N1(r)) at different temperature. 
 

Temperature(K) ER(nm) FPP(nm) FPV SPP(nm) SPV TPP(nm) TPV 

298.2 0.248 0.284 1.379 0.466 1.016 0.726 1.047 

303.2 0.248 0.286 1.352 0.452 1.017 0.712 1.047 

313.2 0.246 0.284 1.359 0.470 1.004 0.730 1.048 

323.2 0.248 0.286 1.344 0.468 0.997 0.724 1.045 

333.2 0.248 0.290 1.321 0.458 0.985 0.726 1.040 

 

Table 4:  Simulated data  for Radial distribution function (RDF) between oxygen (O2) of GABA and water  

molecules (g OW-O2(r))  at different temperature.  

     

Temperature(K) ER(nm) FPP(nm) FPV SPP(nm) SPV TPP(nm) TPV 

298.2 0.234 0.266 1.258 0.494 1.003 0.700 1.039 

303.2 0.236 0.266 1.231 0.494 1.008 0.700 1.039 

313.2 0.234 0.266 1.242 0.490 1.006 0.684 1.034 

323.2 0.234 0.266 1.228 0.494 0.999 0.690 1.037 

333.2 0.234 0.266 1.188 0.488 0.991 0.684 1.031 

 

 

The values of  Lennard-Jones parameter (σ) for 

OW-OW, OW-N1 and OW-O2 are 0.316 nm, 0.323 

nm and 0.308 nm respectively.  And, the calculated 

values of van der Waals radius (21/6 σ) for OW-OW, 

OW-N1 and OW-O2 are 0.355 nm, 0.363 nm and 

0.346 nm respectively. From the Tables 2-4,  it is 

clearly observed   that the values of first peak 

position (FPP) are smaller than  the respective van 

der Waals radius, which indicates that other 

potentials  along with Lennard-Jones (LJ) also 

contribute for stability of the system. On the other 

hand, Coulomb interactions arise in the system due 

to  partial charges of hydrogen and oxygen of   

 

 

 

SPC/E water model, and  of N1 from -NH2  & O2 

from -COOH group of GABA molecule. Thus, both  

Coulomb as well as LJ including many body effects 

are responsible for structural properties of the  

system [19, 20].  From the Table, it is also observed 

that the values of excluded region (ER)  are less 

than corresponding values of the van der Waals 

radius. 
 

4. Conclusions and concluding remarks 
 

 

We performed classical molecular dynamics of  a 

system of 3 γ-aminobutyric acid (GABA) as solute 

and 1035 water as solvent at five different 
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temperature: 298.2 K, 303.2 K, 313.2 K, 323.2 K 

and 333.2 K using GROMACS 5.1.1 package. 

During the simulations, SPC/E water model and 

OPLS-AA force field parameters were used. Radial 

distribution function (RDF) was taken to analyze 

the structural properties of the system. For this, we 

plotted the RDF between different atoms at five 

different temperature i.e. (i) oxygen atoms of water 

molecules (g OW-OW(r)), (ii) nitrogen of –NH2 group  

of GABA and oxygen of water (g OW-N1(r)) and (iii) 

oxygen of –COOH group of GABA and oxygen of 

water (g OW-O2(r)).   From all the plots, we observe 

that both excluded region (ER) as well as first peak 

position (FPP) are smaller than the corresponding 

van der Waals radius.  This indicates that along 

with Lennard Jones (LJ), Coulomb potential which 

arises due to the partial charges of different atoms 

as well as many body effects also contribute to the 

structural properties of the system. 
 

In near future, we intend to study about the free 

energy calculation of the system.  
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ABSTRACT 
In the present work, we have used an alchemical approach for calculating solvation free energy 
of protonated lysine in water from molecular dynamics simulations. These approaches use a 
non-physical pathway between two end states in order to compute free energy difference from 
the set of simulations. The solute is modeled using bonded and non-bonded interactions 
described by OPLS-AA potential, while four different water models: TIP3P, SPC, SPC/E and 
TIP4P are used. The free energy of solvation of protonated lysine in water has been estimated 
using thermodynamic integration, free energy perturbation, and Bennett acceptance ratio 
methods at 310 K temperature. The contributions to the free energy due to van der Waals and 
electrostatics parameters are also separately computed. The estimated values of free energy of 
solvation using different methods are in well agreement with previously reported experimental 
value within 14 %. 
 
Key words: Molecular dynamics simulations, Solvation free energy, Free energy perturbation 
and Thermodynamic integration. 

 
1. INTRODUCTION 
Solvation free energy plays a central role in protein 
folding, protein function and molecular recognition 
[1, 2]. Theoretical and computer simulation 
inspection on the thermodynamic properties of 
amino acids and the role of free energy in 
particular, in this context, become very important in 
a broad range of fields from chemistry, biology, 
and pharmaceuticals. Such studies can pave the 
way for identification of pharmacological targets as 
well as in the drug discovery [3]. Since most of the 
biological processes happen in an aqueous solution, 
this is why solvation free energy is equivalently 
referred to as hydration free energy that originates 
from the interactions between the solute and solvent 
i.e., water. Additionally, free energy calculations 
often provide an efficient route to estimate kinetic 
and dynamic characteristics of bio-chemical and 
physical processes, such as solubility, reaction 
rates, partition coefficients, associations, 
dissociations, and binding constants [4]. 
Number of experimental studies has been carried 
out to determine the solvation properties of amino 

acids in past decades [5–8]. Because of the very 
different physico-chemical properties among the 
naturally occurring amino acids, the experimental 
techniques may not be free from intrinsic errors. 
Therefore, it is highly desirable to complement 
experimental studies with theoretical approaches 
using molecular dynamics simulations with explicit 
solvent molecules [9]. Several researchers performed 
the molecular dynamics simulations [10–12] and 
even monte carlo simulations [13] to determine the 
solvation free energies of amino acids in different 
solvent environments using variety of available force 
fields. These calculations show that it is possible to 
reproduce the experimental solvation free energies 
by modeling different interactions between the solute 
and solvents. Motivated from aforementioned 
studies, we have chosen the protonated lysine system 
for the calculation of solvation free energy in 
aqueous solution. 
 Lysine, an essential amino acid used in 
biosynthesis of proteins, is harvested from external 
food stuffs. Also, it is required for growth, tissue 
repair and improves immune system [14]. Going 
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through the literature for our case, the experimental 
value of the solvation free energy of protonated 
form of lysine in water is known to be 277.80 
kJmol −1 [15] and value 246.22 kJmol−1 have been 
predicted with use of molecular dynamics 
simulations [16]. To  our best knowledge, there are 
no simulations have been done in order to estimate 
the solvation properties of lysine in it’s protonated 
form using Molecular Dynamics (MD) simulations 
with implementation of variety of Free Energy 
Perturbation (FEP) and Thermodynamic Integration 
(TI) based methods in aqueous solution. In this 
work, we have carried out MD simulations to 
estimate free energy of solvation of the protonated 
lysine in aqueous medium. The simulations have 
performed taking four different water models: 
TIP3P, SPC, SPC/E and TIP4P. Then, the solvation 
free energy has been estimated using TI and FEP 
methods. The obtained results are compared with 
available previously reported data. A standard 
comparison is made between each method with 
potential sources of errors. The solvation free 
energies due to change in van der Waals parameters 
and electrostatic parameters are also computed 
individually. 
 

 
 

Fig. 1: Protonated lysine molecule. 

2. THEORY 
The free energy difference between two states say 
A and B of a system can be calculated using 
thermodynamic integration (TI) method as [17]: 
 

οܨ ൌ  ർడ
డఒ

ఒ

ఒୀଵ
ఒୀ  (1) ... ߣ݀

 
Here, the parameter λ is used to define intermediate 
states between initial and final states. For this the 
potential energy is defined such that it is also a 
function of the coupling parameter λ. The equation 
(1) can be evaluated for the ensemble average at a 
number of discrete λ -points by performing series of 
simulations for each chosen λ-point. We then use 
numerical integration to determine the integral. 
When the free energy difference between two 
states of a system is small, another approach 
based on perturbation, called free energy 
perturbation (FEP) method, can be used [18]. 
According to this method, the free energy 
difference, is defined by [19]. 
 

οܨ ൌ ݈݇ܶ݊ൻ݁ିఉሾሺఒಳሻିሺఒಲሻሿൿఒಲ ... (2) 

 
Here, β = (kBT )−1 , where kB is the Boltzmann 
constant and T is absolute temperature. In this 
method, to obtain convergence, significant overlap 
of the low energy regions of the two ensembles is 
required. 
The asymmetric biased arises in equation (2) due to 
the configuration being sampled either via λA or λB 
can be removed by so called Bennett Acceptance 
Ratio (BAR) method [20]. The BAR method 
requires sampling and energy evaluation of the 
system configurations from both states to estimate 
the free energy difference [21]. 

 
σ ଵ
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ೕ
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ೕ
ୀଵ  ...(3) 

 
The expression (3) minimizes the free energy 
variance and makes BAR more efficient [22]. In 
order to increase the overlap between each pair of 
end states, free energy differences are usually 
calculated by introducing number of intermediate 
states in addition to the two end states. A multistate 
extension of BAR, called the Multistate Bennetts 
Acceptance Ratio (MBAR), has been proposed 
[23]. In this approach, a series of weighting 

functions are derived to minimize the uncertainties 
in free energy differences between all states 
considered simultaneously. For the case when only 
two states are considered MBAR reduces to BAR. 
Among all the methods discussed here, MBAR has 
the lowest variance, and is apparently the most 
decisive estimator of the solvation free energy 
calculations [23, 24]. 
 



S. P. Khanal, B. Poudel, R. P. Koirala and N. P. Adhikari 

71 

3. COMPUTATIONAL DETAILS AND 
METHODOLOGY 
In this work, lysine in protonated form was used as 
solute and four different models of water: 
transferable intermolecular potential with 3 points 
(TIP3P), simple point charge (SPC), extended 
simple point charge (SPC/E) and transferable 
intermolecular potential with 4 points (TIP4P) were 
used as solvent [25–27]. The geometry of solute 
was mimicked by using Optimized Potentials for 
Liquid Simulations-All Atom (OPLS-AA) force 
field parameters [28]. To prepare the simulation 
cell, a cubical box of size 3 nm was taken. The 
solute was placed at the center of this box and filled 
with 875 water molecules at the experimental 
density. Simulation was performed under periodic 
boundary conditions (PBC) at 310 K using 
GROMACS (5.1.2) package [29, 30]. 
The approach to find the solvation free energy is by 
turning off the interactions; bonded and non-
bonded, between the solute and the solvent 
molecules. For our case, we only manipulate non-
bonded interactions. In determining the solvation 
free energy, we can use the fact that free energy is a 
state function; it is independent of the path taken 
for the transformation going from state A to state B. 
For this, we define the potential of the system as a 
function of two parameters λvdW for van der Waals 
potential, and λele for electrostatic potential. Thus, 
the complete description of our system for state A 
(λ = 0), where there was interaction (couple) 
between the solute and solvent, and for state B (λ = 
1), where there was no interaction (decouple) 
between the solute and solvent. This was done in 
our case by scaling the system by taking 21 
windows for values of λ between 0 and 1. The 21 
different values of coupling parameter for 
Coulombic and Lennard-Jones interactions were 
defined as: λC = 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 
0.60, 0.70, 0.80, 0.90, 1.00, 1.00, 1.00, 1.00, 1.00, 
1.00, 1.00, 1.00, 1.00, 1.00, 1.00 and λLJ = 0.00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 
0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.75, 0.80, 
0.90, 1.00 respectively. 
At first, the energy minimization was carried out 
using steepest-descent method [31] with tolerance 
force set to 10 kJ mol−1 nm−1. To generate the initial 
velocities Maxwell-Boltzmann distribution was 
used. The Brownian dynamics friction coefficient 
was set to zero with random speed -1. The leap-frog 
stochastic dynamics integrator [32] was used to 
integrate the equations of motion. The temperature 
was kept constant at 310 K by using the Langevin 

thermostat [33]. The pressure was maintained 
constant by coupling to a reference pressure of 1 
bar using the Parrinello-Rahman barostat [34] with 
compressibility 4.5 × 10−5 bar−1. For the 
simulations, the coupling time for both thermostat 
and barostat was set to1 ps. The time step used in 
the simulations was 2 fs throughout. A 5 ns 
simulation was performed to equilibrate each of the 
systems before the start of the actual free energy 
calculations. 
In this study, a neighbor list of 1.2 nm updated every 
twenty steps was used for the short range interactions. 
Particle Mesh Ewald (PME) was used to evaluate the 
Coulombic interactions, with a real space cutoff of 1.2 
nm and a PME order of 6 [35]. The Fourier spacing 
was chosen to be as close to 0.12 nm as possible given 
the box size and the need for integer numbers of grid 
points. The distance for van der Waals cutoff was set 
to 1 nm. All the bond angles were constrained using 
the LINCS algorithm [36]. For the calculation of free 
energies, we gave the final production run of 5 ns with 
time step 2 fs. During the production run, the system 
was coupled only using temperature. In the TI, in 
order to remove the singularities in the potentials, we 
used λ dependence of potentials; the soft-core 
potential [37]. 
 
4. RESULTS AND DISCUSSION 
The solvation free energy of protonated lysine in 
water has been estimated at 310 K using TI and 
FEP methods [38]. In TI method, the free energy 
change for a path composed of ‘m’ states is 
computed as a weighted sum of the ensemble 
averages of the derivative of potential energy 
function with respect to coupling parameter λ. 
There are different approaches available for 
numerical integration of TI. But in our calculation, 
we have implemented TI-1 and TI-3 which use the 
trapezoidal rule (a first-order polynomial) and a 
cubic spline respectively. The nature of these TI 
methods depends on the nature of the curve being 
integrated and hence, it depends on underlying data 
and the shape of the ∂U/∂λ the alchemical path 
chosen. Perturbation based methods include a broad 
range of techniques. The direction dependent 
transformation of FEP originates from under-
sampling the tail regions of the potential 
distributions, which results biased free energy [39]. 
We have used BAR method that uses samples of 
potential energy in both direction to obtain the 
minimum free energy variance. In BAR, the free 
energy change between two adjacent states is 
computed to yield the minimum variance and gives 
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data for single pair of states, while another class of 
BAR is MBAR that finds the best estimation of free 
energy changes between all states simultaneously 
by optimizing the matrix of the ∆A variance. 
The BAR method provides a maximum likelihood 
estimation of the free energy that is given by the 
samples from the two states. The BAR requires 
significantly less phase space overlap between 
these states in order to converge results as 
compared to other methods [40, 41]. Note, 
however, that BAR requires sampling and energy 
evaluation of the system configurations from both 
states to estimate the free energy difference. As 
phase space overlap affects the reliability of the 
estimate, free energy differences are most often 
calculated by simulating several intermediate states 
in addition to the two end states, in order to 
increase the overlap between each pair of states. A 
multistage extension of BAR method called as 
MBAR has been devised [23]. In this approach, a 
series of weighting functions are derived to 
minimize the uncertainties in free energy 
differences between all states considered 
simultaneously. MBAR reduces to BAR when only 
two states are considered. 
To estimate the solvation free energy of our system, 
we have first plotted the ∂U/∂λ as a function of 
coupling parameter λ. 

 
Fig. 2: Variation of   ∂U/∂λ as a function of λ taking 

TIP3P water model as solvent. 

 

Figures 2, 3, 4 and 5 represent the variation of ർడ
డఒ
 

as function of coupling parameter λ  taking    
TIP3P, SPC/E, SPC and TIP4P water models as 
solvent respectively. The estimated values of 
solvation free energy of protonated lysine in four 

different water models: TIP3P, SPC, SPC/E and 
TIP4P calculated from TI, TI-CUBIC, BAR and 
MBAR with previously reported experimental 
value are presented in the Table (1). 
 

 
Fig. 3: Variation of   ∂U/∂λ as a function of λ taking 

SPC/E water model as solvent. 

 

 
Fig. 4: Variation of   ∂U/∂λ as a function of λ taking SPC 

water model as solvent. 

 

 
Fig. 5: Variation of   ∂U/∂λ as a function of λ taking 

TIP4P water model as solvent. 
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Table 1: Estimated values of solvation free energies for protonated lysine in different water models: 
TIP3P, SPC/E, SPC and TIP4P at 310 K temperature using TI, TI-CUBIC, BAR and MBAR methods 

with previously reported experimental value. 

Water  
models 

Interactions TI 
(kj-mol-1) 

TI-CUBIC 
(kj-mol-1) 

BAR 
(kj-mol-1) 

MBAR 
(kj-mol-1) 

Expt.15 
(kj-mol-1) 

 
TIP3P 

Coulomb 247.36±0.35 247.23±0.35 247.37±0.22 247.71±0.24  
 
 
 
 
 
 
277.80 

vdW -5.45±0.18 -5.61±0.20 -4.53±0.16 -4.42±0.18 

Total 241.92±0.40 241.62±0.40 242.84±0.27 243.29±0.38 

 
SPC/E 

Coulomb 247.22±0. 247.07±0.40 247.52±0.26 247.51±0.26 

vdW -8.44±0.24 -8.58±0.27 -6.91±0.22 -6.96±0.2.40 

Total 238.78±0.47 238.49±0.48 240.60±0.34 240.55±0.36 

 
SPC 

Coulomb 241.12±0.61 241.02±0.63 238.88±0.35 238.82±0.41 

vdW -7.42±0.19 -7.56±0.22 -6.14±0.19 -6.09±0.21 

Total 233.70±0.64 233.46±0.67 232.73±0.40 232.74±0.46 

 
TIP4P 

Coulomb 232.70±0.43 232.76±0.42 238.33±0.27 240.90±0.17 

vdW -6.08±0.22 -6.61±0.25 -5.08±0.20 -4.99±0.22 

Total 226.62±0.49 226.14±0.49 233.25±0.33 235.91±0.27 

 
Since the process we conducted in this work was 
the decoupling of protonated lysine in water, so 
the positive sign appears in each values. The 
reverse process is also possible. For our 
simplicity we just take the absolute value. The 
free energy change from λ = 0 to λ = 1 is simply 
the sum of the free energy changes of each pair 
of neighboring λ simulations. For all four water 
models: TIP3P, SPC, SPC/E & TIP4P, we have 
also estimated the individual contributions of 
electrostatic and vdW interactions to the 
solvation free energy. From the Table 1, it is seen 
that the contribution of vdW to solvation free 
energy is negative but of Coulombic interaction 
is positive. Also, in the current alchemical 
transformation protocol, the vdW component of 
the solvation free energy has found to be far less 
than that of the electrostatic component. From 
this observation, we have concluded that the 
solvation free energy of protonated lysine in 
water is solely due to the electrostatic 
component. Also, it is seen that the estimated 
value of solvation free energy is closer to the 
experimental value for TIP3P water model than 
that of other models. 

For the TIP3P model, the estimated value of 
solvation free energy using MBAR method is in 
close agreement to the previously reported value 
rather than the values estimated using other 
methods. The estimated value using MBAR is in 
12% agreements with the previously reported value. 
Also, other methods show a maximum difference of 
˃ 2 kJ/mol from the value estimated using MBAR 
method. We also observed from the Table 1 that the 
solvation free energy in each water model has 
almost same values using different methods 
indicated that λ spacing was sufficient for our 
sampling distributions which were found to be 
overlapped properly. 
Furthermore, the high value of solvation free 
energy suggests that the lysine in its protonated 
form is highly soluble in water. This hydrophilic 
nature of lysine can be explained as follows: Lysine 
is a simple basic amino acid. In spite of a long and 
potentially hydrophobic chain, it has a basic NH2 at 
the end of side chain. In its basic deprotonated 
form, lysine is neutral and hydrophilic; however, if 
found in physiological pH, lysine will pick up an H 

+ from solution to form an NH3
+ salt. Salts are 

charged and therefore definitely hydrophilic. 
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5. CONCLUSIONS AND CONCLUDING 
REMARKS 

In this work, we performed molecular dynamics 
(MD) simulation to estimate the solvation free 
energy of protonated lysine in aqueous medium. 
OPLS-AA force field parameters and four different 
water models: TIP3P, SPC, SPC/E and TIP4P were 
used during the simulations. We have used TI, TI-
cubic, BAR and MBAR methods to estimate the 
salvation free energy. It has been observed that the 
estimated values of free energy of solvation of 
protonated lysine with TIP3P water as solvent using 
different methods have closer values with 
experimental value in comparison to other models. 
The estimated values of free energy of solvation of 
protonated lysine in TIP3P water model at 310 K 
temperature are 241.92, 241.62, 242.84 and 243.29 
in kJ/mol from TI, TI-cubic, BAR and MBAR 
methods respectively. Obtained numerical values of 
free energies demonstrated that all these methods 
are able to reproduce experimental free energies of 
solvation in water solvent. We have also analyzed 
the contribution of van der Waals (vdW) and 
electrostatic interactions to estimate the free energy 
of solvation; and it has been observed that the 
electrostatic interaction has major contributions to 
the solvation free energy. The estimated values of 
free energy of salvation in TIP3P water model 
using different methods are in agreement with 
previously reported experimental value within 14%.  
To extend this work in near future, we plan to study 
the solvation free energy of lysine in other solvent 
environment. Further, we plan to study the 
solvation free energy of lysine peptides and observe 
the effect on solubility with increase in chain length 
of solute. 
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Abstract 

Computer simulations of molecular models are powerful technique that have improved the 

understanding of many biochemical phenomena. The method is frequently applied to study 

the motions of biological macromolecules such as protein and nucleic acids, which can be 

useful for interpreting the results of certain biophysical experiments. In this work, we 

have estimated the solvation free energy for light alkane (methane, ethane, propane and 

n-butane) dissolved in water and methanol respectively over a broad range of 

temperatures, from 275 K to 375 K, using molecular dynamics simulations. The alkane 

(methane, ethane, propane and n-butane), and methanol molecules are described by the 

OPLS-AA (Optimized Potentials for Liquid Simulations-All Atom) potential, while 

water is modeled by TIP3P (Transferable Intermolecular Potential with 3-Points) model. 

We have used the free energy perturbation method (Bennett Acceptance Ratio (BAR) 

method) for the calculation of free energy of solvation. The estimated values of solvation 

free energy of alkane in the corresponding solvents agree well with the available 

experimental data. 
  

Keywords:  Alkane; Free Energy;  Molecular dynamics;  BAR. 

 

1. Introduction 
 

Solubility, lack of solubility and other solvation properties of atoms, molecules and ions in aqueous 

solutions play a crucial role in biological processes and industrial applications. The free energy of 

solvation (specifically, hydration) is one of the most important properties in the study of solvent effects 

which determines solubilities, partition coefficients, association, dissociation, and binding constants, 

phase equilibria, and for transition states, reaction rates in many bio-chemical and physical processes 

[1]. For instance, protein folding occurs spontaneously because of a favorable change in the interactions 

between the protein and the surrounding water molecules. The folded proteins, caused by combined  
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effects of solvent and hydrogen bonding, are stable by 5-10 kcal/mol . The solvation is driven by 

minimizing the number side-chains, exposed to water and hydrophobic in nature, covered by the folded 

protein at its centre [2]. The host-guest complexes, whose binding constant depends  on solvent 

polarity, caused by hydrophobic pores present in host molecules also act as driving force for solvation 

[3]. Furthermore, the interactions can be used in biological system to delivery the hydophobic drugs. 

Hydration affects electronic and vibrational properties of biomolecule [4, 5].  
 

Computer simulation and modeling is performed in order to comprehend the properties of assemblies of 

molecules in terms of their structure and the microscopic interactions between them. In a classical 

framework, the main computational methods are molecular dynamics (MD) and Monte Carlo (MC) 

simulations. Molecular Dynamics (MD) simulation is a powerful approach for predicting and knowing 

the structure, function, dynamics, and interactions of atoms and molecules starting from a simple to 

complex systems in biophysical phenomenon of materials sciences study. These techniques are 

complement to conventional experiments, enabling us to learn something new, something that cannot 

be found out in other ways [6-11]. 
 

Alkanes are saturated hydrocarbons that consist only of the elements carbon (C) and hydrogen (H), 

where each of these atoms are linked together exclusively by single bonds. Alkanes belong to a 

homologous series of organic compounds in which the members differ by a constant molecular mass of 

14 that is CH2 [12]. First four members (lighter alkanes) of alkane series are methane, ethane, propane, 

and butane with molecular formula CH4, C2H6, C3H8, and C4H10 respectively. The most important 

sources of alkanes are natural gas and crude oil. Alkanes are non-polar solvents as only C and H atoms 

are present. Methane, ethane, propane and n-butane are hydrophobic molecules, and as such its 

solubility in water is rather low, and they tend to aggregate when solvated in water, but freely soluble in 

non-polar solvent like ether and benzene. This behavior is more clearly exhibited by longer n-alkane 

chains, which may be considered as polymers of methane. The complicated organic compounds that 

once made up living plants or animals have transformed into a mixture of alkanes [12-16]. Furthermore, 

the first four members of alkanes are also neutral analogs of amino acid side chain. Amino acid side 

chain analogs represent a natural test case for biomolecular interaction [17, 18]. Transport properties 

such as diffusion, viscosity and thermodynamic properties like free energy of hydration/solvation of 

hydrocarbons (alkanes) in aqueous environment is a basic consideration in many processes like 

processing of natural gases and petroleum, understanding the tertiary structure of proteins, as well as 

the important role it plays as a driving force in a number of processes occurring within living cells [19-

21]. The free energy of hydration of light alkanes (a polar molecule) for a few temperatures and 

pressures have been repeatedly measured by computer simulations but the experimental values are rare. 

On the other hand, there is no literature data for the free energy of solvation of light alkanes in methanol 

(an amphiphilic molecule). So, we are motivated to calculate the free energy of hydration/solvation of 

light alkanes in water and ethanol molecules.  Our findings from the numerical simulation can also be 

used as a crude reference for any further studies of hydrophobicity and solubility of organic and 

inorganic substances in different solvent environments. 
 

The outline of the paper is as follows: In Sec. II, we discuss the theoretical background of the free 

energy of solvation and method of calculation. Computational details of our work are stated in Sec. III. 

Results of the work are presented in Secs. IV. Our conclusions are collected in Sec. V. 
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2. Theoretical Background 
 

A thermodynamic quantity equivalent to the capacity of a system to do work, the difference between 

internal energy of the system and the amount of energy that cannot be used to perform work, is known 

as free energy of the system. Mathematically, the Helmholtz free energy          and the Gibbs free 

energy          are defined as: 

                               (1) 

                                    (2) 

where,     and    are internal energy, entropy and chemical potential of the system respectively. The 

Helmholtz free energy           describes a closed, isochoric, isothermal assembly, so it is a 

function of temperature     , volume    , and number of molecules      The Gibbs free energy 

         describes a closed isobaric, isothermal assembly, so it is a function of temperature     , 

pressure   , and number of molecules     [22, 23]. The chemical potential is given by  

       
  

  
 
   
    

  

  
 
   
                (3) 

Two ensembles are particularly useful for the calculations of free energy: the canonical       

ensemble and the isobaric-isothermal       ensemble. The Helmholtz free energy and Gibbs free 

energy are determined by the corresponding partition functions   defined  by [22, 23]: 

                                    =  
 

     
  ×                       (4) 

 and                             =  
 

     
  ×                          (5) 

where         ,    is the unperturbed Hamiltonian of the system and   is the volume. In simulation, 

the direct measurement of the free energy is not possible but difference in free energy can be calculated. 

For any other system differing in the Hamiltonian by a perturbation of the potential energy   ,    

    , the difference in Helmholtz free energy is,        

                                        
  

  
            (6) 

Free energy calculations have a number of practical applications, of which some of the more common 

ones include free energies of solvation/hydration and free energy of binding for a small molecule to 

some larger receptor biomolecule (usually a protein). Equilibrium free energy methodologies share the 

common strategy of generating equilibrium ensembles of configurations at multiple values of the 

scaling parameter λ. The commonly used methods are thermodynamic integration [24], adaptive 

integration [25],  multistage free energy perturbation [26], and multistage equilibrium Bennett analysis 

[27]. In GROMACS, different approaches, including “slow-growth” can be used to calculate the free 

energy differences. In the “slow-growth” method, the Hamiltonian of system, that changes slowly to 

remain in equilibrium from one system A to other system B, is modified by making the Hamiltonian as 

function of coupling parameter λ as            such that                   and           

         The Helmholtz free energy          in terms of partition function   is defined as [22, 23, 

36]: 

                        = 
 

     
                                (7) 

where β       ,           is the Hamiltonian of the system. 

In order to calculate free energy difference, we define potential energy function which linearly depends 

on coupling parameters λ i.e.       such that, for    ,          represents the potential energy of 

system A and         represents the potential energy of system B, then 

                                                              (8) 
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Also, the derivative of Helmoltz free energy Eq. (7) with respect to coupling parameter λ and using Eq. 

(8), we get the relation as: 

         
   

  
 

   
  

 λ
     β       λ       

   β       λ       
 =   

  

 λ
     λ      

   λ 

 λ
     λ                       (9) 

The     brackets represent the ensemble average. After integrating the Eq.(9) from λ = 0 to λ = 1 using 

thermodynamic integration (TI) method, we can evaluate the free energy difference between the system 

A and B as 

                               
  

  
      

 

 
        

     

  
      

 

 
                 (10) 

According to the Bennett Acceptance Ratio (BAR) [27] method, the ratio of partition function Q0 for 

λ=0 and Q1 for λ=1 is given by: 

                  
  

  
 

      
    

 β            

      
    

 β               
   =  

          

          
                                   (11) 

where ‘w’ is an arbitrary weight function. In terms of ‘w’, the Helmoltz free energy difference is given 

by  

                                            
                                                       (12) 

It is also possible to use Bennetts method to combine the information normally used for forward and 

reverse free energy perturbations. In this approach, we compute the free energy difference between 

successive λ values δA according to the relation 

                           
       

        
     –      

  

           
       

          
              

  

       (13) 

Then the sum of these δA i is the total Helmholtz free energy difference [27], 

 

                           ∆      
   
                                                                                                      (14) 

 

3. Computational Model 
 

A. Molecular Models 
 

The TIP3P (Transferable Intermolecular Potential with 3-Points) model [28] is used in all the 

simulation for water as a solvent. The OPLSS-AA (Optimized Potentials for Liquid Simulations-All 

Atom) potential model [29] is used for alkanes (methane, ethane, propane, n-butane) and methanol. The 

all atom model of the studied alkane system is shown in figure (1). The system under study consists of 1 

alkane (methane, ethane, propane, n-butane) molecule and 596 water, and 1 alkane (methane, ethane, 

propane, n-butane) molecule and 354 methanol, a separate system separately. In classical force fields 

like OPLS-AA, the potential functions are derived empirically to describe the atomic interactions. The 

atoms are treated as spherically symmetric particles and are considered to be connected through 

covalent bonds to form molecules. Each and every atom experiences a force resulting from its pairwise 

additive interac- tions with the rest of the system. The total potential energy U tot includes contributions 

from both bonded and non-bonded interactions [36]. The bonded interactions are bond stretching (2-

body), bond angle (3- body) and dihedral angle (4-body) interactions. A special type of dihedral 

interaction (called improper dihedrals) is used to force atoms to remain in a plane or to prevent 

transition to a configuration of opposite chirality (a mirror image). The non-bonded interactions are 

represented by the Lennard-Jones potential and Coulomb potential. Therefore, the total potential energy 

function of a system can be written as [36]: 

 

                                 =                                      (15) 
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Fig. 1: Pymol snapshots of light alkanes (a) Methane, (b) Ethane, (c) Propane and (d) n-Butane model 

used in this work. 

 

 
The bond stretching between two covalently bonded atoms         is represented by harmonic potential 

[36] 

                                           
 

 
   
          

 
        (16) 

where      
  is the force constant and    is the equilibrium bond length between two atoms        . 

The bond angle vibration between a triplet of atoms       is also represented by a harmonic potential 

on the angle       [ 36] 

                                           
 

 
    
           

  
 
          (17) 

where     
   is the force constant and     

  is the equilibrium bond angle. 

The proper dihedral angle  is defined as the angle between the               planes. In this study, we have 

used thefollowing dihedral potential (Ryckaert-Bellmans potential) [36]  for alkanes: 

                                                                            (18) 

where   is the dihedral angle and             are constants. The bonded parameters for water and 

alkanes are given in the table (I). 
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Table I: Force-field (bonded) parameters for TIP3P wa- ter and OPLS-AA alkanes and methanol. The 

units of equilibrium bond length (b) and equilibrium bond angle (Θ0) are nanometer (nm) and degrees (o) 

respectively. Similarly, the units of       and                   are kJmol−1nm−2, kJmol
−1

rad
−2

 and 

kJmol
−1

 respectively. 

 

TIP3P 

 water 

   
  

    
  

502415.0 

 628.02 

    

    
  

0.09572  

104.52 

 

OPLS-AA 

Alkanes 

   
  

   
  

    
  

    
  

    
  

284512.0 

224262.4 

276.144 

313.800 

488.273 

    

    

    
  

    
  

    
  

0.1090 

0.1529 

109.47 

109.47 

109.47 

                     Dihedral Potential (Alkanes)  

H-C-C-H 

 

H-C-C-C 

 

 

C-C-C-C 

      C0 

      C2 

      C0 

      C2 

      C0 

      C2 

0.62760 

0.00000 

0.62760 

0.00000 

2.92880 

0.20920 

        C0 

        C2 

        C0 

        C2 

        C0 

        C2 

1.88280 

-2.51040 

1.88280 

-2.51040 

-1.46440 

-1.67360 

                    Dihedral Potential (Methanol) 

H-C-OH-HO 

 

H-C-C-C 

 

C-C-C-C 

     C0 

     C2 

     C0 

     C2 

     C0 

     C2 

0.94140 

0.00000 

0.62760 

0.00000 

2.92880 

0.20920 

        C0 

        C2 

        C0 

        C2 

        C0 

        C2 

2.82420 

-3.76560 

1.88280 

-2.51040 

-1.46440 

-1.67360 

 

The non-bonded inter-atomic interaction is the sum of Lennard-Jones interaction (ULJ) and Coulomb 

interaction (UCoul), that can be written as: 

                  (           
   

   
     

   

   
 
 

   
        

       
           (19) 

where  rij  is the Cartesian distance between the two atoms i and j; α and β indicate the type of the atoms. 

The non-bonded parameters for alkanes and water is given in the table (II). 

 

Table II: Force-field (non-bonded) parameters for TIP3P water and OPLS-AA alkanes and methanol. 
 

 Atoms       ϵ(kJ/mol) Charge (q) 

TIP3P 

Water 

OW 

HW 

0.315061 

0.000000 

0.636386 

0.000000 

-0.834 e 

+0.417 e 

 

OPLS-AA 

Alkanes 

C(CH4) 

C(CH3) 

C(CH2) 

H 

0.35000 

0.35000 

0.35000 

0.25000 

0.276144 

0.276144 

0.276144 

0.125520 

0.000 e 

0.000 e 

0.000 e 

0.000 e 

 

OPLS-AA 

Methanol 

C(CH3) 

C(CH2) 

OH 

HO 

0.35000 

0.25000 

0.312000 

0.00000 

0.276144 

0.125520 

0.711280 

0.000000 

+ 0.145 e 

+ 0.040 e 

- 0.683 e 

+ 0.418 e 
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Here OW and HW represent the oxygen and hydrogen atoms of the water  molecules respectively and 

C(CH4), C(CH3) and C(CH2) are the methane, methyl and methylene carbon atoms of the alkane 

molecules respectively. Similarly, OH and HO are oxygen and hydrogen atoms of hydroxyl group of 

methanol respectively. The parameters for the non-bonded Lennard-Jones interaction between two 

different atoms for OPLS-AA force field are written as [36]: 

                  
 

                (20) 

                  
 

                (21) 

 

B. Simulation Procedure 
 

Molecular dynamics simulation was carried out in a cubic box with periodic boundary conditions [7] 

using GROMACS 5.1.1 [37, 38, 47 ]. The distance to the edge of the box from the solute (alkane) is an 

important parameter for defining the size of the box. Since we are using periodic boundary conditions, we 

must satisfy the minimum image convention. That is alkane (solute) should never see its periodic image, 

otherwise the forces calculated will be spurious. The size of the box defined here is sufficient for just 

about any cutoff scheme commonly used in simulations. Our system consists of, 596 water and 1 alkane 

molecule, 354 ethanol and 1 alkane molecule a separate system. After defining a system in a simulation 

box, energy minimization is carried out for each values of λ from 0 to 1, for 21 different values to avoid 

unphysical van der Waals contact caused by the atoms that are too close [36]. Energy minimization 

brings the system to equilibrium configuration, removes all the kinetic energy from the system, reduces 

thermal noise in structure and brings the system to one of the local minimum. Steepest descent algorithm 

followed by L-BFGS (limited- memory- Broyden-Fletcher-Goldfarb-Shanno quasi- Newtonian-

mimimizer) [30, 31] algorithm has been used for energy minimization [36]. This combination (steepest 

descent and L-BFGS) yields a thoroughly-minimized structure suitable for starting equilibration and 

subsequent data collection. The energy (potential) of the system after energy minimization is shown in 

figure (2). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Plot of potential energy as a function of time after energy minimization for methane-methanol 

system  at  λ=0 
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After energy minimization, NVT equilibration of 5 × 10
5
steps for 1 ns and isobaric-isothermal (NPT) 

equilibration of 2.5 × 10
6
 of 5 ns was carried out at different temperature, from 275K to 375 K and a 

pressure of 105 Nm
−2

 by using velocity-rescaling thermostat [32] and Berendsen barostat [33] at a 

coupling time τt  = 1.0 ps and τp  = 0.5 ps respectively. Integration of the equations of motion were 

performed using an accurate leap-frog stochastic dynamics (SD) algorithm [34], and all bonds were 

constrained using LINC algorithm [35]. During equilibration, the long range Coulomb interac- tion is 

handled via the PME (Particle Mesh Ewald) algorithm [39, 40] with fourier spacing 0.12 with a real 

space cutoff of 1.2 nm and a PME order of 6. We monitored the temperature, pressure, density, and 

energy of each studied system to bring it in thermodynamic equilibrium. After equilibration run we 

performed the production run to calculate the equilibrium properties of the system, that is free energy of  

solvation for each values of λ by fixing the number of particles, volume and temperature i.e. NVT 

ensemble. We use velocity-rescale thermostat for this case. We don’t couple the system to a fixed 

pressure and use the structure obtained after equilibration run by which we fix the volume of the system. 

The production run was carried out for 1 ns with the time   step of  2fs. 
 

4. Results and Discussion 
 

Using the computational details described above, free energy of solvation calculations were carried out in 

a cubic box in infinite dilution for two separate systems: (i) 596 TIP3P water molecules and 1 OPLS-AA 

alkane (methane, ethane, propane and n-butane) molecule (ii) 354 OPLS-AA methanol and 1 OPLS-AA 

alkane (methane, ethane, propane and n-butane) molecule. The free energy of solvation of alkanes in 

different solvent environments, water and methanol were estimated by Eq.(14). The extent to which 

Hamiltonian of the system has been perturbed is measured by the free energy change of transforming a 

system from state A (λ = 0) to state B (λ = 1), ∆A, as a function of a coupling parameter, λ. For 

decoupling van der Waals interactions, we used an equidistant λ spacing of 21 different λ’s from 0 to 1. 

Thus, the free energy change from λ = 0 to λ = 1 is simply the sum of the free energy changes of each 

pair of neighboring λ simulations. The free energy changes of each pair of neighboring λ and the 

cumulative free energy change which is negative of free energy of solvation of butane in water is shown 

in figure (3). 

 

 

Fig. 3: Difference in free energy (∆A) and cumulative free energy difference (∆A) for different λ  points 

for simulation of butane in water at T = 300 K. 
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The calculated values of solvation free energy of alkane (methane, ethane, propane, n-butane) in water 

and methanol along with the references (if available) at different temperatures are presented in table (III). 

There is good agreement between experimental values at 298 K and calculated values at 300 K of the 

solvation free energy of alkanes in water within 15 % error, but at higher temperatures there is no 

available experimental results. And there is no experimental available result for solvation free energy of 

alkanes in methanol. 
 

Table III:  Calculated and available experimental solvation free energies (kJmol
−1

) at different 

temperature of light alkanes in water and methanol. 
 

     Water Methanol 

Molecule T(K)    

Calculated         

Expt.[41] 

(298.15K) 

 

Calculted        

          

Ref. 

 

 

Methane 

275 

300 

325 

350 

375 

8.33±0.05 

9.08±0.12 

10.01±0.14 

10.32±0.09 

10.63±0.07 

-- 

8.08 

-- 

-- 

-- 

2.94±0.02 

3.05±0.10 

3.36±0.01 

3.58±0.03 

3.79±0.05 

-- 

-- 

-- 

-- 

-- 

 

Ethane 

275 

300 

325 

350 

375 

8.22±0.14 

9.02±0.19 

11.12±0.07 

11.20±0.10 

11.52±0.10 

-- 

7.41 

-- 

-- 

-- 

0.20±0.15 

0.70±0.12 

0.90±0.10 

0.99±0.10 

1.01±0.07 

-- 

-- 

-- 

-- 

-- 

 

Propane 

275 

300 

325 

350 

375 

8.77±0.14 

9.61±0.21 

11.27±0.08 

11.80±0.06 

12.70±0.20 

-- 

8.28 

-- 

-- 

-- 

-2.73±0.21 

-1.28±0.30 

-0.93±0.16 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

 

 

n-Butane 

275 

300 

325 

350 

375 

9.10±0.13 

10.99±0.18 

11.82±0.11 

12.95±0.20 

13.93±0.11 

-- 

9.03 

-- 

-- 

-- 

-4.92±0.19 

-3.77±0.18 

-3.60±0.19 

-2.75±0.16 

-- 

-- 

-- 

-- 

-- 

-- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4:  Solvation free energy of alkanes in TIP3P water at T=300 K. 
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Fig. 5: Comparision of calculated and literature values (Reference (1) [42, 43], Reference (2) [44] of 

solvation free energy of methane in water at different temperature. 

 

The comparison between the calculated values with error bars of solvation free energy of alkane in water 

at 300 K and the corresponding experimental values at 298 K is shown in figure (4). Similarly, the 

comparison of calculated and literature values of free energy of solvation of methane in water at different 

temperature in shown in figure (5) and tabulated in table (IV). The free energy of solvation of alkanes 

(methane, ethane, propane and n-butane) in methanol as a fuction of temperature is plotted in figure (6).  

 

Table  IV:  Calculated and reference (experimental and literature) values of solvation free energies 

(kJ/mol) at different temperature of methane in water. 

 

Molecule T(K) Calculated Ref.(1)[42, 43] Ref.(2) [44] 

 

 

Methane 

275 

300 

325 

350 

375 

8.33±0.05 

9.08±0.12 

10.01±0.14 

10.32±0.09 

10.63±0.07 

6.95 

8.21 

9.58 

-- 

11.13 

8.09 

9.45 

10.54 

-- 

11.78 

 

 

The solvation process is considered to consist of two steps, (i) the formation of a repulsive cavity of 

appropriate size, and (ii) the introduction of the soa lute into this cavity. The positive values of calculated 

free energies of solvation (∆A) in TIP3P water for all of the alkanes (methane, ethane, propane and n-

butane) indicate their low solubilities in water that means alkanes are hydrophobic in nature. The 

simulations also show, in accordance with experiment, that ∆A decreases from methane to ethane, but 

then increases with increasing carbon number for longer up to butane at 300 K. This shows that the 

methyl group of alkane molecules have a preferential tendency to be dissolved in the vicinity of water 

molecules and that this tendency decreases with chain length. 
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Fig. 6:  Solvation free energy of alkane in methanol at different temperature from T = 275 K to T = 

375K. 

 
 

The increase in free energy of solvation with increase in temperature describes that the formation of 

repulsive cavity in water is perturbed by the thermal agitation of the water molecules. That means when 

temperature is incresed we dont have new interactions that are strong enough to introduce some important 

change in enthalpy and change in Helmoltz free energy A is mostly connected with entropy or reordering 

of hydrogen bonds. By placing alkane in water we are perturbing the hydrogen bond network so that 

water molecules need to reorganize themselves around the solvent in a particular way that makes possible 

for average number of bonds for one molecule to remain constant. Since hydrogen bonds are directional 

this leads to a smaller configurational space for water molecules and change in entropy will be negative 

45, 46]. Again , we have calculated free energy of solvation of alkanes in methanol at different 

temperature. From table (III) and figure (6), free energy of solvation ∆A in methanol becomes more 

negative as the alkane chain increases. The positive values of solvation free energy of methane and 

ethane shows that they are insoluble in methanol but the negative values of it for propane and butane 

indicates they are soluble in the methanol. Methanol is amphiphilic organic substance. There is a 

competition between hybrophobic group (methyl-CH3) and a hydrophilic group (hydroxyl-OH). 

Amphiphilic nature makes methanol interesting solvent because alkanes should show greater solubility in 

it than in water. For methane and ethane the hydrophobic groups dominates over the hydrophilic group, 

on the other hand for propane and butane the reverse situation occurs. 
 

4. Conclusion and Concluding Remarks  
 

In this work, we have computed free energy of solvation (Helmholtz free energy A ) of alkane (methane, 

ethane, propane, n-butane) molecules in different solvent environments - water as a polar and methanol as 

an amphiphilic solvent, for various temperatures 275 K, 300 K, 325 K, 350 K, 375 K, using molecular 

dynamics simulation technique. The Transferable Intermolecular Potential with 3-Points (TIP3P) model 

of water and the Optimized Potential for Liquid Simulations- All Atom (OPLS-AA) model of alkane and 

methanol were used. Here alkane (methane, ethane, propane and n-butane) acts as a solute and water and 

methanol act as a polar and an amphiphilic solvent respectively. The free energy of solvation or hydration  
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of alkane in water is positive, and this values increases with increase in change length of alkanes. The 

calculated values of the free energy are in agreement with the available literature values. The free energy 

of solvation of alkanes in methanol shows different trends, it is negative for propane and butane but 

positive for methane and ethane. This shows that methane and ethane are insoluble whereas propane and 

butane are soluble in methanol. 
 

This study reports the first complete description of the solution thermodynamics calculating solvation free 

energy of alkanes in water and methanol by computer simulations, using Bennet Acceptance Ratio (BAR) 

method. This study could be the basis for understanding the biomolecular interactions and calculation of 

free energy of binding for a small molecule to some larger receptor biomolecule (usually a protein). In 

the near future, we also plan to study the solvation/hydration of a larger series of solutes and calculation 

free energy of binding between a ligand and a receptor in different aqueous environment. 
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Abstract: Disulphide bond in cysteine residues plays vital role in structural stability and fuctional variation of protein

molecules. Study of cysteine dimer linking with disulphide bond reveals the nature of stability of tertiary

and quarternary structure in polypeptide chain. In order to study the transport properties of cysteine dimer,

the molecular dynamics (MD) simulations have been performed at different temperature. The self diffusion

coefficients of both cysteine dimer and TIP3P water model have been estimated at four different temperature

from the slope of mean square displacement (MSD) versus time plot using Einstein’s relation and their binary

diffusion coefficients from Darken’s relation.

Keywords: Molecular dynamics • Diffusion coefficient • Disulphide bond • Dimer

1. Introduction

Cysteine is a non-essential amino acid. It contains a thiol group -SH in its side chain. It is a white crystalline

solid having physical properties: molar mass 121.15 gram per mole, melting point 513 K and solubility in water

is 16 gram per 100 mL at 288 K [1, 2]. Cysteine plays vital role in the absorption of nutrients in the inner wall

of small intestine. Its defensive mechanism against some diseases is essential for human body. Cysteine residue

in a protein molecule strengthens the immune system and defends against the dementia, parkinson and multiple

sclerosis [3, 4].

Two cysteine molecules bond together via two different methods: peptide bond (CO-NH) and disulphide

bond (R − S − S − R′) [1], where R & R′ are the side chains of two cysteine residues as shown in Fig. 1. Peptide

bond is ordinary bond to form a polypeptide chain, whereas the disulphide bond is formed between two side chains

derived from two thiol groups. Disulphide bond in two cysteine residues are very important components to form

tertiary structure of proteins, besides to some weak interactions like hydrogen bonding, hydrophobic interactions

salt bridges and weakly polar interaction. Although methionine, another amino acid, contains sulphur atom in its

side chain, it does not form disulphide bond. Hence, the study the characteristics of disulphide bond is important.

[1, 5].
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Due to the oxidation of the sulfhydryl group of cysteine residues in a protein molecule, disulfide bond is

formed. In such process, the thiol part -SH of cysteine molecules, contributes in disulfide bond formation, is

deprotonated and covalent bond is formed between them [5–7]. Two cysteine molecules also covalently linked

through peptide bond. Peptide bond is formed after the elimination of a water molecule during the interaction

of carboxyl (C-terminus) and amine (N-terminus) regions of two amino acids. This bond has partial double bond

character, i.e., stronger than single bond and weaker than double bond. It prevents the rotation of residues in

protein molecules [1, 2]. This work is basically focus on disulphide bonding in cysteine dimer.

Figure 1. Cysteine dimer.

Diffusion is an important physical phenomenon to understand the rate of transport of mass from the region

of higher concentration to lower concentration [8–11]. Many bio-molecules like insulin are stabilized due to the

formation of disulphide bond. The detailed understanding of effect of disulphide bond in any molecule and its

effect on diffusion phenomenon in aqueous environment plays an important role in different areas including drugs

designing. With our best knowledge, the diffusion coefficient of cysteine dimer, covalently bonding with disulphide

bond, in water using classical molecular dynamics technique has not been studied yet, which motivate us to study

the diffusion phenomenon of cysteine dimer.

2. Methodology

Diffusion

Diffusion is a transport property of matter due to which particles flows from the region of higher con-

centration to lower concentration due to the concentration inhomogeneity [12]. The knowledge about diffusion

phenomenon of biomolecules plays an important role to understand many phenomena in living organisms, like

transport of biomolecules at different part of body through body fluids. The diffusion in a homogeneous system

in the absence of chemical concentration gradient is called self diffusion and is measured in terms of self diffu-

12
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sion coefficient [13] which is estimated from slope of mean square displacement(MSD) versus time graph using

Einstein’s equation as [14, 15];

D = lim
t→∞

〈[r(t) − r(0)]2〉
6t

. (1)

In equation (1), r(t) − r(0) is the displacement of particle from reference point during the course of time

t, [r(t) − r(0)]2 is the square of displacement and 〈...〉 represents the ensemble average and hence 〈[r(t) − r(0)]2〉

gives MSD of particle.

Further, the binary diffusion, the diffusion of particles in the mixture of two different species, is measured

in terms of binary diffusion coefficient using Darken’s relation as [16];

D12 = N2D1 + N1D2 (2)

In equation (2), D12 is the binary diffusion coefficient, D1 and D2 are the self-diffusion coefficients of

substances 1 and 2 respectively, and N1 and N2 are the corresponding mole fractions.

Computational Details

In this work, we performed classical molecular dynamics (MD) simulations for the system of 1 cysteine

dimer and 1984 water molecules in cubic simulation box of size about 3.90 nm at four different temperature; 288

K, 298 K, 303 K and 308 K using GROMACS 5.1.2 software package [17]. The cysteine dimer was extracted from

the insulin molecule (pdb entry: 3i40) taking seventh residue of chain A and also seventh residue of chain B. The

input files for MD simulation were generated from CHARMM-GUI online software program [18]. The dimer was

solvated in a periodic boundary condition (pbc) box with TIP3P water sample. All the bonded and non-bonded

parameters are used, assigned by CHARMM36 force field [19].

MD simulation was begun from energy minimization run using Steepest-descent algorithm [17]. This run

removes steric clashes in which the undesirable coordinates of atoms of side chain or backbone that may occupy

wrong position in the same coordinate space and bring the system in the condition of minimum potential energy

state. Since the transport properties like diffusion depends on the thermodynamic parameters like temperature,

pressure etc. of the system [20], the system should be stabilized for thermodynamic parameters. Then, the equi-

libration run was carried out to stabilize the temperature, pressure, density etc. The equilibrated bio-molecular

system saves the computation efforts by removing external unwanted forces [21, 22]. To bring the system in

thermodynamics equilibrium, equilibration run of 100 ns with time step of 1 fs was carried out in NPT ensemble

for the system at each temperature. During the equilibration run; LINCS algorithms, Berendsen barostat with

coupling time of 0.8 ps and Velocity rescaling thermostat with coupling time of 0.01 ps were used to constraint all

the bonds, maintain constant pressure and maintain constant temperature respectively [17]. Also, 1 nm cut-off

distance was taken for Lennard-Jones and Coulomb interactions; and PME (Particle-mesh Ewald) method was

used to handle long range coulomb interaction. Furthermore, Maxwell-Boltzmann distribution and was used to

13
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assign initial velocities of each particle; and the new positions and velocities of the particles was calculated using

leapfrog algorithm [17] after each time step respectively.

After equilibration of the system, production run was performed in NVT ensemble for 100 ns with time

step of 1 fs for each temperature. During the equilibration run, velocity-rescaling thermostat with coupling time

of 0.01 ps was used and the initial velocities of each particle was taken from the final step of equilibration run.

3. Results and Discussion

Diffusion coefficient

In this section, we present the self diffusion coefficients of water and cysteine dimer as well as their binary

diffusion coefficient at different temperature. The self diffusion coefficient of both solute as well as solvent are

estimated from their MSD versus time graph. Although, all the production run were carried out for 100 ns, we

have plotted the MSD graph for 3 ns and 5 ns for cysteine dimer and water respectively due to the region that

statistics is better in beginning region of the graph. Figs. 2 and 3 show the msd versus time graph for cysteine

dimer and water respectively at four different temperatures: 288 K, 298K, 303 K and 308 K. From the Figures,

it is clearly seen that the slope of the graph increases with temperature for both cysteine dimer as well as water.

This indicates that self diffusion increases with temperature.

Figure 2. MSD versus time plot of cysteine dimer
at four different temperature.

Figure 3. MSD versus time plot of water at four different
temperature.

Also, the estimated values of the self diffusion coefficients of cysteine dimer and water estimated from the

slope of the MSD versus time graph using Einstein relation; and their binary diffusion coefficients using Darken’s

relation are presented in Table 1.

From the Table 1, it is seen that both self and binary diffusion coefficients increases with increase in

temperature. This is due to the increase in random velocity of the particles and decrease in density of the system

with increase in temperature. As a result, the available space for diffusion increases with temperature. The

simulated value of self diffusion coefficient at 298 K is in closely agreement with previously reported simulated value

14
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[23]. Also, from the Table, we observe that the estimated values of self diffusion coefficient of water at different

temperature are greater than the previously reported experimental values. The reason for this observation is

that we used TIP3P water model during the simulations which overestimate the value of diffusion coefficient.

Furthermore, we observed that the binary diffusion coefficient of the system equals to corresponding value of

self diffusion coefficient of cysteine dimer, which is due to infinite dilute concentration of cysteine dimer in the

solution.

Table 1. Estimated values of self and binary diffusion coefficients at different temperature.

SN Temp.

Diffusion coefficients (DPBC)(10−9m2 s−1)

Self

BinaryFor cysteine dimer For Water

(K) MSD MSD Reference[23] Experiment [24] Calculated

1. 288 0.69 4.58 1.77 0.69

2. 298 0.91 5.27 5.4 2.30 0.91

3. 303 0.98 5.65 2.60 0.98

4. 308 1.02 6.06 2.90 1.02

Temperature Dependency of Diffusion

The Table 1 shows the temperature dependent behavior of diffusion coefficient. In order to check whether the

behavior is Arrihenius or not, we have plotted graphs between ln(D) versus (1/T ). Fig. 4 shows the temperature

dependent behavior of self diffusion of water which follows the Arrhenius equation [25]:

ln D = ln D0 − Ea

NAkBT
(3)

In equation (3), D is the diffusion coefficient, D0 represents pre-exponential factor, Ea is the activation energy

for diffusion, NA is Avogardo’s number whose value is 6.022 × 1023 mol−1, kB is the Boltzmann’s constant

whose value is 1.38 × 10−23 JK−1 and T is the absolute temperature. The intercept when extrapolated to the

1/T → 0 in the Arrhenius plot gives the pre-exponential factor.

Figure 4. Arrhenius diagram for simulated values of self diffusion coefficient of water.
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4. Conclusions

In this work, molecular dynamics simulation has been carried out to study the diffusion properties of

cysteine dimer with disulphide bond in infinite dilute solution of water. This study is performed solvating single

cysteine dimer molecule in 1984 water molecules at temperature 288 K, 298 K, 303 K, 308 K using GROMACS

5.1.2 software package. CHARMM36 force field parameters and TIP3P water model are used throughout the

simulations. Einstein′s equation is used to determine the self diffusion coefficient of cysteine dimer and the water.

The estimated values of self diffusion coefficients are found to be higher than the previously reported experimental

values. This is due to the fact that TIP3P water model overestimate the diffusion coefficient. Also, the diffusion of

binary mixture of cysteine dimer and water was calculated from Darken′s relation. The temperature dependence

of diffusion coefficient has been tested from Arrihenous plot.

In near future, we are intended to study the transport properties of poly-cysteine with peptide bond in

aqueous medium.
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Abstract 
Human growth hormone (hGH) is synthesized, stored and secreted by somatotropic cells within 
the lateral wings of the anterior lobe of pituitary glands; and is transported to other organs of 
human body. Study of intra-molecular structure and its binding mechanisms within the 
molecule gives more insight of structural stability of the molecule and is also essential in drug 
designing. In this article, we have investigated the various bonded and non-bonded interactions 
that contribute for the conformation of entire structure of the hGH molecule using molecular 
dynamics (MD) simulation. The MD outcomes show that the molecule is hydrophobic in nature. 
In its conformation, several types of interactions exist, such as  disulphide bridges (bonded) and 
nonbonded: hydrogen bond, hydrophobic, aromatic-aromatic, ionic, aromatic-sulphur, cation-pi. 
 
Keywords: Intra-binding, Growth hormone, Hydrophobic, Aromatic. 

 
1. INTRODUCTION 
Personal height is the highly concerned matter for 
everyone. It is also a measure of health conditions 
[1]. Human growth hormone (hGH) is essential for 
the proper development of height as well as every 
part of body. It is a single chain peptide hormone 
that stimulates  growth, reproduction and 
regeneration of cell in human [2].  Although growth 
hormone is found in other animals, its effect is 
significant only in human and old world monkey. 
Many researches have revealed that the variation of 
amino acid sequence of hGH is significant in 
different species [3]. Even though the sequence is 
different, its role in other animals is also similar to 
that in human body. This hormone contains 191 
amino acid residues with 22,124 daltons molecular 
weight. It is synthesized, stored and secreted by 
somatotropic cells within the lateral wings of the 
anterior lobe of pituitary glands [4]. The hormone 
after secretion from the gland mixes into the blood 
stream and is transported into body cells [5]. The 
structure includes four helices necessary for the 
functional interaction with the growth hormone 
(GH) receptor [6]. Human growth hormone is 

essential in physical development. Main problem of 
human growth in childhood is the short stature, i.e., 
insufficient growth in accordance with age; and 
delayed sexual maturity in adulthood [7]. 
Human growth hormone, also known as 
somatotropin, provides important contribution in 
human development. It increases the concentration 
of glucose and free fatty acids [1]. It is legally 
prescribed as a drug to treat the children's growth 
disorders and adult growth hormone deficiency. 
Moreover, it is also used in raising livestock more 
efficiently in industrial agriculture.  
Besides its functions of somatic and bone growth as 
well as increase in the size and mass of organs and 
tissues, hGH also influences in the functioning of 
proteins, carbohydrates and lipids metabolisms [8]. 
These mechanisms caused by hGH are basically 
due to its ability to bind with specific target cell 
receptor. hGH surface specifically favors for the 
inter-molecular bindings at the interfacial region of 
receptor. Inter-molecular binding occurs in the 
expense of intra-molecular binding, which 
ultimately lowers the conformation stability of the 
molecule [9, 10].  There are several non-bonded 
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interactions to form a macromolecule a stable 
structure. Hydrogen bonding play a pivotal role in 
the formation of secondary structure of a protein. 
Likewise, disulphide bond is a covalent bonding to 
give the shape in tertiary structure. Similarly, 
aromatic-aromatic interactions between two 
aromatic rings separated by distance 4.5 Å to 7 Å 
provide the conformation stability. This interaction 
is energetically favorable and basically applies to 
form the tertiary and quaternary structure [11, 12]. 
Similarly, electrostatic and van der Waals 
interactions are pervasive in intra- and inter-
molecular bindings [13]. Likewise, hydrophobic 
interaction has influences in conformation changes 
of protein molecule in aqueous environment [14]. 
In this work, we have used molecular dynamics 
simulation to study the intra-molecular interactions 
and the contributions of hydrogen bonding and 
several other interactions such as hydrophobic, 
ionic, aromatic-aromatic, aromatic-sulphur and 
cation-pi that are responsible to provide the stability 
of hGH molecule. Moreover, we have compared the 
intra-molecular interactions of amino acid residues 
in static structure with the structure obtained from 
molecular dynamics simulations. To our best 
knowledge, the comprehensive study on molecular 
stability of this hormone has not been studied yet 
via MD run. We believe that this work aids the in-
depth knowledge about the binding of amino acid 
residues in order to form the stable structure of the 
hormone in cellular environment. 
 
2. MATERIALS AND METHODS 
To perform molecular dynamics simulation, one 
needs initial structure of molecule (pdb file) and force 
field parameters. In this section, we describe system 
setup of the hGH molecule, force field parameters 
used in the present work and simulation details. 
System setup: The molecular structure of human 
growth hormone was taken from protein data bank 
with PDBID 1HGU.pdb [15]. In original file, two 
amino acids were missing at the N-terminus and C-
terminus positions, which were filled with software 
program CHARMM-GUI [16]. This software 
program was also used to generate new protein 
structure file (psf) and pdb files. To mimic the 
cellular environment, the hormone molecule was 
solvated in TIP3P water in a cubical box of 
dimensions 84 × 84 × 84 Å3. As TIP3P water model 
resembles real water closely, we chose this model 
in this work. Furthermore,  the molecular system 
had originally 4 excess negative electronic charges, 

so the system was electrically neutralized by adding 
4 Na+ ions.  
Force fields: Force fields contain topology and 
parameter files. Topology files are used to generate psf 
files and parameter files contain the information about 
parameters of potential energy functions. In the present 
work, we used CHARMM36m [17] force field. 
Molecular Dynamics Simulation: All-atom 
molecular dynamics (MD) simulations were carried 
out by using NAnoscale Molecular Dynamics 
(NAMD) [18] simulation package. The Particle 
Mesh Edward (PME) was used to treat the long-
range interactions with a 12.0 Å non-bonded cut off. 
The energy minimization was performed for 10,000 
steps, using the conjugate gradient algorithm. 
Energy minimization run removes the unwanted 
hindrances between the atoms in the system. Since 
this run is performed in 0 K temperature, the 
system chooses the local minimum energy state [19, 
20]. After energy minimization, the system was 
equilibrated at 310 K under the isothermal-
isochoric conditions for 10 ns with 1 fs time step 
[21,22]. Then, the production run was propagated 
for 100 ns under NVT simulation run taking time 
step 2 fs by using Langevin dynamics with a 
damping constant of 1 ps-1. 
The NAMD energy plugin package available in 
Visual Molecular Dynamics (VMD) [23] was used 
to estimate structural stability of the hGH molecule 
in aqueous environment. Protein interaction 
calculator (PIC) [24] has been used to analyze the 
intra-molecular interactions. The study on intra-
molecular interactions depicts the detailed insights 
on folded state of the targeted molecule.  
 
3. RESULTS AND DISCUSSION 
This research work has been carried out by molecular 
dynamics simulation to study the amino acid 
arrangements, their folding mechanisms, the 
contributions of hydrogen bonding, and various other 
non-bonded interactions to form such a structure of 
human growth hormone in aqueous environment. The 
solvent accessible surface area and the energy profiles 
of bonded and non-bonded interactions have also been 
investigated to know the contact area and the stability 
of hGH in the aqueous environments.  
Structural stability of human growth hormone: 
The pre-requisite of examining the structural 
stability of any biomolecular system is the 
estimation of root mean square deviation (RMSD).  
RMSD measures the structural stability of entire 
molecule in the given environment. We have taken 



R. P. Koirala, B. Thapa, S. P. Khanal, R. P. Adhikari and N. P. Adhikari 

43 

the hGH molecule in aqueous environment in order 
to resemble the cellular condition. RMSD of the 
molecule has been calculated from VMD analysis 
tool "RMSD Trajectory Tool". The mathematical 
relation to estimate the RMSD is, 

ܦܵܯܴ ൌ ඩ
ͳ
ܰ
൫ݎሺݐሻ െ ݎ

൯
ଶ

ே

ୀଵ

 

Where, ݎሺݐሻ and ݎ
  represent the current and 

reference coordinates of ith atom respectively and N 
is total number of atoms. 
In this process, initial coordinates are taken as the 
reference and average deviation of molecule from 
the reference coordinates has been calculated in 
every frame of simulation. During the 100 ns NVT 
production run, the RMSD of the hGU was found 
fairly stable after 4 ns simulation (100 frames) time 
as shown in Fig. 1(i). 

 

           
 (i) (ii) 

 
(iii) 

 
Fig. 1: Structural characterization of hGH in aqueous environment (i) RMSD (ii) RMSF and (iii) hGH molecule. 

 
In addition, we have also determined the fluctuation 
of alpha carbons of hGH residues during the 
simulations through root mean square fluctuation 
(RMSF) as shown in Fig. 1(ii), which gives  the 
flexibility of residues within the molecular system. 
Greater value of RMSF of any alpha carbon implies 

the greater flexibility of corresponding amino acid 
in the protein chain and vice versa. The 
mathematical formula to find the RMSF is, 

ܨܵܯܴ ൌ ටൻݎሺݐሻ െ ۧൿݎۦ
ଶ 
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where, ݎሺݐሻ  and ݎۦۧ  are the current position and 
average position  respectively. 
During the 100 ns simulation run, it has been 
observed that the regions of amino acid residues 
64-68 and 130-136 are most fluctuating and the 
regions of 23-49, 88-98 and 144-164 are the most 
stable. The most fluctuating and stable regions are 
shown in Fig. 1 (iii). 
Intra-binding potential energy: There are several 
interactions existing within a protein molecule to 
provide it a stable conformation. We have 
estimated the contributions of bonded and non-
bonded potential energy in hGH molecule. Energy 

profile for bonded interactions have been 
determined from 100 ns simulation. From the 
energy profile, it has been observed that improper 
dihedral has lowest contributions; and the 
contributions of harmonic and dihedral angle show 
almost equal and the largest value as shown in Fig. 
2. During the conformation of protein molecules, 
bonded energy provides the direct covalent link 
among the atoms, whereas the non-bonded energy 
contributes to fold the molecule forming the stable 
structure [25-27]. On analyzing the non-bonded 
energy, the contributions of electrostatic interaction 
has found to be significantly higher potential 
energy than that of van der Waals. 

 

    
 

Fig. 2: Energy profiles for hGH (i) bonded (bond, angle, dihedral and improper) interaction (ii) non-bonded 
(electrostatics and van der Waals) interactions. 

 
Intra-molecular hydrogen bonds: We have also 
investigated the hydrogen bonding within the 
molecule to form the hGH molecule. Hydrogen 
bonding is essential to form secondary structure of 
protein. The intra-molecular hydrogen bonding 
provides the important information for drug 
designing [28, 29]. The number of hydrogen bonds 
can determine the conformational stability in the 
molecule. Its role in intermolecular interactions is 
also very important, which enhances the 
cooperativity among the molecules in protein-
protein, protein-ligand and protein-nucleic acid 
systems. We have found total 1294 hydrogen 
bonding in entire 100 ns simulation, and average of 
65 hydrogen bonds persisted in each frame of 
simulation. The number of hydrogen bonds within 
the cutoff distance of 3.5 Å has been presented in 
Fig. 3.  

 
 

Fig. 3: Time variation of number of hydrogen bonding 
for intra-molecular binding in hGH. 
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Many intra-molecular hydrogen bonds were 
observed in both static and dynamic conditions of 
the hGH structure. We have shown the hydrogen 
bonding patterns for three interacting pairs. These 
three pairs are the representative pairs for main 

chain – main chain, side chain – side chain and 
main chain – side chain as shown in Fig.  4. There 
are several such type of hydrogen bonds were 
observed to form the stable structure of the 
hormone. 

 

 

  
Fig. 4: Intra-molecular hydrogen bonds: main chain – main chain (left),  side chain – side chain (middle)  

and  main chain – side chain (right). 

 
Surface accessible surface area (SASA): SASA 
measures the surface area of a molecule that 
contacts with the solvent molecules. We have taken 
water as the solvent to study how the amino acid 
residues residing on the surface of hGH behave in 
the aqueous environment. Fig. 5 shows the SASA 
plot with respect to simulation frame. During the 
100 ns simulation, the overall value of SASA has 
been observed decreasing. The decreasing nature of 
graph shows the internal rearrangement of amino 
acid residues that resides on the surface. This shows 
that the molecule is hydrophobic in nature so that 
the surface residues tend to aggregate together to 
minimize the surface area exposed to water. 
 

 
 
Fig. 5: Solvent accessible surface area (SASA) of hGH in 

water environment. 

 
Intra-molecular Interactions: We have computed 
the various interactions present within the human 

growth hormone such as hydrophobic interactions, 
disulphide bridges, ionic interactions, aromatic-
aromatic interactions, aromatic-sulphur interactions 
and cation-pi interactions using protein interaction 
calculator (PIC) web server. We have compared 
these intra-molecular interactions in static structure 
with the most stable structure obtained from 
molecular dynamics simulations. The most stable 
structure was taken from the MD trajectories 
corresponding to the minimum SASA. 
There are two disulphide bridges formed between 
two sulphur atoms of cysteine residues CYS182-
CYS189 and CYS53-CYS165 within 2.2 Å in both 
structures. The distance between two cysteine 
residues in CYS182-CYS189 and CYS53-CYS165 
is 2.02 Å in static structure, whereas 2.06 Å and 
2.03 Å respectively in the structure from dynamics. 
The hydrophobic interactions are of particular 
importance for the structural stability of hGH. There 
are 116 interactions between the hydrophobic residues 
such as PHE, LEU, ALA, MET, PRO, VAL, ILE, 
TYR and TRP present in the static structure. We have 
observed the decrease in the solvent accessible surface 
area (SASA) of protein during the simulation in 
aqueous environment that suggests the hydrophobic 
nature of the molecule. This is corroborated further by 
the greater number of hydrophobic interactions in the 
dynamics, which are 143 as compared to 116 in static.  
The cut off distance of hydrophobic interaction was 
taken to be 5 Å. 
In addition, the ionic interactions between the 
charged residues lying within the cut off distance of 
6 Å present in both structures of hGH protein are 
depicted in tables 1 and 2.  We have observed 29 
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ionic interactions in structure from dynamics, 
whereas only 11 in static. Salt bridges are the 
important interactions in forming the tertiary 
structure of protein molecules. They are the ionic 
interactions between charged atoms in residues 
lying within hydrogen bond distance (3.5 Å). In the 
structure obtained from MD simulation 7 salt-
bridges has been observed whereas only 2  salt-
bridges are obtained in static structure.  
 

 
 

Fig. 6: Bar diagram showing different intra-molecular 
interactions in hGH molecule. 

 
The bar diagram shown in Fig. 6 summarizes the 
various intra-molecular interactions present in hGH 
molecule in both structures i.e.,  static and dynamic 
conditions. The comparison diagram shows that 
hydrophobic interactions have the maximum 
binding sites and aromatic-sulphur has minimum 
binding sites. 
 

Table 1: Ionic Interactions within  
6 Å (in static structure) 

Position  Residue Position Residue 
16 ARG 107 ASP 
16 ARG 116 ASP 
18 HIS 174 GLU 
21 HIS 174 GLU 
32 GLU 41 LYS 
94 ARG 109 ASP 
115 LYS 118 GLU 
145 LYS 169 ASP 
154 ASP 158 LYS 
167 ARG 171 ASP 
171 ASP 172 LYS 

Table 2: Ionic Interactions within  
6 Å (structure in dynamic) 

Position  Residue Position Residue 
16 ARG 116 ASP 
19 ARG 107 ASP 
19 ARG 26 ASP 
26 ASP 29 GLU 
29 GLU 30 GLU 
29 GLU 32 GLU 
32 GLU 33 GLU 
32 GLU 41 LYS 
33 GLU 41 LYS 
38 LYS 39 GLU 
64 ARG 65 GLU 
94 ARG 109 ASP 
94 ARG 112 ASP 
109 ASP 112 ASP 
112 ASP 115 LYS 
115 LYS 116 ASP 
115 LYS 118 GLU 
116 ASP 119 GLU 
118 GLU 119 GLU 
129 GLU 130 ASP 
129 GLU 134 ARG 
130 ASP 134 ARG 
153 ASP 154 ASP 
168 LYS 169 ASP 
168 LYS 171 ASP 
169 ASP 172 LYS 
171 ASP 172 LYS 
171 ASP 174 GLU 
174 GLU 178 ARG 

 
The aromatic-aromatic interactions also play 
important role in the structural stability of proteins. 
These interactions are significant within 4.5 to 7 Å 
range between aromatic residues. In human growth 
hormone protein, we have detected 9 and 5 
aromatic-aromatic interactions for the dynamic and 
static structures respectively. These interactions are 
presented in tables 3 and 4.  Moreover, there is an 
aromatic-sulphur interaction within 5.3 Å present 
between PHE166 and MET170 residues in both 
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structures. In static structure, the distance between 
the centroid and sulphur was observed 4.66 Å and 
the angle was 72.7o, whereas in dynamic structure 
the distance between the centroid and sulphur is 
5.01 Å and the angle is 44.6o.  
The cation-pi interactions occur between the 
cations of the side chains of arginine or lysine 
residues with the polarizable pi electron of the 
aromatic ring. These interactions are distance 

dependent interactions. Here, we have taken the cut 
off distance of 6 Å. In static structure, there is only 
one cation-pi interaction present between the 
residues LYS41 and TYR164 within the distance of 
5.8 Å and at an angle of 119.7o. However, in case 
of structure obtained from dynamics, we observed 7 
cation-pi interactions between the ARG and LYS 
residues with the aromatic residues PHE and TRP 
as shown in table 5.  

 
Table 3: Aromatic-Aromatic Interactions within 4.5 and 7 Å (in static structure). 

Position  Residue Position Residue D(Centroid-Centroid) Dihedral Angle 
25 PHE 28 TYR 6.93 122.2 
31 PHE 35 TYR 4.73 132.8 
54 PHE 143 TYR 6.05 25.35 
86 TRP 166 PHE 4.93 50.11 

160 TYR 164 TYR 6.24 95.19 
 

Table 4: Aromatic-Aromatic Interactions within 4.5 and 7 Å (structure in dynamic). 

Position  Residue Position Residue D(Centroid-Centroid) Dihedral Angle 
25 PHE 28 TYR 6.14 144.03 
28 TYR 160 TYR 4.74 8.09 
28 TYR 164 TYR 6.07 31.76 
31 PHE 35 TYR 5 118.96 
54 PHE 143 TYR 6.74 50.35 
86 TRP 166 PHE 5.63 51.6 
86 TRP 97 PHE 6.4 22.9 
97 PHE 146 PHE 5.18 123.48 
97 PHE 166 PHE 4.79 37.53 

 
Table 5: Cation-Pi Interactions within 6 Å (structure in dynamic) 

Position  Residue Position Residue D (Cation-Pi) Angle 
1 PHE 16 ARG 5.15 108.14 
1 PHE 8 ARG 5.32 119.02 
25 PHE 167 ARG 3.9 13.26 
42 TYR 41 LYS 4.54 141.61 

111 TYR 94 ARG 3.98 156.72 
139 PHE 77 ARG 3.93 149.17 
191 PHE 64 ARG 4.45 47.09 

 
4. CONCLUSIONS 
We have carried out the molecular dynamics (MD) 
simulations in order to identify the intra-molecular 

contacts and their contributions in forming the 
stable structure of human growth hormone. The 
MD run was propagated for 100 ns simulation 
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under NVT condition at body temperature 310 K. 
We have studied bonded and non-bonded 
interactions which contribute in the formation of 
stable structure in aqueous environment. Many non-
bonded contacts are compared in static and 
dynamic conditions. 
The decreasing nature of solvent accessible surface 
area (SASA) depicts the hydrophobic nature of 
hGH which makes the structure more stable in 
water. We have compared the various intra-
molecular interactions namely disulphide bonds, 
hydrophobic, ionic, aromatic-aromatic, aromatic-
sulphur, cation-pi interactions between the 
structures from dynamics and statics. In the 
structure taken from the simulation at the condition 
of minimum SASA, we have found hydrophobic, 
ionic, cation-pi, aromatic-aromatic interactions 
significantly higher than that of static structure. The 
hydrogen bonding is observed strongly contributing 
in intramolecular binding. In addition, the 
estimation of bonded and non-bonded energy 
profiles show that electrostatic interactions have 
higher contributions in non-bonded condition. 
Similarly, the harmonic angle and dihedral angle 
have almost equal contribution in the conformation 
of the molecule. Bond energy contribution has also 
significant role but smaller than that of angle and 
dihedral.  
 
ACKNOWLEDGEMENTS 
RPK and SPK acknowledge the partial financial 
support from the Nepal Academy of Science and 
Technology (NAST). NPA acknowledges the 
UGC Award No. CRG-73/74-S&T-01. We 
acknowledge the computing facilities of 
Supercomputer Center Kathmandu University, 
which was established with equipment donated 
by CERN and the Arkansas High Performance 
Computing Center which is funded through 
multiple National Science Foundation grants and 
Arkansas Economic Development Commission. 
 
REFERENCES 
[1]  Fayter, D.; Nixon, J.; Hartley, S.; Rithalia, A.; 

Butler, G.; Rudolf, M.; Glasziou, P.; Bland, M.; 
Stirk, L.; and Westwood, M. Effectiveness and 
cost-effectiveness of height-screening 
programmes during the primary school years: a 
systematic review, Archives of disease in 
childhood, 93: 278-284  (2008). 

[2]  Greenwood, F.; and Landon, J. Growth hormone 
secretion in response to stress in man, Nature, 
210: 540-541 (1966). 

[3]  Aloj, S.; and Edelhoch, H. The molecular 
properties of human growth hormone, Journal of 
Biological Chemistry, 247: 1146-1152 (1972). 

[4]  Kohler, M.; Püschel, K.; Sakharov, D.; 
Tonevitskiy, A.; Schänzer, W.; and Thevis, M. 
Detection of recombinant growth hormone in 
human plasma by a 2-D PAGE method, 
Electrophoresis, 29: 4495-4502 (2008). 

[5]  Li, C. H. Human growth hormone: 1974–1981, 
Molecular and cellular biochemistry, 46: 31-41 
(1982). 

[6]  Yi, S.; Bernat, B.; Pál, G.; Kossiakoff, A.; and Li, 
W.-H. Functional promiscuity of squirrel monkey 
growth hormone receptor toward both primate 
and nonprimate growth hormones, Molecular 
biology and evolution, 19: 1083-1092 (2002). 

[7] Koirala, R. P.; Pradhan, S.; and Aryal, S. K. 
Ultrasonic Measurement of Kidney Length in 
Nepalese People. Journal of Nepal Physical 
Society, 4(1): 49-53 (2017). 

[8]  Wells, J. A.; Cunningram, B. C.; Fuh, G.; 
Lowman, H. B.; Ultsch, M.; Devos, A. M.; Bass, 
S. H.; Mulkerrin, M. G. The molecular basis for 
growth hormone–receptor interactions, In Recent 
Progress in Hormone Research, 253-275, 
Elsevier (1993). 

[9]  Meiering, E. M.; Serrano, L.; and Fersht, A. R. 
Effect of active site residues in barnase on 
activity and stability, Journal of molecular 
biology, 225: 585-589 (1992). 

[10]  Schulga, A. A.; Makarov, A. A.; Levichkin, I. V.; 
Belousova, Y. V.; Lobachov, V. M.; Protasevich, 
I. I.; Pace, C. N.; and Kirpichnikov, M. P. 
Increased stability of human growth hormone 
with reduced lactogenic potency, FEBS letters, 
528: 257-260 (2002). 

[11]  Burley, S.; and Petsko, G. A. Aromatic-aromatic 
interaction: a mechanism of protein structure 
stabilization, Science, 229: 23-28 (1985). 

[12]  Bhattacharyya, R.; Samanta, U.; and Chakrabarti, 
P. Aromatic–aromatic interactions in and around 
α-helices, Protein engineering, 15: 91-100 (2002). 

[13]  Dahiyat, B. I.; and Mayo, S. L. Protein design 
automation, Protein Science, 5: 895-903 (1996). 

[14]  Kellis, J. T.; Nyberg, K.; and Fersht, A. R. 
Contribution of hydrophobic interactions to 
protein stability, Nature, 333: 784-786 (1988). 

[15]  Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, 
G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; 
and Bourne, P. E. The protein data bank, Nucleic 
acids research, 28: 235-242 (2000). 

[16]  Lee, J.; Cheng, X.; Swails, J. M.; Yeom, M. S.; 
Eastman, P. K.; Lemkul, J. A.; Wei, S.; 
Buckner, J.; Jeong, J. C.; Qi, Y.; Jo, S.; Pande, 
V. S.; Case, D. A.; Brooks, C. L. 3rd, 
MacKerell, A. D.; Jr., Klauda, J. B.; and Im, W. 
CHARMM-GUI Input Generator for NAMD, 



R. P. Koirala, B. Thapa, S. P. Khanal, R. P. Adhikari and N. P. Adhikari 

49 

GROMACS, AMBER, OpenMM, and 
CHARMM/OpenMM Simulations Using the 
CHARMM36 Additive Force Field, J Chem 
Theory Comput, 12: 405-413 (2016). 

[17]  Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; 
Feig, M.; de Groot, B. L.; Grubmuller, H.; and 
MacKerell, A. D., Jr. CHARMM36m: an 
improved force field for folded and intrinsically 
disordered proteins, Nat Methods, 14: 71-73 
(2017). 

[18]  Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; 
Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. 
D.; Kale, L.; and Schulten, K. Scalable molecular 
dynamics with NAMD, J Comput Chem, 26: 
1781-1802 (2005). 

[19]  Koirala, R. P.; Bhusal, H. P.; Khanal, S. P.; and 
Adhikari, N. P. Effect of temperature on transport 
properties of cysteine in water, AIP Advances, 10: 
025122 (2020). 

[20]  Ramachandran, S.; Kota, P.; Ding, F.; and 
Dokholyan, N. V. Automated minimization of 
steric clashes in protein structures, Proteins, 79: 
261-270 (2011). 

[21] Pantha, N.; Chauhan, B.; Sharma, P.; and 
Adhikari, N. P. Tuning Structural and Electronic 
Properties of Phosphorene with Vacancies. 
Journal of Nepal Physical Society, 6(1): 7-15 
(2020). 

[22]  Walton, E. B.; and Vanvliet, K. J. Equilibration of 
experimentally determined protein structures for 
molecular dynamics simulation, Phys Rev E Stat 
Nonlin Soft Matter Phys, 74: 061901 (2006). 

[23]  Humphrey, W.; Dalke, A.; and Schulten, K. 
VMD: visual molecular dynamics, J Mol Graph, 
14: 33-38, 27-38 (1996). 

[24]  Tina, K.; Bhadra, R.; and Srinivasan, N. PIC: 
protein interactions calculator, Nucleic acids 
research, 35: W473-W476 (2007). 

[25] Neopane, S.; and Pantha, N. First-Principles 
Study of van der Waals Interactions between 
Halogen Molecules (Cl2 and I2). Journal of 
Nepal Physical Society, 5(1): 19-23 (2019). 

[26]  Thakuria, R.; Sarma, B.; and Nangia, A. 7.03 
Hydrogen Bonding in Molecular Crystals, 
Comprehensive Supramolecular Chemistry, II: 
25-48 (2017). 

[27]  DiStasio Jr, R. A.; Gobre, V. V.; and Tkatchenko, 
A. Many-body van der Waals interactions in 
molecules and condensed matter, Journal of 
Physics: Condensed Matter, 26: 213202 (2014). 

[28] Yunta, M. It is important to compute 
intramolecular hydrogen bonding in drug design, 
American Journal of Modeling and Optimization, 
5: 24-57 (2017). 

[29]  Hubbard, R. E.; and Haider, M. K. Hydrogen 
bonds in proteins: role and strength, eLS (2010). 












	Declaration
	Recommendation
	Letter of Approval
	Acknowledgements
	Abstract
	List of Abbreviations
	List of Symbols
	List of Tables
	List of Figures
	CHAPTER 1
	INTRODUCTION
	General Consideration
	Composition of Amoxicillin
	Mechanical Action in Bacteria
	Bacterial Infections and Antibiotics
	Medical Uses and Side Effects
	Rationale of the Study
	Objectives of the Study
	Organization of the Thesis

	CHAPTER 2
	LITERATURE REVIEW
	CHAPTER 3
	MATERIALS AND METHODS
	General Consideration
	Radial Distribution Function (RDF)
	Diffusion Theory
	Effect of System Size on Diffusion Coefficient

	Free Energy Calculation
	Molecular Dynamics Simulations
	Modeling of the System
	Initialization
	Force Calculation
	Statistical Ensembles in Molecular Dynamics
	Temperature and Pressure Control
	Software Packages
	Systems Setup


	CHAPTER 4
	RESULTS AND DISCUSSION
	General Consideration
	Structural Analysis
	Transport Properties
	Temperature Dependence of Diffusion Coefficient
	Effect of System Size

	Free Energy of Solvation

	CHAPTER 5
	CONCLUSIONS AND RECOMMENDATIONS
	CHAPTER 6
	SUMMARY
	REFERENCES
	APPENDIX
	A.     Molecular Dynamics Parameters (MDP) Files
	A.1     For Energy Minimization Run:
	A.2     For Equilibration Run:
	A.3     For Production Run:
	B. Articles published in International Journals
	C. Articles published in National Journals
	D. Participation


